1
|
Yagishita H, Sasaki T. Integrating physiological and transcriptomic analyses at the single-neuron level. Neurosci Res 2024:S0168-0102(24)00065-8. [PMID: 38821412 DOI: 10.1016/j.neures.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 04/30/2024] [Accepted: 05/12/2024] [Indexed: 06/02/2024]
Abstract
Neurons generate various spike patterns to execute different functions. Understanding how these physiological neuronal spike patterns are related to their molecular characteristics is a long-standing issue in neuroscience. Herein, we review the results of recent studies that have addressed this issue by integrating physiological and transcriptomic techniques. A sequence of experiments, including in vivo recording and/or labeling, brain tissue slicing, cell collection, and transcriptomic analysis, have identified the gene expression profiles of brain neurons at the single-cell level, with activity patterns recorded in living animals. Although these techniques are still in the early stages, this methodological idea is principally applicable to various brain regions and neuronal activity patterns. Accumulating evidence will contribute to a deeper understanding of neuronal characteristics by integrating insights from molecules to cells, circuits, and behaviors.
Collapse
Affiliation(s)
- Haruya Yagishita
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; Department of Neuropharmacology, Tohoku University School of Medicine, 4-1 Seiryo-machi, Aoba-Ku, Sendai 980-8575, Japan.
| |
Collapse
|
2
|
Song B, Kang CY, Han JH, Kano M, Konnerth A, Bae S. In vivo genome editing in single mammalian brain neurons through CRISPR-Cas9 and cytosine base editors. Comput Struct Biotechnol J 2021; 19:2477-2485. [PMID: 34025938 PMCID: PMC8113754 DOI: 10.1016/j.csbj.2021.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 10/31/2022] Open
Abstract
Gene manipulation is a useful approach for understanding functions of genes and is important for investigating basic mechanisms of brain function on the level of single neurons and circuits. Despite the development and the wide range of applications of CRISPR-Cas9 and base editors (BEs), their implementation for an analysis of individual neurons in vivo remained limited. In fact, conventional gene manipulations are generally achieved only on the population level. Here, we combined either CRISPR-Cas9 or BEs with the targeted single-cell electroporation technique as a proof-of-concept test for gene manipulation in single neurons in vivo. Our assay consisted of CRISPR-Cas9- or BEs-induced gene knockout in single Purkinje cells in the cerebellum. Our results demonstrate the feasibility of both gene editing and base editing in single cells in the intact brain, providing a tool through which molecular perturbations of individual neurons can be used for analysis of circuits and, ultimately, behaviors.
Collapse
Affiliation(s)
- Beomjong Song
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chan Young Kang
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea
| | - Jun Hee Han
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea
| | - Masanobu Kano
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Arthur Konnerth
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany.,Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Sangsu Bae
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
3
|
Rodrigues AZC, Wang ZM, Messi ML, Delbono O. Sympathomimetics regulate neuromuscular junction transmission through TRPV1, P/Q- and N-type Ca 2+ channels. Mol Cell Neurosci 2019; 95:59-70. [PMID: 30763691 PMCID: PMC6394868 DOI: 10.1016/j.mcn.2019.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 01/10/2023] Open
Abstract
Increasing evidence indicates that, first, the sympathetic nervous system interacts extensively with both vasculature and skeletal muscle fibers near neuromuscular junctions (NMJs) and, second, its neurotransmitter, noradrenaline, influences myofiber molecular composition and function and motor innervation. Since sympathomimetic agents have been reported to improve NMJ transmission, we examined whether two in clinical use, salbutamol and clenbuterol, affect the motor axon terminal via extracellular Ca2+ and molecular targets, such as TRPV1 and P/Q- and N-type voltage-activated Ca2+ channels. Electrophysiological recordings in ex-vivo preparations of peroneal nerves and lumbricalis muscles from young adult mice focused on spontaneous miniature end-plate potentials and singly and repetitively evoked end-plate potentials. Adding one dose of salbutamol or clenbuterol to the nerve/muscle preparation or repeatedly administering salbutamol to a mouse for 4 weeks increased spontaneous and evoked synaptic vesicle release but induced a steep decline in EPP amplitude in response to repetitive nerve stimulation. These effects were mediated primarily by ω-agatoxin IVA-sensitive P/Q-type and secondarily by ω-conotoxin GVIA-sensitive N-type Ca2+ channels. Presynaptic arvanil-sensitive TRPV1 channels seem to regulate Ca2+ at the motor neuron terminal at rest, while putative presynaptic β-adrenergic receptors may mediate sympathomimetic and catecholamine effects on presynaptic Ca2+ channels during NMJ activation.
Collapse
Affiliation(s)
- Anna Zaia Carolina Rodrigues
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America; Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - María Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America; Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.
| |
Collapse
|
4
|
Chang Q, Martin LJ. Voltage-gated calcium channels are abnormal in cultured spinal motoneurons in the G93A-SOD1 transgenic mouse model of ALS. Neurobiol Dis 2016; 93:78-95. [PMID: 27151771 DOI: 10.1016/j.nbd.2016.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 04/01/2016] [Accepted: 04/29/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motoneurons. Hyperexcitability and excitotoxicity have been implicated in the early pathogenesis of ALS. Studies addressing excitotoxic motoneuron death and intracellular Ca(2+) overload have mostly focused on Ca(2+) influx through AMPA glutamate receptors. However, intrinsic excitability of motoneurons through voltage-gated ion channels may also have a role in the neurodegeneration. In this study we examined the function and localization of voltage-gated Ca(2+) channels in cultured spinal cord motoneurons from mice expressing a mutant form of human superoxide dismutase-1 with a Gly93→Ala substitution (G93A-SOD1). Using whole-cell patch-clamp recordings, we showed that high voltage activated (HVA) Ca(2+) currents are increased in G93A-SOD1 motoneurons, but low voltage activated Ca(2+) currents are not affected. G93A-SOD1 motoneurons also have altered persistent Ca(2+) current mediated by L-type Ca(2+) channels. Quantitative single-cell RT-PCR revealed higher levels of Ca1a, Ca1b, Ca1c, and Ca1e subunit mRNA expression in G93A-SOD1 motoneurons, indicating that the increase of HVA Ca(2+) currents may result from upregulation of Ca(2+) channel mRNA expression in motoneurons. The localizations of the Ca1B N-type and Ca1D L-type Ca(2+) channels in motoneurons were examined by immunocytochemistry and confocal microscopy. G93A-SOD1 motoneurons had increased Ca1B channels on the plasma membrane of soma and dendrites. Ca1D channels are similar on the plasma membrane of soma and lower on the plasma membrane of dendrites of G93A-SOD1 motoneurons. Our study demonstrates that voltage-gated Ca(2+) channels have aberrant functions and localizations in ALS mouse motoneurons. The increased HVA Ca(2+) currents and PCCa current could contribute to early pathogenesis of ALS.
Collapse
Affiliation(s)
- Qing Chang
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, MD 21205, United States.
| | - Lee J Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, MD 21205, United States; Department of Neuroscience, Johns Hopkins University School of Medicine, MD 21205, United States
| |
Collapse
|
5
|
Tomlinson SE, Tan SV, Burke D, Labrum RW, Haworth A, Gibbons VS, Sweeney MG, Griggs RC, Kullmann DM, Bostock H, Hanna MG. In vivo impact of presynaptic calcium channel dysfunction on motor axons in episodic ataxia type 2. Brain 2016; 139:380-91. [PMID: 26912519 PMCID: PMC4795516 DOI: 10.1093/brain/awv380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
Ion channel dysfunction causes a range of neurological disorders by altering transmembrane ion fluxes, neuronal or muscle excitability, and neurotransmitter release. Genetic neuronal channelopathies affecting peripheral axons provide a unique opportunity to examine the impact of dysfunction of a single channel subtype in detail in vivo. Episodic ataxia type 2 is caused by mutations in CACNA1A, which encodes the pore-forming subunit of the neuronal voltage-gated calcium channel Cav2.1. In peripheral motor axons, this channel is highly expressed at the presynaptic neuromuscular junction where it contributes to action potential-evoked neurotransmitter release, but it is not expressed mid-axon or thought to contribute to action potential generation. Eight patients from five families with genetically confirmed episodic ataxia type 2 underwent neurophysiological assessment to determine whether axonal excitability was normal and, if not, whether changes could be explained by Cav2.1 dysfunction. New mutations in the CACNA1A gene were identified in two families. Nerve conduction studies were normal, but increased jitter in single-fibre EMG studies indicated unstable neuromuscular transmission in two patients. Excitability properties of median motor axons were compared with those in 30 age-matched healthy control subjects. All patients had similar excitability abnormalities, including a high electrical threshold and increased responses to hyperpolarizing (P < 0.00007) and depolarizing currents (P < 0.001) in threshold electrotonus. In the recovery cycle, refractoriness (P < 0.0002) and superexcitability (P < 0.006) were increased. Cav2.1 dysfunction in episodic ataxia type 2 thus has unexpected effects on axon excitability, which may reflect an indirect effect of abnormal calcium current fluxes during development.
Collapse
Affiliation(s)
- Susan E Tomlinson
- 1 Sydney Medical School, University of Sydney, Australia 2 Department of Neurology, St Vincent's Hospital, Sydney, Australia
| | - S Veronica Tan
- 3 Institute of Neurology, University College London and MRC Centre for Neuromuscular Disease, Queen Square, UK
| | - David Burke
- 1 Sydney Medical School, University of Sydney, Australia 4 Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Robyn W Labrum
- 5 Neurogenetics Unit, National Hospital for Neurology, Queen Square, UK
| | - Andrea Haworth
- 5 Neurogenetics Unit, National Hospital for Neurology, Queen Square, UK
| | | | - Mary G Sweeney
- 5 Neurogenetics Unit, National Hospital for Neurology, Queen Square, UK
| | | | - Dimitri M Kullmann
- 3 Institute of Neurology, University College London and MRC Centre for Neuromuscular Disease, Queen Square, UK 5 Neurogenetics Unit, National Hospital for Neurology, Queen Square, UK
| | - Hugh Bostock
- 3 Institute of Neurology, University College London and MRC Centre for Neuromuscular Disease, Queen Square, UK
| | - Michael G Hanna
- 3 Institute of Neurology, University College London and MRC Centre for Neuromuscular Disease, Queen Square, UK 5 Neurogenetics Unit, National Hospital for Neurology, Queen Square, UK
| |
Collapse
|
6
|
Katz E, Elgoyhen AB. Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses. Front Syst Neurosci 2014; 8:224. [PMID: 25520631 PMCID: PMC4251319 DOI: 10.3389/fnsys.2014.00224] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/06/2014] [Indexed: 12/23/2022] Open
Abstract
The organ of Corti, the mammalian sensory epithelium of the inner ear, has two types of mechanoreceptor cells, inner hair cells (IHCs) and outer hair cells (OHCs). In this sensory epithelium, vibrations produced by sound waves are transformed into electrical signals. When depolarized by incoming sounds, IHCs release glutamate and activate auditory nerve fibers innervating them and OHCs, by virtue of their electromotile property, increase the amplification and fine tuning of sound signals. The medial olivocochlear (MOC) system, an efferent feedback system, inhibits OHC activity and thereby reduces the sensitivity and sharp tuning of cochlear afferent fibers. During neonatal development, IHCs fire Ca2+ action potentials which evoke glutamate release promoting activity in the immature auditory system in the absence of sensory stimuli. During this period, MOC fibers also innervate IHCs and are thought to modulate their firing rate. Both the MOC-OHC and the MOC-IHC synapses are cholinergic, fast and inhibitory and mediated by the α9α10 nicotinic cholinergic receptor (nAChR) coupled to the activation of calcium-activated potassium channels that hyperpolarize the hair cells. In this review we discuss the biophysical, functional and molecular data which demonstrate that at the synapses between MOC efferent fibers and cochlear hair cells, modulation of transmitter release as well as short term synaptic plasticity mechanisms, operating both at the presynaptic terminal and at the postsynaptic hair-cell, determine the efficacy of these synapses and shape the hair cell response pattern.
Collapse
Affiliation(s)
- Eleonora Katz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina ; Departamento de Fisiología, Biología Molecular y Celular "Prof. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina ; Tercera Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires Buenos Aires, Argentina
| |
Collapse
|
7
|
Toledo-Rodriguez M, Markram H. Single-cell RT-PCR, a technique to decipher the electrical, anatomical, and genetic determinants of neuronal diversity. Methods Mol Biol 2014; 1183:143-158. [PMID: 25023306 DOI: 10.1007/978-1-4939-1096-0_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The patch-clamp technique has allowed for detailed studies on the electrical properties of neurons. Dye loading through patch pipettes enabled characterizing the morphological properties of the neurons. In addition, the patch-clamp technique also allows for harvesting mRNA from single cells to study gene expression at the single cell level (known as single-cell RT-PCR). The combination of these three approaches makes possible the study of the GEM profile of neurons (gene expression, electrophysiology, and morphology) using a single patch pipette and patch-clamp recording. This combination provides a powerful technique to investigate and correlate the neuron's gene expression with its phenotype (electrical behavior and morphology). The harvesting and amplification of single cell mRNA for gene expression studies is a challenging task, especially for researchers with sparse or no training in molecular biology (see Notes 1,2 and 5). Here we describe in detail the GEM profiling approach with special attention to the gene expression profiling.
Collapse
Affiliation(s)
- Maria Toledo-Rodriguez
- Queens Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2 UH, UK,
| | | |
Collapse
|
8
|
|
9
|
Lewis BB, Wester MR, Miller LE, Nagarkar MD, Johnson MB, Saha MS. Cloning and characterization of voltage-gated calcium channel alpha1 subunits in Xenopus laevis during development. Dev Dyn 2010; 238:2891-902. [PMID: 19795515 DOI: 10.1002/dvdy.22102] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Voltage-gated calcium channels play a critical role in regulating the Ca2+ activity that mediates many aspects of neural development, including neural induction, neurotransmitter phenotype specification, and neurite outgrowth. Using Xenopus laevis embryos, we describe the spatial and temporal expression patterns during development of the 10 pore-forming alpha1 subunits that define the channels' kinetic properties. In situ hybridization indicates that CaV1.2, CaV2.1, CaV2.2, and CaV3.2 are expressed during neurula stages throughout the neural tube. These, along with CaV1.3 and CaV2.3, beginning at early tail bud stages, and CaV3.1 at late tail bud stages, are detected in complex patterns within the brain and spinal cord through swimming tadpole stages. Additional expression of various alpha1 subunits was observed in the cranial ganglia, retina, olfactory epithelium, pineal gland, and heart. The unique expression patterns for the different alpha1 subunits suggests they are under precise spatial and temporal regulation and are serving specific functions during embryonic development.
Collapse
Affiliation(s)
- Brittany B Lewis
- Department of Biology, The College of William and Mary, Integrated Science Center, Williamsburg, Virginia 23185, USA
| | | | | | | | | | | |
Collapse
|
10
|
Lindqvist N, Lönngren U, Agudo M, Näpänkangas U, Vidal-Sanz M, Hallböök F. Multiple receptor tyrosine kinases are expressed in adult rat retinal ganglion cells as revealed by single-cell degenerate primer polymerase chain reaction. Ups J Med Sci 2010; 115:65-80. [PMID: 20187850 PMCID: PMC2853356 DOI: 10.3109/03009731003597119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To achieve a better understanding of the repertoire of receptor tyrosine kinases (RTKs) in adult retinal ganglion cells (RGCs) we performed polymerase chain reaction (PCR), using degenerate primers directed towards conserved sequences in the tyrosine kinase domain, on cDNA from isolated single RGCs univocally identified by retrograde tracing from the superior colliculi. RESULTS All the PCR-amplified fragments of the expected sizes were sequenced, and 25% of them contained a tyrosine kinase domain. These were: Axl, Csf-1R, Eph A4, Pdgfrbeta, Ptk7, Ret, Ros, Sky, TrkB, TrkC, Vegfr-2, and Vegfr-3. Non-RTK sequences were Jak1 and 2. Retinal expression of Axl, Csf-1R, Pdgfrbeta, Ret, Sky, TrkB, TrkC, Vegfr-2, and Vegfr-3, as well as Jak1 and 2, was confirmed by PCR on total retina cDNA. Immunodetection of Csf-1R, Pdgfralpha/beta, Ret, Sky, TrkB, and Vegfr-2 on retrogradely traced retinas demonstrated that they were expressed by RGCs. Co-localization of Vegfr-2 and Csf-1R, of Vegfr-2 and TrkB, and of Csf-1R and Ret in retrogradely labelled RGCs was shown. The effect of optic nerve transection on the mRNA level of Pdgfrbeta, Csf-1R, Vegfr-2, Sky, and Axl, and of the Axl ligands Gas6 and ProteinS, was analysed. These analyses show transection-induced changes in Axl and ProteinS mRNA levels. CONCLUSIONS The repertoire of RTKs expressed by RGCs is more extensive than previously anticipated. Several of the receptors found in this study, including Pdgfrbeta, Csf-1R, Vegfr-2, Sky, and Axl, and their ligands, have not previously been primarily associated with retinal ganglion cells.
Collapse
Affiliation(s)
- Niclas Lindqvist
- Department of Neuroscience, Unit for Developmental Neuroscience, Biomedical Center, Uppsala University, 75123 UppsalaSweden
| | - Ulrika Lönngren
- Department of Neuroscience, Unit for Developmental Neuroscience, Biomedical Center, Uppsala University, 75123 UppsalaSweden
| | | | - Ulla Näpänkangas
- Department of Neuroscience, Unit for Developmental Neuroscience, Biomedical Center, Uppsala University, 75123 UppsalaSweden
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, MurciaSpain
| | - Finn Hallböök
- Department of Neuroscience, Unit for Developmental Neuroscience, Biomedical Center, Uppsala University, 75123 UppsalaSweden
| |
Collapse
|
11
|
Maguin K, Campo P, Parietti-Winkler C. Toluene Can Perturb the Neuronal Voltage-Dependent Ca2+ Channels Involved in the Middle-Ear Reflex. Toxicol Sci 2008; 107:473-81. [DOI: 10.1093/toxsci/kfn242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Sharifullina E, Ostroumov K, Grandolfo M, Nistri A. N-methyl-D-aspartate triggers neonatal rat hypoglossal motoneurons in vitro to express rhythmic bursting with unusual Mg2+ sensitivity. Neuroscience 2008; 154:804-20. [PMID: 18468805 DOI: 10.1016/j.neuroscience.2008.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 02/05/2008] [Accepted: 03/04/2008] [Indexed: 10/22/2022]
Abstract
The brainstem nucleus hypoglossus innervates the tongue which must contract rhythmically during respiration, chewing and swallowing. Such rhythmic discharges are due to network bursting mediated by AMPA receptor-dependent glutamatergic transmission. The contribution by hypoglossal motoneurons themselves to rhythmicity remains, however, unclear as they might simply express cyclic patterns produced by premotoneurons or, in analogy to spinal motoneurons, might participate to bursting due to activation of their N-methyl-D-aspartate (NMDA) receptors. Using patch clamp recording from hypoglossal motoneurons in slice preparations of neonatal rat brainstem, we observed that NMDA directly depolarized motoneurons to generate various discharge patterns. Most motoneurons produced transient bursts which were consistently restored by repolarizing membrane potential to rest. Fewer motoneurons generated either sustained bursting or random firing. Rhythmic bursts were recorded from XII nerve rootlets even when single motoneuron bursting required hyperpolarization. NMDA evoked bursts were blocked by the Ca2+ antagonist Cd2+, the gap junction blocker carbenoxolone, or Mg2+ free solution, and partially inhibited by tetrodotoxin or nifedipine. Under voltage clamp, NMDA-induced bursting persisted at negative or positive potentials and was resistant to high extracellular Mg2+ in accordance with the observation of widespread motoneuron expression of NMDA 2D receptor subunits that confer poor Mg2+ sensitivity. It is proposed that NMDA depolarized motoneurons with the contribution of Mg2+ insensitive channels, and triggered bursting via cyclic activation/deactivation of voltage-dependent Na+, Ca2+ and K+ currents spread through gap junctions. The NMDA-evoked bursting pattern was similar to the rhythmic discharges previously recorded from the XII nerve during milk sucking by neonatal rats.
Collapse
Affiliation(s)
- E Sharifullina
- Neurobiology Sector, International School for Advanced Studies, Via Beirut 2-4, Trieste, Italy
| | | | | | | |
Collapse
|
13
|
Single-cell RT-PCR, a technique to decipher the electrical, anatomical, and genetic determinants of neuronal diversity. Methods Mol Biol 2007; 403:123-39. [PMID: 18827991 DOI: 10.1007/978-1-59745-529-9_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The patch-clamp technique has allowed detailed studies on the electrical properties of neurons. Dye loading through patch pipettes has allowed characterizing the morphological properties of the neurons. In addition, the patch-clamp technique also allows harvesting mRNA from single cells to study gene expression at the single-cell level (known as single-cell reverse transcription-polymerase chain reaction [RT-PCR] [1-3]). The combination of these three approaches allows determination of the Gene expression, Electrophysiology and Morphology (GEM) profile of neurons (gene expression, electrophysiology, and morphology) using a single patch pipette and patch-clamp recording. This combination provides a powerful technique to study and correlate the neuron's gene expression with its phenotype (electrical behavior and morphology) ( 4 - 7 ). The harvesting and amplification of single-cell mRNA for gene expression studies is a challenging task, especially for researchers with sparse or no training in molecular biology (see Notes 1 and 2). Here, we describe in detail the GEM profiling approach with special attention to the gene expression profiling.
Collapse
|
14
|
Rasouli A, Bhatia N, Suryadevara S, Cahill K, Gupta R. Transplantation of preconditioned schwann cells in peripheral nerve grafts after contusion in the adult spinal cord. Improvement of recovery in a rat model. J Bone Joint Surg Am 2006; 88:2400-10. [PMID: 17079397 DOI: 10.2106/jbjs.e.01424] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Recovery after injury to the peripheral nervous system is based on the pro-regenerative relationship between axons and the extracellular matrix, a relationship established by Schwann cells. As mechanical conditioning of Schwann cells has been shown to stimulate their regenerative behavior, we sought to determine whether transplantation of these cells to the central nervous system (i.e., the spinal cord), with its limited regenerative capacity after injury, would improve axonal regeneration and functional recovery. METHODS A moderate contusion injury of the spinal cord was created with a force-directed impactor in forty-eight adult Sprague-Dawley rats, and, at one week postinjury, the spinal cords were reexposed in all animals. In twenty-four of these animals, peripheral nerve grafts with Schwann cells that had been obtained from the sciatic nerves of donor animals, and had been either untreated or subjected to mechanical conditioning, were transplanted to the contused area of the cords following resection of the glial scar. Another group of animals was treated with glial scar excision only, and a fourth group had the contusion injury but neither glial excision nor transplantation. Scores according to the Basso, Beattie, Bresnahan (BBB) Locomotor Rating Scale were assigned preoperatively and weekly thereafter. Tract tracing of descending and ascending spinal cord tracts was performed at six weeks postoperatively for quantitative histological evaluation of axonal regeneration. RESULTS While the recovery following glial scar excision without peripheral nerve transplantation was significantly worse than the recovery in the other groups, both transplantation groups had significantly higher BBB scores than the controls (no transplantation) in the early postoperative period (p < 0.05). Moreover, histological analysis showed markedly increased axonal regeneration at the lesional sites in the animals treated with the mechanically conditioned grafts than in the other groups (p < 0.05). CONCLUSIONS Functional recovery after spinal cord contusion improved following glial scar excision with transplantation of Schwann cells in peripheral nerve grafts to the contusion areas. Although recovery did not differ significantly between the transplantation groups, only the preconditioned grafts led to axonal regeneration at and past the lesional site. These grafts may further enhance functional recovery as the descending tracts eventually reach their target end-organs.
Collapse
Affiliation(s)
- Alexandre Rasouli
- University of California, Irvine, 2226 Gillespie Neuroscience Research Facility, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
15
|
Yokoyama U, Minamisawa S, Adachi-Akahane S, Akaike T, Naguro I, Funakoshi K, Iwamoto M, Nakagome M, Uemura N, Hori H, Yokota S, Ishikawa Y. Multiple transcripts of Ca2+ channel α1-subunits and a novel spliced variant of the α1C-subunit in rat ductus arteriosus. Am J Physiol Heart Circ Physiol 2006; 290:H1660-70. [PMID: 16272207 DOI: 10.1152/ajpheart.00100.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Voltage-dependent Ca2+ channels (VDCCs), which consist of multiple subtypes, regulate vascular tone in developing arterial smooth muscle, including the ductus arteriosus (DA). First, we examined the expression of VDCC subunits in the Wistar rat DA during development. Among α1-subunits, α1C and α1G were the most predominant isoforms. Maternal administration of vitamin A significantly increased α1C- and α1G-transcripts. Second, we examined the effect of VDCC subunits on proliferation of DA smooth muscle cells. We found that 1 μM nitrendipine (an L-type Ca2+ channel blocker) and kurtoxin (a T-type Ca2+ channel blocker) significantly decreased [3H]thymidine incorporation and that 3 μM efonidipine (an L- and T-type Ca2+ channel blocker) further decreased [3H]thymidine incorporation, suggesting that L- and T-type Ca2+ channels are involved in smooth muscle cell proliferation in the DA. Third, we found that a novel alternatively spliced variant of the α1C-isoform was highly expressed in the neointimal cushion of the DA, where proliferating and migrating smooth muscle cells are abundant. The basic channel properties of the spliced variant did not differ from those of the conventional α1C-subunit. We conclude that multiple VDCC subunits were identified in the DA, and, in particular, α1C- and α1G-subunits were predominant in the DA. A novel spliced variant of the α1C-subunit gene may play a distinct role in neointimal cushion formation in the DA.
Collapse
Affiliation(s)
- Utako Yokoyama
- Dept. of Pediatrics, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hsiao CF, Wu N, Chandler SH. Voltage-dependent calcium currents in trigeminal motoneurons of early postnatal rats: modulation by 5-HT receptors. J Neurophysiol 2005; 94:2063-72. [PMID: 15972834 DOI: 10.1152/jn.00178.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trigeminal motoneurons relay the final output signals generated within the oral-motor pattern generating circuit(s) to muscles for execution of various motor patterns. In recent years, these motoneurons were shown to possess voltage dependent nonlinear membrane properties that allow them to actively participate in sculpting their final output. A complete understanding of the factors controlling trigeminal motoneuronal (TMN) discharge during oral-motor activity requires, at a minimum, a detailed understanding of the palette of ion channels responsible for membrane excitability and a determination of whether these ion channels are targets for modulation. Toward that end, we studied in detail the properties of calcium channels in TMNs and their susceptibility to modulation by 5-HT in rat brain slices. We found that based on pharmacological and voltage-dependent properties, high-voltage-activated (HVA) N-type [omega-conotoxin GVIA (omega-CgTX)]-sensitive, and to a lesser extent P/Q-type [omega-agatoxin IVA (omega-Aga IVA)]-sensitive, calcium channels make up the majority of the whole cell calcium current. 5-HT (5.0 microM) decreased HVA current by 31.3 +/- 2.2%, and the majority of this suppression resulted from reduction of current flow through N- and P/Q-type calcium channels. In contrast, 5-HT had no effect on low-voltage-activated (LVA) current amplitude in TMNs. HVA calcium current inhibition was mimicked by 5-CT, a 5-HT1 receptor agonist, and by R(+)-8-hydroxydipropylaminotetralin hydrobromide (8-OH-DPAT), a specific 5-HT1A agonist. The effects of 5-HT were blocked by the 5-HT1A antagonist 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl]piperazine hydrobromide (NAN-190) but not by ketanserin, a 5-HT(2/1C) antagonist. Under current clamp, omega-CgTX and 5-HT were most effective in suppressing the mAHP and both increased the spike frequency and input/output gain in response to current injection. Calcium current modulation by 5-HT1A receptors likely is an important mechanism to fine tune the input/output gain of TMNs in response to small incoming synaptic inputs and accounts for some of the previously reported effects of 5-HT on TMN excitability during tonic and burst activity during oral-motor behavior.
Collapse
Affiliation(s)
- Chie-Fang Hsiao
- Department of Physiological Science, University of California, 2859 Slichter Hall, Los Angeles, California 90095-1568, USA
| | | | | |
Collapse
|
17
|
Han SH, Murchison D, Griffith WH. Low voltage-activated calcium and fast tetrodotoxin-resistant sodium currents define subtypes of cholinergic and noncholinergic neurons in rat basal forebrain. ACTA ACUST UNITED AC 2005; 134:226-38. [PMID: 15836920 DOI: 10.1016/j.molbrainres.2004.10.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 10/22/2004] [Accepted: 10/24/2004] [Indexed: 11/26/2022]
Abstract
Neurons of the basal forebrain (BF) possess unique combinations of voltage-gated membrane currents. Here, we describe subtypes of rat basal forebrain neurons based on patch-clamp analysis of low-voltage activated (LVA) calcium and tetrodotoxin-resistant (TTX-R) sodium currents combined with single-cell RT-PCR analysis. Neurons were identified by mRNA expression of choline acetyltransferase (ChAT+, cholinergic) and glutamate decarboxylase (GAD67, GABAergic). Four cell types were encountered: ChAT+, GAD+, ChAT+/GAD+ and ChAT-/GAD- cells. Both ChAT+ and ChAT+/GAD+ cells (71/75) displayed LVA currents and most (34/39) expressed mRNA for LVA Ca(2+) channel subunits. Ca(v)3.2 was detected in 31/34 cholinergic neurons and Ca(v)3.1 was expressed in 6/34 cells. Three cells expressed both subunits. No single neurons showed Ca(v)3.3 mRNA expression, although BF tissue expression was observed. In young rats (2-4 mo), ChAT+/GAD+ cells displayed larger LVA current densities compared to ChAT+ neurons, while these latter neurons displayed an age-related increase in current densities. Most (29/38) noncholinergic neurons (GAD+ and ChAT-/GAD-) possessed fast TTX-R sodium currents resembling those mediated by Na(+) channel subunit Na(v)1.5. This subunit was expressed predominately in noncholinergic neurons. No cholinergic cells (0/75) displayed fast TTX-R currents. The TTX-R currents were faster and larger in GAD+ neurons compared to ChAT-/GAD- neurons. The properties of ChAT+/GAD+ neurons resemble those of ChAT+ neurons, rather than of GAD+ neurons. These results suggest novel features of subtypes of cholinergic and noncholinergic neurons within the BF that may provide new insights for understanding normal BF function.
Collapse
Affiliation(s)
- Sun-Ho Han
- Department of Medical Pharmacology and Toxicology, College of Medicine, Texas A and M University System Health Science Center, 1114-TAMU, College Station, TX 77843-1114, USA
| | | | | |
Collapse
|
18
|
Mechaly I, Scamps F, Chabbert C, Sans A, Valmier J. Molecular diversity of voltage-gated sodium channel alpha subunits expressed in neuronal and non-neuronal excitable cells. Neuroscience 2005; 130:389-96. [PMID: 15664695 DOI: 10.1016/j.neuroscience.2004.09.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2004] [Indexed: 10/26/2022]
Abstract
In order to investigate the role of molecular diversity of voltage-activated sodium channel alpha-subunits in excitability of neuronal and non-neuronal cells, we carried out patch-clamp recordings and single-cell RT-PCR on two different types of mammalian excitable cells i.e. hippocampal neurons and non-neuronal utricular epithelial hair cells. In each cell type, multiple different combinations of sodium channel alpha-subunits exist from cell to cell despite similar sodium current properties. The mRNA isoforms, Nav1.2 and Nav1.6, are the most frequently detected by single cell analysis in the two cell types while Nav1.3 and Nav1.7 are also moderately expressed in embryonic hippocampal neurons and in neonatal utricular hair cells respectively. By investigating the particular alternate splice isoforms of Nav1.6 occurring at the exon 18 of the mouse orthologue SCN8A, we revealed that this subunit co-exist in the two cell types under different alternative spliced isoforms. The expression of non-functional isoforms of Nav1.6 in utricular epithelial hair cells excludes the involvement of this subunit in supporting their excitability. Thus, from a functional point of view, the present results suggest that, at the single cell level, both neuronal and non-neuronal excitable cells expressed different and complex patterns of sodium channel gene transcripts but this diversity alone cannot explain the sodium current properties of these cell types.
Collapse
Affiliation(s)
- I Mechaly
- I.N.S.E.R.M. U583, Institut des Neurosciences de Montpellier-Hôpital St Eloi, 80, rue Augustin Fliche, 34295 Montpellier cedex 5, France.
| | | | | | | | | |
Collapse
|
19
|
Miles GB, Lipski J, Lorier AR, Laslo P, Funk GD. Differential expression of voltage-activated calcium channels in III and XII motoneurones during development in the rat. Eur J Neurosci 2004; 20:903-13. [PMID: 15305859 DOI: 10.1111/j.1460-9568.2004.03550.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To further our understanding of the role that voltage-activated Ca2+ channels play in the development, physiology and pathophysiology of motoneurones (MNs), we used whole-cell patch-clamp recording to compare voltage-activated Ca2+ currents in oculomotor (III) and hypoglossal (XII) MNs of neonatal [postnatal day (P)1-5] and juvenile (P14-19) rats. In contrast to III MNs that innervate extraocular muscles, XII MNs that innervate tongue muscles mature more rapidly, fire bursts of low frequency action potentials and are vulnerable to degeneration in amyotrophic lateral sclerosis. In neonates, low voltage-activated (LVA) Ca2+ current densities are similar in XII and III MNs but high voltage-activated (HVA) Ca2+ current densities are twofold higher in XII MNs. The HVA Ca2+ channel antagonists (nimodipine and nifedipine for L-type, omega-agatoxin-TK for P/Q-type and omega-conotoxin-GVIA for N-type) revealed that, while N- and P/Q-type HVA Ca2+ channels are present in both MN pools, a 3.5-fold greater P/Q-type Ca2+ current in XII MNs accounts for their greater HVA Ca2+ currents. Developmentally, LVA and HVA Ca2+ current densities decrease in III MNs but remain unchanged in XII MNs. Thus, the differences between these MN pools increase developmentally so that, in juveniles, the LVA Ca2+ current density is twofold greater and the HVA Ca2+ current density is threefold greater in XII compared with III MNs. We propose that this differential expression of LVA and HVA Ca2+ channels in XII and III MNs during development contributes to their distinct physiology and may also be a factor contributing to the greater susceptibility of XII MNs to degeneration as seen in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Gareth B Miles
- Department of Physiology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
20
|
Monyer H, Markram H. Interneuron Diversity series: Molecular and genetic tools to study GABAergic interneuron diversity and function. Trends Neurosci 2004; 27:90-7. [PMID: 15102488 DOI: 10.1016/j.tins.2003.12.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Structural and functional diversity of GABAergic interneurons has become increasingly central in our understanding of the elemental steps of information processing in the brain. The use of different molecular, electrophysiological and anatomical techniques has provided a wealth of new information regarding GABAergic interneurons over the past decade but it has also led to confusion regarding the number of subtypes of GABAergic interneurons. Combinatorial approaches that also consider multiple parameters seem now to offer renewed hope for finally clarifying the structural diversity of GABAergic interneurons. New molecular techniques have become a powerful tool for exposing the functional diversity of GABAergic neurons at the cellular, microcircuit and systems levels. This article reviews literature regarding molecular tools that have been used, or that appear promising for future attempts, to classify GABAergic interneurons. Some important limitations will also be indicated.
Collapse
Affiliation(s)
- Hannah Monyer
- IZN, Department of Clinical Neurobiology, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
21
|
Chabbert C, Mechaly I, Sieso V, Giraud P, Brugeaud A, Lehouelleur J, Couraud F, Valmier J, Sans A. Voltage-gated Na+ channel activation induces both action potentials in utricular hair cells and brain-derived neurotrophic factor release in the rat utricle during a restricted period of development. J Physiol 2003; 553:113-23. [PMID: 12963806 PMCID: PMC2343473 DOI: 10.1113/jphysiol.2003.043034] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mammalian utricular sensory receptors are commonly believed to be non-spiking cells with electrical activity limited to graded membrane potential changes. Here we provide evidence that during the first post-natal week, the sensory hair cells of the rat utricle express a tetrodotoxin (TTX)-sensitive voltage-gated Na+ current that displays most of the biophysical and pharmacological characteristics of neuronal Na+ current. Single-cell RT-PCR reveals that several alpha-subunit isoforms of the Na+ channels are co-expressed within a single hair cell, with a major expression of Nav1.2 and Nav1.6 subunits. In neonatal hair cells, 30 % of the Na+ channels are available for activation at the resting potential. Depolarizing current injections in the range of the transduction currents are able to trigger TTX-sensitive action potentials. We also provide evidence of a TTX-sensitive activity-dependent brain-derived neurotrophic factor (BDNF) release by early post-natal utricle explants. Developmental analysis shows that Na+ currents decrease dramatically from post-natal day 0 (P0) to P8 and become almost undetectable at P21. Concomitantly, depolarizing stimuli fail to induce both action potential and BDNF release at P20. The present findings reveal that vestibular hair cells express neuronal-like TTX-sensitive Na+ channels able to generate Na+-driven action potentials only during the early post-natal period of development. During the same period an activity-dependent BDNF secretion by utricular explants has been demonstrated. This could be an important mechanism involved in vestibular sensory system differentiation and synaptogenesis.
Collapse
Affiliation(s)
- Christian Chabbert
- INSERM U583, UM2 cc089, place E. Bataillon, 34095 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shan H, Messi ML, Zheng Z, Wang ZM, Delbono O. Preservation of motor neuron Ca2+ channel sensitivity to insulin-like growth factor-1 in brain motor cortex from senescent rat. J Physiol 2003; 553:49-63. [PMID: 12963799 PMCID: PMC2343486 DOI: 10.1113/jphysiol.2003.047746] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Despite the multiple effects on mammals during development, the effectiveness of the insulin-like growth factor-1 (IGF-1) to sustain cell function and structure in the brain of senescent mammals is almost completely unknown. To address this issue, we investigated whether the effects of IGF-1 on specific targets are preserved at later stages of life. Voltage-gated Ca2+ channels (VGCC) are well-characterized targets of IGF-1. VGCC regulate membrane excitability and gene transcription along with other functions that have been found to be impaired in the brain of senescent rodents. As the voluntary control of movement has been reported to be altered in the elderly, we investigated the expression, function and responsiveness of high (HVA)- and low-voltage-activated (LVA) Ca2+ channels to IGF-1, using the whole-cell configuration of the patch-clamp and RT-PCR in the specific region of the rat motor cortex that controls hindlimb muscle movement. We detected the expression of alpha 1A, alpha 1B and alpha 1E genes encoding the HVA Ca2+ channels P/Q, N and R, respectively, but not alpha 1C, alpha 1D, alpha 1S encoding the L-type Ca2+ channel in this region of the brain cortex. IGF-1 enhanced Ca2+ channel currents through P/Q- and N-type channels but not significantly through the R-type or LVA channels. IGF-1 enhanced the amplitude but did not modify the voltage dependence of Ca2+ channel currents in young (2- to 4-week-old), young adult (7-month-old) and senescent (28- to 29-month-old) rats. These results support the concept that despite the reported decrease in circulating (liver) and local (central nervous system) production of IGF-1 with ageing, key neuronal targets such as the VGCC remain responsive to the growth factor throughout life.
Collapse
Affiliation(s)
- Hongqu Shan
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | |
Collapse
|
23
|
Oh SB, Piao ZG, Shin SS, Ren D, Park K, Kim JS. GABAergic and serotonergic modulation of calcium currents in rat trigeminal motoneurons. Biochem Biophys Res Commun 2003; 309:58-65. [PMID: 12943663 DOI: 10.1016/s0006-291x(03)01527-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated the effects of a GABA(B) agonist baclofen, and serotonin, on the high voltage-activated Ca channel (HVACC) currents in trigeminal motoneurons. Immunohistochemical and reverse transcription-polymerization chain reaction (RT-PCR) studies demonstrated the expression of alpha(1C), alpha(1B), alpha(1A), and alpha(1E) subunits in the trigeminal motoneurons, which form L-, N-, P/Q-, and R-type Ca channels, respectively. By use of specific Ca blockers, it was found that N-type (38%), P/Q-type (27%), L-type (16 %), and R-type Ca currents (19%) contribute to HVACC I(Ba). Baclofen inhibited HVACC I(Ba) in the majority of trigeminal motoneurons tested (n=15 out of 16), whereas serotonin only did in a small population (n=5 out of 18). The I(Ba) inhibition by baclofen and serotonin was associated with slowing of activation kinetics, relieved by strong prepulse, and prevented by N-ethylmaleimide (NEM), indicative of mediation of Gi/Go. These data provide evidence that GABAergic and serotonergic inputs to trigeminal motoneurons regulate neuronal activities through the inhibition of HVACC currents.
Collapse
Affiliation(s)
- Seog Bae Oh
- Department of Physiology, College of Dentistry and Dental Research Institute, Seoul National University, South Korea
| | | | | | | | | | | |
Collapse
|
24
|
Russier M, Carlier E, Ankri N, Fronzaroli L, Debanne D. A-, T-, and H-type currents shape intrinsic firing of developing rat abducens motoneurons. J Physiol 2003; 549:21-36. [PMID: 12651919 PMCID: PMC2342917 DOI: 10.1113/jphysiol.2002.037069] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During postnatal development, profound changes take place in the excitability of nerve cells, including modification in the distribution and properties of receptor-operated channels and changes in the density and nature of voltage-gated channels. We studied here the firing properties of abducens motoneurons (aMns) in transverse brainstem slices from postnatal day (P) 1-13 rats. Recordings were made from aMNs in the whole-cell configuration of the patch-clamp technique. Two main types of aMn could be distinguished according to their firing profile during prolonged depolarizations. Both types were identified as aMns by their fluorescence following retrograde labelling with the lipophilic carbocyanine DiI in the rectus lateralis muscle. The first type (BaMns) exhibited a burst of action potentials (APs) followed by an adaptation of discharge and were encountered in approximately 70 % of aMns. Their discharge profile resembled that of adult aMns and was encountered in all aMns after P9. BaMns exhibited a hyperpolarization-induced rebound potential that was blocked by low concentrations of Ni2+ or by Ca2+-free external solution. This current had the properties of the T-type current. Action potentials of BaMns showed a complex afterhyperpolarization (AHP). An inward rectification was evidenced following hyperpolarization and was blocked by external application of caesium or ZD7288, indicating the presence of the hyperpolarization-activated cationic current (IH). Blocking the IH current almost doubled the input resistance of BaMns. The second class of aMns (DaMns) displayed a delayed excitation that was mediated by A-type K+ currents and was observed only between P4 and P9. DaMns exhibited immature characteristics: an action potential with a simple AHP, a linear current-voltage relation and a large input resistance. The number of aMns remained unchanged when both types were present (P5-P6) and later in development when only BaMns were encountered (P19), suggesting that DaMns mature into BaMns during postnatal development. We conclude that aMns display profound reorganization in their intrinsic excitability during postnatal development.
Collapse
Affiliation(s)
- Michaël Russier
- Neurobiologie des Canaux Ioniques, INSERM U464, IFR Jean Roche, Faculté de Médecine Nord, Université de la Méditerranée, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
25
|
Powers RK, Binder MD. Persistent sodium and calcium currents in rat hypoglossal motoneurons. J Neurophysiol 2003; 89:615-24. [PMID: 12522206 DOI: 10.1152/jn.00241.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Voltage-dependent persistent inward currents are thought to make an important contribution to the input-output properties of alpha-motoneurons, influencing both the transfer of synaptic current to the soma and the effects of that current on repetitive discharge. Recent studies have paid particular attention to the contribution of L-type calcium channels, which are thought to be widely distributed on both the somatic and the dendritic membrane. However, the relative contribution of different channel subtypes as well as their somatodendritic distribution may vary among motoneurons of different species, developmental stages, and motoneuron pools. In this study, we have characterized persistent inward currents in juvenile (10- to 24-day-old) rat hypoglossal (HG) motoneurons. Whole-cell, voltage-clamp recordings were made from the somata of visualized rat HG motoneurons in 300-microm brain stem slices. Slow (10 s), triangular voltage-clamp commands from a holding potential of -70 to 0 mV and back elicited whole-cell currents that were dominated by outward, potassium currents, but often showed a region of negative slope resistance on the rising phase of the command. In the presence of potassium channel blockers (internal cesium and external 4-aminopyridine and tetraethylammonium), net inward currents were present on both the rising and falling phases of the voltage-clamp command. A portion of the inward current present on the ascending phase of the command was mediated by TTX-sensitive sodium channels, whereas calcium channels mediated the remainder of the current. We found roughly the same relative contributions of P-, N-, and L-type channels to the calcium currents recorded at the soma that had previously been found in neonatal rat HG motoneurons. In most cells, the somatic voltage thresholds for calcium current onset and offset were similar and the peak current was largest on the ascending phase of the clamp command. However, about one-third of the cells exhibited a substantial clockwise current hysteresis, i.e., inward currents were present at lower voltages on the descending phase of the clamp command. In the same cells, 1-s depolarizing voltage-clamp commands were followed by prolonged tail currents, consistent with a prominent contribution from dendritic channels. In contrast to previous reports on turtle and mouse motoneurons, blocking L-type calcium channels did not eliminate these presumed dendritic currents.
Collapse
Affiliation(s)
- Randall K Powers
- Department of Physiology and Biophysics, University of Washington, School of Medicine, Seattle 98195, USA.
| | | |
Collapse
|
26
|
Zabzdyr JL, Lillard SJ. Measurement of single-cell gene expression using capillary electrophoresis. Anal Chem 2001; 73:5771-5. [PMID: 11774920 DOI: 10.1021/ac0155714] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Capillary electrophoresis with laser-induced fluorescence detection was used to monitor gene expression in individual mammalian cells using the reverse transcriptasepolymerase chain reaction. Specifically, beta-actin expression in single LNCaP (prostate cancer) cells was measured. A sieving matrix containing hydroxypropyl methyl cellulose was used to effect size-based separation. Ethidium bromide fluorescence of the product DNA was used as the detection scheme and yielded excellent sensitivity. The beta-actin product, resulting from an individual cell lysed by a freeze-thaw method, gave an average signal-to-noise ratio (S/N) of 77+/-27 (n = 2). Chemical lysis of a single cell, using a dilute solution of SDS, gave a S/N of 26+/-2 (n = 2), roughly 3-fold lower than for freeze-thaw lysis. An initial detection limit (not considering fully optimized conditions) was calculated from an amplified cDNA standard to correspond to a concentration of approximately 133 starting molecules/nL (of beta-actin mRNA).
Collapse
Affiliation(s)
- J L Zabzdyr
- Department of Chemistry, University of California, Riverside 92521, USA
| | | |
Collapse
|
27
|
Yang F, Feng L, Zheng F, Johnson SW, Du J, Shen L, Wu CP, Lu B. GDNF acutely modulates excitability and A-type K(+) channels in midbrain dopaminergic neurons. Nat Neurosci 2001; 4:1071-8. [PMID: 11593232 DOI: 10.1038/nn734] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) prevents lesion-induced death of midbrain dopaminergic neurons, but its function in normal brain remains uncertain. Here we show that GDNF acutely and reversibly potentiated the excitability of cultured midbrain neurons by inhibiting transient A-type K(+) channels. The effects of GDNF were limited to large, tyrosine hydroxylase (TH)-positive dopaminergic neurons, and were mediated by mitogen associated protein (MAP) kinase. Application of GDNF also elicited a MAP kinase-dependent enhancement of the excitability in dopaminergic neurons in midbrain slice. These results demonstrate an acute regulation of GDNF on ion channels and its underlying signaling mechanism, and reveal an unexpected role of GDNF in normal midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- F Yang
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China 200031
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Pan ZH, Hu HJ, Perring P, Andrade R. T-type Ca(2+) channels mediate neurotransmitter release in retinal bipolar cells. Neuron 2001; 32:89-98. [PMID: 11604141 DOI: 10.1016/s0896-6273(01)00454-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transmitter release in neurons is thought to be mediated exclusively by high-voltage-activated (HVA) Ca(2+) channels. However, we now report that, in retinal bipolar cells, low-voltage-activated (LVA) Ca(2+) channels also mediate neurotransmitter release. Bipolar cells are specialized neurons that release neurotransmitter in response to graded depolarizations. Here we show that these cells express T-type Ca(2+) channel subunits and functional LVA Ca(2+) currents sensitive to mibefradil. Activation of these currents results in Ca(2+) influx into presynaptic terminals and exocytosis, which we detected as a capacitance increase in isolated terminals and the appearance of reciprocal currents in retinal slices. The involvement of T-type Ca(2+) channels in bipolar cell transmitter release may contribute to retinal information processing.
Collapse
Affiliation(s)
- Z H Pan
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
29
|
Pierson P, Tribollet E, Raggenbass M. Effect of vasopressin on the input-output properties of rat facial motoneurons. Eur J Neurosci 2001; 14:957-67. [PMID: 11595034 DOI: 10.1046/j.0953-816x.2001.01718.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vasopressin can directly excite facial motoneurons in young rats and mice. It acts by generating a persistent inward current, which is Na(+)-dependent, tetrodotoxin-insensitive and voltage-gated. This peptide-evoked current is unaffected by Ca(++) or K(+) channel blockade and is modulated by extracellular divalent cations. In the present work, we determined how vasopressin alters the input-output properties of facial motoneurons. Whole-cell recordings were obtained from these neurons in the current clamp mode, in brainstem slices of young rats. Repetitive firing was evoked by injecting depolarizing current pulses. Steady-state frequency-current (f-I) relationships were constructed and the effect of vasopressin on these relationships was studied. We found that vasopressin caused a parallel shift to the left of the cell steady-state f-I relationship. This effect persisted in the presence of blockers of K(+) or Ca(++) channels. The peptide effect was distinct from that brought about by Ca(++) channel suppression or by apamin, a blocker of the mAHP. These latter manipulations resulted in an increase in the slope of the steady-state f-I relationship. We conclude that the vasopressin-induced modification of the input-output properties of facial motoneurons is probably exclusively caused by the sodium-dependent, voltage-modulated inward current elicited by the peptide, rather than being due to indirect effects of the peptide on Ca(++) channels, K(+) channels or Ca(++)-dependent K(+) channels. Computer simulation, based on a simple model of facial motoneurons, indicates that the introduction of a conductance having the properties of the vasopressin-dependent conductance can entirely account for the observed peptide-induced shift of the f-I relationship.
Collapse
Affiliation(s)
- P Pierson
- Department of Physiology, University Medical Center, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
30
|
Scholze A, Plant TD, Dolphin AC, Nürnberg B. Functional expression and characterization of a voltage-gated CaV1.3 (alpha1D) calcium channel subunit from an insulin-secreting cell line. Mol Endocrinol 2001; 15:1211-21. [PMID: 11435619 DOI: 10.1210/mend.15.7.0666] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
L-type calcium channels mediate depolarization-induced calcium influx in insulin-secreting cells and are thought to be modulated by G protein-coupled receptors (GPCRs). The major fraction of L-type alpha1-subunits in pancreatic beta-cells is of the neuroendocrine subtype (CaV1.3 or alpha1D). Here we studied the biophysical properties and receptor regulation of a CaV1.3 subunit previously cloned from HIT-T15 cells. In doing so, we compared this neuroendocrine CaV1.3 channel with the cardiac L-type channel CaV1.2a (or alpha1C-a) after expression together with alpha2delta- and beta3-subunits in Xenopus oocytes. Both the current voltage relation and voltage dependence of inactivation for the neuroendocrine CaV1.3 channel were shifted to more negative potentials compared with the cardiac CaV1.2 channel. In addition, the CaV1.3 channel activated and inactivated more rapidly than the CaV1.2a channel. Both subtypes showed a similar sensitivity to the dihydropyridine (+)isradipine. More interestingly, the CaV1.3 channels were found to be stimulated by ligand-bound G(i)/G(o)-coupled GPCRs whereas a neuronal CaV2.2 (or alpha1B) channel was inhibited. The observed receptor-induced stimulation of CaV1.3 channels could be mimicked by phorbol-12-myristate-13-acetate and was sensitive to inhibitors of protein kinases, but not to the phosphoinositol-3-kinase-inhibitor wortmannin, pointing to serine/threonine kinase-dependent regulation. Taken together, we describe a neuroendocrine L-type CaV1.3 calcium channel that is stimulated by G(i)/G(o)-coupled GPCRs and differs significantly in distinct biophysical characteristics from the cardiac subtype (CaV1.2a), suggesting that the channels have different roles in native cells.
Collapse
Affiliation(s)
- A Scholze
- Institut für Pharmakologie, Freie Universität Berlin 14195 Berlin, Germany
| | | | | | | |
Collapse
|
31
|
Foehring RC, Mermelstein PG, Song WJ, Ulrich S, Surmeier DJ. Unique properties of R-type calcium currents in neocortical and neostriatal neurons. J Neurophysiol 2000; 84:2225-36. [PMID: 11067968 DOI: 10.1152/jn.2000.84.5.2225] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell recordings from acutely dissociated neocortical pyramidal neurons and striatal medium spiny neurons exhibited a calcium-channel current resistant to known blockers of L-, N-, and P/Q-type Ca(2+) channels. These R-type currents were characterized as high-voltage-activated (HVA) by their rapid deactivation kinetics, half-activation and half-inactivation voltages, and sensitivity to depolarized holding potentials. In both cell types, the R-type current activated at potentials relatively negative to other HVA currents in the same cell type and inactivated rapidly compared with the other HVA currents. The main difference between cell types was that R-type currents in neocortical pyramidal neurons inactivated at more negative potentials than R-type currents in medium spiny neurons. Ni(2+) sensitivity was not diagnostic for R-type currents in either cell type. Single-cell RT-PCR revealed that both cell types expressed the alpha1E mRNA, consistent with this subunit being associated with the R-type current.
Collapse
Affiliation(s)
- R C Foehring
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, Tennessee 38163, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
The manner in which a cell responds to and influences its environment is ultimately determined by the genes that it expresses. To fully understand and manipulate cellular function, identification of these expressed genes is essential. Techniques such as RT-PCR enable examination of gene expression at the tissue level. However, the study of complex heterogeneous tissue, such as the CNS or immune system, requires gene analysis to be performed at much higher resolution. In this article, the various methods that have been developed to enable RT-PCR to be performed at the level of the single cell are reviewed. In addition, how, when carried out in combination with techniques such as patch-clamp recording, single-cell gene-expression studies extend our understanding of biological systems is discussed.
Collapse
Affiliation(s)
- A K Dixon
- aDepartment of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK CB2 1QJ.
| | | | | | | |
Collapse
|
34
|
Santafé MM, Urbano FJ, Lanuza MA, Uchitel OD. Multiple types of calcium channels mediate transmitter release during functional recovery of botulinum toxin type A-poisoned mouse motor nerve terminals. Neuroscience 2000; 95:227-34. [PMID: 10619479 DOI: 10.1016/s0306-4522(99)00382-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The involvement of different types of voltage-dependent calcium channels in nerve-evoked release of neurotransmitter was studied during recovery from neuromuscular paralysis produced by botulinum toxin type A intoxication. For this purpose, a single subcutaneous injection of botulinum toxin (1 IU; DL50) on to the surface of the mouse levator auris longus muscle was performed. The muscles were removed at several time-points after injection (i.e. at one, two, three, four, five, six and 12 weeks). Using electrophysiological techniques, we studied the effect of different types of calcium channel blockers (nitrendipine, omega-conotoxin-GVIA and omega-agatoxin-IVA) on the quantal content of synaptic transmission elicited by nerve stimulation. Morphological analysis using the conventional silver impregnation technique was also made. During the first four weeks after intoxication, sprouts were found at 80% of motor nerve terminals, while at 12 weeks their number was decreased and the nerve terminals were enlarged. The L-type channel blocker nitrendipine (1 microM) inhibited neurotransmitter release by 80% and 30% at two and five weeks, respectively, while no effects were found at later times. The N-type channel blocker omega-conotoxin-GVIA (1 microM) inhibited neurotransmitter release by 50-70% in muscles studied at two to six weeks, respectively, and had no effect 12 weeks after intoxication. The P-type channel blocker omega-agatoxin-IVA (100 nM) strongly reduced nerve-evoked transmitter release (>90%) at all the time-points studied. Identified motor nerve terminals were also sensitive to both nitrendipine and omega-conotoxin-GVIA. This study shows that multiple voltage-dependent calcium channels were coupled to transmitter release during the period of sprouting and consolidation, suggesting that they may be involved in the nerve ending functional recovery process.
Collapse
Affiliation(s)
- M M Santafé
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | | | | | | |
Collapse
|
35
|
Nimchinsky EA, Young WG, Yeung G, Shah RA, Gordon JW, Bloom FE, Morrison JH, Hof PR. Differential vulnerability of oculomotor, facial, and hypoglossal nuclei in G86R superoxide dismutase transgenic mice. J Comp Neurol 2000; 416:112-25. [PMID: 10578106 DOI: 10.1002/(sici)1096-9861(20000103)416:1<112::aid-cne9>3.0.co;2-k] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In recent years, several mouse models of amyotrophic lateral sclerosis (ALS) have been developed. One, caused by a G86R mutation in the superoxide dismutase-1 (SOD-1) gene associated with familial ALS, has been subjected to extensive quantitative analyses in the spinal cord. However, the human form of ALS includes pathology elsewhere in the nervous system. In the present study, analyses were extended to three motor nuclei in the brainstem. Mutant mice and control littermates were evaluated daily, and mutants, along with their littermate controls, were killed when they were severely affected. Brains were removed after perfusion and processed for Nissl staining, the samples were randomized, and the investigators were blinded to their genetic status. Stereologic methods were used to estimate the number of neurons, mean neuronal volumes, and nuclear volume in three brainstem motor nuclei known to be differentially involved in the human form of the disease, the oculomotor, facial, and hypoglossal nuclei. In the facial nucleus, neuron number consistently declined (48%), an effect that was correlated with disease severity. The nuclear volume of the facial nucleus was smaller in the SOD-1 mutant mice (45.7% difference from control mice) and correlated significantly with neuron number. The oculomotor and hypoglossal nuclei showed less extreme involvement (<10% neuronal loss overall), with a trend toward fewer neurons in the hypoglossal nucleus of animals with severe facial nucleus involvement. In the oculomotor nucleus, neuronal loss was seen only once in five mice, associated with very severe disease. There was no significant change in the volume of individual neurons in any of these three nuclei in any transgenic mouse. These results suggest that different brainstem motor nuclei are differentially affected in this SOD-1 mutant model of ALS. The relatively moderate and late involvement of the hypoglossal nucleus indicates that, although the general patterns of neuronal pathology match closely those seen in ALS patients, some differences exist in this transgenic model compared with the progression of the disease in humans. However, these patterns of cellular vulnerability may provide clues for understanding the differential susceptibility of neural structures in ALS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- E A Nimchinsky
- Kastor Neurobiology of Aging Laboratories and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Iwasaki S, Momiyama A, Uchitel OD, Takahashi T. Developmental changes in calcium channel types mediating central synaptic transmission. J Neurosci 2000; 20:59-65. [PMID: 10627581 PMCID: PMC6774098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Multiple types of high-voltage-activated Ca(2+) channels trigger neurotransmitter release at the mammalian central synapse. Among them, the omega-conotoxin GVIA-sensitive N-type channels and the omega-Aga-IVA-sensitive P/Q-type channels mediate fast synaptic transmission. However, at most central synapses, it is not known whether the contributions of different Ca(2+) channel types to synaptic transmission remain stable throughout postnatal development. We have addressed this question by testing type-specific Ca(2+) channel blockers at developing central synapses. Our results indicate that N-type channels contribute to thalamic and cerebellar IPSCs only transiently during early postnatal period and P/Q-type channels predominantly mediate mature synaptic transmission, as we reported previously at the brainstem auditory synapse formed by the calyx of Held. In fact, Ca(2+) currents directly recorded from the auditory calyceal presynaptic terminal were identified as N-, P/Q-, and R-types at postnatal day 7 (P7) to P10 but became predominantly P/Q-type at P13. In contrast to thalamic and cerebellar IPSCs and brainstem auditory EPSCs, N-type Ca(2+) channels persistently contribute to cerebral cortical EPSCs and spinal IPSCs throughout postnatal months. Thus, in adult animals, synaptic transmission is predominantly mediated by P/Q-type channels at a subset of synapses and mediated synergistically by multiple types of Ca(2+) channels at other synapses.
Collapse
Affiliation(s)
- S Iwasaki
- Department of Neurophysiology, University of Tokyo Faculty of Medicine, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
37
|
Metzger F, Kulik A, Sendtner M, Ballanyi K. Contribution of Ca(2+)-permeable AMPA/KA receptors to glutamate-induced Ca(2+) rise in embryonic lumbar motoneurons in situ. J Neurophysiol 2000; 83:50-9. [PMID: 10634852 DOI: 10.1152/jn.2000.83.1.50] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intracellular Ca(2+) ([Ca(2+)](i)) was fluorometrically measured with fura-2 in lumbar motoneurons of acutely isolated spinal cord slices from embryonic rats. In ester-loaded cells, bath-applied glutamate (3 microM to 1 mM) evoked a [Ca(2+)](i) increase by up to 250 nM that was abolished by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) plus 2-amino-5-phosphonovalerate (APV). CNQX or APV alone reduced the response by 82 and 25%, respectively. The glutamatergic agonists kainate (KA), quisqualate (QUI), and S-alpha-amino-3-hydroxy-5-methyl-4-isoxalone (S-AMPA) evoked a similar [Ca(2+)](i) transient as glutamate. N-methyl-D-aspartate (NMDA) was only effective to increase [Ca(2+)](i) in Mg(2+)-free saline, whereas [1S,3R]-1-aminocyclopentane-1,3-dicarboxylic acid ([1S,3R]-ACPD) had no effect. The glutamate-induced [Ca(2+)](i) rise was suppressed in Ca(2+)-free superfusate. Depletion of Ca(2+) stores with cyclopiazonic acid (CPA) did not affect the response. Thirty-six percent of the [Ca(2+)](i) increase in response to membrane depolarization induced by a 50 mM K(+) solution persisted on combined application of the voltage-gated Ca(2+) channel blockers nifedipine, omega-conotoxin-GVIA and omega-agatoxin-IVA. In fura-2 dialyzed motoneurons, the glutamate-induced [Ca(2+)](i) increase was attenuated by approximately 70% after changing from current to voltage clamp. Forty percent of the remaining [Ca(2+)](i) transient and 20% of the concomitant inward current of 0.3 nA were blocked by Joro spider toxin-3 (JSTX). The results show that voltage-gated Ca(2+) channels, including a major portion of R-type channels, constitute the predominant component of glutamate-induced [Ca(2+)](i) rises. NMDA and Ca(2+)-permeable KA/AMPA receptors contribute about equally to the remaining component of the Ca(2+) rise. The results substantiate previous assumptions that Ca(2+) influx through JSTX-sensitive KA/AMPA receptors is involved in (trophic) signaling in developing motoneurons.
Collapse
Affiliation(s)
- F Metzger
- Klinische Forschergruppe Neuroregeneration, Neurologische Klinik, Universität Würzburg, D-97080 Wurzburg, Germany
| | | | | | | |
Collapse
|
38
|
Glasgow E, Kusano K, Chin H, Mezey E, Young WS, Gainer H. Single cell reverse transcription-polymerase chain reaction analysis of rat supraoptic magnocellular neurons: neuropeptide phenotypes and high voltage-gated calcium channel subtypes. Endocrinology 1999; 140:5391-401. [PMID: 10537171 DOI: 10.1210/endo.140.11.7136] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Magnocellular neurosecretory cells (MNCs) in the hypothalamo-neurohypophysial system that express and secrete the nonapeptides oxytocin (OT) and vasopressin (VP) were evaluated for the expression of multiple genes in single magnocellular neurons from the rat supraoptic nucleus using a single cell RT-PCR protocol. We found that all cells representing the two major phenotypes, the OT and VP MNCs, express a small, but significant, amount of the other nonapeptide's messenger RNA (mRNA). In situ hybridization histochemical analyses confirmed this observation. A third phenotype, containing equivalent amounts of OT and VP mRNA, was detected in about 19% of the MNCs from lactating female supraoptic nuclei. Analyses of these phenotypes for other coexisting peptide mRNAs (e.g. CRH, cholecystokinin, galanin, dynorphin, and the calcium-binding protein, calbindin) generally confirmed expectations from the literature, but revealed cell to cell variation in their coexpression. Our results also show that the high voltage-activated calcium channel subunit genes, alpha1A-D, alpha2, and beta1-4 are expressed in virtually all MNCs. However, the alpha1E subunit gene is not expressed at detectable levels in these cells. The expression of all of the beta-subunit genes in each MNC may account for the variations in physiological and pharmacological properties of the high voltage-activated channels found in these neurons. (Endocrinology 140: 5391-5401, 1999)
Collapse
Affiliation(s)
- E Glasgow
- Laboratory of Neurochemistry, Basic Neuroscience Program, National Institute of Neurological Disorders and Stroke, National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
39
|
Palecek J, Lips MB, Keller BU. Calcium dynamics and buffering in motoneurones of the mouse spinal cord. J Physiol 1999; 520 Pt 2:485-502. [PMID: 10523417 PMCID: PMC2269591 DOI: 10.1111/j.1469-7793.1999.00485.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. A quantitative analysis of endogenous calcium homeostasis was performed on 65 motoneurones in slices of the lumbar spinal cord from 2- to 8-day-old mice by simultaneous patch-clamp and microfluorometric calcium measurements. 2. Somatic calcium concentrations were monitored with a temporal resolution in the millisecond time domain. Measurements were performed by using a monochromator for excitation and a photomultiplier detection system. 3. Somatic calcium signalling was investigated during defined voltage-clamp protocols. Calcium responses were observed for membrane depolarizations positive to -50 mV. A linear relation between depolarization time and free calcium concentrations ([Ca2+]i) indicated that voltage-dependent calcium influx dominated the response. 4. Endogenous calcium homeostasis was quantified by using the 'added buffer' approach. In the presence of fura-2 and mag-fura-5, calcium transients decayed according to a monoexponential function. Decay-time constants showed a linear dependence on dye concentration and the extrapolated constant in the absence of indicator dye was 371 +/- 120 ms (n = 13 cells, 21 C). 5. For moderate elevations (< 1 microM), recovery kinetics of depolarization-induced calcium transients were characterized by a calcium-independent, 'effective' extrusion rate gamma = 140 +/- 47 s-1 (n = 13 cells, 21 C). 6. The endogenous calcium binding ratio for fixed buffers in spinal motoneurones was kappaB' = 50 +/- 17 (n = 13 cells), indicating that less than 2 % of cytosolic calcium ions contributed to [Ca2+]i. 7. Endogenous binding ratios in spinal motoneurones were small compared to those found in hippocampal or cerebellar Purkinje neurones. From a functional perspective, they provided motoneurones with rapid dynamics of cytosolic [Ca2+]i for a given set of influx, extrusion and uptake mechanisms. 8. With respect to pathophysiological conditions, our measurements are in agreement with a model where the selective vulnerability of spinal motoneurones during excitotoxic conditions and motoneurone disease partially results from low endogenous calcium buffering.
Collapse
Affiliation(s)
- J Palecek
- Zentrum Physiologie und Pathophysiologie, Universitat Gottingen, Humboldtallee 23, 37073 Gottingen, Germany
| | | | | |
Collapse
|
40
|
Grabsch H, Pereverzev A, Weiergräber M, Schramm M, Henry M, Vajna R, Beattie RE, Volsen SG, Klöckner U, Hescheler J, Schneider T. Immunohistochemical detection of alpha1E voltage-gated Ca(2+) channel isoforms in cerebellum, INS-1 cells, and neuroendocrine cells of the digestive system. J Histochem Cytochem 1999; 47:981-94. [PMID: 10424882 DOI: 10.1177/002215549904700802] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Polyclonal antibodies were raised against a common and a specific epitope present only in longer alpha1E isoforms of voltage-gated Ca(2+) channels, yielding an "anti-E-com" and an "anti-E-spec" serum, respectively. The specificity of both sera was established by immunocytochemistry and immunoblotting using stably transfected HEK-293 cells or membrane proteins derived from them. Cells from the insulinoma cell line INS-1, tissue sections from cerebellum, and representative regions of gastrointestinal tract were stained immunocytochemically. INS-1 cells expressed an alpha1E splice variant with a longer carboxy terminus, the so-called alpha1Ee isoform. Similarily, in rat cerebellum, which was used as a reference system, the anti-E-spec serum stained somata and dendrites of Purkinje cells. Only faint staining was seen throughout the cerebellar granule cell layer. After prolonged incubation times, neurons of the molecular layer were stained by anti-E-com, suggesting that a shorter alpha1E isoform is expressed at a lower protein density. In human gastrointestinal tract, endocrine cells of the antral mucosa (stomach), small and large intestine, and islets of Langerhans were stained by the anti-E-spec serum. In addition, staining by the anti-E-spec serum was observed in Paneth cells and in the smooth muscle cell layer of the lamina muscularis mucosae. We conclude that the longer alpha1Ee isoform is expressed in neuroendocrine cells of the digestive system and that, in pancreas, alpha1Ee expression is restricted to the neuroendocrine part, the islets of Langerhans. alpha1E therefore appears to be a common voltage-gated Ca(2+) channel linked to neuroendocrine and related systems of the body.
Collapse
Affiliation(s)
- H Grabsch
- Institutes of Neurophysiology, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Baldelli P, Magnelli V, Carbone E. Selective up-regulation of P- and R-type Ca2+ channels in rat embryo motoneurons by BDNF. Eur J Neurosci 1999; 11:1127-33. [PMID: 10103109 DOI: 10.1046/j.1460-9568.1999.00523.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cultured spinal cord motoneurons from day 15 rat embryos (E15) represent a useful model to study Ca2+ channel diversities and their regulation by neurotrophins. Besides the previously identified L-, N- and P-type channels, E15 rat motoneurons also express high densities of R-type channels. We have previously shown that the P-type channel is nearly absent in 60% of these cells, while the R-type contributes to approximately 35% of the total current. Here, we show that chronic preincubation of cultured rat motoneurons with high concentrations (20-100 ng/mL) of brain-derived neurotrophic factor (BDNF) caused a selective up-regulation of the P- and R-type current density available after blocking N- and L-type channels, with no changes to cell membrane capacitance. N- and L-type channels were either not affected or slightly down-modulated by the neurotrophin. The onset of BDNF up-regulation of P/R-type currents had a half-time of 12 h and reached maximal values of approximately 80%. High concentrations of nerve growth factor (NGF; 50-100 ng/mL) had no effect on P/R currents, while BDNF action was prevented by the kinase inhibitor K252a and by the protein synthesis inhibitor anisomycin. These results suggest that chronic applications of BDNF selectively up-regulates the Ca2+ channel types which are most likely to be involved in the control of neurotransmitter release in mammalian neuromuscular junctions. The signal transduction mechanism is probably mediated by TrkB receptors and involves the synthesis of newly functionally active P- and R-type channels. Our data furnish a rationale for a number of recent observations in other laboratories, in which prolonged applications of neurotrophins were shown to potentiate the presynaptic response in developing synapses.
Collapse
Affiliation(s)
- P Baldelli
- Department of Neuroscience, INFM, Research Unit, Turin, Italy
| | | | | |
Collapse
|