1
|
Khoury ES, Patel RV, O’Ferrall C, Fowler A, Sah N, Sharma A, Gupta S, Scafidi S, Kurtz J, Olmstead SJ, Kudchadkar SR, Kannan RM, Blue ME, Kannan S. Dendrimer nanotherapy targeting of glial dysfunction improves inflammation and neurobehavioral phenotype in adult female Mecp2-heterozygous mouse model of Rett syndrome. J Neurochem 2024; 168:841-854. [PMID: 37777475 PMCID: PMC11002961 DOI: 10.1111/jnc.15960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/19/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
Rett syndrome is an X-linked neurodevelopmental disorder caused by mutation of Mecp2 gene and primarily affects females. Glial cell dysfunction has been implicated in in Rett syndrome (RTT) both in patients and in mouse models of this disorder and can affect synaptogenesis, glial metabolism and inflammation. Here we assessed whether treatment of adult (5-6 months old) symptomatic Mecp2-heterozygous female mice with N-acetyl cysteine conjugated to dendrimer (D-NAC), which is known to target glia and modulate inflammation and oxidative injury, results in improved behavioral phenotype, sleep and glial inflammatory profile. We show that unbiased global metabolomic analysis of the hippocampus and striatum in adult Mecp2-heterozygous mice demonstrates significant differences in lipid metabolism associated with neuroinflammation, providing the rationale for targeting glial inflammation in this model. Our results demonstrate that treatment with D-NAC (10 mg/kg NAC) once weekly is more efficacious than equivalently dosed free NAC in improving the gross neurobehavioral phenotype in symptomatic Mecp2-heterozygous female mice. We also show that D-NAC therapy is significantly better than saline in ameliorating several aspects of the abnormal phenotype including paw clench, mobility, fear memory, REM sleep and epileptiform activity burden. Systemic D-NAC significantly improves microglial proinflammatory cytokine production and is associated with improvements in several aspects of the phenotype including paw clench, mobility, fear memory, and REM sleep, and epileptiform activity burden in comparison to saline-treated Mecp2-hetereozygous mice. Systemic glial-targeted delivery of D-NAC after symptom onset in an older clinically relevant Rett syndrome model shows promise in improving neurobehavioral impairments along with sleep pattern and epileptiform activity burden. These findings argue for the translational value of this approach for treatment of patients with Rett Syndrome.
Collapse
Affiliation(s)
- Elizabeth Smith Khoury
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ruchit V. Patel
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Caroline O’Ferrall
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Amanda Fowler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nirnath Sah
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Siddharth Gupta
- Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Josh Kurtz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah J. Olmstead
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sapna R. Kudchadkar
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Departments of Pediatrics and Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Kennedy Krieger Institute – Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21287
- Departments of Chemical and Biomolecular Engineering, and Materials Science and Engineering, Johns Hopkins University, Baltimore MD, 21218
| | - Mary E. Blue
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore MD, 21205
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore MD, 21205
- Kennedy Krieger Institute – Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21287
| |
Collapse
|
2
|
Brain Perivascular Macrophages Do Not Mediate Interleukin-1-Induced Sickness Behavior in Rats. Pharmaceuticals (Basel) 2021; 14:ph14101030. [PMID: 34681254 PMCID: PMC8541198 DOI: 10.3390/ph14101030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Sickness behavior, characterized by on overall reduction in behavioral activity, is commonly observed after bacterial infection. Sickness behavior can also be induced by the peripheral administration of Gram-negative bacterial lipopolysaccharide (LPS) or interleukin-1beta (IL-1β), a pro-inflammatory cytokine released by LPS-activated macrophages. In addition to the microglia, the brain contains perivascular macrophages, which express the IL-1 type 1 receptor (IL-1R1). In the present study, we assessed the role of brain perivascular macrophages in mediating IL-1β-induced sickness behavior in rats. To do so, we used intracerebroventricular (icv) administration of an IL-1β-saporin conjugate, known to eliminate IL-R1-expressing brain cells, prior to systemic or central IL-1β injection. Icv IL-1β-saporin administration resulted in a reduction in brain perivascular macrophages, without altering subsequent icv or ip IL-1β-induced reductions in food intake, locomotor activity, and social interactions. In conclusion, the present work shows that icv IL-1β-saporin administration is an efficient way to target brain perivascular macrophages, and to determine whether these cells are involved in IL-1β-induced sickness behavior.
Collapse
|
3
|
Iacovides S, Kamerman P, Baker FC, Mitchell D. Why It Is Important to Consider the Effects of Analgesics on Sleep: A Critical Review. Compr Physiol 2021; 11:2589-2619. [PMID: 34558668 DOI: 10.1002/cphy.c210006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We review the known physiological mechanisms underpinning all of pain processing, sleep regulation, and pharmacology of analgesics prescribed for chronic pain. In particular, we describe how commonly prescribed analgesics act in sleep-wake neural pathways, with potential unintended impact on sleep and/or wake function. Sleep disruption, whether pain- or drug-induced, negatively impacts quality of life, mental and physical health. In the context of chronic pain, poor sleep quality heightens pain sensitivity and may affect analgesic function, potentially resulting in further analgesic need. Clinicians already have to consider factors including efficacy, abuse potential, and likely side effects when making analgesic prescribing choices. We propose that analgesic-related sleep disruption should also be considered. The neurochemical mechanisms underlying the reciprocal relationship between pain and sleep are poorly understood, and studies investigating sleep in those with specific chronic pain conditions (including those with comorbidities) are lacking. We emphasize the importance of further work to clarify the effects (intended and unintended) of each analgesic class to inform personalized treatment decisions in patients with chronic pain. © 2021 American Physiological Society. Compr Physiol 11:1-31, 2021.
Collapse
Affiliation(s)
- Stella Iacovides
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Peter Kamerman
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Fiona C Baker
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Human Sleep Research Program, SRI International, Menlo Park, California, USA
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Sultan ZW, Jaeckel ER, Krause BM, Grady SM, Murphy CA, Sanders RD, Banks MI. Electrophysiological signatures of acute systemic lipopolysaccharide-induced inflammation: potential implications for delirium science. Br J Anaesth 2021; 126:996-1008. [PMID: 33648701 PMCID: PMC8132883 DOI: 10.1016/j.bja.2020.12.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Novel preventive therapies are needed for postoperative delirium, which especially affects older patients. A mouse model is presented that captures inflammation-associated cortical slow wave activity (SWA) observed in patients, allowing exploration of the mechanistic role of prostaglandin-adenosine signalling. METHODS EEG and cortical cytokine measurements (interleukin 6, monocyte chemoattractant protein-1) were obtained from adult and aged mice. Behaviour, SWA, and functional connectivity were assayed before and after systemic administration of lipopolysaccharide (LPS)+piroxicam (cyclooxygenase inhibitor) or LPS+caffeine (adenosine receptor antagonist). To avoid the confounder of inflammation-driven changes in movement which alter SWA and connectivity, electrophysiological recordings were classified as occurring during quiescence or movement, and propensity score matching was used to match distributions of movement magnitude between baseline and post-LPS administration. RESULTS LPS produces increases in cortical cytokines and behavioural quiescence. In movement-matched data, LPS produces increases in SWA (likelihood-ratio test: χ2(4)=21.51, P<0.001), but not connectivity (χ2(4)=6.39, P=0.17). Increases in SWA associate with interleukin 6 (P<0.001) and monocyte chemoattractant protein-1 (P=0.001) and are suppressed by piroxicam (P<0.001) and caffeine (P=0.046). Aged animals compared with adult animals show similar LPS-induced SWA during movement, but exaggerated cytokine response and increased SWA during quiescence. CONCLUSIONS Cytokine-SWA correlations during wakefulness are consistent with observations in patients with delirium. Absence of connectivity effects after accounting for movement changes suggests decreased connectivity in patients is a biomarker of hypoactivity. Exaggerated effects in quiescent aged animals are consistent with increased hypoactive delirium in older patients. Prostaglandin-adenosine signalling may link inflammation to neural changes and hence delirium.
Collapse
Affiliation(s)
- Ziyad W Sultan
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth R Jaeckel
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bryan M Krause
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean M Grady
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Caitlin A Murphy
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert D Sanders
- Specialty of Anaesthetics, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Anaesthetics, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Matthew I Banks
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Mamelak M. Sleep, Narcolepsy, and Sodium Oxybate. Curr Neuropharmacol 2021; 20:272-291. [PMID: 33827411 PMCID: PMC9413790 DOI: 10.2174/1570159x19666210407151227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 11/23/2022] Open
Abstract
Sodium oxybate (SO) has been in use for many decades to treat narcolepsy with cataplexy. It functions as a weak GABAB agonist but also as an energy source for the brain as a result of its metabolism to succinate and as a powerful antioxidant because of its capacity to induce the formation of NADPH. Its actions at thalamic GABAB receptors can induce slow-wave activity, while its actions at GABAB receptors on monoaminergic neurons can induce or delay REM sleep. By altering the balance between monoaminergic and cholinergic neuronal activity, SO uniquely can induce and prevent cataplexy. The formation of NADPH may enhance sleep’s restorative process by accelerating the removal of the reactive oxygen species (ROS), which accumulate during wakefulness. SO improves alertness in normal subjects and in patients with narcolepsy. SO may allay severe psychological stress - an inflammatory state triggered by increased levels of ROS and characterized by cholinergic supersensitivity and monoaminergic deficiency. SO may be able to eliminate the inflammatory state and correct the cholinergic/ monoaminergic imbalance.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario. Canada
| |
Collapse
|
6
|
Garofalo S, Picard K, Limatola C, Nadjar A, Pascual O, Tremblay MÈ. Role of Glia in the Regulation of Sleep in Health and Disease. Compr Physiol 2020; 10:687-712. [PMID: 32163207 DOI: 10.1002/cphy.c190022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sleep is a naturally occurring physiological state that is required to sustain physical and mental health. Traditionally viewed as strictly regulated by top-down control mechanisms, sleep is now known to also originate locally. Glial cells are emerging as important contributors to the regulation of sleep-wake cycles, locally and among dedicated neural circuits. A few pioneering studies revealed that astrocytes and microglia may influence sleep pressure, duration as well as intensity, but the precise involvement of these two glial cells in the regulation of sleep remains to be fully addressed, across contexts of health and disease. In this overview article, we will first summarize the literature pertaining to the role of astrocytes and microglia in the regulation of sleep under normal physiological conditions. Afterward, we will discuss the beneficial and deleterious consequences of glia-mediated neuroinflammation, whether it is acute, or chronic and associated with brain diseases, on the regulation of sleep. Sleep disturbances are a main comorbidity in neurodegenerative diseases, and in several brain diseases that include pain, epilepsy, and cancer. Identifying the relationships between glia-mediated neuroinflammation, sleep-wake rhythm disruption and brain diseases may have important implications for the treatment of several disorders. © 2020 American Physiological Society. Compr Physiol 10:687-712, 2020.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Katherine Picard
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique, Bordeaux University, Bordeaux, France.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Agnès Nadjar
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique, Bordeaux University, Bordeaux, France
| | - Olivier Pascual
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Université Claude Bernard Lyon, Lyon, France
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada.,Départment de médecine moleculaire, Faculté de médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
7
|
Chaskiel L, Bristow AD, Bluthé RM, Dantzer R, Blomqvist A, Konsman JP. Interleukin-1 reduces food intake and body weight in rat by acting in the arcuate hypothalamus. Brain Behav Immun 2019; 81:560-573. [PMID: 31310797 DOI: 10.1016/j.bbi.2019.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022] Open
Abstract
A reduction in food intake is commonly observed after bacterial infection, a phenomenon that can be reproduced by peripheral administration of Gram-negative bacterial lipopolysaccharide (LPS) or interleukin-1beta (IL-1β), a pro-inflammatory cytokine released by LPS-activated macrophages. The arcuate nucleus of the hypothalamus (ARH) plays a major role in food intake regulation and expresses IL-1 type 1 receptor (IL-1R1) mRNA. In the present work, we tested the hypothesis that IL-1R1 expressing cells in the ARH mediate IL-1β and/or LPS-induced hypophagia in the rat. To do so, we developed an IL-1β-saporin conjugate, which eliminated IL-R1-expressing neurons in the hippocampus, and micro-injected it into the ARH prior to systemic IL-1β and LPS administration. ARH IL-1β-saporin injection resulted in loss of neuropeptide Y-containing cells and attenuated hypophagia and weight loss after intraperitoneal IL-1β, but not LPS, administration. In conclusion, the present study shows that ARH NPY-containing neurons express functional IL-1R1s that mediate peripheral IL-1β-, but not LPS-, induced hypophagia. Our present and previous findings indicate that the reduction of food intake after IL-1β and LPS are mediated by different neural pathways.
Collapse
Affiliation(s)
- Léa Chaskiel
- Psychoneuroimmunology, Nutrition and Genetics, UMR CNRS 5226-INRA 1286, University of Bordeaux, 33076 Bordeaux, France
| | - Adrian D Bristow
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Rose-Marie Bluthé
- Psychoneuroimmunology, Nutrition and Genetics, UMR CNRS 5226-INRA 1286, University of Bordeaux, 33076 Bordeaux, France
| | - Robert Dantzer
- Department of Symptom Research, MD Anderson Cancer Center, The University of Texas, Houston, TX 770030, USA
| | - Anders Blomqvist
- Division of Neurobiology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Jan Pieter Konsman
- UMR CNRS 5287 Aquitaine Institute for Integrative and Cognitive Neuroscience, University of Bordeaux, 33076 Bordeaux, France.
| |
Collapse
|
8
|
Ahmad AS, Ottallah H, Maciel CB, Strickland M, Doré S. Role of the L-PGDS-PGD2-DP1 receptor axis in sleep regulation and neurologic outcomes. Sleep 2019; 42:zsz073. [PMID: 30893431 PMCID: PMC6559173 DOI: 10.1093/sleep/zsz073] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/16/2019] [Indexed: 12/18/2022] Open
Abstract
To meet the new challenges of modern lifestyles, we often compromise a good night's sleep. In preclinical models as well as in humans, a chronic lack of sleep is reported to be among the leading causes of various physiologic, psychologic, and neurocognitive deficits. Thus far, various endogenous mediators have been implicated in inter-regulatory networks that collectively influence the sleep-wake cycle. One such mediator is the lipocalin-type prostaglandin D2 synthase (L-PGDS)-Prostaglandin D2 (PGD2)-DP1 receptor (L-PGDS-PGD2-DP1R) axis. Findings in preclinical models confirm that DP1R are predominantly expressed in the sleep-regulating centers. This finding led to the discovery that the L-PGDS-PGD2-DP1R axis is involved in sleep regulation. Furthermore, we showed that the L-PGDS-PGD2-DP1R axis is beneficial in protecting the brain from ischemic stroke. Protein sequence homology was also performed, and it was found that L-PGDS and DP1R share a high degree of homology between humans and rodents. Based on the preclinical and clinical data thus far pertaining to the role of the L-PGDS-PGD2-DP1R axis in sleep regulation and neurologic conditions, there is optimism that this axis may have a high translational potential in human therapeutics. Therefore, here the focus is to review the regulation of the homeostatic component of the sleep process with a special focus on the L-PGDS-PGD2-DP1R axis and the consequences of sleep deprivation on health outcomes. Furthermore, we discuss whether the pharmacological regulation of this axis could represent a tool to prevent sleep disturbances and potentially improve outcomes, especially in patients with acute brain injuries.
Collapse
Affiliation(s)
- Abdullah Shafique Ahmad
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Haneen Ottallah
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Carolina B Maciel
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL
| | - Michael Strickland
- Division of Biology and Biomedical Sciences, Washington University in Saint Louis, Saint Louis, MO
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
- Department of Psychiatry, University of Florida, Gainesville, FL
- Department of Pharmaceutics, University of Florida, Gainesville, FL
- Department of Psychology, University of Florida, Gainesville, FL
- Department of Neuroscience, University of Florida, Gainesville, FL
| |
Collapse
|
9
|
Impact of a selective cyclooxygenase-2 inhibitor, celecoxib, on cortical excitability and electrophysiological properties of the brain in healthy volunteers: A randomized, double-blind, placebo-controlled study. PLoS One 2019; 14:e0212689. [PMID: 30794658 PMCID: PMC6386435 DOI: 10.1371/journal.pone.0212689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/31/2019] [Indexed: 01/12/2023] Open
Abstract
The inflammatory response is considered a defence mechanism against physical or infectious insults and is prevalent within the central nervous system. Seizures also result in a robust inflammatory cascade, leading to enhanced activation of excitatory synaptic networks. Ample evidence based on animal models of epilepsy has demonstrated that celecoxib, a highly selective inhibitor of cyclooxygenase-2, has anticonvulsant effects. We aimed to evaluate the impact of celecoxib on the cortical excitability and electrophysiological properties of the brain in healthy humans. Electroencephalography (EEG) or transmagnetic stimulation (TMS) was used to measure neurophysiological activity. Forty healthy volunteers were randomized to 4 groups (n = 10 in each group): 1) celecoxib and EEG, 2) placebo and EEG, 3) celecoxib and TMS, and 4) placebo and TMS. For the EEG study, resting EEG was performed at baseline just before administering 400 mg of celecoxib or placebo and repeated 4 hours after administration. The subjects took 200 mg of celecoxib or placebo twice a day for 7 subsequent days, and a third EEG was conducted 4 hours after the final dose. Power spectra were compared at each time point. For the TMS study, the resting motor threshold (RMT), motor evoked potential (MEP) peak-to-peak amplitude, and cortical silent period (CSP) were measured at baseline and after taking 200 mg of celecoxib or placebo twice a day for 7 days. Celecoxib did not significantly change brain activity in the EEG study. However, the sum of power recorded from all electrodes tended to increase in the celecoxib group only at 4 hours after administration (p = 0.06). In detail, one dose of celecoxib (400 mg) transiently and significantly increased the alpha band power recorded in the frontal and parietal areas as well as in the whole brain (p = 0.049, 0.017, and 0.014, respectively) and the beta frequency in the central and parietal regions (p = 0.013 and 0.005, respectively), whereas the placebo did not. This effect was abolished after 7 days of treatment. In the TMS study, we found no statistically significant change in the RMT, MEP peak-to-peak amplitude or CSP. This evidence suggests that celecoxib transiently alters the electrophysiological properties of the brain but does not suppress neuronal excitability in healthy humans.
Collapse
|
10
|
Christensen J, Noel M, Mychasiuk R. Neurobiological mechanisms underlying the sleep-pain relationship in adolescence: A review. Neurosci Biobehav Rev 2019; 96:401-413. [PMID: 30621863 DOI: 10.1016/j.neubiorev.2018.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022]
Abstract
Adolescence characterizes a period of significant change in brain structure and function, causing the neural circuitry to be particularly susceptible to the environment and various other experiences. Chronic pain and sleep deprivation represent major health issues that plague adolescence. A bidirectional relationship exists between sleep and pain; however, emerging evidence suggests that sleep disturbances have a stronger influence on subsequent pain than vice versa. The neurobiological underpinnings of this relationship, particularly during adolescence, are poorly understood. This review examines the current literature regarding sleep and pain in adolescence, with a particular focus on the neurobiological mechanisms underlying pain, sleep problems, and the neural circuitry that potentially links the two. Finally, a research agenda is outlined to stimulate future research on this topic. Given the high prevalence of these health issues during adolescence and the debilitating effects they inflict on nearly every domain of development, it is crucial that we determine the neurobiological mechanisms fundamental to this relationship and identify potential therapeutic strategies.
Collapse
Affiliation(s)
- Jennaya Christensen
- Department of Psychology, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, Canada; Hotchkiss Brain Institute, Canada
| | - Melanie Noel
- Department of Psychology, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, Canada; Hotchkiss Brain Institute, Canada
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, Canada; Hotchkiss Brain Institute, Canada.
| |
Collapse
|
11
|
Sadam H, Pihlak A, Kivil A, Pihelgas S, Jaago M, Adler P, Vilo J, Vapalahti O, Neuman T, Lindholm D, Partinen M, Vaheri A, Palm K. Prostaglandin D2 Receptor DP1 Antibodies Predict Vaccine-induced and Spontaneous Narcolepsy Type 1: Large-scale Study of Antibody Profiling. EBioMedicine 2018; 29:47-59. [PMID: 29449194 PMCID: PMC5925455 DOI: 10.1016/j.ebiom.2018.01.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuropathological findings support an autoimmune etiology as an underlying factor for loss of orexin-producing neurons in spontaneous narcolepsy type 1 (narcolepsy with cataplexy; sNT1) as well as in Pandemrix influenza vaccine-induced narcolepsy type 1 (Pdmx-NT1). The precise molecular target or antigens for the immune response have, however, remained elusive. METHODS Here we have performed a comprehensive antigenic repertoire analysis of sera using the next-generation phage display method - mimotope variation analysis (MVA). Samples from 64 children and adolescents were analyzed: 10 with Pdmx-NT1, 6 with sNT1, 16 Pandemrix-vaccinated, 16 H1N1 infected, and 16 unvaccinated healthy individuals. The diagnosis of NT1 was defined by the American Academy of Sleep Medicine international criteria of sleep disorders v3. FINDINGS Our data showed that although the immunoprofiles toward vaccination were generally similar in study groups, there were also striking differences in immunoprofiles between sNT1 and Pdmx-NT1 groups as compared with controls. Prominent immune response was observed to a peptide epitope derived from prostaglandin D2 receptor (DP1), as well as peptides homologous to B cell lymphoma 6 protein. Further validation confirmed that these can act as true antigenic targets in discriminating NT1 diseased along with a novel epitope of hemagglutinin of H1N1 to delineate exposure to H1N1. INTERPRETATION We propose that DP1 is a novel molecular target of autoimmune response and presents a potential diagnostic biomarker for NT1. DP1 is involved in the regulation of non-rapid eye movement (NREM) sleep and thus alterations in its functions could contribute to the disturbed sleep regulation in NT1 that warrants further studies. Together our results also show that MVA is a helpful method for finding novel peptide antigens to classify human autoimmune diseases, possibly facilitating the design of better therapies.
Collapse
Affiliation(s)
- Helle Sadam
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Arno Pihlak
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Anri Kivil
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia
| | | | | | - Priit Adler
- Institute of Computer Science, University of Tartu, Liivi 2-314, 50409 Tartu, Estonia; Quretec LLC, Ülikooli 6a, 51003 Tartu, Estonia
| | - Jaak Vilo
- Institute of Computer Science, University of Tartu, Liivi 2-314, 50409 Tartu, Estonia; Quretec LLC, Ülikooli 6a, 51003 Tartu, Estonia
| | - Olli Vapalahti
- Department of Virology, Medicum, Haartmaninkatu 3, 00014 University of Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin Katu 2, 00014 University of Helsinki, Finland; Virology and Immunology, HUSLAB, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Toomas Neuman
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; IPDx Immunoprofiling Diagnostics GmbH, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Medicum, Haartmaninkatu 8, 00014 University of Helsinki, Finland; Minerva Foundation Medical Research Institute, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Markku Partinen
- Finnish Narcolepsy Research Center, Helsinki Sleep Clinic, Vitalmed Research Center, Valimotie 21, 00380, Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Medicum, Haartmaninkatu 3, 00014 University of Helsinki, Finland
| | - Kaia Palm
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
12
|
|
13
|
Zhang BJ, Shao SR, Aritake K, Takeuchi A, Urade Y, Huang ZL, Lazarus M, Qu WM. Interleukin-1β induces sleep independent of prostaglandin D 2 in rats and mice. Neuroscience 2017; 340:258-267. [DOI: 10.1016/j.neuroscience.2016.09.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 01/28/2023]
|
14
|
Hiyoshi H, Terao A, Okamatsu-Ogura Y, Kimura K. Characteristics of sleep and wakefulness in wild-derived inbred mice. Exp Anim 2014; 63:205-13. [PMID: 24770646 PMCID: PMC4160977 DOI: 10.1538/expanim.63.205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genetic variations in the wild-derived inbred mouse strains are more diverse than that
of classical laboratory inbred mouse strains, including C57BL/6J (B6). The sleep/wake and
monoamine properties of six wild-derived inbred mouse strains (PGN2, NJL, BLG2, KJR, MSM,
HMI) were characterized and compared with those of B6 mice. All examined mice were
nocturnal and had a polyphasic sleep pattern with a “main sleep period” identified during
the light period. However, there were three sleep/wake phenotypic differences between the
wild-derived mouse strains and B6 strain. First, the amount of sleep during the dark phase
was comparable with that of B6 mice. However, the amount of sleep during the light phase
was more varied among strains, in particular, NJL and HMI had significantly less sleep
compared with that of B6 mice. Second, PGN2, NJL, BLG2, and KJR mice showed a “highly
awake period” (in which the hourly total sleep time was <10%) immediately after the
onset of the dark period, which was not seen in B6 mice. Third, relative to that of B6
mice, PGN2 and KJR mice showed longer duration of wakefulness episodes during the 12-h
dark phase. Differences in whole brain noradrenaline, dopamine, and 5-hydroxy-tryptamine
contents between the wild-derived mouse strains and B6 strain were also found. These
identified phenotypes might be potentially under strong genetic control. Hence,
wild-derived inbred mice could be useful for identifying the genetic factors underlying
the regulation of sleep and wakefulness.
Collapse
|
15
|
Picchioni D, Reith RM, Nadel JL, Smith CB. Sleep, plasticity and the pathophysiology of neurodevelopmental disorders: the potential roles of protein synthesis and other cellular processes. Brain Sci 2014; 4:150-201. [PMID: 24839550 PMCID: PMC4020186 DOI: 10.3390/brainsci4010150] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/26/2014] [Accepted: 03/07/2014] [Indexed: 12/28/2022] Open
Abstract
Sleep is important for neural plasticity, and plasticity underlies sleep-dependent memory consolidation. It is widely appreciated that protein synthesis plays an essential role in neural plasticity. Studies of sleep-dependent memory and sleep-dependent plasticity have begun to examine alterations in these functions in populations with neurological and psychiatric disorders. Such an approach acknowledges that disordered sleep may have functional consequences during wakefulness. Although neurodevelopmental disorders are not considered to be sleep disorders per se, recent data has revealed that sleep abnormalities are among the most prevalent and common symptoms and may contribute to the progression of these disorders. The main goal of this review is to highlight the role of disordered sleep in the pathology of neurodevelopmental disorders and to examine some potential mechanisms by which sleep-dependent plasticity may be altered. We will also briefly attempt to extend the same logic to the other end of the developmental spectrum and describe a potential role of disordered sleep in the pathology of neurodegenerative diseases. We conclude by discussing ongoing studies that might provide a more integrative approach to the study of sleep, plasticity, and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Dante Picchioni
- Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; E-Mail:
- Advanced MRI Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, Bethesda, MD 20892, USA; E-Mails: (R.M.R.); (J.L.N.)
| | - R. Michelle Reith
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, Bethesda, MD 20892, USA; E-Mails: (R.M.R.); (J.L.N.)
| | - Jeffrey L. Nadel
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, Bethesda, MD 20892, USA; E-Mails: (R.M.R.); (J.L.N.)
| | - Carolyn B. Smith
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, Bethesda, MD 20892, USA; E-Mails: (R.M.R.); (J.L.N.)
| |
Collapse
|
16
|
Alt JA, Smith TL. Chronic rhinosinusitis and sleep: a contemporary review. Int Forum Allergy Rhinol 2013; 3:941-9. [PMID: 24039230 DOI: 10.1002/alr.21217] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/25/2013] [Accepted: 07/26/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Patients with chronic rhinosinusitis (CRS) exhibit centrally mediated behavioral changes commonly referred to as "sickness behavior." Sleep alteration is a component of sickness behavior which is estimated to affect up to 70 million patients annually. Patients with CRS have poor sleep quality, and little is known about the underlying etiology and pathophysiology. This narrative review aims to further organize and present the current knowledge associating sleep and CRS. METHODS A literature search was conducted of the OVID MEDLINE database using key search words including: "chronic rhinosinusitis," "sleep," "sleep disorders," and "sleep dysfunction." Additional keywords "nasal obstruction," "nasal polyp," and "fatigue" were identified and used to further delineate relevant articles. RESULTS The articles that specifically addressed sleep and CRS were dissected and presented as follows: (1) chronic rhinosinusitis and sleep; (2) chronic rhinosinusitis and fatigue; (3) chronic rhinosinusitis, nasal obstruction, and sleep; and (4) pathophysiology of sleep in chronic rhinosinusitis (cytokines in both sleep and chronic rhinosinusitis and their association to the neuroimmune biology of chronic rhinosinusitis). CONCLUSION Patients with CRS have sleep dysfunction that is associated with their disease severity and overall quality of life. The etiology of sleep dysfunction in CRS is most likely multifactorial. Increasing evidence suggests sleep dysfunction in patients with CRS is partly due to the inflammatory disease process, and sleep physiology in patients with CRS may be actively regulated by the inflammatory component of the disease.
Collapse
Affiliation(s)
- Jeremiah A Alt
- Division of Rhinology and Sinus Surgery, Oregon Sinus Center, Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, OR
| | | |
Collapse
|
17
|
Porkka-Heiskanen T. Sleep homeostasis. Curr Opin Neurobiol 2013; 23:799-805. [PMID: 23510741 DOI: 10.1016/j.conb.2013.02.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
Abstract
Research on sleep homeostasis aims to answer the question: how does the brain measure the duration and intensity of previous wakefulness in order to increase the duration and intensity of subsequent sleep? The search of regulatory factors has identified a number of potential molecules that increase their concentration in waking and decrease it during sleep. These factors regulate many physiological functions, including energy metabolism, neural plasticity and immune functions and one molecule may participate in the regulation of all these functions. The method to study regulation of sleep homeostasis is experimental prolongation of waking, which is used also to address the question of physiological purpose of sleep: prolonging wakefulness provokes symptoms that tell us what goes wrong during lack of sleep. The interpretation of the role of each identified factor in the regulation of sleep/sleep homeostasis reflects the theoretical background concept of the research. Presently three main concepts are being actively studied: the energy (depletion) hypothesis, the neural plasticity hypothesis and the (immune) defense hypothesis.
Collapse
Affiliation(s)
- Tarja Porkka-Heiskanen
- University of Helsinki, Institute of Biomedicine, Department of Physiology, PO Box 63, 00014 University of Helsinki, Finland.
| |
Collapse
|
18
|
Anneken JH, Cunningham JI, Collins SA, Yamamoto BK, Gudelsky GA. MDMA increases glutamate release and reduces parvalbumin-positive GABAergic cells in the dorsal hippocampus of the rat: role of cyclooxygenase. J Neuroimmune Pharmacol 2013; 8:58-65. [PMID: 23179355 PMCID: PMC3587367 DOI: 10.1007/s11481-012-9420-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA; Ecstasy) is a popular drug of abuse with well-documented acute effects on serotonergic, dopaminergic, and cholinergic transmitter systems, as well as evidence of long-term disruption of serotoninergic systems in the rat brain. Recently, it was demonstrated that MDMA evokes a delayed and sustained increase in glutamate release in the hippocampus. The purpose of the present study was to determine the role of inflammatory mediators in the MDMA-induced increase in glutamate release, as well as the contribution of inflammatory pathways in the persistent neurochemical toxicity associated with repeated MDMA treatment. Treatment with the non-selective cyclooxygenase (COX) inhibitor ketoprofen and the COX-2 selective inhibitor nimesulide attenuated the increase in extracellular glutamate in the hippocampus evoked by repeated MDMA exposure (10 mg/kg, i.p., every 2 h); no attenuation was observed in rats treated with the COX-1 selective inhibitor piroxicam. Reverse dialysis of a major product of COX activity, prostaglandin E2, also resulted in a significant increase in extracellular glutamate in the hippocampus . Repeated exposure to MDMA diminished the number of parvalbumin-positive GABA interneurons in the dentate gyrus of the hippocampus, an effect that was attenuated by ketoprofen treatment. However, COX inhibition with ketoprofen did not prevent the long-term depletion of 5-HT in the hippocampus evoked by MDMA treatment. These data are supportive of the view that cyclooxygenase activity contributes to the mechanism underlying both the increased release of glutamate and decreased number of GABA interneurons in the rat hippocampus produced by repeated MDMA exposure.
Collapse
Affiliation(s)
- John H. Anneken
- James Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH
| | - Jacobi I. Cunningham
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH
| | - Stuart A. Collins
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH
| | - Bryan K. Yamamoto
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH
| | - Gary A. Gudelsky
- James Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
19
|
Affiliation(s)
- Christopher J. Davis
- Sleep and Performance Research Center, WWAMI Medical Education and Program in Neuroscience, Washington State University, 412 E Spokane Falls Boulevard, Spokane, WA 99210-1495, USA
| | - James M. Krueger
- Sleep and Performance Research Center, WWAMI Medical Education and Program in Neuroscience, Washington State University, 412 E Spokane Falls Boulevard, Spokane, WA 99210-1495, USA
| |
Collapse
|
20
|
Urade Y, Hayaishi O. Prostaglandin D2 and sleep/wake regulation. Sleep Med Rev 2012; 15:411-8. [PMID: 22024172 DOI: 10.1016/j.smrv.2011.08.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/09/2011] [Accepted: 08/11/2011] [Indexed: 11/19/2022]
Abstract
Prostaglandin (PG) D2 is the most potent endogenous sleep-promoting substance. PGD2 is produced by lipocalin-type PGD synthase localized in the leptomeninges, choroid plexus, and oligodendrocytes in the brain, and is secreted into the cerebrospinal fluid as a sleep hormone. PGD2 stimulates DP1 receptors localized in the leptomeninges under the basal forebrain and the hypothalamus. As a consequence, adenosine is released as a paracrine sleep-promoting molecule to activate adenosine A2A receptor-expressing sleep-promoting neurons and to inhibit adenosine A1 receptor-possessing arousal neurons. PGD2 activates a center of non-rapid eye movement (NREM) sleep regulation in the ventrolateral preoptic area, probably mediated by adenosine signaling, which activation inhibits the histaminergic arousal center in the tuberomammillary nucleus via descending GABAergic and galaninergic projections. The administration of a lipocalin-type PGD synthase inhibitor (SeCl4), DP1 antagonist (ONO-4127Na) or adenosine A2A receptor antagonist (caffeine) suppresses both NREM and rapid eye movement (REM) sleep, indicating that the PGD2-adenosine system is crucial for the maintenance of physiological sleep.
Collapse
Affiliation(s)
- Yoshihiro Urade
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4, Furuedai, Suita, Osaka 565 0874, Japan.
| | | |
Collapse
|
21
|
Claycomb RJ, Hewett SJ, Hewett JA. Neuromodulatory role of endogenous interleukin-1β in acute seizures: possible contribution of cyclooxygenase-2. Neurobiol Dis 2011; 45:234-42. [PMID: 21856425 DOI: 10.1016/j.nbd.2011.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/20/2011] [Accepted: 08/03/2011] [Indexed: 10/17/2022] Open
Abstract
The function of endogenous interleukin-1β (IL-1β) signaling in acute seizure activity was examined using transgenic mice harboring targeted deletions in the genes for either IL-1β (Il1b) or its signaling receptor (Il1r1). Acute epileptic seizure activity was modeled using two mechanistically distinct chemoconvulsants, kainic acid (KA) and pentylenetetrazole (PTZ). KA-induced seizure activity was more severe in homozygous null (-/-) Il1b mice compared to their wild-type (+/+) littermate controls, as indicated by an increase in the incidence of sustained generalized convulsive seizure activity. In the PTZ seizure model, the incidence of acute convulsive seizures was increased in both Il1b and Il1r1-/- mice compared to their respective +/+ littermate controls. Interestingly, the selective cyclooxygenase (COX)-2 inhibitor, rofecoxib, mimicked the effect of IL-1β deficiency on PTZ-induced convulsions in Il1r1+/+ but not -/- mice. Together, these results suggest that endogenous IL-1β possesses anticonvulsive properties that may be mediated by arachidonic acid metabolites derived from the catalytic action of COX-2.
Collapse
Affiliation(s)
- Robert J Claycomb
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | | | | |
Collapse
|
22
|
Abstract
Under the model of spatial or tissue-specific immune compartmentalization, the site of immunogen exposure (oral, mucosal and dermal) shapes the consequent immune response. Thus, spatial compartmentalization provides a mechanism whereby different immune responses may evolve in different tissue compartments. Many immune cytokines are subject to circadian variation, for example, interleukin-1, -6, -10 and -12, macrophage migration inhibitory factor, tumor necrosis factor-alpha and interferon-gamma. These cytokine rhythms reflect the influence of regulatory hormones including cortisol and melatonin that exhibit circadian rhythmicity. This raises the question of what role, if any, circadian rhythms play in immune function. The hypothesis put forward is that circadian cytokine rhythms indicate the existence of temporal immune compartments. Temporal immune compartments include a daytime compartment characterized by high plasma cortisol and a regulatory cytokine environment, and a nocturnal compartment characterized by low cortisol, high melatonin and heightened inflammatory cytokine levels. Thus, time itself is a critical factor when measuring or interpreting immune response. This highlights the potential of immune chronotherapy where time-dependency principles guide the design of more effective and better tolerated immunotherapies and vaccines.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Diabetes and Endocrinology, Flinders Medical Centre, Bedford Park, South Australia 5042, Australia.
| |
Collapse
|
23
|
Zager A, Andersen ML, Lima MMS, Reksidler AB, Machado RB, Tufik S. Modulation of sickness behavior by sleep: the role of neurochemical and neuroinflammatory pathways in mice. Eur Neuropsychopharmacol 2009; 19:589-602. [PMID: 19394204 DOI: 10.1016/j.euroneuro.2009.03.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 02/19/2009] [Accepted: 03/24/2009] [Indexed: 01/02/2023]
Abstract
Activation of the immune system elicits several behavioral changes that are collectively called sickness behavior and consists in a strategy to overcome infection. Sleep deprivation can increase susceptibility to pathogens and to behavioral alterations. Thus, the present study aimed to determine how paradoxical sleep deprivation (PSD) affects the behavioral and neurochemical responses to lipopolysaccharide (LPS, potent activator of the immune response). Adult inbred mice were paradoxical sleep deprived (72 h), whereas the control group was kept in their home cages. Both groups received either an injection of saline or LPS (5, 10 or 20 microg/animal ip) before behavioral tasks and tissue collection. During the recovery sleep period, LPS provoked a strong inhibition of sleep rebound due to a suppression of paradoxical sleep. PSD increased the susceptibility of mice to LPS-induced immobility in the open field, which was capable of affecting the anxiety-like behavior also. These altered behavioral responses to LPS were accompanied by reduction in dopamine turnover within the striatum and increased expression of cyclooxygenase-2 in the cortex. The study provides some insights into how the sleep-wake cycle affects the expression of sickness behavior induced by LPS.
Collapse
Affiliation(s)
- Adriano Zager
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP-EPM), São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Terao A, Huang ZL, Wisor JP, Mochizuki T, Gerashchenko D, Urade Y, Kilduff TS. Gene expression in the rat brain during prostaglandin D2 and adenosinergically-induced sleep. J Neurochem 2008; 105:1480-98. [PMID: 18331290 DOI: 10.1111/j.1471-4159.2008.05257.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies have supported the hypothesis that macromolecular synthesis occurs in the brain during sleep as a response to prior waking activities and that prostaglandin D2 (PGD2) is an endogenous sleep substance whose effects are dependent on adenosine A2a receptor-mediated signaling. We compared gene expression in the cerebral cortex, basal forebrain, and hypothalamus during PGD2-induced and adenosinergically-induced sleep to results from our previously published study of recovery sleep (RS) after sleep deprivation (SD). Immediate early gene expression in the cortex during sleep induced by PGD2- or by the selective adenosine A2a agonist CGS21680 showed limited similarity to that observed during RS while, in the basal forebrain and hypothalamus, widespread activation of immediate early genes not seen during RS occurred. In all three brain regions, PGD2 and CGS21680 reduced the expression of arc, a transcript whose expression is elevated during SD. Using GeneChips, the majority of genes induced by either PGD2 or CGS21680 were induced by both, suggesting activation of the same pathways. However, gene expression induced in the brain after PGD2 or CGS21680 treatment was distinct from that described during RS after SD and apparently involves glial cell gene activation and signaling pathways in neural-immune interactions.
Collapse
Affiliation(s)
- Akira Terao
- Biosciences Division, SRI International, Menlo Park, California 94025, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Cui Y, Kataoka Y, Inui T, Mochizuki T, Onoe H, Matsumura K, Urade Y, Yamada H, Watanabe Y. Up-regulated neuronal COX-2 expression after cortical spreading depression is involved in non-REM sleep induction in rats. J Neurosci Res 2008; 86:929-36. [DOI: 10.1002/jnr.21531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Narumiya S. Physiology and pathophysiology of prostanoid receptors. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2007; 83:296-319. [PMID: 24367153 PMCID: PMC3859365 DOI: 10.2183/pjab/83.296] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 10/22/2007] [Indexed: 06/03/2023]
Abstract
Prostanoids, consisting of prostaglandins (PGs) and thromboxanes (TXs), are oxygenated products of C20 unsaturated fatty acids. They include PGD2, PGE2, PGF2 α , PGI2, and TXA2. Given that aspirin-like nonsteroidal anti-inflammatory drugs exert their actions by suppressing prostanoid production, prostanoids have been implicated in processes inhibited by these drugs, including inflammation, fever, and pain. Prostanoids also contribute to vascular homeostasis, reproduction, and regulation of kidney and gastrointestinal functions. How prostanoids exert such a variety of actions had remained unclear, however. Prostanoids are released outside of cells immediately after their synthesis and exert their actions by binding to receptors on target cells. We have identified a family of eight types or subtypes of G protein-coupled receptors that mediate prostanoid actions. Another G protein-coupled receptor was also identified as an additional receptor for PGD2. Genes for these receptors have been individually disrupted in mice, and analyses of these knockout mice have not only elucidated the molecular and cellular mechanisms of known prostanoid actions but also revealed previously unknown actions. In this article, I review the physiological and pathophysiological roles of prostanoids and their receptors revealed by these studies.
Collapse
Affiliation(s)
- Shuh Narumiya
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto,
Japan
- Recipient of the Imperial Prize and the Japan Academy Prize in 2006
| |
Collapse
|
27
|
Brambilla D, Franciosi S, Opp MR, Imeri L. Interleukin-1 inhibits firing of serotonergic neurons in the dorsal raphe nucleus and enhances GABAergic inhibitory post-synaptic potentials. Eur J Neurosci 2007; 26:1862-9. [PMID: 17868373 DOI: 10.1111/j.1460-9568.2007.05796.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In vitro electrophysiological data suggest that interleukin-1 may promote non-rapid eye movement sleep by inhibiting spontaneous firing of wake-active serotonergic neurons in the dorsal raphe nucleus (DRN). Interleukin-1 enhances GABA inhibitory effects. DRN neurons are under an inhibitory GABAergic control. This study aimed to test the hypothesis that interleukin-1 inhibits DRN serotonergic neurons by potentiating GABAergic inhibitory effects. In vitro intracellular recordings were performed to assess the responses of physiologically and pharmacologically identified DRN serotonergic neurons to rat recombinant interleukin-1beta. Coronal slices containing DRN were obtained from male Sprague-Dawley rats. The impact of interleukin-1 on firing rate and on evoked post-synaptic potentials was determined. Evoked post-synaptic potentials were induced by stimulation with a bipolar electrode placed on the surface of the slice ventrolateral to DRN. Addition of interleukin-1 (25 ng/mL) to the bath perfusate significantly decreased firing rates of DRN serotonergic neurons from 1.3 +/- 0.2 Hz (before administration) to 0.7 +/- 0.2 Hz. Electrical stimulation induced depolarizing evoked post-synaptic potentials in DRN serotonergic neurons. The application of glutamatergic and GABAergic antagonists unmasked two different post-synaptic potential components: a GABAergic evoked inhibitory post-synaptic potentials and a glutamatergic evoked excitatory post-synaptic potentials, respectively. Interleukin-1 increased GABAergic evoked inhibitory post-synaptic potentials amplitudes by 30.3 +/- 3.8% (n = 6) without affecting glutamatergic evoked excitatory post-synaptic potentials. These results support the hypothesis that interleukin-1 inhibitory effects on DRN serotonergic neurons are mediated by an interleukin-1-induced potentiation of evoked GABAergic inhibitory responses.
Collapse
Affiliation(s)
- D Brambilla
- Institute of Human Physiology II, Guiseppe Moruzzi Center for Experimental Sleep Research, University of Milan Medical School, Via Mangiagalli, 32, 20133 Milano, Italy.
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- James M Krueger
- Program in Neuroscience, Washington State University, Pullman, WA 99164
| | | | | |
Collapse
|
29
|
Saha S, Engström L, Mackerlova L, Jakobsson PJ, Blomqvist A. Impaired febrile responses to immune challenge in mice deficient in microsomal prostaglandin E synthase-1. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1100-7. [PMID: 15677520 DOI: 10.1152/ajpregu.00872.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fever is a common, centrally elicited sign of inflammatory and infectious processes and is known to be induced by the action of PGE2 on its specific receptors in the thermogenic region of the hypothalamus. In the present work, using genetically modified mice, we examined the role of the inducible terminal PGE2-synthesizing enzyme microsomal prostaglandin E synthase-1 (mPGES-1) for the generation of immune-elicited fever. Animals with a deletion of the Ptges gene, which encodes mPGES-1, or their wild-type littermates were given either a subcutaneous injection of turpentine--a model for aseptic cytokine-induced pyresis--or an intraperitoneal injection of interleukin-1beta. While both procedures resulted in typical febrile responses in wild-type animals, these responses were strongly impaired in the mPGES-1 mutant mice. In contrast, both genotypes showed psychogenic stress-induced hyperthermia and displayed normal diurnal temperature variations. Both wild-type and mPGES-1 mutant mice also showed strongly reduced motor activity following turpentine injection. Taken together with previous observations on mPGES-1 induction in the brain vasculature during various inflammatory conditions and its role in endotoxin-induced pyresis, the present findings indicate that central PGE2 synthesis by mPGES-1 is a general and critical mechanism for fever during infectious and inflammatory conditions that is distinct from the mechanism(s) underlying the circadian temperature regulation and stress-induced hyperthermia, as well as the inflammation-induced activity depression.
Collapse
Affiliation(s)
- Sipra Saha
- Centre for Structural Biochemistry, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
30
|
Baker FC, Shah S, Stewart D, Angara C, Gong H, Szymusiak R, Opp MR, McGinty D. Interleukin 1beta enhances non-rapid eye movement sleep and increases c-Fos protein expression in the median preoptic nucleus of the hypothalamus. Am J Physiol Regul Integr Comp Physiol 2004; 288:R998-R1005. [PMID: 15604300 DOI: 10.1152/ajpregu.00615.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin 1beta (IL-1) is a key mediator of the acute phase response in an infected host and acts centrally to coordinate responses to an immune challenge, such as fever and increased non-rapid eye movement (NREM) sleep. The preoptic area (POA) is a primary sleep regulatory center in the brain: the ventrolateral POA (VLPO) and median preoptic nucleus (MnPN) each contain high numbers of c-Fos protein immunoreactive (IR) neurons after sleep but not after waking. We hypothesized that IL-1 mediates increased NREM sleep through activation of these sleep-active sites. Rats injected intracerebroventricularly with IL-1 (10 ng) at dark onset spent significantly more time in NREM sleep 4-5 h after injection. This increase in NREM sleep was associated with increased numbers of Fos-IR neurons in the MnPN, but not in the VLPO. Fos IR in the rostral MnPN was significantly increased 2 h post IL-1 injection, although the percentage of NREM sleep in the preceding 2 h was the same as controls. Fos IR was also increased in the extended VLPO 2 h postinjection. Finally, Fos IR in the MnPN did not differ significantly between IL-1 and vehicle-treated rats that had been sleep deprived for 2 h postinjection, but it was increased in VLPO core. Taken together, these results suggest that Fos IR in the MnPN after IL-1 is not independent of behavioral state and may require some threshold amount of sleep for its expression. Our results support a hypothesis that IL-1 enhances NREM sleep, in part, through activation of neurons in the MnPN of the hypothalamus.
Collapse
Affiliation(s)
- F C Baker
- Department of Psychology, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Chen L, Duricka D, Nelson S, Mukherjee S, Bohnet SG, Taishi P, Majde JA, Krueger JM. Influenza virus-induced sleep responses in mice with targeted disruptions in neuronal or inducible nitric oxide synthases. J Appl Physiol (1985) 2004; 97:17-28. [PMID: 15220315 DOI: 10.1152/japplphysiol.01355.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Influenza viral infection induces increases in non-rapid eye movement sleep and decreases in rapid eye movement sleep in normal mice. An array of cytokines is produced during the infection, and some of them, such as IL-1β and TNF-α, are well-defined somnogenic substances. It is suggested that nitric oxide (NO) may mediate the sleep-promoting effects of these cytokines. In this study, we use mice with targeted disruptions of either the neuronal NO synthase (nNOS) or the inducible NO synthase (iNOS) gene, commonly referred to as nNOS or iNOS knockouts (KOs), to investigate sleep changes after influenza viral challenge. We report that the magnitude of viral-induced non-rapid eye movement sleep responses in both nNOS KOs and iNOS KOs was less than that of their respective controls. In addition, the duration of rapid eye movement sleep in nNOS KO mice did not decrease compared with baseline values. All strains of mice had similar viral titers and cytokine gene expression profiles in the lungs. Virus was not isolated from the brains of any strain. However, gene expression in the brain stem differed between nNOS KOs and their controls: mRNA for the interferon-induced gene 2′,5′-oligoadenylate synthase 1a was elevated in nNOS KOs relative to their controls at 15 h, and IL-1β mRNA was elevated in nNOS KOs relative to their controls at 48 h. Our results suggest that NO synthesized by both nNOS and iNOS plays a role in virus-induced sleep changes and that nNOS may modulate cytokine expression in the brain.
Collapse
Affiliation(s)
- Lichao Chen
- Department of Veterinary and Comparative Anatomy, Pharmacology, Physiology, Washington State University, Pullman, WA 99164-6520, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Manfridi A, Brambilla D, Bianchi S, Mariotti M, Opp MR, Imeri L. Interleukin-1beta enhances non-rapid eye movement sleep when microinjected into the dorsal raphe nucleus and inhibits serotonergic neurons in vitro. Eur J Neurosci 2003; 18:1041-9. [PMID: 12956704 DOI: 10.1046/j.1460-9568.2003.02836.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interleukin-1 (IL-1) and IL-1 receptors are constitutively expressed in normal brain. IL-1 increases non-rapid eye movements (NREM) sleep in several animal species, an effect mediated in part by interactions with the serotonergic system. The site(s) in brain at which interactions between IL-1 and the serotonergic system increase NREM sleep remain to be identified. The dorsal raphe (DRN) is the origin of the major ascending serotonergic pathways to the forebrain, and it contains IL-1 receptors. This study examined the hypothesis that IL-1 increases NREM sleep by acting at the level of the DRN. IL-1beta (0.25 and 0.5 ng) was microinjected into the DRN of freely behaving rats and subsequent effects on sleep-wake activity were determined. IL-1beta 0.5 ng increased NREM sleep during the first 2 h post-injection from 33.5 +/- 3.7% after vehicle microinjection to 42.9 +/- 3.0% of recording time. To determine the effects of IL-1beta on electrophysiological properties of DRN serotonergic neurons, intracellular recordings were performed in a guinea-pig brain stem slice preparation. In 26 of 32 physiologically and pharmacologically identified serotonergic neurons, IL-1beta superfusion (25 ng/mL) decreased spontaneous firing rates by 50%, from 1.6 +/- 0.2 Hz (before IL-1beta superfusion) to 0.8 +/- 0.2 Hz. This effect was reversible upon washout. These results show that IL-1beta increases NREM sleep when administered directly into the DRN. Serotonin enhances wakefulness and these novel data also suggest that IL-1beta-induced enhancement of NREM sleep could be due in part to the inhibition of DRN serotonergic neurons.
Collapse
Affiliation(s)
- Alfredo Manfridi
- Institute of Human Physiology II, 'Giuseppe Moruzzi' Centre for Experimental Sleep Research, Milano, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Yoshida H, Kubota T, Krueger JM. A cyclooxygenase-2 inhibitor attenuates spontaneous and TNF-alpha-induced non-rapid eye movement sleep in rabbits. Am J Physiol Regul Integr Comp Physiol 2003; 285:R99-109. [PMID: 12623776 DOI: 10.1152/ajpregu.00609.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sleep is regulated in part by the brain cytokine network, including tumor necrosis factor-alpha (TNF-alpha). TNF-alpha activates the transcription factor nuclear factor-kappaB, which in turn promotes transcription of many genes, including cyclooxygenase-2 (COX-2). COX-2 is in the brain and is an enzyme responsible for production of prostaglandin D2. The hypothesis that central COX-2 plays a role in the regulation of spontaneous and TNF-alpha-induced sleep was investigated. Three doses (0.5, 5, and 50 microg) of NS-398, a highly selective COX-2 inhibitor, were injected intracerebroventricularly. The highest dose decreased non-rapid eye movement sleep. The intermediate and highest doses decreased electroencephalographic slow-wave activity; the greatest reduction occurred after 50 microg of NS-398 during the first 3-h postinjection period. Rapid eye movement sleep and brain temperature were not altered by any dose of NS-398. Pretreatment of rabbits with 5 or 50 microg of NS-398 blocked the TNF-alpha-induced increases in non-rapid eye movement sleep, electroencephalographic slow-wave activity, and brain temperature. These data suggest that COX-2 is involved in the regulation of spontaneous and TNF-alpha-induced sleep.
Collapse
Affiliation(s)
- Hitoshi Yoshida
- Dept. of VCAPP, PO Box 646520, Washington State University, Pullman, WA 99164-6520, USA
| | | | | |
Collapse
|
34
|
Satoh S, Matsumura H, Nakajima T, Nakahama KI, Kanbayashi T, Nishino S, Yoneda H, Shigeyoshi Y. Inhibition of rostral basal forebrain neurons promotes wakefulness and induces FOS in orexin neurons. Eur J Neurosci 2003; 17:1635-45. [PMID: 12752381 DOI: 10.1046/j.1460-9568.2003.02577.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study examined whether the activities of the rostral basal forebrain neurons alter the activities of the orexin (also known as hypocretin) neurons in the tuberal part of the hypothalamus in rats. We performed microdialysis perfusion of the ventromedial portion of the rostral basal forebrain with the GABAA receptor agonist muscimol to inhibit focally the neuronal activities in the rostral basal forebrain. Then, we monitored sleep/wake behaviour and investigated the pattern of activities of orexin neurons by examining the expression of FOS as an indicator of cellular activation. Bilateral perfusion with muscimol (5, 15, and 50 micro m) produced a dose-dependent decrease in the amount of sleep. This perfusion with muscimol at 50 micro m produced FOS-like immunoreactivity in 37% of the orexin neurons located in the tuberal part of the hypothalamus, whereas the FOS-like immunoreactivity was sparse in orexin neurons of the sleeping control rats (P = 0.001 by Mann-Whitney U-test). Unilateral perfusion with muscimol (50 micro m) also suppressed sleep. In this case, FOS-like immunoreactivity was seen in 40% of the orexin neurons on the side ipsilateral to the perfusion site but only in 10% of orexin neurons on the contralateral side (P = 0.018 by Wilcoxon signed rank test). These functional data suggested that a sleep-generating element in the ventromedial part of the rostral basal forebrain provides an inhibitory influence on the activities of the orexin neurons in the tuberal part of the hypothalamus.
Collapse
Affiliation(s)
- Shinsuke Satoh
- Second Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka-Sayama, Osaka 589-8511, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Fujimori K, Fujitani Y, Kadoyama K, Kumanogoh H, Ishikawa K, Urade Y. Regulation of lipocalin-type prostaglandin D synthase gene expression by Hes-1 through E-box and interleukin-1 beta via two NF-kappa B elements in rat leptomeningeal cells. J Biol Chem 2003; 278:6018-26. [PMID: 12488457 DOI: 10.1074/jbc.m208288200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The promoter function of the rat lipocalin-type prostaglandin D synthase (L-PGDS) gene was characterized in primary cultures of leptomeningeal cells prepared from the neonatal rat brain. Luciferase reporter assays with deletion and site-directed mutation of the promoter region (-1250 to +77) showed that an AP-2 element at -109 was required for activation and an E-box at +57, for repression. Binding of nuclear factors to each of these cis-elements was demonstrated by an electrophoretic mobility shift assay. Several components of the Notch-Hes signaling pathway, Jagged, Notch1, Notch3, and Hes-1, were expressed in the leptomeningeal cells. Human Hes-1 co-expressed in the leptomeningeal cells bound to the E-box of the rat L-PGDS gene, and repressed the promoter activity of the rat L-PGDS gene in a dose-dependent manner. The L-PGDS gene expression was up-regulated slowly by interleukin-1 beta to the maximum level at 24 h. The reporter assay with deletion and mutation revealed that two NF-kappa B elements at -1106 and -291 were essential for this up-regulation. Binding of two NF-kappa B subunits, p65 and c-Rel, to these two NF-kappa B elements occurred after the interleukin-1 beta treatment. Therefore, the L-PGDS gene is the first gene identified as the target for the Notch-Hes signal through the E-box among a variety of genes involved in the prostanoid biosynthesis, classified to the lipocalin family, and expressed in the leptomeninges. Moreover, the L-PGDS gene is a unique gene that is activated slowly by the NF-kappa B system.
Collapse
Affiliation(s)
- Ko Fujimori
- Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation and the Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | |
Collapse
|
36
|
De A, Churchill L, Obal F, Simasko SM, Krueger JM. GHRH and IL1beta increase cytoplasmic Ca(2+) levels in cultured hypothalamic GABAergic neurons. Brain Res 2002; 949:209-12. [PMID: 12213318 DOI: 10.1016/s0006-8993(02)03157-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
GHRH and IL1beta regulate sleep via the hypothalamus. However, actions of these substances on neurons are poorly understood. In this study, we found both GHRH (100 nM) and IL1beta (1.2 pM) acutely increased cytosolic Ca(2+) in 7.6 and 4.0% of cultured hypothalamic neurons tested, respectively, and 1.2% of neurons responded to both. The neurons that responded were mostly GABAergic (96, 81, and 100% for GHRH, IL1beta, and dual-responsive neurons, respectively).
Collapse
Affiliation(s)
- Alok De
- Department of VCAPP, Program in Neuroscience, Washington State University, PO Box 646520, Pullman, WA 99164-6520, USA
| | | | | | | | | |
Collapse
|
37
|
Suntsova N, Szymusiak R, Alam MN, Guzman-Marin R, McGinty D. Sleep-waking discharge patterns of median preoptic nucleus neurons in rats. J Physiol 2002; 543:665-77. [PMID: 12205198 PMCID: PMC2290500 DOI: 10.1113/jphysiol.2002.023085] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Several lines of evidence show that the preoptic area (POA) of the hypothalamus is critically implicated in the regulation of sleep. Functionally heterogeneous cell groups with sleep-related discharge patterns are located both in the medial and lateral POA. Recently a cluster of neurons showing sleep-related c-Fos immunoreactivity was found in the median preoptic nucleus (MnPN). To determine the specificity of the state-related behaviour of MnPN neurons we have undertaken the first study of their discharge patterns across the sleep-waking cycle. Nearly 76 % of recorded cells exhibited elevated discharge rates during sleep. Sleep-related units showed several distinct types of activity changes across sleep stages. Two populations included cells displaying selective activation during either non-rapid eye movement (NREM) sleep (10 %) or REM sleep (8 %). Neurons belonging to the predominant population (58 %) exhibited activation during both phases of sleep compared to wakefulness. Most of these cells showed a gradual increase in their firing rates prior to sleep onset, elevated discharge during NREM sleep and a further increase during REM sleep. This specific sleep-waking discharge profile is opposite to that demonstrated by wake-promoting monoaminergic cell groups and was previously found in cells localized in the ventrolateral preoptic area (vlPOA). We hypothesize that these vlPOA and MnPN neuronal populations act as parts of a GABAergic/galaninergic sleep-promoting ('anti-waking') network which exercises inhibitory control over waking-promoting systems. MnPN neurons that progressively increase activity during sustained waking and decrease activity during sustained sleep states may be involved in homeostatic regulation of sleep.
Collapse
Affiliation(s)
- Natalia Suntsova
- Research Service, V.A. Greater Los Angeles Healthcare System, North Hills, CA 91343, USA
| | | | | | | | | |
Collapse
|
38
|
Choi SY, Choi BH, Suh BC, Chae HD, Kim JS, Shin MJ, Kang SS, Negishi M, Kim KT. Potentiation of PGE(2)-mediated cAMP production during neuronal differentiation of human neuroblastoma SK-N-BE(2)C cells. J Neurochem 2001; 79:303-10. [PMID: 11677258 DOI: 10.1046/j.1471-4159.2001.00577.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The prostaglandin-evoked cAMP production was studied in human neuroblastoma SK-N-BE(2)C cells during neuronal differentiation induced by all-trans retinoic acid. The incubation with 5 microM all-trans retinoic acid for 4-6 days promoted neurite outgrowth of cells. After differentiation, prostaglandin E(2) (PGE(2))-induced cAMP production was dramatically increased, whereas forskolin- and AlF-induced cAMP productions were not changed. The increase reached maximum after 4-days of incubation with all-trans retinoic acid. The differentiation caused an increase in the maximal response and a decrease in the half-maximal effective concentration of the PGE(2)-induced cAMP production. In addition, the binding of [(3)H]PGE(2) to membrane receptors was enhanced in differentiated cells. However, the order of potency of the various prostaglandins (PGE(1) = PGE(2) > PGD(2) = PGF(2alpha) = PGI(2)) in cAMP production did not change during the differentiation, suggesting that mainly E-prostanoid (EP) receptors were involved. Butaprost, an EP(2) receptor specific agonist, increased the cAMP level in a concentration dependent manner and had a similar potentiating effect on cAMP production as PGE(2) upon differentiation. Northern blot analysis using the human cDNA probes shows that the EP(2) mRNA level was about seven times higher in differentiated cells, while the dopamine beta-hydroxylase (DBH) mRNA completely disappeared. Our results, thus, suggest that elevated gene expression of the prostanoid EP(2) receptor results in an increase in the PGE(2)-evoked cAMP production in SK-N-BE(2)C cells during neuronal differentiation.
Collapse
Affiliation(s)
- S Y Choi
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Basheer R, Rainnie DG, Porkka-Heiskanen T, Ramesh V, McCarley RW. Adenosine, prolonged wakefulness, and A1-activated NF-kappaB DNA binding in the basal forebrain of the rat. Neuroscience 2001; 104:731-9. [PMID: 11440805 DOI: 10.1016/s0306-4522(01)00111-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is considerable evidence to suggest that adenosine is a modulator of behavioral state. Our previous reports showed that perfusion of adenosine into the basal forebrain decreased wakefulness. Furthermore, prolonged wakefulness resulted in increased levels of extracellular adenosine in the basal forebrain of cats and rats. However, the longer-term consequences of prolonged wakefulness and increased adenosine are largely unknown. We report here an increase in the DNA binding activity of the transcription factor, nuclear factor-kappa B (NF-kappaB) following 3 h of sustained wakefulness in the rat basal forebrain. Moreover, this treatment led to the appearance of the p65 subunit of NF-kappaB in the nucleus, as determined by western blot analysis of nuclear proteins. This contrasted with undetectable levels in the sleeping controls. A concomitant disappearance of I-kappaB in cytoplasm suggested the degradation of this inhibitor of NF-kappaB. In the acute in vitro basal forebrain slice preparation, perfusion of adenosine increased NF-kappaB DNA binding while pretreatment of the slices with the A1 adenosine receptor antagonist, cyclopentyl-1-3-dimethylxanthine, significantly reduced NF-kappaB DNA binding. These results are compatible with the hypothesis that increases in the levels of adenosine in the basal forebrain, that occur during prolonged wakefulness, act through an A1 adenosine receptor and a second messenger system to increase the activity of the transcription factor NF-kappaB. We further hypothesize that some of the long duration effects of prolonged wakefulness/sleep deprivation on performance and physiology, often termed 'sleep debt', might be mediated through adenosine and its activation of NF-kappaB, which is known to alter the expression of several behavioral state regulatory factors.
Collapse
Affiliation(s)
- R Basheer
- Department of Psychiatry, Havard Medical School and VA Medical Center, Brockton, MA 02401, USA
| | | | | | | | | |
Collapse
|
40
|
Monroy M, Kuluz JW, He D, Dietrich WD, Schleien CL. Role of nitric oxide in the cerebrovascular and thermoregulatory response to interleukin-1 beta. Am J Physiol Heart Circ Physiol 2001; 280:H1448-53. [PMID: 11247753 DOI: 10.1152/ajpheart.2001.280.4.h1448] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Central administration of interleukin-1 beta (IL-1 beta) increases cerebral blood flow (CBF) and body temperature, in part, through the production of prostaglandins. In previous studies, the temporal relationship between these effects of IL-1 beta have not been measured. In this study, we hypothesized that the increase in CBF occurs before any change in brain or body temperature and that the cerebrovascular and thermoregulatory effects of IL-1 beta would be attenuated by inhibiting the production of nitric oxide (NO). Adult male rats received 100 ng intracerebroventricular (icv) injection of IL-1 beta, and cortical CBF (cCBF) was measured by laser-Doppler in the contralateral cerebral cortex. A central injection of IL-1 beta caused a rapid increase in cCBF to 133 +/- 12% of baseline within 15 min and to an average of 137 +/- 12% for the remainder of the 3-h experiment. Brain and rectal temperature increased by 0.4 +/- 0.2 and 0.5 +/- 0.2 degrees C, but not until 45 min after IL-1 beta administration. Pretreatment with N(omega)-nitro-L-arginine methyl ester (L-NAME; 5 mg/kg iv) completely prevented the changes in cCBF and brain and rectal temperature induced by IL-1 beta. L-Arginine (150 mg/kg iv) partially reversed the effects of L-NAME and resulted in increases in both cCBF and temperature. These findings suggest that the vasodilatory effects of IL-1 beta in the cerebral vasculature are independent of temperature and that NO plays a major role in both the cerebrovascular and thermoregulatory effects of centrally administered IL-1 beta.
Collapse
Affiliation(s)
- M Monroy
- Department of Pediatrics, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | |
Collapse
|
41
|
Sleep, health and immunocompetence. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1567-7443(01)80022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
42
|
Ek M, Arias C, Sawchenko P, Ericsson-Dahlstrand A. Distribution of the EP3 prostaglandin E(2) receptor subtype in the rat brain: relationship to sites of interleukin-1-induced cellular responsiveness. J Comp Neurol 2000; 428:5-20. [PMID: 11058221 DOI: 10.1002/1096-9861(20001204)428:1<5::aid-cne2>3.0.co;2-m] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The activation of neurosecretory neurons that express corticotropin-releasing hormone (CRH) in response to increased circulating levels of interleukin-1beta (IL-1beta) depends on prostaglandin E(2) (PGE(2)) acting locally within the brain parenchyma. To identify potential central targets for PGE(2) relevant to pituitary-adrenal control, the distribution of mRNA encoding the PGE(2) receptor subtype EP3 (EP3R) was analyzed in rat brain. Hybridization histochemistry revealed prominent labeling of cells in discrete portions of the olfactory system, iso- and hippocampal cortices, and subcortical telencephalic structures in the septal region and amygdala. Labeling over the midline, intralaminar, and anterior thalamic groups was particularly prominent. EP3R expression was enriched in the median preoptic nucleus and adjoining aspects of the medial preoptic area (MPO) implicated in thermoregulatory/febrile responses and sleep induction. EP3R-expressing cells were also prominent in brainstem cell groups involved in nociceptive information processing/modulation (periaqueductal gray, locus coeruleus (LC), parabrachial nucleus (PB), caudal raphé nuclei), arousal and wakefulness (LC, midbrain raphé and tuberomammillary nuclei); and in conveying interoceptive input, including systemic IL-1 signals, to the endocrine hypothalamus (nucleus of the solitary tract (NTS) and rostral ventrolateral medulla [VLM]). Combined hybridization histochemical detection of EP3R mRNA with immunolocalization of IL-1beta-induced Fos protein expression identified cytokine-sensitive, EP3R-positive cells in the medial NTS, rostral VLM, and, to a lesser extent, aspects of the MPO. These findings are consistent with the view that increased circulating IL-1 may stimulate central neural mechanisms, including hypothalamic CRH neurons, through an EP3R-dependent mechanism involving PGE(2)-mediated activation of cells in the caudal medulla and/or preoptic region.
Collapse
Affiliation(s)
- M Ek
- Department of Medicine, Unit of Rheumatology, The Karolinska Institute, S-171 76, Stockholm, Sweden.
| | | | | | | |
Collapse
|
43
|
Lim JH, Brunjes PC. Activity-dependent regulation of interleukin-1 beta immunoreactivity in the developing rat olfactory bulb. Neuroscience 1999; 93:371-4. [PMID: 10430500 DOI: 10.1016/s0306-4522(99)00093-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interleukin-1beta is a relatively small and abundant polypeptide that plays diverse roles in the central nervous system. In the present study, patterns of interleukin-1beta expression were observed in the olfactory bulbs of rats that had either undergone unilateral closure of the external naris or sham surgery on postnatal day 1 and then survived until postnatal day 30. Interleukin-1beta-immunoreactive fibers occupied distinct layers of the olfactory bulb. Dense immunostaining was found in the periglomerular and granule cell layers. Odor deprivation resulted in a noticeable reduction in interleukin-1beta immunoreactivity only in the periglomerular layer. The data demonstrate that interleukin-1beta is present abundantly in the bulbs, and that it can be regulated in an activity-dependent manner.
Collapse
Affiliation(s)
- J H Lim
- University of Virginia, Department of Psychology, Charlottesville 22903, USA
| | | |
Collapse
|
44
|
Kushikata T, Fang J, Krueger JM. Brain-derived neurotrophic factor enhances spontaneous sleep in rats and rabbits. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:R1334-8. [PMID: 10233024 DOI: 10.1152/ajpregu.1999.276.5.r1334] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Various growth factors are involved in sleep regulation. Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family; it and its receptors are found in normal brain. Furthermore, cerebral cortical levels of BDNF mRNA have a diurnal variation and increase after sleep deprivation. Therefore, we investigated whether BDNF would promote sleep. Twenty-four male Sprague-Dawley rats (320-380 g) and 25 male New Zealand White rabbits (4.5-5.5 kg) were surgically implanted with electroencephalographic (EEG) electrodes, a brain thermistor, and a lateral intracerebroventricular cannula. The animals were injected intracerebroventricularly with pyrogen-free saline and, on a separate day, one of the following doses of BDNF: 25 or 250 ng in rabbits; 10, 50, or 250 ng in rats. The EEG, brain temperature, and motor activity were recorded for 23 h after the intracerebroventricular injections. BDNF increased time spent in non-rapid eye movement sleep (NREMS) in rats and rabbits and REMS in rabbits. Current results provide further evidence that various growth factors are involved in sleep regulation.
Collapse
Affiliation(s)
- T Kushikata
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington 99164, USA
| | | | | |
Collapse
|
45
|
Terao A, Matsumura H, Yoneda H, Saito M. Enhancement of slow-wave sleep by tumor necrosis factor-alpha is mediated by cyclooxygenase-2 in rats. Neuroreport 1998; 9:3791-6. [PMID: 9875706 DOI: 10.1097/00001756-199812010-00005] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tumor necrosis factor-alpha (TNFalpha) was infused into the subarachnoid space of the rat rostral basal forebrain, which was previously defined as a prostaglandin (PG) D2-sensitive, sleep-promoting zone. TNFalpha increased the amount of slow-wave sleep (SWS), decreased that of paradoxical sleep (PS), and caused fever and anorexia. The TNFalpha-induced SWS enhancement, fever and anorexia were all blocked by co-infusion of diclofenac, a non-selective cyclooxygenase (COX) inhibitor, and by pretreatment with NS-398, a COX-2-specific inhibitor. In striking contrast, the TNFalpha-induced suppression of PS was not affected by the inhibitors. These results indicate that COX-2-mediated hyperproduction of PGs is critically involved in the enhancement of SWS, fever, and anorexia but not in the suppression of PS, caused by TNFalpha infused into the PGD2-sensitive zone.
Collapse
Affiliation(s)
- A Terao
- Department of Molecular Behavioural Biology, Osaka Bioscience Institute, Suita City, Japan
| | | | | | | |
Collapse
|