1
|
Köhne A, Helgers SO, Kewitz B, Haupt RM, Oppermann V, Meinert F, Sánchez-Porras R, Said M, Woitzik J, Dömer P. A wireless optogenetic setup in freely moving mice for evaluation of cortical spreading depolarization in a chronic disease model. J Neurosci Methods 2025; 415:110364. [PMID: 39826699 DOI: 10.1016/j.jneumeth.2025.110364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Spreading depolarization (SD) is an electrophysiological phenomenon of massive neuronal depolarization that occurs in a multitude of brain injuries. Clinical studies and experimental data have linked the occurrence of SDs with secondary brain damage. However, there is a translational gap because of methodological limitations between clinical and experimental approaches focusing on short-term effects. Moreover, usage of highly invasive SD triggers has put into question to what extent SDs themselves or the induction method had caused emergence of tissue damage. NEW METHOD To overcome this gap, we here show the successful realization of an experimental approach for long-term SD induction in a wireless setup of minimal invasive optogenetic stimulation in freely behaving mice. RESULTS The proposed method allows for reliable SD induction over the course of three weeks. SD characteristics induced with the wireless setup were comparable to SDs elicited by KCl or cable-bound optogenetic systems. Immunohistological analysis of c-Fos expression revealed neuronal depolarization across the stimulated hemisphere, whereas TUNEL staining revealed no stimulation related apoptosis. COMPARISON WITH EXISTING METHODS Optogenetic SD induction so far relied on cable- or fiber-bound systems which restrict experimental possibilities. The proposed model relies on wireless stimulation that allows SD induction in the home cage. In contrast to existing systems, the wireless setup also allows cage enrichment and group housing, therefore allowing behavioral analyses. CONCLUSION This experimental setup has excellent potential to investigate the question of possible long-term SD effects in mouse models of different acute pathologies like traumatic brain injury or migraine.
Collapse
Affiliation(s)
- Annika Köhne
- Department of Neurosurgery, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| | - Simeon Oa Helgers
- Department of Neurosurgery, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| | - Bettina Kewitz
- Department of Neurosurgery, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| | - Rieke M Haupt
- Department of Neurosurgery, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| | - Viktoria Oppermann
- Department of Neurosurgery, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| | - Franziska Meinert
- Department of Neurosurgery, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| | - Renan Sánchez-Porras
- Department of Neurosurgery, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| | - Maryam Said
- Department of Neurosurgery, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, Carl-von-Ossietzky University Oldenburg, Germany
| | - Patrick Dömer
- Department of Neurosurgery, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, Carl-von-Ossietzky University Oldenburg, Germany.
| |
Collapse
|
2
|
Jeong S, Chokkalla AK, Davis CK, Jeong H, Chelluboina B, Arruri V, Kim B, Narman A, Bathula S, Arumugam TV, Bendlin BB, Vemuganti R. Circadian-Dependent Intermittent Fasting Influences Ischemic Tolerance and Dendritic Spine Remodeling. Stroke 2024; 55:2139-2150. [PMID: 38920050 PMCID: PMC11262964 DOI: 10.1161/strokeaha.124.046400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Preconditioning by intermittent fasting is linked to improved cognition and motor function, and enhanced recovery after stroke. Although the duration of fasting was shown to elicit different levels of neuroprotection after ischemic stroke, the impact of time of fasting with respect to the circadian cycles remains unexplored. METHODS Cohorts of mice were subjected to a daily 16-hour fast, either during the dark phase (active-phase intermittent fasting) or the light phase (inactive-phase intermittent fasting) or were fed ad libitum. Following a 6-week dietary regimen, mice were subjected to transient focal cerebral ischemia and underwent behavioral functional assessment. Brain samples were collected for RNA sequencing and histopathologic analyses. RESULTS Active-phase intermittent fasting cohort exhibited better poststroke motor and cognitive recovery as well as reduced infarction, in contrast to inactive-phase intermittent fasting cohort, when compared with ad libitum cohort. In addition, protection of dendritic spine density/morphology and increased expression of postsynaptic density protein-95 were observed in the active-phase intermittent fasting. CONCLUSIONS These findings indicate that the time of daily fasting is an important factor in inducing ischemic tolerance by intermittent fasting.
Collapse
Affiliation(s)
- Soomin Jeong
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Charles K Davis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Hyunmook Jeong
- Department of Transdisciplinary Medicine, Institute of Convergence Medicine with Innovative Technology, Seoul National University Hospital, Seoul, South Korea
| | - Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Bori Kim
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Ashlyn Narman
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | | | - Thiruma V Arumugam
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Barbara B Bendlin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
- William S. Middleton Veterans Hospital, Madison, WI, USA
| |
Collapse
|
3
|
Sword J, Fomitcheva IV, Kirov SA. Spreading depolarization causes reversible neuronal mitochondria fragmentation and swelling in healthy, normally perfused neocortex. J Cereb Blood Flow Metab 2024:271678X241257887. [PMID: 39053498 PMCID: PMC11574936 DOI: 10.1177/0271678x241257887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/28/2024] [Accepted: 05/12/2024] [Indexed: 07/27/2024]
Abstract
Mitochondrial function is tightly linked to morphology, and fragmentation of dendritic mitochondria during noxious conditions suggests loss of function. In the normoxic cortex, spreading depolarization (SD) is a phenomenon underlying migraine aura. It is unknown whether mitochondria structure is affected by normoxic SD. In vivo two-photon imaging followed by quantitative serial section electron microscopy (ssEM) was used to monitor dendritic mitochondria in the normoxic cortex of urethane-anesthetized mature male and female mice during and after SD initiated by focal KCl microinjection. Structural dynamics of dendrites and their mitochondria were visualized by transfecting excitatory, glutamatergic neurons of the somatosensory cortex with bicistronic AAV, which induced tdTomoto labeling in neuronal cytoplasm and mitochondria labeling with roGFP. Normoxic SD triggered rapidly reversible fragmentation of dendritic mitochondria alongside dendritic beading; however, mitochondria took significantly longer to recover. Several rounds of SD resulted in transient mitochondrial fragmentation and dendritic beading without accumulating injury, as both recovered. SsEM corroborated normoxic SD-elicited dendritic and mitochondrial swelling and transformation of the filamentous mitochondrial network into shorter, swollen tubular, and globular structures. Our results revealed normoxic SD-induced disruption of the dendritic mitochondrial structure that might impact mitochondrial bioenergetics during migraine with aura.
Collapse
Affiliation(s)
- Jeremy Sword
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Ioulia V Fomitcheva
- Dept. of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Sergei A Kirov
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Dept. of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
4
|
Planas AM. Role of microglia in stroke. Glia 2024; 72:1016-1053. [PMID: 38173414 DOI: 10.1002/glia.24501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Microglia play key roles in the post-ischemic inflammatory response and damaged tissue removal reacting rapidly to the disturbances caused by ischemia and working to restore the lost homeostasis. However, the modified environment, encompassing ionic imbalances, disruption of crucial neuron-microglia interactions, spreading depolarization, and generation of danger signals from necrotic neurons, induce morphological and phenotypic shifts in microglia. This leads them to adopt a proinflammatory profile and heighten their phagocytic activity. From day three post-ischemia, macrophages infiltrate the necrotic core while microglia amass at the periphery. Further, inflammation prompts a metabolic shift favoring glycolysis, the pentose-phosphate shunt, and lipid synthesis. These shifts, combined with phagocytic lipid intake, drive lipid droplet biogenesis, fuel anabolism, and enable microglia proliferation. Proliferating microglia release trophic factors contributing to protection and repair. However, some microglia accumulate lipids persistently and transform into dysfunctional and potentially harmful foam cells. Studies also showed microglia that either display impaired apoptotic cell clearance, or eliminate synapses, viable neurons, or endothelial cells. Yet, it will be essential to elucidate the viability of engulfed cells, the features of the local environment, the extent of tissue damage, and the temporal sequence. Ischemia provides a rich variety of region- and injury-dependent stimuli for microglia, evolving with time and generating distinct microglia phenotypes including those exhibiting proinflammatory or dysfunctional traits and others showing pro-repair features. Accurate profiling of microglia phenotypes, alongside with a more precise understanding of the associated post-ischemic tissue conditions, is a necessary step to serve as the potential foundation for focused interventions in human stroke.
Collapse
Affiliation(s)
- Anna M Planas
- Cerebrovascular Research Laboratory, Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Cerebrovascular Diseases, Area of Clinical and Experimental Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Barcelona, Spain
| |
Collapse
|
5
|
Brar HK, Dey S, Singh P, Pande D, Ghosh-Roy A. Functional Recovery Associated with Dendrite Regeneration in PVD Neuron of Caenorhabditis elegans. eNeuro 2024; 11:ENEURO.0292-23.2024. [PMID: 38548333 PMCID: PMC7615967 DOI: 10.1523/eneuro.0292-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/18/2024] [Accepted: 03/03/2024] [Indexed: 05/02/2024] Open
Abstract
PVD neuron of Caenorhabditis elegans is a highly polarized cell with well-defined axonal, and dendritic compartments. PVD neuron operates in multiple sensory modalities including the control of both nociceptive touch sensation and body posture. Although both the axon and dendrites of this neuron show a regeneration response following laser-assisted injury, it is rather unclear how the behavior associated with this neuron is affected by the loss of these structures. It is also unclear whether neurite regrowth would lead to functional restoration in these neurons. Upon axotomy, using a femtosecond laser, we saw that harsh touch response was specifically affected leaving the body posture unperturbed. Subsequently, recovery in the touch response is highly correlated to the axon regrowth, which was dependent on DLK-1/MLK-1 MAP Kinase. Dendrotomy of both major and minor primary dendrites affected the wavelength and amplitude of sinusoidal movement without any apparent effect on harsh touch response. We further correlated the recovery in posture behavior to the type of dendrite regeneration events. We found that dendrite regeneration through the fusion and reconnection between the proximal and distal branches of the injured dendrite corresponded to improved recovery in posture. Our data revealed that the axons and dendrites of PVD neurons regulate the nociception and proprioception in worms, respectively. It also revealed that dendrite and axon regeneration lead to the restoration of these differential sensory modalities.
Collapse
Affiliation(s)
- Harjot Kaur Brar
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Swagata Dey
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Pallavi Singh
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Devashish Pande
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Anindya Ghosh-Roy
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| |
Collapse
|
6
|
Zhang X, Zhang Y, Su Q, Liu Y, Li Z, Yong VW, Xue M. Ion Channel Dysregulation Following Intracerebral Hemorrhage. Neurosci Bull 2024; 40:401-414. [PMID: 37755675 PMCID: PMC10912428 DOI: 10.1007/s12264-023-01118-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/14/2023] [Indexed: 09/28/2023] Open
Abstract
Injury to the brain after intracerebral hemorrhage (ICH) results from numerous complex cellular mechanisms. At present, effective therapy for ICH is limited and a better understanding of the mechanisms of brain injury is necessary to improve prognosis. There is increasing evidence that ion channel dysregulation occurs at multiple stages in primary and secondary brain injury following ICH. Ion channels such as TWIK-related K+ channel 1, sulfonylurea 1 transient receptor potential melastatin 4 and glutamate-gated channels affect ion homeostasis in ICH. They in turn participate in the formation of brain edema, disruption of the blood-brain barrier, and the generation of neurotoxicity. In this review, we summarize the interaction between ions and ion channels, the effects of ion channel dysregulation, and we discuss some therapeutics based on ion-channel modulation following ICH.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Qiuyang Su
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
7
|
Sword J, Fomitcheva IV, Kirov SA. Spreading depolarization causes reversible neuronal mitochondria fragmentation and swelling in healthy, normally perfused neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576364. [PMID: 38328069 PMCID: PMC10849532 DOI: 10.1101/2024.01.22.576364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mitochondrial function is tightly linked to their morphology, and fragmentation of dendritic mitochondria during noxious conditions suggests loss of function. In the normoxic cortex, spreading depolarization (SD) is a phenomenon underlying migraine aura. It is unknown whether mitochondria structure is affected by normoxic SD. In vivo two-photon imaging followed by quantitative serial section electron microscopy (ssEM) was used to monitor dendritic mitochondria in the normoxic cortex of urethane-anesthetized mature male and female mice during and after SD initiated by focal KCl microinjection. Structural dynamics of dendrites and their mitochondria were visualized by transfecting excitatory, glutamatergic neurons of the somatosensory cortex with bicistronic AAV, which induced tdTomoto labeling in neuronal cytoplasm and mitochondria labeling with roGFP. Normoxic SD triggered a rapid fragmentation of dendritic mitochondria alongside dendritic beading, both reversible; however, mitochondria took significantly longer to recover. Several rounds of SD resulted in transient mitochondrial fragmentation and dendritic beading without accumulating injury, as both recovered. SsEM corroborated normoxic SD-elicited dendritic and mitochondrial swelling and transformation of the filamentous mitochondrial network into shorter, swollen tubular and globular structures. Our results revealed normoxic SD-induced disruption of the dendritic mitochondrial structure that might impact mitochondrial bioenergetics during migraine with aura.
Collapse
|
8
|
Brunner C, Denis NL, Gertz K, Grillet M, Montaldo G, Endres M, Urban A. Brain-wide continuous functional ultrasound imaging for real-time monitoring of hemodynamics during ischemic stroke. J Cereb Blood Flow Metab 2024; 44:6-18. [PMID: 37503862 PMCID: PMC10905631 DOI: 10.1177/0271678x231191600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Ischemic stroke occurs abruptly causing sudden neurologic deficits, and therefore, very little is known about hemodynamic perturbations in the brain immediately after stroke onset. Here, functional ultrasound imaging was used to monitor variations in relative cerebral blood volume (rCBV) compared to baseline. rCBV levels were analyzed brain-wide and continuously at high spatiotemporal resolution (100 μm, 2 Hz) until 70mins after stroke onset in rats. We compared two stroke models, with either a permanent occlusion of the middle cerebral artery (MCAo) or a tandem occlusion of both the common carotid and middle cerebral arteries (CCAo + MCAo). We observed a typical hemodynamic pattern, including a quick drop of the rCBV after MCAo, followed by spontaneous reperfusion of several brain regions located in the vicinity of the ischemic core. The severity and location of the ischemia were variable within groups. On average, the severity of the ischemia was in good agreement with the lesion volume (24 hrs after stroke) for MCAo group, while larger for the CCAo + MCAo model. For both groups, we observed that infarcts extended to initially non-ischemic regions located rostrally to the ischemic core. These regions strongly colocalize with the origin of transient hemodynamic events associated with spreading depolarizations.
Collapse
Affiliation(s)
- Clément Brunner
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Interuniversity Microelectronics Centre, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Nielsen Lagumersindez Denis
- Department of Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Karen Gertz
- Department of Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Micheline Grillet
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Interuniversity Microelectronics Centre, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Gabriel Montaldo
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Interuniversity Microelectronics Centre, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Matthias Endres
- Department of Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Alan Urban
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Interuniversity Microelectronics Centre, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
LaSarge CL, McCoy C, Namboodiri DV, Hartings JA, Danzer SC, Batie MR, Skoch J. Spatial and Temporal Comparisons of Calcium Channel and Intrinsic Signal Imaging During in Vivo Cortical Spreading Depolarizations in Healthy and Hypoxic Brains. Neurocrit Care 2023; 39:655-668. [PMID: 36539593 DOI: 10.1007/s12028-022-01660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Spreading depolarizations (SDs) can be viewed at a cellular level using calcium imaging (CI), but this approach is limited to laboratory applications and animal experiments. Optical intrinsic signal imaging (OISI), on the other hand, is amenable to clinical use and allows viewing of large cortical areas without contrast agents. A better understanding of the behavior of OISI-observed SDs under different brain conditions is needed. METHODS We performed simultaneous calcium and OISI of SDs in GCaMP6f mice. SDs propagate through the cortex as a pathological wave and trigger a neurovascular response that can be imaged with both techniques. We imaged both mechanically stimulated SDs (sSDs) in healthy brains and terminal SDs (tSDs) induced by system hypoxia and cardiopulmonary failure. RESULTS We observed a lag in the detection of SDs in the OISI channels compared with CI. sSDs had a faster velocity than tSDs, and tSDs had a greater initial velocity for the first 400 µm when observed with CI compared with OISI. However, both imaging methods revealed similar characteristics, including a decrease in the sSD (but not tSD) velocities as the wave moved away from the site of initial detection. CI and OISI also showed similar spatial propagation of the SD throughout the image field. Importantly, only OISI allowed regional ischemia to be detected before tSDs occurred. CONCLUSIONS Altogether, data indicate that monitoring either neural activity or intrinsic signals with high-resolution optical imaging can be useful to assess SDs, but OISI may be a clinically applicable way to predict, and therefore possibly mitigate, hypoxic-ischemic tSDs.
Collapse
Affiliation(s)
- Candi L LaSarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Anesthesia, University of Cincinnati, Cincinnati, OH, USA
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carlie McCoy
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Devi V Namboodiri
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Anesthesia, University of Cincinnati, Cincinnati, OH, USA
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew R Batie
- Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jesse Skoch
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
10
|
Fischer P, Tamim I, Sugimoto K, Morais A, Imai T, Takizawa T, Qin T, Schlunk F, Endres M, Yaseen MA, Chung DY, Sakadzic S, Ayata C. Spreading Depolarizations Suppress Hematoma Growth in Hyperacute Intracerebral Hemorrhage in Mice. Stroke 2023; 54:2640-2651. [PMID: 37610105 PMCID: PMC10530404 DOI: 10.1161/strokeaha.123.042632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Spreading depolarizations (SDs) occur in all types of brain injury and may be associated with detrimental effects in ischemic stroke and subarachnoid hemorrhage. While rapid hematoma growth during intracerebral hemorrhage triggers SDs, their role in intracerebral hemorrhage is unknown. METHODS We used intrinsic optical signal and laser speckle imaging, combined with electrocorticography, to investigate the effects of SD on hematoma growth during the hyperacute phase (0-4 hours) after intracortical collagenase injection in mice. Hematoma expansion, SDs, and cerebral blood flow were simultaneously monitored under normotensive and hypertensive conditions. RESULTS Spontaneous SDs erupted from the vicinity of the hematoma during rapid hematoma growth. We found that hematoma growth slowed down by >60% immediately after an SD. This effect was even stronger in hypertensive animals with faster hematoma growth. To establish causation, we exogenously induced SDs (every 30 minutes) at a remote site by topical potassium chloride application and found reduced hematoma growth rate and final hemorrhage volume (18.2±5.8 versus 10.7±4.1 mm3). Analysis of cerebral blood flow using laser speckle flowmetry revealed that suppression of hematoma growth by spontaneous or induced SDs coincided and correlated with the characteristic oligemia in the wake of SD, implicating the vasoconstrictive effect of SD as one potential mechanism of action. CONCLUSIONS Our findings reveal that SDs limit hematoma growth during the early hours of intracerebral hemorrhage and decrease final hematoma volume.
Collapse
Affiliation(s)
- Paul Fischer
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129 Massachusetts, USA
- Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, NeuroCure Excellence Cluster and Center for Stroke Research, 10117 Berlin, Germany
| | - Isra Tamim
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129 Massachusetts, USA
- Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, NeuroCure Excellence Cluster and Center for Stroke Research, 10117 Berlin, Germany
| | - Kazutaka Sugimoto
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129 Massachusetts, USA
| | - Andreia Morais
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129 Massachusetts, USA
| | - Takahiko Imai
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129 Massachusetts, USA
| | - Tsubasa Takizawa
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129 Massachusetts, USA
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Tao Qin
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129 Massachusetts, USA
| | - Frieder Schlunk
- Department of Neuroradiology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Matthias Endres
- Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, NeuroCure Excellence Cluster and Center for Stroke Research, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), partner site 10117 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site 10117 Berlin, Germany
| | - Mohammad A. Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129 Massachusetts, USA
| | - David Y. Chung
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129 Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, 02114 Massachusetts, USA
| | - Sava Sakadzic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129 Massachusetts, USA
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129 Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, 02114 Massachusetts, USA
| |
Collapse
|
11
|
Li J, Wu X, Fu Y, Nie H, Tang Z. Two-photon microscopy: application advantages and latest progress for in vivo imaging of neurons and blood vessels after ischemic stroke. Rev Neurosci 2023; 34:559-572. [PMID: 36719181 DOI: 10.1515/revneuro-2022-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
Two-photon microscopy (TPM) plays an important role in the study of the changes of the two important components of neurovascular units (NVU) - neurons and blood vessels after ischemic stroke (IS). IS refers to sudden neurological dysfunction caused by focal cerebral ischemia, which is one of the leading causes of death and disability worldwide. TPM is a new and rapidly developing high-resolution real-time imaging technique used in vivo that has attracted increasing attention from scientists in the neuroscience field. Neurons and blood vessels are important components of neurovascular units, and they undergo great changes after IS to respond to and compensate for ischemic injury. Here, we introduce the characteristics and pre-imaging preparations of TPM, and review the common methods and latest progress of TPM in the neuronal and vascular research for injury and recovery of IS in recent years. With the review, we clearly recognized that the most important advantage of TPM in the study of ischemic stroke is the ability to perform chronic longitudinal imaging of different tissues at a high resolution in vivo. Finally, we discuss the limitations of TPM and the technological advances in recent years.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Yu Fu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Hao Nie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| |
Collapse
|
12
|
Fomitcheva IV, Sword J, Shi Y, Kirov SA. Plasticity of perisynaptic astroglia during ischemia-induced spreading depolarization. Cereb Cortex 2023; 33:5469-5483. [PMID: 36368909 PMCID: PMC10152098 DOI: 10.1093/cercor/bhac434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/13/2022] Open
Abstract
High astroglial capacity for glutamate and potassium clearance aids in recovering spreading depolarization (SD)-evoked disturbance of ion homeostasis during stroke. Since perisynaptic astroglia cannot be imaged with diffraction-limited light microscopy, nothing is known about the impact of SD on the ultrastructure of a tripartite synapse. We used serial section electron microscopy to assess astroglial synaptic coverage in the sensorimotor cortex of urethane-anesthetized male and female mice during and after SD evoked by transient bilateral common carotid artery occlusion. At the subcellular level, astroglial mitochondria were remarkably resilient to SD compared to dendritic mitochondria that were fragmented by SD. Overall, 482 synapses in `Sham' during `SD' and `Recovery' groups were randomly selected and analyzed in 3D. Perisynaptic astroglia was present at the axon-spine interface (ASI) during SD and after recovery. Astrocytic processes were more likely found at large synapses on mushroom spines after recovery, while the length of the ASI perimeter surrounded by astroglia has also significantly increased at large synapses. These findings suggest that as larger synapses have a bigger capacity for neurotransmitter release during SD, they attract astroglial processes to their perimeter during recovery, limiting extrasynaptic glutamate escape and further enhancing the astrocytic ability to protect synapses in stroke.
Collapse
Affiliation(s)
- Ioulia V Fomitcheva
- Department of Neurosurgery, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, United States
| | - Jeremy Sword
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, United States
| | - Yang Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, United States
- Division of Biostatistics and Data Science, Department of Population Health Sciences, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, United States
| | - Sergei A Kirov
- Department of Neurosurgery, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, United States
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, United States
| |
Collapse
|
13
|
Xiong H, Tang F, Guo Y, Xu R, Lei P. Neural Circuit Changes in Neurological Disorders: Evidence from in vivo Two-photon Imaging. Ageing Res Rev 2023; 87:101933. [PMID: 37061201 DOI: 10.1016/j.arr.2023.101933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Neural circuits, such as synaptic plasticity and neural activity, are critical components of healthy brain function. The consequent dynamic remodeling of neural circuits is an ongoing procedure affecting neuronal activities. Disruption of this essential process results in diseases. Advanced microscopic applications such as two-photon laser scanning microscopy have recently been applied to understand neural circuit changes during disease since it can visualize fine structural and functional cellular activation in living animals. In this review, we have summarized the latest work assessing the dynamic rewiring of postsynaptic dendritic spines and modulation of calcium transients in neurons of the intact living brain, focusing on their potential roles in neurological disorders (e.g. Alzheimer's disease, stroke, and epilepsy). Understanding the fine changes that occurred in the brain during disease is crucial for future clinical intervention developments.
Collapse
Affiliation(s)
- Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China; Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Fei Tang
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Yujie Guo
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China.
| |
Collapse
|
14
|
Sugimoto K, Yang J, Fischer P, Takizawa T, Mulder I, Qin T, Erdogan TD, Yaseen MA, Sakadžić S, Chung DY, Ayata C. Optogenetic Spreading Depolarizations Do Not Worsen Acute Ischemic Stroke Outcome. Stroke 2023; 54:1110-1119. [PMID: 36876481 PMCID: PMC10050120 DOI: 10.1161/strokeaha.122.041351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/01/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Spreading depolarizations (SDs) are believed to contribute to injury progression and worsen outcomes in focal cerebral ischemia because exogenously induced SDs have been associated with enlarged infarct volumes. However, previous studies used highly invasive methods to trigger SDs that can directly cause tissue injury (eg, topical KCl) and confound the interpretation. Here, we tested whether SDs indeed enlarge infarcts when induced via a novel, noninjurious method using optogenetics. METHODS Using transgenic mice expressing channelrhodopsin-2 in neurons (Thy1-ChR2-YFP), we induced 8 optogenetic SDs to trigger SDs noninvasively at a remote cortical location in a noninjurious manner during 1-hour distal microvascular clip or proximal an endovascular filament occlusion of the middle cerebral artery. Laser speckle imaging was used to monitor cerebral blood flow. Infarct volumes were then quantified at 24 or 48 hours. RESULTS Infarct volumes in the optogenetic SD arm did not differ from the control arm in either distal or proximal middle cerebral artery occlusion, despite a 6-fold and 4-fold higher number of SDs, respectively. Identical optogenetic illumination in wild-type mice did not affect the infarct volume. Full-field laser speckle imaging showed that optogenetic stimulation did not affect the perfusion in the peri-infarct cortex. CONCLUSIONS Altogether, these data show that SDs induced noninvasively using optogenetics do not worsen tissue outcomes. Our findings compel a careful reexamination of the notion that SDs are causally linked to infarct expansion.
Collapse
Affiliation(s)
- Kazutaka Sugimoto
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 7558505, Japan
| | - Joanna Yang
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Paul Fischer
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Tsubasa Takizawa
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Inge Mulder
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Tao Qin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Taylan D. Erdogan
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Mohammad A. Yaseen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| | - Sava Sakadžić
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| | - David Y. Chung
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Cenk Ayata
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
15
|
Álvarez-Merz I, Fomitcheva IV, Sword J, Hernández-Guijo JM, Solís JM, Kirov SA. Novel mechanism of hypoxic neuronal injury mediated by non-excitatory amino acids and astroglial swelling. Glia 2022; 70:2108-2130. [PMID: 35802030 PMCID: PMC9474671 DOI: 10.1002/glia.24241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
In ischemic stroke and post-traumatic brain injury (TBI), blood-brain barrier disruption leads to leaking plasma amino acids (AA) into cerebral parenchyma. Bleeding in hemorrhagic stroke and TBI also release plasma AA. Although excitotoxic AA were extensively studied, little is known about non-excitatory AA during hypoxic injury. Hypoxia-induced synaptic depression in hippocampal slices becomes irreversible with non-excitatory AA, alongside their intracellular accumulation and increased tissue electrical resistance. Four non-excitatory AA (l-alanine, glycine, l-glutamine, l-serine: AGQS) at plasmatic concentrations were applied to slices from mice expressing EGFP in pyramidal neurons or astrocytes during normoxia or hypoxia. Two-photon imaging, light transmittance (LT) changes, and electrophysiological field recordings followed by electron microscopy in hippocampal CA1 st. radiatum were used to monitor synaptic function concurrently with cellular swelling and injury. During normoxia, AGQS-induced increase in LT was due to astroglial but not neuronal swelling. LT raise during hypoxia and AGQS manifested astroglial and neuronal swelling accompanied by a permanent loss of synaptic transmission and irreversible dendritic beading, signifying acute damage. Neuronal injury was not triggered by spreading depolarization which did not occur in our experiments. Hypoxia without AGQS did not cause cell swelling, leaving dendrites intact. Inhibition of NMDA receptors prevented neuronal damage and irreversible loss of synaptic function. Deleterious effects of AGQS during hypoxia were prevented by alanine-serine-cysteine transporters (ASCT2) and volume-regulated anion channels (VRAC) blockers. Our findings suggest that astroglial swelling induced by accumulation of non-excitatory AA and release of excitotoxins through antiporters and VRAC may exacerbate the hypoxia-induced neuronal injury.
Collapse
Affiliation(s)
- Iris Álvarez-Merz
- Dept. de Farmacología y Terapéutica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, 28029 Madrid, Spain
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| | - Ioulia V. Fomitcheva
- Dept. of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| | - Jeremy Sword
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| | - Jesús M. Hernández-Guijo
- Dept. de Farmacología y Terapéutica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, 28029 Madrid, Spain
| | - José M. Solís
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Sergei A. Kirov
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| |
Collapse
|
16
|
Calabrese B, Jones SL, Shiraishi-Yamaguchi Y, Lingelbach M, Manor U, Svitkina TM, Higgs HN, Shih AY, Halpain S. INF2-mediated actin filament reorganization confers intrinsic resilience to neuronal ischemic injury. Nat Commun 2022; 13:6037. [PMID: 36229429 PMCID: PMC9558009 DOI: 10.1038/s41467-022-33268-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
During early ischemic brain injury, glutamate receptor hyperactivation mediates neuronal death via osmotic cell swelling. Here we show that ischemia and excess NMDA receptor activation cause actin to rapidly and extensively reorganize within the somatodendritic compartment. Normally, F-actin is concentrated within dendritic spines. However, <5 min after bath-applied NMDA, F-actin depolymerizes within spines and polymerizes into stable filaments within the dendrite shaft and soma. A similar actinification occurs after experimental ischemia in culture, and photothrombotic stroke in mouse. Following transient NMDA incubation, actinification spontaneously reverses. Na+, Cl-, water, and Ca2+ influx, and spine F-actin depolymerization are all necessary, but not individually sufficient, for actinification, but combined they induce activation of the F-actin polymerization factor inverted formin-2 (INF2). Silencing of INF2 renders neurons vulnerable to cell death and INF2 overexpression is protective. Ischemia-induced dendritic actin reorganization is therefore an intrinsic pro-survival response that protects neurons from death induced by cell edema.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, and Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
| | - Steven L Jones
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104-4544, USA
| | | | - Michael Lingelbach
- Neurosciences Interdepartmental Program, Stanford University, Stanford, CA, 94305, USA
| | - Uri Manor
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104-4544, USA
| | - Henry N Higgs
- Department of Biochemistry, Geisel School of Medicine, Hanover, NH, 03755, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, 98101, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Shelley Halpain
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, and Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
17
|
Werth R. A Scientific Approach to Conscious Experience, Introspection, and Unconscious Processing: Vision and Blindsight. Brain Sci 2022; 12:1305. [PMID: 36291239 PMCID: PMC9599441 DOI: 10.3390/brainsci12101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Although subjective conscious experience and introspection have long been considered unscientific and banned from psychology, they are indispensable in scientific practice. These terms are used in scientific contexts today; however, their meaning remains vague, and earlier objections to the distinction between conscious experience and unconscious processing, remain valid. This also applies to the distinction between conscious visual perception and unconscious visual processing. Damage to the geniculo-striate pathway or the visual cortex results in a perimetrically blind visual hemifield contralateral to the damaged hemisphere. In some cases, cerebral blindness is not absolute. Patients may still be able to guess the presence, location, shape or direction of movement of a stimulus even though they report no conscious visual experience. This "unconscious" ability was termed "blindsight". The present paper demonstrates how the term conscious visual experience can be introduced in a logically precise and methodologically correct way and becomes amenable to scientific examination. The distinction between conscious experience and unconscious processing is demonstrated in the cases of conscious vision and blindsight. The literature on "blindsight" and its neurobiological basis is reviewed. It is shown that blindsight can be caused by residual functions of neural networks of the visual cortex that have survived cerebral damage, and may also be due to an extrastriate pathway via the midbrain to cortical areas such as areas V4 and MT/V5.
Collapse
Affiliation(s)
- Reinhard Werth
- Social Pediatrics and Adolescent Medicine, Ludwig-Maximilians-University of Munich, Haydnstr. 5, D-80336 München, Germany
| |
Collapse
|
18
|
Dendrite regeneration in the vertebrate spinal cord. Dev Biol 2022; 488:114-119. [PMID: 35644253 PMCID: PMC10046145 DOI: 10.1016/j.ydbio.2022.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022]
Abstract
Axon regeneration in response to injury has been documented in many animals over several hundred years. In contrast, how neurons respond to dendrite injury has been examined only in the last decade. So far, dendrite regeneration after injury has been documented in invertebrate model systems, but has not been assayed in a vertebrate. In this study, we use zebrafish motor neurons to track neurons after dendrite injury. We address two major gaps in our knowledge of dendrite regeneration: 1) whether post-synaptic dendrites can regenerate and 2) whether vertebrate dendrites can regenerate. We find that motor neurons survive laser microsurgery to remove one or all dendrites. Outgrowth of new dendrites typically initiated one to three days after injury, and a new, stable dendrite arbor was in place by five days after injury. We conclude that zebrafish motor neurons have the capacity to regenerate a new dendrite arbor.
Collapse
|
19
|
Tu X, Li X, Zhu H, Kuang X, Si X, Zou S, Hao S, Huang Y, Xiao J. Unilateral cerebral ischemia induces morphological changes in the layer V projection neurons of the contralateral hemisphere. Neurosci Res 2022; 182:41-51. [PMID: 35777459 DOI: 10.1016/j.neures.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
Decreased blood flow to the brain causes stroke and damage to neuronal networks. Neuronal damage occurs not only in the infarct core but also in areas away from the infarcts. This study was aimed to assess alterations of the cortical projection neurons that were distantly connected with the infarcts. Unilateral cortical ischemia was generated by middle cerebral artery occlusion in the right somatosensory cortex. Pre-labeled thalamocortical neurons disappeared, whereas contralateral callosal projection neurons survived 48 h post-ischemia. The unilateral ischemia increased the total length, segment length and the spine volume of dendrites from layer V callosal neurons in the homotopic cortex of the contralateral hemisphere. The morphological remolding of the contralateral cortical neurons cannot be reproduced by the spinal cord hemisection that cuts axons of corticospinal projection neurons of layer V. The data suggest that the retrograde degeneration of axons may not account for the early morphological changes in the contralateral cortex. We hypothesize that the loss of innervations from the ischemic cortex may bring in adaptive changes to the connected neurons, and adult cortical neurons can adjust their morphology to meet the reduction of synaptic inputs. This study may improve our understanding of the re-organization of cortical circuits following focal cerebral ischemia and help the development of new treatments designed to minimize the disability associated with stroke.
Collapse
Affiliation(s)
- XiaoMeng Tu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, Zhejiang, PR China
| | - Xue Li
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, Zhejiang, PR China
| | - Hao Zhu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, Zhejiang, PR China
| | - Xiuli Kuang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, Zhejiang, PR China
| | - Xiang Si
- Department of Ophthalmology, Anhui Provincial Hospital, Hefei, Anhui, PR China
| | - Shimin Zou
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, Zhejiang, PR China
| | - Shishuai Hao
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, Zhejiang, PR China
| | - Yang Huang
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, Zhejiang, PRChina.
| | - Jian Xiao
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
20
|
Andrew RD, Farkas E, Hartings JA, Brennan KC, Herreras O, Müller M, Kirov SA, Ayata C, Ollen-Bittle N, Reiffurth C, Revah O, Robertson RM, Dawson-Scully KD, Ullah G, Dreier JP. Questioning Glutamate Excitotoxicity in Acute Brain Damage: The Importance of Spreading Depolarization. Neurocrit Care 2022; 37:11-30. [PMID: 35194729 PMCID: PMC9259542 DOI: 10.1007/s12028-021-01429-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/20/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Within 2 min of severe ischemia, spreading depolarization (SD) propagates like a wave through compromised gray matter of the higher brain. More SDs arise over hours in adjacent tissue, expanding the neuronal damage. This period represents a therapeutic window to inhibit SD and so reduce impending tissue injury. Yet most neuroscientists assume that the course of early brain injury can be explained by glutamate excitotoxicity, the concept that immediate glutamate release promotes early and downstream brain injury. There are many problems with glutamate release being the unseen culprit, the most practical being that the concept has yielded zero therapeutics over the past 30 years. But the basic science is also flawed, arising from dubious foundational observations beginning in the 1950s METHODS: Literature pertaining to excitotoxicity and to SD over the past 60 years is critiqued. RESULTS Excitotoxicity theory centers on the immediate and excessive release of glutamate with resulting neuronal hyperexcitation. This instigates poststroke cascades with subsequent secondary neuronal injury. By contrast, SD theory argues that although SD evokes some brief glutamate release, acute neuronal damage and the subsequent cascade of injury to neurons are elicited by the metabolic stress of SD, not by excessive glutamate release. The challenge we present here is to find new clinical targets based on more informed basic science. This is motivated by the continuing failure by neuroscientists and by industry to develop drugs that can reduce brain injury following ischemic stroke, traumatic brain injury, or sudden cardiac arrest. One important step is to recognize that SD plays a central role in promoting early neuronal damage. We argue that uncovering the molecular biology of SD initiation and propagation is essential because ischemic neurons are usually not acutely injured unless SD propagates through them. The role of glutamate excitotoxicity theory and how it has shaped SD research is then addressed, followed by a critique of its fading relevance to the study of brain injury. CONCLUSIONS Spreading depolarizations better account for the acute neuronal injury arising from brain ischemia than does the early and excessive release of glutamate.
Collapse
Affiliation(s)
| | - Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged, Cerebral Blood Flow and Metabolism Research Group, Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | - Cenk Ayata
- Harvard Medical School, Harvard University, Boston, MA USA
| | | | - Clemens Reiffurth
- Center for Stroke Research Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Omer Revah
- School of Medicine, Stanford University, Stanford, CA USA
| | | | | | | | - Jens P. Dreier
- Center for Stroke Research Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Corporate Member of Freie Universität Berlin, Berlin, Germany
- Department of Neurology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
21
|
Zimphango C, Alimagham FC, Carpenter KLH, Hutchinson PJ, Hutter T. Monitoring Neurochemistry in Traumatic Brain Injury Patients Using Microdialysis Integrated with Biosensors: A Review. Metabolites 2022; 12:metabo12050393. [PMID: 35629896 PMCID: PMC9146878 DOI: 10.3390/metabo12050393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
In a traumatically injured brain, the cerebral microdialysis technique allows continuous sampling of fluid from the brain’s extracellular space. The retrieved brain fluid contains useful metabolites that indicate the brain’s energy state. Assessment of these metabolites along with other parameters, such as intracranial pressure, brain tissue oxygenation, and cerebral perfusion pressure, may help inform clinical decision making, guide medical treatments, and aid in the prognostication of patient outcomes. Currently, brain metabolites are assayed on bedside analysers and results can only be achieved hourly. This is a major drawback because critical information within each hour is lost. To address this, recent advances have focussed on developing biosensing techniques for integration with microdialysis to achieve continuous online monitoring. In this review, we discuss progress in this field, focusing on various types of sensing devices and their ability to quantify specific cerebral metabolites at clinically relevant concentrations. Important points that require further investigation are highlighted, and comments on future perspectives are provided.
Collapse
Affiliation(s)
- Chisomo Zimphango
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
- Correspondence:
| | - Farah C. Alimagham
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
| | - Keri L. H. Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
| | - Peter J. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
| | - Tanya Hutter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK; (F.C.A.); (K.L.H.C.); (P.J.H.); (T.H.)
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
22
|
Menyhárt Á, Frank R, Farkas AE, Süle Z, Varga VÉ, Nyúl-Tóth Á, Meiller A, Ivánkovits-Kiss O, Lemale CL, Szabó Í, Tóth R, Zölei-Szénási D, Woitzik J, Marinesco S, Krizbai IA, Bari F, Dreier JP, Farkas E. Malignant astrocyte swelling and impaired glutamate clearance drive the expansion of injurious spreading depolarization foci. J Cereb Blood Flow Metab 2022; 42:584-599. [PMID: 34427145 PMCID: PMC8943616 DOI: 10.1177/0271678x211040056] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spreading depolarizations (SDs) indicate injury progression and predict worse clinical outcome in acute brain injury. We demonstrate in rodents that acute brain swelling upon cerebral ischemia impairs astroglial glutamate clearance and increases the tissue area invaded by SD. The cytotoxic extracellular glutamate accumulation (>15 µM) predisposes an extensive bulk of tissue (4-5 mm2) for a yet undescribed simultaneous depolarization (SiD). We confirm in rat brain slices exposed to osmotic stress that SiD is the pathological expansion of prior punctual SD foci (0.5-1 mm2), is associated with astrocyte swelling, and triggers oncotic neuron death. The blockade of astrocytic aquaporin-4 channels and Na+/K+/Cl- co-transporters, or volume-regulated anion channels mitigated slice edema, extracellular glutamate accumulation (<10 µM) and SiD occurrence. Reversal of slice swelling by hyperosmotic mannitol counteracted glutamate accumulation and prevented SiD. In contrast, inhibition of glial metabolism or inhibition of astrocyte glutamate transporters reproduced the SiD phenotype. Finally, we show in the rodent water intoxication model of cytotoxic edema that astrocyte swelling and altered astrocyte calcium waves are central in the evolution of SiD. We discuss our results in the light of evidence for SiD in the human cortex. Our results emphasize the need of preventive osmotherapy in acute brain injury.
Collapse
Affiliation(s)
- Ákos Menyhárt
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Rita Frank
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Attila E Farkas
- Neurovascular Unit Research Group, Molecular Neurobiology Research Unit, Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Zoltán Süle
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Viktória É Varga
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ádám Nyúl-Tóth
- Neurovascular Unit Research Group, Molecular Neurobiology Research Unit, Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anne Meiller
- Lyon Neuroscience Research Center, Inserm U1028, CNRS UMR 5292, University Claude Bernard Lyon I, Lyon, France
| | - Orsolya Ivánkovits-Kiss
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Írisz Szabó
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Réka Tóth
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Dániel Zölei-Szénási
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Johannes Woitzik
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stephane Marinesco
- Lyon Neuroscience Research Center, Inserm U1028, CNRS UMR 5292, University Claude Bernard Lyon I, Lyon, France
| | - István A Krizbai
- Neurovascular Unit Research Group, Molecular Neurobiology Research Unit, Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Life Sciences, Vasile Goldis Western University, Arad, Romania
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Eszter Farkas
- HCEMM-USZ Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary.,Department of Cell Biology and Molecular Medicine, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged,Szeged, Hungary
| |
Collapse
|
23
|
Brar HK, Dey S, Bhardwaj S, Pande D, Singh P, Dey S, Ghosh-Roy A. Dendrite regeneration in C. elegans is controlled by the RAC GTPase CED-10 and the RhoGEF TIAM-1. PLoS Genet 2022; 18:e1010127. [PMID: 35344539 PMCID: PMC8989329 DOI: 10.1371/journal.pgen.1010127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 04/07/2022] [Accepted: 02/28/2022] [Indexed: 01/30/2023] Open
Abstract
Neurons are vulnerable to physical insults, which compromise the integrity of both dendrites and axons. Although several molecular pathways of axon regeneration are identified, our knowledge of dendrite regeneration is limited. To understand the mechanisms of dendrite regeneration, we used the PVD neurons in C. elegans with stereotyped branched dendrites. Using femtosecond laser, we severed the primary dendrites and axon of this neuron. After severing the primary dendrites near the cell body, we observed sprouting of new branches from the proximal site within 6 hours, which regrew further with time in an unstereotyped manner. This was accompanied by reconnection between the proximal and distal dendrites, and fusion among the higher-order branches as reported before. We quantified the regeneration pattern into three aspects–territory length, number of branches, and fusion phenomena. Axonal injury causes a retraction of the severed end followed by a Dual leucine zipper kinase-1 (DLK-1) dependent regrowth from the severed end. We tested the roles of the major axon regeneration signalling hubs such as DLK-1-RPM-1, cAMP elevation, let-7 miRNA, AKT-1, Phosphatidylserine (PS) exposure/PS in dendrite regeneration. We found that neither dendrite regrowth nor fusion was affected by the axon injury pathway molecules. Surprisingly, we found that the RAC GTPase, CED-10 and its upstream GEF, TIAM-1 play a cell-autonomous role in dendrite regeneration. Additionally, the function of CED-10 in epidermal cell is critical for post-dendrotomy fusion phenomena. This work describes a novel regulatory mechanism of dendrite regeneration and provides a framework for understanding the cellular mechanism of dendrite regeneration using PVD neuron as a model system. The knowledge of the repair of injured neural circuits comes from the study of the regeneration of injured axons. The information receiving neurites, namely dendrites, are also vulnerable to physical insult during stroke and trauma. However, little knowledge is available on the mechanism of dendrite regeneration since the study of Cajal. In order to get insight into this process, we severed both axon and dendrites of PVD neuron in C. elegans using laser. By comparing the roles of axon regeneration pathways in both dendrite and axon regeneration in this neuron, we found that dendrite regeneration is independent of molecular mechanisms involving axon regrowth. We discovered that dendrite regeneration is dependent on the RAC GTPase CED-10 and GEF TIAM-1. Moreover, we found that CED-10 plays roles within both neuron and in the surrounding epithelia for mounting regeneration response to dendrite injury. This work provides mechanistic insight into the process of dendrite repair after physical injury.
Collapse
Affiliation(s)
- Harjot Kaur Brar
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Swagata Dey
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Smriti Bhardwaj
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Devashish Pande
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Pallavi Singh
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Shirshendu Dey
- Fluorescence Microscopy Division, Bruker India Scientific Pvt. Ltd., International Trade Tower, Nehru Place, New Delhi, India
| | - Anindya Ghosh-Roy
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
- * E-mail:
| |
Collapse
|
24
|
Lemale CL, Lückl J, Horst V, Reiffurth C, Major S, Hecht N, Woitzik J, Dreier JP. Migraine Aura, Transient Ischemic Attacks, Stroke, and Dying of the Brain Share the Same Key Pathophysiological Process in Neurons Driven by Gibbs–Donnan Forces, Namely Spreading Depolarization. Front Cell Neurosci 2022; 16:837650. [PMID: 35237133 PMCID: PMC8884062 DOI: 10.3389/fncel.2022.837650] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Neuronal cytotoxic edema is the morphological correlate of the near-complete neuronal battery breakdown called spreading depolarization, or conversely, spreading depolarization is the electrophysiological correlate of the initial, still reversible phase of neuronal cytotoxic edema. Cytotoxic edema and spreading depolarization are thus different modalities of the same process, which represents a metastable universal reference state in the gray matter of the brain close to Gibbs–Donnan equilibrium. Different but merging sections of the spreading-depolarization continuum from short duration waves to intermediate duration waves to terminal waves occur in a plethora of clinical conditions, including migraine aura, ischemic stroke, traumatic brain injury, aneurysmal subarachnoid hemorrhage (aSAH) and delayed cerebral ischemia (DCI), spontaneous intracerebral hemorrhage, subdural hematoma, development of brain death, and the dying process during cardio circulatory arrest. Thus, spreading depolarization represents a prime and simultaneously the most neglected pathophysiological process in acute neurology. Aristides Leão postulated as early as the 1940s that the pathophysiological process in neurons underlying migraine aura is of the same nature as the pathophysiological process in neurons that occurs in response to cerebral circulatory arrest, because he assumed that spreading depolarization occurs in both conditions. With this in mind, it is not surprising that patients with migraine with aura have about a twofold increased risk of stroke, as some spreading depolarizations leading to the patient percept of migraine aura could be caused by cerebral ischemia. However, it is in the nature of spreading depolarization that it can have different etiologies and not all spreading depolarizations arise because of ischemia. Spreading depolarization is observed as a negative direct current (DC) shift and associated with different changes in spontaneous brain activity in the alternating current (AC) band of the electrocorticogram. These are non-spreading depression and spreading activity depression and epileptiform activity. The same spreading depolarization wave may be associated with different activity changes in adjacent brain regions. Here, we review the basal mechanism underlying spreading depolarization and the associated activity changes. Using original recordings in animals and patients, we illustrate that the associated changes in spontaneous activity are by no means trivial, but pose unsolved mechanistic puzzles and require proper scientific analysis.
Collapse
Affiliation(s)
- Coline L. Lemale
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janos Lückl
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Viktor Horst
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- *Correspondence: Jens P. Dreier,
| |
Collapse
|
25
|
Berhouma M, Eker OF, Dailler F, Rheims S, Balanca B. Cortical Spreading Depolarizations in Aneurysmal Subarachnoid Hemorrhage: An Overview of Current Knowledge and Future Perspectives. Adv Tech Stand Neurosurg 2022; 45:229-244. [PMID: 35976452 DOI: 10.1007/978-3-030-99166-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite significant advances in the management of aneurysmal subarachnoid hemorrhage (SAH), morbidity and mortality remain devastating particularly for high-grade SAH. Poor functional outcome usually results from delayed cerebral ischemia (DCI). The pathogenesis of DCI during aneurysmal SAH has historically been attributed to cerebral vasospasm, but spreading depolarizations (SDs) are now considered to play a central role in DCI. During SAH, SDs may produce an inverse hemodynamic response leading to spreading ischemia. Several animal models have contributed to a better understanding of the pathogenesis of SDs during aneurysmal SAH and provided new therapeutic approaches including N-methyl-D-aspartate receptor antagonists and phosphodiesterase inhibitors. Herein we review the current knowledge in the field of SDs' pathogenesis and we detail the key experimental and clinical studies that have opened interesting new therapeutic approaches to prevent DCI in aneurysmal SAH.
Collapse
Affiliation(s)
- Moncef Berhouma
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon (Lyon University Hospital), Lyon, France.
- Creatis Lab, CNRS UMR 5220, INSERM U1206, Lyon 1 University, INSA Lyon, Lyon, France.
| | - Omer Faruk Eker
- Creatis Lab, CNRS UMR 5220, INSERM U1206, Lyon 1 University, INSA Lyon, Lyon, France
- Department of Interventional Neuroradiology, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon (Lyon University Hospital), Lyon, France
| | - Frederic Dailler
- Department of Neuro-Anesthesia and Neuro-Critical Care, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon (Lyon University Hospital), Lyon, France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon (Lyon University Hospital), Lyon, France
- Lyon's Neurosciences Research Center, INSERM U1028/CNRS, UMR 5292, University of Lyon, Lyon, France
| | - Baptiste Balanca
- Department of Neuro-Anesthesia and Neuro-Critical Care, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon (Lyon University Hospital), Lyon, France
- Lyon's Neurosciences Research Center, INSERM U1028/CNRS, UMR 5292, University of Lyon, Lyon, France
| |
Collapse
|
26
|
Andrew RD, Hartings JA, Ayata C, Brennan KC, Dawson-Scully KD, Farkas E, Herreras O, Kirov SA, Müller M, Ollen-Bittle N, Reiffurth C, Revah O, Robertson RM, Shuttleworth CW, Ullah G, Dreier JP. The Critical Role of Spreading Depolarizations in Early Brain Injury: Consensus and Contention. Neurocrit Care 2022; 37:83-101. [PMID: 35257321 PMCID: PMC9259543 DOI: 10.1007/s12028-021-01431-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/29/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND When a patient arrives in the emergency department following a stroke, a traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug available to help protect their jeopardized neurons. One crucial reason is that we have not identified the molecular mechanisms leading to electrical failure, neuronal swelling, and blood vessel constriction in newly injured gray matter. All three result from a process termed spreading depolarization (SD). Because we only partially understand SD, we lack molecular targets and biomarkers to help neurons survive after losing their blood flow and then undergoing recurrent SD. METHODS In this review, we introduce SD as a single or recurring event, generated in gray matter following lost blood flow, which compromises the Na+/K+ pump. Electrical recovery from each SD event requires so much energy that neurons often die over minutes and hours following initial injury, independent of extracellular glutamate. RESULTS We discuss how SD has been investigated with various pitfalls in numerous experimental preparations, how overtaxing the Na+/K+ ATPase elicits SD. Elevated K+ or glutamate are unlikely natural activators of SD. We then turn to the properties of SD itself, focusing on its initiation and propagation as well as on computer modeling. CONCLUSIONS Finally, we summarize points of consensus and contention among the authors as well as where SD research may be heading. In an accompanying review, we critique the role of the glutamate excitotoxicity theory, how it has shaped SD research, and its questionable importance to the study of early brain injury as compared with SD theory.
Collapse
Affiliation(s)
- R. David Andrew
- grid.410356.50000 0004 1936 8331Queen’s University, Kingston, ON Canada
| | - Jed A. Hartings
- grid.24827.3b0000 0001 2179 9593University of Cincinnati, Cincinnati, OH USA
| | - Cenk Ayata
- grid.38142.3c000000041936754XHarvard Medical School, Harvard University, Boston, MA USA
| | - K. C. Brennan
- grid.223827.e0000 0001 2193 0096The University of Utah, Salt Lake City, UT USA
| | | | - Eszter Farkas
- grid.9008.10000 0001 1016 96251HCEMM-USZ Cerebral Blood Flow and Metabolism Research Group, and the Department of Cell Biology and Molecular Medicine, Faculty of Science and Informatics & Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Oscar Herreras
- grid.419043.b0000 0001 2177 5516Instituto de Neurobiologia Ramon Y Cajal (Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Sergei. A. Kirov
- grid.410427.40000 0001 2284 9329Medical College of Georgia, Augusta, GA USA
| | - Michael Müller
- grid.411984.10000 0001 0482 5331University of Göttingen, University Medical Center Göttingen, Göttingen, Germany
| | - Nikita Ollen-Bittle
- grid.39381.300000 0004 1936 8884University of Western Ontario, London, ON Canada
| | - Clemens Reiffurth
- grid.7468.d0000 0001 2248 7639Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and the Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health., Berlin, Germany
| | - Omer Revah
- grid.168010.e0000000419368956School of Medicine, Stanford University, Stanford, CA USA
| | | | | | - Ghanim Ullah
- grid.170693.a0000 0001 2353 285XUniversity of South Florida, Tampa, FL USA
| | - Jens P. Dreier
- grid.7468.d0000 0001 2248 7639Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and the Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health., Berlin, Germany
| |
Collapse
|
27
|
Hartings JA, Carroll CP, Lee G. Spreading Diffusion-Restriction Events in the Gyrencephalic Brain After Subarachnoid Hemorrhage Revealed by Continuous Magnetic Resonance Imaging. Neurocrit Care 2021; 37:60-66. [PMID: 34796429 DOI: 10.1007/s12028-021-01376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND How widely spreading depolarizations (SDs) propagate through the gyrencephalic brain, including sulci and deeper cortical areas, remains an important clinical question. Here, we investigated SDs that occur spontaneously after subarachnoid placement of autologous blood clots in sulci of the juvenile swine brain. METHODS To investigate the three-dimensional spread of waves, animals underwent continuous diffusion-weighted magnetic resonance imaging (DW-MRI) for up to 6 h following clot placement. SD is the mechanism of the cytotoxic edema of developing infarction that is diagnosed by DW-MRI, and DW-MRI also captures transient diffusion restriction caused by SD in less injured or healthy brains. Here, images (b = 0, 375, and 750) were acquired across five coronal slices with 1.25 × 1.25-mm in-plane resolution and 5-mm slice thickness, and the protocol was repeated every 6.83-9.15 s. Spatial drift correction, temporal smoothing, and signal intensity normalization were applied to generate videos of diffusion signal intensity changes for each coronal slice. RESULTS Review of video data from five animals revealed ten discrete events consisting of focal diffusion restriction that propagated through cerebral cortex. All events originated in the cortex surrounding the sulcal clot, either in the gyrus (n = 4) or in the sulcal depth (n = 6). In six cases, two to three independent waves spread simultaneously in medial, lateral, and antero-posterior directions. Waves traveled within sulcal walls, traversed the depths of sulci to re-emerge on the adjacent gyrus, and, in three cases, spread fully around the dorsolateral convexity. One event spread deep to olfactory regions along midline cortex, and no events were observed contralateral to the subarachnoid clot. CONCLUSIONS Together, these results suggest that SDs in the injured gyrencephalic brain originate near the injury focus and can spread extensively through the cortex to wide and deep uninjured regions. These findings have implications for transient neurologic deficits in the neurocritically ill patient and relevance to patient monitoring and therapeutics.
Collapse
Affiliation(s)
- Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Christopher P Carroll
- Department of Brain and Spinal Surgery, Naval Medical Center Portsmouth, Portsmouth, VA, USA.,Department of Surgery, Uniformed Services University, Bethesda, MD, USA
| | - Gregory Lee
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
28
|
Yehuda B, Gradus Pery T, Ophir E, Blumenfeld-Katzir T, Sheinin A, Alon Y, Danino N, Perlson E, Nevo U. Neuronal Activity in the Sciatic Nerve Is Accompanied by Immediate Cytoskeletal Changes. Front Mol Neurosci 2021; 14:757264. [PMID: 34776865 PMCID: PMC8579013 DOI: 10.3389/fnmol.2021.757264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
Mechanical events and alterations in neuronal morphology that accompany neuronal activity have been observed for decades. However, no clear neurophysiological role, nor an agreed molecular mechanism relating these events to the electrochemical process, has been found. Here we hypothesized that intense, yet physiological, electrical activity in neurons triggers cytoskeletal depolymerization. We excited the sciatic nerve of anesthetized mice with repetitive electric pulses (5, 10, and 100 Hz) for 1 and 2 min and immediately fixed the excised nerves. We then scanned the excised nerves with high-resolution transmission electron microscopy, and quantified cytoskeletal changes in the resulting micrographs. We demonstrate that excitation with a stimulation frequency that is within the physiological regime is accompanied by a significant reduction in the density of cytoskeletal proteins relative to the baseline values recorded in control nerves. After 10 Hz stimulation with durations of 1 and 2 min, neurofilaments density dropped to 55.8 and 51.1% of the baseline median values, respectively. In the same experiments, microtubules density dropped to 23.7 and 38.5% of the baseline median values, respectively. These changes were also accompanied by a reduction in the cytoskeleton-to-cytoplasm contrast that we attribute to the presence of depolymerized electron-dense molecules in the lumen. Thus, we demonstrate with an in vivo model a link between electrical activity and immediate cytoskeleton rearrangement at the nano-scale. We suggest that this cytoskeletal plasticity reduces cellular stiffness and allows cellular homeostasis, maintenance of neuronal morphology and that it facilitates in later stages growth of the neuronal projections.
Collapse
Affiliation(s)
- Bossmat Yehuda
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tal Gradus Pery
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Ophir
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Blumenfeld-Katzir
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Anton Sheinin
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yael Alon
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Noy Danino
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Uri Nevo
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Longitudinal functional imaging of VIP interneurons reveals sup-population specific effects of stroke that are rescued with chemogenetic therapy. Nat Commun 2021; 12:6112. [PMID: 34671051 PMCID: PMC8528851 DOI: 10.1038/s41467-021-26405-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/04/2021] [Indexed: 01/20/2023] Open
Abstract
Stroke profoundly disrupts cortical excitability which impedes recovery, but how it affects the function of specific inhibitory interneurons, or subpopulations therein, is poorly understood. Interneurons expressing vasoactive intestinal peptide (VIP) represent an intriguing stroke target because they can regulate cortical excitability through disinhibition. Here we chemogenetically augmented VIP interneuron excitability in a murine model of photothrombotic stroke and show that it enhances somatosensory responses and improves recovery of paw function. Using longitudinal calcium imaging, we discovered that stroke primarily disrupts the fidelity (fraction of responsive trials) and predictability of sensory responses within a subset of highly active VIP neurons. Partial recovery of responses occurred largely within these active neurons and was not accompanied by the recruitment of minimally active neurons. Importantly, chemogenetic stimulation preserved sensory response fidelity and predictability in highly active neurons. These findings provide a new depth of understanding into how stroke and prospective therapies (chemogenetics), can influence subpopulations of inhibitory interneurons.
Collapse
|
30
|
Sharma S, Brown CE. Microvascular basis of cognitive impairment in type 1 diabetes. Pharmacol Ther 2021; 229:107929. [PMID: 34171341 DOI: 10.1016/j.pharmthera.2021.107929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
The complex computations of the brain require a constant supply of blood flow to meet its immense metabolic needs. Perturbations in blood supply, even in the smallest vascular networks, can have a profound effect on neuronal function and cognition. Type 1 diabetes is a prevalent and insidious metabolic disorder that progressively and heterogeneously disrupts vascular signalling and function in the brain. As a result, it is associated with an array of adverse vascular changes such as impaired regulation of vascular tone, pathological neovascularization and vasoregression, capillary plugging and blood brain barrier disruption. In this review, we highlight the link between microvascular dysfunction and cognitive impairment that is commonly associated with type 1 diabetes, with the aim of synthesizing current knowledge in this field.
Collapse
Affiliation(s)
- Sorabh Sharma
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Craig E Brown
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
31
|
Abstract
Our brains consist of 80% water, which is continuously shifted between different compartments and cell types during physiological and pathophysiological processes. Disturbances in brain water homeostasis occur with pathologies such as brain oedema and hydrocephalus, in which fluid accumulation leads to elevated intracranial pressure. Targeted pharmacological treatments do not exist for these conditions owing to our incomplete understanding of the molecular mechanisms governing brain water transport. Historically, the transmembrane movement of brain water was assumed to occur as passive movement of water along the osmotic gradient, greatly accelerated by water channels termed aquaporins. Although aquaporins govern the majority of fluid handling in the kidney, they do not suffice to explain the overall brain water movement: either they are not present in the membranes across which water flows or they appear not to be required for the observed flow of water. Notably, brain fluid can be secreted against an osmotic gradient, suggesting that conventional osmotic water flow may not describe all transmembrane fluid transport in the brain. The cotransport of water is an unconventional molecular mechanism that is introduced in this Review as a missing link to bridge the gap in our understanding of cellular and barrier brain water transport.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Eyo UB, Haruwaka K, Mo M, Campos-Salazar AB, Wang L, Speros XS, Sabu S, Xu P, Wu LJ. Microglia provide structural resolution to injured dendrites after severe seizures. Cell Rep 2021; 35:109080. [PMID: 33951432 PMCID: PMC8164475 DOI: 10.1016/j.celrep.2021.109080] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/01/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
Although an imbalance between neuronal excitation and inhibition underlies seizures, clinical approaches that target these mechanisms are insufficient in containing seizures in patients with epilepsy, raising the need for alternative approaches. Brain-resident microglia contribute to the development and stability of neuronal structure and functional networks that are perturbed during seizures. However, the extent of microglial contributions in response to seizures in vivo remain to be elucidated. Using two-photon in vivo imaging to visualize microglial dynamics, we show that severe seizures induce formation of microglial process pouches that target but rarely engulf beaded neuronal dendrites. Microglial process pouches are stable for hours, although they often shrink in size. We further find that microglial process pouches are associated with a better structural resolution of beaded dendrites. These findings provide evidence for the structural resolution of injured dendrites by microglia as a form of neuroprotection.
Collapse
Affiliation(s)
- Ukpong B Eyo
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Brain Immunology and Glia Center, Department of Cell Biology and Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| | | | - Mingshu Mo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangdong 510120, China
| | - Antony Brayan Campos-Salazar
- Brain Immunology and Glia Center, Department of Cell Biology and Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Lingxiao Wang
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xenophon S Speros
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Sruchika Sabu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Pingyi Xu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangdong 510120, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
33
|
Petzold GC, Dreier JP. Spreading depolarization evoked by endothelin-1 is inhibited by octanol but not by carbenoxolone. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Khirug S, Soni S, Saez Garcia M, Tessier M, Zhou L, Kulesskaya N, Rauvala H, Lindholm D, Ludwig A, Molinari F, Rivera C. Protective Role of Low Ethanol Administration Following Ischemic Stroke via Recovery of KCC2 and p75 NTR Expression. Mol Neurobiol 2021; 58:1145-1161. [PMID: 33099743 PMCID: PMC7878264 DOI: 10.1007/s12035-020-02176-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/14/2020] [Indexed: 01/31/2023]
Abstract
A striking result from epidemiological studies show a correlation between low alcohol intake and lower incidence for ischemic stroke and severity of derived brain injury. Although reduced apoptosis and inflammation has been suggested to be involved, little is known about the mechanism mediating this effect in vivo. Increase in intracellular chloride concentration and derived depolarizing GABAAR-mediated transmission are common consequences following various brain injuries and are caused by the abnormal expression levels of the chloride cotransporters NKCC1 and KCC2. Downstream pro-apoptotic signaling through p75NTR may link GABAA depolarization with post-injury neuronal apoptosis. Here, we show that changes in GABAergic signaling, Cl- homeostasis, and expression of chloride cotransporters in the post-traumatic mouse brain can be significantly reduced by administration of 3% ethanol to the drinking water. Ethanol-induced upregulation of KCC2 has a positive impact on neuronal survival, preserving a large part of the cortical peri-infarct zone, as well as preventing the massive post-ischemic upregulation of the pro-apoptotic protein p75NTR. Importantly, intracortical multisite in vivo recordings showed that ethanol treatment could significantly ameliorate stroke-induced reduction in cortical activity. This surprising finding discloses a pathway triggered by low concentration of ethanol as a novel therapeutically relevant target.
Collapse
Affiliation(s)
- Stanislav Khirug
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland.
| | - Shetal Soni
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Marta Saez Garcia
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Marine Tessier
- INMED (INSERM U1249), Aix-Marseille Université, Marseille, France
| | - Liang Zhou
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Natalia Kulesskaya
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Heikki Rauvala
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Helsinki, Finland
| | - Anastasia Ludwig
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | | | - Claudio Rivera
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland.
- INMED (INSERM U1249), Aix-Marseille Université, Marseille, France.
| |
Collapse
|
35
|
Balança B, Desmurs L, Grelier J, Perret-Liaudet A, Lukaszewicz AC. DAMPs and RAGE Pathophysiology at the Acute Phase of Brain Injury: An Overview. Int J Mol Sci 2021; 22:ijms22052439. [PMID: 33670976 PMCID: PMC7957733 DOI: 10.3390/ijms22052439] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Early or primary injury due to brain aggression, such as mechanical trauma, hemorrhage or is-chemia, triggers the release of damage-associated molecular patterns (DAMPs) in the extracellular space. Some DAMPs, such as S100B, participate in the regulation of cell growth and survival but may also trigger cellular damage as their concentration increases in the extracellular space. When DAMPs bind to pattern-recognition receptors, such as the receptor of advanced glycation end-products (RAGE), they lead to non-infectious inflammation that will contribute to necrotic cell clearance but may also worsen brain injury. In this narrative review, we describe the role and ki-netics of DAMPs and RAGE at the acute phase of brain injury. We searched the MEDLINE database for “DAMPs” or “RAGE” or “S100B” and “traumatic brain injury” or “subarachnoid hemorrhage” or “stroke”. We selected original articles reporting data on acute brain injury pathophysiology, from which we describe DAMPs release and clearance upon acute brain injury, and the implication of RAGE in the development of brain injury. We will also discuss the clinical strategies that emerge from this overview in terms of biomarkers and therapeutic perspectives
Collapse
Affiliation(s)
- Baptiste Balança
- Department of Neurological Anesthesiology and Intensive Care Medicine, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France;
- Team TIGER, Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292, 69500 Bron, France
- Correspondence: ; Tel.: +33-6-2391-0594
| | - Laurent Desmurs
- Clinical Chemistry and Molecular Biology Laboratory, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France; (L.D.); (A.P.-L.)
| | - Jérémy Grelier
- Department of Neurological Anesthesiology and Intensive Care Medicine, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France;
| | - Armand Perret-Liaudet
- Clinical Chemistry and Molecular Biology Laboratory, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France; (L.D.); (A.P.-L.)
- Team BIORAN, Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292, 69500 Bron, France
| | - Anne-Claire Lukaszewicz
- Department of Neurological Anesthesiology and Intensive Care Medicine, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69003 Lyon, France;
| |
Collapse
|
36
|
Reappraisal of anoxic spreading depolarization as a terminal event during oxygen-glucose deprivation in brain slices in vitro. Sci Rep 2020; 10:18970. [PMID: 33149164 PMCID: PMC7643106 DOI: 10.1038/s41598-020-75975-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Anoxic spreading depolarization (aSD) has been hypothesized as a terminal event during oxygen–glucose deprivation (OGD) in submerged cortical slices in vitro. However, mechanical artifacts caused by aSD-triggered edema may introduce error in the assessment of neuronal viability. Here, using continuous patch-clamp recordings from submerged rat cortical slices, we first confirmed that vast majority of L4 neurons permanently lost their membrane potential during OGD-induced aSD. In some recordings, spontaneous transition from whole-cell to out-side out configuration occurred during or after aSD, and only a small fraction of neurons survived aSD with reperfusion started shortly after aSD. Secondly, to minimize artifacts caused by OGD-induced edema, cells were short-term patched following OGD episodes of various duration. Nearly half of L4 cells maintained membrane potential and showed the ability to spike-fire if reperfusion started less than 10 min after aSD. The probability of finding live neurons progressively decreased at longer reperfusion delays at a rate of about 2% per minute. We also found that neurons in L2/3 show nearly threefold higher resistance to OGD than neurons in L4. Our results suggest that in the OGD ischemia model, aSD is not a terminal event, and that the “commitment point” of irreversible damage occurs at variable delays, in the range of tens of minutes, after OGD-induced aSD in submerged cortical slices.
Collapse
|
37
|
Bo B, Li Y, Li W, Wang Y, Tong S. Neurovascular Coupling Impairment in Acute Ischemic Stroke by Optogenetics and Optical Brain Imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3727-3730. [PMID: 33018811 DOI: 10.1109/embc44109.2020.9176641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The coupling between neuronal activity and cerebral blood flow (CBF), known as neurovascular coupling, has been reported to be impaired after stroke. This study aims to investigate the neurovascular coupling impairment at the acute stage after ischemic stroke. Laser speckle contrast imaging (LSCI) was applied to measure the hemodynamic response to optogenetic excitation of sensorimotor neurons in healthy and ischemic brain. The results showed that the hemodynamic response to optogenetic stimulation decreased and the regional CBF response was correlated with the distance from the ischemic core at the acute stage, regardless of the change in resting CBF. Our results also demonstrated that excitatory neuronal stimulation of intact area could promote the recovery of neurovascular coupling, whereas peri-infarct neuronal excitation failed to restore neurovascular function 24 hrs after ischemia. These results suggested the intact periphery of penumbra as the target for excitatory stimulation in aspect of restoring the perfusion after ischemic stroke.
Collapse
|
38
|
Herreras O, Makarova J. Mechanisms of the negative potential associated with Leão's spreading depolarization: A history of brain electrogenesis. J Cereb Blood Flow Metab 2020; 40:1934-1952. [PMID: 32580670 PMCID: PMC7786845 DOI: 10.1177/0271678x20935998] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Abstract
Spreading depolarization (SD) is a self-propagated wave that provokes transient disorder of numerous cell and tissue functions, and that may kill neurons in metabolically compromised tissue. We examined the mechanisms underlying the main hallmark of SD, a giant extracellular potential (ΔVo) for which multiple electromotive forces have been proposed. The end-point is that neurons and not glia, dendritic channels and not spatial currents, and increased sodium conductance rather than potassium gradients, appear to be the main actors in the generation of the negative ΔVo. Neuronal currents are established by two mechanisms, a voltage independent dendritic current, and the differential polarization along the neuron membranes. Notably, despite of a marked drop of ion gradients, these evolve significantly during SD, and yet the membrane potential remains clamped at zero no matter how much inward current is present. There may be substantial inward current or none in function of the evolving portion of the neuron dendrites with SD-activated channels. We propose that the ΔVo promotes swelling-induced dendritic damage. Understanding SD electrogenesis requires all elements relevant for membrane potential, action currents, field potentials and volume conduction to be jointly considered, and it has already encouraged the search for new targets to limit SD-related pathology.
Collapse
Affiliation(s)
- Oscar Herreras
- Department of Translational Neuroscience, Cajal Institute – CSIC, Madrid, Spain
| | - Julia Makarova
- Department of Translational Neuroscience, Cajal Institute – CSIC, Madrid, Spain
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
39
|
Kirov SA, Fomitcheva IV, Sword J. Rapid Neuronal Ultrastructure Disruption and Recovery during Spreading Depolarization-Induced Cytotoxic Edema. Cereb Cortex 2020; 30:5517-5531. [PMID: 32483593 PMCID: PMC7566686 DOI: 10.1093/cercor/bhaa134] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 01/29/2023] Open
Abstract
Two major pathogenic events that cause acute brain damage during neurologic emergencies of stroke, head trauma, and cardiac arrest are spreading depolarizing waves and the associated brain edema that course across the cortex injuring brain cells. Virtually nothing is known about how spreading depolarization (SD)-induced cytotoxic edema evolves at the ultrastructural level immediately after insult and during recovery. In vivo 2-photon imaging followed by quantitative serial section electron microscopy was used to assess synaptic circuit integrity in the neocortex of urethane-anesthetized male and female mice during and after SD evoked by transient bilateral common carotid artery occlusion. SD triggered a rapid fragmentation of dendritic mitochondria. A large increase in the density of synapses on swollen dendritic shafts implies that some dendritic spines were overwhelmed by swelling or merely retracted. The overall synaptic density was unchanged. The postsynaptic dendritic membranes remained attached to axonal boutons, providing a structural basis for the recovery of synaptic circuits. Upon immediate reperfusion, cytotoxic edema mainly subsides as affirmed by a recovery of dendritic ultrastructure. Dendritic recuperation from swelling and reversibility of mitochondrial fragmentation suggests that neurointensive care to improve tissue perfusion should be paralleled by treatments targeting mitochondrial recovery and minimizing the occurrence of SDs.
Collapse
Affiliation(s)
- Sergei A Kirov
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Department of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Ioulia V Fomitcheva
- Department of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Jeremy Sword
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
40
|
Freitas-Andrade M, Raman-Nair J, Lacoste B. Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 2020; 11:948. [PMID: 32848875 PMCID: PMC7433746 DOI: 10.3389/fphys.2020.00948] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow ensure proper brain function. The adult human brain represents only a small portion of the body mass, yet about a quarter of the cardiac output is dedicated to energy consumption by brain cells at rest. Due to a low capacity to store energy, brain health is heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular integrity and function, compromising brain homeostasis and leading to widespread consequences from early-onset motor deficits to long-term cognitive decline. While numerous lines of investigation have been undertaken to develop new pharmacological therapies for stroke, only few advances have been made and most clinical trials have failed. Overall, our understanding of the acute and chronic vascular responses to stroke is insufficient, yet a better comprehension of cerebrovascular remodeling following stroke is an essential prerequisite for developing novel therapeutic options. In this review, we present a comprehensive update on post-stroke cerebrovascular remodeling, an important and growing field in neuroscience, by discussing cellular and molecular mechanisms involved, sex differences, limitations of preclinical research design and future directions.
Collapse
Affiliation(s)
| | - Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
41
|
Shorey M, Stone MC, Mandel J, Rolls MM. Neurons survive simultaneous injury to axons and dendrites and regrow both types of processes in vivo. Dev Biol 2020; 465:108-118. [PMID: 32687893 DOI: 10.1016/j.ydbio.2020.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
Neurons extend dendrites and axons to receive and send signals. If either type of process is removed, the cell cannot function. Rather than undergoing cell death, some neurons can regrow axons and dendrites. Axon and dendrite regeneration have been examined separately and require sensing the injury and reinitiating the correct growth program. Whether neurons in vivo can sense and respond to simultaneous axon and dendrite injury with polarized regeneration has not been explored. To investigate the outcome of simultaneous axon and dendrite damage, we used a Drosophila model system in which neuronal polarity, axon regeneration, and dendrite regeneration have been characterized. After removal of the axon and all but one dendrite, the remaining dendrite was converted to a process that had a long unbranched region that extended over long distances and a region where shorter branched processes were added. These observations suggested axons and dendrites could regrow at the same time. To further test the capacity of neurons to implement polarized regeneration after axon and dendrite damage, we removed all neurites from mature neurons. In this case a long unbranched neurite and short branched neurites were regrown from the stripped cell body. Moreover, the long neurite had axonal plus-end-out microtubule polarity and the shorter neurites had mixed polarity consistent with dendrite identity. The long process also accumulated endoplasmic reticulum at its tip like regenerating axons. We conclude that neurons in vivo can respond to simultaneous axon and dendrite injury by initiating growth of a new axon and new dendrites.
Collapse
Affiliation(s)
- Matthew Shorey
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Michelle C Stone
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jenna Mandel
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
42
|
Kostyuk AI, Kokova AD, Podgorny OV, Kelmanson IV, Fetisova ES, Belousov VV, Bilan DS. Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia. Antioxidants (Basel) 2020; 9:E516. [PMID: 32545356 PMCID: PMC7346190 DOI: 10.3390/antiox9060516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypoxia is characterized by low oxygen content in the tissues. The central nervous system (CNS) is highly vulnerable to a lack of oxygen. Prolonged hypoxia leads to the death of brain cells, which underlies the development of many pathological conditions. Despite the relevance of the topic, different approaches used to study the molecular mechanisms of hypoxia have many limitations. One promising lead is the use of various genetically encoded tools that allow for the observation of intracellular parameters in living systems. In the first part of this review, we provide the classification of oxygen/hypoxia reporters as well as describe other genetically encoded reporters for various metabolic and redox parameters that could be implemented in hypoxia studies. In the second part, we discuss the advantages and disadvantages of the primary hypoxia model systems and highlight inspiring examples of research in which these experimental settings were combined with genetically encoded reporters.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
43
|
Nye DMR, Albertson RM, Weiner AT, Hertzler JI, Shorey M, Goberdhan DCI, Wilson C, Janes KA, Rolls MM. The receptor tyrosine kinase Ror is required for dendrite regeneration in Drosophila neurons. PLoS Biol 2020; 18:e3000657. [PMID: 32163406 PMCID: PMC7067388 DOI: 10.1371/journal.pbio.3000657] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
While many regulators of axon regeneration have been identified, very little is known about mechanisms that allow dendrites to regenerate after injury. Using a Drosophila model of dendrite regeneration, we performed a candidate screen of receptor tyrosine kinases (RTKs) and found a requirement for RTK-like orphan receptor (Ror). We confirmed that Ror was required for regeneration in two different neuron types using RNA interference (RNAi) and mutants. Ror was not required for axon regeneration or normal dendrite development, suggesting a specific role in dendrite regeneration. Ror can act as a Wnt coreceptor with frizzleds (fzs) in other contexts, so we tested the involvement of Wnt signaling proteins in dendrite regeneration. We found that knockdown of fz, dishevelled (dsh), Axin, and gilgamesh (gish) also reduced dendrite regeneration. Moreover, Ror was required to position dsh and Axin in dendrites. We recently found that Wnt signaling proteins, including dsh and Axin, localize microtubule nucleation machinery in dendrites. We therefore hypothesized that Ror may act by regulating microtubule nucleation at baseline and during dendrite regeneration. Consistent with this hypothesis, localization of the core nucleation protein γTubulin was reduced in Ror RNAi neurons, and this effect was strongest during dendrite regeneration. In addition, dendrite regeneration was sensitive to partial reduction of γTubulin. We conclude that Ror promotes dendrite regeneration as part of a Wnt signaling pathway that regulates dendritic microtubule nucleation.
Collapse
Affiliation(s)
- Derek M. R. Nye
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- MSTP Program, Milton S. Hershey College of Medicine, Hershey, Pennsylvania, United States of America
| | - Richard M. Albertson
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- MSTP Program, Milton S. Hershey College of Medicine, Hershey, Pennsylvania, United States of America
| | - Alexis T. Weiner
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - J. Ian Hertzler
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew Shorey
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | | | - Clive Wilson
- Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kevin A. Janes
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Melissa M. Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
44
|
Major S, Huo S, Lemale CL, Siebert E, Milakara D, Woitzik J, Gertz K, Dreier JP. Direct electrophysiological evidence that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura and a review of the spreading depolarization continuum of acute neuronal mass injury. GeroScience 2020; 42:57-80. [PMID: 31820363 PMCID: PMC7031471 DOI: 10.1007/s11357-019-00142-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Spreading depolarization is observed as a large negative shift of the direct current potential, swelling of neuronal somas, and dendritic beading in the brain's gray matter and represents a state of a potentially reversible mass injury. Its hallmark is the abrupt, massive ion translocation between intraneuronal and extracellular compartment that causes water uptake (= cytotoxic edema) and massive glutamate release. Dependent on the tissue's energy status, spreading depolarization can co-occur with different depression or silencing patterns of spontaneous activity. In adequately supplied tissue, spreading depolarization induces spreading depression of activity. In severely ischemic tissue, nonspreading depression of activity precedes spreading depolarization. The depression pattern determines the neurological deficit which is either spreading such as in migraine aura or migraine stroke or nonspreading such as in transient ischemic attack or typical stroke. Although a clinical distinction between spreading and nonspreading focal neurological deficits is useful because they are associated with different probabilities of permanent damage, it is important to note that spreading depolarization, the neuronal injury potential, occurs in all of these conditions. Here, we first review the scientific basis of the continuum of spreading depolarizations. Second, we highlight the transition zone of the continuum from reversibility to irreversibility using clinical cases of aneurysmal subarachnoid hemorrhage and cerebral amyloid angiopathy. These illustrate how modern neuroimaging and neuromonitoring technologies increasingly bridge the gap between basic sciences and clinic. For example, we provide direct electrophysiological evidence for the first time that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura.
Collapse
Affiliation(s)
- Sebastian Major
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shufan Huo
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eberhard Siebert
- Department of Neuroradiology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Denny Milakara
- Solution Centre for Image Guided Local Therapies (STIMULATE), Otto-von-Guericke-University, Magdeburg, Germany
| | - Johannes Woitzik
- Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Karen Gertz
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens P Dreier
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| |
Collapse
|
45
|
Tuttle A, Riera Diaz J, Mori Y. A computational study on the role of glutamate and NMDA receptors on cortical spreading depression using a multidomain electrodiffusion model. PLoS Comput Biol 2019; 15:e1007455. [PMID: 31790388 PMCID: PMC6907880 DOI: 10.1371/journal.pcbi.1007455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/12/2019] [Accepted: 10/02/2019] [Indexed: 11/25/2022] Open
Abstract
Cortical spreading depression (SD) is a spreading disruption of ionic homeostasis in the brain during which neurons experience complete and prolonged depolarizations. SD is the basis of migraine aura and is increasingly associated with many other brain pathologies. Here, we study the role of glutamate and NMDA receptor dynamics in the context of an ionic electrodiffusion model. We perform simulations in one (1D) and two (2D) spatial dimension. Our 1D simulations reproduce the "inverted saddle" shape of the extracellular voltage signal for the first time. Our simulations suggest that SD propagation depends on two overlapping mechanisms; one dependent on extracellular glutamate diffusion and NMDA receptors and the other dependent on extracellular potassium diffusion and persistent sodium channel conductance. In 2D simulations, we study the dynamics of spiral waves. We study the properties of the spiral waves in relation to the planar 1D wave, and also compute the energy expenditure associated with the recurrent SD spirals.
Collapse
Affiliation(s)
- Austin Tuttle
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jorge Riera Diaz
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States of America
| | - Yoichiro Mori
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
46
|
Kirchner T, Gröhl J, Herrera MA, Adler T, Hernández-Aguilera A, Santos E, Maier-Hein L. Photoacoustics can image spreading depolarization deep in gyrencephalic brain. Sci Rep 2019; 9:8661. [PMID: 31209253 PMCID: PMC6572820 DOI: 10.1038/s41598-019-44935-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/29/2019] [Indexed: 11/09/2022] Open
Abstract
Spreading depolarization (SD) is a self-propagating wave of near-complete neuronal depolarization that is abundant in a wide range of neurological conditions, including stroke. SD was only recently documented in humans and is now considered a therapeutic target for brain injury, but the mechanisms related to SD in complex brains are not well understood. While there are numerous approaches to interventional imaging of SD on the exposed brain surface, measuring SD deep in brain is so far only possible with low spatiotemporal resolution and poor contrast. Here, we show that photoacoustic imaging enables the study of SD and its hemodynamics deep in the gyrencephalic brain with high spatiotemporal resolution. As rapid neuronal depolarization causes tissue hypoxia, we achieve this by continuously estimating blood oxygenation with an intraoperative hybrid photoacoustic and ultrasonic imaging system. Due to its high resolution, promising imaging depth and high contrast, this novel approach to SD imaging can yield new insights into SD and thereby lead to advances in stroke, and brain injury research.
Collapse
Affiliation(s)
- Thomas Kirchner
- Division of Computer Assisted Medical Interventions, German Cancer Research Center, Heidelberg, Germany.
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
| | - Janek Gröhl
- Division of Computer Assisted Medical Interventions, German Cancer Research Center, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Mildred A Herrera
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Tim Adler
- Division of Computer Assisted Medical Interventions, German Cancer Research Center, Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
| | | | - Edgar Santos
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Lena Maier-Hein
- Division of Computer Assisted Medical Interventions, German Cancer Research Center, Heidelberg, Germany.
- Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
47
|
Povysheva N, Nigam A, Brisbin AK, Johnson JW, Barrionuevo G. Oxygen-Glucose Deprivation Differentially Affects Neocortical Pyramidal Neurons and Parvalbumin-Positive Interneurons. Neuroscience 2019; 412:72-82. [PMID: 31152933 DOI: 10.1016/j.neuroscience.2019.05.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/02/2019] [Accepted: 05/21/2019] [Indexed: 11/28/2022]
Abstract
Stroke is a devastating brain disorder. The pathophysiology of stroke is associated with an impaired excitation-inhibition balance in the area that surrounds the infarct core after the insult, the peri-infarct zone. Here we exposed slices from adult mouse prefrontal cortex to oxygen-glucose deprivation and reoxygenation (OGD-RO) to study ischemia-induced changes in the activity of excitatory pyramidal neurons and inhibitory parvalbumin (PV)-positive interneurons. We found that during current-clamp recordings, PV-positive interneurons were more vulnerable to OGD-RO than pyramidal neurons as indicated by the lower percentage of recovery of PV-positive interneurons. However, neither the amplitude of OGD-induced depolarization observed in current-clamp mode nor the OGD-associated current observed in voltage-clamp mode differed between the two cell types. Large amplitude, presumably action-potential dependent, spontaneous postsynaptic inhibitory currents recorded from pyramidal neurons were less frequent after OGD-RO than in control condition. Disynaptic inhibitory postsynaptic currents (dIPSCs) in pyramidal neurons produced predominantly by PV-positive interneurons were reduced by OGD-RO. Following OGD-RO, dendrites of PV-positive interneurons exhibited more pathological beading than those of pyramidal neurons. Our data support the hypothesis that the differential vulnerability to ischemia-like conditions of excitatory and inhibitory neurons leads to the altered excitation-inhibition balance associated with stroke pathophysiology.
Collapse
Affiliation(s)
- Nadya Povysheva
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Aparna Nigam
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Alyssa K Brisbin
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Germán Barrionuevo
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
48
|
Zhao HH, Du H, Cai Y, Liu C, Xie Z, Chen KC. Time-resolved quantification of the dynamic extracellular space in the brain: study of cortical spreading depression. J Neurophysiol 2019; 121:1735-1747. [PMID: 30786223 DOI: 10.1152/jn.00348.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular diffusion in the brain is customarily characterized by two parameters, the extracellular space (ECS) volume fraction α and the diffusion tortuosity λ. How these two parameters are temporarily modified and correlated in a physiological/pathological event remains unclear to date. Using tetramethylammonium (TMA+) as an ECS ion tracer in a newly updated iontophoretic sinusoidal method, we studied in this work the dynamic α(t) and λ(t) in rat somatosensory cortex during spreading depression (SD). Temporal variations of α(t) and λ(t), as evoked by SD, were obtained through analyses of the extracellular TMA+ diffusion waveform resulting from a sinusoidally modulated point source. Most of the time, cortical SD induced coordinated α(t) decreases and λ(t) increases. In rare occasions, SD induced sole decreases of α(t) with no changes in λ(t). The independent modulation of α(t) and λ(t) was neither associated with cortical anatomy nor with the specific shape of the SD field potential wave. Changes of α(t) and λ(t) often took place acutely at the onset of SD, followed by a more transient modulation. Compared with the prior iontophoretic methods of TMA+, the sinusoidal method provides time-resolved quantification of α(t) and λ(t) in relative terms but also raises a higher property requirement on the TMA+-selective microelectrode. The sinusoidal method could become a valuable tool in the studies of the dynamic ECS response in various brain events. NEW & NOTEWORTHY An iontophoretic sinusoidal method was applied to study the dynamic changes of two extracellular space parameters, the extracellular volume fraction α(t) and tortuosity λ(t), in the brain during cortical spreading depression. Both parameters showed coordinated (most often) and independent (rarely) modulations in spreading depression. The sinusoidal method is equally applicable to other acute pathological events and a valuable tool to study the functional role of extracellular space in brain events.
Collapse
Affiliation(s)
- Hui-Hui Zhao
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China
| | - Hong Du
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China
| | - Yujie Cai
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China
| | - Chao Liu
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China
| | - Zeyu Xie
- Neurosurgery Division, Second Affiliated Hospital of the School of Medicine, Shantou University , Shantou, Guangdong , China
| | - Kevin C Chen
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China.,Department of Biomedical Engineering, Shantou University , Shantou, Guangdong , China
| |
Collapse
|
49
|
Yang Y, Lu J, Zuo Y. Changes of Synaptic Structures Associated with Learning, Memory and Diseases. BRAIN SCIENCE ADVANCES 2019. [DOI: 10.26599/bsa.2018.2018.9050012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Synaptic plasticity is widely believed to be the cellular basis of learning and memory. It is influenced by various factors including development, sensory experiences, and brain disorders. Long-term synaptic plasticity is accompanied by protein synthesis and trafficking, leading to structural changes of the synapse. In this review, we focus on the synaptic structural plasticity, which has mainly been studied with in vivo two-photon laser scanning microscopy. We also discuss how a special type of synapses, the multi-contact synapses (including those formed by multi-synaptic boutons and multi-synaptic spines), are associated with experience and learning.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
50
|
Juzekaeva E, Gainutdinov A, Mukhtarov M, Khazipov R. Dynamics of the Hypoxia-Induced Tissue Edema in the Rat Barrel Cortex in vitro. Front Cell Neurosci 2019; 12:502. [PMID: 30618644 PMCID: PMC6305551 DOI: 10.3389/fncel.2018.00502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/04/2018] [Indexed: 01/23/2023] Open
Abstract
Cerebral edema is a major, life threatening complication of ischemic brain damage. Previous studies using brain slices have revealed that cellular swelling and a concomitant increase in tissue transparency starts within minutes of the onset of metabolic insult in association with collective anoxic spreading depolarization (aSD). However, the dynamics of tissue swelling in brain slices under ischemia-like conditions remain elusive. Here, we explored the dynamics of brain tissue swelling induced by oxygen-glucose deprivation (OGD) in submerged rat barrel cortex slices. Video monitoring of the vertical and horizontal position of fluorescent dye-filled neurons and contrast slice surface imaging revealed elevation of the slice surface and a horizontal displacement of the cortical tissue during OGD. The OGD-induced tissue movement was also associated with an expansion of the slice borders. Tissue swelling started several minutes after aSD and continued during reperfusion with normal solution. Thirty minutes after aSD, slice borders had expanded by ~130 μm and the slice surface had moved up to attain a height of ~70 μm above control levels, which corresponded to a volume increase of ~30%. Hyperosmotic sucrose solution partially reduced the OGD-induced slice swelling. Thus, OGD-induced cortical slice tissue swelling in brain slices in vitro recapitulates many features of ischemic cerebral edema in vivo, its onset is tightly linked to aSD and it develops at a relatively slow pace after aSD. We propose that this model of cerebral edema in vitro could be useful for the exploration of the pathophysiological mechanisms underlying ischemic cerebral edema and in the search for an efficient treatment to this devastating condition.
Collapse
Affiliation(s)
- Elvira Juzekaeva
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Azat Gainutdinov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Marat Mukhtarov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Roustem Khazipov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Aix Marseille Univ, INSERM, INMED, Marseille, France
| |
Collapse
|