1
|
Witkin JM, Radin DP, Rana S, Fuller DD, Fusco AF, Demers JC, Pradeep Thakre P, Smith JL, Lippa A, Cerne R. AMPA receptors play an important role in the biological consequences of spinal cord injury: Implications for AMPA receptor modulators for therapeutic benefit. Biochem Pharmacol 2024; 228:116302. [PMID: 38763261 DOI: 10.1016/j.bcp.2024.116302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Spinal cord injury (SCI) afflicts millions of individuals globally. There are few therapies available to patients. Ascending and descending excitatory glutamatergic neural circuits in the central nervous system are disrupted by SCI, making α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) a potential therapeutic drug target. Emerging research in preclinical models highlights the involvement of AMPARs in vital processes following SCI including breathing, pain, inflammation, bladder control, and motor function. However, there are no clinical trial data reported in this patient population to date. No work on the role of AMPA receptors in sexual dysfunction after SCI has been disclosed. Compounds with selective antagonist and potentiating effects on AMPA receptors have benefit in animal models of SCI, with antagonists generally showing protective effects early after injury and potentiators (ampakines) producing improved breathing and bladder function. The role of AMPARs in pathophysiology and recovery after SCI depends upon the time post injury, and the timing of AMPAR augmentation or antagonism. The roles of inflammation, synaptic plasticity, sensitization, neurotrophic factors, and neuroprotection are considered in this context. The data summarized and discussed in this paper document proof of principle and strongly encourage additional studies on AMPARs as novel gateways to therapeutic benefit for patients suffering from SCI. The availability of both AMPAR antagonists such as perampanel and AMPAR allosteric modulators (i.e., ampakines) such as CX1739, that have been safely administered to humans, provides an expedited means of clinical inquiry for possible therapeutic advances.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA.
| | | | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Anna F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Julie C Demers
- Indiana University/Purdue University, Indianapolis, IN, USA
| | - Prajwal Pradeep Thakre
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA; Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, Ljubljana, Slovenia
| |
Collapse
|
2
|
Asakawa K, Handa H, Kawakami K. Multi-phaseted problems of TDP-43 in selective neuronal vulnerability in ALS. Cell Mol Life Sci 2021; 78:4453-4465. [PMID: 33709256 PMCID: PMC8195926 DOI: 10.1007/s00018-021-03792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/03/2021] [Accepted: 02/18/2021] [Indexed: 10/28/2022]
Abstract
Transactive response DNA-binding protein 43 kDa (TDP-43) encoded by the TARDBP gene is an evolutionarily conserved heterogeneous nuclear ribonucleoprotein (hnRNP) that regulates multiple steps of RNA metabolism, and its cytoplasmic aggregation characterizes degenerating motor neurons in amyotrophic lateral sclerosis (ALS). In most ALS cases, cytoplasmic TDP-43 aggregation occurs in the absence of mutations in the coding sequence of TARDBP. Thus, a major challenge in ALS research is to understand the nature of pathological changes occurring in wild-type TDP-43 and to explore upstream events in intracellular and extracellular milieu that promote the pathological transition of TDP-43. Despite the inherent obstacles to analyzing TDP-43 dynamics in in vivo motor neurons due to their anatomical complexity and inaccessibility, recent studies using cellular and animal models have provided important mechanistic insights into potential links between TDP-43 and motor neuron vulnerability in ALS. This review is intended to provide an overview of the current literature on the function and regulation of TDP-43-containing RNP granules or membraneless organelles, as revealed by various models, and to discuss the potential mechanisms by which TDP-43 can cause selective vulnerability of motor neurons in ALS.
Collapse
Affiliation(s)
- Kazuhide Asakawa
- Department of Chemical Biology, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402, Japan.
- Division of Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
3
|
Tedeschi V, Petrozziello T, Secondo A. Ca 2+ dysregulation in the pathogenesis of amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:21-47. [PMID: 34392931 DOI: 10.1016/bs.ircmb.2021.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease without appropriate cure. One of the main reasons for the lack of a proper pharmacotherapy in ALS is the narrow knowledge on the molecular causes of the disease. In this respect, the identification of dysfunctional pathways in ALS is now considered a critical medical need. Among the causative factors involved in ALS, Ca2+ dysregulation is one of the most important pathogenetic mechanisms of the disease. Of note, Ca2+ dysfunction may induce, directly or indirectly, motor neuron degeneration and loss. Interestingly, both familial (fALS) and sporadic ALS (sALS) share the progressive dysregulation of Ca2+ homeostasis as a common noxious mechanism. Mechanicistically, Ca2+ dysfunction involves both plasma membrane and intracellular mechanisms, including AMPA receptor (AMPAR)-mediated excitotoxicity, voltage-gated Ca2+ channels (VGCCs) and Ca2+ transporter dysregulation, endoplasmic reticulum (ER) Ca2+ deregulation, mitochondria-associated ER membranes (MAMs) dysfunction, lysosomal Ca2+ leak, etc. Here, a comprehensive analysis of the main pathways involved in the dysregulation of Ca2+ homeostasis has been reported with the aim to focus the attention on new putative druggable targets.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy.
| |
Collapse
|
4
|
Herrmann AM, Cerina M, Bittner S, Meuth SG, Budde T. Intracellular fluoride influences TASK mediated currents in human T cells. J Immunol Methods 2020; 487:112875. [PMID: 33031794 DOI: 10.1016/j.jim.2020.112875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 08/14/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
The expression of Kv1.3 and KCa channels in human T cells is essential for maintaining cell activation, proliferation and migration during an inflammatory response. Recently, an additional residual current, sensitive to anandamide and A293, compounds specifically inhibiting currents mediated by TASK channels, was observed after complete pharmacological blockade of Kv1.3 and KCa channels. This finding was not consistently observed throughout different studies and, an in-depth review of the different recording conditions used for the electrophysiological analysis of K+ currents in T cells revealed fluoride as major anionic component of the pipette intracellular solutions in the initial studies. While fluoride is frequently used to stabilize electrophysiological recordings, it is known as G-protein activator and to influence the intracellular Ca2+ concentration, which are mechanisms known to modulate TASK channel functioning. Therefore, we systemically addressed different fluoride- and chloride-based pipette solutions in whole-cell patch-clamp experiments in human T cells and used specific blockers to identify membrane currents carried by TASK and Kv1.3 channels. We found that fluoride increased the decay time constant of K+ outward currents, reduced the degree of the sustained current component and diminished the effect of the specific TASK channels blocker A293. These findings indicate that the use of fluoride-based pipette solutions may hinder the identification of a functional TASK channel component in electrophysiological experiments.
Collapse
Affiliation(s)
- Alexander M Herrmann
- Department of Neurology with Institute of Translational Neurology, Münster University Hospital, Münster, Germany.
| | - Manuela Cerina
- Department of Neurology with Institute of Translational Neurology, Münster University Hospital, Münster, Germany
| | - Stefan Bittner
- Department of Neurology, University of Mainz, Mainz, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, Münster University Hospital, Münster, Germany
| | - Thomas Budde
- Institute of Physiology I, Westfälische-Wilhems Universität Münster, Münster, Germany.
| |
Collapse
|
5
|
Lukáčová N, Hricová L, Kisucká A, Papcunová Š, Bimbová K, Bačová M, Pavel J, Marsala M, Vanický I, Dzurjašková Z, Matéffy S, Lukáčová V, Stropkovská A, Gálik J. Is Innervation of the Neuromuscular Junction at the Diaphragm Modulated by sGC/cGMP Signaling? Front Physiol 2020; 11:700. [PMID: 32655417 PMCID: PMC7324717 DOI: 10.3389/fphys.2020.00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/28/2020] [Indexed: 11/15/2022] Open
Abstract
We previously reported NO/sGC signaling in the upper respiratory pathway, receiving input from the respiratory neurons of the brainstem to phrenic motoneurons in the C3–C6 spinal cord. In order to assess whether innervation of the neuromuscular junction (NMJ) at the diaphragm is modulated by sGC/cGMP signaling, we performed unilateral 8-day continuous ligation of the phrenic nerve in rats. We examined sGCβ1 within the lower bulbospinal pathway (phrenic motoneurons, phrenic nerves and NMJs at the diaphragm) and the cGMP level in the contra- and ipsilateral hemidiaphragm. Additionally, we characterized the extent of phrenic nerve axonal degeneration and denervation at diaphragm NMJs. The results of our study show that continuous 8-day phrenic nerve ligation caused a marked increase in sGCβ1 (immunoreactivity and the protein level) in the ipsilateral phrenic motor pool. However, the protein sGCβ1 level in the phrenic nerve below its ligation and the cGMP level in the ipsilateral hemidiaphragm were evidently decreased. Using confocal analysis we discovered a reduction in sGCβ1-IR boutons/synaptic vesicles at the ipsilateral MNJs. These findings are consistent with the marked axonal loss (∼47%) and significant NMJs degeneration in the ipsilateral diaphragm muscle. The remarkable unilateral decrease in cGMP level in the diaphragm and the failure of EMG recordings in the ipsilateral hemidiaphragm muscle can be attributed to the fact that sGC is involved in transmitter release at the diaphragm NMJs via the sGC-cGMP pathway.
Collapse
Affiliation(s)
- Nadežda Lukáčová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Košice, Slovakia
| | - L'udmila Hricová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Košice, Slovakia
| | - Alexandra Kisucká
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Košice, Slovakia
| | - Štefánia Papcunová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Košice, Slovakia
| | - Katarína Bimbová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Košice, Slovakia
| | - Mária Bačová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Košice, Slovakia
| | - Jaroslav Pavel
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Košice, Slovakia
| | - Martin Marsala
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Košice, Slovakia.,Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
| | - Ivo Vanický
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Košice, Slovakia
| | - Zuzana Dzurjašková
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Košice, Slovakia
| | - Stanislav Matéffy
- Diagnostic Center of Pathology in Prešov, Alpha Medical, s.r.o., Martin, Slovakia
| | - Viktória Lukáčová
- Faculty of Economics, Technical University of Košice, Košice, Slovakia
| | - Andrea Stropkovská
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Košice, Slovakia
| | - Ján Gálik
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Košice, Slovakia
| |
Collapse
|
6
|
Ragagnin AMG, Shadfar S, Vidal M, Jamali MS, Atkin JD. Motor Neuron Susceptibility in ALS/FTD. Front Neurosci 2019; 13:532. [PMID: 31316328 PMCID: PMC6610326 DOI: 10.3389/fnins.2019.00532] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of both upper and lower motor neurons (MNs) in the brain, brainstem and spinal cord. The neurodegenerative mechanisms leading to MN loss in ALS are not fully understood. Importantly, the reasons why MNs are specifically targeted in this disorder are unclear, when the proteins associated genetically or pathologically with ALS are expressed ubiquitously. Furthermore, MNs themselves are not affected equally; specific MNs subpopulations are more susceptible than others in both animal models and human patients. Corticospinal MNs and lower somatic MNs, which innervate voluntary muscles, degenerate more readily than specific subgroups of lower MNs, which remain resistant to degeneration, reflecting the clinical manifestations of ALS. In this review, we discuss the possible factors intrinsic to MNs that render them uniquely susceptible to neurodegeneration in ALS. We also speculate why some MN subpopulations are more vulnerable than others, focusing on both their molecular and physiological properties. Finally, we review the anatomical network and neuronal microenvironment as determinants of MN subtype vulnerability and hence the progression of ALS.
Collapse
Affiliation(s)
- Audrey M G Ragagnin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sina Shadfar
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Marta Vidal
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Accorsi-Mendonça D, Bonagamba LGH, Machado BH. Astrocytic modulation of glutamatergic synaptic transmission is reduced in NTS of rats submitted to short-term sustained hypoxia. J Neurophysiol 2019; 121:1822-1830. [PMID: 30892977 DOI: 10.1152/jn.00279.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sustained hypoxia (SH) activates chemoreceptors to produce cardiovascular and respiratory responses to bring the arterial partial pressure of O2 back to the physiological range. We evaluated the effect of SH (fraction of inspired O2 = 0.10, 24 h) on glutamatergic synaptic transmission and the interaction neuron-astrocyte in neurons of the nucleus tractus solitarii (NTS). Tractus solitarius (TS) fiber stimulation induced glutamatergic currents in neurons and astrocytes. SH increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate (AMPA/kainate) [-183 ± 122 pA (n = 10) vs. -353 ± 101 pA (n = 10)] and N-methyl-d-aspartate (NMDA) current amplitude [61 ± 10 pA (n = 7) vs. 102 ± 37 pA (n = 10)]. To investigate the effects of SH, we used fluoroacetate (FAC), an astrocytic inhibitor, which revealed an excitatory modulation on AMPA/kainate current and an inhibitory modulation of NMDA current in control rats. SH blunted the astrocytic modulation of AMPA [artificial cerebrospinal fluid (aCSF): -353 ± 101 pA vs. aCSF + FAC: -369 ± 76 pA (n = 10)] and NMDA currents [aCSF: 102 ± 37 pA vs. aCSF + FAC: 108 ± 32 pA (n = 10)]. SH increased AMPA current density [control: -6 ± 3.5 pA/pF (n = 6) vs. SH: -20 ± 12 pA/pF (n = 7)], suggesting changes in density, conductance, or affinity of AMPA receptors. SH produced no effect on astrocytic resting membrane potential, input resistance, and AMPA/kainate current. We conclude that SH decreased the neuron-astrocyte interaction at the NTS level, facilitating the glutamatergic transmission, which may contribute to the enhancement of cardiovascular and respiratory responses to baro- and chemoreflexes activation in SH rats. NEW & NOTEWORTHY Using an electrophysiological approach, we have shown that in nucleus tractus solitarii (NTS) from control rats, astrocytes modulate the AMPA and NMDA currents in NTS neurons, changing their excitability. Sustained hypoxia (SH) increased both glutamatergic currents in NTS neurons due to 1) a reduction in the astrocytic modulation and 2) an increase in the density of AMPA receptors. These new findings show the importance of neuron-astrocyte modulation in the excitatory synaptic transmission in NTS of control and SH rats.
Collapse
Affiliation(s)
- Daniela Accorsi-Mendonça
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Leni G H Bonagamba
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| |
Collapse
|
8
|
Kia A, McAvoy K, Krishnamurthy K, Trotti D, Pasinelli P. Astrocytes expressing ALS-linked mutant FUS induce motor neuron death through release of tumor necrosis factor-alpha. Glia 2018; 66:1016-1033. [PMID: 29380416 PMCID: PMC5873384 DOI: 10.1002/glia.23298] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/18/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Mutations in fused in sarcoma (FUS) are linked to amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease affecting both upper and lower motor neurons. While it is established that astrocytes contribute to the death of motor neurons in ALS, the specific contribution of mutant FUS (mutFUS) through astrocytes has not yet been studied. Here, we used primary astrocytes expressing a N‐terminally GFP tagged R521G mutant or wild‐type FUS (WTFUS) and show that mutFUS‐expressing astrocytes undergo astrogliosis, damage co‐cultured motor neurons via activation of an inflammatory response and produce conditioned medium (ACM) that is toxic to motor neurons in isolation. Time lapse imaging shows that motor neuron cultures exposed to mutFUS ACM, but not WTFUS ACM, undergo significant cell loss, which is preceded by progressive degeneration of neurites. We found that Tumor Necrosis Factor‐Alpha (TNFα) is secreted into ACM of mutFUS‐expressing astrocytes. Accordingly, mutFUS astrocyte‐mediated motor neuron toxicity is blocked by targeting soluble TNFα with neutralizing antibodies. We also found that mutant astrocytes trigger changes to motor neuron AMPA receptors (AMPAR) that render them susceptible to excitotoxicity and AMPAR‐mediated cell death. Our data provide the first evidence of astrocytic involvement in FUS‐ALS, identify TNFα as a mediator of this toxicity, and provide several potential therapeutic targets to protect motor neurons in FUS‐linked ALS.
Collapse
Affiliation(s)
- Azadeh Kia
- Jefferson Weinberg ALS Center, Vickie & Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, 19107
| | - Kevin McAvoy
- Jefferson Weinberg ALS Center, Vickie & Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, 19107
| | - Karthik Krishnamurthy
- Jefferson Weinberg ALS Center, Vickie & Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, 19107
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie & Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, 19107
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie & Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, 19107
| |
Collapse
|
9
|
Selvaraj BT, Livesey MR, Zhao C, Gregory JM, James OT, Cleary EM, Chouhan AK, Gane AB, Perkins EM, Dando O, Lillico SG, Lee YB, Nishimura AL, Poreci U, Thankamony S, Pray M, Vasistha NA, Magnani D, Borooah S, Burr K, Story D, McCampbell A, Shaw CE, Kind PC, Aitman TJ, Whitelaw CBA, Wilmut I, Smith C, Miles GB, Hardingham GE, Wyllie DJA, Chandran S. C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca 2+-permeable AMPA receptor-mediated excitotoxicity. Nat Commun 2018; 9:347. [PMID: 29367641 PMCID: PMC5783946 DOI: 10.1038/s41467-017-02729-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Mutations in C9ORF72 are the most common cause of familial amyotrophic lateral sclerosis (ALS). Here, through a combination of RNA-Seq and electrophysiological studies on induced pluripotent stem cell (iPSC)-derived motor neurons (MNs), we show that increased expression of GluA1 AMPA receptor (AMPAR) subunit occurs in MNs with C9ORF72 mutations that leads to increased Ca2+-permeable AMPAR expression and results in enhanced selective MN vulnerability to excitotoxicity. These deficits are not found in iPSC-derived cortical neurons and are abolished by CRISPR/Cas9-mediated correction of the C9ORF72 repeat expansion in MNs. We also demonstrate that MN-specific dysregulation of AMPAR expression is also present in C9ORF72 patient post-mortem material. We therefore present multiple lines of evidence for the specific upregulation of GluA1 subunits in human mutant C9ORF72 MNs that could lead to a potential pathogenic excitotoxic mechanism in ALS. Repeat expansion mutation in C9ORF72 is the most common cause of familial ALS. Here, the authors generate motor neurons from cells of patients with C9ORF72 mutations, and characterize changes in gene expression in these motor neurons compared to genetically corrected lines, which suggest that glutamate receptor subunit GluA1 is dysregulated in this form of ALS.
Collapse
Affiliation(s)
- Bhuvaneish T Selvaraj
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Matthew R Livesey
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Chen Zhao
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Jenna M Gregory
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Owain T James
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Elaine M Cleary
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Amit K Chouhan
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK
| | - Angus B Gane
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Emma M Perkins
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Owen Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India
| | - Simon G Lillico
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Youn-Bok Lee
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 8AF, UK
| | - Agnes L Nishimura
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 8AF, UK
| | - Urjana Poreci
- Global Biomarker and Drug Discovery, Biogen, Cambridge, MA, 02142, USA
| | - Sai Thankamony
- Global Biomarker and Drug Discovery, Biogen, Cambridge, MA, 02142, USA
| | - Meryll Pray
- Global Biomarker and Drug Discovery, Biogen, Cambridge, MA, 02142, USA
| | - Navneet A Vasistha
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India
| | - Dario Magnani
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Shyamanga Borooah
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Karen Burr
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - David Story
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | | | - Christopher E Shaw
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 8AF, UK
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India
| | - Timothy J Aitman
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - C Bruce A Whitelaw
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Ian Wilmut
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Colin Smith
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Gareth B Miles
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK
| | - Giles E Hardingham
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.,UK DRI Institute at Edinburgh, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - David J A Wyllie
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK. .,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK. .,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India.
| | - Siddharthan Chandran
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK. .,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK. .,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK. .,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India. .,UK DRI Institute at Edinburgh, University of Edinburgh, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
10
|
Blizzard CA, Lee KM, Dickson TC. Inducing Chronic Excitotoxicity in the Mouse Spinal Cord to Investigate Lower Motor Neuron Degeneration. Front Neurosci 2016; 10:76. [PMID: 26973454 PMCID: PMC4773442 DOI: 10.3389/fnins.2016.00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/17/2016] [Indexed: 12/13/2022] Open
Abstract
We report the methodology for the chronic delivery of an excitotoxin to the mouse spinal cord via surgically implanted osmotic mini-pumps. Previous studies have investigated the effect of chronic application of excitotoxins in the rat, however there has been little translation of this model to the mouse. Using mice that express yellow fluorescent protein (YFP), motor neuron and neuromuscular junction alterations can be investigate following targeted, long-term (28 days) exposure to the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor excitotoxin, kainic acid. By targeting the L3-4 region of the lumbar spinal cord, with insertion of an intrathecal catheter into the subarachnoid space at L5, chronic application of the kainic acid results in slow excitotoxic death in the anterior ventral horn, with a significant (P < 0.05) reduction in the number of SMI-32 immunopositive neurons present after 28 days infusion. Use of the Thy1-YFP mice provides unrivaled visualization of the neuromuscular junction and enables the resultant distal degeneration in skeletal muscle to be observed. Both neuromuscular junction retraction at the gastrocnemius muscle and axonal fragmentation in the sciatic nerve were observed after chronic infusion of kainic acid for 28 days. Lower motor neuron, and distal neuromuscular junction, degeneration are pathological hallmarks of the devastating neurodegenerative disease Amyotrophic Lateral Sclerosis (ALS). This mouse model will be advantageous for increasing our understanding of how the pathophysiological phenomena associated with this disease can lead to lower motor neuron loss and distal pathology, as well as providing a robust in vivo platform to test therapeutic interventions directed at excitotoxic mechanisms.
Collapse
Affiliation(s)
- Catherine A. Blizzard
- Menzies Institute for Medical Research, University of TasmaniaHobart, TAS, Australia
| | | | | |
Collapse
|
11
|
Körner S, Böselt S, Wichmann K, Thau-Habermann N, Zapf A, Knippenberg S, Dengler R, Petri S. The Axon Guidance Protein Semaphorin 3A Is Increased in the Motor Cortex of Patients With Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2016; 75:326-333. [PMID: 26921371 DOI: 10.1093/jnen/nlw003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disorder that leads to progressive paralysis of skeletal muscles and death by respiratory failure. There is increasing evidence that ALS is at least in part an axonopathy and that mechanisms regulating axonal degeneration and regeneration might be pathogenetically relevant. Semaphorin 3A (Sema3A) is an axon guidance protein; it acts as an axon repellent and prevents axonal regeneration. Increased Sema3A expression has been described in a mouse model of ALS in which it may contribute to motor neuron degeneration. This study aimed to investigate Sema3A mRNA and protein expression in human CNS tissues. We assessed Sema3A expression using quantitative real-time PCR, in situ hybridization, and immunohistochemistry in motor cortex and spinal cord tissue of 8 ALS patients and 6 controls. We found a consistent increase of Sema3A expression in the motor cortex of ALS patients by all 3 methods. In situ hybridization further confirmed that Sema3A expression was present in motor neurons. These findings indicate that upregulation of Sema3A may contribute to axonal degeneration and failure of regeneration in ALS patients. The inhibition of Sema3A therefore might be a promising future therapeutic option for patients with this disease.
Collapse
Affiliation(s)
- Sonja Körner
- From the Department of Neurology, Hannover Medical School, Hannover, Germany (SK, SB, KW, NTH, RD); Department of Medical Statistics, University Medical Center, Göttingen, Germany (AZ); Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany (SK); and Center for Systems Neuroscience (ZSN), Hannover, Germany (RD, SP).
| | - Sebastian Böselt
- From the Department of Neurology, Hannover Medical School, Hannover, Germany (SK, SB, KW, NTH, RD); Department of Medical Statistics, University Medical Center, Göttingen, Germany (AZ); Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany (SK); and Center for Systems Neuroscience (ZSN), Hannover, Germany (RD, SP)
| | - Klaudia Wichmann
- From the Department of Neurology, Hannover Medical School, Hannover, Germany (SK, SB, KW, NTH, RD); Department of Medical Statistics, University Medical Center, Göttingen, Germany (AZ); Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany (SK); and Center for Systems Neuroscience (ZSN), Hannover, Germany (RD, SP)
| | - Nadine Thau-Habermann
- From the Department of Neurology, Hannover Medical School, Hannover, Germany (SK, SB, KW, NTH, RD); Department of Medical Statistics, University Medical Center, Göttingen, Germany (AZ); Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany (SK); and Center for Systems Neuroscience (ZSN), Hannover, Germany (RD, SP)
| | - Antonia Zapf
- From the Department of Neurology, Hannover Medical School, Hannover, Germany (SK, SB, KW, NTH, RD); Department of Medical Statistics, University Medical Center, Göttingen, Germany (AZ); Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany (SK); and Center for Systems Neuroscience (ZSN), Hannover, Germany (RD, SP)
| | - Sarah Knippenberg
- From the Department of Neurology, Hannover Medical School, Hannover, Germany (SK, SB, KW, NTH, RD); Department of Medical Statistics, University Medical Center, Göttingen, Germany (AZ); Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany (SK); and Center for Systems Neuroscience (ZSN), Hannover, Germany (RD, SP)
| | - Reinhard Dengler
- From the Department of Neurology, Hannover Medical School, Hannover, Germany (SK, SB, KW, NTH, RD); Department of Medical Statistics, University Medical Center, Göttingen, Germany (AZ); Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany (SK); and Center for Systems Neuroscience (ZSN), Hannover, Germany (RD, SP)
| | - Susanne Petri
- From the Department of Neurology, Hannover Medical School, Hannover, Germany (SK, SB, KW, NTH, RD); Department of Medical Statistics, University Medical Center, Göttingen, Germany (AZ); Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany (SK); and Center for Systems Neuroscience (ZSN), Hannover, Germany (RD, SP)
| |
Collapse
|
12
|
King AE, Woodhouse A, Kirkcaldie MT, Vickers JC. Excitotoxicity in ALS: Overstimulation, or overreaction? Exp Neurol 2016; 275 Pt 1:162-71. [DOI: 10.1016/j.expneurol.2015.09.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/30/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
|
13
|
Joshi DC, Tewari BP, Singh M, Joshi PG, Joshi NB. AMPA receptor activation causes preferential mitochondrial Ca2+ load and oxidative stress in motor neurons. Brain Res 2015; 1616:1-9. [DOI: 10.1016/j.brainres.2015.04.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/18/2015] [Accepted: 04/22/2015] [Indexed: 01/05/2023]
|
14
|
Ngo S, Steyn F, McCombe P. Body mass index and dietary intervention: Implications for prognosis of amyotrophic lateral sclerosis. J Neurol Sci 2014; 340:5-12. [DOI: 10.1016/j.jns.2014.02.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 12/12/2022]
|
15
|
Krishnamurthy K, Mehta B, Singh M, Tewari BP, Joshi PG, Joshi NB. Depalmitoylation preferentially downregulates AMPA induced Ca2+ signaling and neurotoxicity in motor neurons. Brain Res 2013; 1529:143-53. [PMID: 23850769 DOI: 10.1016/j.brainres.2013.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
Abstract
Excessive activation of AMPA receptor has been implicated in motor neuron degeneration in amyotrophic lateral sclerosis (ALS). However, it is not clear why motor neurons are preferentially sensitive to AMPA receptor mediated excessive [Ca(2+)]i rise and excitotoxicity. In the present study we examined whether palmitoylation regulates Ca(2+) permeability of AMPA receptor and excitotoxicity in cultured spinal cord neurons. We adapted chronic 2-bromopalmitate (2-BrP) treatment to achieve depalmitoylation and examined its effect on the cytotoxicity in spinal cord neurons exposed to AMPA. The change in AMPA induced signaling and cytotoxicity in motor neurons and other spinal neurons under identical conditions of exposure to AMPA was studied. 2-BrP treatment inhibited AMPA induced rise in [Ca(2+)]i and cytotoxicity in both types of neurons but the degree of inhibition was significantly higher in motor neurons as compared to other spinal neurons. The AMPA induced [Na(+)]i rise was moderately affected in both type of neurons on depalmitoylation. Depalmitoylation reduced the expression levels of AMPA receptor subunits (GluR1 and GluR2) and also PSD-95 but stargazin levels remained unaffected. Our results demonstrate that 2-BrP attenuates AMPA receptor activated Ca(2+) signaling and cytotoxicity preferentially in motor neurons and suggest that AMPA receptor modulation by depalmitoylation could play a significant role in preventing motor neuron degeneration.
Collapse
Affiliation(s)
- Karthik Krishnamurthy
- Department of Biophysics, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| | | | | | | | | | | |
Collapse
|
16
|
Milošević M, Stenovec M, Kreft M, Petrušić V, Stević Z, Trkov S, Andjus PR, Zorec R. Immunoglobulins G from patients with sporadic amyotrophic lateral sclerosis affects cytosolic Ca2+ homeostasis in cultured rat astrocytes. Cell Calcium 2013; 54:17-25. [PMID: 23623373 DOI: 10.1016/j.ceca.2013.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/28/2013] [Accepted: 03/30/2013] [Indexed: 12/23/2022]
Abstract
Astrocytes are considered essential in the etiopathogenesis of amyotrophic lateral sclerosis (ALS). We have demonstrated previously that immunoglobulins G (IgG) isolated from patients with ALS enhance the mobility of acidic vesicles in cultured astrocytes in a Ca(2+)-dependent manner. Here we directly examined the impact of purified sporadic ALS IgG on cytosolic [Ca(2+)] ([Ca(2+)]i) in astrocytes. Confocal time-lapse images were acquired and fluorescence of a non-ratiometric Ca(2+) indicator was recorded before and after the application of IgG. ALS IgG (0.1 mg/ml) from 7 patients evoked transient increases in [Ca(2+)]i in ~50% of tested astrocytes. The probability of observing a response was independent of extracellular Ca(2+). The peak increase in [Ca(2+)]i developed ~3 times faster and the time integral of evoked transients was ~2-fold larger; the peak amplitude itself was not affected by extracellular Ca(2+). Application of pharmacological inhibitors revealed that activation of inositol-1,4,5-triphosphate receptors is necessary and sufficient to initiate transients in [Ca(2+)]i; the Ca(2+) influx through store-operated calcium entry prolongs the transient increase in [Ca(2+)]i. Thus, ALS IgG acutely affect [Ca(2+)]i by mobilizing both, intra- and extracellular Ca(2+) into the cytosol of cultured astrocytes.
Collapse
Affiliation(s)
- Milena Milošević
- University of Ljubljana, Medical Faculty, Institute of Pathophysiology, Laboratory of Neuroendocrinology-Molecular Cell Physiology, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Brockington A, Ning K, Heath PR, Wood E, Kirby J, Fusi N, Lawrence N, Wharton SB, Ince PG, Shaw PJ. Unravelling the enigma of selective vulnerability in neurodegeneration: motor neurons resistant to degeneration in ALS show distinct gene expression characteristics and decreased susceptibility to excitotoxicity. Acta Neuropathol 2013; 125:95-109. [PMID: 23143228 PMCID: PMC3535376 DOI: 10.1007/s00401-012-1058-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 12/11/2022]
Abstract
A consistent clinical feature of amyotrophic lateral sclerosis (ALS) is the sparing of eye movements and the function of external sphincters, with corresponding preservation of motor neurons in the brainstem oculomotor nuclei, and of Onuf’s nucleus in the sacral spinal cord. Studying the differences in properties of neurons that are vulnerable and resistant to the disease process in ALS may provide insights into the mechanisms of neuronal degeneration, and identify targets for therapeutic manipulation. We used microarray analysis to determine the differences in gene expression between oculomotor and spinal motor neurons, isolated by laser capture microdissection from the midbrain and spinal cord of neurologically normal human controls. We compared these to transcriptional profiles of oculomotor nuclei and spinal cord from rat and mouse, obtained from the GEO omnibus database. We show that oculomotor neurons have a distinct transcriptional profile, with significant differential expression of 1,757 named genes (q < 0.001). Differentially expressed genes are enriched for the functional categories of synaptic transmission, ubiquitin-dependent proteolysis, mitochondrial function, transcriptional regulation, immune system functions, and the extracellular matrix. Marked differences are seen, across the three species, in genes with a function in synaptic transmission, including several glutamate and GABA receptor subunits. Using patch clamp recording in acute spinal and brainstem slices, we show that resistant oculomotor neurons show a reduced AMPA-mediated inward calcium current, and a higher GABA-mediated chloride current, than vulnerable spinal motor neurons. The findings suggest that reduced susceptibility to excitotoxicity, mediated in part through enhanced GABAergic transmission, is an important determinant of the relative resistance of oculomotor neurons to degeneration in ALS.
Collapse
Affiliation(s)
- Alice Brockington
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Ke Ning
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Paul R. Heath
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Elizabeth Wood
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Janine Kirby
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Nicolò Fusi
- Computational Biology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Neil Lawrence
- Computational Biology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Stephen B. Wharton
- Academic Neuropathology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Paul G. Ince
- Academic Neuropathology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Pamela J. Shaw
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| |
Collapse
|
18
|
Texidó L, Hernández S, Martín-Satué M, Povedano M, Casanovas A, Esquerda J, Marsal J, Solsona C. Sera from amyotrophic lateral sclerosis patients induce the non-canonical activation of NMDA receptors "in vitro". Neurochem Int 2011; 59:954-64. [PMID: 21782871 DOI: 10.1016/j.neuint.2011.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 11/29/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by the selective loss of both upper and lower motoneurons (MNs). The familial form of the illness is associated with mutations in the gene encoding Cu/Zn superoxide dismutase 1 (SOD-1) enzyme, but it accounts for fewer than 10% of cases; the rest, more than 90%, correspond to the sporadic form of ALS. Although many proposals have been suggested over the years, the mechanisms underlying the characteristic selective killing of MN in ALS remain unknown. In this study we tested the effect of sera from sporadic ALS patients on NMDA receptors (NMDAR). We hypothesize that an endogenous seric factor is implicated in neuronal death in ALS, mediated by the modulation of NMDAR. Sera from ALS patients and from healthy subjects were pretreated to inactivate complement pathways and dialyzed to remove glutamate and glycine. IgGs from ALS patients and healthy subjects were obtained by affinity chromatography and dialyzed against phosphate-buffered saline. Human NMDAR were expressed in Xenopus laevis oocytes, and ionic currents were recorded using the two-electrode voltage clamp technique. Sera from sporadic ALS patients induced transient oscillatory currents in oocytes expressing NMDAR with a significantly higher total electrical charge than that induced by sera from healthy subjects. Sera from patients with other neuromuscular diseases did not exert this effect. The currents were inhibited by MK-801, a noncompetitive blocker of NMDAR. The PLC inhibitor, U-73122, and the IP(3) receptor antagonist, 2-APB, also inhibited the sera-induced currents. The oscillatory signal recorded was due to internal calcium mobilization. Isolated IgGs from ALS patients significantly affected the activity of oocytes injected with NMDAR, causing a 2-fold increase over the response recorded for IgGs from healthy subjects. Our data support the notion that ALS sera contain soluble factors that mobilize intracellular calcium, not opening directly the ionic conductance, but through the non-canonical activation of NMDAR.
Collapse
Affiliation(s)
- Laura Texidó
- Laboratory of Cellular and Molecular Neurobiology, Department of Pathology and Experimental Therapeutics, Medical School-Bellvitge Campus, University of Barcelona, C/Feixa Llarga s/n, L'Hospitalet de Llobregat, E-08907 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Joshi DC, Singh M, Krishnamurthy K, Joshi PG, Joshi NB. AMPA induced Ca2+ influx in motor neurons occurs through voltage gated Ca2+ channel and Ca2+ permeable AMPA receptor. Neurochem Int 2011; 59:913-21. [PMID: 21777635 DOI: 10.1016/j.neuint.2011.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/27/2011] [Accepted: 06/29/2011] [Indexed: 11/19/2022]
Abstract
The rise in intracellular Ca(2+) mediated by AMPA subtype of glutamate receptors has been implicated in the pathogenesis of motor neuron disease, but the exact route of Ca(2+) entry into motor neurons is not clearly known. In the present study, we examined the role of voltage gated calcium channels (VGCCs) in AMPA induced Ca(2+) influx and subsequent intracellular signaling events responsible for motor neuron degeneration. AMPA stimulation caused sodium influx in spinal neurons that would depolarize the plasma membrane. The AMPA induced [Ca(2+)](i) rise in motor neurons as well as other spinal neurons was drastically reduced when extracellular sodium was replaced with NMDG, suggesting the involvement of voltage gated calcium channels. AMPA mediated rise in [Ca(2+)](i) was significantly inhibited by L-type VGCC blocker nifedipine, whereas ω-agatoxin-IVA and ω-conotoxin-GVIA, specific blockers of P/Q type and N-type VGCC were not effective. 1-Napthyl-acetyl spermine (NAS), an antagonist of Ca(2+) permeable AMPA receptors partially inhibited the AMPA induced [Ca(2+)](i) rise but selectively in motor neurons. Measurement of AMPA induced currents in whole cell voltage clamp mode suggests that a moderate amount of Ca(2+) influx occurs through Ca(2+) permeable AMPA receptors in a subpopulation of motor neurons. The AMPA induced mitochondrial calcium loading [Ca(2+)](m), mitochondrial depolarization and neurotoxicity were also significantly reduced in presence of nifedipine. Activation of VGCCs by depolarizing concentration of KCl (30mM) in extracellular medium increased the [Ca(2+)](i) but no change was observed in mitochondrial Ca(2+) and membrane potential. Our results demonstrate that a subpopulation of motor neurons express Ca(2+) permeable AMPA receptors, however the larger part of Ca(2+) influx occurs through L-type VGCCs subsequent to AMPA receptor activation and consequent mitochondrial dysfunction is the trigger for motor neuron degeneration. Nifedipine is an effective protective agent against AMPA induced mitochondrial stress and degeneration of motor neurons.
Collapse
Affiliation(s)
- Dinesh C Joshi
- Department of Biophysics, National Institute of Mental Health and Neuro Sciences, Bangalore 560 029, India
| | | | | | | | | |
Collapse
|
20
|
ElBasiouny SM, Schuster JE, Heckman CJ. Persistent inward currents in spinal motoneurons: important for normal function but potentially harmful after spinal cord injury and in amyotrophic lateral sclerosis. Clin Neurophysiol 2010; 121:1669-79. [PMID: 20462789 PMCID: PMC3000632 DOI: 10.1016/j.clinph.2009.12.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 11/28/2009] [Accepted: 12/14/2009] [Indexed: 10/19/2022]
Abstract
Meaningful body movements depend on the interplay between synaptic inputs to motoneurons and their intrinsic properties. Injury and disease often alter either or both of these factors and cause motoneuron and movement dysfunction. The ability of the motoneuronal membrane to generate persistent inward currents (PICs) is especially potent in setting the intrinsic excitability of motoneurons and can drastically change the motoneuron output to a given input. In this article, we review the role of PICs in modulating the excitability of spinal motoneurons during health, and their contribution to motoneuron excitability after spinal cord injury (SCI) and in amyotrophic lateral sclerosis (ALS) leading to exaggerated long-lasting reflexes and muscle spasms, and contributing to neuronal degeneration, respectively.
Collapse
Affiliation(s)
- S M ElBasiouny
- Physiology, Physical Medicine and Rehabilitation, Physical Therapy and Human Movement Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | | | | |
Collapse
|
21
|
Foran E, Trotti D. Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis. Antioxid Redox Signal 2009; 11:1587-602. [PMID: 19413484 PMCID: PMC2842587 DOI: 10.1089/ars.2009.2444] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Responsible for the majority of excitatory activity in the central nervous system (CNS), glutamate interacts with a range of specific receptor and transporter systems to establish a functional synapse. Excessive stimulation of glutamate receptors causes excitotoxicity, a phenomenon implicated in both acute and chronic neurodegenerative diseases [e.g., ischemia, Huntington's disease, and amyotrophic lateral sclerosis (ALS)]. In physiology, excitotoxicity is prevented by rapid binding and clearance of synaptic released glutamate by high-affinity, Na(+)-dependent glutamate transporters and amplified by defects to the glutamate transporter and receptor systems. ALS pathogenetic mechanisms are not completely understood and characterized, but excitotoxicity has been regarded as one firm mechanism implicated in the disease because of data obtained from ALS patients and animal and cellular models as well as inferred by the documented efficacy of riluzole, a generic antiglutamatergic drug, has in patients. In this article, we critically review the several lines of evidence supporting a role for glutamate-mediated excitotoxicity in the death of motor neurons occurring in ALS, putting a particular emphasis on the impairment of the glutamate-transport system.
Collapse
Affiliation(s)
- Emily Foran
- Weinberg Unit for ALS Research, Farber Institute for the Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
22
|
Buckingham S, Kwak S, Jones A, Blackshaw S, Sattelle D. Edited GluR2, a gatekeeper for motor neurone survival? Bioessays 2008; 30:1185-92. [DOI: 10.1002/bies.20836] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
von Lewinski F, Fuchs J, Vanselow BK, Keller BU. Low Ca2+ buffering in hypoglossal motoneurons of mutant SOD1 (G93A) mice. Neurosci Lett 2008; 445:224-8. [PMID: 18782598 DOI: 10.1016/j.neulet.2008.08.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 08/28/2008] [Accepted: 08/28/2008] [Indexed: 11/25/2022]
Abstract
Mutations in the Cu/Zn superoxide dismutase (SOD1) gene are associated with amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder characterized by a selective degeneration of brainstem and spinal motoneurons. The pathomechanism of degeneration is still incompletely understood, but includes a disruption in cellular Ca2+ homeostasis. Here we report a quantitative microfluorometric analysis of the Ca2+ homeostasis in vulnerable hypoglossal motoneurons of neonatal mutant (G93A) SOD1 transgenic mice, a mouse model of human ALS. Ca2+ transient decay times (tau = 0.3 s), extrusion rates (gamma = 92 s(-1)) and exceptionally low intrinsic Ca2+ binding ratios (kappaS = 30) were found to be in the same range as compared to non-transgenic animals. Together with the previous observation of high Ca2+ binding ratios in ALS-resistant neurons (e.g. oculomotor), this supports the assumption that low Ca2+ buffering in vulnerable motoneurons represents a significant risk factor for degeneration. On the other hand, alterations in buffering properties by expression of mutant SOD1 are unlikely to be involved in disease initiation.
Collapse
Affiliation(s)
- Friederike von Lewinski
- Center for Physiology and Pathophysiology, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | | | |
Collapse
|
24
|
Prithviraj R, Inglis FM. Expression of the N-methyl-D-aspartate receptor subunit NR3B regulates dendrite morphogenesis in spinal motor neurons. Neuroscience 2008; 155:145-53. [PMID: 18541382 DOI: 10.1016/j.neuroscience.2008.03.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/19/2008] [Accepted: 03/19/2008] [Indexed: 11/17/2022]
Abstract
During postnatal development, the dendrites of spinal motor neurons are refined in an activity-dependent manner that can be influenced by blocking activation of N-methyl-D-aspartate (NMDA) receptors. In late postnatal life, dendritic refinement ceases, and dendrite architecture is unaffected by NMDA antagonists; however the molecular substrate for limiting dendritic plasticity is not understood. During late postnatal development, expression of the NR3B NMDA receptor subunit, a putative dominant-negative subunit that reduces glutamate-induced ionic currents, is upregulated within motor neurons. To investigate whether increasing NR3B expression may contribute to the loss in late development of activity-dependent dendritic reorganization in the spinal cord, we over-expressed NR3B in cultured rat spinal motor neurons, and compared its effects on dendrite morphology with the effects of pharmacological blockade of NMDA receptors. We found that over-expression of the NR3B receptor subunit increased the length and complexity of dendritic arbor, and increased numbers of dendritic filopodia, suggesting that NR3B promotes the addition of branch segments in developing motor neurons. In contrast, blockade of NMDA receptor activity by the NMDA antagonist DL-2-amino-5-phosphonovalerate (AP5) had little effect on the overall length or complexity of dendritic arbor. Instead, treatment with AP5 resulted in significant reorganization of dendritic arbor in a manner that favored addition of dendritic segments of high branch orders, at the expense of those closer to the cell body. These results suggest that expression of the NR3B subunit may participate in activity-dependent reorganization of dendritic architecture, but via a mechanism that may be inconsistent with loss of NMDA receptor activity.
Collapse
Affiliation(s)
- R Prithviraj
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | |
Collapse
|
25
|
Prithviraj R, Kelly KM, Espinoza-Lewis R, Hexom T, Clark AB, Inglis FM. Differential regulation of dendrite complexity by AMPA receptor subunits GluR1 and GluR2 in motor neurons. Dev Neurobiol 2008; 68:247-64. [PMID: 18000827 DOI: 10.1002/dneu.20590] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Activity-dependent developmental mechanisms in many regions of the central nervous system are thought to be responsible for shaping dendritic architecture and connectivity, although the molecular mechanisms underlying these events remain obscure. Since AMPA glutamate receptors are developmentally regulated in spinal motor neurons, we have investigated the role of activation of AMPA receptors in dendritic outgrowth of spinal motor neurons by overexpression of two subunits, GluR1 and GluR2, and find that dendrite outgrowth is differentially controlled by expression of these subunits. Overexpression of GluR1 was associated with greater numbers of filopodia, and an increase in the length and complexity of dendritic arbor. In contrast, GluR2 expression did not alter dendritic complexity, but was associated with a moderate increase in length of arbor, and decreased numbers of filopodia. Neither GluR1 nor GluR2 had any effect on the motility of filopodia. In addition, GluR1 but not GluR2 expression increased the density of dendritic puncta incorporating a GFP-labeled PSD95, suggesting that GluR1 may mediate its effect in part by augmenting the number of excitatory synapses within motor neuron dendrites. Together these results suggest that in spinal motor neurons, AMPA receptors composed of GluR1 subunits may facilitate neurotrophic mechanisms in these neurons, permitting sustained dendrite outgrowth and synaptogenesis, whereas expression of AMPA receptors containing GluR2 acts to preserve existing dendritic arbor. Thus, the observed downregulation of GluR1 in motor neurons during postnatal development may limit the formation of new dendrite segments and synapses, promoting stabilized synaptic connectivity.
Collapse
Affiliation(s)
- Ranjini Prithviraj
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | |
Collapse
|
26
|
Guatteo E, Carunchio I, Pieri M, Albo F, Canu N, Mercuri NB, Zona C. Altered calcium homeostasis in motor neurons following AMPA receptor but not voltage-dependent calcium channels' activation in a genetic model of amyotrophic lateral sclerosis. Neurobiol Dis 2007; 28:90-100. [PMID: 17706428 DOI: 10.1016/j.nbd.2007.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 06/28/2007] [Accepted: 07/01/2007] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset progressive neurodegenerative disease characterized by a substantial loss of motor neurons in the spinal cord, brain stem and motor cortex. By combining electrophysiological recordings with imaging techniques, clearance/buffering capacity of cultured spinal cord motor neurons after a calcium accumulation has been analyzed in response to AMPA receptors' (AMPARs') activation and to depolarizing stimuli in a genetic mouse model of ALS (G93A). Our studies demonstrate that the amplitude of the calcium signal in response to AMPARs' or voltage-dependent calcium channels' activation is not significantly different in controls and G93A motor neurons. On the contrary, in G93A motor neurons, the [Ca(2+)](i) recovery to basal level is significantly slower compared to control neurons following AMPARs but not voltage-dependent calcium channels' activation. This difference was not observed in G93A cultured cortical neurons. This observation is the first to indicate a specific alteration of the calcium clearance linked to AMPA receptors' activation in G93A motor neurons and the involvement of AMPA receptor regulatory proteins controlling both AMPA receptor functionality and the sequence of events connected to them.
Collapse
Affiliation(s)
- Ezia Guatteo
- Fondazione S. Lucia, Centro Europeo Ricerca sul Cervello, Via del Fosso di Fiorano, 00173 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Sen I, Joshi DC, Joshi PG, Joshi NB. NMDA and non-NMDA receptor-mediated differential Ca2+ load and greater vulnerability of motor neurons in spinal cord cultures. Neurochem Int 2007; 52:247-55. [PMID: 17692996 DOI: 10.1016/j.neuint.2007.06.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 06/16/2007] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
Abstract
Glutamate receptor activated neuronal cell death has been implicated in the pathogenesis of motor neuron disease but the molecular mechanism responsible for neuronal dysfunction needs to be elucidated. In the present study, we examined the contribution of NMDA and non-NMDA sub-types of glutamate receptors in selective vulnerability of motor neurons. Glutamate receptor activated Ca2+ signaling, mitochondrial functions and neurotoxicity in motor neurons and other spinal neurons were studied in mixed spinal cord primary cultures. Exposure of cells to glutamate receptor agonists glutamate, NMDA and AMPA elevated the intracellular Ca2+, mitochondrial Ca2+ and caused mitochondrial depolarization and cytotoxicity in both motor neurons and other spinal neurons but a striking difference was observed in the magnitude and temporal patterns of the [Ca2+]i responses between the two neuronal cell types. The motor neurons elicited higher Ca2+ load than the other spinal neurons and the [Ca2+]i levels were elevated for a longer duration in motor neurons. AMPA receptor stimulation was more effective than NMDA. Both the NMDA and non-NMDA receptor antagonists APV and NBQX inhibited the Ca2+ entry and decreased the cell death significantly; however, NBQX was more potent than APV. Our results demonstrate that both NMDA and non-NMDA sub-types of glutamate receptors contribute to glutamate-mediated motor neuron damage but AMPA receptors play the major role. AMPA receptor-mediated excessive Ca2+ load and differential handling/regulation of Ca2+ buffering by mitochondria in motor neurons could be central in their selective vulnerability to excitotoxicity.
Collapse
Affiliation(s)
- Indrani Sen
- Department of Biophysics, National Institute of Mental Health and Neuro Sciences, Bangalore 560 029, India
| | | | | | | |
Collapse
|
28
|
Bannerman PG, Hahn A. Enhanced visualization of axonopathy in EAE using thy1-YFP transgenic mice. J Neurol Sci 2007; 260:23-32. [PMID: 17493638 DOI: 10.1016/j.jns.2007.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 02/17/2007] [Accepted: 03/21/2007] [Indexed: 10/23/2022]
Abstract
It is widely accepted that chronic disabilities in multiple sclerosis (MS) patients are due in part to neuronal damage. The central aim of this study was to characterize axonal disruption in the spinal cord of mice with myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (MOG-EAE), a model of progressive MS. To accomplish this goal, we induced MOG-EAE in thy1-yellow fluorescent (thy-YFP)-transgenic mice in which all spinal motorneurons express the YFP reporter protein. We demonstrate that a build-up of YFP fluorescence occurs in profiles reminiscent of tortuous fragmented axons and axonal spheroids/globules as seen in various neurodegenerative/neuroinflammatory diseases. Approximately two-thirds of these damaged axons were decorated by the monoclonal antibody SMI 32, which recognizes hypophosphorylated neurofilament-H (hypoP-NF-H), an established marker of CNS axonal pathology. Unexpectedly, one third of damaged axons were hypoP-NF-H negative but could be visualized by their expression of the YFP transgene, whilst the remaining profiles were hypoP-NF-H positive but did not exhibit YFP fluorescence. Thus, using YFP transgenic mice in conjunction with hypoP-NF-H immunoreactivity provides a more comprehensive depiction of axonopathy in the ventral-lateral aspect of lumbosacral spinal cord in MOG-EAE. When YFP fluorescence was used in conjunction with a monoclonal antibody that recognizes CD11b; a marker of subsets of inflammatory cells, we were able to discern evidence of an early inflammatory attack on white matter axons. Finally, we show the accumulation of hyperphosphorylated neurofilament-H (hyperP-NF-H) expression in YFP+, lesioned WM areas and in a subpopulation of neuronal perikarya in the lumbar spinal cords of EAE mice.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibody Specificity/immunology
- Axons/immunology
- Axons/pathology
- CD11 Antigens/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Genes, Reporter/genetics
- Immunohistochemistry
- Luminescent Proteins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Motor Neurons/immunology
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/physiopathology
- Myelitis/immunology
- Myelitis/pathology
- Myelitis/physiopathology
- Neurofilament Proteins/immunology
- Neurofilament Proteins/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Spinal Cord/immunology
- Spinal Cord/pathology
- Spinal Cord/physiopathology
- Staining and Labeling/methods
- Thy-1 Antigens/genetics
- Thy-1 Antigens/immunology
- Wallerian Degeneration/immunology
- Wallerian Degeneration/pathology
- Wallerian Degeneration/physiopathology
Collapse
Affiliation(s)
- P G Bannerman
- Neurology Research, Shriners Hospital for Children, Sacramento, CA 95817, United States.
| | | |
Collapse
|
29
|
Sanelli T, Ge W, Leystra-Lantz C, Strong MJ. Calcium mediated excitotoxicity in neurofilament aggregate-bearing neurons in vitro is NMDA receptor dependant. J Neurol Sci 2007; 256:39-51. [PMID: 17368487 DOI: 10.1016/j.jns.2007.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2006] [Revised: 02/09/2007] [Accepted: 02/12/2007] [Indexed: 12/14/2022]
Abstract
We have previously shown that the co-localization of neuronal nitric oxide synthase (nNOS) with neurofilament (NF) aggregates in motor neurons derived from transgenic mice over-expressing the human low molecular weight NF protein (hNFL+/+) is associated with a deregulation of calcium influx via the N-methyl-d-aspartate (NMDA) receptor, resulting in apoptosis. Because the absence of the GluR2 subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA) receptor confers calcium permeability and has been implicated in the process of excitotoxicity in ALS, we have examined the role of the AMPA receptor in this model. GluR2 protein expression and mRNA were examined in hNFL+/+ and wild-type motor neurons (wt). Live cell calcium imaging was performed using Oregon-Green Bapta and Fura-2 calcium dyes. For apoptotic studies, neurons were treated with glutamate, with or without glutamate receptor antagonists [6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) or (+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801)] and examined for active caspase-3 or phospholipid inversion. We observed that although both GluR2 mRNA and protein levels were decreased in hNFL+/+ motor neurons compared to wt, there was no appreciable calcium influx via the AMPA receptor. These studies demonstrate that calcium mediated excitotoxicity in NF aggregate-bearing neurons is NMDA receptor dependant.
Collapse
Affiliation(s)
- Teresa Sanelli
- Department of Pathology, University of Western Ontario, London, ON, Canada
| | | | | | | |
Collapse
|
30
|
Young KC, McGehee DS, Brorson JR. Glutamate receptor expression and chronic glutamate toxicity in rat motor cortex. Neurobiol Dis 2007; 26:78-85. [PMID: 17240155 PMCID: PMC1905496 DOI: 10.1016/j.nbd.2006.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/31/2006] [Accepted: 12/05/2006] [Indexed: 11/19/2022] Open
Abstract
In addition to the loss of spinal motor neurons, amyotrophic lateral sclerosis (ALS) is also associated with degeneration of corticospinal layer V pyramidal neurons and decreased glutamate transport in the cortex. We characterized the glutamate receptors on corticospinal neurons in acutely isolated rat motor cortex slices and found that the synaptic inputs to the corticospinal layer V neurons had a lesser proportional contribution from NMDA receptors relative to AMPA receptors than did layer II/III pyramidal neurons. The synaptic I(AMPA) was also more inwardly rectified, indicating a greater Ca(2+)-permeable component, in layer V. In a cortical organotypic slice culture model, blockade of glutamate transporters elevated glutamate in the media and led to pyramidal neuron loss in both layers. The loss of layer V pyramidal neurons was attenuated by antagonists of AMPA/kainate or Ca(2+)-permeable AMPA receptors, suggesting their therapeutic potential in the protection of the motor cortex in ALS.
Collapse
Affiliation(s)
| | | | - James R. Brorson
- Department of Neurology, University of Chicago
- * Corresponding Author: 5841 S. Maryland Ave, MC2030, Chicago, IL 60637, , Phone: (773) 702-7215, Fax: (773) 702-9076
| |
Collapse
|
31
|
Elger B, Schneider M, Winter E, Carvelli L, Bonomi M, Fracasso C, Guiso G, Colovic M, Caccia S, Mennini T. Optimized synthesis of AMPA receptor antagonist ZK 187638 and neurobehavioral activity in a mouse model of neuronal ceroid lipofuscinosis. ChemMedChem 2007; 1:1142-8. [PMID: 16972289 DOI: 10.1002/cmdc.200600144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previous structure-activity relationship studies in the search for a potent, noncompetitive alpha-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor antagonist led to 2,3-dimethyl-6-phenyl-12H-[1,3]dioxolo[4,5-h]imidazo[1,2-c][2,3]benzodiazepine (ZK 187638). However, the first synthesis had some drawbacks regarding reagents, processes, and overall yield, which furthermore decreased when the synthesis was scaled up. Therefore, we now report a new synthetic route for this compound which requires fewer steps and is suited for large-scale production. This compound significantly relieved the symptoms of neuromuscular deficit in mnd mice, a model of neuronal ceroid lipofuscinosis with motor neuron dysfunction. After oral administration, the concentrations of the compound in the brain and spinal cord were about threefold higher than those in the plasma. In summary, this novel AMPA antagonist is accessible through an optimized synthetic route, has good neurobehavioral activity, oral bioavailability, and favorable brain penetration. This opens new possibilities for the treatment of devastating neurological diseases that are mediated by the AMPA receptor.
Collapse
Affiliation(s)
- Bernd Elger
- Schering AG, Muellerstrasse 178, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zona C, Pieri M, Carunchio I. Voltage-Dependent Sodium Channels in Spinal Cord Motor Neurons Display Rapid Recovery From Fast Inactivation in a Mouse Model of Amyotrophic Lateral Sclerosis. J Neurophysiol 2006; 96:3314-22. [PMID: 16899637 DOI: 10.1152/jn.00566.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a substantial loss of motor neurons in the spinal cord, brain stem, and motor cortex. Previous evidence showed that in a mouse model of a familial form of ALS expressing high levels of the human mutated protein Cu,Zn superoxide dismutase (Gly93→Ala, G93A), the firing properties of single motor neurons are altered to induce neuronal hyperexcitability. To determine whether the functionality of the macroscopic voltage-dependent Na+ currents is modified in G93A motor neurons, in the present work their physiological properties were examined. The voltage-dependent sodium channels were studied in dissociated motor neurons in culture from nontransgenic mice (Control), from transgenic mice expressing high levels of the human wild-type protein [superoxide dismutase 1 (SOD1)], and from G93A mice, using the whole cell configuration of the patch-clamp recording technique. The voltage dependency of activation and of steady-state inactivation, the kinetics of fast inactivation and slow inactivation of the voltage-dependent Na+ channels were not modified in the mutated mice. Conversely, the recovery from fast inactivation was significantly faster in G93A motor neurons than that in Control and SOD1. The recovery from fast inactivation was still significantly faster in G93A motor neurons exposed for different times (3–48 h) and concentrations (5–500 μM) to edaravone, a free-radical scavenger. Clarification of the importance of these changes in membrane ion channel functionality may have diagnostic and therapeutic implications in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Cristina Zona
- Department of Neuroscience, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | |
Collapse
|
33
|
Jahn K, Grosskreutz J, Haastert K, Ziegler E, Schlesinger F, Grothe C, Dengler R, Bufler J. Temporospatial coupling of networked synaptic activation of AMPA-type glutamate receptor channels and calcium transients in cultured motoneurons. Neuroscience 2006; 142:1019-29. [PMID: 16949760 DOI: 10.1016/j.neuroscience.2006.07.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2005] [Revised: 07/05/2006] [Accepted: 07/11/2006] [Indexed: 11/16/2022]
Abstract
AMPA-type glutamate receptor (GluR) channels provide fast excitatory synaptic transmission in the CNS, but mediate also cytotoxic insults. It could be shown that AMPA-type GluR channel-mediated chronic excitotoxicity leads to an increased intracellular calcium concentration and plays an important role in neurodegenerative diseases like for example amyotrophic lateral sclerosis (ALS). As calcium is an important mediator of various processes in the cell and calcium signals have to be very precise in the temporospatial resolution, excessive intracellular calcium increases can seriously impair cell function. It is still unclear if AMPA-type receptors can directly interact with the intracellular calcium homeostasis or if other mechanisms are involved in this process. The objective of this study was therefore to investigate the calcium homeostasis in rat motoneurons under physiological stimulation of AMPA-type GluR channels using calcium imaging techniques and patch-clamp recordings simultaneously. It was found that spontaneous excitatory postsynaptic currents of cultured motoneurons did not elicit significant intracellular calcium transients. Large intracellular calcium transients occurred only when preceding fast sodium currents were observed. Pharmacological experiments showed that activation of AMPA-type GluR channels during synaptic transmission has a great functional impact on the calcium homeostasis in motoneurons as all kinds of activity was completely blocked by application of the selective kainate- and AMPA-type GluR channel blocker 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Furthermore we suggest from our experiments that calcium transients of several hundred milliseconds' duration result from release of calcium from the endoplasmic reticulum via activation of ryanodine receptors (calcium-induced calcium release, CICR). Our results help to understand the regulatory function of AMPA-type GluR channels in the intracellular calcium homeostasis which is known to be disturbed in neurodegenerative diseases.
Collapse
Affiliation(s)
- K Jahn
- Department of Neurology, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, OE 7210 Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Mojsilovic-Petrovic J, Arneja A, Kalb RG. Enprofylline protects motor neurons from in vitro excitotoxic challenge. NEURODEGENER DIS 2006; 2:160-5. [PMID: 16909021 DOI: 10.1159/000089621] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The death of motor neurons in amyotrophic lateral sclerosis (ALS) is believed to result, in part, from unrestrained activation of glutamate receptors (excitotoxicity). In some in vitro models, excitotoxic death only occurs if motor neurons develop in the presence of the growth factor, brain-derived neurotrophic factor (BDNF). OBJECTIVE Since the increased vulnerability of motor neurons evoked by BDNF is mediated by activation of TrkB, we sought to identify pharmacological agents that can block this pathway. Adenosine receptors are known to transactivate Trk receptors, leading us to examine the effects of manipulating of adenosine receptor signaling on Trk signaling and excitotoxic sensitivity. METHODS Spinal cord cultures were treated with adenosine receptor agonists and antagonists. The biochemical effects on Trk signaling and excitotoxic motor neuron death were examined. RESULTS We show here that adenosine A(2a) antagonists can reduce activation of Trk receptors and are neuroprotective. Conversely, activating adenosine A(2a) receptors in the absence of BDNF signaling makes motor neurons vulnerable to excitotoxic challenge. CONCLUSION Selective, high-affinity adenosine A(2a) antagonists merit consideration as therapeutic agents for the treatment of ALS.
Collapse
|
35
|
Van Damme P, Dewil M, Robberecht W, Van Den Bosch L. Excitotoxicity and amyotrophic lateral sclerosis. NEURODEGENER DIS 2006; 2:147-59. [PMID: 16909020 DOI: 10.1159/000089620] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since its description by Charcot more than 130 years ago, the pathogenesis of selective motor neuron degeneration in amyotrophic lateral sclerosis (ALS) remains unsolved. Over the years, many pathogenic mechanisms have been proposed. Amongst others these include: oxidative stress, excitotoxicity, aggregate formation, inflammation, growth factor deficiency and neurofilament disorganization. This multitude of contributing factors indicates that ALS is a complex disease and also suggests that ALS is a multifactorial disorder. Excitotoxicity is not the newest and most spectacular hypothesis in the ALS field, but it is undoubtedly one of the most robust pathogenic mechanisms supported by an impressive amount of evidence. Moreover, the therapeutic efficacy of riluzole, the only drug proven to slow disease progression in ALS, is most likely related to its anti-excitotoxic properties. In this review, we will give an overview of the arguments in favor of the involvement of excitotoxicity in ALS and of the possible mechanisms leading to motor neuron death. We will also summarize the intrinsic properties of motor neurons that render these cells particularly vulnerable to excitotoxicity and could explain the selective vulnerability of motor neurons in ALS. All this information could help to develop new and better therapeutic strategies that could protect motor neurons from excitotoxicity.
Collapse
Affiliation(s)
- P Van Damme
- Neurobiology, Campus Gasthuisberg, Leuven, Belgium
| | | | | | | |
Collapse
|
36
|
Ismayilova N, Verkhratsky A, Dascombe MJ. Changes in mGlu5 receptor expression in the basal ganglia of reserpinised rats. Eur J Pharmacol 2006; 545:134-41. [PMID: 16890937 DOI: 10.1016/j.ejphar.2006.06.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 06/26/2006] [Accepted: 06/28/2006] [Indexed: 11/19/2022]
Abstract
Dopamine depletion in Parkinson's disease results in a series of pathophysiological changes in the basal ganglia circuitry. Increased release of glutamate plays an important role in this motor disorder, therefore, agents interacting with glutamatergic transmission may have therapeutic potential. In this study we investigated changes in both mRNA expression and the number of binding sites of the mGlu5 receptor in a reserpinised rat model of Parkinson's disease. The in situ hybridisation demonstrated that acute reserpine treatment caused a significant decrease in the expression of mGlu5 receptor mRNA in the rostral and caudal parts of the rat striatum. At the same time, tritium-labelled 2-ethyl-6-(phenylethynyl)-pyridine ([(3)H]MPEP) ligand binding experiments detected a significant increase in the total number of mGlu5 receptors in the same region of the motor loop. These apparently contradictory data can be explained by mGlu5 receptor turnover being down-regulated in reserpinised rats, due possibly to an imbalance in the rates of synthesis/insertion and internalisation/degradation of the receptor. These findings suggest that changes such as these affecting mGlu5 receptors may be involved in the pathophysiological consequences of dopamine depletion in the brain.
Collapse
Affiliation(s)
- Naila Ismayilova
- The University of Manchester, Faculty of Life Sciences, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
37
|
Van Den Bosch L, Van Damme P, Bogaert E, Robberecht W. The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2006; 1762:1068-82. [PMID: 16806844 DOI: 10.1016/j.bbadis.2006.05.002] [Citation(s) in RCA: 340] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 05/04/2006] [Accepted: 05/10/2006] [Indexed: 12/14/2022]
Abstract
Unfortunately and despite all efforts, amyotrophic lateral sclerosis (ALS) remains an incurable neurodegenerative disorder characterized by the progressive and selective death of motor neurons. The cause of this process is mostly unknown, but evidence is available that excitotoxicity plays an important role. In this review, we will give an overview of the arguments in favor of the involvement of excitotoxicity in ALS. The most important one is that the only drug proven to slow the disease process in humans, riluzole, has anti-excitotoxic properties. Moreover, consumption of excitotoxins can give rise to selective motor neuron death, indicating that motor neurons are extremely sensitive to excessive stimulation of glutamate receptors. We will summarize the intrinsic properties of motor neurons that could render these cells particularly sensitive to excitotoxicity. Most of these characteristics relate to the way motor neurons handle Ca(2+), as they combine two exceptional characteristics: a low Ca(2+)-buffering capacity and a high number of Ca(2+)-permeable AMPA receptors. These properties most likely are essential to perform their normal function, but under pathological conditions they could become responsible for the selective death of motor neurons. In order to achieve this worst-case scenario, additional factors/mechanisms could be required. In 1 to 2% of the ALS patients, mutations in the SOD1 gene could shift the balance from normal motor neuron excitation to excitotoxicity by decreasing glutamate uptake in the surrounding astrocytes and/or by interfering with mitochondrial function. We will discuss point by point these different pathogenic mechanisms that could give rise to classical and/or slow excitotoxicity leading to selective motor neuron death.
Collapse
Affiliation(s)
- L Van Den Bosch
- Neurobiology, Campus Gasthuisberg O&N2, PB1022, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
38
|
Kawahara Y, Kwak S. Excitotoxicity and ALS: what is unique about the AMPA receptors expressed on spinal motor neurons? ACTA ACUST UNITED AC 2006; 6:131-44. [PMID: 16183555 DOI: 10.1080/14660820510037872] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been repeatedly reported that spinal motor neurons are selectively vulnerable to AMPA receptor-mediated excitotoxicity. Therefore, identifying the uniqueness of AMPA receptors that are expressed on motor neurons, especially in individuals affected with sporadic amyotrophic lateral sclerosis (ALS) is essential for elucidating the etiology of this disorder. The mechanism that initiates motor neuronal death appears to be an exaggerated influx of Ca(2+) through AMPA receptors. The determinants that affect this Ca(2+) influx are Ca(2+) permeability, which is regulated by the presence of the GluR2 subunit and by RNA editing at the Q/R site of GluR2; channel desensitization, which is regulated by alternative splicing at the flip/flop site and by RNA editing at the R/G site of GluR subunits; and receptor density on the cell surface, which is controlled by many factors including regulatory proteins, direct phosphorylation and RNA editing at the Q/R site. This review focuses on recent progress on the molecular dynamics of AMPA receptors and discusses the pathophysiology of selective motor neuron death mediated by AMPA receptors in individuals affected with sporadic ALS.
Collapse
|
39
|
Sen I, Nalini A, Joshi NB, Joshi PG. Cerebrospinal fluid from amyotrophic lateral sclerosis patients preferentially elevates intracellular calcium and toxicity in motor neurons via AMPA/kainate receptor. J Neurol Sci 2005; 235:45-54. [PMID: 15936037 DOI: 10.1016/j.jns.2005.03.049] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 02/25/2005] [Accepted: 03/31/2005] [Indexed: 11/21/2022]
Abstract
Several lines of evidence in the literature purport the contribution of glutamate mediated excitotoxicity in the etiology of amyotrophic lateral sclerosis (ALS) but the cellular mechanisms responsible for selective loss of motor neurons are still obscure. Elevation of intracellular Ca(2+) is considered as the early event in glutamate mediated cell injury. We have studied the changes in [Ca(2+)](i) and cytotoxicity in motor neurons and other spinal neurons in culture upon exposure to cerebrospinal fluid (CSF) from ALS patients. CSFs from 20 ALS patients and 20 disease control patients were examined. Eighteen out of twenty (90%) ALS-CSF samples induced a transient but pronounced elevation of [Ca(2+)](i) in neurons, whereas only 1/20 (5%) sample from disease control patients induced a marginal elevation of [Ca(2+)](i). Strikingly the [Ca(2+)](i) rise was 2-3-fold higher and longer lasting in motor neurons in comparison to the other spinal neurons. Exposure of cells to ALS-CSF drastically decreased the survival rate of motor neurons to 32.26+/-2.06% whereas a moderate decrease was observed in case of other spinal neurons (67.90+/-2.04%). In cultures treated with disease control CSF, a small decrease was observed in the survival rate with 80.14+/-2.00% and 90.07+/-1.37% survival of motor neuron and other spinal neurons respectively. The AMPA/kainate receptor antagonist NBQX rendered significant protection against the ALS-CSF induced Ca(2+) influx and neurotoxicity while the NMDA receptor antagonist APV showed a mild effect. Our data demonstrate that the exposure of spinal cord neurons to ALS-CSF differentially elevates [Ca(2+)](i) and neurotoxicity in motor neurons by activation of glutamate receptors, the AMPA/kainate receptor playing the major role.
Collapse
Affiliation(s)
- Indrani Sen
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | | | | | | |
Collapse
|
40
|
Kwak S, Kawahara Y. Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis. J Mol Med (Berl) 2004; 83:110-20. [PMID: 15624111 DOI: 10.1007/s00109-004-0599-z] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 08/18/2004] [Indexed: 12/11/2022]
Abstract
One plausible hypothesis for selective neuronal death in sporadic amyotropic lateral sclerosis (ALS) is excitotoxicity mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, which are a subtype of ionotropic glutamate receptors. The Ca2+ conductance of AMPA receptors differs markedly depending on whether the GluR2 (or GluR-B) subunit is a component of the receptor. The properties of GluR2 are generated posttranscriptionally by RNA editing at the Q/R site in the putative second membrane domain (M2), during which the glutamine (Q) codon is substituted by an arginine (R) codon. AMPA receptors containing the unedited form of GluR2Q have high Ca2+ permeability in contrast to the low Ca2+ conductance of those containing the edited form of GluR2R. The role of Ca(2+)-permeable AMPA receptors, particularly GluR2 Q/R site RNA editing status, in neuronal death has been clearly demonstrated both in mice deficient in editing at the GluR2 Q/R site and in mice transgenic for an artificial Ca(2+)-permeable GluR2 subunit. We analyzed the expression level of mRNA of each AMPA receptor subunit in individual motor neurons, as well as the editing efficiency of GluR2 mRNA at the Q/R site in the single neuron level in control subjects and ALS cases. There was no significant difference as to the expression profile of AMPA receptor subunits or the proportion of GluR2 mRNA to total GluRs mRNA between normal subjects and ALS cases. By contrast, the editing efficiency varied greatly, from 0% to 100%, among the motor neurons of each individual with ALS, and was not complete in 44 of them (56%), whereas it remained 100% in normal controls. In addition, GluR2 editing efficiency was more than 99% in the cerebellar Purkinje cells of ALS, spinocerebellar degeneration and normal control groups. Thus, GluR2 underediting occurs in a disease specific and region selective manner. GluR2 modification by RNA editing is a biologically crucial event for neuronal survival, and its deficiency is a direct cause of neuronal death. Therefore, marked reduction of RNA editing in ALS motor neurons may be a direct cause of the selective motor neuron death seen in ALS. It is likely that the molecular mechanism underlying the deficiency in RNA editing is a reduction in the activity of ADAR2, a double- strand RNA specific deaminase. The restoration of this enzyme activity in ALS motor neurons may open the novel strategy for specific ALS therapy.
Collapse
Affiliation(s)
- Shin Kwak
- Department of Neurology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8655 Tokyo, Japan.
| | | |
Collapse
|
41
|
Miles GB, Lipski J, Lorier AR, Laslo P, Funk GD. Differential expression of voltage-activated calcium channels in III and XII motoneurones during development in the rat. Eur J Neurosci 2004; 20:903-13. [PMID: 15305859 DOI: 10.1111/j.1460-9568.2004.03550.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To further our understanding of the role that voltage-activated Ca2+ channels play in the development, physiology and pathophysiology of motoneurones (MNs), we used whole-cell patch-clamp recording to compare voltage-activated Ca2+ currents in oculomotor (III) and hypoglossal (XII) MNs of neonatal [postnatal day (P)1-5] and juvenile (P14-19) rats. In contrast to III MNs that innervate extraocular muscles, XII MNs that innervate tongue muscles mature more rapidly, fire bursts of low frequency action potentials and are vulnerable to degeneration in amyotrophic lateral sclerosis. In neonates, low voltage-activated (LVA) Ca2+ current densities are similar in XII and III MNs but high voltage-activated (HVA) Ca2+ current densities are twofold higher in XII MNs. The HVA Ca2+ channel antagonists (nimodipine and nifedipine for L-type, omega-agatoxin-TK for P/Q-type and omega-conotoxin-GVIA for N-type) revealed that, while N- and P/Q-type HVA Ca2+ channels are present in both MN pools, a 3.5-fold greater P/Q-type Ca2+ current in XII MNs accounts for their greater HVA Ca2+ currents. Developmentally, LVA and HVA Ca2+ current densities decrease in III MNs but remain unchanged in XII MNs. Thus, the differences between these MN pools increase developmentally so that, in juveniles, the LVA Ca2+ current density is twofold greater and the HVA Ca2+ current density is threefold greater in XII compared with III MNs. We propose that this differential expression of LVA and HVA Ca2+ channels in XII and III MNs during development contributes to their distinct physiology and may also be a factor contributing to the greater susceptibility of XII MNs to degeneration as seen in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Gareth B Miles
- Department of Physiology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
42
|
Corona JC, Tapia R. AMPA receptor activation, but not the accumulation of endogenous extracellular glutamate, induces paralysis and motor neuron death in rat spinal cord in vivo. J Neurochem 2004; 89:988-97. [PMID: 15140197 DOI: 10.1111/j.1471-4159.2004.02383.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms of motor neuron (MN) degeneration in amyotrophic lateral sclerosis (ALS) are unknown, but glutamate-mediated excitotoxicity may be involved. To examine directly this idea in vivo, we have used microdialysis in the rat lumbar spinal cord and showed that four- to fivefold increases in the concentration of endogenous extracellular glutamate during at least 1 h, by perfusion with the glutamate transport inhibitor L-2,4-trans-pyrrolidine-dicarboxylate, elicited no motor alterations or MN damage. Stimulation of glutamate release with 4-aminopyridine induced transitory ipsilateral hindlimb muscular twitches but no MN damage. In contrast, perfusion of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) did not modify glutamate levels but produced intense muscular spasms, followed by ipsilateral permanent hindlimb paralysis and a remarkable loss of MNs. These effects of AMPA were prevented by co-perfusion with the AMPA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline. Perfusion with NMDA or kainate produced no motor effects or MN damage. Thus, the elevation of endogenous extracellular glutamate in vivo due to blockade of its transport is innocuous for spinal MNs. Because this resistance is observed under the same experimental conditions in which MNs are highly vulnerable to AMPA, these results indicate that excitotoxicity due to this mechanism might not be an important factor in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Juan Carlos Corona
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F., México
| | | |
Collapse
|
43
|
Maekawa S, Al-Sarraj S, Kibble M, Landau S, Parnavelas J, Cotter D, Everall I, Leigh PN. Cortical selective vulnerability in motor neuron disease: a morphometric study. ACTA ACUST UNITED AC 2004; 127:1237-51. [PMID: 15130949 DOI: 10.1093/brain/awh132] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuroimaging and neuropsychological studies have revealed that the primary motor cortex (PMC) and the extramotor cortical areas are functionally abnormal in motor neuron disease (MND, amyotrophic lateral sclerosis), but the nature of the cortical lesions that underlie these changes is poorly understood. In particular, there have been few attempts to quantify neuronal loss in the PMC and in other cortical areas in MND. We used SMI-32, an antibody against an epitope on non-phosphorylated neurofilament heavy chain, to analyse the size and density of SMI-32-positive cortical pyramidal neurons in layer V of the PMC, the dorsolateral prefrontal cortex (DLPFC) and the supragenual anterior cingulate cortex (ACC) in 13 MND and eight control subjects. There was a statistically significant reduction in the density of SMI-32-immunoreactive (IR) pyramidal neurons within cortical layer V in the PMC, the DLPFC and the ACC in MND subjects compared with controls [t (19) = 2.91, P = 0.009; estimated reduction 25%; 95% CI = 8%, 40%]. In addition, we studied the density and size of interneurons immunoreactive for the calcium-binding proteins calbindin-D(28K) (CB), parvalbumin (PV) and calretinin (CR) in the same areas (PMC, DLPFC and ACC). Statistically significant differences in the densities of CB-IR neurons were observed within cortical layers V (P = 0.003) and VI (P = 0.001) in MND cases compared with controls. The densities of CR- and PV-IR neurons were not significantly different between MND and control cases, although there were trends towards reductions of CR-IR neuronal density within the same layers and of PV-IR neuronal density within cortical layer VI. Loss of pyramidal neurons and of GABAergic interneurons is more widespread than has been appreciated and is present in areas associated with neuroimaging and cognitive abnormalities in MND. These findings support the notion that MND should be considered a multisystem disorder.
Collapse
Affiliation(s)
- S Maekawa
- Department of Neurology, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Spalloni A, Albo F, Ferrari F, Mercuri N, Bernardi G, Zona C, Longone P. Cu/Zn-superoxide dismutase (GLY93→ALA) mutation alters AMPA receptor subunit expression and function and potentiates kainate-mediated toxicity in motor neurons in culture. Neurobiol Dis 2004; 15:340-50. [PMID: 15006704 DOI: 10.1016/j.nbd.2003.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2003] [Revised: 10/26/2003] [Accepted: 11/10/2003] [Indexed: 12/01/2022] Open
Abstract
The cause of the selective degeneration of motor neurons in amyotrophic lateral sclerosis (ALS) remains a mystery. One potential pathogenic mechanism is excitotoxicity due to disturbances of glutamatergic neurotransmission, particularly via AMPA-sensitive glutamate receptors. We report here that motor neurons from a familial ALS-linked superoxide dismutase (SOD1) mutant G93A mouse show an higher susceptibility to kainate-induced excitotoxicity. Moreover, they expressed GluR(3) and GluR(4) mRNA at detectable levels more frequently, with a modified electrophysiology when compared with control and wild-type SOD1 motor neurons. Thus, the SOD1 G93A mutation causes changes in the AMPA-receptor expression and function, as well as a susceptibility to kainate-mediated excitotoxicity, which may promote the motor neuron degeneration seen in ALS.
Collapse
|
45
|
Dekkers J, Bayley P, Dick JRT, Schwaller B, Berchtold MW, Greensmith L. Over-expression of parvalbumin in transgenic mice rescues motoneurons from injury-induced cell death. Neuroscience 2004; 123:459-66. [PMID: 14698753 DOI: 10.1016/j.neuroscience.2003.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Following nerve injury in neonatal rats, a large proportion of motoneurons die, possibly as a consequence of an increase in vulnerability to the excitotoxic effects of glutamate. Calcium-dependent glutamate excitotoxicity is thought to play a significant role not only in injury-induced motoneuron death, but also in motoneuron degeneration in diseases such as amyotrophic lateral sclerosis (ALS). Motoneurons are particularly vulnerable to calcium influx following glutamate receptor activation, as they lack a number of calcium binding proteins, such as calbindin-D(28k) and parvalbumin. Therefore, it is possible that increasing the ability of motoneurons to buffer intracellular calcium may protect them from cell death and prevent the decline in motor function that usually occurs as a consequence of motoneuron loss. In this study we have tested this possibility by examining the effect of neonatal axotomy on motoneuron survival and muscle force production in normal and transgenic mice that over-express parvalbumin in their motoneurons.The sciatic nerve was crushed in one hindlimb of new-born transgenic and wildtype mice. The effect on motoneuron survival was assessed 8 weeks later by retrograde labelling of motoneurons innervating the tibialis anterior muscle. Following nerve injury in wildtype mice, only 20.2% (+/-2.2, S.E.M.; n=4) of injured motoneurons survive long term compared with 47.2% (+/-4.4, S.E.M.; n=4) in parvalbumin over-expressing mice. Surprisingly, this dramatic increase in motoneuron survival was not reflected in a significant improvement in muscle function, since 8 weeks after injury there was no improvement in either maximal twitch and tetanic force, or muscle weights.Thus, inducing spinal motoneurons to express parvalbumin protects a large proportion of motoneurons from injury-induced cell death, but this is not sufficient to restore muscle function.
Collapse
Affiliation(s)
- J Dekkers
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | |
Collapse
|
46
|
Albo F, Pieri M, Zona C. Modulation of AMPA receptors in spinal motor neurons by the neuroprotective agent riluzole. J Neurosci Res 2004; 78:200-7. [PMID: 15378511 DOI: 10.1002/jnr.20244] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated the interaction of riluzole, a therapeutic agent used in amyotrophic lateral sclerosis (ALS), with alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor channels in mouse spinal motor neurons in culture using whole-cell patch-clamp recording techniques. Kainate elicited concentration-dependent (EC(50) = 35 microM) inward currents in all the patched cells. These responses were mediated primarily through the activation of AMPA receptors with a negligible contribution from kainate receptors, because bath application of 100 microM GYKI53655, a potent noncompetitive AMPA receptor antagonist, completely blocked the kainate-induced currents. Riluzole (0.5-100 microM) reduced in a dose-dependent manner the kainate-induced currents with an IC(50) of 1.54 microM in all tested neurons (n = 25) and this effect was found to be reversible. The response to kainate decreased in the presence of 1 microM riluzole in all spinal motor neurons tested, without changing its EC(50), indicating a noncompetitive mechanism of inhibition. The amplitude of the responses induced by kainate under control condition and during riluzole was a linear function of the membrane potential. The reversal potential of the current was not significantly different in the two experimental conditions, whereas the total conductance of the motor neurons for the currents induced by 100 microM kainate was reduced significantly in the presence of 1 microM riluzole (P < 0.05). These results reveal an interaction of riluzole with glutamatergic neurotransmission in spinal cord motor neurons and can contribute to explain its beneficial effect in the ALS treatment.
Collapse
|
47
|
Ghadge GD, Slusher BS, Bodner A, Canto MD, Wozniak K, Thomas AG, Rojas C, Tsukamoto T, Majer P, Miller RJ, Monti AL, Roos RP. Glutamate carboxypeptidase II inhibition protects motor neurons from death in familial amyotrophic lateral sclerosis models. Proc Natl Acad Sci U S A 2003; 100:9554-9. [PMID: 12876198 PMCID: PMC170956 DOI: 10.1073/pnas.1530168100] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Approximately 10% of cases of amyotrophic lateral sclerosis (ALS), a progressive and fatal degeneration that targets motor neurons (MNs), are inherited, and approximately 20% of these cases of familial ALS (FALS) are caused by mutations of copper/zinc superoxide dismutase type 1. Glutamate excitotoxicity has been implicated as a mechanism of MN death in both ALS and FALS. In this study, we tested whether a neuroprotective strategy involving potent and selective inhibitors of glutamate carboxypeptidase II (GCPII), which converts the abundant neuropeptide N-acetylaspartylglutamate to glutamate, could protect MNs in an in vitro and animal model of FALS. Data suggest that the GCPII inhibitors prevented MN cell death in both of these systems because of the resultant decrease in glutamate levels. GCPII inhibition may represent a new therapeutic target for the treatment of ALS.
Collapse
Affiliation(s)
- Ghanashyam D Ghadge
- Department of Neurology, University of Chicago School of Medicine, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kawahara Y, Kwak S, Sun H, Ito K, Hashida H, Aizawa H, Jeong SY, Kanazawa I. Human spinal motoneurons express low relative abundance of GluR2 mRNA: an implication for excitotoxicity in ALS. J Neurochem 2003; 85:680-9. [PMID: 12694394 DOI: 10.1046/j.1471-4159.2003.01703.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AMPA receptor-mediated neurotoxicity is currently the most plausible hypothesis for the etiology of amyotrophic lateral sclerosis (ALS). The mechanism initiating this type of neuronal death is believed to be exaggerated Ca2+-influx through AMPA receptors, which is critically determined by the presence or absence of the glutamate receptor subunit 2 (GluR2) in the assembly. We have provided the first quantitative measurements of the expression profile of AMPA receptor subunits mRNAs in human single neurons by means of quantitative RT-PCR with a laser microdissector. Among the AMPA subunits, GluR2 shared the vast majority throughout the neuronal subsets and tissues examined. Furthermore, both the expression level and the proportion of GluR2 mRNA in motoneurons were the lowest among all neuronal subsets examined, whereas those in motoneurons of ALS did not differ from the control group, implying that selective reduction of the GluR2 subunit cannot be a mechanism of AMPA receptor-mediated neurotoxicity in ALS. However, the low relative abundance of GluR2 might provide spinal motoneurons with conditions that are easily affected by changes of AMPA receptor properties including deficient GluR2 mRNA editing in ALS.
Collapse
Affiliation(s)
- Yukio Kawahara
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Rao SD, Yin HZ, Weiss JH. Disruption of glial glutamate transport by reactive oxygen species produced in motor neurons. J Neurosci 2003; 23:2627-33. [PMID: 12684448 PMCID: PMC6742077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Observations of elevated CSF glutamate in amyotrophic lateral sclerosis (ALS), together with findings that motor neurons are selectively vulnerable to glutamate receptor-mediated ("excitotoxic") injury, support an excitotoxic contribution to the motor neuron loss in the disease. However, the basis of the apparent loss of astrocytic glutamate transport capacity in affected areas of motor cortex and spinal cord, which probably underlies the extracellular glutamate elevations, is unexplained. Here, we find that glutamate induces far greater reactive oxygen species (ROS) generation in cultured motor neurons than in other spinal neurons. In addition, we found that the ROS seem to be able to leave the motor neurons and induce oxidation and disruption of glutamate uptake in neighboring astrocytes. Correspondingly, in a transgenic mouse model of ALS, protein oxidation was increased in regions immediately surrounding motor neurons. These results provide a mechanism that can account for the localized loss of glial glutamate transport seen in the disease. Furthermore, the observations lend support for a feedforward model involving reciprocal interactions between motor neurons and glia, which may prove useful in understanding ALS pathogenesis.
Collapse
Affiliation(s)
- Shyam D Rao
- Department of Anatomy and Neurobiology, University of California at Irvine, 92697-4292, USA
| | | | | |
Collapse
|
50
|
Abstract
The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.
Collapse
Affiliation(s)
- Peter Hu
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|