1
|
Zheng G, Xu M, Dong Z, Abdelrahman Z, Wang X. Meta-analysis reveals an inverse relationship between Alzheimer's disease and cancer. Behav Brain Res 2025; 478:115327. [PMID: 39521145 DOI: 10.1016/j.bbr.2024.115327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Recent reports have suggested an inverse relationship between Alzheimer's disease (AD) and cancer, although the underlying mechanism remains unclear. We performed an epidemiological meta-analysis to assess cancer likelihood in AD patients and vice versa and explored the role of APOE in tumor immunity across 33 The Cancer Genome Atlas (TCGA) cancer types. Our analysis revealed that people with AD are epidemiologically less likely to develop cancer than individuals without AD (RR: 0.53), and cancer patients are less likely to develop AD than non-cancer patients (RR: 0.61). Notably, APOE expression was positively associated with anti-tumor immune signatures and prevalent in early-stage tumors. This research reveals that AD patients are less likely to develop cancer and vice versa, pinpoints APOE gene as a risk factor for AD with anti-tumor activity, and provides new insight into the epidemiologically observed inverse relationship between both diseases.
Collapse
Affiliation(s)
- Gui Zheng
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Mengli Xu
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Zehua Dong
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Zeinab Abdelrahman
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast BT12 6BA, UK.
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Sghaier I, Kacem I, Ratti A, Takout K, Abida Y, Peverelli S, Ticozzi N, Gargouri-Berrachid A, Silani V, Gouider R. Impact of APOE and MAPT genetic profile on the cognitive functions among Amyotrophic Lateral Sclerosis Tunisian patients. J Neural Transm (Vienna) 2025:10.1007/s00702-024-02870-3. [PMID: 39751824 DOI: 10.1007/s00702-024-02870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
Amyotrophic Lateral Sclerosis(ALS) has traditionally been managed as a neuromuscular disorder. However, recent evidence suggests involvement of non-motor domains. This study aims to evaluate the impact of APOE and MAPT genotypes on the cognitive features of ALS. We included confirmed ALS cases from the Neurology department at Razi University Hospital, Tunisia. APOE and MAPT screening were conducted with Sanger sequencing validation, and preliminary screening for four main ALS genes was performed. Clinical phenotypes and genotypes were analyzed using appropriate tests, with healthy controls (HC) representing the Tunisian population. Two-hundred-seventy ALS patients were included, stratified as 213 spinal cases,49 with bulbar onset and 8 patients with generalized form with 140 HC. Regarding APOE, we reported high frequency of ALS cases carrier of APOE-ε4 isoform compared to controls(p < 0.0001).We found a significant association between APOE-ɛ4 and ALS onset site (p = 0.05,r = 0.33),with higher frequencies in bulbar onset patients. Cognitive signs were more frequent in ɛ4 carriers (r = 0.43,p < 0.01),and a significant link was observed between dysexecutive functions and the APOE risk allele (p = 0.0495).Concerning the MAPT haplotypes, we reported high frequency of ALS cases carrier of MAPT H1-haplotype HC (94.45% and 72.14% respectively, p < 0.001).Among ALS cases,MAPT-H1 showed a stronger positive correlation with the presence of oculomotor signs(p = 0.05,r = 0.28).As well as significant positive association between cognitive impairments(p = 0.039,r = 0.59). Our findings emphasize the correlation between APOE and MAPT genotypes and the cognitive features in our ALS patients. We also observed other interesting, though weak, significant correlations (with coefficients not exceeding 0.20),which require further validation in a larger cohort to confirm our results.
Collapse
Affiliation(s)
- Ikram Sghaier
- Neurology Department, LR18SP03, Razi University Hospital, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, Tunis, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Arian, Manouba, Tunisia
| | - Imen Kacem
- Neurology Department, LR18SP03, Razi University Hospital, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Universita degli Studi di Milano, Milan, Italy
| | - Khouloud Takout
- Neurology Department, LR18SP03, Razi University Hospital, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, Tunis, Tunisia
| | - Youssef Abida
- Neurology Department, LR18SP03, Razi University Hospital, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Silvia Peverelli
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Universita degli Studi di Milano, Milan, Italy
| | - Amina Gargouri-Berrachid
- Neurology Department, LR18SP03, Razi University Hospital, Tunis, Tunisia
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Universita degli Studi di Milano, Milan, Italy
| | - Riadh Gouider
- Neurology Department, LR18SP03, Razi University Hospital, Tunis, Tunisia.
- Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, Tunis, Tunisia.
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
3
|
Preman P, Moechars D, Fertan E, Wolfs L, Serneels L, Shah D, Lamote J, Poovathingal S, Snellinx A, Mancuso R, Balusu S, Klenerman D, Arranz AM, Fiers M, De Strooper B. APOE from astrocytes restores Alzheimer's Aβ-pathology and DAM-like responses in APOE deficient microglia. EMBO Mol Med 2024; 16:3113-3141. [PMID: 39528861 PMCID: PMC11628604 DOI: 10.1038/s44321-024-00162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The major genetic risk factor for Alzheimer's disease (AD), APOE4, accelerates beta-amyloid (Aβ) plaque formation, but whether this is caused by APOE expressed in microglia or astrocytes is debated. We express here the human APOE isoforms in astrocytes in an Apoe-deficient AD mouse model. This is not only sufficient to restore the amyloid plaque pathology but also induces the characteristic transcriptional pathological responses in Apoe-deficient microglia surrounding the plaques. We find that both APOE4 and the protective APOE2 from astrocytes increase fibrillar plaque deposition, but differentially affect soluble Aβ aggregates. Microglia and astrocytes show specific alterations in function of APOE genotype expressed in astrocytes. Our experiments indicate a central role of the astrocytes in APOE mediated amyloid plaque pathology and in the induction of associated microglia responses.
Collapse
Affiliation(s)
- Pranav Preman
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Daan Moechars
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Leen Wolfs
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Lutgarde Serneels
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Disha Shah
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Jochen Lamote
- VIB FACS Expertise Center, Center for Cancer Biology, Leuven, Belgium
| | | | - An Snellinx
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB-UAntwerp, Centre for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sriram Balusu
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Amaia M Arranz
- Laboratory of Humanized Models of Disease, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Mark Fiers
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
- UK Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
4
|
Laslo A, Laslo L, Arbănași EM, Ujlaki-Nagi AA, Chinezu L, Ivănescu AD, Arbănași EM, Cărare RO, Cordoș BA, Popa IA, Brînzaniuc K. Pathways to Alzheimer's Disease: The Intersecting Roles of Clusterin and Apolipoprotein E in Amyloid-β Regulation and Neuronal Health. PATHOPHYSIOLOGY 2024; 31:545-558. [PMID: 39449522 PMCID: PMC11503414 DOI: 10.3390/pathophysiology31040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
One of the hallmarks of Alzheimer's disease (AD) is the deposition of amyloid-β (Aβ) within the extracellular spaces of the brain as plaques and along the blood vessels in the brain, a condition also known as cerebral amyloid angiopathy (CAA). Clusterin (CLU), or apolipoprotein J (APOJ), is a multifunctional glycoprotein that has a role in many physiological and neurological conditions, including AD. The apolipoprotein E (APOE) is a significant genetic factor in AD, and while the primary physiological role of APOE in the brain and peripheral tissues is to regulate lipid transport, it also participates in various other biological processes, having three basic human forms: APOE2, APOE3, and APOE4. Notably, the APOE4 allele substantially increases the risk of developing late-onset AD. The main purpose of this review is to examine the roles of CLU and APOE in AD pathogenesis in order to acquire a better understanding of AD pathogenesis from which to develop targeted therapeutic approaches.
Collapse
Affiliation(s)
- Alexandru Laslo
- Department of Urology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Laura Laslo
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (L.L.); (B.A.C.)
| | - Eliza-Mihaela Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | | | - Laura Chinezu
- Department of Histology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Adrian Dumitru Ivănescu
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
| | - Emil-Marian Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | | | - Bogdan Andrei Cordoș
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (L.L.); (B.A.C.)
- Centre for Experimental Medical and Imaging Studies, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Ioana Adriana Popa
- Clinic of Radiology, Mures County Emergency Hospital, 540136 Targu Mures, Romania;
| | - Klara Brînzaniuc
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
| |
Collapse
|
5
|
Chen F, Zhao J, Meng F, He F, Ni J, Fu Y. The vascular contribution of apolipoprotein E to Alzheimer's disease. Brain 2024; 147:2946-2965. [PMID: 38748848 DOI: 10.1093/brain/awae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease, the most prevalent form of dementia, imposes a substantial societal burden. The persistent inadequacy of disease-modifying drugs targeting amyloid plaques and neurofibrillary tangles suggests the contribution of alternative pathogenic mechanisms. A frequently overlooked aspect is cerebrovascular dysfunction, which may manifest early in the progression of Alzheimer's disease pathology. Mounting evidence underscores the pivotal role of the apolipoprotein E gene, particularly the apolipoprotein ε4 allele as the strongest genetic risk factor for late-onset Alzheimer's disease, in the cerebrovascular pathology associated with Alzheimer's disease. In this review, we examine the evidence elucidating the cerebrovascular impact of both central and peripheral apolipoprotein E on the pathogenesis of Alzheimer's disease. We present a novel three-hit hypothesis, outlining potential mechanisms that shed light on the intricate relationship among different pathogenic events. Finally, we discuss prospective therapeutics targeting the cerebrovascular pathology associated with apolipoprotein E and explore their implications for future research endeavours.
Collapse
Affiliation(s)
- Feng Chen
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Fanxia Meng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jie Ni
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuan Fu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
6
|
Blades B, Hung YH, Belaidi AA, Volitakis I, Schultz AG, Cater MA, Cheung NS, Bush AI, Ayton S, La Fontaine S. Impaired cellular copper regulation in the presence of ApoE4. J Neurochem 2024; 168:3284-3307. [PMID: 39135362 DOI: 10.1111/jnc.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 10/04/2024]
Abstract
The strongest genetic risk factor for late-onset Alzheimer's disease (AD) is allelic variation of the APOE gene, with the following risk structure: ε4 > ε3 > ε2. The biochemical basis for this risk profile is unclear. Here, we reveal a new role for the APOE gene product, apolipoprotein E (ApoE) in regulating cellular copper homeostasis, which is perturbed in the AD brain. Exposure of ApoE target replacement (TR) astrocytes (immortalised astrocytes from APOE knock-in mice) to elevated copper concentrations resulted in exacerbated copper accumulation in ApoE4- compared to ApoE2- and ApoE3-TR astrocytes. This effect was also observed in SH-SY5Y neuroblastoma cells treated with conditioned medium from ApoE4-TR astrocytes. Increased intracellular copper levels in the presence of ApoE4 may be explained by reduced levels and delayed trafficking of the copper transport protein, copper-transporting ATPase 1 (ATP7A/Atp7a), potentially leading to impaired cellular copper export. This new role for ApoE in copper regulation lends further biochemical insight into how APOE genotype confers risk for AD and reveals a potential contribution of ApoE4 to the copper dysregulation that is a characteristic pathological feature of the AD brain.
Collapse
Affiliation(s)
- Bryce Blades
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Ya Hui Hung
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Abdel A Belaidi
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Irene Volitakis
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Aaron G Schultz
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Michael A Cater
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Nam Sang Cheung
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Ashley I Bush
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Scott Ayton
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Sharon La Fontaine
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Shen H, Liu K, Kong F, Ren M, Wang X, Wang S. Strategies for measuring concentrations and forms of amyloid-β peptides. Biosens Bioelectron 2024; 259:116405. [PMID: 38776801 DOI: 10.1016/j.bios.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is affecting more and more people worldwide without the effective treatment, while the existed pathological mechanism has been confirmed barely useful in the treatment. Amyloid-β peptide (Aβ), a main component of senile plaque, is regarded as the most promising target in AD treatment. Aβ clearance from AD brain seems to be a reliably therapeutic strategy, as the two exited drugs, GV-971 and aducanumab, are both developed based on it. However, doubt still exists. To exhaustive expound on the pathological mechanism of Aβ, rigorous analyses on the concentrations and aggregation forms are essential. Thus, it is attracting broad attention these years. However, most of the sensors have not been used in pathological studies, as the lack of the bridge between analytical chemist and pathologists. In this review, we made a brief introduce on Aβ-related pathological mechanism included in β-amyloid hypothesis to elucidate the detection conditions of sensor methods. Furthermore, a summary of the sensor methods was made, which were based on Aβ concentrations and form detections that have been developed in the past 10 years. As the greatest number of the sensors were built on fluorescent spectroscopy, electrochemistry, and Roman spectroscopy, detailed elucidation on them was made. Notably, the aggregation process is another important factor in revealing the progress of AD and developing the treatment methods, so the sensors on monitoring Aβ aggregation processes were also summarized.
Collapse
Affiliation(s)
- Hangyu Shen
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Keyin Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Mingguang Ren
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Xiaoying Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China; Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong, 264333, PR China.
| | - Shoujuan Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China.
| |
Collapse
|
8
|
Kreutzer E, Short JL, Nicolazzo JA. Effect of Apolipoprotein E isoforms on the Abundance and Function of P-glycoprotein in Human Brain Microvascular Endothelial Cells. Pharm Res 2024; 41:1427-1441. [PMID: 38937373 PMCID: PMC11263236 DOI: 10.1007/s11095-024-03731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Individuals with Alzheimer's disease (AD) often require many medications; however, these medications are dosed using regimens recommended for individuals without AD. This is despite reduced abundance and function of P-glycoprotein (P-gp) at the blood-brain barrier (BBB) in AD, which can impact brain exposure of drugs. The fundamental mechanisms leading to reduced P-gp abundance in sporadic AD remain unknown; however, it is known that the apolipoprotein E (apoE) gene has the strongest genetic link to sporadic AD development, and apoE isoforms can differentially alter BBB function. The aim of this study was to assess if apoE affects P-gp abundance and function in an isoform-dependent manner using a human cerebral microvascular endothelial cell (hCMEC/D3) model. METHODS This study assessed the impact of apoE isoforms on P-gp abundance (by western blot) and function (by rhodamine 123 (R123) uptake) in hCMEC/D3 cells. Cells were exposed to recombinant apoE3 and apoE4 at 2 - 10 µg/mL over 24 - 72 hours. hCMEC/D3 cells were also exposed for 72 hours to astrocyte-conditioned media (ACM) from astrocytes expressing humanised apoE isoforms. RESULTS P-gp abundance in hCMEC/D3 cells was not altered by recombinant apoE4 relative to recombinant apoE3, nor did ACM containing human apoE isoforms alter P-gp abundance. R123 accumulation in hCMEC/D3 cells was also unchanged with recombinant apoE isoform treatments, suggesting no change to P-gp function, despite both abundance and function being altered by positive controls SR12813 (5 µM) and PSC 833 (5 µM), respectively. CONCLUSIONS Different apoE isoforms have no direct influence on P-gp abundance or function within this model, and further in vivo studies would be required to address whether P-gp abundance or function are reduced in sporadic AD in an apoE isoform-specific manner.
Collapse
Affiliation(s)
- Ethan Kreutzer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Jennifer L Short
- Monash Centre for Advanced mRNA Medicines Manufacturing and Workforce Training, Monash University, Clayton, Victoria, 3800, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
9
|
Grenon MB, Papavergi MT, Bathini P, Sadowski M, Lemere CA. Temporal Characterization of the Amyloidogenic APPswe/PS1dE9;hAPOE4 Mouse Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:5754. [PMID: 38891941 PMCID: PMC11172317 DOI: 10.3390/ijms25115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating disorder with a global prevalence estimated at 55 million people. In clinical studies administering certain anti-beta-amyloid (Aβ) antibodies, amyloid-related imaging abnormalities (ARIAs) have emerged as major adverse events. The frequency of these events is higher among apolipoprotein ε4 allele carriers (APOE4) compared to non-carriers. To reflect patients most at risk for vascular complications of anti-Aβ immunotherapy, we selected an APPswe/PS1dE9 transgenic mouse model bearing the human APOE4 gene (APPPS1:E4) and compared it with the same APP/PS1 mouse model bearing the human APOE3 gene (APOE ε3 allele; APPPS1:E3). Using histological and biochemical analyses, we characterized mice at three ages: 8, 12, and 16 months. Female and male mice were assayed for general cerebral fibrillar and pyroglutamate (pGlu-3) Aβ deposition, cerebral amyloid angiopathy (CAA), microhemorrhages, apoE and cholesterol composition, astrocytes, microglia, inflammation, lysosomal dysfunction, and neuritic dystrophy. Amyloidosis, lipid deposition, and astrogliosis increased with age in APPPS1:E4 mice, while inflammation did not reveal significant changes with age. In general, APOE4 carriers showed elevated Aβ, apoE, reactive astrocytes, pro-inflammatory cytokines, microglial response, and neuritic dystrophy compared to APOE3 carriers at different ages. These results highlight the potential of the APPPS1:E4 mouse model as a valuable tool in investigating the vascular side effects associated with anti-amyloid immunotherapy.
Collapse
Affiliation(s)
- Martine B. Grenon
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
- Section Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Maria-Tzousi Papavergi
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Praveen Bathini
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
| | - Martin Sadowski
- Departments of Neurology, Psychiatry, and Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Cynthia A. Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
| |
Collapse
|
10
|
Naguib S, Torres ER, Lopez-Lee C, Fan L, Bhagwat M, Norman K, Lee SI, Zhu J, Ye P, Wong MY, Patel T, Mok SA, Luo W, Sinha S, Zhao M, Gong S, Gan L. APOE3-R136S mutation confers resilience against tau pathology via cGAS-STING-IFN inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591140. [PMID: 38712164 PMCID: PMC11071490 DOI: 10.1101/2024.04.25.591140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The Christchurch mutation (R136S) on the APOE3 (E3S/S) gene is associated with low tau pathology and slowdown of cognitive decline despite the causal PSEN1 mutation and high levels of amyloid beta pathology in the carrier1. However, the molecular effects enabling E3S/S mutation to confer protection remain unclear. Here, we replaced mouse Apoe with wild-type human E3 or E3S/S on a tauopathy background. The R136S mutation markedly mitigated tau load and protected against tau-induced synaptic loss, myelin loss, and spatial learning. Additionally, the R136S mutation reduced microglial interferon response to tau pathology both in vivo and in vitro, suppressing cGAS-STING activation. Treating tauopathy mice carrying wild-type E3 with cGAS inhibitor protected against tau-induced synaptic loss and induced similar transcriptomic alterations to those induced by the R136S mutation across brain cell types. Thus, cGAS-STING-IFN inhibition recapitulates the protective effects of R136S against tauopathy.
Collapse
Affiliation(s)
- Sarah Naguib
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Authors contributed equally
| | - Eileen Ruth Torres
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Authors contributed equally
| | - Chloe Lopez-Lee
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
- Authors contributed equally
| | - Li Fan
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Maitreyee Bhagwat
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Kendra Norman
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Se-In Lee
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Jingjie Zhu
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Pearly Ye
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Man Ying Wong
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Tark Patel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Wenjie Luo
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Subhash Sinha
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Mingrui Zhao
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Shiaoching Gong
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Li Gan
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| |
Collapse
|
11
|
Kondkar AA, Azad TA, Sultan T, Khatlani T, Alshehri AA, Radhakrishnan R, Lobo GP, Alsirhy E, Almobarak FA, Osman EA, Al-Obeidan SA. APOE ε2-Carriers Are Associated with an Increased Risk of Primary Angle-Closure Glaucoma in Patients of Saudi Origin. Int J Mol Sci 2024; 25:4571. [PMID: 38674156 PMCID: PMC11050284 DOI: 10.3390/ijms25084571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This study investigated the association between apolipoprotein E (APOE) gene polymorphisms (rs429358 and rs7412) and primary angle-closure glaucoma (PACG) and pseudoexfoliation glaucoma (PXG) in a Saudi cohort. Genotyping of 437 DNA samples (251 controls, 92 PACG, 94 PXG) was conducted using PCR-based Sanger sequencing. The results showed no significant differences in the allele and genotype frequencies of rs429358 and rs7412 between the PACG/PXG cases and controls. Haplotype analysis revealed ε3 as predominant, followed by ε4 and ε2 alleles, with no significant variance in PACG/PXG. However, APOE genotype analysis indicated a significant association between ε2-carriers and PACG (odds ratio = 4.82, 95% CI 1.52-15.26, p = 0.007), whereas no notable association was observed with PXG. Logistic regression confirmed ε2-carriers as a significant predictor for PACG (p = 0.008), while age emerged as significant for PXG (p < 0.001). These findings suggest a potential role of ε2-carriers in PACG risk within the Saudi cohort. Further validation and larger-scale investigations are essential to elucidate the precise role of APOE in PACG pathogenesis and progression.
Collapse
Affiliation(s)
- Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia (E.A.); (S.A.A.-O.)
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
- King Saud University Medical City, King Saud University, Riyadh 11411, Saudi Arabia
| | - Taif A. Azad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia (E.A.); (S.A.A.-O.)
| | - Tahira Sultan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia (E.A.); (S.A.A.-O.)
| | - Tanvir Khatlani
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Abdulaziz A. Alshehri
- Department of Ophthalmology, Imam Abdulrahman Alfaisal Hospital, Riyadh 14723, Saudi Arabia
| | - Rakesh Radhakrishnan
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55347, USA; (R.R.)
| | - Glenn P. Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55347, USA; (R.R.)
| | - Ehab Alsirhy
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia (E.A.); (S.A.A.-O.)
| | - Faisal A. Almobarak
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia (E.A.); (S.A.A.-O.)
| | - Essam A. Osman
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia (E.A.); (S.A.A.-O.)
| | - Saleh A. Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia (E.A.); (S.A.A.-O.)
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| |
Collapse
|
12
|
Nasri A, Sghaier I, Neji A, Gharbi A, Abida Y, Mrabet S, Gargouri A, Djebara MB, Kacem I, Gouider R. Phenotypic Spectrum of Progressive Supranuclear Palsy: Clinical Study and Apolipoprotein E Effect. J Mov Disord 2024; 17:158-170. [PMID: 38290492 PMCID: PMC11082606 DOI: 10.14802/jmd.23178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/08/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVE Progressive supranuclear palsy (PSP) is a rare neurodegenerative disorder encompassing several phenotypes with various motor and cognitive deficits. We aimed to study motor and cognitive characteristics across PSP phenotypes and to assess the influence of apolipoprotein E (APOE) gene variants on PSP phenotypic expression. METHODS In this 20-year cross-sectional study, we retrospectively reviewed the charts of all patients classified as PSP patients and recategorized them according to phenotype using the Movement Disorder Society criteria (2017). Phenotypes were divided into three subgroups, Richardson's syndrome (PSP-RS), PSP-cortical (PSP with predominant frontal presentation [PSP-F] + PSP with predominant speech/language disorder [PSP-SL] + PSP with predominant corticobasal syndrome [PSP-CBS]) and PSP-subcortical (PSP with predominant parkinsonism [PSP-P] + PSP with progressive gait freezing [PSP-PGF] + PSP with predominant postural instability [PSP-PI] + PSP with predominant ocular motor dysfunction [PSP-OM] + PSP with cerebellar ataxia [PSP-C] + PSP with primary lateral sclerosis [PSP-PLS]), based on clinical presentation during the first 3 years after symptom onset, which defines the early disease stage. Clinical and neuropsychological assessment data were collected. Genotyping of APOE was performed using restriction fragment length polymorphism polymerase chain reaction and verified by Sanger sequencing. RESULTS We included 112 PSP patients comprising 10 phenotypes classified into 48 PSP-RS, 34 PSP-cortical (PSP-CBS, 17.6%; PSP-F, 9.4%; PSP-SL, 8.2%) and 30 PSP-subcortical (PSP-P, 11.6%; PSP-PI, 8%; PSP-OM, 2.7%; PSP-PGF, 1.8%; PSP-C, 1.8%; PSP-PLS, 0.9%) subgroups. PSP-RS patients were older at disease onset (p = 0.009) and had more akinetic-rigid and levodopa-resistant parkinsonism (p = 0.006), while PSP-cortical patients had more tremors and asymmetric and/or levodopa-responsive parkinsonism (p = 0.025). Cognitive domains were significantly less altered in the PSP-subcortical subgroup. Overall, PSP-APOEε4 carriers developed parkinsonism earlier (p = 0.038), had earlier oculomotor dysfunction (p = 0.052) and had more altered cognitive profiles. The APOEε4 allele was also associated with a younger age of parkinsonism onset in the PSP-RS phenotype group (p = 0.026). CONCLUSION This study demonstrated the wide phenotypic spectrum of PSP among Tunisians. Disease onset and akinetic-rigid and levodopa-resistant parkinsonism were the hallmarks of the PSP-RS phenotype, while milder cognitive impairment was characteristic of the PSP-subcortical subgroup. The APOEε4 allele was associated with earlier parkinsonism and oculomotor dysfunction and seemed to play a role in defining a more altered cognitive profile in PSP patients.
Collapse
Affiliation(s)
- Amina Nasri
- Department of Neurology, LR18SP03, Razi University Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) “Neurosciences and Mental Health”, Razi University Hospital, Tunis, Tunisia
| | - Ikram Sghaier
- Department of Neurology, LR18SP03, Razi University Hospital, Tunis, Tunisia
- Clinical Investigation Center (CIC) “Neurosciences and Mental Health”, Razi University Hospital, Tunis, Tunisia
| | - Anis Neji
- Department of Neurology, LR18SP03, Razi University Hospital, Tunis, Tunisia
| | - Alya Gharbi
- Department of Neurology, LR18SP03, Razi University Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) “Neurosciences and Mental Health”, Razi University Hospital, Tunis, Tunisia
| | - Youssef Abida
- Department of Neurology, LR18SP03, Razi University Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) “Neurosciences and Mental Health”, Razi University Hospital, Tunis, Tunisia
| | - Saloua Mrabet
- Department of Neurology, LR18SP03, Razi University Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) “Neurosciences and Mental Health”, Razi University Hospital, Tunis, Tunisia
| | - Amina Gargouri
- Department of Neurology, LR18SP03, Razi University Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) “Neurosciences and Mental Health”, Razi University Hospital, Tunis, Tunisia
| | - Mouna Ben Djebara
- Department of Neurology, LR18SP03, Razi University Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) “Neurosciences and Mental Health”, Razi University Hospital, Tunis, Tunisia
| | - Imen Kacem
- Department of Neurology, LR18SP03, Razi University Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) “Neurosciences and Mental Health”, Razi University Hospital, Tunis, Tunisia
| | - Riadh Gouider
- Department of Neurology, LR18SP03, Razi University Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC) “Neurosciences and Mental Health”, Razi University Hospital, Tunis, Tunisia
| |
Collapse
|
13
|
Komai M, Noda Y, Ikeda A, Kaneshiro N, Kamikubo Y, Sakurai T, Uehara T, Takasugi N. Nuclear SphK2/S1P signaling is a key regulator of ApoE production and Aβ uptake in astrocytes. J Lipid Res 2024; 65:100510. [PMID: 38280459 PMCID: PMC10907773 DOI: 10.1016/j.jlr.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
The link between changes in astrocyte function and the pathological progression of Alzheimer's disease (AD) has attracted considerable attention. Interestingly, activated astrocytes in AD show abnormalities in their lipid content and metabolism. In particular, the expression of apolipoprotein E (ApoE), a lipid transporter, is decreased. Because ApoE has anti-inflammatory and amyloid β (Aβ)-metabolizing effects, the nuclear receptors, retinoid X receptor (RXR) and LXR, which are involved in ApoE expression, are considered promising therapeutic targets for AD. However, the therapeutic effects of agents targeting these receptors are limited or vary considerably among groups, indicating the involvement of an unknown pathological factor that modifies astrocyte and ApoE function. Here, we focused on the signaling lipid, sphingosine-1-phosphate (S1P), which is mainly produced by sphingosine kinase 2 (SphK2) in the brain. Using astrocyte models, we found that upregulation of SphK2/S1P signaling suppressed ApoE induction by both RXR and LXR agonists. We also found that SphK2 activation reduced RXR binding to the APOE promoter region in the nucleus, suggesting the nuclear function of SphK2/S1P. Intriguingly, suppression of SphK2 activity by RNA knockdown or specific inhibitors upregulated lipidated ApoE induction. Furthermore, the induced ApoE facilitates Aβ uptake in astrocytes. Together with our previous findings that SphK2 activity is upregulated in AD brain and promotes Aβ production in neurons, these results indicate that SphK2/S1P signaling is a promising multifunctional therapeutic target for AD that can modulate astrocyte function by stabilizing the effects of RXR and LXR agonists, and simultaneously regulate neuronal pathogenesis.
Collapse
Affiliation(s)
- Masato Komai
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan; Research Fellow of Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Yuka Noda
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Atsuya Ikeda
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Nanaka Kaneshiro
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Yuji Kamikubo
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan; Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan.
| |
Collapse
|
14
|
Chen H, Zhao S, Jian Q, Yan Y, Wang S, Zhang X, Ji Y. The role of ApoE in fatty acid transport from neurons to astrocytes under ischemia/hypoxia conditions. Mol Biol Rep 2024; 51:320. [PMID: 38393618 DOI: 10.1007/s11033-023-08921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND The aim of this study was to investigate whether ischemia/hypoxia conditions induce fatty acid transport from neurons to astrocytes and whether this mechanism is affected by ApoE isoforms. METHODS AND RESULTS A neonatal rat model of hypoxic-ischemic brain damage was established. Excessive accumulation of lipid droplets and upregulation of ApoE expression occurred in the hippocampus and cerebral cortex after hypoxia-ischemia, which implied the occurrence of abnormal fatty acid metabolism. Lipid peroxidation was induced in an oxygen-glucose deprivation and reperfusion (OGDR) model of ApoE-/- primary neurons. The number of BODIPY 558/568 C12-positive particles (fatty acid markers) transferred from neurons to astrocytes was significantly increased with the addition of human recombinant ApoE compared with that in the OGDR group, which significantly increased the efficiency of fatty acid transport from neurons to astrocytes and neuronal viability. However, ApoE4 was found to be associated with lower efficiency in fatty acid transport and less protective effects in OGDR-induced neuronal cell death than both ApoE2 and ApoE3. COG133, an ApoE-mimetic peptide, partially compensated for the adverse effects of ApoE4. FABP5 and SOD1 gene and protein expression levels were upregulated in astrocytes treated with BODIPY 558/568 C12 particles. CONCLUSIONS In conclusion, ApoE plays an important role in mediating the transport of fatty acids from neurons to astrocytes under ischemia/hypoxia conditions, and this transport mechanism is ApoE isoform dependent. ApoE4 has a low transfer efficiency and may be a potential target for the clinical treatment of neonatal hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Hongyan Chen
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China
| | - Shaozhi Zhao
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China
| | - Qiang Jian
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China
| | - Yinfang Yan
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China
| | - Simin Wang
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China
| | - Xinwen Zhang
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China.
| | - Yuqiang Ji
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China.
| |
Collapse
|
15
|
Belaidi AA, Masaldan S, Southon A, Kalinowski P, Acevedo K, Appukuttan AT, Portbury S, Lei P, Agarwal P, Leurgans SE, Schneider J, Conrad M, Bush AI, Ayton S. Apolipoprotein E potently inhibits ferroptosis by blocking ferritinophagy. Mol Psychiatry 2024; 29:211-220. [PMID: 35484240 PMCID: PMC9757994 DOI: 10.1038/s41380-022-01568-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 02/08/2023]
Abstract
Allelic variation to the APOE gene confers the greatest genetic risk for sporadic Alzheimer's disease (AD). Independent of genotype, low abundance of apolipoprotein E (apoE), is characteristic of AD CSF, and predicts cognitive decline. The mechanisms underlying the genotype and apoE level risks are uncertain. Recent fluid and imaging biomarker studies have revealed an unexpected link between apoE and brain iron, which also forecasts disease progression, possibly through ferroptosis, an iron-dependent regulated cell death pathway. Here, we report that apoE is a potent inhibitor of ferroptosis (EC50 ≈ 10 nM; N27 neurons). We demonstrate that apoE signals to activate the PI3K/AKT pathway that then inhibits the autophagic degradation of ferritin (ferritinophagy), thus averting iron-dependent lipid peroxidation. Using postmortem inferior temporal brain cortex tissue from deceased subjects from the Rush Memory and Aging Project (MAP) (N = 608), we found that the association of iron with pathologically confirmed clinical Alzheimer's disease was stronger among those with the adverse APOE-ε4 allele. While protection against ferroptosis did not differ between apoE isoforms in vitro, other features of ε4 carriers, such as low abundance of apoE protein and higher levels of polyunsaturated fatty acids (which fuel ferroptosis) could mediate the ε4 allele's heighted risk of AD. These data support ferroptosis as a putative pathway to explain the major genetic risk associated with late onset AD.
Collapse
Affiliation(s)
- Abdel Ali Belaidi
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Shashank Masaldan
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Adam Southon
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Pawel Kalinowski
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Karla Acevedo
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ambili T Appukuttan
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Stuart Portbury
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Puja Agarwal
- Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, United States
| | - Sue E Leurgans
- Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, United States
| | - Julie Schneider
- Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, United States
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, 85764, Neuherberg, Germany
- Pirogov Russian National Research Medical University, Laboratory of Experimental Oncology, Moscow, 117997, Russia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
16
|
Valencia-Olvera AC, Balu D, Moore A, Shah M, Ainis R, Xiang B, Saleh Y, Cai D, LaDu MJ, Tai LM. APOE2 Heterozygosity Reduces Hippocampal Soluble Amyloid-β42 Levels in Non-Hyperlipidemic Mice. J Alzheimers Dis 2024; 97:1629-1639. [PMID: 38306049 DOI: 10.3233/jad-231210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
APOE2 lowers Alzheimer's disease (AD) risk; unfortunately, the mechanism remains poorly understood and the use of mice models is problematic as APOE2 homozygosity is associated with hyperlipidemia. In this study, we developed mice that are heterozygous for APOE2 and APOE3 or APOE4 and overexpress amyloid-β peptide (Aβ) (EFAD) to evaluate the effect of APOE2 dosage on Aβ pathology. We found that heterozygous mice do not exhibit hyperlipidemia. Hippocampal but not cortical levels of soluble Aβ42 followed the order E2/2FAD > E2/3FAD≤E3/3FAD and E2/2FAD > E2/4FAD < E4/4FAD without an effect on insoluble Aβ42. These findings offer initial insights on the impact of APOE2 on Aβ pathology.
Collapse
Affiliation(s)
- Ana C Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Maitri Shah
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Rebecca Ainis
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Yaseen Saleh
- University of Miami/Jackson Healthcare System, Miami, FL, USA
| | - Dongming Cai
- Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Research and Development Service, James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA
- Geriatric Research Education and Clinical Center (GRECC), Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Valencia-Olvera AC, Balu D, Bellur S, McNally T, Saleh Y, Pham D, Ghura S, York J, Johansson JO, LaDu MJ, Tai L. A novel apoE-mimetic increases brain apoE levels, reduces Aβ pathology and improves memory when treated before onset of pathology in male mice that express APOE3. Alzheimers Res Ther 2023; 15:216. [PMID: 38102668 PMCID: PMC10722727 DOI: 10.1186/s13195-023-01353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by cognitive dysfunction and amyloid plaques composed of the amyloid-beta peptide (Aβ). APOE is the greatest genetic risk for AD with APOE4 increasing risk up to ~ 15-fold compared to APOE3. Evidence suggests that levels and lipidation of the apoE protein could regulate AD progression. In glia, apoE is lipidated via cholesterol efflux from intracellular pools, primarily by the ATP-binding cassette transporter A1 (ABCA1). Therefore, increasing ABCA1 activity is suggested to be a therapeutic approach for AD. CS-6253 (CS) is a novel apoE mimetic peptide that was developed to bind and stabilize ABCA1 and maintain its localization into the plasma membrane therefore promoting cholesterol efflux. The goal of this study was to determine whether CS could modulate apoE levels and lipidation, Aβ pathology, and behavior in a model that expresses human APOE and overproduce Aβ. METHODS In vitro, APOE3-glia or APOE4-glia were treated with CS. In vivo, male and female, E3FAD (5xFAD+/-/APOE3+/+) and E4FAD (5xFAD+/-/APOE4+/+) mice were treated with CS via intraperitoneal injection at early (from 4 to 8 months of age) and late ages (from 8 to 10 months of age). ApoE levels, ABCA1 levels and, apoE lipidation were measured by western blot and ELISA. Aβ and amyloid levels were assessed by histochemistry and ELISA. Learning and memory were tested by Morris Water Maze and synaptic proteins were measured by Western blot. RESULTS CS treatment increased apoE levels and cholesterol efflux in primary glial cultures. In young male E3FAD mice, CS treatment increased soluble apoE and lipid-associated apoE, reduced soluble oAβ and insoluble Aβ levels as well as Aβ and amyloid deposition, and improved memory and synaptic protein levels. CS treatment did not induce any therapeutic benefits in young female E3FAD and E4FAD mice or in any groups when treatment was started at later ages. CONCLUSIONS CS treatment reduced Aβ pathology and improved memory only in young male E3FAD, the cohort with the least AD pathology. Therefore, the degree of Aβ pathology or Aβ overproduction may impact the ability of targeting ABCA1 to be an effective AD therapeutic. This suggests that ABCA1-stabilizing treatment by CS-6253 works best in conditions of modest Aβ levels.
Collapse
Affiliation(s)
- Ana C Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Shreya Bellur
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Thomas McNally
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Yaseen Saleh
- University of Miami/Jackson Healthcare System, Miami, FL, USA
| | - Don Pham
- Department of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Shivesh Ghura
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Leon Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
18
|
Liemisa B, Newbury SF, Novy MJ, Pasato JA, Morales-Corraliza J, Peng KY, Mathews PM. Brain apolipoprotein E levels in mice challenged by a Western diet increase in an allele-dependent manner. AGING BRAIN 2023; 4:100102. [PMID: 38058491 PMCID: PMC10696459 DOI: 10.1016/j.nbas.2023.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Human apolipoprotein E (APOE) is the greatest determinant of genetic risk for memory deficits and Alzheimer's disease (AD). While APOE4 drives memory loss and high AD risk, APOE2 leads to healthy brain aging and reduced AD risk compared to the common APOE3 variant. We examined brain APOE protein levels in humanized mice homozygous for these alleles and found baseline levels to be age- and isoform-dependent: APOE2 levels were greater than APOE3, which were greater than APOE4. Despite the understanding that APOE lipoparticles do not traverse the blood-brain barrier, we show that brain APOE levels are responsive to dietary fat intake. Challenging mice for 6 months on a Western diet high in fat and cholesterol increased APOE protein levels in an allele-dependent fashion with a much greater increase within blood plasma than within the brain. In the brain, APOE2 levels responded most to the Western diet challenge, increasing by 20 % to 30 %. While increased lipoparticles are generally deleterious in the periphery, we propose that higher brain APOE2 levels may represent a readily available pool of beneficial lipid particles for neurons.
Collapse
Affiliation(s)
- Braison Liemisa
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Samantha F. Newbury
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Mariah J. Novy
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Jonathan A. Pasato
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Jose Morales-Corraliza
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Katherine Y. Peng
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paul M. Mathews
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
19
|
Liuska PJ, Rämö JT, Lemmelä S, Kaarniranta K, Uusitalo H, Lahtela E, Daly MJ, Harju M, Palotie A, Turunen JA. Association of APOE Haplotypes With Common Age-Related Ocular Diseases in 412,171 Individuals. Invest Ophthalmol Vis Sci 2023; 64:33. [PMID: 37988105 PMCID: PMC10668614 DOI: 10.1167/iovs.64.14.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
Purpose Apolipoprotein E4 (APOE4), a known risk factor for Alzheimer's disease, has controversially been associated with reduced risk of primary open-angle glaucoma (POAG) and age-related macular degeneration (AMD). Here, we sought to systematically quantify the associations of APOE haplotypes with age-related ocular diseases and to assess their scope and age-dependency. Methods We included genetic and registry data from 412,171 Finnish individuals in the FinnGen study. Disease endpoints were defined using nationwide registries. APOE genotypes were directly genotyped using Illumina and Affymetrix arrays or imputed using a custom Finnish reference panel. We evaluated the disease associations of APOE genotypes containing ε2 (without ε4) and ε4 (without ε2) compared with the ε3ε3 genotype using logistic regressions stratified by age. Results APOE ε4 enriched haplotypes were inversely associated with overall glaucoma (odds ratio [OR] = 0.95, 95% confidence interval [CI] = 0.92-0.99, P = 0.0047), and its subtypes POAG (OR = 0.95, P = 0.027), normal-tension glaucoma (OR = 0.87, P = 0.0058), and suspected glaucoma (OR = 0.95, P = 0.014). Individuals with the ε4 allele also had lower odds for AMD (OR = 0.80, 95% CI = 0.76-0.84, P < 0.001), seen both in dry and neovascular subgroups. A slight negative association was also detected in senile cataract, but this was not reproducible in age-group analyses. Conclusions Our results support prior evidence of the inverse association of APOE ε4 with glaucoma, but the association was weaker than for AMD. We could not show an association with exfoliation glaucoma, supporting the hypothesis that APOE may be involved in regulating retinal ganglion cell degeneration rather than intraocular pressure.
Collapse
Affiliation(s)
- Perttu J Liuska
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, Finland
| | - Joel T Rämö
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, PL 20, University of Helsinki, Finland
- The Broad Institute of MIT and Harvard, Stanley Building, Cambridge, Massachusetts, United States
| | - Susanna Lemmelä
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, PL 20, University of Helsinki, Finland
- Finnish Institute for Health and Welfare, PL 30, Helsinki, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Kuopio University Hospital and University of Eastern Finland, KYS, Finland
| | - Hannu Uusitalo
- TAYS Eye Center, Tampere University and Tampere University Hospital, PL 2000, Tampere, Finland
| | - Elisa Lahtela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, PL 20, University of Helsinki, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, PL 20, University of Helsinki, Finland
- The Broad Institute of MIT and Harvard, Stanley Building, Cambridge, Massachusetts, United States
| | - Mika Harju
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4C, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, PL 20, University of Helsinki, Finland
- The Broad Institute of MIT and Harvard, Stanley Building, Cambridge, Massachusetts, United States
| | - Joni A Turunen
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, Finland
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4C, Helsinki, Finland
| |
Collapse
|
20
|
Watanabe H, Murakami R, Tsumagari K, Morimoto S, Hashimoto T, Imaizumi K, Sonn I, Yamada K, Saito Y, Murayama S, Iwatsubo T, Okano H. Astrocytic APOE4 genotype-mediated negative impacts on synaptic architecture in human pluripotent stem cell model. Stem Cell Reports 2023; 18:1854-1869. [PMID: 37657448 PMCID: PMC10545487 DOI: 10.1016/j.stemcr.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023] Open
Abstract
The APOE4 genotype is the strongest risk factor for the pathogenesis of sporadic Alzheimer's disease (AD), but the detailed molecular mechanism of APOE4-mediated synaptic impairment remains to be determined. In this study, we generated a human astrocyte model carrying the APOE3 or APOE4 genotype using human induced pluripotent stem cells (iPSCs) in which isogenic APOE4 iPSCs were genome edited from healthy control APOE3 iPSCs. Next, we demonstrated that the astrocytic APOE4 genotype negatively affects dendritic spine dynamics in a co-culture system with primary neurons. Transcriptome analysis revealed an increase of EDIL3, an extracellular matrix glycoprotein, in human APOE4 astrocytes, which could underlie dendritic spine reduction in neuronal cultures. Accordingly, postmortem AD brains carrying the APOE4 allele have elevated levels of EDIL3 protein deposits within amyloid plaques. Together, these results demonstrate the novel deleterious effect of human APOE4 astrocytes on synaptic architecture and may help to elucidate the mechanism of APOE4-linked AD pathogenesis.
Collapse
Affiliation(s)
- Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Rei Murakami
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Tokyo 102-0083, Japan
| | - Kazuya Tsumagari
- Center for Integrated Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tadafumi Hashimoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Kent Imaizumi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Iki Sonn
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Tokyo 102-0083, Japan
| | - Kaoru Yamada
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Shigeo Murayama
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
21
|
Boutros SW, Zimmerman B, Nagy SC, Unni VK, Raber J. Age, sex, and apolipoprotein E isoform alter contextual fear learning, neuronal activation, and baseline DNA damage in the hippocampus. Mol Psychiatry 2023; 28:3343-3354. [PMID: 36732588 PMCID: PMC10618101 DOI: 10.1038/s41380-023-01966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
Age, female sex, and apolipoprotein E4 (E4) are risk factors to develop Alzheimer's disease (AD). There are three major human apoE isoforms: E2, E3, and E4. Compared to E3, E4 increases while E2 decreases AD risk. However, E2 is associated with increased risk and severity of post-traumatic stress disorder (PTSD). In cognitively healthy adults, E4 carriers have greater brain activation during learning and memory tasks in the absence of behavioral differences. Human apoE targeted replacement (TR) mice display differences in fear extinction that parallel human data: E2 mice show impaired extinction, mirroring heightened PTSD symptoms in E2 combat veterans. Recently, an adaptive role of DNA double strand breaks (DSBs) in immediate early gene expression (IEG) has been described. Age and disease synergistically increase DNA damage and decrease DNA repair. As the mechanisms underlying the relative risks of apoE, sex, and their interactions in aging are unclear, we used young (3 months) and middle-aged (12 months) male and female TR mice to investigate the influence of these factors on DSBs and IEGs at baseline and following contextual fear conditioning. We assessed brain-wide changes in neural activation following fear conditioning using whole-brain cFos imaging in young female TR mice. E4 mice froze more during fear conditioning and had lower cFos immunoreactivity across regions important for somatosensation and contextual encoding compared to E2 mice. E4 mice also showed altered co-activation compared to E3 mice, corresponding to human MRI and cognitive data, and indicating that there are differences in brain activity and connectivity at young ages independent of fear learning. There were increased DSB markers in middle-aged animals and alterations to cFos levels dependent on sex and isoform, as well. The increase in hippocampal DSB markers in middle-aged animals and female E4 mice may play a role in the risk for developing AD.
Collapse
Affiliation(s)
- Sydney Weber Boutros
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Department of Psychological Sciences, Boise State University, 2133 W Cesar Chavez Ln, Boise, ID, 83725, USA
| | - Benjamin Zimmerman
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Advanced Imaging Research Center, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Helfgott Research Institute, NUNM, 2201 SW First Avenue, Portland, OR, 97201, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N, Matthews Avenue, Urbana, IL 61801, USA
| | - Sydney C Nagy
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Vivek K Unni
- Department of Neurology, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Jungers Center for Neurosciences Research, OHSU; and OHSU Parkinson Center, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Department of Neurology, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Departments of Psychiatry and Radiation Medicine, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Division of Neuroscience, ONPRC, 505 NW 185th Ave, Beaverton, OR, 97006, USA.
| |
Collapse
|
22
|
Abyadeh M, Gupta V, Paulo JA, Sheriff S, Shadfar S, Fitzhenry M, Amirkhani A, Gupta V, Salekdeh GH, Haynes PA, Graham SL, Mirzaei M. Apolipoprotein ε in Brain and Retinal Neurodegenerative Diseases. Aging Dis 2023; 14:1311-1330. [PMID: 37199411 PMCID: PMC10389820 DOI: 10.14336/ad.2023.0312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/12/2023] [Indexed: 05/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia that remains incurable and has become a major medical, social, and economic challenge worldwide. AD is characterized by pathological hallmarks of senile plaques (SP) and neurofibrillary tangles (NFTs) that damage the brain up to twenty years before a clinical diagnosis is made. Interestingly these pathological features have also been observed in retinal neurodegenerative diseases including age related macular degeneration (ARMD), glaucoma and diabetic retinopathy (DR). An association of AD with these diseases has been suggested in epidemiological studies and several common pathological events and risk factors have been identified between these diseases. The E4 allele of Apolipoprotein E (APOE) is a well-established genetic risk factor for late onset AD. The ApoE ε4 allele is also associated with retinal neurodegenerative diseases however in contrast to AD, it is considered protective in AMD, likewise ApoE E2 allele, which is a protective factor for AD, has been implicated as a risk factor for AMD and glaucoma. This review summarizes the evidence on the effects of ApoE in retinal neurodegenerative diseases and discusses the overlapping molecular pathways in AD. The involvement of ApoE in regulating amyloid beta (Aβ) and tau pathology, inflammation, vascular integrity, glucose metabolism and vascular endothelial growth factor (VEGF) signaling is also discussed.
Collapse
Affiliation(s)
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW 2109, Australia.
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Samran Sheriff
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW 2109, Australia.
| | - Sina Shadfar
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW 2109, Australia.
| | - Matthew Fitzhenry
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW 2113, Australia.
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW 2113, Australia.
| | - Veer Gupta
- School of Medicine, Deakin University, VIC, Australia.
| | - Ghasem H Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia.
| | - Paul A Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia.
| | - Stuart L Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW 2109, Australia.
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW 2109, Australia.
| |
Collapse
|
23
|
Yang LG, March ZM, Stephenson RA, Narayan PS. Apolipoprotein E in lipid metabolism and neurodegenerative disease. Trends Endocrinol Metab 2023; 34:430-445. [PMID: 37357100 PMCID: PMC10365028 DOI: 10.1016/j.tem.2023.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/27/2023]
Abstract
Dysregulation of lipid metabolism has emerged as a central component of many neurodegenerative diseases. Variants of the lipid transport protein, apolipoprotein E (APOE), modulate risk and resilience in several neurodegenerative diseases including late-onset Alzheimer's disease (LOAD). Allelic variants of the gene, APOE, alter the lipid metabolism of cells and tissues and have been broadly associated with several other cellular and systemic phenotypes. Targeting APOE-associated metabolic pathways may offer opportunities to alter disease-related phenotypes and consequently, attenuate disease risk and impart resilience to multiple neurodegenerative diseases. We review the molecular, cellular, and tissue-level alterations to lipid metabolism that arise from different APOE isoforms. These changes in lipid metabolism could help to elucidate disease mechanisms and tune neurodegenerative disease risk and resilience.
Collapse
Affiliation(s)
- Linda G Yang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Zachary M March
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Roxan A Stephenson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Priyanka S Narayan
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.; National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA; Center for Alzheimer's and Related Dementias (CARD), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Amontree M, Deasy S, Turner RS, Conant K. Matrix disequilibrium in Alzheimer's disease and conditions that increase Alzheimer's disease risk. Front Neurosci 2023; 17:1188065. [PMID: 37304012 PMCID: PMC10250680 DOI: 10.3389/fnins.2023.1188065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 06/13/2023] Open
Abstract
Alzheimer's Disease (AD) and related dementias are a leading cause of death globally and are predicted to increase in prevalence. Despite this expected increase in the prevalence of AD, we have yet to elucidate the causality of the neurodegeneration observed in AD and we lack effective therapeutics to combat the progressive neuronal loss. Throughout the past 30 years, several non-mutually exclusive hypotheses have arisen to explain the causative pathologies in AD: amyloid cascade, hyper-phosphorylated tau accumulation, cholinergic loss, chronic neuroinflammation, oxidative stress, and mitochondrial and cerebrovascular dysfunction. Published studies in this field have also focused on changes in neuronal extracellular matrix (ECM), which is critical to synaptic formation, function, and stability. Two of the greatest non-modifiable risk factors for development of AD (aside from autosomal dominant familial AD gene mutations) are aging and APOE status, and two of the greatest modifiable risk factors for AD and related dementias are untreated major depressive disorder (MDD) and obesity. Indeed, the risk of developing AD doubles for every 5 years after ≥ 65, and the APOE4 allele increases AD risk with the greatest risk in homozygous APOE4 carriers. In this review, we will describe mechanisms by which excess ECM accumulation may contribute to AD pathology and discuss pathological ECM alterations that occur in AD as well as conditions that increase the AD risk. We will discuss the relationship of AD risk factors to chronic central nervous system and peripheral inflammation and detail ECM changes that may follow. In addition, we will discuss recent data our lab has obtained on ECM components and effectors in APOE4/4 and APOE3/3 expressing murine brain lysates, as well as human cerebrospinal fluid (CSF) samples from APOE3 and APOE4 expressing AD individuals. We will describe the principal molecules that function in ECM turnover as well as abnormalities in these molecular systems that have been observed in AD. Finally, we will communicate therapeutic interventions that have the potential to modulate ECM deposition and turnover in vivo.
Collapse
Affiliation(s)
- Matthew Amontree
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Samantha Deasy
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - R. Scott Turner
- Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
25
|
Knopp RC, Erickson MA, Rhea EM, Reed MJ, Banks WA. Cellular senescence and the blood-brain barrier: Implications for aging and age-related diseases. Exp Biol Med (Maywood) 2023; 248:399-411. [PMID: 37012666 PMCID: PMC10281623 DOI: 10.1177/15353702231157917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The blood-brain barrier (BBB) is a critical physiochemical interface that regulates communication between the brain and blood. It is comprised of brain endothelial cells which regulate the BBB's barrier and interface properties and is surrounded by supportive brain cell types including pericytes and astrocytes. Recent reports have suggested that the BBB undergoes dysfunction during normative aging and in disease. In this review, we consider the effect of cellular senescence, one of the nine hallmarks of aging, on the BBB. We first characterize known normative age-related changes at the BBB, and then evaluate changes in neurodegenerative diseases, with an emphasis on if/how cellular senescence is influencing these changes. We then discuss what insight has been gained from in vitro and in vivo studies of cellular senescence at the BBB. Finally, we evaluate mechanisms by which cellular senescence in peripheral pathologies can indirectly or directly affect BBB function.
Collapse
Affiliation(s)
- Rachel C Knopp
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - Michelle A Erickson
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - May J Reed
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| |
Collapse
|
26
|
Greco GA, Rock M, Amontree M, Lanfranco MF, Korthas H, Hong SH, Turner RS, Rebeck GW, Conant K. CCR5 deficiency normalizes TIMP levels, working memory, and gamma oscillation power in APOE4 targeted replacement mice. Neurobiol Dis 2023; 179:106057. [PMID: 36878326 PMCID: PMC10291850 DOI: 10.1016/j.nbd.2023.106057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/07/2023] Open
Abstract
The APOE4 allele increases the risk for Alzheimer's disease (AD) in a dose-dependent manner and is also associated with cognitive decline in non-demented elderly controls. In mice with targeted gene replacement (TR) of murine APOE with human APOE3 or APOE4, the latter show reduced neuronal dendritic complexity and impaired learning. APOE4 TR mice also show reduced gamma oscillation power, a neuronal population activity which is important to learning and memory. Published work has shown that brain extracellular matrix (ECM) can reduce neuroplasticity as well as gamma power, while attenuation of ECM can instead enhance this endpoint. In the present study we examine human cerebrospinal fluid (CSF) samples from APOE3 and APOE4 individuals and brain lysates from APOE3 and APOE4 TR mice for levels of ECM effectors that can increase matrix deposition and restrict neuroplasticity. We find that CCL5, a molecule linked to ECM deposition in liver and kidney, is increased in CSF samples from APOE4 individuals. Levels of tissue inhibitor of metalloproteinases (TIMPs), which inhibit the activity of ECM-degrading enzymes, are also increased in APOE4 CSF as well as astrocyte supernatants brain lysates from APOE4 TR mice. Importantly, as compared to APOE4/wild-type heterozygotes, APOE4/CCR5 knockout heterozygotes show reduced TIMP levels and enhanced EEG gamma power. The latter also show improved learning and memory, suggesting that the CCR5/CCL5 axis could represent a therapeutic target for APOE4 individuals.
Collapse
Affiliation(s)
- Griffin A Greco
- Georgetown University School of Medicine (GUMC), Department of Pharmacology, United States of America
| | | | - Matthew Amontree
- GUMC, United States of America; Interdisciplinary Program in Neuroscience, United States of America
| | | | - Holly Korthas
- Interdisciplinary Program in Neuroscience, United States of America
| | - Sung Hyeok Hong
- GUMC, Department of Biochemistry and Molecular & Cellular Biology, United States of America
| | | | - G William Rebeck
- Interdisciplinary Program in Neuroscience, United States of America; GUMC, Department of Neuroscience, United States of America
| | - Katherine Conant
- Interdisciplinary Program in Neuroscience, United States of America; GUMC, Department of Neuroscience, United States of America.
| |
Collapse
|
27
|
Li B, Ma Z, Li Z. A novel regulator in Alzheimer's disease progression: The astrocyte-derived extracellular vesicles. Ageing Res Rev 2023; 86:101871. [PMID: 36736378 DOI: 10.1016/j.arr.2023.101871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is known as an age-related irreversible neurodegenerative disease. AD seriously endangers the health of the elderly, but there is still no effective treatment. In the past several decades, the significant role of astrocytes in the process of AD has been universally acknowledged. In addition, extracellular vesicles (EVs) have been recognized as an essential mediator in intercellular communication and participate in various pathophysiological processes by carrying and transporting diverse cargoes. Moreover, specific conditions and stimuli can modulate the amount and properties of astrocyte-derived EVs (ADEVs) to affect AD progression. Thus, recent studies focused on the involvement of ADEVs in the pathogenesis of AD and the potential application of ADEVs in the diagnosis and treatment of AD, which provides a new direction and possibility for revealing the mystery of AD. Interestingly, it can be concluded that ADEVs have both pathogenic and protective effects in the process of AD through a comprehensive generalization. In this review, we aim to summarize the multi-faces of ADEVs effects on AD development, which can provide a novel strategy to investigate the underlying mechanism in AD. We also summarize the current ADEVs clinically relevant studies to raise the potential use of ADEVs in the discovery of novel biomarkers for diagnosis and therapeutic targets for AD.
Collapse
Affiliation(s)
- Biao Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhixin Ma
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China..
| |
Collapse
|
28
|
Du L, Zhang J, Zhao Y, Shang M, Guo L, Han J. inMTSCCA: An Integrated Multi-task Sparse Canonical Correlation Analysis for Multi-omic Brain Imaging Genetics. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:396-413. [PMID: 37442417 PMCID: PMC10634656 DOI: 10.1016/j.gpb.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2023] [Accepted: 03/14/2023] [Indexed: 07/15/2023]
Abstract
Identifying genetic risk factors for Alzheimer's disease (AD) is an important research topic. To date, different endophenotypes, such as imaging-derived endophenotypes and proteomic expression-derived endophenotypes, have shown the great value in uncovering risk genes compared to case-control studies. Biologically, a co-varying pattern of different omics-derived endophenotypes could result from the shared genetic basis. However, existing methods mainly focus on the effect of endophenotypes alone; the effect of cross-endophenotype (CEP) associations remains largely unexploited. In this study, we used both endophenotypes and their CEP associations of multi-omic data to identify genetic risk factors, and proposed two integrated multi-task sparse canonical correlation analysis (inMTSCCA) methods, i.e., pairwise endophenotype correlation-guided MTSCCA (pcMTSCCA) and high-order endophenotype correlation-guided MTSCCA (hocMTSCCA). pcMTSCCA employed pairwise correlations between magnetic resonance imaging (MRI)-derived, plasma-derived, and cerebrospinal fluid (CSF)-derived endophenotypes as an additional penalty. hocMTSCCA used high-order correlations among these multi-omic data for regularization. To figure out genetic risk factors at individual and group levels, as well as altered endophenotypic markers, we introduced sparsity-inducing penalties for both models. We compared pcMTSCCA and hocMTSCCA with three related methods on both simulation and real (consisting of neuroimaging data, proteomic analytes, and genetic data) datasets. The results showed that our methods obtained better or comparable canonical correlation coefficients (CCCs) and better feature subsets than benchmarks. Most importantly, the identified genetic loci and heterogeneous endophenotypic markers showed high relevance. Therefore, jointly using multi-omic endophenotypes and their CEP associations is promising to reveal genetic risk factors. The source code and manual of inMTSCCA are available at https://ngdc.cncb.ac.cn/biocode/tools/BT007330.
Collapse
Affiliation(s)
- Lei Du
- Department of Intelligent Science and Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Jin Zhang
- Department of Intelligent Science and Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ying Zhao
- Department of Intelligent Science and Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muheng Shang
- Department of Intelligent Science and Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Guo
- Department of Intelligent Science and Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junwei Han
- Department of Intelligent Science and Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
29
|
Martínez-Iglesias O, Naidoo V, Carril JC, Seoane S, Cacabelos N, Cacabelos R. Gene Expression Profiling as a Novel Diagnostic Tool for Neurodegenerative Disorders. Int J Mol Sci 2023; 24:ijms24065746. [PMID: 36982820 PMCID: PMC10057696 DOI: 10.3390/ijms24065746] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
There is a lack of effective diagnostic biomarkers for neurodegenerative disorders (NDDs). Here, we established gene expression profiles for diagnosing Alzheimer’s disease (AD), Parkinson’s disease (PD), and vascular (VaD)/mixed dementia. Patients with AD had decreased APOE, PSEN1, and ABCA7 mRNA expression. Subjects with VaD/mixed dementia had 98% higher PICALM mRNA levels, but 75% lower ABCA7 mRNA expression than healthy individuals. Patients with PD and PD-related disorders showed increased SNCA mRNA levels. There were no differences in mRNA expression for OPRK1, NTRK2, and LRRK2 between healthy subjects and NDD patients. APOE mRNA expression had high diagnostic accuracy for AD, and moderate accuracy for PD and VaD/mixed dementia. PSEN1 mRNA expression showed promising accuracy for AD. PICALM mRNA expression was less accurate as a biomarker for AD. ABCA7 and SNCA mRNA expression showed high-to-excellent diagnostic accuracy for AD and PD, and moderate-to-high accuracy for VaD/mixed dementia. The APOE E4 allele reduced APOE expression in patients with different APOE genotypes. There was no association between PSEN1, PICALM, ABCA7, and SNCA gene polymorphisms and expression. Our study suggests that gene expression analysis has diagnostic value for NDDs and provides a liquid biopsy alternative to current diagnostic methods.
Collapse
|
30
|
Fleeman RM, Snyder AM, Kuhn MK, Chan DC, Smith GC, Crowley NA, Arnold AC, Proctor EA. Predictive link between systemic metabolism and cytokine signatures in the brain of apolipoprotein E ε4 mice. Neurobiol Aging 2023; 123:154-169. [PMID: 36572594 PMCID: PMC9892258 DOI: 10.1016/j.neurobiolaging.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
The ε4 variant of apolipoprotein E (APOE) is the strongest and most common genetic risk factor for Alzheimer's disease (AD). While the mechanism of conveyed risk is incompletely understood, promotion of inflammation, dysregulated metabolism, and protein misfolding and aggregation are contributors to accelerating disease. Here we determined the concurrent effects of systemic metabolic changes and brain inflammation in young (3-month-old) and aged (18-month-old) male and female mice carrying the APOE4 gene. Using functional metabolic assays alongside multivariate modeling of hippocampal cytokine levels, we found that brain cytokine signatures are predictive of systemic metabolic outcomes, independent of AD proteinopathies. Male and female mice each produce different cytokine signatures as they age and as their systemic metabolic phenotype declines, and these signatures are APOE genotype dependent. Ours is the first study to identify a quantitative and predictive link between systemic metabolism and specific pathological cytokine signatures in the brain. Our results highlight the effects of APOE4 beyond the brain and suggest the potential for bi-directional influence of risk factors in the brain and periphery.
Collapse
Affiliation(s)
- Rebecca M Fleeman
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA; Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Amanda M Snyder
- Department of Neurology, Penn State College of Medicine, Hershey, PA, USA
| | - Madison K Kuhn
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA; Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Dennis C Chan
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA; Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Grace C Smith
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Nicole A Crowley
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA; Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Elizabeth A Proctor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA; Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA; Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
31
|
Accumulation of amyloid-β in the brain of mouse models of Alzheimer's disease is modified by altered gene expression in the presence of human apoE isoforms during aging. Neurobiol Aging 2023; 123:63-74. [PMID: 36638682 DOI: 10.1016/j.neurobiolaging.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Apolipoprotein E4 (apoE4) is a risk factor for Alzheimer's disease (AD). Here, we investigated brain amyloid-β (Aβ) accumulation throughout the aging process in an amyloid precursor protein (APP) knock-in (KI) mouse model of AD that expresses human APPNL-G-F with or without human apoE4 or apoE3. Brain Aβ42 levels were significantly lower in 9-month-old mice that express human isoforms of apoE than in age-matched APP-KI control mice. Linear accumulation of Aβ42 began in 5-month-old apoE4 mice, and a strong increase in Aβ42 levels was observed in 21-month-old apoE3 mice. Aβ42 levels in cerebroventricular fluid were higher in apoE3 than in apoE4 mice at 6-7 months of age, suggesting that apoE3 is more efficient at clearing Aβ42 than apoE4 at these ages. However, apoE3 protein levels were lower than apoE4 protein levels in the brains of 21-month-old apoE3 and apoE4 mice, respectively, which may explain the rapid increase in brain Aβ42 burden in apoE3 mice. We identified genes that were downregulated in a human apoE-dependent (apoE4 > apoE3) and age-dependent (apoE3 = apoE4) manner, which may regulate brain Aβ burden and/or AD progression. Analysis of gene expression in AD mouse models helps identify molecular mechanisms of pleiotropy by the human APOE gene during aging.
Collapse
|
32
|
Henao‐Restrepo J, López‐Murillo C, Valderrama‐Carmona P, Orozco‐Santa N, Gomez J, Gutiérrez‐Vargas J, Moraga R, Toledo J, Littau JL, Härtel S, Arboleda‐Velásquez JF, Sepulveda‐Falla D, Lopera F, Cardona‐Gómez GP, Villegas A, Posada‐Duque R. Gliovascular alterations in sporadic and familial Alzheimer's disease: APOE3 Christchurch homozygote glioprotection. Brain Pathol 2023; 33:e13119. [PMID: 36130084 PMCID: PMC10041169 DOI: 10.1111/bpa.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
In response to brain insults, astrocytes become reactive, promoting protection and tissue repair. However, astroglial reactivity is typical of brain pathologies, including Alzheimer's disease (AD). Considering the heterogeneity of the reactive response, the role of astrocytes in the course of different forms of AD has been underestimated. Colombia has the largest human group known to have familial AD (FAD). This group carries the autosomal dominant and fully penetrant mutation E280A in PSEN1, which causes early-onset AD. Recently, our group identified an E280A carrier who did not develop FAD. The individual was homozygous for the Christchurch mutation R136S in APOE3 (APOEch). Remarkably, APOE is the main genetic risk factor for developing sporadic AD (SAD) and most of cerebral ApoE is produced by astroglia. Here, we characterized astrocyte properties related to reactivity, glutamate homeostasis, and structural integrity of the gliovascular unit (GVU), as factors that could underlie the pathogenesis or protection of AD. Specifically, through histological and 3D microscopy analyses of postmortem samples, we briefly describe the histopathology and cytoarchitecture of the frontal cortex of SAD, FAD, and APOEch, and demonstrate that, while astrodegeneration and vascular deterioration are prominent in SAD, FAD is characterized by hyperreactive-like glia, and APOEch displays the mildest astrocytic and vascular alterations despite having the highest burden of Aβ. Notably, astroglial, gliovascular, and vascular disturbances, as well as brain cell death, correlate with the specific astrocytic phenotypes identified in each condition. This study provides new insights into the potential relevance of the gliovasculature in the development and protection of AD. To our knowledge, this is the first study assessing the components of the GVU in human samples of SAD, FAD, and APOEch.
Collapse
Affiliation(s)
- Julián Henao‐Restrepo
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Carolina López‐Murillo
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Pablo Valderrama‐Carmona
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Natalia Orozco‐Santa
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Johana Gomez
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaSIU, Universidad de AntioquiaMedellínColombia
| | - Johanna Gutiérrez‐Vargas
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Health Sciences FacultyRemington University CorporationMedellínColombia
| | - Renato Moraga
- Biomedical Neuroscience Institute BNI, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Jorge Toledo
- Biomedical Neuroscience Institute BNI, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Jessica Lisa Littau
- Molecular Neuropathology of Alzheimer's DiseaseInstitute of Neuropathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Steffen Härtel
- Biomedical Neuroscience Institute BNI, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Joseph F. Arboleda‐Velásquez
- Schepens Eye Research Institute of Mass Eye and Ear, Department of OphthalmologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Diego Sepulveda‐Falla
- Molecular Neuropathology of Alzheimer's DiseaseInstitute of Neuropathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaSIU, Universidad de AntioquiaMedellínColombia
| | - Gloria Patricia Cardona‐Gómez
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Andrés Villegas
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaSIU, Universidad de AntioquiaMedellínColombia
| | - Rafael Posada‐Duque
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| |
Collapse
|
33
|
Chen F, Chen Y, Ke Q, Wang Y, Gong Z, Chen X, Cai Y, Li S, Sun Y, Peng X, Ji Y, Zhang T, Wu W, Cui L, Wang Y. ApoE4 associated with severe COVID-19 outcomes via downregulation of ACE2 and imbalanced RAS pathway. J Transl Med 2023; 21:103. [PMID: 36759834 PMCID: PMC9910247 DOI: 10.1186/s12967-023-03945-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Recent numerous epidemiology and clinical association studies reported that ApoE polymorphism might be associated with the risk and severity of coronavirus disease 2019 (COVID-19), and yielded inconsistent results. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection relies on its spike protein binding to angiotensin-converting enzyme 2 (ACE2) receptor expressed on host cell membranes. METHODS A meta-analysis was conducted to clarify the association between ApoE polymorphism and the risk and severity of COVID-19. Multiple protein interaction assays were utilized to investigate the potential molecular link between ApoE and the SARS-CoV-2 primary receptor ACE2, ApoE and spike protein. Immunoblotting and immunofluorescence staining methods were used to access the regulatory effect of different ApoE isoform on ACE2 protein expression. RESULTS ApoE gene polymorphism (ε4 carrier genotypes VS non-ε4 carrier genotypes) is associated with the increased risk (P = 0.0003, OR = 1.44, 95% CI 1.18-1.76) and progression (P < 0.00001, OR = 1.85, 95% CI 1.50-2.28) of COVID-19. ApoE interacts with both ACE2 and the spike protein but did not show isoform-dependent binding effects. ApoE4 significantly downregulates ACE2 protein expression in vitro and in vivo and subsequently decreases the conversion of Ang II to Ang 1-7. CONCLUSIONS ApoE4 increases SARS-CoV-2 infectivity in a manner that may not depend on differential interactions with the spike protein or ACE2. Instead, ApoE4 downregulates ACE2 protein expression and subsequently the dysregulation of renin-angiotensin system (RAS) may provide explanation by which ApoE4 exacerbates COVID-19 disease.
Collapse
Affiliation(s)
- Feng Chen
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China ,grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province Kunming Institute of Zoology Chinese Academy of Sciences, Kunming, Yunnan China
| | - Yanting Chen
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China ,grid.33199.310000 0004 0368 7223Department of Neurology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Qiongwei Ke
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongxiang Wang
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zheng Gong
- grid.410560.60000 0004 1760 3078Institute of Laboratory Animal Center, Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yujie Cai
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shengnan Li
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuanhong Sun
- grid.266871.c0000 0000 9765 6057Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Xiaoping Peng
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yao Ji
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tianzhen Zhang
- grid.410560.60000 0004 1760 3078Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenxian Wu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China. .,Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China. .,Shenzhen Research Institute, Shandong University, Shenzhen, China.
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
34
|
Mulgrave VE, Alsayegh AA, Jaldi A, Omire-Mayor DT, James N, Ntekim O, Walters E, Akala EO, Allard JS. Exercise modulates APOE expression in brain cortex of female APOE3 and APOE4 targeted replacement mice. Neuropeptides 2023; 97:102307. [PMID: 36434832 PMCID: PMC9839612 DOI: 10.1016/j.npep.2022.102307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/18/2022]
Abstract
Apolipoprotein E (ApoE) is the main cholesterol carrier of the brain and the ε4 gene variant (APOE4) is the most prevalent genetic risk factor for Alzheimer's disease (AD), increasing risk up to 15-fold. Several studies indicate that APOE4 modulates critical factors for neuronal function, including brain-derived neurotrophic factor (BDNF) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α). Both proteins show exercise-induced upregulation, which is presumed to mediate many of the beneficial effects of physical activity including improved cognition; however, there is variability in results between individuals potentially in-part due to genetic variations including APOE isoform. This study aimed to determine if the two most prevalent human APOE isoforms influence adaptive responses to exercise-training. Targeted replacement mice, homozygous for either APOE3 or APOE4 were randomized into exercised and sedentary groups. Baseline locomotor function and voluntary wheel-running behavior was reduced in APOE4 mice. Exercised groups were subjected to daily treadmill running for 8 weeks. ApoE protein in brain cortex was significantly increased by exercise in both genotypes. PGC-1α mRNA levels in brain cortex were significantly lower in APOE4 mice, and only tended to increase with exercise in both genotypes. Hippocampal BDNF protein were similar between genotypes and was not significantly modulated by treadmill running. Behavioral and biochemical variations between APOE3 and APOE4 mice likely contribute to the differential risk for neurological and vascular diseases and the exercise-induced increase in ApoE levels suggests an added feature of the potential efficacy of physical activity as a preventative and therapeutic strategy for neurogenerative processes in both genotypes.
Collapse
Affiliation(s)
- Verona E Mulgrave
- Dept. of Nutritional Sciences, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, USA
| | - Abdulrahman A Alsayegh
- Dept. of Nutritional Sciences, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, USA; Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Aida Jaldi
- Dept of Physiology & Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | | | - Niaya James
- Dept of Physiology & Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | - Oyonumo Ntekim
- Dept. of Nutritional Sciences, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, USA
| | - Eric Walters
- Dept. of Biochemistry, College of Medicine, Howard University, Washington, DC, USA
| | - Emanuel O Akala
- Dept of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC, USA
| | - Joanne S Allard
- Dept of Physiology & Biophysics, College of Medicine, Howard University, Washington, DC, USA.
| |
Collapse
|
35
|
Zhang X, Wu L, Swerdlow RH, Zhao L. Opposing Effects of ApoE2 and ApoE4 on Glycolytic Metabolism in Neuronal Aging Supports a Warburg Neuroprotective Cascade against Alzheimer's Disease. Cells 2023; 12:410. [PMID: 36766752 PMCID: PMC9914046 DOI: 10.3390/cells12030410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Apolipoprotein E4 (ApoE4) is the most recognized genetic risk factor for late-onset Alzheimer's disease (LOAD), whereas ApoE2 reduces the risk for LOAD. The underlying mechanisms are unclear but may include effects on brain energy metabolism. Here, we used neuro-2a (N2a) cells that stably express human ApoE isoforms (N2a-hApoE), differentiated N2a-hApoE neuronal cells, and humanized ApoE knock-in mouse models to investigate relationships among ApoE isoforms, glycolytic metabolism, and neuronal health and aging. ApoE2-expressing cells retained robust hexokinase (HK) expression and glycolytic activity, whereas these endpoints progressively declined with aging in ApoE4-expressing cells. These divergent ApoE2 and ApoE4 effects on glycolysis directly correlated with markers of cellular wellness. Moreover, ApoE4-expressing cells upregulated phosphofructokinase and pyruvate kinase with the apparent intent of compensating for the HK-dependent glycolysis reduction. The introduction of ApoE2 increased HK levels and glycolysis flux in ApoE4 cells. PI3K/Akt signaling was distinctively regulated by ApoE isoforms but was only partially responsible for the ApoE-mediated effects on HK. Collectively, our findings indicate that human ApoE isoforms differentially modulate neuronal glycolysis through HK regulation, with ApoE2 upregulating and ApoE4 downregulating, which markedly impacts neuronal health during aging. These findings lend compelling support to the emerging inverse-Warburg theory of AD and highlight a therapeutic opportunity for bolstering brain glycolytic resilience to prevent and treat AD.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Long Wu
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Russell H. Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
36
|
The role of ApoE-mediated microglial lipid metabolism in brain aging and disease. IMMUNOMETABOLISM (COBHAM (SURREY, ENGLAND)) 2023; 5:e00018. [PMID: 36710921 PMCID: PMC9869962 DOI: 10.1097/in9.0000000000000018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023]
Abstract
Microglia are a unique population of immune cells resident in the brain that integrate complex signals and dynamically change phenotypes in response to the brain microenvironment. In recent years, single-cell sequencing analyses have revealed profound cellular heterogeneity and context-specific transcriptional plasticity of microglia during brain development, aging, and disease. Emerging evidence suggests that microglia adapt phenotypic plasticity by flexibly reprogramming cellular metabolism to fulfill distinct immune functions. The control of lipid metabolism is central to the appropriate function and homeostasis of the brain. Microglial lipid metabolism regulated by apolipoprotein E (ApoE), a crucial lipid transporter in the brain, has emerged as a critical player in regulating neuroinflammation. The ApoE gene allelic variant, ε4, is associated with a greater risk for neurodegenerative diseases. In this review, we explore novel discoveries in microglial lipid metabolism mediated by ApoE. We elaborate on the functional impact of perturbed microglial lipid metabolism on the underlying pathogenesis of brain aging and disease.
Collapse
|
37
|
Singh V, Mishra VN, Thakur MK. Identification of Plasma Proteomic Biomarkers in Patients with Mild Cognitive Impairment. Indian J Clin Biochem 2023; 38:33-41. [PMID: 36684491 PMCID: PMC9852370 DOI: 10.1007/s12291-022-01023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/06/2022] [Indexed: 01/25/2023]
Abstract
Plasma proteomic profiling may provide novel biomarkers for the identification of mild cognitive impairment (MCI). The early diagnosis of MCI still remains a challenging task due to its diverse origin. Currently, molecular approaches have been used to identify MCI diversified origin as its onset is governed by a variety of molecular changes. Therefore, we aimed to find out molecular alteration in plasma using proteomics in patients with MCI for early detection of prodromal Alzheimer's disease (AD). To achieve this, we performed two-dimensional (2-D) gel electrophoresis coupled with MALDI-TOF/MS, which is used to analyze the differentially expressed proteins. In our study, we found three significantly altered proteins. Out of three differentially expressed proteins, one was downregulated and two were upregulated in MCI individuals as compared to control. Further, In silico analysis showed that identified proteins are involved in pathways such as complement and coagulation cascades, platelet activation and AD. STRING interaction network analysis revealed that the majority of proteins including apolipoprotein E (APO-E) have a common association with Transthyretin (TTR) and fibrinogen chain beta (FGB) protein. This suggests that APO-E, TTR and FGB are the key proteins with which other proteins interact to exert other biological functions. Conclusively, these proteins showing differential expression in the plasma might be used as a potent signature in blood for the diagnosis of MCI individuals.
Collapse
Affiliation(s)
- Vineeta Singh
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP 221005 India
| | - Vijaya Nath Mishra
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP 221005 India
| | - Mahendra Kumar Thakur
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| |
Collapse
|
38
|
Pires M, Rego AC. Apoe4 and Alzheimer's Disease Pathogenesis-Mitochondrial Deregulation and Targeted Therapeutic Strategies. Int J Mol Sci 2023; 24:ijms24010778. [PMID: 36614219 PMCID: PMC9821307 DOI: 10.3390/ijms24010778] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023] Open
Abstract
APOE ε4 allele (ApoE4) is the primary genetic risk factor for sporadic Alzheimer's disease (AD), expressed in 40-65% of all AD patients. ApoE4 has been associated to many pathological processes possibly linked to cognitive impairment, such as amyloid-β (Aβ) and tau pathologies. However, the exact mechanism underlying ApoE4 impact on AD progression is unclear, while no effective therapies are available for this highly debilitating neurodegenerative disorder. This review describes the current knowledge of ApoE4 interaction with mitochondria, causing mitochondrial dysfunction and neurotoxicity, associated with increased mitochondrial Ca2+ and reactive oxygen species (ROS) levels, and it effects on mitochondrial dynamics, namely fusion and fission, and mitophagy. Moreover, ApoE4 translocates to the nucleus, regulating the expression of genes involved in aging, Aβ production, inflammation and apoptosis, potentially linked to AD pathogenesis. Thus, novel therapeutical targets can be envisaged to counteract the effects induced by ApoE4 in AD brain.
Collapse
Affiliation(s)
- Mariana Pires
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Polo I, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Polo III, 3004-354 Coimbra, Portugal
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Polo I, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Polo III, 3004-354 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-820190; Fax: +351-239-822776
| |
Collapse
|
39
|
Savignac C, Villeneuve S, Badhwar A, Saltoun K, Shafighi K, Zajner C, Sharma V, Gagliano Taliun SA, Farhan S, Poirier J, Bzdok D. APOE alleles are associated with sex-specific structural differences in brain regions affected in Alzheimer's disease and related dementia. PLoS Biol 2022; 20:e3001863. [PMID: 36512526 PMCID: PMC9747055 DOI: 10.1371/journal.pbio.3001863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/30/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease is marked by intracellular tau aggregates in the medial temporal lobe (MTL) and extracellular amyloid aggregates in the default network (DN). Here, we examined codependent structural variations between the MTL's most vulnerable structure, the hippocampus (HC), and the DN at subregion resolution in individuals with Alzheimer's disease and related dementia (ADRD). By leveraging the power of the approximately 40,000 participants of the UK Biobank cohort, we assessed impacts from the protective APOE ɛ2 and the deleterious APOE ɛ4 Alzheimer's disease alleles on these structural relationships. We demonstrate ɛ2 and ɛ4 genotype effects on the inter-individual expression of HC-DN co-variation structural patterns at the population level. Across these HC-DN signatures, recurrent deviations in the CA1, CA2/3, molecular layer, fornix's fimbria, and their cortical partners related to ADRD risk. Analyses of the rich phenotypic profiles in the UK Biobank cohort further revealed male-specific HC-DN associations with air pollution and female-specific associations with cardiovascular traits. We also showed that APOE ɛ2/2 interacts preferentially with HC-DN co-variation patterns in estimating social lifestyle in males and physical activity in females. Our structural, genetic, and phenotypic analyses in this large epidemiological cohort reinvigorate the often-neglected interplay between APOE ɛ2 dosage and sex and link APOE alleles to inter-individual brain structural differences indicative of ADRD familial risk.
Collapse
Affiliation(s)
- Chloé Savignac
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - AmanPreet Badhwar
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Centre de recherche de l’Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Quebec, Canada
| | - Karin Saltoun
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Kimia Shafighi
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Chris Zajner
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Vaibhav Sharma
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sarah A. Gagliano Taliun
- Department of Neurosciences & Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Montréal, Quebec, Canada
| | - Sali Farhan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Judes Poirier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- School of Computer Science, McGill University, Montreal, Quebec, Canada
- Mila—Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Leikin-Frenkel A, Schnaider Beeri M, Cooper I. How Alpha Linolenic Acid May Sustain Blood-Brain Barrier Integrity and Boost Brain Resilience against Alzheimer's Disease. Nutrients 2022; 14:nu14235091. [PMID: 36501121 PMCID: PMC9737216 DOI: 10.3390/nu14235091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Cognitive decline, the primary clinical phenotype of Alzheimer's disease (AD), is currently attributed mainly to amyloid and tau protein deposits. However, a growing body of evidence is converging on brain lipids, and blood-brain barrier (BBB) dysfunction, as crucial players involved in AD development. The critical role of lipids metabolism in the brain and its vascular barrier, and its constant modifications particularly throughout AD development, warrants investigation of brain lipid metabolism as a high value therapeutic target. Yet, there is limited knowledge on the biochemical and structural roles of lipids in BBB functionality in AD. Within this framework, we hypothesize that the ApoE4 genotype, strongly linked to AD risk and progression, may be related to altered fatty acids composition in the BBB. Interestingly, alpha linolenic acid (ALA), the precursor of the majoritarian brain component docosahexaenoic acid (DHA), emerges as a potential novel brain savior, acting via BBB functional improvements, and this may be primarily relevant to ApoE4 carriers.
Collapse
Affiliation(s)
- Alicia Leikin-Frenkel
- Bert Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer 52621, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan 52621, Israel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan 52621, Israel
- School of Psychology, The Reichman University (IDC), Herzliya 4610101, Israel
- Correspondence: ; Tel.: +972-3-5303693
| |
Collapse
|
41
|
Steele OG, Stuart AC, Minkley L, Shaw K, Bonnar O, Anderle S, Penn AC, Rusted J, Serpell L, Hall C, King S. A multi-hit hypothesis for an APOE4-dependent pathophysiological state. Eur J Neurosci 2022; 56:5476-5515. [PMID: 35510513 PMCID: PMC9796338 DOI: 10.1111/ejn.15685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 01/01/2023]
Abstract
The APOE gene encoding the Apolipoprotein E protein is the single most significant genetic risk factor for late-onset Alzheimer's disease. The APOE4 genotype confers a significantly increased risk relative to the other two common genotypes APOE3 and APOE2. Intriguingly, APOE4 has been associated with neuropathological and cognitive deficits in the absence of Alzheimer's disease-related amyloid or tau pathology. Here, we review the extensive literature surrounding the impact of APOE genotype on central nervous system dysfunction, focussing on preclinical model systems and comparison of APOE3 and APOE4, given the low global prevalence of APOE2. A multi-hit hypothesis is proposed to explain how APOE4 shifts cerebral physiology towards pathophysiology through interconnected hits. These hits include the following: neurodegeneration, neurovascular dysfunction, neuroinflammation, oxidative stress, endosomal trafficking impairments, lipid and cellular metabolism disruption, impaired calcium homeostasis and altered transcriptional regulation. The hits, individually and in combination, leave the APOE4 brain in a vulnerable state where further cumulative insults will exacerbate degeneration and lead to cognitive deficits in the absence of Alzheimer's disease pathology and also a state in which such pathology may more easily take hold. We conclude that current evidence supports an APOE4 multi-hit hypothesis, which contributes to an APOE4 pathophysiological state. We highlight key areas where further study is required to elucidate the complex interplay between these individual mechanisms and downstream consequences, helping to frame the current landscape of existing APOE-centric literature.
Collapse
Affiliation(s)
| | | | - Lucy Minkley
- School of Life SciencesUniversity of SussexBrightonUK
| | - Kira Shaw
- School of Life SciencesUniversity of SussexBrightonUK
| | - Orla Bonnar
- School of Life SciencesUniversity of SussexBrightonUK
| | | | | | | | | | | | - Sarah King
- School of PsychologyUniversity of SussexBrightonUK
| |
Collapse
|
42
|
Staurenghi E, Leoni V, Lo Iacono M, Sottero B, Testa G, Giannelli S, Leonarduzzi G, Gamba P. ApoE3 vs. ApoE4 Astrocytes: A Detailed Analysis Provides New Insights into Differences in Cholesterol Homeostasis. Antioxidants (Basel) 2022; 11:2168. [PMID: 36358540 PMCID: PMC9686673 DOI: 10.3390/antiox11112168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 07/30/2023] Open
Abstract
The strongest genetic risk factor for sporadic Alzheimer's disease (AD) is the presence of the ε4 allele of the apolipoprotein E (ApoE) gene, the major apolipoprotein involved in brain cholesterol homeostasis. Being astrocytes the main producers of cholesterol and ApoE in the brain, we investigated the impact of the ApoE genotype on astrocyte cholesterol homeostasis. Two mouse astrocytic cell lines expressing the human ApoE3 or ApoE4 isoform were employed. Gas chromatography-mass spectrometry (GC-MS) analysis pointed out that the levels of total cholesterol, cholesterol precursors, and various oxysterols are altered in ApoE4 astrocytes. Moreover, the gene expression analysis of more than 40 lipid-related genes by qRT-PCR showed that certain genes are up-regulated (e.g., CYP27A1) and others down-regulated (e.g., PPARγ, LXRα) in ApoE4, compared to ApoE3 astrocytes. Beyond confirming the significant reduction in the levels of PPARγ, a key transcription factor involved in the maintenance of lipid homeostasis, Western blotting showed that both intracellular and secreted ApoE levels are altered in ApoE4 astrocytes, as well as the levels of receptors and transporters involved in lipid uptake/efflux (ABCA1, LDLR, LRP1, and ApoER2). Data showed that the ApoE genotype clearly affects astrocytic cholesterol homeostasis; however, further investigation is needed to clarify the mechanisms underlying these differences and the consequences on neighboring cells. Indeed, drug development aimed at restoring cholesterol homeostasis could be a potential strategy to counteract AD.
Collapse
Affiliation(s)
- Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Valerio Leoni
- Laboratory of Clinical Biochemistry, Hospital Pius XI of Desio, ASST-Brianza, University of Milano-Bicocca, 20126 Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Barbara Sottero
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| |
Collapse
|
43
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
44
|
Giannisis A, Al-Grety A, Carlsson H, Patra K, Twohig D, Sando SB, Lauridsen C, Berge G, Grøntvedt GR, Bråthen G, White LR, Kultima K, Nielsen HM. Plasma apolipoprotein E levels in longitudinally followed patients with mild cognitive impairment and Alzheimer’s disease. Alzheimers Res Ther 2022; 14:115. [PMID: 36002891 PMCID: PMC9400269 DOI: 10.1186/s13195-022-01058-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Low levels of plasma apolipoprotein E (apoE) and presence of the APOE ε4 allele are associated with an increased risk of Alzheimer’s disease (AD). Although the increased risk of AD in APOE ε4-carriers is well-established, the protein levels have received limited attention.
Methods
We here report the total plasma apoE and apoE isoform levels at baseline from a longitudinally (24 months) followed cohort including controls (n = 39), patients with stable amnestic mild cognitive impairment during 24 months follow up (MCI-MCI, n = 30), patients with amnestic MCI (aMCI) that during follow-up were clinically diagnosed with AD with dementia (ADD) (MCI-ADD, n = 28), and patients with AD with dementia (ADD) at baseline (ADD, n = 28). We furthermore assessed associations between plasma apoE levels with cerebrospinal fluid (CSF) AD biomarkers and α-synuclein, as well as both CSF and plasma neurofilament light chain (NfL), YKL-40 and kallikrein 6.
Results
Irrespective of clinical diagnosis, the highest versus the lowest apoE levels were found in APOE ε2/ε3 versus APOE ε4/ε4 subjects, with the most prominent differences exhibited in females. Total plasma apoE levels were 32% and 21% higher in the controls versus MCI-ADD and ADD patients, respectively. Interestingly, MCI-ADD patients exhibited a 30% reduction in plasma apoE compared to MCI-MCI patients. This decrease appeared to be associated with brain amyloid-β (Aβ42) pathology regardless of disease status as assessed using the Amyloid, Tau, and Neurodegeneration (A/T/N) classification. In addition to the association between low plasma apoE and low levels of CSF Aβ42, lower apoE levels were also related to higher levels of CSF total tau (t-tau) and tau phosphorylated at Threonine 181 residue (p-tau) and NfL as well as a worse performance on the mini-mental-state-examination. In MCI-ADD patients, low levels of plasma apoE were associated with higher levels of CSF α-synuclein and kallikrein 6. No significant correlations between plasma apoE and the astrocytic inflammatory marker YKL40 were observed.
Conclusions
Our results demonstrate important associations between low plasma apoE levels, Aβ pathology, and progression from aMCI to a clinical ADD diagnosis.
Collapse
|
45
|
Giannisis A, Patra K, Edlund AK, Nieto LA, Benedicto-Gras J, Moussaud S, de la Rosa A, Twohig D, Bengtsson T, Fu Y, Bu G, Bial G, Foquet L, Hammarstedt C, Strom S, Kannisto K, Raber J, Ellis E, Nielsen HM. Brain integrity is altered by hepatic APOE ε4 in humanized-liver mice. Mol Psychiatry 2022; 27:3533-3543. [PMID: 35418601 PMCID: PMC9708568 DOI: 10.1038/s41380-022-01548-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
Abstract
Liver-generated plasma apolipoprotein E (apoE) does not enter the brain but nonetheless correlates with Alzheimer's disease (AD) risk and AD biomarker levels. Carriers of APOEε4, the strongest genetic AD risk factor, exhibit lower plasma apoE and altered brain integrity already at mid-life versus non-APOEε4 carriers. Whether altered plasma liver-derived apoE or specifically an APOEε4 liver phenotype promotes neurodegeneration is unknown. Here we investigated the brains of Fah-/-, Rag2-/-, Il2rg-/- mice on the Non-Obese Diabetic (NOD) background (FRGN) with humanized-livers of an AD risk-associated APOE ε4/ε4 versus an APOE ε2/ε3 genotype. Reduced endogenous mouse apoE levels in the brains of APOE ε4/ε4 liver mice were accompanied by various changes in markers of synaptic integrity, neuroinflammation and insulin signaling. Plasma apoE4 levels were associated with unfavorable changes in several of the assessed markers. These results propose a previously unexplored role of the liver in the APOEε4-associated risk of neurodegenerative disease.
Collapse
Affiliation(s)
- Andreas Giannisis
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden
| | - Kalicharan Patra
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden
| | - Anna K Edlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden
| | - Lur Agirrezabala Nieto
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden
| | - Joan Benedicto-Gras
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden
| | - Simon Moussaud
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden
| | - Andrés de la Rosa
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden
| | - Daniel Twohig
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm, 10691, Sweden
| | - Yuan Fu
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, 32224, USA
| | - Greg Bial
- Yecuris Corporation, Tualatin, OR, 97062, USA
| | | | - Christina Hammarstedt
- Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, 17177, Sweden
| | - Stephen Strom
- Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, 17177, Sweden
| | - Kristina Kannisto
- Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, 17177, Sweden
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, and Division of Neuroscience, ONPPRC, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Ewa Ellis
- Department of Clinical Science, Intervention and Technology, (CLINTEC), Division of Transplantation surgery, Karolinska Institutet, Huddinge, 14152, Sweden
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden.
| |
Collapse
|
46
|
Neuronal ApoE Regulates the Cell-to-Cell Transmission of α-Synuclein. Int J Mol Sci 2022; 23:ijms23158311. [PMID: 35955451 PMCID: PMC9369063 DOI: 10.3390/ijms23158311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
The presence of protein inclusions, called Lewy bodies (LBs) and Lewy neurites (LNs), in the brain is the main feature of Parkinson’s disease (PD). Recent evidence that the prion-like propagation of α-synuclein (α-syn), as a major component of LBs and LNs, plays an important role in the progression of PD has gained much attention, although the molecular mechanism remains unclear. In this study, we evaluated whether neuronal ApoE regulates the cell-to-cell transmission of α-syn and explored its molecular mechanism using in vitro and in vivo model systems. We demonstrate that neuronal ApoE deficiency attenuates both α-syn uptake and release by downregulating LRP-1 and LDLR expression and enhancing chaperone-mediated autophagy activity, respectively, thereby contributing to α-syn propagation. In addition, we observed that α-syn propagation was attenuated in ApoE knockout mice injected with pre-formed mouse α-syn fibrils. This study will help our understanding of the molecular mechanisms underlying α-syn propagation.
Collapse
|
47
|
Zhang Y, Gao H, Zheng W, Xu H. Current understanding of the interactions between metal ions and Apolipoprotein E in Alzheimer's disease. Neurobiol Dis 2022; 172:105824. [PMID: 35878744 DOI: 10.1016/j.nbd.2022.105824] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia in the elderly, is a chronic and progressive neurodegenerative disorder with no effective disease-modifying treatments to date. Studies have shown that an imbalance in brain metal ions, such as zinc, copper, and iron, is closely related to the onset and progression of AD. Many efforts have been made to understand metal-related mechanisms and therapeutic strategies for AD. Emerging evidence suggests that interactions of brain metal ions and apolipoprotein E (ApoE), which is the strongest genetic risk factor for late-onset AD, may be one of the mechanisms for neurodegeneration. Here, we summarize the key points regarding how metal ions and ApoE contribute to the pathogenesis of AD. We further describe the interactions between metal ions and ApoE in the brain and propose that their interactions play an important role in neuropathological alterations and cognitive decline in AD.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Huiling Gao
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, China Medical University, Shenyang, China
| | - He Xu
- Department of Anatomy, Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen, China.
| |
Collapse
|
48
|
Kim H, Devanand DP, Carlson S, Goldberg TE. Apolipoprotein E Genotype e2: Neuroprotection and Its Limits. Front Aging Neurosci 2022; 14:919712. [PMID: 35912085 PMCID: PMC9329577 DOI: 10.3389/fnagi.2022.919712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
In this review, we comprehensively, qualitatively, and critically synthesized several features of APOE-e2, a known APOE protective variant, including its associations with longevity, cognition, and neuroimaging, and neuropathology, all in humans. If e2’s protective effects—and their limits—could be elucidated, it could offer therapeutic windows for Alzheimer’s disease (AD) prevention or amelioration. Literature examining e2 within the years 1994–2021 were considered for this review. Studies on human subjects were selectively reviewed and were excluded if observation of e2 was not specified. Effects of e2 were compared with e3 and e4, separately and as a combined non-e2 group. Our examination of existing literature indicated that the most robust protective role of e2 is in longevity and AD neuropathologies, but e2’s effect on cognition and other AD imaging markers (brain structure, function, and metabolism) were inconsistent, thus inconclusive. Notably, e2 was associated with greater risk of non-AD proteinopathies and a disadvantageous cerebrovascular profile. We identified multiple methodological shortcomings of the literature on brain function and cognition that could have contributed to inconsistent and potentially misleading findings. We make careful interpretations of existing findings and provide directions for research strategies that could effectively examine the independent and unbiased effect of e2 on AD risk.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
| | - Davangere P. Devanand
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Scott Carlson
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
| | - Terry E. Goldberg
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Terry E. Goldberg,
| |
Collapse
|
49
|
Cholesterol and matrisome pathways dysregulated in astrocytes and microglia. Cell 2022; 185:2213-2233.e25. [PMID: 35750033 DOI: 10.1016/j.cell.2022.05.017] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/07/2020] [Accepted: 05/16/2022] [Indexed: 12/12/2022]
Abstract
The impact of apolipoprotein E ε4 (APOE4), the strongest genetic risk factor for Alzheimer's disease (AD), on human brain cellular function remains unclear. Here, we investigated the effects of APOE4 on brain cell types derived from population and isogenic human induced pluripotent stem cells, post-mortem brain, and APOE targeted replacement mice. Population and isogenic models demonstrate that APOE4 local haplotype, rather than a single risk allele, contributes to risk. Global transcriptomic analyses reveal human-specific, APOE4-driven lipid metabolic dysregulation in astrocytes and microglia. APOE4 enhances de novo cholesterol synthesis despite elevated intracellular cholesterol due to lysosomal cholesterol sequestration in astrocytes. Further, matrisome dysregulation is associated with upregulated chemotaxis, glial activation, and lipid biosynthesis in astrocytes co-cultured with neurons, which recapitulates altered astrocyte matrisome signaling in human brain. Thus, APOE4 initiates glia-specific cell and non-cell autonomous dysregulation that may contribute to increased AD risk.
Collapse
|
50
|
Abstract
The brain, as one of the most lipid-rich organs, heavily relies on lipid transport and distribution to maintain homeostasis and neuronal function. Lipid transport mediated by lipoprotein particles, which are complex structures composed of apolipoproteins and lipids, has been thoroughly characterized in the periphery. Although lipoproteins in the central nervous system (CNS) were reported over half a century ago, the identification of APOE4 as the strongest genetic risk factor for Alzheimer's disease has accelerated investigation of the biology and pathobiology of lipoproteins in the CNS. This review provides an overview of the different components of lipoprotein particles, in particular apolipoproteins, and their involvements in both physiological functions and pathological mechanisms in the CNS.
Collapse
Affiliation(s)
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA;
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA;
| |
Collapse
|