1
|
Emili M, Stagni F, Russo C, Angelozzi L, Guidi S, Bartesaghi R. Reversal of neurodevelopmental impairment and cognitive enhancement by pharmacological intervention with the polyphenol polydatin in a Down syndrome model. Neuropharmacology 2024; 261:110170. [PMID: 39341334 DOI: 10.1016/j.neuropharm.2024.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Intellectual disability (ID) is the unavoidable hallmark of Down syndrome (DS), a genetic condition due to triplication of chromosome 21. ID in DS is largely attributable to neurogenesis and dendritogenesis alterations taking place in the prenatal/neonatal period, the most critical time window for brain development. There are currently no treatments for ID in DS. Considering the timeline of brain development, treatment aimed at improving the neurological phenotypes of DS should be initiated as early as possible and use safe agents. The goal of this study was to establish whether it is possible to improve DS-linked neurodevelopmental defects through early treatment with polydatin, a natural polyphenol. We used the Ts65Dn mouse model of DS and focused on the hippocampus, a brain region fundamental for long-term memory. We found that in Ts65Dn mice of both sexes treated with polydatin from postnatal (P) day 3 to P15 there was full restoration of neurogenesis, neuron number, and dendritic development. These effects were accompanied by normalization of Cyclin D1 and DSCAM levels, which may account for the rescue of neurogenesis and dendritogenesis, respectively. Importantly, in Ts65Dn mice treated with polydatin from P3 to adolescence (∼P50) there was full restoration of hippocampus-dependent memory, indicating a pro-cognitive outcome of treatment. No adverse effects were observed on the body and brain weight. The efficacy and safety of polydatin in a model of DS prospect the possibility of its use during early life stages for amelioration of DS-linked neurodevelopmental alterations.
Collapse
Affiliation(s)
- Marco Emili
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Carla Russo
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Laura Angelozzi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Hall S, Parr BA, Hussey S, Anoopkumar-Dukie S, Arora D, Grant GD. The neurodegenerative hypothesis of depression and the influence of antidepressant medications. Eur J Pharmacol 2024; 983:176967. [PMID: 39222740 DOI: 10.1016/j.ejphar.2024.176967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Depression is a complex neurological disease that holds many theories on its aetiology and pathophysiology. The monoamine strategy of treating depression with medications to increase levels of monoamines in the (extra)synapse, primarily through the inhibition of monoamine transporters, does not always work, as seen in patients that lack a response to multiple anti-depressant exposures, as well as a lack of depressive symptoms in healthy volunteers exposed to monoamine reduction. Depression is increasingly being understood not as a single condition, but as a complex interplay of adaptations in various systems, including inflammatory responses and neurotransmission pathways in the brain. This understanding has led to the development of the neurodegenerative hypothesis of depression. This hypothesis, which is gaining widespread acceptance posits that both oxidative stress and inflammation play significant roles in the pathophysiology of depression. This article is a review of the literature focused on neuroinflammation in depression, as well as summarised studies of anti-inflammatory and antioxidant effects of antidepressants.
Collapse
Affiliation(s)
- Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, 4222, Australia.
| | - Brie-Anne Parr
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, 4222, Australia
| | - Sarah Hussey
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, 4222, Australia
| | | | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, 4222, Australia
| | - Gary D Grant
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, 4222, Australia
| |
Collapse
|
3
|
Zaniewska M, Brygider S, Majcher-Maślanka I, Gawliński D, Głowacka U, Glińska S, Balcerzak Ł. The impact of voluntary wheel-running exercise on hippocampal neurogenesis and behaviours in response to nicotine cessation in rats. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06705-7. [PMID: 39463206 DOI: 10.1007/s00213-024-06705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
RATIONALE The literature indicates that nicotine exposure or its discontinuation impair adult hippocampal neurogenesis in rats, though the impact of exercise on this process remains unclear. We have previously shown that disturbances in the number of doublecortin (DCX, a marker of immature neurons)-positive (DCX+) cells in the dentate gyrus (DG) of the hippocampus during nicotine deprivation may contribute to a depression-like state in rats. OBJECTIVES This study aimed to investigate the effect of running on hippocampal neurogenesis, depression-like symptoms, and drug-seeking behaviour during nicotine deprivation. METHODS The rats were subjected to nicotine (0.03 mg/kg/inf) self-administration via an increasing schedule of reinforcement. After 21 sessions, the animals entered a 14-day abstinence phase during which they were housed in either standard home cages without wheels, cages equipped with running wheels, or cages with locked wheels. RESULTS Wheel running increased the number of Ki-67+ and DCX+ cells in the DG of both nicotine-deprived and nicotine-naive rats. Wheel-running exercise evoked an antidepressant effect on abstinence Day 14 but had no effect on nicotine-seeking behaviour on abstinence Day 15 compared to rats with locked-wheel access. CONCLUSIONS In summary, long-term wheel running positively affected the number of immature neurons in the hippocampus, which corresponded with an antidepressant response in nicotine-weaned rats. One possible mechanism underlying the positive effect of running on the affective state during nicotine cessation may be the reduction in deficits in DCX+ cells in the hippocampus.
Collapse
Affiliation(s)
- Magdalena Zaniewska
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland.
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, Kraków, 31-343, Poland.
- Affective Cognitive Neuroscience Laboratory, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland.
| | - Sabina Brygider
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, Kraków, 31-343, Poland
| | - Iwona Majcher-Maślanka
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
| | - Dawid Gawliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, Kraków, 31-343, Poland
| | - Urszula Głowacka
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, Kraków, 31- 531, Poland
| | - Sława Glińska
- Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Łucja Balcerzak
- Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| |
Collapse
|
4
|
Begni V, Silipo DM, Bottanelli C, Papp M, Cattaneo A, Riva MA. Chronic treatment with the antipsychotic lurasidone modulates the neuroinflammatory changes associated with the vulnerability to chronic mild stress exposure in female rats. Brain Behav Immun 2024; 123:586-596. [PMID: 39384053 DOI: 10.1016/j.bbi.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024] Open
Abstract
Stress exposure is a key risk factor for the developmentof depressive-like conditions. However, despite the higher incidence of Major Depressive Disorder in the female population, classical stress-based experimental paradigms have primarily focused on males. In the present study, we used the well-established chronic mild stress (CMS) paradigm to investigate the development of anhedonia, a cardinal symptom of affective disorders, in the female animals and we also studied the potential effect of the antipsychotic drug lurasidone in normalizing the alterations brought about by stress exposure. We found that three weeks of CMS exposure produced a significant reduction of sucrose intake in 50% of the animals (vulnerable, CMS-V), whereas the others were resilient (CMS-R). The development of an anhedonic phenotype in CMS-V was associated with a significant elevation of different immune markers, such as Complement C3 and C4, and inflammatory cytokines, including INFß and Il1ß in dorsal and ventral hippocampus. Interestingly, sub-chronic treatment with the antipsychotic drug lurasidone was able to revert the anhedonic phenotype while normalizing most of the molecular alterations found in rats vulnerable to CMS exposure. This study extends the ability of lurasidone to normalize the anhedonic phenotype in CMS rats also to females. Moreover, we provide novel evidence on lurasidone's potential effectiveness in treating mental disorders characterized by immune-inflammatory dysfunction.
Collapse
Affiliation(s)
- Veronica Begni
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Diana Morena Silipo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Chiara Bottanelli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Mariusz Papp
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna Street 12, Krakow 31-343, Poland
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy.
| |
Collapse
|
5
|
Schiller M, Wilson GC, Keitsch S, Soddemann M, Wilker B, Edwards MJ, Scherbaum N, Gulbins E. Phosphatidic acid is involved in regulation of autophagy in neurons in vitro and in vivo. Pflugers Arch 2024:10.1007/s00424-024-03026-8. [PMID: 39375214 DOI: 10.1007/s00424-024-03026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024]
Abstract
Major depressive disorder (MDD) is a common and severe psychiatric disease, which does not only lead to variety of neuropsychiatric symptoms, but unfortunately in a relatively large proportion of cases also to suicide. The pathogenesis of MDD still requires definition. We have previously shown that ceramide is increased in the blood plasma of patients with MDD. In mouse models of MDD, which are induced by treatment with corticosterone or application of chronic unpredictable stress, increased blood plasma ceramide also increased and caused an inhibition of phospholipase D in endothelial cells of the hippocampus and reduced phosphatidic acid levels in the hippocampus. Here, we demonstrated that corticosterone treatment of PC12 cells resulted in reduced cellular autophagy, which is corrected by treatment with phosphatidic acid. In vivo, treatment of mice with corticosterone or chronic unpredictable stress also reduced autophagy in hippocampus neurons. Autophagy was normalized upon i.v. injection of phosphatidic acid in these mouse models of MDD. In an attempt to identify targets of phosphatidic acid in neurons, we demonstrated that corticosterone reduced levels of the ganglioside GM1 in PC-12 cells and the hippocampus of mice, which were normalized by treatment of cells or i.v. injection of mice with phosphatidic acid. GM1 application also normalized autophagy in cultured neurons. Phosphatidic acid and GM1 corrected stress-induced alterations in behavior, i.e., mainly anxiety and anhedonia, in experimental MDD in mice. Our data suggest that phosphatidic acid may regulate via GM1 autophagy in neurons.
Collapse
Affiliation(s)
- Maximilian Schiller
- LVR-University Hospital Essen, Department of Psychiatry and Psychotherapy, Faculty of Medicine, Faculty of Medicine, University of Duisburg-Essen, 45147, Essen, Germany
| | - Gregory C Wilson
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0558, USA
| | - Simone Keitsch
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Matthias Soddemann
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Michael J Edwards
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Norbert Scherbaum
- LVR-University Hospital Essen, Department of Psychiatry and Psychotherapy, Faculty of Medicine, Faculty of Medicine, University of Duisburg-Essen, 45147, Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
6
|
Kuhn AM, Bosis KE, Wohleb ES. Neuroimmunomodulation: The History of Science in Psychoneuroimmunology. Neuroimmunomodulation 2024; 31:211-229. [PMID: 39369707 DOI: 10.1159/000541592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND From the original studies investigating the effects of adrenal gland secretion to modern high-throughput multidimensional analyses, stress research has been a topic of scientific interest spanning just over a century. SUMMARY The objective of this review was to provide historical context for influential discoveries, surprising findings, and preclinical models in stress-related neuroimmune research. Furthermore, we summarize this work and present a current understanding of the stress pathways and their effects on the immune system and behavior. We focus on recent work demonstrating stress-induced immune changes within the brain and highlight studies investigating stress effects on microglia. Lastly, we conclude with potential areas for future investigation concerning microglia heterogeneity, bone marrow niches, and sex differences. KEY MESSAGES Stress is a phenomenon that ties together not only the central and peripheral nervous system, but the immune system as well. The cumulative effects of stress can enhance or suppress immune function, based on the intensity and duration of the stressor. These stress-induced immune alterations are associated with neurobiological changes, including structural remodeling of neurons and decreased neurogenesis, and these contribute to the development of behavioral and cognitive deficits. As such, research in this field has revealed important insights into neuroimmune communication as well as molecular and cellular mediators of complex behaviors relevant to psychiatric disorders.
Collapse
Affiliation(s)
- Alexander M Kuhn
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kelly E Bosis
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Eric S Wohleb
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Grigorenko EL. The extraordinary "ordinary magic" of resilience. Dev Psychopathol 2024:1-18. [PMID: 39363871 DOI: 10.1017/s0954579424000841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
In this essay, I will briefly sample different instances of the utilization of the concept of resilience, attempting to complement a comprehensive representation of the field in the special issue of Development and Psychopathology inspired by the 42nd Minnesota Symposium on Child Psychology, hosted by the Institute of Child Development at the University of Minnesota and held in October of 2022. Having established the general context of the field, I will zoom in on some of its features, which I consider "low-hanging fruit" and which can be harvested in a systematic way to advance the study of resilience in the context of the future of developmental psychopathology.
Collapse
|
8
|
Madsen CA, Navarro ML, Elfving B, Kessing LV, Castrén E, Mikkelsen JD, Knudsen GM. The effect of antidepressant treatment on blood BDNF levels in depressed patients: A review and methodological recommendations for assessment of BDNF in blood. Eur Neuropsychopharmacol 2024; 87:35-55. [PMID: 39079257 DOI: 10.1016/j.euroneuro.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 09/11/2024]
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder and a leading cause of disability worldwide. Brain-derived neurotrophic factor (BDNF), a signaling protein responsible for promoting neuroplasticity, is highly expressed in the central nervous system but can also be found in the blood. Since impaired brain plasticity is considered a cornerstone in the pathophysiology of MDD, measurement of BDNF in blood has been proposed as a potential biomarker in MDD. The aim of our study is to systematically review the literature for the effects of antidepressant treatments on blood BDNF levels in MDD and the suitability of blood BDNF as a biomarker for depression severity and antidepressant response. We searched Pubmed® and Cochrane library up to March 2024 in a systematic manner using Medical Subject Headings (MeSH). The search resulted in a total of 42 papers, of which 30 were included in this systematic review. Generally, we found that patients with untreated MDD have a lower blood BDNF level than healthy controls. Antidepressant treatments increase blood BDNF levels, and more evidently after pharmacological than non-pharmacological treatment. Neither baseline nor change in the blood BDNF level correlates with depression severity or treatment outcome, which undermines its use as a biomarker in MDD. Our review also highlights the importance of considering factors influencing the accuracy and reproducibility of BDNF measurements. We summarize considerations to help obtain more robust blood BDNF values and compile a list of recommendations to help streamline assessment of blood BDNF levels in future studies.
Collapse
Affiliation(s)
- Clara A Madsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Miriam L Navarro
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Lars V Kessing
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Psychiatric Centre Copenhagen, Mental Health Services Capital Region, Copenhagen, Denmark
| | - Eero Castrén
- Neuroscience Center / HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Hernández-Hernández E, Ledesma-Corvi S, Jornet-Plaza J, García-Fuster MJ. Fast-acting antidepressant-like effects of ketamine in aged male rats. Pharmacol Rep 2024; 76:991-1000. [PMID: 39158787 PMCID: PMC11387441 DOI: 10.1007/s43440-024-00636-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND The aging process causes anatomical and physiological changes that predispose to the development of late-life depression while reduces the efficacy of classical antidepressants. Novel fast-acting antidepressants such as ketamine might be good candidates to be explored in the context of aging, especially given the lack of previous research on its efficacy for this age period. Thus, the aim of the present study was to characterize ketamine's effects in older rats. METHODS The fast-acting (30 min) and repeated (7 days) antidepressant-like effects of ketamine (5 mg/kg, ip) were evaluated in 14-month-old single-housed rats through the forced-swim and novelty-suppressed feeding tests. In parallel, the modulation of neurotrophic-related proteins (i.e., mBDNF, mTOR, GSK3) was assessed in brain regions affected by the aging process, prefrontal cortex and hippocampus, as well as possible changes in hippocampal cell proliferation. RESULTS Acute ketamine induced a fast-acting antidepressant-like response in male aged rats, as observed by a reduced immobility in the forced-swim test, in parallel with a region-specific increase in mBDNF protein content in prefrontal cortex. However, repeated ketamine failed to induce antidepressant-like efficacy, but decreased mBDNF protein content in prefrontal cortex. The rate of hippocampal cell proliferation and/or other markers evaluated was not modulated by either paradigm of ketamine. CONCLUSIONS These results complement prior data supporting a fast-acting antidepressant-like effect of ketamine in rats, to further extend its efficacy to older ages. Future studies are needed to further clarify the lack of response after the repeated treatment as well as its potential adverse effects in aging.
Collapse
Affiliation(s)
- Elena Hernández-Hernández
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa, Km 7.5, Palma, E-07122, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Present address: Department of Pharmacology, University of the Basque Country (EHU/UPV), Leioa, Spain
| | - Sandra Ledesma-Corvi
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa, Km 7.5, Palma, E-07122, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Jordi Jornet-Plaza
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa, Km 7.5, Palma, E-07122, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa, Km 7.5, Palma, E-07122, Spain.
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
- Department of Medicine, University of the Balearic Islands, Palma, Spain.
| |
Collapse
|
10
|
Frazer NB, Kaas GA, Firmin CG, Gamazon ER, Hatzopoulos AK. BMP Antagonist Gremlin 2 Regulates Hippocampal Neurogenesis and Is Associated with Seizure Susceptibility and Anxiety. eNeuro 2024; 11:ENEURO.0213-23.2024. [PMID: 39349059 PMCID: PMC11493175 DOI: 10.1523/eneuro.0213-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 10/02/2024] Open
Abstract
The Bone Morphogenetic Protein (BMP) signaling pathway is vital in neural progenitor cell proliferation, specification, and differentiation. The BMP signaling antagonist Gremlin 2 (Grem2) is the most potent natural inhibitor of BMP expressed in the adult brain; however its function remains unknown. To address this knowledge gap, we have analyzed mice lacking Grem2 via homologous recombination (Grem2-/- ). Histological analysis of brain sections revealed significant scattering of CA3 pyramidal cells within the dentate hilus in the hippocampus of Grem2-/- mice. Furthermore, the number of proliferating neural stem cells and neuroblasts was significantly decreased in the subgranular zone of Grem2-/- mice compared with that of wild-type (WT) controls. Due to the role of hippocampal neurogenesis in neurological disorders, we tested mice on a battery of neurobehavioral tests. Grem2-/- mice exhibited increased anxiety on the elevated zero maze in response to acute and chronic stress. Specifically, male Grem2-/- mice showed increased anxiogenesis following chronic stress, and this was correlated with higher levels of BMP signaling and decreased proliferation in the dentate gyrus. Additionally, when chemically challenged with kainic acid, Grem2-/- mice displayed a higher susceptibility to and increased severity of seizures compared with WTs. Together, our data indicate that Grem2 regulates BMP signaling and is vital in maintaining homeostasis in adult hippocampal neurogenesis and structure. Furthermore, the lack of Grem2 contributes to the development and progression of neurogenesis-related disorders such as anxiety and epilepsy.
Collapse
Affiliation(s)
- Nicolette B Frazer
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | - Garrett A Kaas
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Caroline G Firmin
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Eric R Gamazon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Antonis K Hatzopoulos
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
11
|
Chen T, Qian Y, Deng X. Relationship between atherosclerotic burden and depressive symptoms in hypertensive patients: A cross-sectional study based on the NHANES database. J Affect Disord 2024; 361:612-619. [PMID: 38925305 DOI: 10.1016/j.jad.2024.06.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE The relationship between atherosclerotic burden, depressive symptoms, and clinically relevant depression (CRD) in hypertensive patients is unclear. In this study, we used the atherosclerotic index of plasma (AIP) to quantify atherosclerotic burden and explore its association with depressive symptoms and CRD in hypertensive patients. METHODS Hypertension-diagnosed patients were extracted from the National Health and Nutrition Examination Survey (NHANES) database. The relationships between AIP and depressive symptoms and CRD risk in patients were examined through the weighted logistic regression and the weighted linear regression models. Restrictive cubic spline curves were employed to analyze potential nonlinear associations between AIP and outcome indicators. Additionally, subgroup analyses and intergroup interaction tests were conducted. RESULTS The AIP was considerably associated with the severity of depressive symptoms in hypertensive patients, according to the findings of weighted linear regression. Weighted logistic regression analysis showed that high AIP was significantly associated with a high risk of clinically relevant depression in hypertensive patients. This trend was consistent across various subgroups within the population. CONCLUSION AIP was observed to be a significant risk factor for clinically relevant depression in hypertensive patients. Atherosclerotic burden in hypertensive patients was significantly associated with the severity of their depressive symptoms.
Collapse
Affiliation(s)
- Ting Chen
- Department of Neurosurgery, Kunming Medical University First Affiliated Hospital, Kunming, Yunnan 650032, China.
| | - Yuan Qian
- The Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Kunming, Yunnan 650000, China.
| | - Xingli Deng
- Department of Neurosurgery, Kunming Medical University First Affiliated Hospital, Kunming, Yunnan 650032, China; Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, 650032, China.
| |
Collapse
|
12
|
Meo DD, Sorelli M, Ramazzotti J, Cheli F, Bradley S, Perego L, Lorenzon B, Mazzamuto G, Emmi A, Porzionato A, Caro RD, Garbelli R, Biancheri D, Pelorosso C, Conti V, Guerrini R, Pavone FS, Costantini I. Quantitative cytoarchitectural phenotyping of deparaffinized human brain tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612232. [PMID: 39314456 PMCID: PMC11419081 DOI: 10.1101/2024.09.10.612232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Advanced 3D imaging techniques and image segmentation and classification methods can profoundly transform biomedical research by offering deep insights into the cytoarchitecture of the human brain in relation to pathological conditions. Here, we propose a comprehensive pipeline for performing 3D imaging and automated quantitative cellular phenotyping on Formalin-Fixed Paraffin-Embedded (FFPE) human brain specimens, a valuable yet underutilized resource. We exploited the versatility of our method by applying it to different human specimens from both adult and pediatric, normal and abnormal brain regions. Quantitative data on neuronal volume, ellipticity, local density, and spatial clustering level were obtained from a machine learning-based analysis of the 3D cytoarchitectural organization of cells identified by different molecular markers in two subjects with malformations of cortical development (MCD). This approach will grant access to a wide range of physiological and pathological paraffin-embedded clinical specimens, allowing for volumetric imaging and quantitative analysis of human brain samples at cellular resolution. Possible genotype-phenotype correlations can be unveiled, providing new insights into the pathogenesis of various brain diseases and enlarging treatment opportunities.
Collapse
Affiliation(s)
- Danila Di Meo
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
| | - Michele Sorelli
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
| | - Josephine Ramazzotti
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
| | - Franco Cheli
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
| | - Samuel Bradley
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Laura Perego
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
| | - Beatrice Lorenzon
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Giacomo Mazzamuto
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- National Research Council – National Institute of Optics (CNR-INO), Sesto Fiorentino, Italy
| | - Aron Emmi
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Italy
| | - Andrea Porzionato
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Italy
| | - Raffaele De Caro
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Italy
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta
| | - Dalila Biancheri
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta
| | - Cristiana Pelorosso
- Department of Neuroscience and Medical Genetics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Valerio Conti
- Department of Neuroscience and Medical Genetics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Renzo Guerrini
- Department of Neuroscience and Medical Genetics, Meyer Children’s Hospital IRCCS, Florence, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Francesco S. Pavone
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- National Research Council – National Institute of Optics (CNR-INO), Sesto Fiorentino, Italy
| | - Irene Costantini
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- National Research Council – National Institute of Optics (CNR-INO), Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Italy
| |
Collapse
|
13
|
Abe Y, Erchinger VJ, Ousdal OT, Oltedal L, Tanaka KF, Takamiya A. Neurobiological mechanisms of electroconvulsive therapy for depression: Insights into hippocampal volumetric increases from clinical and preclinical studies. J Neurochem 2024; 168:1738-1750. [PMID: 38238933 DOI: 10.1111/jnc.16054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 10/04/2024]
Abstract
Depression is a highly prevalent and disabling psychiatric disorder. The hippocampus, which plays a central role in mood regulation and memory, has received considerable attention in depression research. Electroconvulsive therapy (ECT) is the most effective treatment for severe pharmacotherapy-resistant depression. Although the working mechanism of ECT remains unclear, recent magnetic resonance imaging (MRI) studies have consistently reported increased hippocampal volumes following ECT. The clinical implications of these volumetric increases and the specific cellular and molecular significance are not yet fully understood. This narrative review brings together evidence from animal models and human studies to provide a detailed examination of hippocampal volumetric increases following ECT. In particular, our preclinical MRI research using a mouse model is consistent with human findings, demonstrating a marked increase in hippocampal volume following ECT. Notable changes were observed in the ventral hippocampal CA1 region, including dendritic growth and increased synaptic density at excitatory synapses. Interestingly, inhibition of neurogenesis did not affect the ECT-related hippocampal volumetric increases detected on MRI. However, it remains unclear whether these histological and volumetric changes would be correlated with the clinical effect of ECT. Hence, future research on the relationships between cellular changes, ECT-related brain volumetric changes, and antidepressant effect could benefit from a bidirectional translational approach that integrates human and animal models. Such translational research may provide important insights into the mechanisms and potential biomarkers associated with ECT-induced hippocampal volumetric changes, thereby advancing our understanding of ECT for the treatment of depression.
Collapse
Affiliation(s)
- Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Vera J Erchinger
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Olga Therese Ousdal
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Leif Oltedal
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Akihiro Takamiya
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Dezsi G, Ozturk E, Wong D, Hudson MR, Martello G, Gomes FMM, Salzberg MR, Morris MJ, O'Brien TJ, Jones NC. Fluoxetine accelerates epileptogenesis and magnifies disease severity in a rat model of acquired epilepsy. Epilepsia 2024; 65:2787-2797. [PMID: 39102253 DOI: 10.1111/epi.18080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
OBJECTIVE Many people with epilepsy experience comorbid anxiety and depression, and antidepressants remain a primary treatment for this. Emerging evidence suggests that these agents may modulate epileptogenesis to influence disease severity. Here, we assessed how treatment with the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine impacts epileptogenic, behavioral, and pathological sequelae following status epilepticus. METHODS Male Wistar rats received kainic acid to induce status epilepticus (SE) or vehicle (sham). Animals then received either fluoxetine (10 mg/kg/day) or vehicle for 8 weeks via subcutaneous osmotic pump. Video-electroencephalography was recorded continuously until behavioral testing at day 56, including assessments of anxiety- and depression-like behavior and spatial cognition. Postmortem immunocytochemistry studies examined mossy fiber sprouting. RESULTS Fluoxetine treatment significantly accelerated epileptogenesis following SE, reducing the average period to the first spontaneous seizure (from 32 days [vehicle] to 6 days [fluoxetine], p < .01). Also, fluoxetine exposure magnified the severity of the resultant epilepsy, increasing seizure frequency compared to vehicle (p < .01). Exposure to fluoxetine was associated with improved anxiety- and depression-like behaviors but significantly worsened cognition. Mossy fiber sprouting was more pronounced in fluoxetine-treated rats compared to vehicle (p < .0001). SIGNIFICANCE Our studies demonstrate that, using a model exhibiting spontaneous seizures, epileptogenesis is accelerated and magnified by fluoxetine, an effect that may be related to more severe pathological neuroplasticity. The differential influence of fluoxetine on behavior indicates that different circuitry and mechanisms are responsible for these comorbidities. These findings suggest that caution should be exercised when prescribing SSRI antidepressants to people at risk of developing epilepsy.
Collapse
Affiliation(s)
- Gabi Dezsi
- Department of Neuroscience, School of Translational Medicine, Monash University and Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne Brain Centre, Parkville, Victoria, Australia
| | - Ezgi Ozturk
- Department of Neuroscience, School of Translational Medicine, Monash University and Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne Brain Centre, Parkville, Victoria, Australia
| | - Davy Wong
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne Brain Centre, Parkville, Victoria, Australia
| | - Matthew R Hudson
- Department of Neuroscience, School of Translational Medicine, Monash University and Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Gabriella Martello
- Department of Neuroscience, School of Translational Medicine, Monash University and Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Flavia M M Gomes
- Department of Neuroscience, School of Translational Medicine, Monash University and Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Michael R Salzberg
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne Brain Centre, Parkville, Victoria, Australia
| | - Margaret J Morris
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Terence J O'Brien
- Department of Neuroscience, School of Translational Medicine, Monash University and Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne Brain Centre, Parkville, Victoria, Australia
| | - Nigel C Jones
- Department of Neuroscience, School of Translational Medicine, Monash University and Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne Brain Centre, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Tian X, Russo SJ, Li L. Behavioral Animal Models and Neural-Circuit Framework of Depressive Disorder. Neurosci Bull 2024:10.1007/s12264-024-01270-7. [PMID: 39120643 DOI: 10.1007/s12264-024-01270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 08/10/2024] Open
Abstract
Depressive disorder is a chronic, recurring, and potentially life-endangering neuropsychiatric disease. According to a report by the World Health Organization, the global population suffering from depression is experiencing a significant annual increase. Despite its prevalence and considerable impact on people, little is known about its pathogenesis. One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression. Furthermore, the neural circuit mechanism of depression induced by various factors is particularly complex. Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression, a comparison between the neural circuits of depression induced by various factors is essential for its treatment. In this review, we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression, aiming to provide a theoretical basis for depression prevention.
Collapse
Affiliation(s)
- Xiangyun Tian
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Long Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Taraschenko O, Fox HS, Heliso P, Al-Saleem F, Dessain S, Kim WY, Samuelson MM, Dingledine R. Memory loss and aberrant neurogenesis in mice exposed to patient anti-N-methyl-d-aspartate receptor antibodies. Exp Neurol 2024; 378:114838. [PMID: 38801989 DOI: 10.1016/j.expneurol.2024.114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE Anti-N-methyl-d-aspartate receptor (anti-NMDAR) encephalitis results in chronic epilepsy and permanent cognitive impairment. One of the possible causes of cognitive impairment in anti-NMDAR could be aberrant neurogenesis, an established contributor to memory loss in idiopathic drug-resistant epilepsy. We developed a mouse model of anti-NMDAR encephalitis and showed that mice exposed to patient anti-NMDAR antibodies for 2 weeks developed seizures and memory loss. In the present study, we assessed the delayed effects of patient-derived antibodies on cognitive phenotype and examined the corresponding changes in hippocampal neurogenesis. METHODS Monoclonal anti-NMDAR antibodies or control antibodies were continuously infused into the lateral ventricle of male C56BL/6J mice (8-12 weeks) via osmotic minipumps for 2 weeks. The motor and anxiety phenotypes were assessed using the open field paradigm, and hippocampal memory and learning were assessed using the object location, Y maze, and Barnes maze paradigms during weeks 1 and 3-4 of antibody washout. The numbers of newly matured granule neurons (Prox-1+) and immature progenitor cells (DCX+) as well as their spatial distribution within the hippocampus were assessed at these time points. Bromodeoxyuridine (BrdU, 50 mg/kg, i.p., daily) was injected on days 2-12 of the infusion, and proliferating cell immunoreactivity was compared in antibody-treated mice and control mice during week 4 of the washout. RESULTS Mice infused with anti-NMDAR antibodies demonstrated spatial memory impairment during week 1 of antibody washout (p = 0.02, t-test; n = 9-11). Histological analysis of hippocampal sections from these mice revealed an increased ectopic displacement of Prox-1+ cells in the dentate hilus compared to the control-antibody-treated mice (p = 0.01; t-test). Mice exposed to anti-NMDAR antibodies also had an impairment of spatial memory and learning during weeks 3-4 of antibody washout (object location: p = 0.009; t-test; Y maze: p = 0.006, t-test; Barnes maze: p = 0.008, ANOVA; n = 8-10). These mice showed increased ratios of the low proliferating (bright) to fast proliferating (faint) BrdU+ cell counts and decreased number of DCX+ cells in the hippocampal dentate gyrus (p = 0.006 and p = 0.04, respectively; t-tests) suggesting ectopic migration and delayed cell proliferation. SIGNIFICANCE These findings suggest that memory and learning impairments induced by patient anti-NMDAR antibodies are sustained upon removal of antibodies and are accompanied by aberrant hippocampal neurogenesis. Interventions directed at the manipulation of neuronal plasticity in patients with encephalitis and cognitive loss may be protective and therapeutically relevant.
Collapse
Affiliation(s)
- Olga Taraschenko
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE, United States of America.
| | - Howard S Fox
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Priscilla Heliso
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Fetweh Al-Saleem
- Lankenau Institute for Medical Research, Wynnewood, PA, United States of America
| | - Scott Dessain
- Lankenau Institute for Medical Research, Wynnewood, PA, United States of America
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
| | - Mystera M Samuelson
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States of America
| |
Collapse
|
17
|
Alonso M, Petit AC, Lledo PM. The impact of adult neurogenesis on affective functions: of mice and men. Mol Psychiatry 2024; 29:2527-2542. [PMID: 38499657 DOI: 10.1038/s41380-024-02504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
In most mammals, new neurons are not only produced during embryogenesis but also after birth. Soon after adult neurogenesis was discovered, the influence of recruiting new neurons on cognitive functions, especially on memory, was documented. Likewise, the late process of neuronal production also contributes to affective functions, but this outcome was recognized with more difficulty. This review covers hypes and hopes of discovering the influence of newly-generated neurons on brain circuits devoted to affective functions. If the possibility of integrating new neurons into the adult brain is a commonly accepted faculty in the realm of mammals, the reluctance is strong when it comes to translating this concept to humans. Compiling data suggest now that new neurons are derived not only from stem cells, but also from a population of neuroblasts displaying a protracted maturation and ready to be engaged in adult brain circuits, under specific signals. Here, we discuss the significance of recruiting new neurons in the adult brain circuits, specifically in the context of affective outcomes. We also discuss the fact that adult neurogenesis could be the ultimate cellular process that integrates elements from both the internal and external environment to adjust brain functions. While we must be critical and beware of the unreal promises that Science could generate sometimes, it is important to continue exploring the potential of neural recruitment in adult primates. Reporting adult neurogenesis in humankind contributes to a new vision of humans as mammals whose brain continues to develop throughout life. This peculiar faculty could one day become the target of treatment for mental health, cognitive disorders, and elderly-associated diseases. The vision of an adult brain which never stops integrating new neurons is a real game changer for designing new therapeutic interventions to treat mental disorders associated with substantial morbidity, mortality, and social costs.
Collapse
Affiliation(s)
- Mariana Alonso
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France
| | - Anne-Cécile Petit
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France
- Pôle Hospitalo-Universitaire Psychiatrie Paris 15, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte-Anne, Paris, France
| | - Pierre-Marie Lledo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France.
| |
Collapse
|
18
|
Fefeu M, Blatzer M, Kneppers A, Briand D, Rocheteau P, Haroche A, Hardy D, Juchet-Martin M, Danckaert A, Coudoré F, Tutakhail A, Huchet C, Lafoux A, Mounier R, Mir O, Gaillard R, Chrétien F. Serotonin reuptake inhibitors improve muscle stem cell function and muscle regeneration in male mice. Nat Commun 2024; 15:6457. [PMID: 39085209 PMCID: PMC11291725 DOI: 10.1038/s41467-024-50220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Serotonin reuptake inhibitor antidepressants such as fluoxetine are widely used to treat mood disorders. The mechanisms of action include an increase in extracellular level of serotonin, neurogenesis, and growth of vessels in the brain. We investigated whether fluoxetine could have broader peripheral regenerative properties. Following prolonged administration of fluoxetine in male mice, we showed that fluoxetine increases the number of muscle stem cells and muscle angiogenesis, associated with positive changes in skeletal muscle function. Fluoxetine also improved skeletal muscle regeneration after single and multiples injuries with an increased muscle stem cells pool and vessel density associated with reduced fibrotic lesions and inflammation. Mice devoid of peripheral serotonin treated with fluoxetine did not exhibit beneficial effects during muscle regeneration. Specifically, pharmacological, and genetic inactivation of the 5-HT1B subtype serotonin receptor also abolished the enhanced regenerative process induced by fluoxetine. We highlight here a regenerative property of serotonin on skeletal muscle.
Collapse
Affiliation(s)
- Mylène Fefeu
- GHU Paris Psychiatrie & Neurosciences, site Sainte Anne, Service Hospitalo-Universitaire de psychiatrie, Paris, France
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
- Université de Paris Cité, Paris, France
| | - Michael Blatzer
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
| | - Anita Kneppers
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - David Briand
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
| | - Pierre Rocheteau
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
| | - Alexandre Haroche
- GHU Paris Psychiatrie & Neurosciences, site Sainte Anne, Service Hospitalo-Universitaire de psychiatrie, Paris, France
| | - David Hardy
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
| | - Mélanie Juchet-Martin
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
| | | | - François Coudoré
- CESP, MOODS Team, Inserm, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, France
| | - Abdulkarim Tutakhail
- CESP, MOODS Team, Inserm, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, France
| | - Corinne Huchet
- TaRGeT, INSERM UMR 1089, Nantes Université, CHU Nantes, Nantes, France
| | - Aude Lafoux
- Therassay Platform, Capacités, Université de Nantes, IRS 2 Nantes Biotech, Nantes, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Olivier Mir
- Sarcoma Group, Gustave Roussy, Villejuif, France
| | - Raphaël Gaillard
- GHU Paris Psychiatrie & Neurosciences, site Sainte Anne, Service Hospitalo-Universitaire de psychiatrie, Paris, France.
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France.
- Université de Paris Cité, Paris, France.
| | - Fabrice Chrétien
- Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France.
- Université de Paris Cité, Paris, France.
- GHU Paris Psychiatrie & Neurosciences, site Sainte Anne, Service Hospitalo-Universitaire de neuropathologie, Paris, France.
| |
Collapse
|
19
|
Wang Z, Cheng X, Shuang R, Gao T, Zhao T, Hou D, Zhang Y, Yang J, Tao W. Dandouchi Polypeptide Alleviates Depressive-like Behavior and Promotes Hippocampal Neurogenesis by Activating the TRIM67/NF-κB Pathway in CUMS-Induced Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16726-16738. [PMID: 39039032 DOI: 10.1021/acs.jafc.4c02183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Background: Dandouchi polypeptide (DDCP) is derived from Semen Sojae Praeparatum (Dandouchi in Chinese), a fermented product of Glycine max (L.) Merr. Semen Sojae Praeparatum is widely used in the food industry for its unique flavor and nutritional value, and DDCP, as its derivative, also shows potential health benefits in food applications. However, the specific active substances responsible for Semen Sojae Praeparatum and the underlying mechanisms involved have not been fully elucidated. Methods: DDCP was extracted from Semen Sojae Praeparatum using enzymes, and its antidepressant effects were tested in chronic unpredictable mild stress (CUMS)-induced mice. Immunohistochemistry, immunofluorescence, and western blotting were used to analyze neurogenesis and the nuclear factor κB (NF-κB) pathway. Moreover, an adeno-associated virus (AAV) shRNA was used to induce tripartite motif-containing 67 (TRIM67) deficiency to examine the function of TRIM67 in the neuroprotective effects of DDCP in depressive disorders. Results: DDCP reduced depressive behaviors in CUMS mice and the expression of proinflammatory markers in the hippocampus. DDCP promoted neurogenesis and modulated the TRIM67/NF-κB pathway, with TRIM67 deficiency impairing its antidepressant effect. Conclusions: This research revealed that DDCP has a protective effect on countering depression triggered by CUMS. Notably, TRIM67 plays a crucial role in mitigating depression through DDCP, positioning DDCP as a potential therapeutic option for treating depressive disorders.
Collapse
Affiliation(s)
- Zhongda Wang
- Department of Integrated Chinese and Western Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaolan Cheng
- Department of Integrated Chinese and Western Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruonan Shuang
- Department of Integrated Chinese and Western Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiantian Gao
- Department of Integrated Chinese and Western Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tong Zhao
- Department of Integrated Chinese and Western Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dahai Hou
- Department of Integrated Chinese and Western Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yili Zhang
- Department of Integrated Chinese and Western Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangsheng Yang
- Department of Neurology, Affiliated Jiangyin Hospital of Nantong University, Jiangyin 214400, China
| | - Weiwei Tao
- Department of Integrated Chinese and Western Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
20
|
Koca RO, Gormus ZIS, Solak H, Celik FS, Kurar E, Kutlu S. Are the promnestic effects of neurokinin 3 receptor mediated by hippocampal neurogenesis in a Aβ-induced rat model of Alzheimer's disease? Int J Dev Neurosci 2024. [PMID: 39010691 DOI: 10.1002/jdn.10362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterised by cognitive dysfunction, memory loss and mood changes. Hippocampal neurogenesis has been suggested to play a role in learning and memory. Neurokinin 3 receptor (NK3R) has been shown to be prevalent in the hippocampus region. The aim of the project was to investigate the role of hippocampal neurogenesis in the promnestic effects of NK3R agonist administration in an amyloid beta-induced AD rat model. Wistar albino rats were divided into control, Alzheimer, NK3R agonist and Alzheimer + NK3R agonist groups. The open field (OF) test and Morris water maze (MWM) test were performed for locomotor activity and memory analysis. Peptide gene expression levels (Nestin, DCX, Neuritin, MASH1, Neun, BDNF) were analysed by quantitative reverse transcription polymerase chain reaction (RT-PCR). In the OF test, the group-time relationship was found to be statistically different in the parameters of distance travelled and percentage of movement (p < 0.05). In MWM, the time to reach the platform and the time spent in the target quadrant were statistically significant between the groups (p < 0.05). Statistically significant differences were observed in gene expression levels (Nestin, DCX, Neuritin, MASH1) in the hippocampal tissue of rats between the groups (p < 0.05). NK3 receptor agonism favourably affected hippocampal neurogenesis in AD model rats. It was concluded that NK3 receptor agonism in the hippocampus, which is the first affected region in the physiopathology of AD, may be effective in both the formation of neural precursor cells and the reduction of neuronal degeneration. The positive effect of NK3R on cognitive functions may be mediated by hippocampal neurogenesis.
Collapse
Affiliation(s)
- Raviye Ozen Koca
- Department of Physiology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Z Isık Solak Gormus
- Department of Physiology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Hatice Solak
- Department of Physiology, Faculty of Medicine, Kütahya Health Sciences University, Kutahya, Turkey
| | - Fatma Secer Celik
- Department of Medical Biology, Faculty of Medicine, Ankara Medipol University, Ankara, Turkey
| | - Ercan Kurar
- Department of Medical Biology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Selim Kutlu
- Department of Physiology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
21
|
Spildrejorde M, Leithaug M, Samara A, Aass HCD, Sharma A, Acharya G, Nordeng H, Gervin K, Lyle R. Citalopram exposure of hESCs during neuronal differentiation identifies dysregulated genes involved in neurodevelopment and depression. Front Cell Dev Biol 2024; 12:1428538. [PMID: 39055655 PMCID: PMC11269147 DOI: 10.3389/fcell.2024.1428538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs), including citalopram, are widely used antidepressants during pregnancy. However, the effects of prenatal exposure to citalopram on neurodevelopment remain poorly understood. We aimed to investigate the impact of citalopram exposure on early neuronal differentiation of human embryonic stem cells using a multi-omics approach. Citalopram induced time- and dose-dependent effects on gene expression and DNA methylation of genes involved in neurodevelopmental processes or linked to depression, such as BDNF, GDF11, CCL2, STC1, DDIT4 and GAD2. Single-cell RNA-sequencing analysis revealed distinct clusters of stem cells, neuronal progenitors and neuroblasts, where exposure to citalopram subtly influenced progenitor subtypes. Pseudotemporal analysis showed enhanced neuronal differentiation. Our findings suggest that citalopram exposure during early neuronal differentiation influences gene expression patterns associated with neurodevelopment and depression, providing insights into its potential neurodevelopmental impact and highlighting the importance of further research to understand the long-term consequences of prenatal SSRI exposure.
Collapse
Affiliation(s)
- Mari Spildrejorde
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Magnus Leithaug
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Athina Samara
- Division of Clinical Paediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Astrid Lindgren Children′s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Biomaterials, FUTURE Center for Functional Tissue Reconstruction, University of Oslo, Oslo, Norway
| | - Hans Christian D. Aass
- The Flow Cytometry Core Facility, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Ankush Sharma
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Solna, Sweden
- Center for Fetal Medicine, Karolinska University Hospital, Solna, Sweden
| | - Hedvig Nordeng
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Kristina Gervin
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
22
|
Martins-Macedo J, Araújo B, Anjo SI, Silveira-Rosa T, Patrício P, Alves ND, Silva JM, Teixeira FG, Manadas B, Rodrigues AJ, Lepore AC, Salgado AJ, Gomes ED, Pinto L. Glial-restricted precursors stimulate endogenous cytogenesis and effectively recover emotional deficits in a model of cytogenesis ablation. Mol Psychiatry 2024; 29:2185-2198. [PMID: 38454085 DOI: 10.1038/s41380-024-02490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Adult cytogenesis, the continuous generation of newly-born neurons (neurogenesis) and glial cells (gliogenesis) throughout life, is highly impaired in several neuropsychiatric disorders, such as Major Depressive Disorder (MDD), impacting negatively on cognitive and emotional domains. Despite playing a critical role in brain homeostasis, the importance of gliogenesis has been overlooked, both in healthy and diseased states. To examine the role of newly formed glia, we transplanted Glial Restricted Precursors (GRPs) into the adult hippocampal dentate gyrus (DG), or injected their secreted factors (secretome), into a previously validated transgenic GFAP-tk rat line, in which cytogenesis is transiently compromised. We explored the long-term effects of both treatments on physiological and behavioral outcomes. Grafted GRPs reversed anxiety-like deficits and demonstrated an antidepressant-like effect, while the secretome promoted recovery of only anxiety-like behavior. Furthermore, GRPs elicited a recovery of neurogenic and gliogenic levels in the ventral DG, highlighting the unique involvement of these cells in the regulation of brain cytogenesis. Both GRPs and their secretome induced significant alterations in the DG proteome, directly influencing proteins and pathways related to cytogenesis, regulation of neural plasticity and neuronal development. With this work, we demonstrate a valuable and specific contribution of glial progenitors to normalizing gliogenic levels, rescuing neurogenesis and, importantly, promoting recovery of emotional deficits characteristic of disorders such as MDD.
Collapse
Affiliation(s)
- Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic of Porto, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Bruna Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic of Porto, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Tiago Silveira-Rosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana M Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fábio G Teixeira
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic of Porto, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Ana J Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic of Porto, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
23
|
Abe Y, Yokoyama K, Kato T, Yagishita S, Tanaka KF, Takamiya A. Neurogenesis-independent mechanisms of MRI-detectable hippocampal volume increase following electroconvulsive stimulation. Neuropsychopharmacology 2024; 49:1236-1245. [PMID: 38195908 PMCID: PMC11224397 DOI: 10.1038/s41386-023-01791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
Electroconvulsive therapy (ECT) is one of the most effective psychiatric treatments but the underlying mechanisms are still unclear. In vivo human magnetic resonance imaging (MRI) studies have consistently reported ECT-induced transient hippocampal volume increases, and an animal model of ECT (electroconvulsive stimulation: ECS) was shown to increase neurogenesis. However, a causal relationship between neurogenesis and MRI-detectable hippocampal volume increases following ECT has not been verified. In this study, mice were randomly allocated into four groups, each undergoing a different number of ECS sessions (e.g., 0, 3, 6, 9). T2-weighted images were acquired using 11.7-tesla MRI. A whole brain voxel-based morphometry analysis was conducted to identify any ECS-induced brain volume changes. Additionally, a histological examination with super-resolution microscopy was conducted to investigate microstructural changes in the brain regions that showed volume changes following ECS. Furthermore, parallel experiments were performed on X-ray-irradiated mice to investigate the causal relationship between neurogenesis and ECS-related volume changes. As a result, we revealed for the first time that ECS induced MRI-detectable, dose-dependent hippocampal volume increase in mice. Furthermore, increased hippocampal volumes following ECS were seen even in mice lacking neurogenesis, suggesting that neurogenesis is not required for the increase. The comprehensive histological analyses identified an increase in excitatory synaptic density in the ventral CA1 as the major contributor to the observed hippocampal volume increase following ECS. Our findings demonstrate that modification of synaptic structures rather than neurogenesis may be the underlying biological mechanism of ECT/ECS-induced hippocampal volume increase.
Collapse
Affiliation(s)
- Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 35 Shinanomachi, Tokyo, Shinju-ku, 160-8582, Japan
| | - Kiichi Yokoyama
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 35 Shinanomachi, Tokyo, Shinju-ku, 160-8582, Japan
| | - Tomonobu Kato
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 35 Shinanomachi, Tokyo, Shinju-ku, 160-8582, Japan
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 35 Shinanomachi, Tokyo, Shinju-ku, 160-8582, Japan
| | - Akihiro Takamiya
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
24
|
Chang Z, Wang QY, Li LH, Jiang B, Zhou XM, Zhu H, Sun YP, Pan X, Tu XX, Wang W, Liu CY, Kuang HX. Potential Plausible Role of Stem Cell for Treating Depressive Disorder: a Retrospective Review. Mol Neurobiol 2024; 61:4454-4472. [PMID: 38097915 DOI: 10.1007/s12035-023-03843-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 07/11/2024]
Abstract
Depression poses a significant threat to global physical and mental health, impacting around 3.8% of the population with a rising incidence. Current treatment options primarily involve medication and psychological support, yet their effectiveness remains limited, contributing to high relapse rates. There is an urgent need for innovative and more efficacious treatment modalities. Stem cell therapy, a promising avenue in regenerative medicine for a spectrum of neurodegenerative conditions, has recently garnered attention for its potential application in depression. While much of this work remains preclinical, it has demonstrated considerable promise. Identified mechanisms underlying the antidepressant effects of stem cell therapy encompass the stimulation of neurotrophic factors, immune function modulation, and augmented monoamine levels. Nonetheless, these pathways and other undiscovered mechanisms necessitate further investigation. Depression fundamentally manifests as a neurodegenerative disorder. Given stem cell therapy's success in addressing a range of neurodegenerative pathologies, it opens the door to explore its application in depression treatment. This exploration may include repairing damaged nerves directly or indirectly and inhibiting neurotoxicity. Nevertheless, significant challenges must be overcome before stem cell therapies can be applied clinically. Successful resolution of these issues will ultimately determine the feasibility of incorporating stem cell therapies into the clinical landscape. This narrative review provides insights into the progress of research, potential avenues for exploration, and the prevailing challenges in the implementation of stem cell therapy for treatment of depression.
Collapse
Affiliation(s)
- Zhuo Chang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Qing-Yi Wang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Lu-Hao Li
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Bei Jiang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue-Ming Zhou
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Hui Zhu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Yan-Ping Sun
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue Pan
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Xu Tu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Wei Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chen-Yue Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
25
|
Shemiakova TS, Efimova EV, Gainetdinov RR. TAARs as Novel Therapeutic Targets for the Treatment of Depression: A Narrative Review of the Interconnection with Monoamines and Adult Neurogenesis. Biomedicines 2024; 12:1263. [PMID: 38927470 PMCID: PMC11200894 DOI: 10.3390/biomedicines12061263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Depression is a common mental illness of great concern. Current therapy for depression is only suitable for 80% of patients and is often associated with unwanted side effects. In this regard, the search for and development of new antidepressant agents remains an urgent task. In this review, we discuss the current available evidence indicating that G protein-coupled trace amine-associated receptors (TAARs) might represent new targets for depression treatment. The most frequently studied receptor TAAR1 has already been investigated in the treatment of schizophrenia, demonstrating antidepressant and anxiolytic properties. In fact, the TAAR1 agonist Ulotaront is currently undergoing phase 2/3 clinical trials testing its safety and efficacy in the treatment of major depressive disorder and generalized anxiety disorder. Other members of the TAAR family (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) are not only involved in the innate olfaction of volatile amines, but are also expressed in the limbic brain areas. Furthermore, animal studies have shown that TAAR2 and TAAR5 regulate emotional behaviors and thus may hold promise as potential antidepressant targets. Of particular interest is their connection with the dopamine and serotonin systems of the brain and their involvement in the regulation of adult neurogenesis, known to be affected by the antidepressant drugs currently in use. Further non-clinical and clinical studies are necessary to validate TAAR1 (and potentially other TAARs) as novel therapeutic targets for the treatment of depression.
Collapse
Affiliation(s)
- Taisiia S. Shemiakova
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 St. Petersburg, Russia; (T.S.S.); (E.V.E.)
| | - Evgeniya V. Efimova
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 St. Petersburg, Russia; (T.S.S.); (E.V.E.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 St. Petersburg, Russia; (T.S.S.); (E.V.E.)
- Saint-Petersburg University Hospital, Saint-Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
26
|
Xu P, Zhao Y, Feng Y, Zhao M, Zhao R. Deoxynivalenol induces m 6A-mediated upregulation of p21 and growth arrest of mouse hippocampal neuron cells in vitro. Cell Biol Toxicol 2024; 40:41. [PMID: 38833095 PMCID: PMC11150311 DOI: 10.1007/s10565-024-09872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
Hippocampal neurons maintain the ability of proliferation throughout life to support neurogenesis. Deoxynivalenol (DON) is a mycotoxin that exhibits brain toxicity, yet whether and how DON affects hippocampal neurogenesis remains unknown. Here, we use mouse hippocampal neuron cells (HT-22) as a model to illustrate the effects of DON on neuron proliferation and to explore underlying mechanisms. DON exposure significantly inhibits the proliferation of HT-22 cells, which is associated with an up-regulation of cell cycle inhibitor p21 at both mRNA and protein levels. Global and site-specific m6A methylation levels on the 3'UTR of p21 mRNA are significantly increased in response to DON treatment, whereas inhibition of m6A hypermethylation significantly alleviates DON-induced cell cycle arrest. Further mechanistic studies indicate that the m6A readers YTHDF1 and IGF2BP1 are responsible for m6A-mediated increase in p21 mRNA stability. Meanwhile, 3'UTR of E3 ubiquitin ligase TRIM21 mRNA is also m6A hypermethylated, and another m6A reader YTHDF2 binds to the m6A sites, leading to decreased TRIM21 mRNA stability. Consequently, TRIM21 suppression impairs ubiquitin-mediated p21 protein degradation. Taken together, m6A-mediated upregulation of p21, at both post-transcriptional and post-translational levels, contributes to DON-induced inhibition of hippocampal neuron proliferation. These results may provide new insights for epigenetic therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Peirong Xu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Yulan Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Yue Feng
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Mindie Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
27
|
Ersoy B, Herzog ML, Pan W, Schilling S, Endres M, Göttert R, Kronenberg GD, Gertz K. The atypical antidepressant tianeptine confers neuroprotection against oxygen-glucose deprivation. Eur Arch Psychiatry Clin Neurosci 2024; 274:777-791. [PMID: 37653354 PMCID: PMC11127858 DOI: 10.1007/s00406-023-01685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Proregenerative and neuroprotective effects of antidepressants are an important topic of inquiry in neuropsychiatric research. Oxygen-glucose deprivation (OGD) mimics key aspects of ischemic injury in vitro. Here, we studied the effects of 24-h pretreatment with serotonin (5-HT), citalopram (CIT), fluoxetine (FLU), and tianeptine (TIA) on primary mouse cortical neurons subjected to transient OGD. 5-HT (50 μM) significantly enhanced neuron viability as measured by MTT assay and reduced cell death and LDH release. CIT (10 μM) and FLU (1 μM) did not increase the effects of 5-HT and neither antidepressant conferred neuroprotection in the absence of supplemental 5-HT in serum-free cell culture medium. By contrast, pre-treatment with TIA (10 μM) resulted in robust neuroprotection, even in the absence of 5-HT. Furthermore, TIA inhibited mRNA transcription of candidate genes related to cell death and hypoxia and attenuated lipid peroxidation, a hallmark of neuronal injury. Finally, deep RNA sequencing of primary neurons subjected to OGD demonstrated that OGD induces many pathways relating to cell survival, the inflammation-immune response, synaptic dysregulation and apoptosis, and that TIA pretreatment counteracted these effects of OGD. In conclusion, this study highlights the comparative strength of the 5-HT independent neuroprotective effects of TIA and identifies the molecular pathways involved.
Collapse
Affiliation(s)
- Burcu Ersoy
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marie-Louise Herzog
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Berlin, Germany
| | - Wen Pan
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Berlin, Germany
| | - Simone Schilling
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Endres
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Berlin, Germany
- Einstein Center for Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZNE (German Center for Neurodegenerative Diseases), Partner site, Berlin, Germany
- DZPG (German Center for Mental Health), Partner site, Berlin, Germany
| | - Ria Göttert
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Berlin, Germany
| | - Golo D Kronenberg
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zürich, Lenggstrasse 31, P.O. Box 363, 8032, Zurich, Switzerland
| | - Karen Gertz
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner site, Berlin, Germany.
- Einstein Center for Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
28
|
Kim S, Yang S, Kim J, Chung KW, Jung YS, Chung HY, Lee J. Glucocorticoid Receptor Down-Regulation Affects Neural Stem Cell Proliferation and Hippocampal Neurogenesis. Mol Neurobiol 2024; 61:3198-3211. [PMID: 37979034 DOI: 10.1007/s12035-023-03785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal axis and abnormalities in the glucocorticoid receptor (GR) have been linked to major depressive disorder. Given the critical role of GR in stress response regulation, we investigated the impact of GR changes on neural stem cells (NSCs) proliferation and hippocampal neurogenesis. Stress response was induced using dexamethasone (DEX), a GR agonist, which led to reduced proliferation of neural stem cells and neural progenitor cells, as well as decreased expression of GR. Additionally, a reduction of serum concentration within the culture media resulted in suppressed cell proliferation, accompanied by decreased GR expression. The association between GR expression and cell proliferation was further confirmed through GR siRNA knockdown and overexpression experiments. Furthermore, in vivo studies utilizing young male C57BL/6 mice demonstrated that corticosterone (CORT) (35 μg/ml) administered through drinking water for four weeks induced depression-like behavior, as indicated by increased immobility times in forced swimming and tail suspension tests. CORT exposure led to reduced GR and nestin expression levels, along with diminished numbers of BrdU-positive cells in the hippocampi, indicating impaired hippocampal neurogenesis. Taken together, our findings provide the first evidence that stress-induced downregulation of GR negatively affects neurogenesis by inhibiting NSCs proliferation.
Collapse
Affiliation(s)
- Seoyeong Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Seonguk Yang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaehoon Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Ki Wung Chung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
29
|
Maheshwari M, Singla A, Rawat A, Banerjee T, Pati S, Shah S, Maiti S, Vaidya VA. Chronic chemogenetic activation of hippocampal progenitors enhances adult neurogenesis and modulates anxiety-like behavior and fear extinction learning. IBRO Neurosci Rep 2024; 16:168-181. [PMID: 39007086 PMCID: PMC11240292 DOI: 10.1016/j.ibneur.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/18/2024] [Indexed: 07/16/2024] Open
Abstract
Adult hippocampal neurogenesis is a lifelong process that involves the integration of newborn neurons into the hippocampal network, and plays a role in cognitive function and the modulation of mood-related behavior. Here, we sought to address the impact of chemogenetic activation of adult hippocampal progenitors on distinct stages of progenitor development, including quiescent stem cell activation, progenitor turnover, differentiation and morphological maturation. We find that hM3Dq-DREADD-mediated activation of nestin-positive adult hippocampal progenitors recruits quiescent stem cells, enhances progenitor proliferation, increases doublecortin-positive newborn neuron number, accompanied by an acceleration of differentiation and morphological maturation, associated with increased dendritic complexity. Behavioral analysis indicated anxiolytic behavioral responses in transgenic mice subjected to chemogenetic activation of adult hippocampal progenitors at timepoints when newborn neurons are predicted to integrate into the mature hippocampal network. Furthermore, we noted an enhanced fear memory extinction on a contextual fear memory learning task in transgenic mice subjected to chemogenetic activation of adult hippocampal progenitors. Our findings indicate that hM3Dq-DREAD-mediated chemogenetic activation of adult hippocampal progenitors impacts distinct aspects of hippocampal neurogenesis, associated with the regulation of anxiety-like behavior and fear memory extinction.
Collapse
Affiliation(s)
| | | | - Anoop Rawat
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Toshali Banerjee
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Sthitapranjya Pati
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Sneha Shah
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Sudipta Maiti
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Vidita A. Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| |
Collapse
|
30
|
Caruso MG, Nicolas S, Lucassen PJ, Mul JD, O’Leary OF, Nolan YM. Ageing, Cognitive Decline, and Effects of Physical Exercise: Complexities, and Considerations from Animal Models. Brain Plast 2024; 9:43-73. [PMID: 38993577 PMCID: PMC11234681 DOI: 10.3233/bpl-230157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 07/13/2024] Open
Abstract
In our ageing global population, the cognitive decline associated with dementia and neurodegenerative diseases represents a major healthcare problem. To date, there are no effective treatments for age-related cognitive impairment, thus preventative strategies are urgently required. Physical exercise is gaining traction as a non-pharmacological approach to promote brain health. Adult hippocampal neurogenesis (AHN), a unique form of brain plasticity which is necessary for certain cognitive functions declines with age and is enhanced in response to exercise. Accumulating evidence from research in rodents suggests that physical exercise has beneficial effects on cognition through its proneurogenic capabilities. Given ethical and technical limitations in human studies, preclinical research in rodents is crucial for a better understanding of such exercise-induced brain and behavioural changes. In this review, exercise paradigms used in preclinical research are compared. We provide an overview of the effects of different exercise paradigms on age-related cognitive decline from middle-age until older-age. We discuss the relationship between the age-related decrease in AHN and the potential impact of exercise on mitigating this decline. We highlight the emerging literature on the impact of exercise on gut microbiota during ageing and consider the role of the gut-brain axis as a future possible strategy to optimize exercise-enhanced cognitive function. Finally, we propose a guideline for designing optimal exercise protocols in rodent studies, which would inform clinical research and contribute to developing preventative strategies for age-related cognitive decline.
Collapse
Affiliation(s)
- Maria Giovanna Caruso
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Paul J. Lucassen
- Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Joram D. Mul
- Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Olivia F. O’Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Yvonne M. Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| |
Collapse
|
31
|
Wang J, Behl T, Rana T, Sehgal A, Wal P, Saxena B, Yadav S, Mohan S, Anwer MK, Chigurupati S, Zaheer I, Shen B, Singla RK. Exploring the pathophysiological influence of heme oxygenase-1 on neuroinflammation and depression: A study of phytotherapeutic-based modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155466. [PMID: 38461764 DOI: 10.1016/j.phymed.2024.155466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The heme oxygenase (HO) system plays a significant role in neuroprotection and reduction of neuroinflammation and neurodegeneration. The system, via isoforms HO-1 and HO-2, regulates cellular redox balance. HO-1, an antioxidant defense enzyme, is highlighted due to its association with depression, characterized by heightened neuroinflammation and impaired oxidative stress responses. METHODOLOGY We observed the pathophysiology of HO-1 and phytochemicals as its modulator. We explored Science Direct, Scopus, and PubMed for a comprehensive literature review. Bibliometric and temporal trend analysis were done using VOSviewer. RESULTS Several phytochemicals can potentially alleviate neuroinflammation and oxidative stress-induced depressive symptoms. These effects result from inhibiting the MAPK and NK-κB pathways - both implicated in the overproduction of pro-inflammatory factors - and from the upregulation of HO-1 expression mediated by Nrf2. Bibliometric and temporal trend analysis further validates these associations. CONCLUSION In summary, our findings suggest that antidepressant agents can mitigate neuroinflammation and depressive disorder pathogenesis via the upregulation of HO-1 expression. These agents suppress pro-inflammatory mediators and depressive-like symptoms, demonstrating that HO-1 plays a significant role in the neuroinflammatory process and the development of depression.
Collapse
Affiliation(s)
- Jiao Wang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Department of Computer Science and Information Technology, University of A Coruña, A Coruña, Spain
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India.
| | - Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Rajpura-140401, Punjab, India; Government Pharmacy College, Seraj-175123, Mandi, Himachal Pradesh, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar-141104, Ludhiana, Punjab, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, Uttar Pradesh, India
| | - Bhagawati Saxena
- Department of Pharmacology, Institute of Pharmacy, Nirma University, S.G. Highway, Ahmedabad, 382481, India
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj-11942, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah-51452, Kingdom of Saudi Arabia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Chennai-602105, India
| | - Imran Zaheer
- Department of Pharmacology, College of Medicine, (Al-Dawadmi Campus), Shaqra University, Al-Dawadmi, 11961, Kingdom of Saudi Arabia
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India.
| |
Collapse
|
32
|
Fakih N, Fakhoury M. Alzheimer Disease-Link With Major Depressive Disorder and Efficacy of Antidepressants in Modifying its Trajectory. J Psychiatr Pract 2024; 30:181-191. [PMID: 38819242 DOI: 10.1097/pra.0000000000000779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Alzheimer disease (AD) is a devastating neurodegenerative disorder that affects millions of individuals worldwide, with no effective cure. The main symptoms include learning and memory loss, and the inability to carry out the simplest tasks, significantly affecting patients' quality of life. Over the past few years, tremendous progress has been made in research demonstrating a link between AD and major depressive disorder (MDD). Evidence suggests that MDD is commonly associated with AD and that it can serve as a precipitating factor for this disease. Antidepressants such as selective serotonin reuptake inhibitors, which are the first line of treatment for MDD, have shown great promise in the treatment of depression in AD, although their effectiveness remains controversial. The goal of this review is to summarize current knowledge regarding the association between AD, MDD, and antidepressant treatment. It first provides an overview of the interaction between AD and MDD at the level of genes, brain regions, neurotransmitter systems, and neuroinflammatory markers. The review then presents current evidence regarding the effectiveness of various antidepressants for AD-related pathophysiology and then finally discusses current limitations, challenges, and future directions.
Collapse
Affiliation(s)
- Nour Fakih
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | | |
Collapse
|
33
|
Dhume SH, Balogun K, Sarkar A, Acosta S, Mount HTJ, Cahill LS, Sled JG, Serghides L. Perinatal exposure to atazanavir-based antiretroviral regimens in a mouse model leads to differential long-term motor and cognitive deficits dependent on the NRTI backbone. Front Mol Neurosci 2024; 17:1376681. [PMID: 38646101 PMCID: PMC11027900 DOI: 10.3389/fnmol.2024.1376681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
Background Combination antiretroviral therapy (ART) use in pregnancy has been pivotal in improving maternal health and reducing perinatal HIV transmission. However, children born HIV-exposed uninfected fall behind their unexposed peers in several areas including neurodevelopment. The contribution of in utero ART exposure to these deficits is not clear. Here we present our findings of neurocognitive outcomes in adult mice exposed in utero to ART. Methods Dams were treated with a combination of ritonavir-boosted atazanavir with either abacavir plus lamivudine (ABC/3TC + ATV/r) or tenofovir disoproxil fumarate plus emtricitabine (TDF/FTC + ATV/r), or water as a control, administered daily from day of plug detection to birth. Offspring underwent a battery of behavioral tests that investigated motor performance and cognition starting at 6-weeks of age and ending at 8 months. Changes in brain structure were assessed using magnetic resonance imaging and immunohistochemistry. Expression of genes involved in neural circuitry and synaptic transmission were assessed in the hippocampus, a region strongly associated with memory formation, using qPCR. Findings Pups exposed to TDF/FTC + ATV/r showed increased motor activity and exploratory drive, and deficits in hippocampal-dependent working memory and social interaction, while pups exposed to ABC/3TC + ATV/r showed increased grooming, and deficits in working memory and social interaction. Significant volumetric reductions in the brain were seen only in the ABC/3TC + ATV/r group and were associated with reduced neuronal counts in the hippocampus. Altered neurotransmitter receptor mRNA expression as well as changes in expression of the neurotrophic factor BDNF and its receptors were observed in both ART-exposed groups in a sex-dependent manner. Interpretation In our model, in utero ART exposure had long-term effects on brain development and cognitive and motor outcomes in adulthood. Our data show that neurological outcomes can be influenced by the type of nucleoside reverse transcriptase inhibitor backbone of the regimen and not just the base drug, and display sex differences.
Collapse
Affiliation(s)
- Shreya H. Dhume
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kayode Balogun
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ambalika Sarkar
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sebastian Acosta
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Howard T. J. Mount
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Psychiatry and Physiology, University of Toronto, Toronto, ON, Canada
| | - Lindsay S. Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, Toronto, ON, Canada
| | - John G. Sled
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Women’s College Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Shuang R, Gao T, Sun Z, Tong Y, Zhao K, Wang H. Tet1/DLL3/Notch1 signal pathway affects hippocampal neurogenesis and regulates depression-like behaviour in mice. Eur J Pharmacol 2024; 968:176417. [PMID: 38346470 DOI: 10.1016/j.ejphar.2024.176417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Ten-eleven translocation protein 1 (Tet1) is associated with the regulation of depression-like behaviour in mice. However, the mechanism by which Tet1 affects neurogenesis in mice to regulate depression-like behaviours remains unclear. In this study, the chronic social defeat stress (CSDS) paradigm was constructed by overexpressing Tet1 protein in the mouse hippocampus, and 5-ethynyl-2'-deoxyuridine (EdU, 50 mg/kg) was injected on the seventh day to explore the mechanism of the regulation of the Tet1/Delta-like protein 3 (DLL3)/Notch1 protein pathway in mice hippocampal neurogenesis and its influence on depression-like behaviour. Following CSDS, the expression level of Tet1 decreased significantly. Moreover, due to the downregulation of Tet1 protein, the maintenance of the DNA methylation and demethylation balance was affected, resulting in a significant increase in the methylation levels of Notch1 and DLL3 and a significant decrease in the protein expression levels of DLL3, Notch1, and brain-derived neurotrophic factor (BDNF). At the same time, the proliferation and differentiation of neurones were affected, which was related to a significant decrease in the number of EdU+, doublecortin (DCX)+, and Ki67+ cells in the hippocampus of the CSDS model mice. When the Tet1 protein was overexpressed in the mouse hippocampus, DLL3 and Notch1 protein expression levels were upregulated, promoting hippocampal neurogenesis and alleviating depression-like behaviour in mice. These findings suggest that regulation of the hippocampal Tet1/DLL3/Notch1 protein pathway to influence neurogenesis may be a therapeutic strategy for depression.
Collapse
Affiliation(s)
- Ruonan Shuang
- Ningxia Medical University, Yinchuan, Ningxia, 750004, China; Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tiantian Gao
- Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Zhongwen Sun
- College of Medicine, Lishui University, Lishui, 323000, China
| | - Yue Tong
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Keke Zhao
- Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Hanqing Wang
- Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
35
|
Mehdi SMA, Costa AP, Svob C, Pan L, Dartora WJ, Talati A, Gameroff MJ, Wickramaratne PJ, Weissman MM, McIntire LBJ. Depression and cognition are associated with lipid dysregulation in both a multigenerational study of depression and the National Health and Nutrition Examination Survey. Transl Psychiatry 2024; 14:142. [PMID: 38467624 PMCID: PMC10928164 DOI: 10.1038/s41398-024-02847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Chronic dysregulation of peripheral lipids has been found to be associated with depression and cognition, but their interaction has not been investigated. Growing evidence has highlighted the association between peripheral lipoprotein levels with depression and cognition with inconsistent results. We assessed the association between peripheral lipids, depression, and cognition while evaluating their potential interactions using robust clinically relevant predictors such as lipoprotein levels and chronic medical disorders that dysregulate lipoproteins. We report an association between peripheral lipids, depression, and cognition, suggesting a common underlying biological mechanism driven by lipid dysregulation in two independent studies. Analysis of a longitudinal study of a cohort at high or low familial risk for major depressive disorder (MDD) (n = 526) found metabolic diseases, including diabetes, hypertension, and other cardiovascular diseases, were associated with MDD and cognitive outcomes. Investigating a cross-sectional population survey of adults in the National Health and Nutrition Examination Survey 2011-2014 (NHANES) (n = 2377), depression was found to be associated with high density lipoprotein (HDL) and cognitive assessments. In the familial risk study, medical conditions were found to be associated with chronic lipid dysregulation and were significantly associated with MDD using the structural equation model. A positive association between chronic lipid dysregulation and cognitive scores was found in an exploratory analysis of the familial risk study. In a complementary study, analysis of NHANES revealed a positive association of HDL levels with cognition. Further analysis of the NHANES cohort indicated that depression status mediated the interaction between HDL levels and cognitive tests. Importantly, the protective effect of HDL on cognition was absent in those with depressive symptoms, which may ultimately result in worse outcomes leading to cognitive decline. These findings highlight the potential for the early predictive value of medical conditions with chronic lipid dyshomeostasis for the risk of depression and cognitive decline.
Collapse
Affiliation(s)
- S M A Mehdi
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - A P Costa
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Brain Health Imaging Institute, New York, NY, USA
| | - C Svob
- Division of Translational Epidemiology and Mental Health Equity, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - L Pan
- Division of Translational Epidemiology and Mental Health Equity, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - W J Dartora
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Brain Health Imaging Institute, New York, NY, USA
| | - A Talati
- Division of Translational Epidemiology and Mental Health Equity, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - M J Gameroff
- Division of Translational Epidemiology and Mental Health Equity, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - P J Wickramaratne
- Division of Translational Epidemiology and Mental Health Equity, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - M M Weissman
- Mailman School of Public Health, Columbia University, New York, NY, USA.
- Division of Translational Epidemiology and Mental Health Equity, New York State Psychiatric Institute, New York, NY, USA.
- Department of Psychiatry, Columbia University, New York, NY, USA.
| | - L B J McIntire
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
- Brain Health Imaging Institute, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
36
|
Chamaa F, Magistretti PJ, Fiumelli H. Astrocyte-derived lactate in stress disorders. Neurobiol Dis 2024; 192:106417. [PMID: 38296112 DOI: 10.1016/j.nbd.2024.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Stress disorders are psychiatric disorders arising following stressful or traumatic events. They could deleteriously affect an individual's health because they often co-occur with mental illnesses. Considerable attention has been focused on neurons when considering the neurobiology of stress disorders. However, like other mental health conditions, recent studies have highlighted the importance of astrocytes in the pathophysiology of stress-related disorders. In addition to their structural and homeostatic support role, astrocytes actively serve several functions in regulating synaptic transmission and plasticity, protecting neurons from toxic compounds, and providing metabolic support for neurons. The astrocyte-neuron lactate shuttle model sets forth the importance of astrocytes in providing lactate for the metabolic supply of neurons under intense activity. Lactate also plays a role as a signaling molecule and has been recently studied regarding its antidepressant activity. This review discusses the involvement of astrocytes and brain energy metabolism in stress and further reflects on the importance of lactate as an energy supply in the brain and its emerging antidepressant role in stress-related disorders.
Collapse
Affiliation(s)
- Farah Chamaa
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Pierre J Magistretti
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Hubert Fiumelli
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
37
|
Rodríguez-Moreno CB, Cañeque-Rufo H, Flor-García M, Terreros-Roncal J, Moreno-Jiménez EP, Pallas-Bazarra N, Bressa C, Larrosa M, Cafini F, Llorens-Martín M. Azithromycin preserves adult hippocampal neurogenesis and behavior in a mouse model of sepsis. Brain Behav Immun 2024; 117:135-148. [PMID: 38211636 PMCID: PMC7615685 DOI: 10.1016/j.bbi.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
The mammalian hippocampus can generate new neurons throughout life. Known as adult hippocampal neurogenesis (AHN), this process participates in learning, memory, mood regulation, and forgetting. The continuous incorporation of new neurons enhances the plasticity of the hippocampus and contributes to the cognitive reserve in aged individuals. However, the integrity of AHN is targeted by numerous pathological conditions, including neurodegenerative diseases and sustained inflammation. In this regard, the latter causes cognitive decline, mood alterations, and multiple AHN impairments. In fact, the systemic administration of Lipopolysaccharide (LPS) from E. coli to mice (a model of sepsis) triggers depression-like behavior, impairs pattern separation, and decreases the survival, maturation, and synaptic integration of adult-born hippocampal dentate granule cells. Here we tested the capacity of the macrolide antibiotic azithromycin to neutralize the deleterious consequences of LPS administration in female C57BL6J mice. This antibiotic exerted potent neuroprotective effects. It reversed the increased immobility time during the Porsolt test, hippocampal secretion of pro-inflammatory cytokines, and AHN impairments. Moreover, azithromycin promoted the synaptic integration of adult-born neurons and functionally remodeled the gut microbiome. Therefore, our data point to azithromycin as a clinically relevant drug with the putative capacity to ameliorate the negative consequences of chronic inflammation by modulating AHN and hippocampal-related behaviors.
Collapse
Affiliation(s)
- Carla B Rodríguez-Moreno
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Héctor Cañeque-Rufo
- Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Miguel Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julia Terreros-Roncal
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena P Moreno-Jiménez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noemí Pallas-Bazarra
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Carlo Bressa
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, 28223, Pozuelo de Alarcón, Madrid
| | - Mar Larrosa
- Department of Food Science and Nutrition, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Fabio Cafini
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain.
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
38
|
Cortes-Flores H, Torrandell-Haro G, Brinton RD. Association between CNS-active drugs and risk of Alzheimer's and age-related neurodegenerative diseases. Front Psychiatry 2024; 15:1358568. [PMID: 38487578 PMCID: PMC10937406 DOI: 10.3389/fpsyt.2024.1358568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Objective As neuropsychiatric conditions can increase the risk of age-related neurodegenerative diseases (NDDs), the impact of CNS-active drugs on the risk of developing Alzheimer's Disease (AD), non-AD dementia, Multiple Sclerosis (MS), Parkinson's Disease (PD) and Amyotrophic Lateral Sclerosis (ALS) was investigated. Research design and methods A retrospective cohort analysis of a medical claims dataset over a 10 year span was conducted in patients aged 60 years or older. Participants were propensity score matched for comorbidity severity and demographic parameters. Relative risk (RR) ratios and 95% confidence intervals (CI) were determined for age-related NDDs. Cumulative hazard ratios and treatment duration were determined to assess the association between CNS-active drugs and NDDs at different ages and treatment duration intervals. Results In 309,128 patients who met inclusion criteria, exposure to CNS-active drugs was associated with a decreased risk of AD (0.86% vs 1.73%, RR: 0.50; 95% CI: 0.47-0.53; p <.0001) and all NDDs (3.13% vs 5.76%, RR: 0.54; 95% CI: 0.53-0.56; p <.0001). Analysis of impact of drug class on risk of AD indicated that antidepressant, sedative, anticonvulsant, and stimulant medications were associated with significantly reduced risk of AD whereas atypical antipsychotics were associated with increased AD risk. The greatest risk reduction for AD and NDDs occurred in patients aged 70 years or older with a protective effect only in patients with long-term therapy (>3 years). Furthermore, responders to these therapeutics were characterized by diagnosed obesity and higher prescriptions of anti-inflammatory drugs and menopausal hormonal therapy, compared to patients with a diagnosis of AD (non-responders). Addition of a second CNS-active drug was associated with greater reduction in AD risk compared to monotherapy, with the combination of a Z-drug and an SNRI associated with greatest AD risk reduction. Conclusion Collectively, these findings indicate that CNS-active drugs were associated with reduced risk of developing AD and other age-related NDDs. The exception was atypical antipsychotics, which increased risk. Potential use of combination therapy with atypical antipsychotics could mitigate the risk conferred by these drugs. Evidence from these analyses advance precision prevention strategies to reduce the risk of age-related NDDs in persons with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Helena Cortes-Flores
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Georgina Torrandell-Haro
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
39
|
Rawat R, Tunc-Ozcan E, Dunlop S, Tsai YH, Li F, Bertossi R, Peng CY, Kessler JA. Ketamine's rapid and sustained antidepressant effects are driven by distinct mechanisms. Cell Mol Life Sci 2024; 81:105. [PMID: 38413417 PMCID: PMC10899278 DOI: 10.1007/s00018-024-05121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
Administration of multiple subanesthetic doses of ketamine increases the duration of antidepressant effects relative to a single ketamine dose, but the mechanisms mediating this sustained effect are unclear. Here, we demonstrate that ketamine's rapid and sustained effects on affective behavior are mediated by separate and temporally distinct mechanisms. The rapid effects of a single dose of ketamine result from increased activity of immature neurons in the hippocampal dentate gyrus without an increase in neurogenesis. Treatment with six doses of ketamine over two weeks doubled the duration of behavioral effects after the final ketamine injection. However, unlike ketamine's rapid effects, this more sustained behavioral effect did not correlate with increased immature neuron activity but instead correlated with increased numbers of calretinin-positive and doublecortin-positive immature neurons. This increase in neurogenesis was associated with a decrease in bone morphogenetic protein (BMP) signaling, a known inhibitor of neurogenesis. Injection of a BMP4-expressing lentivirus into the dentate gyrus maintained BMP signaling in the niche and blocked the sustained - but not the rapid - behavioral effects of ketamine, indicating that decreased BMP signaling is necessary for ketamine's sustained effects. Thus, although the rapid effects of ketamine result from increased activity of immature neurons in the dentate gyrus without requiring an increase in neurogenesis, ketamine's sustained effects require a decrease in BMP signaling and increased neurogenesis along with increased neuron activity. Understanding ketamine's dual mechanisms of action should help with the development of new rapid-acting therapies that also have safe, reliable, and sustained effects.
Collapse
Affiliation(s)
- Radhika Rawat
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA.
| | - Elif Tunc-Ozcan
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Sara Dunlop
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Yung-Hsu Tsai
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Fangze Li
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Ryan Bertossi
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Chian-Yu Peng
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - John A Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| |
Collapse
|
40
|
Evans JW, Graves MC, Nugent AC, Zarate CA. Hippocampal volume changes after (R,S)-ketamine administration in patients with major depressive disorder and healthy volunteers. Sci Rep 2024; 14:4538. [PMID: 38402253 PMCID: PMC10894199 DOI: 10.1038/s41598-024-54370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
The hippocampus and amygdala have been implicated in the pathophysiology and treatment of major depressive disorder (MDD). Preclinical models suggest that stress-related changes in these regions can be reversed by antidepressants, including ketamine. Clinical studies have identified reduced volumes in MDD that are thought to be potentiated by early life stress and worsened by repeated depressive episodes. This study used 3T and 7T structural magnetic resonance imaging data to examine longitudinal changes in hippocampal and amygdalar subfield volumes associated with ketamine treatment. Data were drawn from a previous double-blind, placebo-controlled, crossover trial of healthy volunteers (HVs) unmedicated individuals with treatment-resistant depression (TRD) (3T: 18 HV, 26 TRD, 7T: 17 HV, 30 TRD) who were scanned at baseline and twice following either a 40 min IV ketamine (0.5 mg/kg) or saline infusion (acute: 1-2 days, interim: 9-10 days post infusion). No baseline differences were noted between the two groups. At 10 days post-infusion, a slight increase was observed between ketamine and placebo scans in whole left amygdalar volume in individuals with TRD. No other differences were found between individuals with TRD and HVs at either field strength. These findings shed light on the timing of ketamine's effects on cortical structures.
Collapse
Affiliation(s)
- Jennifer W Evans
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr., Bldg 10, Rm 7-3335, Bethesda, MD, 20814, USA.
| | - Morgan C Graves
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr., Bldg 10, Rm 7-3335, Bethesda, MD, 20814, USA
| | - Allison C Nugent
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr., Bldg 10, Rm 7-3335, Bethesda, MD, 20814, USA
- MEG Core, NIMH, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr., Bldg 10, Rm 7-3335, Bethesda, MD, 20814, USA
| |
Collapse
|
41
|
Berger A, Beckers E, Joris V, Duchêne G, Danthine V, Delinte N, Cakiroglu I, Sherif S, Morrison EIG, Sánchez AT, Macq B, Dricot L, Vandewalle G, El Tahry R. Locus coeruleus features are linked to vagus nerve stimulation response in drug-resistant epilepsy. Front Neurosci 2024; 18:1296161. [PMID: 38469571 PMCID: PMC10926962 DOI: 10.3389/fnins.2024.1296161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/15/2024] [Indexed: 03/13/2024] Open
Abstract
The locus coeruleus-norepinephrine system is thought to be involved in the clinical effects of vagus nerve stimulation. This system is known to prevent seizure development and induce long-term plastic changes, particularly with the release of norepinephrine in the hippocampus. However, the requisites to become responder to the therapy and the mechanisms of action are still under investigation. Using MRI, we assessed the structural and functional characteristics of the locus coeruleus and microstructural properties of locus coeruleus-hippocampus white matter tracts in patients with drug-resistant epilepsy responding or not to the therapy. Twenty-three drug-resistant epileptic patients with cervical vagus nerve stimulation were recruited for this pilot study, including 13 responders or partial responders and 10 non-responders. A dedicated structural MRI acquisition allowed in vivo localization of the locus coeruleus and computation of its contrast (an accepted marker of LC integrity). Locus coeruleus activity was estimated using functional MRI during an auditory oddball task. Finally, multi-shell diffusion MRI was used to estimate the structural properties of locus coeruleus-hippocampus tracts. These characteristics were compared between responders/partial responders and non-responders and their association with therapy duration was also explored. In patients with a better response to the therapy, trends toward a lower activity and a higher contrast were found in the left medial and right caudal portions of the locus coeruleus, respectively. An increased locus coeruleus contrast, bilaterally over its medial portions, correlated with duration of the treatment. Finally, a higher integrity of locus coeruleus-hippocampus connections was found in patients with a better response to the treatment. These new insights into the neurobiology of vagus nerve stimulation may provide novel markers of the response to the treatment and may reflect neuroplasticity effects occurring in the brain following the implantation.
Collapse
Affiliation(s)
- Alexandre Berger
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Synergia Medical SA, Mont-Saint-Guibert, Belgium
- Sleep and Chronobiology Laboratory, GIGA-Cyclotron Research Center-in vivo Imaging, University of Liège, Liège, Belgium
| | - Elise Beckers
- Sleep and Chronobiology Laboratory, GIGA-Cyclotron Research Center-in vivo Imaging, University of Liège, Liège, Belgium
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer’s Centre Limburg, Maastricht University, Maastricht, Netherlands
| | - Vincent Joris
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Department of Neurosurgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Gaëtan Duchêne
- GE Center MR Applications, General Electric Healthcare, Diegem, Belgium
| | - Venethia Danthine
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
| | - Nicolas Delinte
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Inci Cakiroglu
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
| | - Siya Sherif
- Sleep and Chronobiology Laboratory, GIGA-Cyclotron Research Center-in vivo Imaging, University of Liège, Liège, Belgium
| | | | - Andres Torres Sánchez
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Innoviris, Brussels Institute for Research and Innovation, Brussels, Belgium
| | - Benoit Macq
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Laurence Dricot
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
| | - Gilles Vandewalle
- Sleep and Chronobiology Laboratory, GIGA-Cyclotron Research Center-in vivo Imaging, University of Liège, Liège, Belgium
| | - Riëm El Tahry
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Department of Neurology, Center for Refractory Epilepsy, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
42
|
Liang G, Kow ASF, Yusof R, Tham CL, Ho YC, Lee MT. Menopause-Associated Depression: Impact of Oxidative Stress and Neuroinflammation on the Central Nervous System-A Review. Biomedicines 2024; 12:184. [PMID: 38255289 PMCID: PMC10813042 DOI: 10.3390/biomedicines12010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Perimenopausal depression, occurring shortly before or after menopause, is characterized by symptoms such as emotional depression, anxiety, and stress, often accompanied by endocrine dysfunction, particularly hypogonadism and senescence. Current treatments for perimenopausal depression primarily provide symptomatic relief but often come with undesirable side effects. The development of agents targeting the specific pathologies of perimenopausal depression has been relatively slow. The erratic fluctuations in estrogen and progesterone levels during the perimenopausal stage expose women to the risk of developing perimenopausal-associated depression. These hormonal changes trigger the production of proinflammatory mediators and induce oxidative stress, leading to progressive neuronal damage. This review serves as a comprehensive overview of the underlying mechanisms contributing to perimenopausal depression. It aims to shed light on the complex relationship between perimenopausal hormones, neurotransmitters, brain-derived neurotrophic factors, chronic inflammation, oxidative stress, and perimenopausal depression. By summarizing the intricate interplay between hormonal fluctuations, neurotransmitter activity, brain-derived neurotrophic factors, chronic inflammation, oxidative stress, and perimenopausal depression, this review aims to stimulate further research in this field. The hope is that an increased understanding of these mechanisms will pave the way for the development of more effective therapeutic targets, ultimately reducing the risk of depression during the menopausal stage for the betterment of psychological wellbeing.
Collapse
Affiliation(s)
- Gengfan Liang
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
- Centre of Research for Mental Health and Well-Being, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
43
|
Deng ZD, Robins PL, Regenold W, Rohde P, Dannhauer M, Lisanby SH. How electroconvulsive therapy works in the treatment of depression: is it the seizure, the electricity, or both? Neuropsychopharmacology 2024; 49:150-162. [PMID: 37488281 PMCID: PMC10700353 DOI: 10.1038/s41386-023-01677-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
We have known for nearly a century that triggering seizures can treat serious mental illness, but what we do not know is why. Electroconvulsive Therapy (ECT) works faster and better than conventional pharmacological interventions; however, those benefits come with a burden of side effects, most notably memory loss. Disentangling the mechanisms by which ECT exerts rapid therapeutic benefit from the mechanisms driving adverse effects could enable the development of the next generation of seizure therapies that lack the downside of ECT. The latest research suggests that this goal may be attainable because modifications of ECT technique have already yielded improvements in cognitive outcomes without sacrificing efficacy. These modifications involve changes in how the electricity is administered (both where in the brain, and how much), which in turn impacts the characteristics of the resulting seizure. What we do not completely understand is whether it is the changes in the applied electricity, or in the resulting seizure, or both, that are responsible for improved safety. Answering this question may be key to developing the next generation of seizure therapies that lack these adverse side effects, and ushering in novel interventions that are better, faster, and safer than ECT.
Collapse
Affiliation(s)
- Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Pei L Robins
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - William Regenold
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Paul Rohde
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Moritz Dannhauer
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
44
|
Stanford SC, Heal DJ. Adrenoceptors: A Focus on Psychiatric Disorders and Their Treatments. Handb Exp Pharmacol 2024; 285:507-554. [PMID: 37495853 DOI: 10.1007/164_2023_675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Research into the involvement of adrenoceptor subtypes in the cause(s) of psychiatric disorders is particularly challenging. This is partly because of difficulties in developing animal models that recapitulate the human condition but also because no evidence for any causal links has emerged from studies of patients. These, and other obstacles, are outlined in this chapter. Nevertheless, many drugs that are used to treat psychiatric disorders bind to adrenoceptors to some extent. Direct or indirect modulation of the function of specific adrenoceptor subtypes mediates all or part of the therapeutic actions of drugs in various psychiatric disorders. On the other hand, interactions with central or peripheral adrenoceptors can also explain their side effects. This chapter discusses both aspects of the field, focusing on disorders that are prevalent: depression, schizophrenia, anxiety, attention-deficit hyperactivity disorder, binge-eating disorder, and substance use disorder. In so doing, we highlight some unanswered questions that need to be resolved before it will be feasible to explain how changes in the function of any adrenoceptor subtype affect mood and behavior in humans and other animals.
Collapse
Affiliation(s)
- S Clare Stanford
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - David J Heal
- DevelRx Ltd, BioCity, Nottingham, UK
- Department of Life Sciences, University of Bath, Bath, UK
| |
Collapse
|
45
|
Xie XH, Xu SX, Yao L, Chen MM, Zhang H, Wang C, Nagy C, Liu Z. Altered in vivo early neurogenesis traits in patients with depression: Evidence from neuron-derived extracellular vesicles and electroconvulsive therapy. Brain Stimul 2024; 17:19-28. [PMID: 38101468 DOI: 10.1016/j.brs.2023.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The neurogenesis hypothesis is a promising candidate etiologic hypothesis for depression, and it is associated with electroconvulsive therapy (ECT). However, human in vivo molecular-level evidence is lacking. OBJECTIVE We used neuron-derived extracellular vesicles (NDEVs) as a "window to the neurons" to explore the in vivo neurogenesis status associated with ECT in patients with treatment-resistant depression (TRD). METHODS In this study, we enrolled 40 patients with TRD and 35 healthy controls (HCs). We isolated NDEVs from the plasma of each participant to test the levels of doublecortin (DCX), a marker of neurogenesis, and cluster of differentiation (CD) 81, a marker of EVs. We also assessed the plasma levels of brain-derived neurotrophic factor (BDNF), a protein that is known to be associated with ECT and neuroplastic processes. RESULTS Our findings indicated that both the levels of DCX in NDEVs and BDNF in plasma were significantly lower in TRD patients compared to HCs at baseline, but increased following ECTs. Conversely, levels of CD81 in NDEVs were found higher in TRD patients at baseline, but did not change after the ECT treatments. Exploratory analyses revealed that lower levels of BDNF in plasma and DCX in NDEVs, along with higher CD81 levels in NDEVs, were associated with more severe depressive symptoms and reduced cognitive function at baseline. Furthermore, higher baseline CD81 concentrations in NDEVs were correlated with greater decreases in depression symptoms. CONCLUSIONS We first present human in vivo evidence of early neurogenesis using DCX through NDEVs: decreased in TRD patients, increased after ECTs.
Collapse
Affiliation(s)
- Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Shu-Xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Mian-Mian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Honghan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Chao Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Corina Nagy
- Department of Psychiatry, McGill University, Montreal, QC, Canada; McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China; Taikang center for life and medical sciences, Wuhan University, Wuhan, PR China.
| |
Collapse
|
46
|
Dutton M, Boyes A, Can AT, Mohamed AZ, Hajishafiee M, Shan ZY, Lagopoulos J, Hermens DF. Hippocampal subfield volumes predict treatment response to oral ketamine in people with suicidality. J Psychiatr Res 2024; 169:192-200. [PMID: 38042058 DOI: 10.1016/j.jpsychires.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Ongoing stress results in hippocampal neuro-structural alterations which produce pathological consequences, including depression and suicidality. Ketamine may ameliorate stress related illnesses, including suicidality, via neuroplasticity processes. This novel study sought to determine whether oral ketamine treatment specifically affects hippocampal (whole and subfield) volumes in patients with chronic suicidality and MDD. It was hypothesised that oral ketamine treatment would differentially alter hippocampal volumes in trial participants categorised as ketamine responders, versus those who were non-responders. Twenty-eight participants received 6 single, weekly doses of oral ketamine (0.5-3 mg/kg) and underwent MRI scans at pre-ketamine (week 0), post-ketamine (week 6), and follow up (week 10). Hippocampal subfield volumes were extracted using the longitudinal pipeline in FreeSurfer. Participants were grouped according to ketamine response status and then compared in terms of grey matter volume (GMV) changes, among 10 hippocampal regions, over 6 and 10 weeks. Mixed ANOVAs were used to analyse interactions between time and group. Post treatment analysis revealed a significant main effect of group for three left hippocampal GMVs as well in the left and right whole hippocampus. Ketamine acute responders (Week 6) showed increased GMVs in both left and right whole hippocampus and in three subfields compared to acute non-responders, across all three timepoints, suggesting that pre-treatment increased hippocampal GMVs (particularly left hemisphere) may be predictive biomarkers of acute treatment response. Future studies should further investigate the potential of hippocampal volumes as a biomarker of ketamine treatment response.
Collapse
Affiliation(s)
- Megan Dutton
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia.
| | - Amanda Boyes
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Adem T Can
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Abdalla Z Mohamed
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Maryam Hajishafiee
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Zack Y Shan
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
47
|
Jörgensen SK, Karnošová A, Mazzaferro S, Rowley O, Chen HJC, Robbins SJ, Christofides S, Merkle FT, Maletínská L, Petrik D. An analogue of the Prolactin Releasing Peptide reduces obesity and promotes adult neurogenesis. EMBO Rep 2024; 25:351-377. [PMID: 38177913 PMCID: PMC10897398 DOI: 10.1038/s44319-023-00016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
Hypothalamic Adult Neurogenesis (hAN) has been implicated in regulating energy homeostasis. Adult-generated neurons and adult Neural Stem Cells (aNSCs) in the hypothalamus control food intake and body weight. Conversely, diet-induced obesity (DIO) by high fat diets (HFD) exerts adverse influence on hAN. However, the effects of anti-obesity compounds on hAN are not known. To address this, we administered a lipidized analogue of an anti-obesity neuropeptide, Prolactin Releasing Peptide (PrRP), so-called LiPR, to mice. In the HFD context, LiPR rescued the survival of adult-born hypothalamic neurons and increased the number of aNSCs by reducing their activation. LiPR also rescued the reduction of immature hippocampal neurons and modulated calcium dynamics in iPSC-derived human neurons. In addition, some of these neurogenic effects were exerted by another anti-obesity compound, Liraglutide. These results show for the first time that anti-obesity neuropeptides influence adult neurogenesis and suggest that the neurogenic process can serve as a target of anti-obesity pharmacotherapy.
Collapse
Affiliation(s)
| | - Alena Karnošová
- First Faculty of Medicine, Charles University, Prague, 12108, Czech Republic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 16610, Czech Republic
| | - Simone Mazzaferro
- Wellcome-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
- Wellcome-MRC Stem Cell Institute, Cambridge, CB2 0AW, UK
| | - Oliver Rowley
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Hsiao-Jou Cortina Chen
- Wellcome-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
- Wellcome-MRC Stem Cell Institute, Cambridge, CB2 0AW, UK
| | - Sarah J Robbins
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | | | - Florian T Merkle
- Wellcome-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
- Wellcome-MRC Stem Cell Institute, Cambridge, CB2 0AW, UK
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 16610, Czech Republic
| | - David Petrik
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
48
|
Chang WL, Hen R. Adult Neurogenesis, Context Encoding, and Pattern Separation: A Pathway for Treating Overgeneralization. ADVANCES IN NEUROBIOLOGY 2024; 38:163-193. [PMID: 39008016 DOI: 10.1007/978-3-031-62983-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In mammals, the subgranular zone of the dentate gyrus is one of two brain regions (with the subventricular zone of the olfactory bulb) that continues to generate new neurons throughout adulthood, a phenomenon known as adult hippocampal neurogenesis (AHN) (Eriksson et al., Nat Med 4:1313-1317, 1998; García-Verdugo et al., J Neurobiol 36:234-248, 1998). The integration of these new neurons into the dentate gyrus (DG) has implications for memory encoding, with unique firing and wiring properties of immature neurons that affect how the hippocampal network encodes and stores attributes of memory. In this chapter, we will describe the process of AHN and properties of adult-born cells as they integrate into the hippocampal circuit and mature. Then, we will discuss some methodological considerations before we review evidence for the role of AHN in two major processes supporting memory that are performed by the DG. First, we will discuss encoding of contextual information for episodic memories and how this is facilitated by AHN. Second, will discuss pattern separation, a major role of the DG that reduces interference for the formation of new memories. Finally, we will review clinical and translational considerations, suggesting that stimulation of AHN may help decrease overgeneralization-a common endophenotype of mood, anxiety, trauma-related, and age-related disorders.
Collapse
Affiliation(s)
- Wei-Li Chang
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Rene Hen
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA.
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
49
|
Belge JB, Mulders P, Van Diermen L, Sienaert P, Sabbe B, Abbott CC, Tendolkar I, Schrijvers D, van Eijndhoven P. Reviewing the neurobiology of electroconvulsive therapy on a micro- meso- and macro-level. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110809. [PMID: 37331685 DOI: 10.1016/j.pnpbp.2023.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) remains the one of the most effective of biological antidepressant interventions. However, the exact neurobiological mechanisms underlying the efficacy of ECT remain unclear. A gap in the literature is the lack of multimodal research that attempts to integrate findings at different biological levels of analysis METHODS: We searched the PubMed database for relevant studies. We review biological studies of ECT in depression on a micro- (molecular), meso- (structural) and macro- (network) level. RESULTS ECT impacts both peripheral and central inflammatory processes, triggers neuroplastic mechanisms and modulates large scale neural network connectivity. CONCLUSIONS Integrating this vast body of existing evidence, we are tempted to speculate that ECT may have neuroplastic effects resulting in the modulation of connectivity between and among specific large-scale networks that are altered in depression. These effects could be mediated by the immunomodulatory properties of the treatment. A better understanding of the complex interactions between the micro-, meso- and macro- level might further specify the mechanisms of action of ECT.
Collapse
Affiliation(s)
- Jean-Baptiste Belge
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Peter Mulders
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Linda Van Diermen
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Psychiatric Center Bethanië, Andreas Vesaliuslaan 39, Zoersel 2980, Belgium
| | - Pascal Sienaert
- KU Leuven - University of Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neuromodulation (AcCENT), Leuvensesteenweg 517, Kortenberg 3010, Belgium
| | - Bernard Sabbe
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Didier Schrijvers
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, University Psychiatric Center Duffel, Stationstraat 22, Duffel 2570, Belgium
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
50
|
Hirakawa H, Terao T, Hatano K, Shirahama M, Kugimiya T, Kohno K, Matsuta H, Shimomura T, Fujiki M. Increased volume of the left hippocampal dentate gyrus after 4 weeks of bright light exposure in patients with mood disorders: a randomized controlled study. Transl Psychiatry 2023; 13:394. [PMID: 38102115 PMCID: PMC10724173 DOI: 10.1038/s41398-023-02688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Bright light exposure (BL) induces neurogenesis in the rat hippocampal dentate gyrus (DG). We had previously conducted a randomized controlled trial (RCT) in which a 4-week period of BL in healthy participants resulted in increased volume of the left DG-head. This study aimed to investigate the effects of BL on the DG in patients with mood disorders. A 4-week RCT was conducted in which patients with mood disorders were randomly assigned to either a BL group (10,000 lx) or dim light exposure group (DL group; 50 lx). All patients underwent clinical assessment and magnetic resonance imaging at baseline and after the intervention. The study registration number is UMIN000019220. Our final sample included 24 patients (BL group, n = 12; DL group, n = 12). A significant effect of time and group was detected in the volumes of the left DG-head (F (1, 22) = 11.6, partial η2 = 0.35, p = 0.003) and left DG-total (left DG-total = left DG-head + left DG-body; [F (1, 22) = 6.5, partial η2 = 0.23, p = 0.02]). Additionally, the BL group demonstrated a significant increase in the volume of the left DG-head (95% CI: -5.4 to -1.6, d = 1.2, p = 0.002) and left DG-total (95% CI: -6.3 to -1.5, d = 1.06, p = 0.005) as well as a positive correlation between the percentage change in the volume of the left DG-total and the percentage change in the scores of the mood visual analog scale (r = 0.58, p = 0.04). In conclusion, our study results suggest that compared to DL, BL leads to a significantly greater increase in the left DG volume in patients with mood disorders. This increase in the left DG volume may be associated with mood improvement in the patients.
Collapse
Affiliation(s)
- Hirofumi Hirakawa
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan.
| | - Takeshi Terao
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan
| | - Koji Hatano
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan
| | - Masanao Shirahama
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan
| | - Tsuyoshi Kugimiya
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan
| | - Kentaro Kohno
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan
| | - Hiroyuki Matsuta
- Department of Neurosurgery, Oita University Faculty of Medicine, Oita, Japan
| | - Tsuyoshi Shimomura
- Hospital informatics center, Oita University Faculty of Medicine, Oita, Japan
| | - Minoru Fujiki
- Department of Neurosurgery, Oita University Faculty of Medicine, Oita, Japan
| |
Collapse
|