1
|
Milligan C, Cowley DO, Stewart W, Curry AM, Forbes E, Rector B, Hastie A, Liu L, Hawkins GA. Enhanced Interleukin 6 Trans-Signaling Modulates Disease Process in Amyotrophic Lateral Sclerosis Mouse Models. Brain Sci 2025; 15:84. [PMID: 39851451 PMCID: PMC11764401 DOI: 10.3390/brainsci15010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Charcot first described ALS in 1869, but the specific mechanisms that mediate the disease pathology are still not clear. Intense research efforts have provided insight into unique neuroanatomical regions, specific neuronal populations and genetic associations for ALS and other neurodegenerative diseases; however, the experimental results also suggest a convergence of these events to common toxic pathways. We propose that common toxic pathways can be therapeutically targeted, and this intervention will be effective in slowing progression and improving patient quality of life. Here, we focus on understanding the role of IL6 trans-signaling in ALS disease processes. Methods: We leveraged unique mouse models of IL6 trans-signaling that we developed that recapitulate the production of active sIL6R in a genotypic and quantitative fashion observed in humans. Given that the SOD1 transgenic mouse is one of the most highly studied and characterized models of ALS, we bred SOD1G93A mice with IL6R trans-signaling mice to determine how enhanced trans-signaling influenced symptom onset and pathological processes, including neuromuscular junction (NMJ) denervation, glial activation and motoneuron (MN) survival. Results: The results indicate that in animals with enhanced trans-signaling, symptom onset and pathological processes were accelerated, suggesting a role in disease modification. Administration of an IL6R functional blocking antibody failed to alter accelerated symptom onset and disease progression. Conclusions: Future work to investigate the site-specific influence of enhanced IL6 trans-signaling and the tissue-specific bioavailability of potential therapeutics will be necessary to identify targets for precise therapeutic interventions that may limit disease progression in the 60% of ALS patients who inherit the common Il6R Asp358Ala variant.
Collapse
Affiliation(s)
- Carol Milligan
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Dale O. Cowley
- Department of Genetics and Animal Models Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - William Stewart
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Alyson M. Curry
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Elizabeth Forbes
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Brian Rector
- Department of Internal Medicine Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Annette Hastie
- Department of Internal Medicine Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Liang Liu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Gregory A. Hawkins
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
2
|
Glass J, Robinson R, Edupuganti N, Altman J, Greenway G, Lee TJ, Zhi W, Sharma A, Sharma S. Proteomic Alterations in Retinal Müller Glial Cells Lacking Interleukin-6 Receptor: A Comprehensive Analysis. Invest Ophthalmol Vis Sci 2024; 65:33. [PMID: 39699914 DOI: 10.1167/iovs.65.14.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Purpose Interleukin-6 (IL-6) is an inflammatory cytokine implicated in various retinal pathologies and functions primarily through two signaling pathways: cis-signaling via IL-6 binding to its membrane-bound receptor (IL-6Rα), and trans-signaling via IL-6 binding to soluble IL-6 receptor (sIL-6R). Because the differential effects of IL-6 signaling in retinal Müller glial cells (MGCs) remain unclear, we generated an MGC-specific Il6ra-/- knockout (KO) mouse to eliminate IL-6Rα and, consequently, IL-6 cis-signaling in MGCs. In this study, we examined the proteomic changes in MGCs isolated from KO mice lacking a functional IL-6Rα. Methods The proteomes of MGCs isolated from wild-type (WT) and KO mice were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and validated by parallel reaction monitoring (PRM). Relevant biological functions and pathways were examined using Gene Ontology and Ingenuity Pathway Analysis. Results LC-MS/MS detected 1866 proteins, of which 81 were significantly altered (41 upregulated, 40 downregulated). PRM analysis confirmed differential expression of Ptgis (fold change [FC] = 3.63), Dpep1 (FC = 2.79), Fmo1 (FC = 2.77), Igfbp7 (FC = 2.07), Rpb1 (FC = 1.73), Pygp (FC = 1.46), Niban 1 (FC = 0.58), Mest (FC = 0.48), and Aldh3a1 (FC = 0.30). The significantly altered proteins are involved in oxidative stress balance, inflammation, mitochondrial dysfunction, and regulation of vascular endothelial growth factor (VEGF) signaling. Conclusions The absence of IL-6Rα in KO MGCs corresponded to significant changes in their proteomic profile, highlighting the impact of autocrine IL-6 signaling on MGC function. This study provides a basis for future research evaluating distinct roles of IL-6 in MGCs and subsequent effects on retinal pathology.
Collapse
Affiliation(s)
- Joshua Glass
- Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Rebekah Robinson
- Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Neel Edupuganti
- Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Jeremy Altman
- Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Grace Greenway
- Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Tae Jin Lee
- Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Wenbo Zhi
- Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Ashok Sharma
- Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| | - Shruti Sharma
- Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
3
|
Gruol DL. The Neuroimmune System and the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2511-2537. [PMID: 37950146 PMCID: PMC11585519 DOI: 10.1007/s12311-023-01624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The recognition that there is an innate immune system of the brain, referred to as the neuroimmune system, that preforms many functions comparable to that of the peripheral immune system is a relatively new concept and much is yet to be learned. The main cellular components of the neuroimmune system are the glial cells of the brain, primarily microglia and astrocytes. These cell types preform many functions through secretion of signaling factors initially known as immune factors but referred to as neuroimmune factors when produced by cells of the brain. The immune functions of glial cells play critical roles in the healthy brain to maintain homeostasis that is essential for normal brain function, to establish cytoarchitecture of the brain during development, and, in pathological conditions, to minimize the detrimental effects of disease and injury and promote repair of brain structure and function. However, dysregulation of this system can occur resulting in actions that exacerbate or perpetuate the detrimental effects of disease or injury. The neuroimmune system extends throughout all brain regions, but attention to the cerebellar system has lagged that of other brain regions and information is limited on this topic. This article is meant to provide a brief introduction to the cellular and molecular components of the brain immune system, its functions, and what is known about its role in the cerebellum. The majority of this information comes from studies of animal models and pathological conditions, where upregulation of the system facilitates investigation of its actions.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
4
|
Morató X, Puerta R, Cano A, Orellana A, de Rojas I, Capdevila M, Montrreal L, Rosende-Roca M, García-González P, Olivé C, García-Gutiérrez F, Blázquez J, Miguel A, Núñez-Llaves R, Pytel V, Alegret M, Fernández MV, Marquié M, Valero S, Cavazos JE, Mañes S, Boada M, Cabrera-Socorro A, Ruiz A. Associations of plasma SMOC1 and soluble IL6RA levels with the progression from mild cognitive impairment to dementia. Brain Behav Immun Health 2024; 42:100899. [PMID: 39640195 PMCID: PMC11617377 DOI: 10.1016/j.bbih.2024.100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/12/2024] [Accepted: 10/27/2024] [Indexed: 12/07/2024] Open
Abstract
Despite the central role attributed to neuroinflammation in the etiology and pathobiology of Alzheimer's disease (AD), the direct link between levels of inflammatory mediators in blood and cerebrospinal fluid (CSF) compartments, as well as their potential implications for AD diagnosis and progression, remains inconclusive. Moreover, there is debate on whether inflammation has a protective or detrimental effect on disease onset and progression. Indeed, distinct immunological mechanisms may govern protective and damaging effects at early and late stages, respectively. This study aims to (i) identify inflammatory mediators demonstrating robust correlations between peripheral and central nervous system (CNS) compartments by means of plasma and CSF analysis, respectively, and (ii) assess their potential significance in the context of AD and disease progression from mild cognitive impairment (MCI) to dementia. To achieve this, we have examined the inflammatory profile of a well-defined subcohort comprising 485 individuals from the Ace Alzheimer Center Barcelona (ACE). Employing a hierarchical clustering approach, we thoroughly evaluated the intercompartmental correlations of 63 distinct inflammation mediators, quantified in paired CSF and plasma samples, using advanced SOMAscan technology. Of the array of mediators investigated, only six mediators (CRP, IL1RAP, ILRL1, IL6RA, PDGFRB, and YKL-40) exhibited robust correlations between the central and peripheral compartments (proximity scores <400). To strengthen the validity of our findings, these identified mediators were subsequently validated in a second subcohort of individuals from ACE (n = 873). The observed plasma correlations across the entire cohort consistently have a Spearman rho value above 0.51 (n = 1,360, p < 1.77E-93). Of the high CSF-plasma correlated proteins, only soluble IL6RA (sIL6RA) displayed a statistically significant association with the conversion from MCI to dementia. This association remained robust even after applying a stringent Bonferroni correction (Cox proportional hazard ratio [HR] = 1.936 per standard deviation; p = 0.0018). This association retained its significance when accounting for various factors, including CSF amyloid (Aβ42) and Thr181-phosphorylated tau (p-tau) levels, age, sex, baseline Mini-Mental State Examination (MMSE) score, and potential sampling biases identified through principal component analysis (PCA) modeling. Furthermore, our study confirmed the association of both plasma and CSF levels of SPARC-related modular calcium-binding protein 1 (SMOC1) with amyloid and tau accumulation, indicating their role as early surrogate biomarkers for AD pathology. Despite the lack of a statistically significant correlation between SMOC1 levels in CSF and plasma, both acted as independent biomarkers of disease progression (HR > 1.3, p < 0.002). In conclusion, our study unveils that sIL6RA and SMOC1 are associated with MCI progression. The absence of correlations among inflammatory mediators between the central and peripheral compartments appears to be a common pattern, with only a few intriguing exceptions.
Collapse
Affiliation(s)
- Xavier Morató
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Puerta
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Universitat de Barcelona (UB), Spain
| | - Amanda Cano
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Spain
| | - Adelina Orellana
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - María Capdevila
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Spain
| | - Laura Montrreal
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Maitée Rosende-Roca
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pablo García-González
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Claudia Olivé
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Josep Blázquez
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Andrea Miguel
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raúl Núñez-Llaves
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Montserrat Alegret
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Marta Marquié
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Enrique Cavazos
- South Texas Medical Science Training Program, University of Texas Health San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Agustín Ruiz
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
5
|
Couch ACM, Brown AM, Raimundo C, Solomon S, Taylor M, Sichlinger L, Matuleviciute R, Srivastava DP, Vernon AC. Transcriptional and cellular response of hiPSC-derived microglia-neural progenitor co-cultures exposed to IL-6. Brain Behav Immun 2024; 122:27-43. [PMID: 39098436 DOI: 10.1016/j.bbi.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
Elevated interleukin (IL-)6 levels during prenatal development have been linked to increased risk for neurodevelopmental disorders (NDD) in the offspring, but the mechanism remains unclear. Human-induced pluripotent stem cell (hiPSC) models offer a valuable tool to study the effects of IL-6 on features relevant for human neurodevelopment in vitro. We previously reported that hiPSC-derived microglia-like cells (MGLs) respond to IL-6, but neural progenitor cells (NPCs) in monoculture do not. Therefore, we investigated whether co-culturing hiPSC-derived MGLs with NPCs would trigger a cellular response to IL-6 stimulation via secreted factors from the MGLs. Using N=4 donor lines without psychiatric diagnosis, we first confirmed that NPCs can respond to IL-6 through trans-signalling when recombinant IL-6Ra is present, and that this response is dose-dependent. MGLs secreted soluble IL-6R, but at lower levels than found in vivo and below that needed to activate trans-signalling in NPCs. Whilst transcriptomic and secretome analysis confirmed that MGLs undergo substantial transcriptomic changes after IL-6 exposure and subsequently secrete a cytokine milieu, NPCs in co-culture with MGLs exhibited a minimal transcriptional response. Furthermore, there were no significant cell fate-acquisition changes when differentiated into post-mitotic cultures, nor alterations in synaptic densities in mature neurons. These findings highlight the need to investigate if trans-IL-6 signalling to NPCs is a relevant disease mechanism linking prenatal IL-6 exposure to increased risk for psychiatric disorders. Moreover, our findings underscore the importance of establishing more complex in vitro human models with diverse cell types, which may show cell-specific responses to microglia-released cytokines to fully understand how IL-6 exposure may influence human neurodevelopment.
Collapse
Affiliation(s)
- Amalie C M Couch
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| | - Amelia M Brown
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Catarina Raimundo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Shiden Solomon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Morgan Taylor
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Laura Sichlinger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Rugile Matuleviciute
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
6
|
Remali J, Aizat WM. Medicinal plants and plant-based traditional medicine: Alternative treatments for depression and their potential mechanisms of action. Heliyon 2024; 10:e38986. [PMID: 39640650 PMCID: PMC11620067 DOI: 10.1016/j.heliyon.2024.e38986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
Background Clinical depression is a serious public health issue that affects 4.7 % of the world's population and can lead to suicide tendencies. Although drug medications are available, only 60 % of the depressed patients respond positively to the treatments, while the rest experience side effects that resulted in the discontinuation of their medication. Thus, there is an urgent need for developing a new anti-depressant with a distinct mode of action and manageable side effects. One of the options is using medicinal plants or plant-based traditional medicine as alternative therapies for psychiatric disorders. Objectives Therefore, the objective of this review was twofold; to identify and critically evaluate anti-depressant properties of medicinal plants or those incorporated in traditional medicine; and to discuss their possible mechanism of action as well as challenges and way forward for this alternative treatment approach. Methods Relevant research articles were retrieved from various databases, including Scopus, PubMed, and Web of Science, for the period from 2018 to 2020, and the search was updated in September 2024. The inclusion criterion was relevance to antidepressants, while the exclusion criteria included duplicates, lack of full-text availability, and non-English publications. Results Through an extensive literature review, more than 40 medicinal plant species with antidepressant effects were identified, some of which are part of traditional medicine. The list of the said plant species included Albizia zygia (DC.) J.F.Macbr., Calculus bovis Sativus, Celastrus paniculatus Willd., Cinnamomum sp., Erythrina velutina Willd., Ficus platyphylla Delile, Garcinia mangostana Linn., Hyptis martiusii Benth, and Polygonum multiflorum Thunb. Anti-depressant mechanisms associated with those plants were further characterised based on their modes of action such as anti-oxidation system, anti-inflammation action, modulation of various neurotransmitters, neuroprotective effect, the regulation of hypothalamic-pituitary-adrenal (HPA) axis and anti-depressant mechanism. The challenges and future outlook of this alternative and complementary medicine are also explored and discussed. Conclusion This pool of identified plant species is hoped to offer health care professionals the best possible alternatives of anti-depressants from natural phytocompounds that are efficacious, safe and affordable for applications in future clinical settings.
Collapse
Affiliation(s)
- Juwairiah Remali
- Department of Pathology, Hospital Pulau Pinang, Jalan Residensi, 10450, George Town, Pulau Pinang, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
7
|
García-Alvarez F, Chueca-Marco Á, Martínez-Lostao L, Aso-Gonzalvo M, Estella-Nonay R, Albareda J. Serum levels of IL-6 and IL-10 on admission correlate with complications in elderly patients with hip fracture. Injury 2024; 55 Suppl 5:111736. [PMID: 39068064 DOI: 10.1016/j.injury.2024.111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/02/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES Ageing may cause a progressive pro-inflammatory environment and alter functionality of different immune-cell populations. The aim of the present study is to examine the influence of certain serum immunological parameters on hospitalization stay and complications in patients who have suffered a hip fracture. PATIENTS AND METHODS A prospective study was carried out with 87 patients (63 women) presenting with either trochanteric femoral fracture or Garden IV displaced subcapital fracture. The average age was 84.43 ± 9, ranging from 65 to 104 years old. Data regarding different comorbidities were recorded at the time of arrival. The morning after patient's admission peripheral blood samples were obtained and a series of immunological parameters were determined: leukocyte formula, platelets count, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), IL-6 and IL-10 levels, T-lymphocytes count, number of cells/mm3 and percentages of CD3, CD4, CD8, CD3-/CD16/56+ (NK cells), and CD3-/CD19+ (B cells). RESULTS IL-6 serum levels presented a positive and significant correlation with higher levels of CRP (p < 0.001), IL-10 (p = 0.002), and higher percentages of NK CD56+ cells (p = 0.046). IL-6 serum levels at hospitalization presented a positive and significant correlation with a longer hospitalization stay (p = 0.037). Hospitalization increased by 0.231 days for every 1 pg/mL above the IL-6 mean value (40.43 pg/mL). Lower serum IL-10 levels on admission were associated with the appearance of symptomatic urinary tract infection during hospitalization (p = 0.032). Higher number of CD19+ cells/mm3 presented a significant relationship with pneumonia (p = 0.018) and symptomatic urinary tract infection (p = 0.0019). CONCLUSIONS IL-6 serum levels on admission showed a positive and significant correlation with a longer hospitalization stay in elderly patients presenting with hip fracture. Lower levels of IL-10 in peripheral blood on admission were associated with symptomatic urinary tract infections. A higher number of CD19+ cells/mm³ was significantly associated with pneumonia and symptomatic urinary tract infection. These immunological variables on admission may serve as risk indicators of complications during hospitalization.
Collapse
Affiliation(s)
- Felícito García-Alvarez
- Department of Orthopedic Surgery and Traumatology, Hospital Clínico "Lozano Blesa", Zaragoza, Spain; University of Zaragoza, Zaragoza, Spain.
| | - Álvaro Chueca-Marco
- Department of Orthopedic Surgery and Traumatology, Hospital Clínico "Lozano Blesa", Zaragoza, Spain
| | - Luis Martínez-Lostao
- University of Zaragoza, Zaragoza, Spain; Department of Immunology, Hospital Clínico "Lozano Blesa", Zaragoza, Spain
| | | | - Ruben Estella-Nonay
- Department of Orthopedic Surgery and Traumatology, Hospital Clínico "Lozano Blesa", Zaragoza, Spain
| | - Jorge Albareda
- Department of Orthopedic Surgery and Traumatology, Hospital Clínico "Lozano Blesa", Zaragoza, Spain; University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
8
|
Das A, Pathak S, Premkumar M, Sarpparajan CV, Balaji ER, Duttaroy AK, Banerjee A. A brief overview of SARS-CoV-2 infection and its management strategies: a recent update. Mol Cell Biochem 2024; 479:2195-2215. [PMID: 37742314 PMCID: PMC11371863 DOI: 10.1007/s11010-023-04848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023]
Abstract
The COVID-19 pandemic has become a global health crisis, inflicting substantial morbidity and mortality worldwide. A diverse range of symptoms, including fever, cough, dyspnea, and fatigue, characterizes COVID-19. A cytokine surge can exacerbate the disease's severity. This phenomenon involves an increased immune response, marked by the excessive release of inflammatory cytokines like IL-6, IL-8, TNF-α, and IFNγ, leading to tissue damage and organ dysfunction. Efforts to reduce the cytokine surge and its associated complications have garnered significant attention. Standardized management protocols have incorporated treatment strategies, with corticosteroids, chloroquine, and intravenous immunoglobulin taking the forefront. The recent therapeutic intervention has also assisted in novel strategies like repurposing existing medications and the utilization of in vitro drug screening methods to choose effective molecules against viral infections. Beyond acute management, the significance of comprehensive post-COVID-19 management strategies, like remedial measures including nutritional guidance, multidisciplinary care, and follow-up, has become increasingly evident. As the understanding of COVID-19 pathogenesis deepens, it is becoming increasingly evident that a tailored approach to therapy is imperative. This review focuses on effective treatment measures aimed at mitigating COVID-19 severity and highlights the significance of comprehensive COVID-19 management strategies that show promise in the battle against COVID-19.
Collapse
Affiliation(s)
- Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Madhavi Premkumar
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Chitra Veena Sarpparajan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Esther Raichel Balaji
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Asim K Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| |
Collapse
|
9
|
Castorina A, Scheller J, Keay KA, Marzagalli R, Rose-John S, Campbell IL. Increased Expression of the Neuropeptides PACAP/VIP in the Brain of Mice with CNS Targeted Production of IL-6 Is Mediated in Part by Trans-Signalling. Int J Mol Sci 2024; 25:9453. [PMID: 39273398 PMCID: PMC11395455 DOI: 10.3390/ijms25179453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammation with expression of interleukin 6 (IL-6) in the central nervous system (CNS) occurs in several neurodegenerative/neuroinflammatory conditions and may cause neurochemical changes to endogenous neuroprotective systems. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two neuropeptides with well-established protective and anti-inflammatory properties. Yet, whether PACAP and VIP levels are altered in mice with CNS-restricted, astrocyte-targeted production of IL-6 (GFAP-IL6) remains unknown. In this study, PACAP/VIP levels were assessed in the brain of GFAP-IL6 mice. In addition, we utilised bi-genic GFAP-IL6 mice carrying the human sgp130-Fc transgene (termed GFAP-IL6/sgp130Fc mice) to determine whether trans-signalling inhibition rescued PACAP/VIP changes in the CNS. Transcripts and protein levels of PACAP and VIP, as well as their receptors PAC1, VPAC1 and VPAC2, were significantly increased in the cerebrum and cerebellum of GFAP-IL6 mice vs. wild type (WT) littermates. These results were paralleled by a robust activation of the JAK/STAT3, NF-κB and ERK1/2MAPK pathways in GFAP-IL6 mice. In contrast, co-expression of sgp130Fc in GFAP-IL6/sgp130Fc mice reduced VIP expression and activation of STAT3 and NF-κB pathways, but it failed to rescue PACAP, PACAP/VIP receptors and Erk1/2MAPK phosphorylation. We conclude that forced expression of IL-6 in astrocytes induces the activation of the PACAP/VIP neuropeptide system in the brain, which is only partly modulated upon IL-6 trans-signalling inhibition. Increased expression of PACAP/VIP neuropeptides and receptors may represent a homeostatic response of the CNS to an uncontrolled IL-6 synthesis and its neuroinflammatory consequences.
Collapse
Affiliation(s)
- Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Jurgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Kevin A. Keay
- Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Rubina Marzagalli
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Stefan Rose-John
- Institute of Biochemistry, Medical Faculty, Christian Albrechts University, 24098 Kiel, Germany;
| | - Iain L. Campbell
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia;
| |
Collapse
|
10
|
Gober IG, Russell AL, Shick TJ, Vagni VA, Carlson JC, Kochanek PM, Wagner AK. Exploratory assessment of the effect of systemic administration of soluble glycoprotein 130 on cognitive performance and chemokine levels in a mouse model of experimental traumatic brain injury. J Neuroinflammation 2024; 21:149. [PMID: 38840141 PMCID: PMC11155101 DOI: 10.1186/s12974-024-03129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024] Open
Abstract
Uncontrolled neuroinflammation mediates traumatic brain injury (TBI) pathology and impairs recovery. Interleukin-6 (IL-6), a pleiotropic inflammatory regulator, is associated with poor clinical TBI outcomes. IL-6 operates via classical-signaling through membrane-bound IL-6 receptor (IL-6R) and trans-signaling through soluble IL-6 receptor (s)IL-6R. IL-6 trans-signaling specifically contributes to neuropathology, making it a potential precision therapeutic TBI target. Soluble glycoprotein 130 (sgp130) prevents IL-6 trans-signaling, sparing classical signaling, thus is a possible treatment. Mice received either controlled cortical impact (CCI) (6.0 ± 0.2 m/s; 2 mm; 50-60ms) or sham procedures. Vehicle (VEH) or sgp130-Fc was subcutaneously administered to sham (VEH or 1 µg) and CCI (VEH, 0.25 µg or 1 µg) mice on days 1, 4, 7, 10 and 13 post-surgery to assess effects on cognition [Morris Water Maze (MWM)] and ipsilateral hemisphere IL-6 related biomarkers (day 21 post-surgery). CCI + sgp130-Fc groups (0.25 µg and 1 µg) were combined for analysis given similar behavior/biomarker outcomes. CCI + VEH mice had longer latencies and path lengths to the platform and increased peripheral zone time versus Sham + VEH and Sham + sgp130-Fc mice, suggesting injury-induced impairments in learning and anxiety. CCI + sgp130-Fc mice had shorter platform latencies and path lengths and had decreased peripheral zone time, indicating a therapeutic benefit of sgp130-Fc after injury on learning and anxiety. Interestingly, Sham + sgp130-Fc mice had shorter platform latencies, path lengths and peripheral zone times than Sham + VEH mice, suggesting a beneficial effect of sgp130-Fc, independent of injury. CCI + VEH mice had increased brain IL-6 and decreased sgp130 levels versus Sham + VEH and Sham + sgp130-Fc mice. There was no treatment effect on IL-6, sIL6-R or sgp130 in Sham + VEH versus Sham + sgp130-Fc mice. There was also no treatment effect on IL-6 in CCI + VEH versus CCI + sgp130-Fc mice. However, CCI + sgp130-Fc mice had increased sIL-6R and sgp130 versus CCI + VEH mice, demonstrating sgp130-Fc treatment effects on brain biomarkers. Inflammatory chemokines (MIP-1β, IP-10, MIG) were increased in CCI + VEH mice versus Sham + VEH and Sham + sgp130-Fc mice. However, CCI + sgp130-Fc mice had decreased chemokine levels versus CCI + VEH mice. IL-6 positively correlated, while sgp130 negatively correlated, with chemokine levels. Overall, we found that systemic sgp130-Fc treatment after CCI improved learning, decreased anxiety and reduced CCI-induced brain chemokines. Future studies will explore sex-specific dosing and treatment mechanisms for sgp130-Fc therapy.
Collapse
Affiliation(s)
- Ian G Gober
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, 3471 Fifth Avenue, Suite 910, Pittsburgh, PA, 15213, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
| | - Ashley L Russell
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, 3471 Fifth Avenue, Suite 910, Pittsburgh, PA, 15213, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
| | - Tyler J Shick
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, 3471 Fifth Avenue, Suite 910, Pittsburgh, PA, 15213, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
| | - Vincent A Vagni
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jenna C Carlson
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, 3471 Fifth Avenue, Suite 910, Pittsburgh, PA, 15213, USA.
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA.
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neuroscience, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Rodríguez-Hernández MÁ, Baena-Bustos M, Carneros D, Zurita-Palomo C, Muñoz-Pinillos P, Millán J, Padillo FJ, Smerdou C, von Kobbe C, Rose-John S, Bustos M. Targeting IL-6 trans-signalling by sgp130Fc attenuates severity in SARS-CoV-2 -infected mice and reduces endotheliopathy. EBioMedicine 2024; 103:105132. [PMID: 38677182 PMCID: PMC11061249 DOI: 10.1016/j.ebiom.2024.105132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND SARS-CoV-2 infection is considered as a relapsing inflammatory process with a dysregulation of IL-6 signalling. Classic IL-6 signalling is thought to represent a defence mechanism against pathogens. In contrast, IL-6 trans-signalling has pro-inflammatory effects. In severe COVID-19, therapeutic strategies have focused on global inhibition of IL-6, with controversial results. We hypothesized that specific blockade of IL-6 trans-signalling could inhibit inflammatory response preserving the host defence activity inherent to IL-6 classic signalling. METHODS To test the role of the specific IL-6 trans-signalling inhibition by sgp130Fc in short- and long-term consequences of COVID-19, we used the established K18-hACE2 transgenic mouse model. Histological as well as immunohistochemical analysis, and pro-inflammatory marker profiling were performed. To investigate IL-6 trans-signalling in human cells we used primary lung microvascular endothelial cells and fibroblasts in the presence/absence of sgp130Fc. FINDINGS We report that targeting IL-6 trans-signalling by sgp130Fc attenuated SARS-CoV-2-related clinical symptoms and mortality. In surviving mice, the treatment caused a significant decrease in lung damage. In vitro, IL-6 trans-signalling induced strong and persisting JAK1/STAT3 activation in endothelial cells and lung fibroblasts with proinflammatory effects, which were attenuated by sgp130Fc. Our data also suggest that in those cells with scant amounts of IL-6R, the induction of gp130 and IL-6 by IL-6:sIL-6R complex sustains IL-6 trans-signalling. INTERPRETATION IL-6 trans-signalling fosters progression of COVID-19, and suggests that specific blockade of this signalling mode could offer a promising alternative to mitigate both short- and long-term consequences without affecting the beneficial effects of IL-6 classic signalling. These results have implications for the development of new therapies of lung injury and endotheliopathy in COVID-19. FUNDING The project was supported by ISCIII, Spain (COV-20/00792 to MB, PI23/01351 to MARH) and the European Commission-Next generation EU (European Union) (Regulation EU 2020/2094), through CSIC's Global Health Platform (PTI Salud Global, SGL2103029 to MB). PID2019-110587RB-I00 (MB) supported by MICIN/AEI/10.13039/501100011033/and PID2022-143034OB-I00 (MB) by MICIN/AEI/10.13039/501100011033/FEDER. MAR-H acknowledges support from ISCIII, Spain and the European Commission-Next generation EU (European Union), through CSIC's Global Health PTI.
Collapse
Affiliation(s)
- María Ángeles Rodríguez-Hernández
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain.
| | - Mercedes Baena-Bustos
- Pneumology Unit, Institute of Biomedicine of Seville (IBiS), Virgen Macarena University Hospital (HUVM), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain
| | - David Carneros
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain
| | - Carola Zurita-Palomo
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain
| | - Pablo Muñoz-Pinillos
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Francisco Javier Padillo
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain
| | - Cristian Smerdou
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain
| | - Cayetano von Kobbe
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Cantoblanco, Madrid, Spain
| | | | - Matilde Bustos
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain.
| |
Collapse
|
12
|
Yan Z, Xu Y, Li K, Liu L. Association between genetically proxied lipid-lowering drug targets, lipid traits, and amyotrophic lateral sclerosis: a mendelian randomization study. Acta Neurol Belg 2024; 124:485-494. [PMID: 37889424 DOI: 10.1007/s13760-023-02393-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND The use of circulating lipid traits as biomarkers to predict the risk of amyotrophic lateral sclerosis (ALS) is currently controversial, and the evidence-based medical evidence for the use of lipid-lowering agents, especially statins, on ALS risk remains insufficient. Our aim was to apply a Mendelian randomization (MR) approach to assess the causal impact of lipid-lowering agents and circulating lipid traits on ALS risk. MATERIALS AND METHODS Our study included primary and secondary analyses, in which the risk associations of lipid-lowering gene inhibitors, lipid traits, and ALS were assessed by the inverse variance weighting method as the primary approach. The robustness of the results was assessed using LDSC assessment, conventional MR sensitivity analysis, and used Mediating MR to explore potential mechanisms of occurrence. In the secondary analysis, the association of lipid-lowering genes with ALS was validated using the Summary data-based Mendelian Randomization (SMR) method. RESULTS Our results showed strong evidence between genetic proxies for Apolipoprotein B (ApoB) inhibitor (OR = 0.76, 95% CI = 0.68 - 0.86; P = 5.58 × 10-6) and reduced risk of ALS. Additionally, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibitor (OR = 1.06, 95% CI = 0. 85-1.33) was not found to increase ALS risk. SMR results suggested that ApoB expression was associated with increased ALS risk, and colocalization analysis did not support a significant common genetic variation between ApoB and ALS. Mediator MR analysis suggested a possible mediating role for interleukin-6 and low-density lipoprotein cholesterol (LDL-C). While elevated LDL-C was significantly associated with increased risk of ALS among lipid traits, total cholesterol (TC) and ApoB were weakly associated with ALS. LDSC results suggested a potential genetic correlation between these lipid traits and ALS. CONCLUSIONS Using ApoB inhibitor can lower the risk of ALS, statins do not trigger ALS, and LDL-C, TC, and ApoB levels can predict the risk of ALS.
Collapse
Affiliation(s)
- Zhaoqi Yan
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Yangming Road, Nanchang, Jiangxi, China
| | - Yifeng Xu
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Yangming Road, Nanchang, Jiangxi, China
| | - Keke Li
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Yangming Road, Nanchang, Jiangxi, China
| | - Liangji Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, 445 Bayi Dadao, Nanchang, Jiangxi, China.
| |
Collapse
|
13
|
Jougasaki M, Takenoshita Y, Umebashi K, Yamamoto M, Sudou K, Nakashima H, Sonoda M, Kinjo T. Autocrine Regulation of Interleukin-6 via the Activation of STAT3 and Akt in Cardiac Myxoma Cells. Int J Mol Sci 2024; 25:2232. [PMID: 38396907 PMCID: PMC10888597 DOI: 10.3390/ijms25042232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Plasma concentrations of a pleiotropic cytokine, interleukin (IL)-6, are increased in patients with cardiac myxoma. We investigated the regulation of IL-6 in cardiac myxoma. Immunohistochemical staining and reverse transcription-polymerase chain reaction (RT-PCR) revealed that IL-6 and its receptors, IL-6 receptor (IL-6R) and gp130, co-existed in the myxoma cells. Myxoma cells were cultured, and an antibody array assay showed that a conditioned medium derived from the cultured myxoma cells contained increased amounts of IL-6. Signal transducer and activator of transcription (STAT) 3 and Akt were constitutively phosphorylated in the myxoma cells. An enzyme-linked immunosorbent assay (ELISA) showed that the myxoma cells spontaneously secreted IL-6 into the culture medium. Real-time PCR revealed that stimulation with IL-6 + soluble IL-6R (sIL6R) significantly increased IL-6 mRNA in the myxoma cells. Pharmacological inhibitors of STAT3 and Akt inhibited the IL-6 + sIL-6R-induced gene expression of IL-6 and the spontaneous secretion of IL-6. In addition, IL-6 + sIL-6R-induced translocation of phosphorylated STAT3 to the nucleus was also blocked by STAT3 inhibitors. This study has demonstrated that IL-6 increases its own production via STAT3 and Akt pathways in cardiac myxoma cells. Autocrine regulation of IL-6 may play an important role in the pathophysiology of patients with cardiac myxoma.
Collapse
Affiliation(s)
- Michihisa Jougasaki
- Institute for Clinical Research, NHO Kagoshima Medical Center, Kagoshima 892-0853, Japan; (Y.T.); (K.U.); (M.Y.); (K.S.); (H.N.); (M.S.); (T.K.)
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Rodríguez J, De Santis Arévalo J, Dennis VA, Rodríguez AM, Giambartolomei GH. Bystander activation of microglia by Brucella abortus-infected astrocytes induces neuronal death via IL-6 trans-signaling. Front Immunol 2024; 14:1343503. [PMID: 38322014 PMCID: PMC10844513 DOI: 10.3389/fimmu.2023.1343503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/29/2023] [Indexed: 02/08/2024] Open
Abstract
Inflammation plays a key role in the pathogenesis of neurobrucellosis where glial cell interactions are at the root of this pathological condition. In this study, we present evidence indicating that soluble factors secreted by Brucella abortus-infected astrocytes activate microglia to induce neuronal death. Culture supernatants (SN) from B. abortus-infected astrocytes induce the release of pro-inflammatory mediators and the increase of the microglial phagocytic capacity, which are two key features in the execution of live neurons by primary phagocytosis, a recently described mechanism whereby B. abortus-activated microglia kills neurons by phagocytosing them. IL-6 neutralization completely abrogates neuronal loss. IL-6 is solely involved in increasing the phagocytic capacity of activated microglia as induced by SN from B. abortus-infected astrocytes and does not participate in their inflammatory activation. Both autocrine microglia-derived and paracrine astrocyte-secreted IL-6 endow microglial cells with up-regulated phagocytic capacity that allows them to phagocytose neurons. Blocking of IL-6 signaling by soluble gp130 abrogates microglial phagocytosis and concomitant neuronal death, indicating that IL-6 activates microglia via trans-signaling. Altogether, these results demonstrate that soluble factors secreted by B. abortus-infected astrocytes activate microglia to induce, via IL-6 trans-signaling, the death of neurons. IL-6 signaling inhibition may thus be considered a strategy to control inflammation and CNS damage in neurobrucellosis.
Collapse
Affiliation(s)
- Julia Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julia De Santis Arévalo
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vida A Dennis
- Center for NanoBiotechnology Research and Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Ana M Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
Aguilar K, Canal C, Comes G, Díaz-Clavero S, Llanos MA, Quintana A, Sanz E, Hidalgo J. Interleukin-6-elicited chronic neuroinflammation may decrease survival but is not sufficient to drive disease progression in a mouse model of Leigh syndrome. J Inflamm (Lond) 2024; 21:1. [PMID: 38212783 PMCID: PMC10782699 DOI: 10.1186/s12950-023-00369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Mitochondrial diseases (MDs) are genetic disorders characterized by dysfunctions in mitochondria. Clinical data suggest that additional factors, beyond genetics, contribute to the onset and progression of this group of diseases, but these influencing factors remain largely unknown. Mounting evidence indicates that immune dysregulation or distress could play a role. Clinical observations have described the co-incidence of infection and the onset of the disease as well as the worsening of symptoms following infection. These findings highlight the complex interactions between MDs and immunity and underscore the need to better understand their underlying relationships. RESULTS We used Ndufs4 KO mice, a well-established mouse model of Leigh syndrome (one of the most relevant MDs), to test whether chronic induction of a neuroinflammatory state in the central nervous system before the development of neurological symptoms would affect both the onset and progression of the disease in Ndufs4 KO mice. To this aim, we took advantage of the GFAP-IL6 mouse, which overexpresses interleukin-6 (IL-6) in astrocytes and produces chronic glial reactivity, by generating a mouse line with IL-6 overexpression and NDUFS4 deficiency. IL-6 overexpression aggravated the mortality of female Ndufs4 KO mice but did not alter the main motor and respiratory phenotypes measured in any sex. Interestingly, an abnormal region-dependent microglial response to IL-6 overexpression was observed in Ndufs4 KO mice compared to controls. CONCLUSION Overall, our data indicate that chronic neuroinflammation may worsen the disease in Ndufs4 KO female mice, but not in males, and uncovers an abnormal microglial response due to OXPHOS dysfunction, which may have implications for our understanding of the effect of OXPHOS dysfunction in microglia.
Collapse
Affiliation(s)
- Kevin Aguilar
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Present address: Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Carla Canal
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gemma Comes
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sandra Díaz-Clavero
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Present address: Dementia Research Institute, Imperial College London, London, UK
| | - Maria Angeles Llanos
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Albert Quintana
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Elisenda Sanz
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193.
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | - Juan Hidalgo
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193.
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
16
|
Xu X, Fukuda T, Takai J, Morii S, Sun Y, Liu J, Ohno S, Isaji T, Yamaguchi Y, Nakano M, Moriguchi T, Gu J. Exogenous l-fucose attenuates neuroinflammation induced by lipopolysaccharide. J Biol Chem 2024; 300:105513. [PMID: 38042483 PMCID: PMC10772726 DOI: 10.1016/j.jbc.2023.105513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
α1,6-Fucosyltransferase (Fut8) catalyzes the transfer of fucose to the innermost GlcNAc residue of N-glycan to form core fucosylation. Our previous studies showed that lipopolysaccharide (LPS) treatment highly induced neuroinflammation in Fut8 homozygous KO (Fut8-/-) or heterozygous KO (Fut8+/-) mice, compared with the WT (Fut8+/+) mice. To understand the underlying mechanism, we utilized a sensitive inflammation-monitoring mouse system that contains the human interleukin-6 (hIL6) bacterial artificial chromosome transgene modified with luciferase (Luc) reporter cassette. We successfully detected LPS-induced neuroinflammation in the central nervous system by exploiting this bacterial artificial chromosome transgenic monitoring system. Then we examined the effects of l-fucose on neuroinflammation in the Fut8+/- mice. The lectin blot and mass spectrometry analysis showed that l-fucose preadministration increased the core fucosylation levels in the Fut8+/- mice. Notably, exogenous l-fucose attenuated the LPS-induced IL-6 mRNA and Luc mRNA expression in the cerebral tissues, confirmed using the hIL6-Luc bioluminescence imaging system. The activation of microglial cells, which provoke neuroinflammatory responses upon LPS stimulation, was inhibited by l-fucose preadministration. l-Fucose also suppressed the downstream intracellular signaling of IL-6, such as the phosphorylation levels of JAK2 (Janus kinase 2), Akt (protein kinase B), and STAT3 (signal transducer and activator of transcription 3). l-Fucose administration increased gp130 core fucosylation levels and decreased the association of gp130 with the IL-6 receptor in Fut8+/- mice, which was further confirmed in BV-2 cells. These results indicate that l-fucose administration ameliorates the LPS-induced neuroinflammation in the Fut8+/- mice, suggesting that core fucosylation plays a vital role in anti-inflammation and that l-fucose is a potential prophylactic compound against neuroinflammation.
Collapse
Affiliation(s)
- Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jun Takai
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Sayaka Morii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianwei Liu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
17
|
Marsili F, Potgieter P, Birkill CF. Adaptive Autonomic and Neuroplastic Control in Diabetic Neuropathy: A Narrative Review. Curr Diabetes Rev 2024; 20:38-54. [PMID: 38018186 DOI: 10.2174/0115733998253213231031050044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a worldwide socioeconomic burden, and is accompanied by a variety of metabolic disorders, as well as nerve dysfunction referred to as diabetic neuropathy (DN). Despite a tremendous body of research, the pathogenesis of DN remains largely elusive. Currently, two schools of thought exist regarding the pathogenesis of diabetic neuropathy: a) mitochondrial-induced toxicity, and b) microvascular damage. Both mechanisms signify DN as an intractable disease and, as a consequence, therapeutic approaches treat symptoms with limited efficacy and risk of side effects. OBJECTIVE Here, we propose that the human body exclusively employs mechanisms of adaptation to protect itself during an adverse event. For this purpose, two control systems are defined, namely the autonomic and the neural control systems. The autonomic control system responds via inflammatory and immune responses, while the neural control system regulates neural signaling, via plastic adaptation. Both systems are proposed to regulate a network of temporal and causative connections which unravel the complex nature of diabetic complications. RESULTS A significant result of this approach infers that both systems make DN reversible, thus opening the door to novel therapeutic applications.
Collapse
Affiliation(s)
| | - Paul Potgieter
- Research Department, Algiamed Technologies, Burnaby, Canada
| | | |
Collapse
|
18
|
Ciryam P, Gerzanich V, Simard JM. Interleukin-6 in Traumatic Brain Injury: A Janus-Faced Player in Damage and Repair. J Neurotrauma 2023; 40:2249-2269. [PMID: 37166354 PMCID: PMC10649197 DOI: 10.1089/neu.2023.0135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Traumatic brain injury (TBI) is a common and often devastating illness, with wide-ranging public health implications. In addition to the primary injury, victims of TBI are at risk for secondary neurological injury by numerous mechanisms. Current treatments are limited and do not target the profound immune response associated with injury. This immune response reflects a convergence of peripheral and central nervous system-resident immune cells whose interaction is mediated in part by a disruption in the blood-brain barrier (BBB). The diverse family of cytokines helps to govern this communication and among these, Interleukin (IL)-6 is a notable player in the immune response to acute neurological injury. It is also a well-established pharmacological target in a variety of other disease contexts. In TBI, elevated IL-6 levels are associated with worse outcomes, but the role of IL-6 in response to injury is double-edged. IL-6 promotes neurogenesis and wound healing in animal models of TBI, but it may also contribute to disruptions in the BBB and the progression of cerebral edema. Here, we review IL-6 biology in the context of TBI, with an eye to clarifying its controversial role and understanding its potential as a target for modulating the immune response in this disease.
Collapse
Affiliation(s)
- Prajwal Ciryam
- Shock Trauma Neurocritical Care, Program in Trauma, R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Di Spigna G, Spalletti Cernia D, Covelli B, Vargas M, Rubino V, Iacovazzo C, Napolitano F, Postiglione L. Interleukin-6 and Its Soluble Receptor Complex in Intensive Care Unit COVID-19 Patients: An Analysis of Second Wave Patients. Pathogens 2023; 12:1264. [PMID: 37887780 PMCID: PMC10610043 DOI: 10.3390/pathogens12101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
In December 2019, a SARS-CoV-2 virus, coined Coronavirus Disease 2019 (COVID-19), discovered in Wuhan, China, affected the global population, causing more than a million and a half deaths. Since then, many studies have shown that the hyperinflammatory response of the most severely affected patients was primarily related to a higher concentration of the pro-inflammatory cytokine interleukin-6, which directly correlated with disease severity and high mortality. Our study analyzes IL-6 and its soluble receptor complex (sIL-6R and sgp130) in critically ill COVID-19 patients who suffered severe respiratory failure from the perspective of the second COVID wave of 2020. A chemiluminescent immunoassay was performed for the determination of IL6 in serum together with an enzyme-linked immunosorbent assay to detect serum levels of sIL-6R and sgp130, which confirmed that the second wave's serum levels of IL-6 were significantly elevated in the more severe patients, as with the first 2019 COVID-19 wave, resulting in adverse clinical outcomes. At present, considering that no specific treatment for severe COVID-19 cases in its later stages exists, these molecules could be considered promising markers for disease progression, illness severity, and risk of mortality.
Collapse
Affiliation(s)
- Gaetano Di Spigna
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.D.S.); (D.S.C.); (V.R.); (F.N.); (L.P.)
| | - Daniela Spalletti Cernia
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.D.S.); (D.S.C.); (V.R.); (F.N.); (L.P.)
| | - Bianca Covelli
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.D.S.); (D.S.C.); (V.R.); (F.N.); (L.P.)
| | - Maria Vargas
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.V.); (C.I.)
| | - Valentina Rubino
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.D.S.); (D.S.C.); (V.R.); (F.N.); (L.P.)
| | - Carmine Iacovazzo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.V.); (C.I.)
| | - Filomena Napolitano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.D.S.); (D.S.C.); (V.R.); (F.N.); (L.P.)
| | - Loredana Postiglione
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.D.S.); (D.S.C.); (V.R.); (F.N.); (L.P.)
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.V.); (C.I.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples “Federico II”, 80131 Naples, Italy
| |
Collapse
|
20
|
Sui C, Lee W. Role of interleukin 6 and its soluble receptor on the diffusion barrier dysfunction of alveolar tissue. Biomed Microdevices 2023; 25:40. [PMID: 37851124 DOI: 10.1007/s10544-023-00680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
During respiratory infection, barrier dysfunction in alveolar tissue can result from "cytokine storm" caused by overly reactive immune response. Particularly, interleukin 6 (IL-6) is implicated as a key biomarker of cytokine storm responsible for and further progression to pulmonary edema. In this study, alveolar-like tissue was reconstructed in a microfluidic device with: (1) human microvascular lung endothelial cells (HULEC-5a) cultured under flow-induced shear stress and (2) human epithelial cells (Calu-3) cultured at air-liquid interface. The effects of IL-6 and the soluble form of its receptor (sIL-6R) on the permeability, electrical resistance, and morphology of the endothelial and epithelial layers were evaluated. The diffusion barrier properties of both the endothelial and epithelial layers were significantly degraded only when IL-6 treatment was combined with sIL-6R. As suggested by recent review and clinical studies, our results provide unequivocal evidence that the barrier dysfunction occurs through trans-signaling in which IL-6 and sIL-6R form a complex and then bind to the surface of endothelial and epithelial cells, but not by classical signaling in which IL-6 binds to membrane-expressed IL-6 receptor. This finding suggests that the role of both IL-6 and sIL-6R should be considered as important biomarkers in developing strategies for treating cytokine storm.
Collapse
Affiliation(s)
- Chao Sui
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, New Jersey, 07030, USA
| | - Woo Lee
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, New Jersey, 07030, USA.
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, New Jersey, 07030, USA.
| |
Collapse
|
21
|
Zhang L, Shi W, Liu J, Chen K, Zhang G, Zhang S, Cong B, Li Y. Interleukin 6 (IL-6) Regulates GABAA Receptors in the Dorsomedial Hypothalamus Nucleus (DMH) through Activation of the JAK/STAT Pathway to Affect Heart Rate Variability in Stressed Rats. Int J Mol Sci 2023; 24:12985. [PMID: 37629166 PMCID: PMC10455568 DOI: 10.3390/ijms241612985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The dorsomedial hypothalamus nucleus (DMH) is an important component of the autonomic nervous system and plays a critical role in regulating the sympathetic outputs of the heart. Stress alters the neuronal activity of the DMH, affecting sympathetic outputs and triggering heart rate variability. However, the specific molecular mechanisms behind stress leading to abnormal DMH neuronal activity have still not been fully elucidated. Therefore, in the present study, we successfully constructed a stressed rat model and used it to investigate the potential molecular mechanisms by which IL-6 regulates GABAA receptors in the DMH through activation of the JAK/STAT pathway and thus affects heart rate variability in rats. By detecting the c-Fos expression of neurons in the DMH and electrocardiogram (ECG) changes in rats, we clarified the relationship between abnormal DMH neuronal activity and heart rate variability in stressed rats. Then, using ELISA, immunohistochemical staining, Western blotting, RT-qPCR, and RNAscope, we further explored the correlation between the IL-6/JAK/STAT signaling pathway and GABAA receptors. The data showed that an increase in IL-6 induced by stress inhibited GABAA receptors in DMH neurons by activating the JAK/STAT signaling pathway, while specific inhibition of the JAK/STAT signaling pathway using AG490 obviously reduced DMH neuronal activity and improved heart rate variability in rats. These findings suggest that IL-6 regulates the expression of GABAA receptors via the activation of the JAK/STAT pathway in the DMH, which may be an important cause of heart rate variability in stressed rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (L.Z.); (W.S.); (J.L.); (K.C.); (G.Z.); (S.Z.)
| | - Yingmin Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (L.Z.); (W.S.); (J.L.); (K.C.); (G.Z.); (S.Z.)
| |
Collapse
|
22
|
Kumar P, Mathew S, Gamage R, Bodkin F, Doyle K, Rossetti I, Wagnon I, Zhou X, Raju R, Gyengesi E, Münch G. From the Bush to the Brain: Preclinical Stages of Ethnobotanical Anti-Inflammatory and Neuroprotective Drug Discovery-An Australian Example. Int J Mol Sci 2023; 24:11086. [PMID: 37446262 DOI: 10.3390/ijms241311086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
The Australian rainforest is a rich source of medicinal plants that have evolved in the face of dramatic environmental challenges over a million years due to its prolonged geographical isolation from other continents. The rainforest consists of an inherent richness of plant secondary metabolites that are the most intense in the rainforest. The search for more potent and more bioavailable compounds from other plant sources is ongoing, and our short review will outline the pathways from the discovery of bioactive plants to the structural identification of active compounds, testing for potency, and then neuroprotection in a triculture system, and finally, the validation in an appropriate neuro-inflammatory mouse model, using some examples from our current research. We will focus on neuroinflammation as a potential treatment target for neurodegenerative diseases including multiple sclerosis (MS), Parkinson's (PD), and Alzheimer's disease (AD) for these plant-derived, anti-inflammatory molecules and highlight cytokine suppressive anti-inflammatory drugs (CSAIDs) as a better alternative to conventional nonsteroidal anti-inflammatory drugs (NSAIDs) to treat neuroinflammatory disorders.
Collapse
Affiliation(s)
- Payaal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Shintu Mathew
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Rashmi Gamage
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Frances Bodkin
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Kerrie Doyle
- Indigenous Health Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ilaria Rossetti
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ingrid Wagnon
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Erika Gyengesi
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| |
Collapse
|
23
|
Liu LZ, Fan SJ, Gao JX, Li WB, Xian XH. Ceftriaxone ameliorates hippocampal synapse loss by inhibiting microglial/macrophages activation in glial glutamate transporter-1 dependent manner in the APP/PS1 mouse model of Alzheimer's disease. Brain Res Bull 2023:110683. [PMID: 37301482 DOI: 10.1016/j.brainresbull.2023.110683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Synapse loss is a major contributor to cognitive dysfunction in Alzheimer's disease (AD). Impairments in the expression and/or glutamate uptake activity of glia glutamate transporter-1 (GLT-1) contribute to synapse loss in AD. Hence, targeting the restoration of GLT-1 activity may have potential for alleviating synapse loss in AD. Ceftriaxone (Cef) can upregulate the expression and glutamate uptake activity of GLT-1 in many disease models, including those for AD. The present study investigated the effects of Cef on synapse loss and the role of GLT-1 using APP/PS1 transgenic and GLT-1 knockdown APP/PS1 AD mice. Furthermore, the involvement of microglia in the process was investigated due to its important role in synapse loss in AD. We found that Cef treatment significantly ameliorated synapse loss and dendritic degeneration in APP/PS1 AD mice, evidenced by an increased dendritic spine density, decreased dendritic beading density, and upregulated levels of postsynaptic density protein 95 (PSD95) and synaptophysin. The effects of Cef were suppressed by GLT-1 knockdown in GLT-1+/-/APP/PS1 AD mice. Simultaneously, Cef treatment inhibited ionized calcium binding adapter molecule 1 (Iba1) expression, decreased the proportion of CD11b+CD45hi cells, declined interleukin-6 (IL-6) content, and reduced the co-expression of Iba1 with PSD95 or synaptophysin in APP/PS1 AD mice. In conclusion, Cef treatment ameliorated synapse loss and dendritic degeneration in APP/PS1 AD mice in a GLT-1-dependent manner, and the inhibitory effect of Cef on the activation of microglia/macrophages and their phagocytosis for synaptic elements contributed to the mechanism.
Collapse
Affiliation(s)
- Li-Zhe Liu
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, P.R. China; Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, P. R. China.
| | - Shu-Juan Fan
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, P.R. China; Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, P. R. China.
| | - Jun-Xia Gao
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, P.R. China; Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, P. R. China.
| | - Wen-Bin Li
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, P.R. China; Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, P. R. China.
| | - Xiao-Hui Xian
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, P.R. China; Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, P. R. China.
| |
Collapse
|
24
|
Quillen D, Hughes TM, Craft S, Howard T, Register T, Suerken C, Hawkins GA, Milligan C. Levels of Soluble Interleukin 6 Receptor and Asp358Ala Are Associated With Cognitive Performance and Alzheimer Disease Biomarkers. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/3/e200095. [PMID: 36810164 PMCID: PMC9944616 DOI: 10.1212/nxi.0000000000200095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/14/2022] [Indexed: 02/23/2023]
Abstract
BACKGROUND AND OBJECTIVES Alzheimer disease (AD) is a neurodegenerative disease process manifesting clinically with cognitive impairment and dementia. AD pathology is complex, and in addition to plaques and tangles, neuroinflammation is a consistent feature. Interleukin (IL) 6 is a multifaceted cytokine involved in a plethora of cellular mechanisms including both anti-inflammatory and inflammatory processes. IL6 can signal classically through the membrane-bound receptor or by IL6 trans-signaling forming a complex with the soluble IL6 receptor (sIL6R) and activating membrane-bound glycoprotein 130 on cells not expressing IL6R. IL6 trans-signaling has been demonstrated as the primary mechanism of IL6-mediated events in neurodegenerative processes. In this study, we performed a cross-sectional analysis to investigate whether inheritance of a genetic variation in the IL6R gene and associated elevated sIL6R levels in plasma and CSF were associated with cognitive performance. METHODS We genotyped the IL6R rs2228145 nonsynonymous variant (Asp358Ala) and assayed IL6 and sIL6R concentrations in paired samples of plasma and CSF obtained from 120 participants with normal cognition, mild cognitive impairment, or probable AD enrolled in the Wake Forest Alzheimer's Disease Research Center's Clinical Core. IL6 rs2228145 genotype and measures of plasma IL6 and sIL6R were assessed for relationships with cognitive status and clinical data, including the Montreal Cognitive Assessment (MoCA), modified Preclinical Alzheimer's Cognitive Composite (mPACC), cognitive domain scores obtained from the Uniform Data Set, and CSF concentrations of phosphoTauT181 (pTau181), β-amyloid (Aβ) Aβ40 and Aβ42 concentrations. RESULTS We found that inheritance of the IL6R Ala358 variant and elevated sIL6R levels in plasma and CSF were correlated with lower mPACC, MoCA and memory domain scores, increases in CSF pTau181, and decreases in the CSF Aβ42/40 ratio in both unadjusted and covariate-adjusted statistical models. DISCUSSION These data suggest that IL6 trans-signaling and the inheritance of the IL6R Ala358 variant are related to reduced cognition and greater levels of biomarkers for AD disease pathology. Follow-up prospective studies are necessary, as patients who inherit IL6R Ala358 may be identified as ideally responsive to IL6 receptor-blocking therapies.
Collapse
Affiliation(s)
- Daniel Quillen
- From the The Neuroscience Program (D.Q., T.M.H., G.A.H., C.M.); Department of Neurobiology and Anatomy (D.Q., C.M.); Department of Internal Medicine, Gerontology and Geriatric Medicine (T.M.H., S.C.); Alzheimer's Disease Research Center (T.M.H., S.C., T.R., C.M.); Department of Biochemistry (T.H., T.R., G.A.H.); and Department of Biostatics and Data Science (C.S.), Wake Forest School of Medicine
| | - Timothy M Hughes
- From the The Neuroscience Program (D.Q., T.M.H., G.A.H., C.M.); Department of Neurobiology and Anatomy (D.Q., C.M.); Department of Internal Medicine, Gerontology and Geriatric Medicine (T.M.H., S.C.); Alzheimer's Disease Research Center (T.M.H., S.C., T.R., C.M.); Department of Biochemistry (T.H., T.R., G.A.H.); and Department of Biostatics and Data Science (C.S.), Wake Forest School of Medicine
| | - Suzanne Craft
- From the The Neuroscience Program (D.Q., T.M.H., G.A.H., C.M.); Department of Neurobiology and Anatomy (D.Q., C.M.); Department of Internal Medicine, Gerontology and Geriatric Medicine (T.M.H., S.C.); Alzheimer's Disease Research Center (T.M.H., S.C., T.R., C.M.); Department of Biochemistry (T.H., T.R., G.A.H.); and Department of Biostatics and Data Science (C.S.), Wake Forest School of Medicine
| | - Timothy Howard
- From the The Neuroscience Program (D.Q., T.M.H., G.A.H., C.M.); Department of Neurobiology and Anatomy (D.Q., C.M.); Department of Internal Medicine, Gerontology and Geriatric Medicine (T.M.H., S.C.); Alzheimer's Disease Research Center (T.M.H., S.C., T.R., C.M.); Department of Biochemistry (T.H., T.R., G.A.H.); and Department of Biostatics and Data Science (C.S.), Wake Forest School of Medicine
| | - Thomas Register
- From the The Neuroscience Program (D.Q., T.M.H., G.A.H., C.M.); Department of Neurobiology and Anatomy (D.Q., C.M.); Department of Internal Medicine, Gerontology and Geriatric Medicine (T.M.H., S.C.); Alzheimer's Disease Research Center (T.M.H., S.C., T.R., C.M.); Department of Biochemistry (T.H., T.R., G.A.H.); and Department of Biostatics and Data Science (C.S.), Wake Forest School of Medicine
| | - Cynthia Suerken
- From the The Neuroscience Program (D.Q., T.M.H., G.A.H., C.M.); Department of Neurobiology and Anatomy (D.Q., C.M.); Department of Internal Medicine, Gerontology and Geriatric Medicine (T.M.H., S.C.); Alzheimer's Disease Research Center (T.M.H., S.C., T.R., C.M.); Department of Biochemistry (T.H., T.R., G.A.H.); and Department of Biostatics and Data Science (C.S.), Wake Forest School of Medicine
| | - Gregory A Hawkins
- From the The Neuroscience Program (D.Q., T.M.H., G.A.H., C.M.); Department of Neurobiology and Anatomy (D.Q., C.M.); Department of Internal Medicine, Gerontology and Geriatric Medicine (T.M.H., S.C.); Alzheimer's Disease Research Center (T.M.H., S.C., T.R., C.M.); Department of Biochemistry (T.H., T.R., G.A.H.); and Department of Biostatics and Data Science (C.S.), Wake Forest School of Medicine
| | - Carol Milligan
- From the The Neuroscience Program (D.Q., T.M.H., G.A.H., C.M.); Department of Neurobiology and Anatomy (D.Q., C.M.); Department of Internal Medicine, Gerontology and Geriatric Medicine (T.M.H., S.C.); Alzheimer's Disease Research Center (T.M.H., S.C., T.R., C.M.); Department of Biochemistry (T.H., T.R., G.A.H.); and Department of Biostatics and Data Science (C.S.), Wake Forest School of Medicine.
| |
Collapse
|
25
|
Couch ACM, Solomon S, Duarte RRR, Marrocu A, Sun Y, Sichlinger L, Matuleviciute R, Polit LD, Hanger B, Brown A, Kordasti S, Srivastava DP, Vernon AC. Acute IL-6 exposure triggers canonical IL6Ra signaling in hiPSC microglia, but not neural progenitor cells. Brain Behav Immun 2023; 110:43-59. [PMID: 36781081 PMCID: PMC10682389 DOI: 10.1016/j.bbi.2023.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/20/2022] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Prenatal exposure to elevated interleukin (IL)-6 levels is associated with increased risk for psychiatric disorders with a putative neurodevelopmental origin, such as schizophrenia (SZ), autism spectrum condition (ASC) and bipolar disorder (BD). Although rodent models provide causal evidence for this association, we lack a detailed understanding of the cellular and molecular mechanisms in human model systems. To close this gap, we characterized the response of human induced pluripotent stem cell (hiPSC-)derived microglia-like cells (MGL) and neural progenitor cells (NPCs) to IL-6 in monoculture. RESULTS We observed that human forebrain NPCs did not respond to acute IL-6 exposure in monoculture at both protein and transcript levels due to the absence of IL6R expression and soluble (s)IL6Ra secretion. By contrast, acute IL-6 exposure resulted in STAT3 phosphorylation and increased IL6, JMJD3 and IL10 expression in MGL, confirming activation of canonical IL6Ra signaling. Bulk RNAseq identified 156 up-regulated genes (FDR < 0.05) in MGL following acute IL-6 exposure, including IRF8, REL, HSPA1A/B and OXTR, which significantly overlapped with an up-regulated gene set from human post-mortem brain tissue from individuals with schizophrenia. Acute IL-6 stimulation significantly increased MGL motility, consistent with gene ontology pathways highlighted from the RNAseq data and replicating rodent model indications that IRF8 regulates microglial motility. Finally, IL-6 induces MGLs to secrete CCL1, CXCL1, MIP-1α/β, IL-8, IL-13, IL-16, IL-18, MIF and Serpin-E1 after 3 h and 24 h. CONCLUSION Our data provide evidence for cell specific effects of acute IL-6 exposure in a human model system, ultimately suggesting that microglia-NPC co-culture models are required to study how IL-6 influences human cortical neural progenitor cell development in vitro.
Collapse
Affiliation(s)
- Amalie C M Couch
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Shiden Solomon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Rodrigo R R Duarte
- Department of Social, Genetic & Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Medicine, Weill Cornell Medical College, Cornell University, NY, USA
| | - Alessia Marrocu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Division of Immunology, Infection and Inflammatory Disease, King's College London, London, UK
| | - Yiqing Sun
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Laura Sichlinger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Rugile Matuleviciute
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Lucia Dutan Polit
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Bjørn Hanger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Amelia Brown
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Shahram Kordasti
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
26
|
Khan AW, Farooq M, Hwang MJ, Haseeb M, Choi S. Autoimmune Neuroinflammatory Diseases: Role of Interleukins. Int J Mol Sci 2023; 24:7960. [PMID: 37175665 PMCID: PMC10178921 DOI: 10.3390/ijms24097960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Autoimmune neuroinflammatory diseases are a group of disorders resulting from abnormal immune responses in the nervous system, causing inflammation and tissue damage. The interleukin (IL) family of cytokines, especially IL-1, IL-6, and IL-17, plays a critical role in the pathogenesis of these diseases. IL-1 is involved in the activation of immune cells, production of pro-inflammatory cytokines, and promotion of blood-brain barrier breakdown. IL-6 is essential for the differentiation of T cells into Th17 cells and has been implicated in the initiation and progression of neuroinflammation. IL-17 is a potent pro-inflammatory cytokine produced by Th17 cells that plays a crucial role in recruiting immune cells to sites of inflammation. This review summarizes the current understanding of the roles of different interleukins in autoimmune neuroinflammatory diseases, including multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, neuromyelitis optica, and autoimmune encephalitis, and discusses the potential of targeting ILs as a therapeutic strategy against these diseases. We also highlight the need for further research to better understand the roles of ILs in autoimmune neuroinflammatory diseases and to identify new targets for treating these debilitating diseases.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Moon-Jung Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Muhammad Haseeb
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Republic of Korea
| |
Collapse
|
27
|
Kochanek PM, Simon DW, Wagner AK. Targeting interleukin-6 after cardiac arrest-Let us not forget the brain. Resuscitation 2023; 184:109715. [PMID: 36736948 DOI: 10.1016/j.resuscitation.2023.109715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Affiliation(s)
- Patrick M Kochanek
- Critical Care Medicine, Anesthesiology, Pediatrics, and Clinical and Translational Science, Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6th floor, 4401 Penn Avenue, Pittsburgh, PA 15224, United States.
| | - Dennis W Simon
- Departments of Critical Care Medicine and Pediatrics, University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, United States.
| | - Amy K Wagner
- Neuroscience, Departments of Physical Medicine & Rehabilitation and Neuroscience, Center for Neuroscience, Safar Center for Resuscitation Research, Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Suite 202, Pittsburgh, PA 15261, United States.
| |
Collapse
|
28
|
Dabiri S, Ramírez Ruiz MI, Jean-Louis G, Ntekim OE, Obisesan TO, Campbell AL, Mwendwa DT. The Mediating Role of Inflammation in the Relationship Between α-Synuclein and Cognitive Functioning. J Gerontol A Biol Sci Med Sci 2023; 78:206-212. [PMID: 36269624 PMCID: PMC10215981 DOI: 10.1093/gerona/glac217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence suggests that α-synuclein plays a role in the pathophysiology of Alzheimer's disease (AD). This study examined whether α-synuclein level in cerebrospinal fluid (CSF) was associated with cognitive functioning among older adults. We also explored whether this relationship was mediated by proinflammatory cytokines TNF-α and IL-6, along with sIL-6R and vascular endothelial growth factor (VEGF). Using a cross-sectional Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 148) sample, we examined the relationship between α-synuclein and participants' performance on Mini-Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale Cognitive Subscale (ADAS-Cog 13) at baseline. Mediation analyses were utilized, adjusting for age, education, APOEe4, and Geriatric Depression Scale scores. All biological markers were measured in CSF. Participants in the current sample were 58.3% males, 41.7% females, and Caucasian (95.5%); their average education and age were 15.5 (standard deviation [SD] = 2.97) and 74.4 (SD = 7.51) years, respectively. Higher accumulation of α-synuclein was associated with poorer MMSE scores (β = -0.41, standard error [SE] = 1.54, p < .001). This relationship appeared to be mediated by VEGF (β = 0.27, SE = 2.15, p = .025) and IL-6r (β = 0.22, SE = 1.66, p < .026). In addition, α-synuclein was associated with poorer performance on the ADAS-Cog 13 (β = 0.34, p = .005) and mediated by VEGF (β = -0.19, SE = 4.13, p = .025) after adjusting for age, education, APOEe4, and depressive symptoms. α-Synuclein may serve as an additional biomarker for determining poor cognitive functioning. VEGF and IL-6 soluble receptors were significant mediators of the relationship between α-synuclein and cognitive functioning. If confirmed in prospective analyses, these findings can further inform the pathologic cascade and early diagnosis of AD.
Collapse
Affiliation(s)
- Sanaz Dabiri
- Department of Psychology, Howard University, Washington, District of Columbia, Washington, DC, USA
| | - Mara I Ramírez Ruiz
- Department of Psychology, Howard University, Washington, District of Columbia, Washington, DC, USA
| | - Girardin Jean-Louis
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Oyonumo E Ntekim
- Department of Graduate Nutritional Sciences, Howard University, Washington, District of Columbia, Washington, DC, USA
| | - Thomas O Obisesan
- Division of Geriatrics, Department of Medicine, Howard University Hospital, Washington, District of Columbia, Washington, DC, USA
| | - Alfonso L Campbell
- Department of Psychology, Howard University, Washington, District of Columbia, Washington, DC, USA
| | - Denée T Mwendwa
- Department of Psychology, Howard University, Washington, District of Columbia, Washington, DC, USA
| | | |
Collapse
|
29
|
Müller SA, Shmueli MD, Feng X, Tüshaus J, Schumacher N, Clark R, Smith BE, Chi A, Rose-John S, Kennedy ME, Lichtenthaler SF. The Alzheimer's disease-linked protease BACE1 modulates neuronal IL-6 signaling through shedding of the receptor gp130. Mol Neurodegener 2023; 18:13. [PMID: 36810097 PMCID: PMC9942414 DOI: 10.1186/s13024-023-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND The protease BACE1 is a major drug target for Alzheimer's disease, but chronic BACE1 inhibition is associated with non-progressive cognitive worsening that may be caused by modulation of unknown physiological BACE1 substrates. METHODS To identify in vivo-relevant BACE1 substrates, we applied pharmacoproteomics to non-human-primate cerebrospinal fluid (CSF) after acute treatment with BACE inhibitors. RESULTS Besides SEZ6, the strongest, dose-dependent reduction was observed for the pro-inflammatory cytokine receptor gp130/IL6ST, which we establish as an in vivo BACE1 substrate. Gp130 was also reduced in human CSF from a clinical trial with a BACE inhibitor and in plasma of BACE1-deficient mice. Mechanistically, we demonstrate that BACE1 directly cleaves gp130, thereby attenuating membrane-bound gp130 and increasing soluble gp130 abundance and controlling gp130 function in neuronal IL-6 signaling and neuronal survival upon growth-factor withdrawal. CONCLUSION BACE1 is a new modulator of gp130 function. The BACE1-cleaved, soluble gp130 may serve as a pharmacodynamic BACE1 activity marker to reduce the occurrence of side effects of chronic BACE1 inhibition in humans.
Collapse
Affiliation(s)
- Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Merav D Shmueli
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Xiao Feng
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Ryan Clark
- Neuroscience, Merck & Co. Inc., Boston, MA, USA
| | - Brad E Smith
- Laboratory Animal Resources, Merck & Co. Inc., West Point, PA, USA
| | - An Chi
- Chemical Biology, Merck & Co. Inc., Boston, MA, USA
| | | | | | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. .,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
30
|
Barreto Chang OL, Maze M. Defining the role of Interleukin-6 for the development of perioperative neurocognitive disorders: Evidence from clinical and preclinical studies. Front Aging Neurosci 2023; 14:1097606. [PMID: 36778590 PMCID: PMC9908597 DOI: 10.3389/fnagi.2022.1097606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/31/2022] [Indexed: 01/27/2023] Open
Abstract
For most, staying "mentally sharp" as they age is a very high priority that may be thwarted by the consequences of a postoperative complication unrelated to the disorder which necessitated the surgical intervention. Perioperative neurocognitive disorder (PND) is an overarching term for cognitive impairment in surgical patients, that includes conditions from delirium to dementia, affecting more than 7 million patients annually in the US, and which threatens both functional independence and life. Clinical trials and meta-analyses have identified the association between PNDs and increased perioperative levels of Interleukin-6 (IL-6), a pleiotropic cytokine that is both necessary and sufficient for postoperative memory decline in a preclinical model of PND. Recently, we reported that, in adult male wild-type mice subjected to tibial fracture under general anesthesia, IL-6 trans-signaling in hippocampal CA1 neurons mediates surgery-induced memory impairment. As there are no therapeutic options for preventing or reversing PNDs, patients and their caregivers, as well as the healthcare industry, endure staggering costs. Olamkicept, a highly selective IL-6 trans-signaling blocker has shown to be efficacious and safe in clinical trials involving patients with inflammatory bowel disease, another condition for which IL-6 trans-signaling is the mediating mechanism. Subject to a demonstration that olamkicept is effective in preventing cognitive impairment in vulnerable (aged and Alzheimer's Disease) preclinical PND models, clinical trials involving aged and/or cognitively impaired surgical patients should be undertaken to study olamkicept's utility for PNDs.
Collapse
Affiliation(s)
- Odmara L. Barreto Chang
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Mervyn Maze
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Disease, University of California, San Francisco, San Francisco, CA, United States,*Correspondence: Mervyn Maze, ✉
| |
Collapse
|
31
|
Yoo A, Lee S. Neuronal growth regulator 1 may modulate interleukin-6 signaling in adipocytes. Front Mol Biosci 2023; 10:1148521. [PMID: 37187893 PMCID: PMC10175572 DOI: 10.3389/fmolb.2023.1148521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that plays both anti- and pro-inflammatory roles. Due to the restricted expression of membrane IL-6 receptor (IL-6R), most pro-inflammatory functions of IL-6 are attributed to its association with soluble IL-6R (sIL-6R). Neuronal growth regulator 1 (NEGR1) is a brain-enriched membrane protein that has recently been recognized as a risk factor for many human diseases including obesity, depression, and autism. In the present study, we report that the expression levels of IL-6 and IL-6R, as well as the phosphorylation of signal transducer and activator of transcription (STAT) 3, were significantly elevated in white adipose tissues of Negr1 knockout mice. Elevated levels of circulating IL-6 and sIL-6R have also been observed in Negr1 -/- mice. Furthermore, NEGR1 interacted with IL-6R, which was supported by subcellular fractionation and an in situ proximity ligation assay. Importantly, NEGR1 expression attenuated the phosphorylation of STAT3 by sIL-6R, suggesting that NEGR1 negatively regulates IL-6 trans-signaling. Taken together, we propose that NEGR1 may play a regulatory role in IL-6 signaling by interacting with IL-6R, which may contribute to a molecular link underlying obesity, inflammation, and the depression cycle.
Collapse
|
32
|
Garbers C, Rose-John S. Dissecting Interleukin-6 Classic and Trans-signaling in Inflammation and Cancer. Methods Mol Biol 2023; 2691:207-224. [PMID: 37355548 DOI: 10.1007/978-1-0716-3331-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Interleukin-6 (IL-6) is a cytokine synthesized by many cells in the human body. IL-6 binds to a membrane-bound receptor (IL-6R), which is only present on hepatocytes, some epithelial cells, and some leukocytes. The complex of IL-6 and IL-6R binds to the ubiquitously expressed receptor subunit gp130, which forms a homodimer and thereby initiates intracellular signaling, e.g., the JAK/STAT and MAPK pathways. Proteases can cleave the membrane-bound IL-6R from the cell surface and generate a soluble IL-6R (sIL-6R), which retains its ability to bind IL-6. The IL-6/sIL-6R complex associates with gp130 and induces signaling even on cells which do not express the IL-6R. This paradigm has been called IL-6 trans-signaling, whereas signaling via the membrane-bound IL-6R is referred to as classic signaling. We have generated several molecular tools to differentiate between both pathways and to analyze the consequences of cellular IL-6 signaling in vivo. One of these tools is soluble gp130Fc, which selectively inhibits IL-6 trans-signaling. This protein under the WHO name Olamkicept has successfully undergone phase II clinical trials in patients with autoimmune diseases. Here, in this chapter, we describe several molecular tools to differentiate between IL-6 classic and trans-signaling and to analyze the consequences of cellular IL-6 signaling in vivo.
Collapse
Affiliation(s)
- Christoph Garbers
- Medical Faculty, Department of Pathology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Health Campus Immunology, Infectiology and Inflammation (GC:I3), Otto-von-Guericke-University, Magdeburg, Germany.
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany.
| | | |
Collapse
|
33
|
Ramanzini LG, Camargo LFM, Silveira JOF, Bochi GV. Inflammatory markers and depression in Parkinson's disease: a systematic review. Neurol Sci 2022; 43:6707-6717. [PMID: 36040559 DOI: 10.1007/s10072-022-06363-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Parkinson's disease (PD) patients experience non-motor symptoms (NMS), which may appear before motor manifestations. The most common NMS is depression, affecting about 30-40% of PD patients. Both PD and depression are associated with an increased inflammatory burden, with studies showing elevation of diverse inflammatory markers in patients with both conditions. METHODS A systematic review was conducted in PubMed and PsycINFO databases to investigate what inflammatory markers are associated with PD depression (PDD). Only studies in English that measured inflammatory markers and analyzed against depression scores in PD patients were included. RESULTS A total of 1132 articles were retrieved, and 14 entries were found to be eligible. Twelve were cross-sectional studies, one was a cohort, and one was a non-randomized controlled trial. IL-17A was the only marker strongly associated with PDD, while studies assessing sIL-2R and serum amyloid A found a moderate correlation. C-reactive protein, IL-10, tumor necrosis factor-α, monocyte chemoattractant protein-1, and IL-6 yielded conflicting results. Their possible roles in PDD are discussed. PDD was also related to longer disease duration and other NMS, such as anxiety, fatigue, dementia, REM sleep behavior disorder, and autonomic dysfunction. CONCLUSION We suggest that these markers may be used for distinguishing isolated depression from that related to neurodegeneration, especially in individuals that concurrently present with other known prodromal symptoms of PD and other α-synucleinopathies. However, future prospective studies are warranted to confirm this hypothesis.
Collapse
Affiliation(s)
- Luis Guilherme Ramanzini
- Department of Physiology and Pharmacology, Federal University of Santa Maria, 1000 Roraima Avenue, Building 21, Santa Maria, Rio Grande do Sul, Brazil.
| | - Luís Fernando Muniz Camargo
- Department of Physiology and Pharmacology, Federal University of Santa Maria, 1000 Roraima Avenue, Building 21, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Guilherme Vargas Bochi
- Department of Physiology and Pharmacology, Federal University of Santa Maria, 1000 Roraima Avenue, Building 21, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
34
|
17β-estradiol ameliorates delirium-like phenotypes in a murine model of urinary tract infection. Sci Rep 2022; 12:19622. [PMID: 36380004 PMCID: PMC9666646 DOI: 10.1038/s41598-022-24247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Urinary tract infections (UTIs) are common and frequently precipitate delirium-like states. Advanced age coincident with the postmenopausal period is a risk factor for delirium following UTIs. We previously demonstrated a pathological role for interleukin-6 (IL-6) in mediating delirium-like phenotypes in a murine model of UTI. Estrogen has been implicated in reducing peripheral IL-6 expression, but it is unknown whether the increased susceptibility of postmenopausal females to developing delirium concomitant with UTIs reflects diminished effects of circulating estrogen. Here, we tested this hypothesis in a mouse model of UTI. Female C57BL/6J mice were oophorectomized, UTIs induced by transurethral inoculation of E. coli, and treated with 17β-estradiol. Delirium-like behaviors were evaluated prior to and following UTI and 17β-estradiol treatment. Compared to controls, mice treated with 17β-estradiol had less neuronal injury, improved delirium-like behaviors, and less plasma and frontal cortex IL-6. In vitro studies further showed that 17β-estradiol may also directly mediate neuronal protection, suggesting pleiotropic mechanisms of 17β-estradiol-mediated neuroprotection. In summary, we demonstrate a beneficial role for 17β-estradiol in ameliorating acute UTI-induced structural and functional delirium-like phenotypes. These findings provide pre-clinical justification for 17β-estradiol as a therapeutic target to ameliorate delirium following UTI.
Collapse
|
35
|
Sparrow NA, Guidry G, Anwar F, Darwish S, Kelly SA, Karumanchi SA, Lahiri S. Prone positioning reduces frontal and hippocampal neuronal dysfunction in a murine model of ventilator-induced lung injury. Front Med (Lausanne) 2022; 9:987202. [PMID: 36405620 PMCID: PMC9674088 DOI: 10.3389/fmed.2022.987202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Prone positioning is an established treatment for severe acute lung injury conditions. Neuronal dysfunction frequently occurs with mechanical ventilation-induced acute lung injury (VILI) and clinically manifests as delirium. We previously reported a pathological role for systemic interleukin 6 (IL-6) in mediating neuronal injury. However, currently no studies have investigated the relationship between prone or supine positioning and IL-6 mediated neuronal dysfunction. Here, we hypothesize that prone positioning mitigates neuronal injury, via decreased IL-6, in a model of VILI. VILI was induced by subjecting C57BL/6J mice to high tidal volume (35 cc/kg) mechanical ventilation. Neuronal injury markers [cleaved caspase-3 (CC3), c-fos, heat shock protein 90 (Hsp90)] and inflammatory cytokines (IL-6, IL-1β, TNF-α) were measured in the frontal cortex and hippocampus. We found statistically significantly less neuronal injury (CC3, c-Fos, Hsp90) and inflammatory cytokines (IL-6, IL-1β, TNF-α) in the frontal cortex and hippocampus with prone compared to supine positioning (p < 0.001) despite no significant group differences in oxygen saturation or inflammatory infiltrates in the bronchoalveolar fluid (p > 0.05). Although there were no group differences in plasma IL-6 concentrations, there was significantly less cortical and hippocampal IL-6 in the prone position (p < 0.0001), indicating supine positioning may enhance brain susceptibility to systemic IL-6 during VILI via the IL-6 trans-signaling pathway. These findings call for future clinical studies to assess the relationship between prone positioning and delirium and for investigations into novel diagnostic or therapeutic paradigms to mitigate delirium by reducing expression of systemic and cerebral IL-6.
Collapse
Affiliation(s)
- Nicklaus A. Sparrow
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Gena Guidry
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Faizan Anwar
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sonja Darwish
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Scott A. Kelly
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - S. Ananth Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- *Correspondence: Shouri Lahiri,
| |
Collapse
|
36
|
Robinson R, Glass J, Sharma A, Sharma S. Generation and characterization of a Müller-glial-cell-specific Il6ra knockout mouse to delineate the effects of IL-6 trans-signaling in the retina. Sci Rep 2022; 12:17626. [PMID: 36271280 PMCID: PMC9587029 DOI: 10.1038/s41598-022-22329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023] Open
Abstract
Interleukin-6 (IL-6) is implicated in various retinal and vascular complications associated with diabetic retinopathy (DR). This cytokine functions through two main modalities: classical signaling, in cells expressing the membrane-bound receptor (IL-6Rα); and trans-signaling, possible in most cells through a soluble form of the receptor (sIL-6R). These pathways are considered to be anti-inflammatory and pro-inflammatory, respectively. Our recent studies in retinal endothelial cells and diabetic mice have shown that inhibiting only IL-6 trans-signaling is sufficient to prevent increased vascular leakage, oxidative stress, and inflammation characteristic of DR. Isolating the specific effects of each signaling pathway, however, remains difficult in cells expressing IL-6Rα that are thus capable of both classical and trans-signaling. Müller glial cells (MGCs), the most abundant retinal macroglial cells, span the entire retinal thickness with vital roles in maintaining retinal homeostasis and regulating the blood-retinal barrier through secreted factors. The specific effects of IL-6 trans-signaling in MGCs remain poorly understood given their responsiveness to both IL-6 signaling modalities. In this study, we addressed these concerns by generating an MGC-specific knockout mouse using Cre-loxP deletion of the Il6ra cytokine-binding region. We assessed transcriptional and translational Il6ra expression to confirm the knockout and characterized the effects of knockout on visual functioning in these mice.
Collapse
Affiliation(s)
- Rebekah Robinson
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CAII 4139, Augusta, GA, 30912, USA
| | - Joshua Glass
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CAII 4139, Augusta, GA, 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CAII 4139, Augusta, GA, 30912, USA
- Department of Population Health Sciences, Augusta University, Augusta, GA, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
- Department of Ophthalmology, Augusta University, Augusta, GA, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CAII 4139, Augusta, GA, 30912, USA.
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA.
- Department of Ophthalmology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
37
|
Anwar F, Sparrow NA, Rashid MH, Guidry G, Gezalian MM, Ley EJ, Koronyo-Hamaoui M, Danovitch I, Ely EW, Karumanchi SA, Lahiri S. Systemic interleukin-6 inhibition ameliorates acute neuropsychiatric phenotypes in a murine model of acute lung injury. Crit Care 2022; 26:274. [PMID: 36100846 PMCID: PMC9469063 DOI: 10.1186/s13054-022-04159-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/04/2022] [Indexed: 11/10/2022] Open
Abstract
Acute neuropsychiatric impairments occur in over 70% of patients with acute lung injury. Mechanical ventilation is a well-known precipitant of acute lung injury and is strongly associated with the development of acute delirium and anxiety phenotypes. In prior studies, we demonstrated that IL-6 mediates neuropathological changes in the frontal cortex and hippocampus of animals with mechanical ventilation-induced brain injury; however, the effect of systemic IL-6 inhibition on structural and functional acute neuropsychiatric phenotypes is not known. We hypothesized that a murine model of mechanical ventilation-induced acute lung injury (VILI) would induce neural injury to the amygdala and hippocampus, brain regions that are implicated in diverse neuropsychiatric conditions, and corresponding delirium- and anxiety-like functional impairments. Furthermore, we hypothesized that these structural and functional changes would reverse with systemic IL-6 inhibition. VILI was induced using high tidal volume (35 cc/kg) mechanical ventilation. Cleaved caspase-3 (CC3) expression was quantified as a neural injury marker and found to be significantly increased in the VILI group compared to spontaneously breathing or anesthetized and mechanically ventilated mice with 10 cc/kg tidal volume. VILI mice treated with systemic IL-6 inhibition had significantly reduced amygdalar and hippocampal CC3 expression compared to saline-treated animals and demonstrated amelioration in acute neuropsychiatric behaviors in open field, elevated plus maze, and Y-maze tests. Overall, these data provide evidence of a pathogenic role of systemic IL-6 in mediating structural and functional acute neuropsychiatric symptoms in VILI and provide preclinical justification to assess IL-6 inhibition as a potential intervention to ameliorate acute neuropsychiatric phenotypes following VILI.
Collapse
|
38
|
Hassel B, Niehusmann P, Halvorsen B, Dahlberg D. Pro-inflammatory cytokines in cystic glioblastoma: A quantitative study with a comparison with bacterial brain abscesses. With an MRI investigation of displacement and destruction of the brain tissue surrounding a glioblastoma. Front Oncol 2022; 12:846674. [PMID: 35965529 PMCID: PMC9372434 DOI: 10.3389/fonc.2022.846674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic glioblastomas are aggressive primary brain tumors that may both destroy and displace the surrounding brain tissue as they grow. The mechanisms underlying these tumors’ destructive effect could include exposure of brain tissue to tumor-derived cytokines, but quantitative cytokine data are lacking. Here, we provide quantitative data on leukocyte markers and cytokines in the cyst fluid from 21 cystic glioblastomas, which we compare to values in 13 brain abscess pus samples. The concentration of macrophage/microglia markers sCD163 and MCP-1 was higher in glioblastoma cyst fluid than in brain abscess pus; lymphocyte marker sCD25 was similar in cyst fluid and pus, whereas neutrophil marker myeloperoxidase was higher in pus. Median cytokine levels in glioblastoma cyst fluid were high (pg/mL): TNF-α: 32, IL-6: 1064, IL-8: 23585, tissue factor: 28, the chemokine CXCL1: 639. These values were not significantly different from values in pus, pointing to a highly pro-inflammatory glioblastoma environment. In contrast, levels of IFN-γ, IL-1β, IL-2, IL-4, IL-10, IL-12, and IL-13 were higher in pus than in glioblastoma cyst fluid. Based on the quantitative data, we show for the first time that the concentrations of cytokines in glioblastoma cyst fluid correlate with blood leukocyte levels, suggesting an important interaction between glioblastomas and the circulation. Preoperative MRI of the cystic glioblastomas confirmed both destruction and displacement of brain tissue, but none of the cytokine levels correlated with degree of brain tissue displacement or peri-tumoral edema, as could be assessed by MRI. We conclude that cystic glioblastomas are highly pro-inflammatory environments that interact with the circulation and that they both displace and destroy brain tissue. These observations point to the need for neuroprotective strategies in glioblastoma therapy, which could include an anti-inflammatory approach.
Collapse
Affiliation(s)
- Bjørnar Hassel
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Defence Research Establishment (FFI), Kjeller, Norway
- *Correspondence: Bjørnar Hassel,
| | - Pitt Niehusmann
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Daniel Dahlberg
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
39
|
De Bock M, De Smet MA, Verwaerde S, Tahiri H, Schumacher S, Van Haver V, Witschas K, Steinhäuser C, Rouach N, Vandenbroucke RE, Leybaert L. Targeting gliovascular connexins prevents inflammatory blood-brain barrier leakage and astrogliosis. JCI Insight 2022; 7:135263. [PMID: 35881483 PMCID: PMC9462469 DOI: 10.1172/jci.insight.135263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
The blood-brain barrier is formed by capillary endothelial cells expressing Cx37, Cx40 and Cx43, and is joined by closely apposed astrocytes expressing Cx43 and Cx30. We investigated whether connexin-targeting peptides could limit barrier leakage triggered by LPS-induced systemic inflammation in mice. Intraperitoneal LPS increased endothelial and astrocytic Cx43 expression, elevated TNFα, IL1β, IFNγ and IL6 in plasma and IL6 in the brain, and induced barrier leakage recorded over 24h. Barrier leakage was largely prevented by global Cx43 knockdown and Cx43/Cx30 double-knockout in astrocytes, slightly diminished by endothelial Cx43 knockout and not protected by global Cx30 knockout. Intravenous administration of Gap27 or Tat-Gap19 just before LPS also prevented barrier leakage, and intravenous BAPTA-AM to chelate intracellular calcium was equally effective. Patch-clamp experiments demonstrated LPS-induced Cx43 hemichannel opening in endothelial cells, which was suppressed by Gap27, Gap19 and BAPTA. LPS additionally triggered astrogliosis that was prevented by intravenous Tat-Gap19 or BAPTA-AM. Cortically applied Tat-Gap19 or BAPTA-AM to primarily target astrocytes, also strongly diminished barrier leakage. In vivo dye uptake and in vitro patch-clamp showed Cx43 hemichannel opening in astrocytes that was induced by IL6 in a calcium-dependent manner. We conclude that targeting endothelial and astrocytic connexins is a powerful approach to limit barrier failure and astrogliosis.
Collapse
Affiliation(s)
- Marijke De Bock
- Department of Basic & Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Maarten Aj De Smet
- Department of Basic & Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Stijn Verwaerde
- Department of Basic & Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Hanane Tahiri
- Department of Basic & Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Steffi Schumacher
- Department of Basic & Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Valérie Van Haver
- Department of Basic & Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Katja Witschas
- Department of Basic & Applied Medical Sciences, Ghent University, Ghent, Belgium
| | | | - Nathalie Rouach
- Center for Interdisiplinary Research in Biology (CIRB), College de France, Paris, France
| | | | - Luc Leybaert
- Department of Basic & Applied Medical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
40
|
Feng Y, Xiao M, Cao G, Liu H, Li Y, Wang S, Zijtveld S, Delvoux B, Xanthoulea S, Romano A, Liu C, Zhang Z. Human monocytes differentiate into tumor-associated macrophages upon SKOV3 cells coculture and/or lysophosphatidic acid stimulation. J Inflamm (Lond) 2022; 19:11. [PMID: 35842650 PMCID: PMC9288080 DOI: 10.1186/s12950-022-00307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Serous ovarian carcinoma is the most common type of ovarian carcinoma. Tumor-associated macrophages (TAMs) promote ovarian cancer progression. Most macrophages are generated by monocyte differentiation. Lysophosphatidic acid (LPA) levels are high in blood, tissues and ascites of patients with ovarian cancer. This study investigated whether human monocytes can directly differentiate into TAMs in the serous ovarian carcinoma microenvironment. METHODS Human monocytes were isolated and purified from umbilical cord blood. A serous ovarian carcinoma-like microenvironment was generated by coculturing monocytes and SKOV3 cells in 0.4-μm-pore-size Transwell chambers. Additionally, the effect of LPA was assessed. The two cultured cell types and supernatants were evaluated. RESULTS The morphology and function of monocytes cocultured with SKOV3 cells and/or stimulated with LPA were significantly changed compared with those of non-stimulated monocytes. The CD14 + CD163 + and CD206 + phenotype indicated that stimulated cells were TAMs. The induced cells promoted SKOV3 cell proliferation and invasion, further proving that they were TAMs. The level of the cytokine interleukin-6R in the supernatant was significantly elevated in the treatment groups compared to the control monocyte group. Pathway enrichment analysis of ELISA results showed a strong influence of interleukin-6 family signaling, especially the JAK-STAT signaling pathway, further confirming the importance of IL-6R. CONCLUSION Monocytes can differentiate into TAMs under coculture with SKOV3 cells and/or LPA stimulation. The induced TAMs promote SKOV3 cell proliferation and invasion. The cytokine receptor IL-6sR and the JAK-STAT signaling pathway play an important role in the differentiation of monocytes into TAMs.
Collapse
Affiliation(s)
- Ying Feng
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Meizhu Xiao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Guangming Cao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Hao Liu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Yanfang Li
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Shuzhen Wang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Stan Zijtveld
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bert Delvoux
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Sofia Xanthoulea
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Andrea Romano
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Chongdong Liu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China.
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
41
|
Forcina L, Franceschi C, Musarò A. The hormetic and hermetic role of IL-6. Ageing Res Rev 2022; 80:101697. [PMID: 35850167 DOI: 10.1016/j.arr.2022.101697] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Interleukin-6 is a pleiotropic cytokine regulating different tissues and organs in diverse and sometimes discrepant ways. The dual and sometime hermetic nature of IL-6 action has been highlighted in several contexts and can be explained by the concept of hormesis, in which beneficial or toxic effects can be induced by the same molecule depending on the intensity, persistence, and nature of the stimulation. According with hormesis, a low and/or controlled IL-6 release is associated with anti-inflammatory, antioxidant, and pro-myogenic actions, whereas increased systemic levels of IL-6 can induce pro-inflammatory, pro-oxidant and pro-fibrotic responses. However, many aspects regarding the multifaceted action of IL-6 and the complex nature of its signal transduction remains to be fully elucidated. In this review we collect mechanistic insight into the molecular networks contributing to normal or pathologic changes during advancing age and in chronic diseases. We point out the involvement of IL-6 deregulation in aging-related diseases, dissecting the hormetic action of this key mediator in different tissues, with a special focus on skeletal muscle. Since IL-6 can act as an enhancer of detrimental factor associated with both aging and pathologic conditions, such as chronic inflammation and oxidative stress, this cytokine could represent a "Gerokine", a determinant of the switch from physiologic aging to age-related diseases.
Collapse
Affiliation(s)
- Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, Rome 00161, Italy.
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Scuola Superiore di Studi Avanzati Sapienza (SSAS), Via A. Scarpa, 14, Rome 00161, Italy.
| |
Collapse
|
42
|
Nwaubani P, Cercignani M, Colasanti A. In vivo quantitative imaging of hippocampal inflammation in autoimmune neuroinflammatory conditions: a systematic review. Clin Exp Immunol 2022; 210:24-38. [PMID: 35802780 PMCID: PMC9585553 DOI: 10.1093/cei/uxac058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/17/2022] [Accepted: 07/04/2022] [Indexed: 01/25/2023] Open
Abstract
The hippocampus is a morphologically complex region of the brain limbic system centrally involved in important cognitive, affective, and behavioural regulatory roles. It has exquisite vulnerability to neuroinflammatory processes, with some of its subregions found to be specific sites of neuroinflammatory pathology in ex-vivo studies. Optimizing neuroimaging correlates of hippocampal neuroinflammation would enable the direct study of functional consequences of hippocampal neuroinflammatory pathology, as well as the definition of therapeutic end-points for treatments targeting neuroinflammation, and their related affective or cognitive sequelae. However, in vivo traditional imaging of the hippocampus and its subregions is fraught with difficulties, due to methodological challenges deriving from its unique anatomical characteristics. The main objective of this review is to provide a current update on the characterization of quantitative neuroimaging correlates of hippocampal neuroinflammation by focusing on three prototypical autoimmune neuro-inflammatory conditions [multiple sclerosis (MS), systemic lupus erythematosus (SLE), and autoimmune encephalitis (AE)]. We focused on studies employing TSPO-targeting positron emission tomography (PET), quantitative magnetic resonance imaging (MRI), and spectroscopy techniques assumed to be sensitive to neuroinflammatory tissue changes. We found 18 eligible studies (14, 2, and 2 studies in MS, AE, and SLE, respectively). Across conditions, the largest effect was seen in TSPO PET and diffusion-weighted MRI studies. No study examined neuroinflammation-related changes at the hippocampal subfield level. Overall, results were largely inconsistent due to heterogeneous imaging methods, small sample sizes, and different population studies. We discuss how these data could inform future study design and conclude by suggesting further methodological directions aimed at improving the precision and sensitivity of neuroimaging techniques to characterize hippocampal neuroinflammatory pathology in the human brain.
Collapse
Affiliation(s)
- P Nwaubani
- Department of Clinical Neuroscience and Neuroimaging, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK
| | - M Cercignani
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - A Colasanti
- Correspondence: Alessandro Colasanti, Department of Clinical Neuroscience and Neuroimaging, Brighton and Sussex Medical School, University of Sussex, Trafford Centre for Medical Research, University of Sussex, Falmer, Brighton, BN1 4RY, UK.
| |
Collapse
|
43
|
Magro G. Satralizumab might not be enough. Olamkicept (sgp130Fc) in Neuromyelitis Optica Spectrum Disorder. Mult Scler Relat Disord 2022; 65:104037. [PMID: 35835028 DOI: 10.1016/j.msard.2022.104037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Satralizumab, the monoclonal antibody against IL-6R, has been approved not long ago in Neuromyelitis Optica Spectrum Disorder (NMOSD). Nonetheless, inhibiting IL-6 Receptor might not be enough, since Satralizumab results in inhibition of both pro and anti-inflammatory pathways of IL-6. The detrimental role of IL-6 in NMOSD could be mainly played by the trans-signaling. Olamkicept (sgp130Fc) is a recently approved monoclonal antibody that prevents only the trans-signaling pathway of IL-6 to be activated. Targeting only the trans-signaling pathway (the pro-inflammatory one) with Olamkicept/sgp130Fc could lead to avoidance of potential harmful effect of global IL-6 blockade such as profound immunosuppression and it could also mean leaving the “good side” of IL-6 on, while turning the "bad side" off.
Collapse
Affiliation(s)
- Giuseppe Magro
- Department of Medical, Surgical Sciences, Neurology Unit, University "Magna Græcia" of Catanzaro, Italy.
| |
Collapse
|
44
|
Ooi SZY, Spencer RJ, Hodgson M, Mehta S, Phillips NL, Preest G, Manivannan S, Wise MP, Galea J, Zaben M. Interleukin-6 as a prognostic biomarker of clinical outcomes after traumatic brain injury: a systematic review. Neurosurg Rev 2022; 45:3035-3054. [PMID: 35790656 PMCID: PMC9256073 DOI: 10.1007/s10143-022-01827-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/12/2022] [Accepted: 06/12/2022] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. There are currently no early biomarkers for prognosis in routine clinical use. Interleukin-6 (IL-6) is a potential biomarker in the context of the established role of neuroinflammation in TBI recovery. Therefore, a systematic review of the literature was performed to assess and summarise the evidence for IL-6 secretion representing a useful biomarker for clinical outcomes. A multi-database literature search between January 1946 and July 2021 was performed. Studies were included if they reported adult TBI patients with IL-6 concentration in serum, cerebrospinal fluid (CSF) and/or brain parenchyma analysed with respect to functional outcome and/or mortality. A synthesis without meta-analysis is reported. Fifteen studies were included, reporting 699 patients. Most patients were male (71.7%), and the pooled mean age was 40.8 years; 78.1% sustained severe TBI. Eleven studies reported IL-6 levels in serum, six in CSF and one in the parenchyma. Five studies on serum demonstrated higher IL-6 concentrations were associated with poorer outcomes, and five showed no signification association. In CSF studies, one found higher IL-6 levels were associated with poorer outcomes, one found them to predict better outcomes and three found no association. Greater parenchymal IL-6 was associated with better outcomes. Despite some inconsistency in findings, it appears that exaggerated IL-6 secretion predicts poor outcomes after TBI. Future efforts require standardisation of IL-6 measurement practices as well as assessment of the importance of IL-6 concentration dynamics with respect to clinical outcomes, ideally within large prospective studies. Prospero registration number: CRD42021271200
Collapse
Affiliation(s)
| | - Robert James Spencer
- Brain Research and Intracranial Neurotherapeutics (BRAIN) Unit, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK.,Department of Neurosurgery, University Hospital of Wales, Cardiff, UK
| | - Megan Hodgson
- Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Samay Mehta
- University of Birmingham Medical School, Birmingham, UK
| | | | | | - Susruta Manivannan
- Department of Neurosurgery, Southampton General Hospital, Southampton, UK
| | - Matt P Wise
- Adult Critical Care, University Hospital of Wales, Cardiff, UK
| | - James Galea
- Department of Neurosurgery, University Hospital of Wales, Cardiff, UK
| | - Malik Zaben
- Brain Research and Intracranial Neurotherapeutics (BRAIN) Unit, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK. .,Department of Neurosurgery, University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
45
|
Oudbier SJ, Goh J, Looijaard SMLM, Reijnierse EM, Meskers CGM, Maier AB. Pathophysiological mechanisms explaining the association between low skeletal muscle mass and cognitive function. J Gerontol A Biol Sci Med Sci 2022; 77:1959-1968. [PMID: 35661882 PMCID: PMC9536455 DOI: 10.1093/gerona/glac121] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 11/15/2022] Open
Abstract
Low skeletal muscle mass is associated with cognitive impairment and dementia in older adults. This review describes the possible underlying pathophysiological mechanisms: systemic inflammation, insulin metabolism, protein metabolism, and mitochondrial function. We hypothesize that the central tenet in this pathophysiology is the dysfunctional myokine secretion consequent to minimal physical activity. Myokines, such as fibronectin type III domain containing 5/irisin and cathepsin B, are released by physically active muscle and cross the blood–brain barrier. These myokines upregulate local neurotrophin expression such as brain-derived neurotrophic factor (BDNF) in the brain microenvironment. BDNF exerts anti-inflammatory effects that may be responsible for neuroprotection. Altered myokine secretion due to physical inactivity exacerbates inflammation and impairs muscle glucose metabolism, potentially affecting the transport of insulin across the blood–brain barrier. Our working model also suggests other underlying mechanisms. A negative systemic protein balance, commonly observed in older adults, contributes to low skeletal muscle mass and may also reflect deficient protein metabolism in brain tissues. As a result of age-related loss in skeletal muscle mass, decrease in the abundance of mitochondria and detriments in their function lead to a decrease in tissue oxidative capacity. Dysfunctional mitochondria in skeletal muscle and brain result in the excessive production of reactive oxygen species, which drives tissue oxidative stress and further perpetuates the dysfunction in mitochondria. Both oxidative stress and accumulation of mitochondrial DNA mutations due to aging drive cellular senescence. A targeted approach in the pathophysiology of low muscle mass and cognition could be to restore myokine balance by physical activity.
Collapse
Affiliation(s)
- Susanne Janette Oudbier
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Outpatient Clinics, Amsterdam Public Health research institute, De Boelelaan, Amsterdam, The Netherlands
| | - Jorming Goh
- Healthy Longevity Translational Research Program and Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | | | - Esmee Mariëlle Reijnierse
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan, Amsterdam, The Netherlands.,Amsterdam Movement Sciences, Ageing & Vitality, Amsterdam, The Netherlands.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Carolus Gerardus Maria Meskers
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan, Amsterdam, The Netherlands.,Amsterdam Movement Sciences, Ageing & Vitality, Amsterdam, The Netherlands
| | - Andrea Britta Maier
- Healthy Longevity Translational Research Program and Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.,Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioral and Movement Sciences, VU University Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Syme TE, Grill M, Hayashida E, Viengkhou B, Campbell IL, Hofer MJ. Strawberry notch homolog 2 regulates the response to interleukin-6 in the central nervous system. J Neuroinflammation 2022; 19:126. [PMID: 35624480 PMCID: PMC9145108 DOI: 10.1186/s12974-022-02475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cytokine interleukin-6 (IL-6) modulates a variety of inflammatory processes and, context depending, can mediate either pro- or anti-inflammatory effects. Excessive IL-6 signalling in the brain is associated with chronic inflammation resulting in neurodegeneration. Strawberry notch homolog 2 (Sbno2) is an IL-6-regulated gene whose function is largely unknown. Here we aimed to address this issue by investigating the impact of Sbno2 disruption in mice with IL-6-mediated neuroinflammation. METHODS Mice with germline disruption of Sbno2 (Sbno2-/-) were generated and crossed with transgenic mice with chronic astrocyte production of IL-6 (GFAP-IL6). Phenotypic, molecular and transcriptomic analyses were performed on tissues and primary cell cultures to clarify the role of SBNO2 in IL-6-mediated neuroinflammation. RESULTS We found Sbno2-/- mice to be viable and overtly normal. By contrast GFAP-IL6 × Sbno2-/- mice had more severe disease compared with GFAP-IL6 mice. This was evidenced by exacerbated neuroinflammation and neurodegeneration and enhanced IL-6-responsive gene expression. Cell culture experiments on primary astrocytes from Sbno2-/- mice further showed elevated and sustained transcript levels of a number of IL-6 stimulated genes. Notably, despite enhanced disease in vivo and gene expression both in vivo and in vitro, IL-6-stimulated gp130 pathway activation was reduced when Sbno2 is disrupted. CONCLUSION Based on these results, we propose a role for SBNO2 as a novel negative feedback regulator of IL-6 that restrains the excessive inflammatory actions of this cytokine in the brain.
Collapse
Affiliation(s)
- Taylor E Syme
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Magdalena Grill
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010, Graz, Austria
- Division of Phoniatrics, Department of Otorhinolaryngology, Medical University of Graz, 8036, Graz, Austria
| | - Emina Hayashida
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Barney Viengkhou
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Iain L Campbell
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Markus J Hofer
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
47
|
Rao J, Xu N, Sun J, Li Y, Fu F. Case Report: Interferon-Alpha-Induced Neuromyelitis Optica Spectrum Disorder. Front Neurol 2022; 13:872684. [PMID: 35547376 PMCID: PMC9081932 DOI: 10.3389/fneur.2022.872684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Background and Objectives To describe a new case of neuromyelitis optica spectrum disorder (NMOSD) induced by the administration of interferon-alpha (IFNα) and to raise awareness of this rare drug-induced disease of IFNα treatment. Methods A single case study and comprehensive literature review of eight cases. Results A 24-year-old man was diagnosed with cerebral venous thrombosis and essential thrombocythemia. He had been undergoing IFNα treatment (IFNα-2b, 3 million IU per day) without any side effects for 18 months, at which point the patient developed persistent hiccups, nausea, urinary retention, and numbness. Spinal magnetic resonance imaging revealed a longitudinal abnormality extending from the medulla to the entire spinal cord. The patient was positive for anti-aquaporin-4 antibody (AQP4-IgG) in both the serum and cerebrospinal fluid (CSF), which confirmed the diagnosis of NMOSD. Thus, recombinant IFNα-2b was suspended immediately. Because his condition did not improve after 6-day treatment of methylprednisolone pulse therapy (1,000 mg for 3 days, then 500 mg for 3 days), intravenous immunoglobulin (0.4 g/kg/day for 5 days) was administered. The patient gradually improved. Low-dose prednisolone and mycophenolate mofetil were subsequently administered as a long-term treatment. The patient was discharged with subtle limb numbness and their expanded disability status score (EDSS) was 1. At the 1-year follow-up, the patient had not relapsed and tested negative for AQP4-IgG. We further identified the eight patients with IFNα-induced NMOSD. The median onset age was 59 years, and the median time of IFNα exposure was 18 months. Optic neuritis was the most common initial symptom (five, 55.6%), followed by myelitis in three patients and area postrema syndrome in one patient. More than half (five, 55.6%) of the patients were monophasic. After IFNα discontinuation and immunotherapy, most (seven, 77.8%) patients remained relapse-free. However, only one patient was free of sequelae. Conclusion This study highlights the potential pathogenic risk of NMOSD of IFNα treatment. Given the high disability rates of this rare drug-induced disease, it is crucial to monitor the early manifestations of NMOSD during IFNα treatment.
Collapse
Affiliation(s)
- Jie Rao
- Department of Neurology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Na Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Sun
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangwang Fu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
48
|
The cytokines interleukin-6 and interferon-α induce distinct microglia phenotypes. J Neuroinflammation 2022; 19:96. [PMID: 35429976 PMCID: PMC9013466 DOI: 10.1186/s12974-022-02441-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background Elevated production of the cytokines interleukin (IL)-6 or interferon (IFN)-α in the central nervous system (CNS) is implicated in the pathogenesis of neurological diseases such as neuromyelitis optica spectrum disorders or cerebral interferonopathies, respectively. Transgenic mice with CNS-targeted chronic production of IL-6 (GFAP-IL6) or IFN-α (GFAP-IFN) recapitulate important clinical and pathological features of these human diseases. The activation of microglia is a prominent manifestation found both in the human diseases and in the transgenic mice, yet little is known about how this contributes to disease pathology. Methods Here, we used a combination of ex vivo and in situ techniques to characterize the molecular, cellular and transcriptomic phenotypes of microglia in GFAP-IL6 versus GFAP-IFN mice. In addition, a transcriptomic meta-analysis was performed to compare the microglia response from GFAP-IL6 and GFAP-IFN mice to the response of microglia in a range of neurodegenerative and neuroinflammatory disorders. Results We demonstrated that microglia show stimulus-specific responses to IL-6 versus IFN-α in the brain resulting in unique and extensive molecular and cellular adaptations. In GFAP-IL6 mice, microglia proliferated, had shortened, less branched processes and elicited transcriptomic and molecular changes associated with phagocytosis and lipid processing. In comparison, microglia in the brain of GFAP-IFN mice exhibited increased proliferation and apoptosis, had larger, hyper-ramified processes and showed transcriptomic and surface marker changes associated with antigen presentation and antiviral response. Further, a transcriptomic meta-analysis revealed that IL-6 and IFN-α both contribute to the formation of a core microglia response in animal models of neurodegenerative and neuroinflammatory disorders, such as Alzheimer’s disease, tauopathy, multiple sclerosis and lipopolysaccharide-induced endotoxemia. Conclusions Our findings demonstrate that microglia responses to IL-6 and IFN-α are highly stimulus-specific, wide-ranging and give rise to divergent phenotypes that modulate microglia responses in neuroinflammatory and neurodegenerative diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02441-x.
Collapse
|
49
|
García-Juárez M, Camacho-Morales A. Defining the role of anti- and pro-inflammatory outcomes of Interleukin-6 in mental health. Neuroscience 2022; 492:32-46. [DOI: 10.1016/j.neuroscience.2022.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 01/03/2023]
|
50
|
McGrath T, Baskerville R, Rogero M, Castell L. Emerging Evidence for the Widespread Role of Glutamatergic Dysfunction in Neuropsychiatric Diseases. Nutrients 2022; 14:nu14050917. [PMID: 35267893 PMCID: PMC8912368 DOI: 10.3390/nu14050917] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
The monoamine model of depression has long formed the basis of drug development but fails to explain treatment resistance or associations with stress or inflammation. Recent animal research, clinical trials of ketamine (a glutamate receptor antagonist), neuroimaging research, and microbiome studies provide increasing evidence of glutamatergic dysfunction in depression and other disorders. Glutamatergic involvement across diverse neuropathologies including psychoses, neurodevelopmental, neurodegenerative conditions, and brain injury forms the rationale for this review. Glutamate is the brain's principal excitatory neurotransmitter (NT), a metabolic and synthesis substrate, and an immune mediator. These overlapping roles and multiple glutamate NT receptor types complicate research into glutamate neurotransmission. The glutamate microcircuit comprises excitatory glutamatergic neurons, astrocytes controlling synaptic space levels, through glutamate reuptake, and inhibitory GABA interneurons. Astroglia generate and respond to inflammatory mediators. Glutamatergic microcircuits also act at the brain/body interface via the microbiome, kynurenine pathway, and hypothalamus-pituitary-adrenal axis. Disruption of excitatory/inhibitory homeostasis causing neuro-excitotoxicity, with neuronal impairment, causes depression and cognition symptoms via limbic and prefrontal regions, respectively. Persistent dysfunction reduces neuronal plasticity and growth causing neuronal death and tissue atrophy in neurodegenerative diseases. A conceptual overview of brain glutamatergic activity and peripheral interfacing is presented, including the common mechanisms that diverse diseases share when glutamate homeostasis is disrupted.
Collapse
Affiliation(s)
- Thomas McGrath
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| | - Richard Baskerville
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Correspondence:
| | - Marcelo Rogero
- School of Public Health, University of Sao Paulo, Sao Paulo 01246-904, Brazil;
| | - Linda Castell
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| |
Collapse
|