1
|
Subtirelu R, Writer M, Teichner E, Patil S, Indrakanti D, Werner TJ, Alavi A. Potential Neuroimaging Biomarkers for Autism Spectrum Disorder: A Comprehensive Review of MR Imaging, fMR Imaging, and PET Studies. PET Clin 2025; 20:25-37. [PMID: 39482217 DOI: 10.1016/j.cpet.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Autism spectrum disorder (ASD) is a characteristically heterogeneous disorder, as multiple neurodevelopmental disorders are characterized by similar symptomology and behavior. Research has shown that individuals with ASD benefit from early intervention; neuroimaging data may reveal information that cannot be obtained from traditional behavioral analysis. This review discusses the use of structural MR imaging, functional MR imaging (fMR imaging), and PET in the detection of ASD. Larger datasets, standardized methods of collection and analysis, and more robust meta-analyses are required to implement the observed biomarkers and improve the lives of patients living with AUD.
Collapse
Affiliation(s)
- Robert Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Milo Writer
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Eric Teichner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street #100, Philadelphia, PA, USA
| | - Shiv Patil
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street #100, Philadelphia, PA, USA
| | - Deepak Indrakanti
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Miozzo F, Murru L, Maiellano G, di Iasio I, Zippo AG, Zambrano Avendano A, Metodieva VD, Riccardi S, D'Aliberti D, Spinelli S, Canu T, Chaabane L, Hirano S, Kas MJH, Francolini M, Piazza R, Moretto E, Passafaro M. Disruption of the autism-associated Pcdh9 gene leads to transcriptional alterations, synapse overgrowth, and defective network activity in the CA1. J Neurosci 2024; 44:e0491242024. [PMID: 39557582 PMCID: PMC11638819 DOI: 10.1523/jneurosci.0491-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/21/2024] [Accepted: 09/17/2024] [Indexed: 11/20/2024] Open
Abstract
Protocadherins, a family of adhesion molecules with crucial role in cell-cell interactions, have emerged as key players in neurodevelopmental and psychiatric disorders. In particular, growing evidence links genetic alterations in Protocadherin 9 (PCDH9) gene with Autism Spectrum Disorder (ASD) and Major Depressive Disorder (MDD). Furthermore, Pcdh9 deletion induces neuronal defects in the mouse somatosensory cortex, accompanied by sensorimotor and memory impairment. However, the synaptic and molecular mechanisms of PCDH9 in the brain remain largely unknown, particularly concerning its impact on brain pathology. To address this question, we conducted a comprehensive investigation of PCDH9 role in the male mouse hippocampus at the ultrastructural, biochemical, transcriptomic, electrophysiological and network level. We show that PCDH9 mainly localizes at glutamatergic synapses and its expression peaks in the first week after birth, a crucial time window for synaptogenesis. Strikingly, Pcdh9 KO neurons exhibit oversized presynaptic terminal and postsynaptic density (PSD) in the CA1. Synapse overgrowth is sustained by the widespread up-regulation of synaptic genes, as revealed by single-nucleus RNA-seq (snRNA-seq), and the dysregulation of key drivers of synapse morphogenesis, including the SHANK2/CORTACTIN pathway. At the functional level, these structural and transcriptional abnormalities result into increased excitatory postsynaptic currents (mEPSC) and reduced network activity in the CA1 of Pcdh9 KO mice. In conclusion, our work uncovers Pcdh9 pivotal role in shaping the morphology and function of CA1 excitatory synapses, thereby modulating glutamatergic transmission within hippocampal circuits.Significance statement Converging evidence indicates that genetic alterations in Protocadherin 9 (PCDH9) gene are associated with Autism Spectrum Disorder (ASD) and Major Depressive Disorder (MDD). However, our understanding of PCDH9 physiological role and molecular mechanisms in the brain, as well as its connection to synaptic dysfunction and brain pathology, remains limited. Here we demonstrate that Pcdh9 regulates the transcriptional profile, morphology and function of glutamatergic synapses in the CA1, thereby tuning hippocampal network activity. Our results elucidate the molecular and synaptic mechanisms of a gene implicated in neurodevelopmental and psychiatric disorders, and suggest potential hippocampal alterations contributing to the cognitive deficits associated with these conditions.
Collapse
Affiliation(s)
- Federico Miozzo
- Institute of Neuroscience, CNR, Vedano al Lambro, Italy.
- Present address: Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Alicante, Spain
| | - Luca Murru
- Institute of Neuroscience, CNR, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Greta Maiellano
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
- Present address: MeLis, CNRS UMR 5284, INSERMU1314, Institut NeuroMyoGène, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Antonio G Zippo
- Institute of Neuroscience, CNR, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | | - Verjinia D Metodieva
- Institute of Neuroscience, CNR, Vedano al Lambro, Italy
- Present address: Neuroscience Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, 10117, Germany
| | - Sara Riccardi
- Institute of Neuroscience, CNR, Vedano al Lambro, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Deborah D'Aliberti
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Silvia Spinelli
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Tamara Canu
- Preclinical Imaging, Experimental Imaging Centre, IRCCS-San Raffaele Hospital, Milano, Italy
| | - Linda Chaabane
- Preclinical Imaging, Experimental Imaging Centre, IRCCS-San Raffaele Hospital, Milano, Italy
| | - Shinji Hirano
- Laboratory of Cell Biology, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata City, Osaka, 573-1010, Japan
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Rocco Piazza
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Edoardo Moretto
- Institute of Neuroscience, CNR, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Maria Passafaro
- Institute of Neuroscience, CNR, Vedano al Lambro, Italy.
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
3
|
Christensen ZP, Freedman EG, Foxe JJ. Autism is associated with in vivo changes in gray matter neurite architecture. Autism Res 2024; 17:2261-2277. [PMID: 39324563 DOI: 10.1002/aur.3239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Postmortem investigations in autism have identified anomalies in neural cytoarchitecture across limbic, cerebellar, and neocortical networks. These anomalies include narrow cell mini-columns and variable neuron density. However, difficulty obtaining sufficient post-mortem samples has often prevented investigations from converging on reproducible measures. Recent advances in processing magnetic resonance diffusion weighted images (DWI) make in vivo characterization of neuronal cytoarchitecture a potential alternative to post-mortem studies. Using extensive DWI data from the Adolescent Brain Cognitive Developmentsm (ABCD®) study 142 individuals with an autism diagnosis were compared with 8971 controls using a restriction spectrum imaging (RSI) framework that characterized total neurite density (TND), its component restricted normalized directional diffusion (RND), and restricted normalized isotropic diffusion (RNI). A significant decrease in TND was observed in autism in the right cerebellar cortex (β = -0.005, SE =0.0015, p = 0.0267), with significant decreases in RNI and significant increases in RND found diffusely throughout posterior and anterior aspects of the brain, respectively. Furthermore, these regions remained significant in post-hoc analysis when the autism sample was compared against a subset of 1404 individuals with other psychiatric conditions (pulled from the original 8971). These findings highlight the importance of characterizing neuron cytoarchitecture in autism and the significance of their incorporation as physiological covariates in future studies.
Collapse
Affiliation(s)
- Zachary P Christensen
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Edward G Freedman
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - John J Foxe
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
4
|
Cruz-Gamero JM, Ballardin D, Lecis B, Zhang CL, Cobret L, Gast A, Morisset-Lopez S, Piskorowski R, Langui D, Jose J, Chevreux G, Rebholz H. Missense mutation in the activation segment of the kinase CK2 models Okur-Chung neurodevelopmental disorder and alters the hippocampal glutamatergic synapse. Mol Psychiatry 2024:10.1038/s41380-024-02762-8. [PMID: 39367055 DOI: 10.1038/s41380-024-02762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024]
Abstract
Exome sequencing has enabled the identification of causative genes of monogenic forms of autism, amongst them, in 2016, CSNK2A1, the gene encoding the catalytic subunit of the kinase CK2, linking this kinase to Okur-Chung Neurodevelopmental Syndrome (OCNDS), a newly described neurodevelopmental condition with many symptoms resembling those of autism spectrum disorder. Thus far, no preclinical model of this condition exists. Here we describe a knock-in mouse model that harbors the K198R mutation in the activation segment of the α subunit of CK2. This region is a mutational hotspot, representing one-third of patients. These mice exhibit behavioral phenotypes that mirror patient symptoms. Homozygous knock-in mice die mid-gestation while heterozygous knock-in mice are born at half of the expected mendelian ratio and are smaller in weight and size than wildtype littermates. Heterozygous knock-in mice showed alterations in cognition and memory-assessing paradigms, enhanced stereotypies, altered circadian activity patterns, and nesting behavior. Phosphoproteome analysis from brain tissue revealed alterations in the phosphorylation status of major pre- and postsynaptic proteins of heterozygous knock-in mice. In congruence, we detect reduced synaptic maturation in hippocampal neurons and attenuated long-term potentiation in the hippocampus of knock-in mice. Taken together, heterozygous knock-in mice (CK2αK198R/+) exhibit significant face validity, presenting ASD-relevant phenotypes, synaptic deficits, and alterations in synaptic plasticity, all of which strongly validate this line as a mouse model of OCNDS.
Collapse
Affiliation(s)
- Jose M Cruz-Gamero
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
| | - Demetra Ballardin
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
| | - Barbara Lecis
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France
| | - Chun-Lei Zhang
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
| | - Laetitia Cobret
- Center for Molecular Biophysics-CNRS UPR 4301, Rue Charles Sadron, Orléans, France
| | - Alexander Gast
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, University of Münster, Münster, Germany
| | | | - Rebecca Piskorowski
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
| | - Dominique Langui
- Inserm, Institut du Cerveau, Plateforme ICM-Quant, Paris, France
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, University of Münster, Münster, Germany
| | | | - Heike Rebholz
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France.
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France.
- Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria.
| |
Collapse
|
5
|
He T, Xu C, Hu W, Zhang Z, Zhou Z, Cui X, Tang Y, Dong X. Research progress on the main brain network mechanisms of sleep disorders in autism spectrum disorder. CURRENT PSYCHOLOGY 2024; 43:31674-31685. [DOI: 10.1007/s12144-024-06711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 01/03/2025]
|
6
|
Oestreicher S, Bowler DM, Derwent CT, Gaigg SB, Roessner V, Vetter N, Volk T, Beyer N, Ring M. Structural Learning in Autistic and Non-Autistic Children: A Replication and Extension. J Autism Dev Disord 2024:10.1007/s10803-024-06486-0. [PMID: 39269674 DOI: 10.1007/s10803-024-06486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 09/15/2024]
Abstract
The hippocampus is involved in many cognitive domains which are difficult for autistic individuals. Our previous study using a Structural Learning task that has been shown to depend on hippocampal functioning found that structural learning is diminished in autistic adults (Ring et al., 2017). The aim of the present study was to examine whether those results can be replicated in and extended to a sample of autistic and non-autistic children. We tested 43 autistic children and 38 non-autistic children with a subsample of 25 autistic and 28 non-autistic children who were well-matched on IQ. The children took part in a Simple Discrimination task which a simpler form of compound learning, and a Structural Learning task. We expected both groups to perform similarly in Simple Discrimination but reduced performance by the autism group on the Structural Learning task, which is what we found in both the well-matched and the non-matched sample. However, contrary to our prediction and the findings from autistic adults in our previous study, autistic children demonstrated a capacity for Structural Learning and showed an overall better performance in the tasks than was seen in earlier studies. We discuss developmental differences in autism as well as the role of executive functions that may have contributed to better than predicted task performance in this study.
Collapse
Affiliation(s)
- Svenja Oestreicher
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Dermot M Bowler
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Claire T Derwent
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Sebastian B Gaigg
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Nora Vetter
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Medical School Berlin, Department of Psychology, Berlin, Germany
| | - Theresia Volk
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Nicole Beyer
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Melanie Ring
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
7
|
Ding N, Fu L, Qian L, Sun B, Li C, Gao H, Lei T, Ke X. The correlation between brain structure characteristics and emotion regulation ability in children at high risk of autism spectrum disorder. Eur Child Adolesc Psychiatry 2024; 33:3247-3262. [PMID: 38402375 DOI: 10.1007/s00787-024-02369-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/08/2024] [Indexed: 02/26/2024]
Abstract
As indicated by longitudinal observation, autism has difficulty controlling emotions to a certain extent in early childhood, and most children's emotional and behavioral problems are further aggravated with the growth of age. This study aimed at exploring the correlation between white matter and white matter fiber bundle connectivity characteristics and their emotional regulation ability in children with autism using machine learning methods, which can lay an empirical basis for early clinical intervention of autism. Fifty-five high risk of autism spectrum disorder (HR-ASD) children and 52 typical development (TD) children were selected to complete the skull 3D-T1 structure and diffusion tensor imaging (DTI). The emotional regulation ability of the two groups was compared using the still-face paradigm (SFP). The classification and regression models of white matter characteristics and white matter fiber bundle connections of emotion regulation ability in the HR-ASD group were built based on the machine learning method. The volume of the right amygdala (R2 = 0.245) and the volume of the right hippocampus (R2 = 0.197) affected constructive emotion regulation strategies. FA (R2 = 0.32) and MD (R2 = 0.34) had the predictive effect on self-stimulating behaviour. White matter fiber bundle connection predicted constructive regulation strategies (positive edging R2 = 0.333, negative edging R2 = 0.334) and mother-seeking behaviors (positive edging R2 = 0.667, negative edging R2 = 0.363). The emotional regulation ability of HR-ASD children is significantly correlated with the connections of multiple white matter fiber bundles, which is a potential neuro-biomarker of emotional regulation ability.
Collapse
Affiliation(s)
- Ning Ding
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Qingdao Women and Children' s Hospital, Qingdao University, Qingdao, 266011, China
| | - Linyan Fu
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lu Qian
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bei Sun
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chunyan Li
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Huiyun Gao
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tianyu Lei
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaoyan Ke
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
8
|
Abe Y, Erchinger VJ, Ousdal OT, Oltedal L, Tanaka KF, Takamiya A. Neurobiological mechanisms of electroconvulsive therapy for depression: Insights into hippocampal volumetric increases from clinical and preclinical studies. J Neurochem 2024; 168:1738-1750. [PMID: 38238933 DOI: 10.1111/jnc.16054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 10/04/2024]
Abstract
Depression is a highly prevalent and disabling psychiatric disorder. The hippocampus, which plays a central role in mood regulation and memory, has received considerable attention in depression research. Electroconvulsive therapy (ECT) is the most effective treatment for severe pharmacotherapy-resistant depression. Although the working mechanism of ECT remains unclear, recent magnetic resonance imaging (MRI) studies have consistently reported increased hippocampal volumes following ECT. The clinical implications of these volumetric increases and the specific cellular and molecular significance are not yet fully understood. This narrative review brings together evidence from animal models and human studies to provide a detailed examination of hippocampal volumetric increases following ECT. In particular, our preclinical MRI research using a mouse model is consistent with human findings, demonstrating a marked increase in hippocampal volume following ECT. Notable changes were observed in the ventral hippocampal CA1 region, including dendritic growth and increased synaptic density at excitatory synapses. Interestingly, inhibition of neurogenesis did not affect the ECT-related hippocampal volumetric increases detected on MRI. However, it remains unclear whether these histological and volumetric changes would be correlated with the clinical effect of ECT. Hence, future research on the relationships between cellular changes, ECT-related brain volumetric changes, and antidepressant effect could benefit from a bidirectional translational approach that integrates human and animal models. Such translational research may provide important insights into the mechanisms and potential biomarkers associated with ECT-induced hippocampal volumetric changes, thereby advancing our understanding of ECT for the treatment of depression.
Collapse
Affiliation(s)
- Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Vera J Erchinger
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Olga Therese Ousdal
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Leif Oltedal
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Akihiro Takamiya
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Sivayokan B, King C, Mali I, Payne M, Strating H, Warnes E, Bossmann SH, Plakke B. Aerobic exercise improves cognitive flexibility and modulates regional volume changes in a rat model of autism. Behav Brain Res 2024; 471:115136. [PMID: 38971431 DOI: 10.1016/j.bbr.2024.115136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Gestational exposure to valproic acid (VPA) is a risk factor for autism spectrum disorder (ASD). Rodents exposed to VPA in utero display common features of ASD, including volumetric dysregulation in higher-order cognitive regions like the medial prefrontal cortex (mPFC), the anterior cingulate cortex (ACC), and the hippocampus. Exercise has been shown in elderly populations to boost cognition and to buffer against brain volume losses with age. This study employed an adolescent treadmill exercise intervention to facilitate cognitive flexibility and regional brain volume regulation in rats exposed to VPA during gestation. It was found that exercise improved performance on extra-dimensional shifts of attention on a set-shifting task, which is indicative of improved cognitive flexibility. Exercise decreased frontal cortex volume in females, whereas in males exercise increased the ventral hippocampus. These findings suggest that aerobic exercise may be an effective intervention to counteract the altered development of prefrontal and hippocampal regions often observed in ASD.
Collapse
Affiliation(s)
- Bhavana Sivayokan
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Cole King
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Ivina Mali
- Kansas State University, Department of Chemistry, 1212 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Macy Payne
- Kansas State University, Department of Chemistry, 1212 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Hunter Strating
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Ellie Warnes
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Stefan H Bossmann
- Kansas State University, Department of Chemistry, 1212 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Bethany Plakke
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States.
| |
Collapse
|
10
|
Wang J, Christensen D, Coombes SA, Wang Z. Cognitive and brain morphological deviations in middle-to-old aged autistic adults: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 163:105782. [PMID: 38944227 PMCID: PMC11283673 DOI: 10.1016/j.neubiorev.2024.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Cognitive challenges and brain structure variations are common in autism spectrum disorder (ASD) but are rarely explored in middle-to-old aged autistic adults. Cognitive deficits that overlap between young autistic individuals and elderlies with dementia raise an important question: does compromised cognitive ability and brain structure during early development drive autistic adults to be more vulnerable to pathological aging conditions, or does it protect them from further decline? To answer this question, we have synthesized current theoretical models of aging in ASD and conducted a systematic literature review (Jan 1, 1980 - Feb 29, 2024) and meta-analysis to summarize empirical studies on cognitive and brain deviations in middle-to-old aged autistic adults. We explored findings that support different aging theories in ASD and addressed study limitations and future directions. This review sheds light on the poorly understood consequences of aging question raised by the autism community to pave the way for future studies to identify sensitive and reliable measures that best predict the onset, progression, and prognosis of pathological aging in ASD.
Collapse
Affiliation(s)
- Jingying Wang
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA
| | - Danielle Christensen
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA; Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zheng Wang
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA.
| |
Collapse
|
11
|
Le Belle JE, Condro M, Cepeda C, Oikonomou KD, Tessema K, Dudley L, Schoenfield J, Kawaguchi R, Geschwind D, Silva AJ, Zhang Z, Shokat K, Harris NG, Kornblum HI. Acute rapamycin treatment reveals novel mechanisms of behavioral, physiological, and functional dysfunction in a maternal inflammation mouse model of autism and sensory over-responsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602602. [PMID: 39026891 PMCID: PMC11257517 DOI: 10.1101/2024.07.08.602602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Maternal inflammatory response (MIR) during early gestation in mice induces a cascade of physiological and behavioral changes that have been associated with autism spectrum disorder (ASD). In a prior study and the current one, we find that mild MIR results in chronic systemic and neuro-inflammation, mTOR pathway activation, mild brain overgrowth followed by regionally specific volumetric changes, sensory processing dysregulation, and social and repetitive behavior abnormalities. Prior studies of rapamycin treatment in autism models have focused on chronic treatments that might be expected to alter or prevent physical brain changes. Here, we have focused on the acute effects of rapamycin to uncover novel mechanisms of dysfunction and related to mTOR pathway signaling. We find that within 2 hours, rapamycin treatment could rapidly rescue neuronal hyper-excitability, seizure susceptibility, functional network connectivity and brain community structure, and repetitive behaviors and sensory over-responsivity in adult offspring with persistent brain overgrowth. These CNS-mediated effects are also associated with alteration of the expression of several ASD-,ion channel-, and epilepsy-associated genes, in the same time frame. Our findings suggest that mTOR dysregulation in MIR offspring is a key contributor to various levels of brain dysfunction, including neuronal excitability, altered gene expression in multiple cell types, sensory functional network connectivity, and modulation of information flow. However, we demonstrate that the adult MIR brain is also amenable to rapid normalization of these functional changes which results in the rescue of both core and comorbid ASD behaviors in adult animals without requiring long-term physical alterations to the brain. Thus, restoring excitatory/inhibitory imbalance and sensory functional network modularity may be important targets for therapeutically addressing both primary sensory and social behavior phenotypes, and compensatory repetitive behavior phenotypes.
Collapse
|
12
|
Rexrode LE, Hartley J, Showmaker KC, Challagundla L, Vandewege MW, Martin BE, Blair E, Bollavarapu R, Antonyraj RB, Hilton K, Gardiner A, Valeri J, Gisabella B, Garrett MR, Theoharides TC, Pantazopoulos H. Molecular profiling of the hippocampus of children with autism spectrum disorder. Mol Psychiatry 2024; 29:1968-1979. [PMID: 38355786 PMCID: PMC11408253 DOI: 10.1038/s41380-024-02441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Several lines of evidence point to a key role of the hippocampus in Autism Spectrum Disorders (ASD). Altered hippocampal volume and deficits in memory for person and emotion related stimuli have been reported, along with enhanced ability for declarative memories. Mouse models have demonstrated a critical role of the hippocampus in social memory dysfunction, associated with ASD, together with decreased synaptic plasticity. Chondroitin sulfate proteoglycans (CSPGs), a family of extracellular matrix molecules, represent a potential key link between neurodevelopment, synaptic plasticity, and immune system signaling. There is a lack of information regarding the molecular pathology of the hippocampus in ASD. We conducted RNAseq profiling on postmortem human brain samples containing the hippocampus from male children with ASD (n = 7) and normal male children (3-14 yrs old), (n = 6) from the NIH NeuroBioBank. Gene expression profiling analysis implicated molecular pathways involved in extracellular matrix organization, neurodevelopment, synaptic regulation, and immune system signaling. qRT-PCR and Western blotting were used to confirm several of the top markers identified. The CSPG protein BCAN was examined with multiplex immunofluorescence to analyze cell-type specific expression of BCAN and astrocyte morphology. We observed decreased expression of synaptic proteins PSD95 (p < 0.02) and SYN1 (p < 0.02), increased expression of the extracellular matrix (ECM) protease MMP9 (p < 0.03), and decreased expression of MEF2C (p < 0.03). We also observed increased BCAN expression with astrocytes in children with ASD, together with altered astrocyte morphology. Our results point to alterations in immune system signaling, glia cell differentiation, and synaptic signaling in the hippocampus of children with ASD, together with alterations in extracellular matrix molecules. Furthermore, our results demonstrate altered expression of genes implicated in genetic studies of ASD including SYN1 and MEF2C.
Collapse
Affiliation(s)
- Lindsay E Rexrode
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA
| | - Joshua Hartley
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA
| | | | - Lavanya Challagundla
- Department of Cell and Molecular Biology, University of Mississippi Medical School, Jackson, MS, USA
| | | | - Brigitte E Martin
- Department of Cell and Molecular Biology, University of Mississippi Medical School, Jackson, MS, USA
| | - Estelle Blair
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA
| | - Ratna Bollavarapu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA
| | - Rhenius B Antonyraj
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA
| | - Keauna Hilton
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA
| | - Alex Gardiner
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA
| | - Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA
- Program in Neuroscience, University of Mississippi Medical School, Jackson, MS, USA
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA
- Program in Neuroscience, University of Mississippi Medical School, Jackson, MS, USA
| | - Michael R Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical School, Jackson, MS, USA
| | - Theoharis C Theoharides
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, MS, USA.
- Program in Neuroscience, University of Mississippi Medical School, Jackson, MS, USA.
| |
Collapse
|
13
|
Wegiel J, Chadman K, London E, Wisniewski T, Wegiel J. Contribution of the serotonergic system to developmental brain abnormalities in autism spectrum disorder. Autism Res 2024; 17:1300-1321. [PMID: 38500252 PMCID: PMC11272444 DOI: 10.1002/aur.3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
This review highlights a key role of the serotonergic system in brain development and in distortions of normal brain development in early stages of fetal life resulting in cascades of abnormalities, including defects of neurogenesis, neuronal migration, neuronal growth, differentiation, and arborization, as well as defective neuronal circuit formation in the cortex, subcortical structures, brainstem, and cerebellum of autistic subjects. In autism, defects in regulation of neuronal growth are the most frequent and ubiquitous developmental changes associated with impaired neuron differentiation, smaller size, distorted shape, loss of spatial orientation, and distortion of cortex organization. Common developmental defects of the brain in autism include multiregional focal dysplastic changes contributing to local neuronal circuit distortion, epileptogenic activity, and epilepsy. There is a discrepancy between more than 500 reports demonstrating the contribution of the serotonergic system to autism's behavioral anomalies, highlighted by lack of studies of autistic subjects' brainstem raphe nuclei, the center of brain serotonergic innervation, and of the contribution of the serotonergic system to the diagnostic features of autism spectrum disorder (ASD). Discovery of severe fetal brainstem auditory system neuronal deficits and other anomalies leading to a spectrum of hearing deficits contributing to a cascade of behavioral alterations, including deficits of social and verbal communication in individuals with autism, is another argument to intensify postmortem studies of the type and topography of, and the severity of developmental defects in raphe nuclei and their contribution to abnormal brain development and to the broad spectrum of functional deficits and comorbid conditions in ASD.
Collapse
Affiliation(s)
- Jarek Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Kathryn Chadman
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Eric London
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Thomas Wisniewski
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- Center for Cognitive Neurology, Department of Neurology, Pathology and Psychiatry, NYU Grossman School of Medicine, New York, New York, USA
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|
14
|
Duan K, Eyler L, Pierce K, Lombardo MV, Datko M, Hagler DJ, Taluja V, Zahiri J, Campbell K, Barnes CC, Arias S, Nalabolu S, Troxel J, Ji P, Courchesne E. Differences in regional brain structure in toddlers with autism are related to future language outcomes. Nat Commun 2024; 15:5075. [PMID: 38871689 PMCID: PMC11176156 DOI: 10.1038/s41467-024-48952-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Language and social symptoms improve with age in some autistic toddlers, but not in others, and such outcome differences are not clearly predictable from clinical scores alone. Here we aim to identify early-age brain alterations in autism that are prognostic of future language ability. Leveraging 372 longitudinal structural MRI scans from 166 autistic toddlers and 109 typical toddlers and controlling for brain size, we find that, compared to typical toddlers, autistic toddlers show differentially larger or thicker temporal and fusiform regions; smaller or thinner inferior frontal lobe and midline structures; larger callosal subregion volume; and smaller cerebellum. Most differences are replicated in an independent cohort of 75 toddlers. These brain alterations improve accuracy for predicting language outcome at 6-month follow-up beyond intake clinical and demographic variables. Temporal, fusiform, and inferior frontal alterations are related to autism symptom severity and cognitive impairments at early intake ages. Among autistic toddlers, brain alterations in social, language and face processing areas enhance the prediction of the child's future language ability.
Collapse
Affiliation(s)
- Kuaikuai Duan
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA.
| | - Lisa Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
- VISN 22 Mental Illness Research, Education, and Clinical Center, VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Michael V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, 38068, Italy
| | - Michael Datko
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Vani Taluja
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Javad Zahiri
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Kathleen Campbell
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Cynthia Carter Barnes
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Steven Arias
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Srinivasa Nalabolu
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Jaden Troxel
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Peng Ji
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Eric Courchesne
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
15
|
Chen L, Abate M, Fredericks M, Guo Y, Tao Z, Zhang X. Age-related differences in the intrinsic connectivity of the hippocampus and ventral temporal lobe in autistic individuals. Front Hum Neurosci 2024; 18:1394706. [PMID: 38938289 PMCID: PMC11208705 DOI: 10.3389/fnhum.2024.1394706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Although memory challenges in autistic individuals have been characterized recently, the functional connectivity of the hippocampus and ventral temporal lobe, two structures important for episodic and semantic memory functions, are poorly understood in autistic individuals. Moreover, age-related differences in the functional connectivity associated with these two memory networks are unrevealed. Methods The current study investigated age-related differences in intrinsic connectivity of the hippocampal and ventral temporal lobe (vTL) memory networks in well-matched ASD (n = 73; age range: 10.23-55.40 years old) and Non-ASD groups (n = 74; age range: 10.46-56.20 years old) from the open dataset ABIDE-I. Both theory-driven ROI-to-ROI approach and exploratory seed-based whole-brain approach were used. Results and discussion Our findings revealed reduced connectivity in ASD compared to Non-ASD peers, as well as an age-related reduction in the connectivity of hippocampal and vTL networks with triple networks, namely, the default mode network (DMN), the central executive network (CEN), and the salience network (SN), potentially underpinning their challenges in memory, language, and social functions. However, we did not observe reliable differences in age-related effects between the ASD and Non-ASD groups. Our study underscores the importance of understanding memory network dysfunctions in ASD across the lifespan to inform educational and clinical practices.
Collapse
Affiliation(s)
- Lang Chen
- Department of Psychology, Santa Clara University, Santa Clara, CA, United States
- Neuroscience Program, Santa Clara University, Santa Clara, CA, United States
| | - Meghan Abate
- Neuroscience Program, Santa Clara University, Santa Clara, CA, United States
| | | | - Yuanchun Guo
- Department of Counseling Psychology, Santa Clara University, Santa Clara, CA, United States
| | - Zhizhen Tao
- Department of Counseling Psychology, Santa Clara University, Santa Clara, CA, United States
| | - Xiuming Zhang
- Department of Psychology, Santa Clara University, Santa Clara, CA, United States
| |
Collapse
|
16
|
King C, Mali I, Strating H, Fangman E, Neyhard J, Payne M, Bossmann SH, Plakke B. Region-Specific Brain Volume Changes Emerge in Adolescence in the Valproic Acid Model of Autism and Parallel Human Findings. Dev Neurosci 2024:1-12. [PMID: 38679020 PMCID: PMC11511791 DOI: 10.1159/000538932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits, cognitive dysfunction, and stereotyped repetitive behaviors. Regional volume changes are commonly observed in individuals with ASD. To examine volumetric dysregulation across adolescence, the valproic acid (VPA) model was used to induce ASD-like phenotypes in rats. METHOD Regional volumes were obtained via magnetic resonance imaging at either postnatal day 28 or postnatal day 40 (P40), which correspond to early and late adolescence, respectively. RESULTS Consistent with prior research, VPA animals had reduced total brain volume compared to control animals. A novel outcome was that VPA animals had overgrown right hippocampi at P40. Differences in the pattern of development of the anterior cingulate cortex were also observed in VPA animals. Differences for the posterior cingulate were only observed in males, but not females. CONCLUSION These results demonstrate differences in region-specific developmental trajectories between control and VPA animals and suggest that the VPA model may capture regional volume changes consistent with human ASD.
Collapse
Affiliation(s)
- Cole King
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506
| | - Ivina Mali
- Kansas State University, Department of Chemistry, 1212 Mid-Campus Dr. N, Manhattan, KS 66506
| | - Hunter Strating
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506
| | - Elizabeth Fangman
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506
| | - Jenna Neyhard
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506
| | - Macy Payne
- Kansas State University, Department of Chemistry, 1212 Mid-Campus Dr. N, Manhattan, KS 66506
| | - Stefan H. Bossmann
- Kansas State University, Department of Chemistry, 1212 Mid-Campus Dr. N, Manhattan, KS 66506
| | - Bethany Plakke
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506
| |
Collapse
|
17
|
Fradkin Y, De Taboada L, Naeser M, Saltmarche A, Snyder W, Steingold E. Transcranial photobiomodulation in children aged 2-6 years: a randomized sham-controlled clinical trial assessing safety, efficacy, and impact on autism spectrum disorder symptoms and brain electrophysiology. Front Neurol 2024; 15:1221193. [PMID: 38737349 PMCID: PMC11086174 DOI: 10.3389/fneur.2024.1221193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 03/11/2024] [Indexed: 05/14/2024] Open
Abstract
Background Small pilot studies have suggested that transcranial photobiomodulation (tPBM) could help reduce symptoms of neurological conditions, such as depression, traumatic brain injury, and autism spectrum disorder (ASD). Objective To examine the impact of tPBM on the symptoms of ASD in children aged two to six years. Method We conducted a randomized, sham-controlled clinical trial involving thirty children aged two to six years with a prior diagnosis of ASD. We delivered pulses of near-infrared light (40 Hz, 850 nm) noninvasively to selected brain areas twice a week for eight weeks, using an investigational medical device designed for this purpose (Cognilum™, JelikaLite Corp., New York, United States). We used the Childhood Autism Rating Scale (CARS, 2nd Edition) to assess and compare the ASD symptoms of participants before and after the treatment course. We collected electroencephalogram (EEG) data during each session from those participants who tolerated wearing the EEG cap. Results The difference in the change in CARS scores between the two groups was 7.23 (95% CI 2.357 to 12.107, p = 0.011). Seventeen of the thirty participants completed at least two EEGs and time-dependent trends were detected. In addition, an interaction between Active versus Sham and Scaled Time was observed in delta power (Coefficient = 7.521, 95% CI -0.517 to 15.559, p = 0.07) and theta power (Coefficient = -8.287, 95% CI -17.199 to 0.626, p = 0.07), indicating a potential trend towards a greater reduction in delta power and an increase in theta power over time with treatment in the Active group, compared to the Sham group. Furthermore, there was a significant difference in the condition (Treatment vs. Sham) in the power of theta waves (net_theta) (Coefficient = 9.547, 95% CI 0.027 to 19.067, p = 0.049). No moderate or severe side effects or adverse effects were reported or observed during the trial. Conclusion These results indicate that tPBM may be a safe and effective treatment for ASD and should be studied in more depth in larger studies.Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT04660552, identifier NCT04660552.
Collapse
Affiliation(s)
- Yuliy Fradkin
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | | | - Margaret Naeser
- Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | | | | | | |
Collapse
|
18
|
Zhang Q, Wang Y, Tao J, Xia R, Zhang Y, Liu Z, Cheng J. Sex-biased single-cell genetic landscape in mice with autism spectrum disorder. J Genet Genomics 2024; 51:338-351. [PMID: 37703921 DOI: 10.1016/j.jgg.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
Autistic spectrum disorder (ASD) is a male-biased, heterogeneous neurodevelopmental disorder that affects approximately 1%-2% of the population. Prenatal exposure to valproic acid (VPA) is a recognized risk factor for ASD, but the cellular and molecular basis of VPA-induced ASD at the single-cell resolution is unclear. Here, we aim to compare the cellular and molecular differences in the hippocampus between male and female prenatal mice with ASD at the single-cell transcriptomic level. The transcriptomes of more than 45,000 cells are assigned to 12 major cell types, including neurons, glial cells, vascular cells, and immune cells. Cell type-specific genes with altered expression after prenatal VPA exposure are analyzed, and the largest number of differentially expressed genes (DEGs) are found in neurons, choroid plexus epithelial cells, and microglia. In microglia, several pathways related to inflammation are found in both males and females, including the tumor necrosis factor (TNF), nuclear factor kappa B (NF-κB), toll-like receptor (TLR), and mitogen-activated protein kinase (MAPK) signaling pathways, which are important for the induction of autistic-like behavior. Additionally, we note that several X-linked genes, including Bex1, Bex3, and Gria3, were among the male-specific DEGs of neurons. This pioneering study describes the landscape of the transcriptome in the hippocampus of autistic mice. The elucidation of sexual differences could provide innovative strategies for the prevention and treatment of ASD.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jie Tao
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Ruixue Xia
- Department of Respiratory and Critical Care Medicine, Henan University Huaihe Hospital, Kaifeng, Henan 475099, China
| | - Yijie Zhang
- Department of Respiratory and Critical Care Medicine, Henan University Huaihe Hospital, Kaifeng, Henan 475099, China
| | - Zhirui Liu
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Jiwei Cheng
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
19
|
Haaf R, Brandi ML, Albantakis L, Lahnakoski JM, Henco L, Schilbach L. Peripheral oxytocin levels are linked to hypothalamic gray matter volume in autistic adults: a cross-sectional secondary data analysis. Sci Rep 2024; 14:1380. [PMID: 38228703 PMCID: PMC10791615 DOI: 10.1038/s41598-023-50770-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
Oxytocin (OXT) is known to modulate social behavior and cognition and has been discussed as pathophysiological and therapeutic factor for autism spectrum disorder (ASD). An accumulating body of evidence indicates the hypothalamus to be of particular importance with regard to the underlying neurobiology. Here we used a region of interest voxel-based morphometry (VBM) approach to investigate hypothalamic gray matter volume (GMV) in autistic (n = 29, age 36.03 ± 11.0) and non-autistic adults (n = 27, age 30.96 ± 11.2). Peripheral plasma OXT levels and the autism spectrum quotient (AQ) were used for correlation analyses. Results showed no differences in hypothalamic GMV in autistic compared to non-autistic adults but suggested a differential association between hypothalamic GMV and OXT levels, such that a positive association was found for the ASD group. In addition, hypothalamic GMV showed a positive association with autistic traits in the ASD group. Bearing in mind the limitations such as a relatively small sample size, a wide age range and a high rate of psychopharmacological treatment in the ASD sample, these results provide new preliminary evidence for a potentially important role of the HTH in ASD and its relationship to the OXT system, but also point towards the importance of interindividual differences.
Collapse
Affiliation(s)
- Raoul Haaf
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany.
- Graduate School, Technical University of Munich, Munich, Germany.
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany.
| | - Marie-Luise Brandi
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Albantakis
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Outpatient and Day Clinic for Disorders of Social Interaction, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Juha M Lahnakoski
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Neurosciences and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lara Henco
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Graduate School of Systemic Neurosciences, Munich, Germany
| | - Leonhard Schilbach
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Outpatient and Day Clinic for Disorders of Social Interaction, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Graduate School of Systemic Neurosciences, Munich, Germany
- Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
20
|
El Hayek L, DeVries D, Gogate A, Aiken A, Kaur K, Chahrour MH. Disruption of the autism gene and chromatin regulator KDM5A alters hippocampal cell identity. SCIENCE ADVANCES 2023; 9:eadi0074. [PMID: 37992166 PMCID: PMC10664992 DOI: 10.1126/sciadv.adi0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/25/2023] [Indexed: 11/24/2023]
Abstract
Chromatin regulation plays a pivotal role in establishing and maintaining cellular identity and is one of the top pathways disrupted in autism spectrum disorder (ASD). The hippocampus, composed of distinct cell types, is often affected in patients with ASD. However, the specific hippocampal cell types and their transcriptional programs that are dysregulated in ASD are unknown. Using single-nucleus RNA sequencing, we show that the ASD gene, lysine demethylase 5A (KDM5A), regulates the development of specific subtypes of excitatory and inhibitory neurons. We found that KDM5A is essential for establishing hippocampal cell identity by controlling a differentiation switch early in development. Our findings define a role for the chromatin regulator KDM5A in establishing hippocampal cell identity and contribute to the emerging convergent mechanisms across ASD.
Collapse
Affiliation(s)
- Lauretta El Hayek
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darlene DeVries
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashlesha Gogate
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ariel Aiken
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kiran Kaur
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria H. Chahrour
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
21
|
Estévez-López F, Dall’Aglio L, Rodriguez-Ayllon M, Xu B, You Y, Hillman CH, Muetzel RL, Tiemeier H. Levels of Physical Activity at Age 10 Years and Brain Morphology Changes From Ages 10 to 14 Years. JAMA Netw Open 2023; 6:e2333157. [PMID: 37796507 PMCID: PMC10556964 DOI: 10.1001/jamanetworkopen.2023.33157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/02/2023] [Indexed: 10/06/2023] Open
Abstract
Importance Physical activity may promote healthy brain development in children, but previous research was predominantly cross-sectional and included small samples, providing limited knowledge. Objective To investigate the longitudinal associations of physical activity with brain morphology changes. Design, Setting, and Participants A 4-year longitudinal population-based cohort study in Rotterdam, the Netherlands, embedded in Generation R, a cohort from fetal life onward. From the women enrolled during pregnancy, children who had repeated measures of brain structure at ages 10 (range 8 to 12) years and 14 (range 13 to 15) years were included. Data were collected from March 2013 to November 2015 (baseline) and from October 2016 to January 2020 (follow-up). Data were analyzed from April to December 2022. Exposure At age 10 years, both the child and their primary caregiver reported the child's levels of physical activity with regard to sport participation, outdoor play, and total physical activity. Primary analyses were based on an average multi-informant report. Main outcomes and measures Brain morphology was quantified by magnetic resonance imaging. Hypothesized regions of interest were the bilateral amygdala and hippocampal volumes. Global brain measures were studied to test the specificity of the hypothesis. Results Data were available for 1088 children (566 girls [52%]; 693 [64%] Dutch). Their mean (SD) age at baseline was 10.1 (0.6) years. For amygdala volume change, positive associations with multi-informant reports of total physical activity (β = 2.6; 95% CI, 0.3-4.9) were found. Total physical activity was associated with hippocampal volume increases only when reported by the child (β = 3.1; 95% CI, 0.4-5.8). No robust associations with global brain measures were found. Conclusions and relevance In this cohort study of 1088 children, more physical activity at 10 years was consistently associated with an increase in amygdala volume in children aged 10 to 14 years. Physical activity and increases in hippocampal volume were found using child reports of physical activity only. These findings suggest physical activity in late childhood was prospectively associated with volumetric changes in specific subcortical structures, but not to global brain development, from late childhood to early adolescence. These findings may inform the design of future public health interventions to best facilitate neurodevelopment with physical activity.
Collapse
Affiliation(s)
- Fernando Estévez-López
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Education, Faculty of Education Sciences, SPORT Research Group and CERNEP Research Center, University of Almería, Almería, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Lorenza Dall’Aglio
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - María Rodriguez-Ayllon
- Department of Epidemiology, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Bing Xu
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Yueyue You
- Department of Public Health, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Charles H. Hillman
- Department of Psychology, Northeastern University, Boston, Massachusetts
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, Massachusetts
| | - Ryan L. Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
22
|
Stancioiu F, Bogdan R, Dumitrescu R. Neuron-Specific Enolase (NSE) as a Biomarker for Autistic Spectrum Disease (ASD). Life (Basel) 2023; 13:1736. [PMID: 37629593 PMCID: PMC10455327 DOI: 10.3390/life13081736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Autistic spectrum disease (ASD) is an increasingly common diagnosis nowadays with a prevalence of 1-2% in most countries. Its complex causality-a combination of genetic, immune, metabolic, and environmental factors-is translated into pleiomorphic developmental disorders of various severity, which have two main aspects in common: repetitive, restrictive behaviors and difficulties in social interaction varying from awkward habits and verbalization to a complete lack of interest for the outside world. The wide variety of ASD causes also makes it very difficult to find a common denominator-a disease biomarker and medication-and currently, there is no commonly used diagnostic and therapeutic strategy besides clinical evaluation and psychotherapy. In the CORDUS clinical study, we have administered autologous cord blood to ASD kids who had little or no improvement after other treatments and searched for a biomarker which could help predict the degree of improvement in each patient. We have found that the neuron-specific enolase (NSE) was elevated above the normal clinical range (less than 16.3 ng/mL) in the vast majority of ASD kids tested in our study (40 of 41, or 97.5%). This finding opens up a new direction for diagnostic confirmation, dynamic evaluation, and therapeutic intervention for ASD kids.
Collapse
Affiliation(s)
| | - Raluca Bogdan
- Medicover Hospital Bucharest, 013982 Bucharest, Romania
| | | |
Collapse
|
23
|
Liu J, Chang H, Abrams DA, Kang JB, Chen L, Rosenberg-Lee M, Menon V. Atypical cognitive training-induced learning and brain plasticity and their relation to insistence on sameness in children with autism. eLife 2023; 12:e86035. [PMID: 37534879 PMCID: PMC10550286 DOI: 10.7554/elife.86035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023] Open
Abstract
Children with autism spectrum disorders (ASDs) often display atypical learning styles; however, little is known regarding learning-related brain plasticity and its relation to clinical phenotypic features. Here, we investigate cognitive learning and neural plasticity using functional brain imaging and a novel numerical problem-solving training protocol. Children with ASD showed comparable learning relative to typically developing children but were less likely to shift from rule-based to memory-based strategy. While learning gains in typically developing children were associated with greater plasticity of neural representations in the medial temporal lobe and intraparietal sulcus, learning in children with ASD was associated with more stable neural representations. Crucially, the relation between learning and plasticity of neural representations was moderated by insistence on sameness, a core phenotypic feature of ASD. Our study uncovers atypical cognitive and neural mechanisms underlying learning in children with ASD, and informs pedagogical strategies for nurturing cognitive abilities in childhood autism.
Collapse
Affiliation(s)
- Jin Liu
- Department of Psychiatry & Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Daniel A Abrams
- Department of Psychiatry & Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Julia Boram Kang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Lang Chen
- Department of Psychiatry & Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
- Department of Psychology, Santa Clara UniversitySanta ClaraUnited States
| | - Miriam Rosenberg-Lee
- Department of Psychiatry & Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
- Department of Psychology, Rutgers UniversityNewarkUnited States
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
- Department of Neurology & Neurological Sciences, Stanford Neurosciences InstituteStanfordUnited States
- Stanford Neurosciences Institute, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
24
|
Pan N, Lin LZ, Wang X, Shi L, Xu XY, Jin YY, Tan S, Song XJ, Jing J, Li XH. Brain structure underlying the empathizing-systemizing difference in children with autism spectrum disorder. World J Pediatr 2023; 19:782-792. [PMID: 37273174 DOI: 10.1007/s12519-023-00732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Behavioral research has shown that children with autism spectrum disorder (ASD) have a higher empathizing-systemizing difference (D score) than normal children. However, there is no research about the neuroanatomical mechanisms of the empathizing-systemizing difference in children with ASD. METHODS Participants comprised 41 children with ASD and 39 typically developing (TD) children aged 6‒12 years. Empathizing-systemizing difference was estimated using the D score from the Chinese version of Children's Empathy Quotient and Systemizing Quotient. We quantified brain morphometry, including global and regional brain volumes and surface-based cortical measures (cortical thickness, surface area, and gyrification) via structural magnetic resonance imaging. RESULTS We found that the D score was significantly negatively associated with amygdala gray matter volume [β = -0.16; 95% confidence interval (CI): -0.30, -0.02; P value = 0.030] in children with ASD. There was a significantly negative association between D score and gyrification in the left lateral occipital cortex (LOC) in children with ASD (B = -0.10; SE = 0.03; cluster-wise P value = 0.006) and a significantly positive association between D score and gyrification in the right fusiform in TD children (B = 0.10; SE = 0.03; cluster-wise P value = 0.022). Moderation analyses demonstrated significant interactions between D score and diagnosed group in amygdala gray matter volume (β = 0.19; 95% CI 0.04, 0.35; P value = 0.013) and left LOC gyrification (β = 0.11; 95% CI 0.05, 0.17; P value = 0.001) but not in right fusiform gyrification (β = 0.08; 95% CI -0.02, 0.17; P value = 0.105). CONCLUSIONS Neuroanatomical variation in amygdala volume and gyrification of LOC could be potential biomarkers for the empathizing-systemizing difference in children with ASD but not in TD children. Large-scale neuroimaging studies are necessary to test the replicability of our findings.
Collapse
Affiliation(s)
- Ning Pan
- Department of Maternal and Child Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xin Wang
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao-Yu Xu
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Yu-Ying Jin
- Department of Maternal and Child Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, China
| | - Si Tan
- Department of Maternal and Child Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, China
| | - Xiao-Jing Song
- Department of Maternal and Child Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, China
| | - Jin Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, China
| | - Xiu-Hong Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
25
|
Yamada T, Watanabe T, Sasaki Y. Are sleep disturbances a cause or consequence of autism spectrum disorder? Psychiatry Clin Neurosci 2023; 77:377-385. [PMID: 36949621 PMCID: PMC10871071 DOI: 10.1111/pcn.13550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by core symptoms such as atypical social communication, stereotyped behaviors, and restricted interests. One of the comorbid symptoms of individuals with ASD is sleep disturbance. There are two major hypotheses regarding the neural mechanism underlying ASD, i.e., the excitation/inhibition (E/I) imbalance and the altered neuroplasticity hypotheses. However, the pathology of ASD remains unclear due to inconsistent research results. This paper argues that sleep is a confounding factor, thus, must be considered when examining the pathology of ASD because sleep plays an important role in modulating the E/I balance and neuroplasticity in the human brain. Investigation of the E/I balance and neuroplasticity during sleep might enhance our understanding of the neural mechanisms of ASD. It may also lead to the development of neurobiologically informed interventions to supplement existing psychosocial therapies.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, 02912, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, 02912, USA
| | - Yuka Sasaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, 02912, USA
| |
Collapse
|
26
|
Morton JT, Jin DM, Mills RH, Shao Y, Rahman G, McDonald D, Zhu Q, Balaban M, Jiang Y, Cantrell K, Gonzalez A, Carmel J, Frankiensztajn LM, Martin-Brevet S, Berding K, Needham BD, Zurita MF, David M, Averina OV, Kovtun AS, Noto A, Mussap M, Wang M, Frank DN, Li E, Zhou W, Fanos V, Danilenko VN, Wall DP, Cárdenas P, Baldeón ME, Jacquemont S, Koren O, Elliott E, Xavier RJ, Mazmanian SK, Knight R, Gilbert JA, Donovan SM, Lawley TD, Carpenter B, Bonneau R, Taroncher-Oldenburg G. Multi-level analysis of the gut-brain axis shows autism spectrum disorder-associated molecular and microbial profiles. Nat Neurosci 2023; 26:1208-1217. [PMID: 37365313 PMCID: PMC10322709 DOI: 10.1038/s41593-023-01361-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/13/2023] [Indexed: 06/28/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by heterogeneous cognitive, behavioral and communication impairments. Disruption of the gut-brain axis (GBA) has been implicated in ASD although with limited reproducibility across studies. In this study, we developed a Bayesian differential ranking algorithm to identify ASD-associated molecular and taxa profiles across 10 cross-sectional microbiome datasets and 15 other datasets, including dietary patterns, metabolomics, cytokine profiles and human brain gene expression profiles. We found a functional architecture along the GBA that correlates with heterogeneity of ASD phenotypes, and it is characterized by ASD-associated amino acid, carbohydrate and lipid profiles predominantly encoded by microbial species in the genera Prevotella, Bifidobacterium, Desulfovibrio and Bacteroides and correlates with brain gene expression changes, restrictive dietary patterns and pro-inflammatory cytokine profiles. The functional architecture revealed in age-matched and sex-matched cohorts is not present in sibling-matched cohorts. We also show a strong association between temporal changes in microbiome composition and ASD phenotypes. In summary, we propose a framework to leverage multi-omic datasets from well-defined cohorts and investigate how the GBA influences ASD.
Collapse
Affiliation(s)
- James T Morton
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
- Biostatistics & Bioinformatics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Dong-Min Jin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | | | - Yan Shao
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Gibraan Rahman
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Qiyun Zhu
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Metin Balaban
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Yueyu Jiang
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Kalen Cantrell
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Antonio Gonzalez
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Julie Carmel
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | | | - Sandra Martin-Brevet
- Laboratory for Research in Neuroimaging, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Kirsten Berding
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Brittany D Needham
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - María Fernanda Zurita
- Microbiology Institute and Health Science College, Universidad San Francisco de Quito, Quito, Ecuador
| | - Maude David
- Departments of Microbiology & Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Olga V Averina
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Alexey S Kovtun
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Antonio Noto
- Department of Biomedical Sciences, School of Medicine, University of Cagliari, Cagliari, Italy
| | - Michele Mussap
- Laboratory Medicine, Department of Surgical Sciences, School of Medicine, University of Cagliari, Cagliari, Italy
| | - Mingbang Wang
- Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China
- Microbiome Therapy Center, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Daniel N Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ellen Li
- Department of Medicine, Division of Gastroenterology and Hepatology, Stony Brook University, Stony Brook, NY, USA
| | - Wenhao Zhou
- Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China
| | - Vassilios Fanos
- Neonatal Intensive Care Unit and Neonatal Pathology, Department of Surgical Sciences, School of Medicine, University of Cagliari, Cagliari, Italy
| | - Valery N Danilenko
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Dennis P Wall
- Pediatrics (Systems Medicine), Biomedical Data Science, and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Paúl Cárdenas
- Institute of Microbiology, COCIBA, Universidad San Francisco de Quito, Quito, Ecuador
| | - Manuel E Baldeón
- Facultad de Ciencias Médicas, de la Salud y la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Sébastien Jacquemont
- Sainte Justine Hospital Research Center, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Evan Elliott
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Sarkis K Mazmanian
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
| | - Jack A Gilbert
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Sharon M Donovan
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Bob Carpenter
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
- Prescient Design, a Genentech Accelerator, New York, NY, USA
| | - Gaspar Taroncher-Oldenburg
- Gaspar Taroncher Consulting, Philadelphia, PA, USA.
- Simons Foundation Autism Research Initiative, Simons Foundation, New York, NY, USA.
| |
Collapse
|
27
|
Li G, Chen MH, Li G, Wu D, Lian C, Sun Q, Rushmore RJ, Wang L. Volumetric Analysis of Amygdala and Hippocampal Subfields for Infants with Autism. J Autism Dev Disord 2023; 53:2475-2489. [PMID: 35389185 PMCID: PMC9537344 DOI: 10.1007/s10803-022-05535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Previous studies have demonstrated abnormal brain overgrowth in children with autism spectrum disorder (ASD), but the development of specific brain regions, such as the amygdala and hippocampal subfields in infants, is incompletely documented. To address this issue, we performed the first MRI study of amygdala and hippocampal subfields in infants from 6 to 24 months of age using a longitudinal dataset. A novel deep learning approach, Dilated-Dense U-Net, was proposed to address the challenge of low tissue contrast and small structural size of these subfields. We performed a volume-based analysis on the segmentation results. Our results show that infants who were later diagnosed with ASD had larger left and right volumes of amygdala and hippocampal subfields than typically developing controls.
Collapse
Affiliation(s)
- Guannan Li
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Department of Radiology and Biomedical Research Imaging Center, Bioinformatics Building, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Meng-Hsiang Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, Bioinformatics Building, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chunfeng Lian
- Department of Radiology and Biomedical Research Imaging Center, Bioinformatics Building, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Quansen Sun
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - R Jarrett Rushmore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, Bioinformatics Building, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
28
|
Wang S, Li X. A revisit of the amygdala theory of autism: Twenty years after. Neuropsychologia 2023; 183:108519. [PMID: 36803966 PMCID: PMC10824605 DOI: 10.1016/j.neuropsychologia.2023.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
The human amygdala has long been implicated to play a key role in autism spectrum disorder (ASD). Yet it remains unclear to what extent the amygdala accounts for the social dysfunctions in ASD. Here, we review studies that investigate the relationship between amygdala function and ASD. We focus on studies that employ the same task and stimuli to directly compare people with ASD and patients with focal amygdala lesions, and we also discuss functional data associated with these studies. We show that the amygdala can only account for a limited number of deficits in ASD (primarily face perception tasks but not social attention tasks), a network view is, therefore, more appropriate. We next discuss atypical brain connectivity in ASD, factors that can explain such atypical brain connectivity, and novel tools to analyze brain connectivity. Lastly, we discuss new opportunities from multimodal neuroimaging with data fusion and human single-neuron recordings that can enable us to better understand the neural underpinnings of social dysfunctions in ASD. Together, the influential amygdala theory of autism should be extended with emerging data-driven scientific discoveries such as machine learning-based surrogate models to a broader framework that considers brain connectivity at the global scale.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| | - Xin Li
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
29
|
Sullivan M, Fernandez-Aranda F, Camacho-Barcia L, Harkin A, Macrì S, Mora-Maltas B, Jiménez-Murcia S, O'Leary A, Ottomana AM, Presta M, Slattery D, Scholtz S, Glennon JC. Insulin and Disorders of Behavioural Flexibility. Neurosci Biobehav Rev 2023; 150:105169. [PMID: 37059405 DOI: 10.1016/j.neubiorev.2023.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Behavioural inflexibility is a symptom of neuropsychiatric and neurodegenerative disorders such as Obsessive-Compulsive Disorder, Autism Spectrum Disorder and Alzheimer's Disease, encompassing the maintenance of a behaviour even when no longer appropriate. Recent evidence suggests that insulin signalling has roles apart from its regulation of peripheral metabolism and mediates behaviourally-relevant central nervous system (CNS) functions including behavioural flexibility. Indeed, insulin resistance is reported to generate anxious, perseverative phenotypes in animal models, with the Type 2 diabetes medication metformin proving to be beneficial for disorders including Alzheimer's Disease. Structural and functional neuroimaging studies of Type 2 diabetes patients have highlighted aberrant connectivity in regions governing salience detection, attention, inhibition and memory. As currently available therapeutic strategies feature high rates of resistance, there is an urgent need to better understand the complex aetiology of behaviour and develop improved therapeutics. In this review, we explore the circuitry underlying behavioural flexibility, changes in Type 2 diabetes, the role of insulin in CNS outcomes and mechanisms of insulin involvement across disorders of behavioural inflexibility.
Collapse
Affiliation(s)
- Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Fernando Fernandez-Aranda
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Lucía Camacho-Barcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Bernat Mora-Maltas
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Aet O'Leary
- University Hospital Frankfurt, Frankfurt, Germany
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Jeffrey C Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Cohen AL, Kroeck MR, Wall J, McManus P, Ovchinnikova A, Sahin M, Krueger DA, Bebin EM, Northrup H, Wu JY, Warfield SK, Peters JM, Fox MD. Tubers Affecting the Fusiform Face Area Are Associated with Autism Diagnosis. Ann Neurol 2023; 93:577-590. [PMID: 36394118 PMCID: PMC9974824 DOI: 10.1002/ana.26551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Tuberous sclerosis complex (TSC) is associated with focal brain "tubers" and a high incidence of autism spectrum disorder (ASD). The location of brain tubers associated with autism may provide insight into the neuroanatomical substrate of ASD symptoms. METHODS We delineated tuber locations for 115 TSC participants with ASD (n = 31) and without ASD (n = 84) from the Tuberous Sclerosis Complex Autism Center of Excellence Research Network. We tested for associations between ASD diagnosis and tuber burden within the whole brain, specific lobes, and at 8 regions of interest derived from the ASD neuroimaging literature, including the anterior cingulate, orbitofrontal and posterior parietal cortices, inferior frontal and fusiform gyri, superior temporal sulcus, amygdala, and supplemental motor area. Next, we performed an unbiased data-driven voxelwise lesion symptom mapping (VLSM) analysis. Finally, we calculated the risk of ASD associated with positive findings from the above analyses. RESULTS There were no significant ASD-related differences in tuber burden across the whole brain, within specific lobes, or within a priori regions derived from the ASD literature. However, using VLSM analysis, we found that tubers involving the right fusiform face area (FFA) were associated with a 3.7-fold increased risk of developing ASD. INTERPRETATION Although TSC is a rare cause of ASD, there is a strong association between tuber involvement of the right FFA and ASD diagnosis. This highlights a potentially causative mechanism for developing autism in TSC that may guide research into ASD symptoms more generally. ANN NEUROL 2023;93:577-590.
Collapse
Affiliation(s)
- Alexander L Cohen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mallory R Kroeck
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Juliana Wall
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter McManus
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arina Ovchinnikova
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Darcy A Krueger
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Joyce Y Wu
- Division of Neurology & Epilepsy, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jurriaan M Peters
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
31
|
Li YJ, Li CY, Li CY, Hu DX, Xv ZB, Zhang SH, Li Q, Zhang P, Tian B, Lan XL, Chen XQ. KMT2E Haploinsufficiency Manifests Autism-Like Behaviors and Amygdala Neuronal Development Dysfunction in Mice. Mol Neurobiol 2023; 60:1609-1625. [PMID: 36534336 DOI: 10.1007/s12035-022-03167-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Autism spectrum disorders (ASD) are highly heterogeneous neurodevelopmental disorders characterized by impaired social interaction skills. Whole exome sequencing has identified loss-of-function mutations in lysine methyltransferase 2E (KMT2E, also named MLL5) in ASD patients and it is listed as an ASD high-risk gene in humans. However, experimental evidence of KMT2E in association with ASD-like manifestations or neuronal function is still missing. Relying on KMT2E+/- mice, through animal behavior analyses, positron emission tomography (PET) imaging, and neuronal morphological analyses, we explored the role of KMT2E haploinsufficiency in ASD-like symptoms. Behavioral results revealed that KMT2E haploinsufficiency was sufficient to produce social deficit, accompanied by anxiety in mice. Whole-brain 18F-FDG-PET analysis identified that relative amygdala glycometabolism was selectively decreased in KMT2E+/- mice compared to wild-type mice. The numbers and soma sizes of amygdala neurons in KMT2E+/- mice were prominently increased. Additionally, KMT2E mRNA levels in human amygdala were significantly decreased after birth during brain development. Our findings support a causative role of KMT2E in ASD development and suggest that amygdala neuronal development abnormality is likely a major underlying mechanism.
Collapse
Affiliation(s)
- Yuan-Jun Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Chun-Yan Li
- Department of Nuclear Medicine, Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun-Yang Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Dian-Xing Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Zhi-Bo Xv
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Shu-Han Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Xiao-Li Lan
- Department of Nuclear Medicine, Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiao-Qian Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China.
| |
Collapse
|
32
|
Thongkorn S, Kanlayaprasit S, Kasitipradit K, Lertpeerapan P, Panjabud P, Hu VW, Jindatip D, Sarachana T. Investigation of autism-related transcription factors underlying sex differences in the effects of bisphenol A on transcriptome profiles and synaptogenesis in the offspring hippocampus. Biol Sex Differ 2023; 14:8. [PMID: 36803626 PMCID: PMC9940328 DOI: 10.1186/s13293-023-00496-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) has been linked to susceptibility to autism spectrum disorder (ASD). Our recent studies have shown that prenatal BPA exposure disrupted ASD-related gene expression in the hippocampus, neurological functions, and behaviors associated with ASD in a sex-specific pattern. However, the molecular mechanisms underlying the effects of BPA are still unclear. METHODS Transcriptome data mining and molecular docking analyses were performed to identify ASD-related transcription factors (TFs) and their target genes underlying the sex-specific effects of prenatal BPA exposure. Gene ontology analysis was conducted to predict biological functions associated with these genes. The expression levels of ASD-related TFs and targets in the hippocampus of rat pups prenatally exposed to BPA were measured using qRT-PCR analysis. The role of the androgen receptor (AR) in BPA-mediated regulation of ASD candidate genes was investigated using a human neuronal cell line stably transfected with AR-expression or control plasmid. Synaptogenesis, which is a function associated with genes transcriptionally regulated by ASD-related TFs, was assessed using primary hippocampal neurons isolated from male and female rat pups prenatally exposed to BPA. RESULTS We found that there was a sex difference in ASD-related TFs underlying the effects of prenatal BPA exposure on the transcriptome profiles of the offspring hippocampus. In addition to the known BPA targets AR and ESR1, BPA could directly interact with novel targets (i.e., KDM5B, SMAD4, and TCF7L2). The targets of these TFs were also associated with ASD. Prenatal BPA exposure disrupted the expression of ASD-related TFs and targets in the offspring hippocampus in a sex-dependent manner. Moreover, AR was involved in the BPA-mediated dysregulation of AUTS2, KMT2C, and SMARCC2. Prenatal BPA exposure altered synaptogenesis by increasing synaptic protein levels in males but not in females, but the number of excitatory synapses was increased in female primary neurons only. CONCLUSIONS Our findings suggest that AR and other ASD-related TFs are involved in sex differences in the effects of prenatal BPA exposure on transcriptome profiles and synaptogenesis in the offspring hippocampus. These TFs may play an essential role in an increased ASD susceptibility associated with endocrine-disrupting chemicals, particularly BPA, and the male bias of ASD.
Collapse
Affiliation(s)
- Surangrat Thongkorn
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Kasidit Kasitipradit
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pattanachat Lertpeerapan
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Panjabud
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W. Hu
- grid.253615.60000 0004 1936 9510Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Depicha Jindatip
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tewarit Sarachana
- SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
33
|
Peng Q, Liu Y, Yu L, Shen Y, Li F, Feng S, Chen F. Deletion of Arrb2 Down-regulates Autophagy in the Mouse Hippocampus via Akt-mTOR Pathway Activation. Neuroscience 2023; 519:120-130. [PMID: 36796753 DOI: 10.1016/j.neuroscience.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
The cytoplasmic multifunctional adaptor protein β-arrestin 2 (Arrb2) is involved in the occurrence of various nervous system diseases, such as Alzheimer's disease and Parkinson's disease. Previous laboratory studies have shown that the expression and function of the Arrb2 gene was increased in valproic acid-induced autistic mice models. However, few reports have examined the possible role of Arrb2 in the pathogenesis of autism spectrum disorder. Therefore, Arrb2-deficient (Arrb2-/-) mice were further studied to uncover the physiological function of Arrb2 in the nervous system. In this study, we found that Arrb2-/- mice had normal behavioral characteristics compared with wild-type mice. The autophagy marker protein LC3B was decreased in the hippocampus of Arrb2-/- mice compared to wild-type mice. Western blot analysis revealed that deletion of Arrb2 caused hyperactivation of Akt-mTOR signaling in the hippocampus. In addition, abnormal mitochondrial dysfunction was observed in Arrb2-/- hippocampal neurons, which was characterized by a reduction in mitochondrial membrane potential and adenosine triphosphate production and an increase in reactive oxygen species levels. Therefore, this study elucidates the interaction between Arrb2 and the Akt-mTOR signaling pathway and provides insights into the role of Arrb2 in hippocampal neuron autophagy.
Collapse
Affiliation(s)
- Qingyu Peng
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yamei Liu
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Lele Yu
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yizhe Shen
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Feng Li
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China
| | - Shini Feng
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
34
|
Yu X, Liu H, Chang N, Fu W, Guo Z, Wang Y. Circular RNAs: New players involved in the regulation of cognition and cognitive diseases. Front Neurosci 2023; 17:1097878. [PMID: 36816112 PMCID: PMC9932922 DOI: 10.3389/fnins.2023.1097878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Circular RNAs (circRNAs), a type of covalently closed endogenous single-stranded RNA, have been regarded as the byproducts of the aberrant splicing of genes without any biological functions. Recently, with the development of high-throughput sequencing and bioinformatics, thousands of circRNAs and their differential biological functions have been identified. Except for the great advances in identifying circRNA roles in tumor progression, diagnosis, and treatment, accumulated evidence shows that circRNAs are enriched in the brain, especially in the synapse, and dynamically change with the development or aging of organisms. Because of the specific roles of synapses in higher-order cognitive functions, circRNAs may not only participate in cognitive functions in normal physiological conditions but also lead to cognition-related diseases after abnormal regulation of their expression or location. Thus, in this review, we summarized the progress of studies looking at the role of circRNA in cognitive function, as well as their involvement in the occurrence, development, prognosis, and treatment of cognitive-related diseases, including autism, depression, and Alzheimer's diseases.
Collapse
Affiliation(s)
- Xiaohan Yu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Haoyu Liu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Chang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Weijia Fu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhiwen Guo
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yue Wang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Yue Wang,
| |
Collapse
|
35
|
Duan K, Eyler L, Pierce K, Lombardo M, Datko M, Hagler D, Taluja V, Zahiri J, Campbell K, Barnes C, Arias S, Nalabolu S, Troxel J, Courchesne E. Language, Social, and Face Regions Are Affected in Toddlers with Autism and Predictive of Language Outcome. RESEARCH SQUARE 2023:rs.3.rs-2451837. [PMID: 36778379 PMCID: PMC9915795 DOI: 10.21203/rs.3.rs-2451837/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Identifying prognostic early brain alterations is crucial for autism spectrum disorder (ASD). Leveraging structural MRI data from 166 ASD and 109 typical developing (TD) toddlers and controlling for brain size, we found that, compared to TD, ASD toddlers showed larger or thicker lateral temporal regions; smaller or thinner frontal lobe and midline structures; larger callosal subregion volume; and smaller cerebellum. Most of these differences were replicated in an independent cohort of 38 ASD and 37 TD toddlers. Moreover, the identified brain alterations were related to ASD symptom severity and cognitive impairments at intake, and, remarkably, they improved the accuracy for predicting later language outcome beyond intake clinical and demographic variables. In summary, brain regions involved in language, social, and face processing were altered in ASD toddlers. These early-age brain alterations may be the result of dysregulation in multiple neural processes and stages and are promising prognostic biomarkers for future language ability.
Collapse
Affiliation(s)
- Kuaikuai Duan
- Georgia Institute of Technology, Emory University, Georgia State University
| | | | | | | | | | - Donald Hagler
- Department of Radiology, School of Medicine, University of California San Diego, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu J, Chang H, Abrams DA, Kang JB, Chen L, Rosenberg-Lee M, Menon V. Atypical cognitive training-induced learning and brain plasticity and their relation to insistence on sameness in children with autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525594. [PMID: 36747659 PMCID: PMC9900852 DOI: 10.1101/2023.01.25.525594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Children with autism spectrum disorders (ASD) often display atypical learning styles, however little is known regarding learning-related brain plasticity and its relation to clinical phenotypic features. Here, we investigate cognitive learning and neural plasticity using functional brain imaging and a novel numerical problem-solving training protocol. Children with ASD showed comparable learning relative to typically developing children but were less likely to shift from rule-based to memory-based strategy. Critically, while learning gains in typically developing children were associated with greater plasticity of neural representations in the medial temporal lobe and intraparietal sulcus, learning in children with ASD was associated with more stable neural representations. Crucially, the relation between learning and plasticity of neural representations was moderated by insistence on sameness, a core phenotypic feature of ASD. Our study uncovers atypical cognitive and neural mechanisms underlying learning in children with ASD, and informs pedagogical strategies for nurturing cognitive abilities in childhood autism.
Collapse
Affiliation(s)
- Jin Liu
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Daniel A. Abrams
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Julia Boram Kang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Lang Chen
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Psychology, Santa Clara University, Santa Clara, CA 95053
| | - Miriam Rosenberg-Lee
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Psychology, Rutgers University, Newark, NJ 07102
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
37
|
Kisaretova P, Tsybko A, Bondar N, Reshetnikov V. Molecular Abnormalities in BTBR Mice and Their Relevance to Schizophrenia and Autism Spectrum Disorders: An Overview of Transcriptomic and Proteomic Studies. Biomedicines 2023; 11:289. [PMID: 36830826 PMCID: PMC9953015 DOI: 10.3390/biomedicines11020289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Animal models of psychopathologies are of exceptional interest for neurobiologists because these models allow us to clarify molecular mechanisms underlying the pathologies. One such model is the inbred BTBR strain of mice, which is characterized by behavioral, neuroanatomical, and physiological hallmarks of schizophrenia (SCZ) and autism spectrum disorders (ASDs). Despite the active use of BTBR mice as a model object, the understanding of the molecular features of this strain that cause the observed behavioral phenotype remains insufficient. Here, we analyzed recently published data from independent transcriptomic and proteomic studies on hippocampal and corticostriatal samples from BTBR mice to search for the most consistent aberrations in gene or protein expression. Next, we compared reproducible molecular signatures of BTBR mice with data on postmortem samples from ASD and SCZ patients. Taken together, these data helped us to elucidate brain-region-specific molecular abnormalities in BTBR mice as well as their relevance to the anomalies seen in ASDs or SCZ in humans.
Collapse
Affiliation(s)
- Polina Kisaretova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Anton Tsybko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Natalia Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Vasiliy Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Avenue, Sochi 354340, Russia
| |
Collapse
|
38
|
Liu C, Liu J, Gong H, Liu T, Li X, Fan X. Implication of Hippocampal Neurogenesis in Autism Spectrum Disorder: Pathogenesis and Therapeutic Implications. Curr Neuropharmacol 2023; 21:2266-2282. [PMID: 36545727 PMCID: PMC10556385 DOI: 10.2174/1570159x21666221220155455] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a cluster of heterogeneous neurodevelopmental conditions with atypical social communication and repetitive sensory-motor behaviors. The formation of new neurons from neural precursors in the hippocampus has been unequivocally demonstrated in the dentate gyrus of rodents and non-human primates. Accumulating evidence sheds light on how the deficits in the hippocampal neurogenesis may underlie some of the abnormal behavioral phenotypes in ASD. In this review, we describe the current evidence concerning pre-clinical and clinical studies supporting the significant role of hippocampal neurogenesis in ASD pathogenesis, discuss the possibility of improving hippocampal neurogenesis as a new strategy for treating ASD, and highlight the prospect of emerging pro-neurogenic therapies for ASD.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Li
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
39
|
Lee SY, Kweon H, Kang H, Kim E. Age-differential sexual dimorphisms in CHD8-S62X-mutant mouse synapses and transcriptomes. Front Mol Neurosci 2023; 16:1111388. [PMID: 36873104 PMCID: PMC9978779 DOI: 10.3389/fnmol.2023.1111388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Chd8+/N2373K mice with a human C-terminal-truncating mutation (N2373K) display autistic-like behaviors in juvenile and adult males but not in females. In contrast, Chd8+/S62X mice with a human N-terminal-truncating mutation (S62X) display behavioral deficits in juvenile males (not females) and adult males and females, indicative of age-differential sexually dimorphic behaviors. Excitatory synaptic transmission is suppressed and enhanced in male and female Chd8+/S62X juveniles, respectively, but similarly enhanced in adult male and female mutants. ASD-like transcriptomic changes are stronger in newborn and juvenile (but not adult) Chd8+/S62X males but in newborn and adult (not juvenile) Chd8+/S62X females. These results point to age-differential sexual dimorphisms in Chd8+/S62X mice at synaptic and transcriptomic levels, in addition to the behavioral level.
Collapse
Affiliation(s)
- Soo Yeon Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hanseul Kweon
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| |
Collapse
|
40
|
Vakilzadeh G, Martinez-Cerdeño V. Pathology and Astrocytes in Autism. Neuropsychiatr Dis Treat 2023; 19:841-850. [PMID: 37077706 PMCID: PMC10106330 DOI: 10.2147/ndt.s390053] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/13/2023] [Indexed: 04/21/2023] Open
Abstract
A distinct pathology for autism spectrum disorder (ASD) remains elusive. Human and animal studies have focused on investigating the role of neurons in ASD. However, recent studies have hinted that glial cell pathology could be a characteristic of ASD. Astrocytes are the most abundant glial cell in the brain and play an important role in neuronal function, both during development and in adult. They regulate neuronal migration, dendritic and spine development, and control the concentration of neurotransmitters at the synaptic cleft. They are also responsible for synaptogenesis, synaptic development, and synaptic function. Therefore, any change in astrocyte number and/or function could contribute to the impairment of connectivity that has been reported in ASD. Data available to date is scarce but indicates that while the number of astrocytes is reduced, their state of activation and their GFAP expression is increased in ASD. Disruption of astrocyte function in ASD may affect proper neurotransmitter metabolism, synaptogenesis, and the state of brain inflammation. Astrocytes alterations are common to ASD and other neurodevelopmental disorders. Future studies about the role of astrocytes in ASD are required to better understand this disorder.
Collapse
Affiliation(s)
- Gelareh Vakilzadeh
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children, Sacramento, CA, USA
| | - Veronica Martinez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children, Sacramento, CA, USA
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA
- Correspondence: Veronica Martinez-Cerdeño, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA, Tel +916 453-2163, Email
| |
Collapse
|
41
|
Sultan S. Translating neuroimaging changes to neuro-endophenotypes of autistic spectrum disorder: a narrative review. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract
Background
Autism-spectrum disorder is a neurodevelopmental disorder with heterogeneity in etiopathogenesis and clinical presentation. Neuroanatomical and neurophysiological abnormalities may represent neural endophenotypes for autism spectrum disorders which may help identify subgroups of patients seemingly similar in clinical presentation yet different in their pathophysiological underpinnings. Furthermore, a thorough understanding of the pathophysiology of disease can pave the way to effective treatments, prevention, and prognostic predictions. The aim of this review is to identify the predominant neural endophenotypes in autism-spectrum disorder. The evidence was researched at the following electronic databases: Pubmed, PsycINFO, Scopus, Web of Science, and EMBASE.
Results
Enlarged brain, especially frontotemporal cortices have been consistently reported by structural neuroimaging, whereas functional neuroimaging has revealed frontotemporal dysconnectivity.
Conclusions
Regrettably, many of these findings have not been consistent. Therefore, translating these findings into neural endophenotype is by far an attempt in its budding stage. The structural and functional neuroimaging changes may represent neural endophenotypes unique to autism-spectrum disorder. Despite inconsistent results, a clinically meaningful finding may require combined efforts of autism-spectrum-disorder researchers focused on different aspects of basic, genetic, neuroimaging, and clinical research.
Collapse
|
42
|
Hennessy A, Seguin D, Correa S, Wang J, Martinez-Trujillo JC, Nicolson R, Duerden EG. Anxiety in children and youth with autism spectrum disorder and the association with amygdala subnuclei structure. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022; 27:1053-1067. [PMID: 36278283 PMCID: PMC10108338 DOI: 10.1177/13623613221127512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autism spectrum disorder (ASD) is clinically characterized by social and communication difficulties as well as repetitive behaviors. Many children with ASD also suffer from anxiety, which has been associated with alterations in amygdala structure. In this work, the association between amygdala subnuclei volumes and anxiety was assessed in a cohort of 234 participants (mean age = 11.0 years, SD = 3.9, 95 children with ASD, 139 children were non-autistic). Children underwent magnetic resonance imaging. Amygdala subnuclei volumes were extracted automatically. Anxiety was assessed using the Screen for Child Anxiety Related Disorders, the Child Behavior Checklist, and the Strength and Difficulties Questionnaire. Children with ASD had higher anxiety scores relative to non-autistic children on all anxiety measures (all, p < 0.05). Anxiety levels were significantly predicted in children with ASD by right basal (right: B = 0.235, p = 0.002) and paralaminar (PL) (B = −0.99, p = 0.009) volumes. Basal nuclei receive multisensory information from cortical and subcortical areas and have extensive projections within the limbic system while the PL nuclei are involved in emotional processing. Alterations in basal and PL nuclei in children with ASD and the association with anxiety may reflect morphological changes related to in the neurocircuitry of anxiety in ASD. Lay abstract Autism spectrum disorder (ASD) is clinically characterized by social communication difficulties as well as restricted and repetitive patterns of behavior. In addition, children with ASD are more likely to experience anxiety compared with their peers who do not have ASD. Recent studies suggest that atypical amygdala structure, a brain region involved in emotions, may be related to anxiety in children with ASD. However, the amygdala is a complex structure composed of heterogeneous subnuclei, and few studies to date have focused on how amygdala subnuclei relate to in anxiety in this population. The current sample consisted of 95 children with ASD and 139 non-autistic children, who underwent magnetic resonance imaging (MRI) and assessments for anxiety. The amygdala volumes were automatically segmented. Results indicated that children with ASD had elevated anxiety scores relative to peers without ASD. Larger basal volumes predicted greater anxiety in children with ASD, and this association was not seen in non-autistic children. Findings converge with previous literature suggesting ASD children suffer from higher levels of anxiety than non-autistic children, which may have important implications in treatment and interventions. Our results suggest that volumetric estimation of amygdala’s subregions in MRI may reveal specific anxiety-related associations in children with ASD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Emma G Duerden
- Western University, Canada
- The University of Western Ontario, Canada
| |
Collapse
|
43
|
Hüls A, Wedderburn CJ, Groenewold NA, Gladish N, Jones MJ, Koen N, MacIsaac JL, Lin DTS, Ramadori KE, Epstein MP, Donald KA, Kobor MS, Zar HJ, Stein DJ. Newborn differential DNA methylation and subcortical brain volumes as early signs of severe neurodevelopmental delay in a South African Birth Cohort Study. World J Biol Psychiatry 2022; 23:601-612. [PMID: 34895032 PMCID: PMC9273810 DOI: 10.1080/15622975.2021.2016955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Early detection of neurodevelopmental delay is crucial for intervention and treatment strategies. We analysed associations between newborn DNA methylation (DNAm), neonatal magnetic resonance imaging (MRI) neuroimaging data, and neurodevelopment. METHODS Neurodevelopment was assessed in 161 children from the South African Drakenstein Child Health Study at 2 years of age using the Bayley Scales of Infant and Toddler Development III. We performed an epigenome-wide association study of neurodevelopmental delay using DNAm from cord blood. Subsequently, we analysed if associations between DNAm and neurodevelopmental delay were mediated by altered neonatal brain volumes (subset of 51 children). RESULTS Differential DNAm at SPTBN4 (cg26971411, Δbeta = -0.024, p-value = 3.28 × 10-08), and two intergenic regions (chromosome 11: cg00490349, Δbeta = -0.036, p-value = 3.02 × 10-08; chromosome 17: cg15660740, Δbeta = -0.078, p-value = 6.49 × 10-08) were significantly associated with severe neurodevelopmental delay. While these associations were not mediated by neonatal brain volume, neonatal caudate volumes were independently associated with neurodevelopmental delay, particularly in language (Δcaudate volume = 165.30 mm3, p = 0.0443) and motor (Δcaudate volume = 365.36 mm3, p-value = 0.0082) domains. CONCLUSIONS Differential DNAm from cord blood and increased neonatal caudate volumes were independently associated with severe neurodevelopmental delay at 2 years of age. These findings suggest that neurobiological signals for severe developmental delay may be detectable in very early life.
Collapse
Affiliation(s)
- Anke Hüls
- Department of Epidemiology and Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nynke A Groenewold
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Nicole Gladish
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Nastassja Koen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - David T S Lin
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Katia E Ramadori
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Michael P Epstein
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
44
|
Yarger HA, Nordahl CW, Redcay E. Examining Associations Between Amygdala Volumes and Anxiety Symptoms in Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:916-924. [PMID: 34688922 PMCID: PMC9021331 DOI: 10.1016/j.bpsc.2021.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/18/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Anxiety is one of the most common co-occurring conditions in people with autism spectrum disorder. The amygdala has been identified as being associated with anxiety in populations with and without autism, yet associations in autism were based on relatively small or developmentally constrained samples, leaving questions as to whether these results hold at different developmental ages and in a larger, more robust sample. METHODS Structural neuroimaging and parent report of anxiety symptoms of children ages 5-13 years with (n = 123) and without (n = 171) a diagnosis of autism were collected from the University of Maryland and three sites from the Autism Brain Imaging Data Exchange. Standardized residuals for bilateral amygdala volumes were computed adjusting for site, hemispheric volumes, and covariates (age, sex, Full Scale IQ). RESULTS Clinically significant anxiety symptoms did not differentiate amygdala volumes between groups (i.e., autism and anxiety, autism without anxiety, without autism or anxiety). No significant association between left or right amygdala volumes and anxiety scores was observed among the sample of individuals with autism. Meta-analytic and Bayes factor estimations provided additional support for the null hypothesis. Age, sex, and autism severity did not moderate associations between anxiety and amygdala volumes. CONCLUSIONS No relation between amygdala volumes and anxiety symptoms in children with autism was observed in the largest sample to investigate this question. We discuss directions for future research to determine whether additional factors including age or method of assessment may contribute to this lack of association.
Collapse
Affiliation(s)
- Heather A Yarger
- Department of Psychology, Neuroscience and Cognitive Science Program, College Park, Maryland.
| | - Christine Wu Nordahl
- Department of Psychiatry and Behavioral Sciences, UC Davis MIND Institute, Sacramento, California
| | - Elizabeth Redcay
- Department of Psychology, Neuroscience and Cognitive Science Program, College Park, Maryland
| |
Collapse
|
45
|
Ardalan M, Chumak T, Quist A, Hermans E, Hoseinpoor Rafati A, Gravina G, Jabbari Shiadeh SM, Svedin P, Alabaf S, Hansen B, Wegener G, Westberg L, Mallard C. Reelin cells and sex-dependent synaptopathology in autism following postnatal immune activation. Br J Pharmacol 2022; 179:4400-4422. [PMID: 35474185 PMCID: PMC9545289 DOI: 10.1111/bph.15859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Autism spectrum disorders (ASD) are heterogeneous neurodevelopmental disorders with considerably increased risk in male infants born preterm and with neonatal infection. Here, we investigated the role of postnatal immune activation on hippocampal synaptopathology by targeting Reelin+ cells in mice with ASD-like behaviours. EXPERIMENTAL APPROACH C57/Bl6 mouse pups of both sexes received lipopolysaccharide (LPS, 1 mg·kg-1 ) on postnatal day (P) 5. At P45, animal behaviour was examined by marble burying and sociability test, followed by ex vivo brain MRI diffusion kurtosis imaging (DKI). Hippocampal synaptogenesis, number and morphology of Reelin+ cells, and mRNA expression of trans-synaptic genes, including neurexin-3, neuroligin-1, and cell-adhesion molecule nectin-1, were analysed at P12 and P45. KEY RESULTS Social withdrawal and increased stereotypic activities in males were related to increased mean diffusivity on MRI-DKI and overgrowth in hippocampus together with retention of long-thin immature synapses on apical dendrites, decreased volume and number of Reelin+ cells as well as reduced expression of trans-synaptic and cell-adhesion molecules. CONCLUSION AND IMPLICATIONS The study provides new insights into sex-dependent mechanisms that may underlie ASD-like behaviour in males following postnatal immune activation. We identify GABAergic interneurons as core components of dysmaturation of excitatory synapses in the hippocampus following postnatal infection and provide cellular and molecular substrates for the MRI findings with translational value.
Collapse
Affiliation(s)
- Maryam Ardalan
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Tetyana Chumak
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Alexandra Quist
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Eva Hermans
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Developmental Origins of Disease, Utrecht Brain Center and Wilhelmina Children's HospitalUtrecht UniversityUtrechtNetherlands
| | - Ali Hoseinpoor Rafati
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Giacomo Gravina
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Seyedeh Marziyeh Jabbari Shiadeh
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Pernilla Svedin
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Setareh Alabaf
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Brian Hansen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience‐SKSAarhus UniversityAarhusDenmark
| | - Gregers Wegener
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
46
|
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that occurs during early childhood. The change from being normal across several contexts to displaying the behavioral phenotype of ASD occurs in infants and toddlers with autism. Findings provided by magnetic resonance imaging (MRI)-based research owing to the developmental phase, including potential pathways underlying the pathogenesis of the condition and the potential for signs and symptomatic risk prediction. The present study focuses on the characteristic features of magnetic resonance imaging autistic brain, how these changes are correlated to autism signs and symptoms and the implications of MRI as a potential tool for the early diagnosis of ASD. PRISMA style was used to conduct this review. Research articles related to the key concepts of this review, which is looking at MRI brain changes in autistic patients, were revised and incorporated with what is known with the pathophysiology of brain regions in relation to signs and symptoms of autism. Studies on brain MRI of autism were revied for major brain features and regions such as brain volume, cortex and hippocampus. This review reveals that brain changes seen in MRI are highly correlated with the signs and symptoms of autism. There are numerous distinct features noted in an autistic brain using MRI. Based on these findings, various developmental brain paths and autistic behavior culminate in a typical diagnosis, and it is possible that addressing these trajectories would improve the accuracy in which children are detected and provide the necessary treatment.
Collapse
Affiliation(s)
- Nahla L. Faizo
- Radiological Sciences Department, College of Applied Medical Sciences, Taif University, KSA
| |
Collapse
|
47
|
Lee JK, Andrews DS, Ozturk A, Solomon M, Rogers S, Amaral DG, Nordahl CW. Altered Development of Amygdala-Connected Brain Regions in Males and Females with Autism. J Neurosci 2022; 42:6145-6155. [PMID: 35760533 PMCID: PMC9351637 DOI: 10.1523/jneurosci.0053-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Altered amygdala development is implicated in the neurobiology of autism, but little is known about the coordinated development of the brain regions directly connected with the amygdala. Here we investigated the volumetric development of an amygdala-connected network, defined as the set of brain regions with monosynaptic connections with the amygdala, in autism from early to middle childhood. A total of 950 longitudinal structural MRI scans were acquired from 282 children (93 female) with autism and 128 children with typical development (61 female) at up to four time points (mean ages: 39, 52, 64, and 137 months, respectively). Volumes from 32 amygdala-connected brain regions were examined using mixed effects multivariate distance matrix regression. The Social Responsiveness Scale-2 was administered to assess degree of autistic traits and social impairments. The amygdala-connected network exhibited persistent diagnostic differences (p values ≤ 0.03) that increased over time (p values ≤ 0.02). These differences were most prominent in autistics with more impacted social functioning at baseline. This pattern was not observed across regions without monosynaptic amygdala connection. We observed qualitative sex differences. In males, the bilateral subgenual anterior cingulate cortices were most affected, while in females the left fusiform and superior temporal gyri were most affected. In conclusion, (1) autism is associated with widespread alterations to the development of brain regions connected with the amygdala, which were associated with autistic social behaviors; and (2) autistic males and females exhibited different patterns of alterations, adding to a growing body of evidence of sex differences in the neurobiology of autism.SIGNIFICANCE STATEMENT Global patterns of development across brain regions with monosynaptic connection to the amygdala differentiate autism from typical development, and are modulated by social functioning in early childhood. Alterations to brain regions within the amygdala-connected network differed in males and females with autism. Results also indicate larger volumetric differences in regions having monosynaptic connection with the amygdala than in regions without monosynaptic connection.
Collapse
Affiliation(s)
- Joshua K Lee
- MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817
- Department of Psychiatry and Behavioral Sciences
| | - Derek S Andrews
- MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817
- Department of Psychiatry and Behavioral Sciences
| | - Arzu Ozturk
- Department of Radiology, University of California Davis School of Medicine, Sacramento, California 95817
| | - Marjorie Solomon
- MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817
- Department of Psychiatry and Behavioral Sciences
| | - Sally Rogers
- MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817
- Department of Psychiatry and Behavioral Sciences
| | - David G Amaral
- MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817
- Department of Psychiatry and Behavioral Sciences
| | - Christine Wu Nordahl
- MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817
- Department of Psychiatry and Behavioral Sciences
| |
Collapse
|
48
|
Amaral DG, Nordahl CW. Amygdala Involvement in Autism: Early Postnatal Changes, But What Are the Behavioral Consequences? Am J Psychiatry 2022; 179:522-524. [PMID: 35921392 DOI: 10.1176/appi.ajp.20220509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David G Amaral
- Department of Psychiatry and Behavioral Sciences, the MIND Institute, University of California, Davis, Sacramento
| | - Christine Wu Nordahl
- Department of Psychiatry and Behavioral Sciences, the MIND Institute, University of California, Davis, Sacramento
| |
Collapse
|
49
|
Seguin D, Pac S, Wang J, Nicolson R, Martinez-Trujillo J, Anagnostou E, Lerch JP, Hammill C, Schachar R, Crosbie J, Kelley E, Ayub M, Brian J, Liu X, Arnold PD, Georgiades S, Duerden EG. Amygdala subnuclei volumes and anxiety behaviors in children and adolescents with autism spectrum disorder, attention deficit hyperactivity disorder, and obsessive-compulsive disorder. Hum Brain Mapp 2022; 43:4805-4816. [PMID: 35819018 PMCID: PMC9582362 DOI: 10.1002/hbm.26005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/11/2022] [Accepted: 06/26/2022] [Indexed: 12/14/2022] Open
Abstract
Alterations in the structural maturation of the amygdala subnuclei volumes are associated with anxiety behaviors in adults and children with neurodevelopmental and associated disorders. This study investigated the relationship between amygdala subnuclei volumes and anxiety in 233 children and adolescents (mean age = 11.02 years; standard deviation = 3.17) with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and children with obsessive compulsive disorder (OCD), as well as typically developing (TD) children. Parents completed the Child Behavior Checklist (CBCL), and the children underwent structural MRI at 3 T. FreeSurfer software was used to automatically segment the amygdala subnuclei. A general linear model revealed that children and adolescents with ASD, ADHD, and OCD had higher anxiety scores compared to TD children (p < .001). A subsequent interaction analysis revealed that children with ASD (B = 0.09, p < .0001) and children with OCD (B = 0.1, p < .0001) who had high anxiety had larger right central nuclei volumes compared with TD children. Similar results were obtained for the right anterior amygdaloid area. Amygdala subnuclei volumes may be key to identifying children with neurodevelopmental disorders or those with OCD who are at high risk for anxiety. Findings may inform the development of targeted behavioral interventions to address anxiety behaviors and to assess the downstream effects of such interventions.
Collapse
Affiliation(s)
- Diane Seguin
- Physiology & Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Sara Pac
- Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Jianan Wang
- Biomedical Engineering, Faculty of Engineering, Western University, London, Canada
| | - Rob Nicolson
- Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Julio Martinez-Trujillo
- Physiology & Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- The Hospital for Sick Children, Toronto, Canada.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford, UK.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | | | | | | - Muhammad Ayub
- Department of Psychiatry, Queen's University, Kingston, Canada
| | - Jessica Brian
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, Canada
| | - Xudong Liu
- Department of Psychiatry, Queen's University, Kingston, Canada.,Queen's Genomics Lab at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Canada
| | - Paul D Arnold
- Department of Psychiatry Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - Emma G Duerden
- Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada.,Applied Psychology, Faculty of Education, Western University, London, Canada
| |
Collapse
|
50
|
Mueller M, Thompson B, Poppe T, Alsweiler J, Gamble G, Jiang Y, Leung M, Tottman AC, Wouldes T, Harding JE, Duerden EG. Amygdala subnuclei volumes, functional connectivity, and social–emotional outcomes in children born very preterm. Cereb Cortex Commun 2022; 3:tgac028. [PMID: 35990310 PMCID: PMC9383265 DOI: 10.1093/texcom/tgac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 05/23/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Children born very preterm can demonstrate social-cognitive impairments, which may result from limbic system dysfunction. Altered development of the subnuclei of the amygdala, stress-sensitive regions involved in emotional processing, may be key predictors of social-skill development. In a prospective cohort study, 7-year-old children born very preterm underwent neurodevelopmental testing and brain MRI. The Child Behavioral Checklist was used to assess social–emotional outcomes. Subnuclei volumes were extracted automatically from structural scans (n = 69) and functional connectivity (n = 66) was examined. General Linear Models were employed to examine the relationships between amygdala subnuclei volumes and functional connectivity values and social–emotional outcomes. Sex was a significant predictor of all social–emotional outcomes (P < 0.05), with boys having poorer social–emotional outcomes. Smaller right basal nuclei volumes (B = -0.043, P = 0.014), smaller right cortical volumes (B = -0.242, P = 0.02) and larger right central nuclei volumes (B = 0.85, P = 0.049) were associated with increased social problems. Decreased connectivity strength between thalamic and amygdala networks and smaller right basal volumes were significant predictors of greater social problems (both, P < 0.05), effects which were stronger in girls (P = 0.025). Dysregulated maturation of the amygdala subnuclei, along with altered connectivity strength in stress-sensitive regions, may reflect stress-induced dysfunction and can be predictive of social–emotional outcomes.
Collapse
Affiliation(s)
- Megan Mueller
- Applied Psychology , Faculty of Education, , London N6G 1G7 , Canada
- Western University , Faculty of Education, , London N6G 1G7 , Canada
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo , Waterloo , Canada
- Centre for Eye and Vision Research , 17W Science Park , Hong Kong
- Liggins Institute, University of Auckland , Auckland , New Zealand
| | - Tanya Poppe
- Liggins Institute, University of Auckland , Auckland , New Zealand
- Centre for the Developing Brain, King’s College London , London , UK
| | - Jane Alsweiler
- Department of Paediatrics: Child and Youth Health, University of Auckland , Auckland , New Zealand
| | - Greg Gamble
- Liggins Institute, University of Auckland , Auckland , New Zealand
| | - Yannan Jiang
- Liggins Institute, University of Auckland , Auckland , New Zealand
| | - Myra Leung
- Department of Paediatrics: Child and Youth Health, University of Auckland , Auckland , New Zealand
- Discipline of Optometry and Vision Science, University of Canberra , Canberra , Australia
| | - Anna C Tottman
- Liggins Institute, University of Auckland , Auckland , New Zealand
- Neonatal Services, Royal Women’s Hospital , Melbourne , Australia
| | - Trecia Wouldes
- Department of Psychological Medicine, University of Auckland , Auckland , New Zealand
| | - Jane E Harding
- Liggins Institute, University of Auckland , Auckland , New Zealand
| | - Emma G Duerden
- Applied Psychology , Faculty of Education, , London N6G 1G7 , Canada
- Western University , Faculty of Education, , London N6G 1G7 , Canada
| | | |
Collapse
|