1
|
Shohayeb B, Sempert K, Wallis TP, Meunier FA, Durisic N, O'Brien EA, Flores C, Cooper HM. BDNF-dependent nano-organization of Neogenin and the WAVE regulatory complex promotes actin remodeling in dendritic spines. iScience 2024; 27:110621. [PMID: 39228790 PMCID: PMC11369513 DOI: 10.1016/j.isci.2024.110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/01/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Synaptic structural plasticity, the expansion of dendritic spines in response to synaptic stimulation, is essential for experience-dependent plasticity and is driven by branched actin polymerization. The WAVE regulatory complex (WRC) is confined to nanodomains at the postsynaptic membrane where it catalyzes actin polymerization. As the netrin/RGM receptor Neogenin is a critical regulator of the WRC, its nanoscale organization may be an important determinant of WRC nanoarchitecture and function. Using super-resolution microscopy, we reveal that Neogenin is highly organized on the spine membrane at the nanoscale level. We show that Neogenin binding to the WRC promotes co-clustering into nanodomains in response to brain-derived neurotrophic factor (BDNF), indicating that nanoclustering occurs in response to synaptic stimulation. Disruption of Neogenin/WRC binding not only prevents BDNF-mediated actin remodeling but also inhibits BDNF-induced calcium signaling. We conclude that the assembly of Neogenin/WRC nanodomains is a prerequisite for BDNF-mediated structural and synaptic plasticity.
Collapse
Affiliation(s)
- Belal Shohayeb
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kai Sempert
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tristan P. Wallis
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Frédéric A. Meunier
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth A. O'Brien
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cecilia Flores
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
- Douglas Mental Health University Institute, Montréal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montréal, Canada
| | - Helen M. Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Singer A, Ramos A, Keating AE. Elaboration of the Homer1 recognition landscape reveals incomplete divergence of paralogous EVH1 domains. Protein Sci 2024; 33:e5094. [PMID: 38989636 PMCID: PMC11237882 DOI: 10.1002/pro.5094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024]
Abstract
Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of short linear motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. This expanded our understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.
Collapse
Affiliation(s)
- Avinoam Singer
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Alejandra Ramos
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Amy E. Keating
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
3
|
Kim J, Bustamante E, Sotonyi P, Maxwell N, Parameswaran P, Kent JK, Wetsel WC, Soderblom EJ, Rácz B, Soderling SH. Presynaptic Rac1 in the hippocampus selectively regulates working memory. eLife 2024; 13:RP97289. [PMID: 39046788 PMCID: PMC11268886 DOI: 10.7554/elife.97289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.
Collapse
Affiliation(s)
- Jaebin Kim
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Edwin Bustamante
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Peter Sotonyi
- Department of Anatomy and Histology, University of Veterinary MedicineBudapestHungary
| | - Nicholas Maxwell
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Pooja Parameswaran
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Julie K Kent
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - William C Wetsel
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Psychiatry and Behavioral Sciences, Duke University School of MedicineDurhamUnited States
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University School of MedicineDurhamUnited States
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Erik J Soderblom
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Proteomics and Metabolomics Shared Resource and Center for Genomic and Computational Biology, Duke University School of MedicineDurhamUnited States
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary MedicineBudapestHungary
| | - Scott H Soderling
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
4
|
Tran KM, Kwang N, Gomez-Arboledas A, Kawauchi S, Mar C, Chao D, Da Cunha C, Wang S, Collins S, Walker A, Shi KX, Alcantara JA, Neumann J, Tenner AJ, LaFerla FM, Hohsfield LA, Swarup V, MacGregor GR, Green KN. APOE Christchurch enhances a disease-associated microglial response to plaque but suppresses response to tau pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597211. [PMID: 38895362 PMCID: PMC11185750 DOI: 10.1101/2024.06.03.597211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Background Apolipoprotein E ε4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). A recent case report identified a rare variant in APOE, APOE3-R136S (Christchurch), proposed to confer resistance to autosomal dominant Alzheimer's Disease (AD). However, it remains unclear whether and how this variant exerts its protective effects. Methods We introduced the R136S variant into mouse Apoe (ApoeCh) and investigated its effect on the development of AD-related pathology using the 5xFAD model of amyloidosis and the PS19 model of tauopathy. We used immunohistochemical and biochemical analysis along with single-cell spatial transcriptomics and proteomics to explore the impact of the ApoeCh variant on AD pathological development and the brain's response to plaques and tau. Results In 5xFAD mice, ApoeCh enhances a Disease-Associated Microglia (DAM) phenotype in microglia surrounding plaques, and reduces plaque load, dystrophic neurites, and plasma neurofilament light chain. By contrast, in PS19 mice, ApoeCh suppresses the microglial and astrocytic responses to tau-laden neurons and does not reduce tau accumulation or phosphorylation, but partially rescues tau-induced synaptic and myelin loss. We compared how microglia responses differ between the two mouse models to elucidate the distinct DAM signatures induced by ApoeCh. We identified upregulation of antigen presentation-related genes in the DAM response in a PS19 compared to a 5xFAD background, suggesting a differential response to amyloid versus tau pathology that is modulated by the presence of ApoeCh. Conclusions These findings highlight the ability of the ApoeCh variant to modulate microglial responses based on the type of pathology, enhancing DAM reactivity in amyloid models and dampening neuroinflammation to promote protection in tau models. This suggests that the Christchurch variant's protective effects likely involve multiple mechanisms, including changes in receptor binding and microglial programming.
Collapse
Affiliation(s)
- Kristine M. Tran
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Nellie Kwang
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Angela Gomez-Arboledas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Shimako Kawauchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Cassandra Mar
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Donna Chao
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Celia Da Cunha
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Shuling Wang
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Sherilyn Collins
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Amber Walker
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Kai-Xuan Shi
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Joshua A. Alcantara
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Jonathan Neumann
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Andrea J. Tenner
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Frank M. LaFerla
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Lindsay A. Hohsfield
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
| | - Grant R. MacGregor
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Kim N. Green
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| |
Collapse
|
5
|
Mitra A, Deats SP, Dickson PE, Zhu J, Gardin J, Nieman BJ, Henkelman RM, Tsai NP, Chesler EJ, Zhang ZW, Kumar V. Tmod2 Is a Regulator of Cocaine Responses through Control of Striatal and Cortical Excitability and Drug-Induced Plasticity. J Neurosci 2024; 44:e1389232024. [PMID: 38508714 PMCID: PMC11063827 DOI: 10.1523/jneurosci.1389-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 03/22/2024] Open
Abstract
Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets. Tropomodulin 2 (Tmod2) is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that Tmod2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability. Detailed addiction phenotyping shows that Tmod2 deletion does not affect the acute locomotor response to cocaine administration. However, sensitized locomotor responses are highly attenuated in these knock-outs, indicating perturbed drug-induced plasticity. In addition, Tmod2 mutant animals do not self-administer cocaine indicating lack of hedonic responses to cocaine. Whole-brain MR imaging shows differences in brain volume across multiple regions, although transcriptomic experiments did not reveal perturbations in gene coexpression networks. Detailed electrophysiological characterization of Tmod2 KO neurons showed increased spontaneous firing rate of early postnatal and adult cortical and striatal neurons. Cocaine-induced synaptic plasticity that is critical for sensitization is either missing or reciprocal in Tmod2 KO nucleus accumbens shell medium spiny neurons, providing a mechanistic explanation of the cocaine response phenotypes. Combined, these data, collected from both males and females, provide compelling evidence that Tmod2 is a major regulator of plasticity in the mesolimbic system and regulates the reinforcing and addictive properties of cocaine.
Collapse
Affiliation(s)
| | | | | | - Jiuhe Zhu
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | - Brian J Nieman
- Mouse Imaging Centre and Translational Medicine, Hospital for Sick Children; Ontario Institute for Cancer Research; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 3H7, Canada
| | - R Mark Henkelman
- Mouse Imaging Centre and Translational Medicine, Hospital for Sick Children; Ontario Institute for Cancer Research; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 3H7, Canada
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | | | - Vivek Kumar
- The Jackson Laboratory, Bar Harbor, Maine 04609
| |
Collapse
|
6
|
Singer A, Ramos A, Keating AE. Elaboration of the Homer1 Recognition Landscape Reveals Incomplete Divergence of Paralogous EVH1 Domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576863. [PMID: 38645240 PMCID: PMC11030225 DOI: 10.1101/2024.01.23.576863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of Short Linear Motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. In doing so, we expanded current understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.
Collapse
Affiliation(s)
- Avinoam Singer
- MIT Department of Biology, Cambridge, Massachusetts, USA
| | | | - Amy E. Keating
- MIT Department of Biology, Cambridge, Massachusetts, USA
- MIT Department of Biological Engineering, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Kim J, Bustamante E, Sotonyi P, Maxwell ND, Parameswaran P, Kent JK, Wetsel WC, Soderblom EJ, Rácz B, Soderling SH. Presynaptic Rac1 in the hippocampus selectively regulates working memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585488. [PMID: 38562715 PMCID: PMC10983896 DOI: 10.1101/2024.03.18.585488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory is selectively impaired following the expression of a genetically encoded Rac1-inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.
Collapse
Affiliation(s)
- Jaebin Kim
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Edwin Bustamante
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Peter Sotonyi
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Nicholas D Maxwell
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Pooja Parameswaran
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Julie K Kent
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - William C Wetsel
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical School, Durham, North Carolina, USA
- Department of Neurobiology, Duke University Medical School, Durham, North Carolina, USA
| | - Erik J Soderblom
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical School, Durham, North Carolina, USA
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
- Department of Neurobiology, Duke University Medical School, Durham, North Carolina, USA
| |
Collapse
|
8
|
Mariano V, Kanellopoulos AK, Ricci C, Di Marino D, Borrie SC, Dupraz S, Bradke F, Achsel T, Legius E, Odent S, Billuart P, Bienvenu T, Bagni C. Intellectual Disability and Behavioral Deficits Linked to CYFIP1 Missense Variants Disrupting Actin Polymerization. Biol Psychiatry 2024; 95:161-174. [PMID: 37704042 DOI: 10.1016/j.biopsych.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND 15q11.2 deletions and duplications have been linked to autism spectrum disorder, schizophrenia, and intellectual disability. Recent evidence suggests that dysfunctional CYFIP1 (cytoplasmic FMR1 interacting protein 1) contributes to the clinical phenotypes observed in individuals with 15q11.2 deletion/duplication syndrome. CYFIP1 plays crucial roles in neuronal development and brain connectivity, promoting actin polymerization and regulating local protein synthesis. However, information about the impact of single nucleotide variants in CYFIP1 on neurodevelopmental disorders is limited. METHODS Here, we report a family with 2 probands exhibiting intellectual disability, autism spectrum disorder, spastic tetraparesis, and brain morphology defects and who carry biallelic missense point mutations in the CYFIP1 gene. We used skin fibroblasts from one of the probands, the parents, and typically developing individuals to investigate the effect of the variants on the functionality of CYFIP1. In addition, we generated Drosophila knockin mutants to address the effect of the variants in vivo and gain insight into the molecular mechanism that underlies the clinical phenotype. RESULTS Our study revealed that the 2 missense variants are in protein domains responsible for maintaining the interaction within the wave regulatory complex. Molecular and cellular analyses in skin fibroblasts from one proband showed deficits in actin polymerization. The fly model for these mutations exhibited abnormal brain morphology and F-actin loss and recapitulated the core behavioral symptoms, such as deficits in social interaction and motor coordination. CONCLUSIONS Our findings suggest that the 2 CYFIP1 variants contribute to the clinical phenotype in the probands that reflects deficits in actin-mediated brain development processes.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Human Genetics, KU Leuven, Belgium
| | | | - Carlotta Ricci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center, Polytechnic University of Marche, Ancona, Italy; Department of Neuroscience, Neuronal Death and Neuroprotection Unit, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| | | | - Sebastian Dupraz
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Frank Bradke
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Eric Legius
- Department of Human Genetics, KU Leuven, Belgium
| | - Sylvie Odent
- Service de Génétique Clinique, Centre Labellisé pour les Anomalies du Développement Ouest, Centre Hospitalier Universitaire de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS, UMR 6290, Université de Rennes, ERN-ITHACA, France
| | - Pierre Billuart
- Institut de Psychiatrie et de Neurosciences de Paris, Institut National de la Santé et de la Recherche Médicale U1266, Université de Paris Cité (UPC), Paris, France
| | - Thierry Bienvenu
- Institut de Psychiatrie et de Neurosciences de Paris, Institut National de la Santé et de la Recherche Médicale U1266, Université de Paris Cité (UPC), Paris, France
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
9
|
Madugalle SU, Liau WS, Zhao Q, Li X, Gong H, Marshall PR, Periyakaruppiah A, Zajaczkowski EL, Leighton LJ, Ren H, Musgrove MRB, Davies JWA, Kim G, Rauch S, He C, Dickinson BC, Fulopova B, Fletcher LN, Williams SR, Spitale RC, Bredy TW. Synapse-Enriched m 6A-Modified Malat1 Interacts with the Novel m 6A Reader, DPYSL2, and Is Required for Fear-Extinction Memory. J Neurosci 2023; 43:7084-7100. [PMID: 37669863 PMCID: PMC10601377 DOI: 10.1523/jneurosci.0943-23.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
The RNA modification N6-methyladenosine (m6A) regulates the interaction between RNA and various RNA binding proteins within the nucleus and other subcellular compartments and has recently been shown to be involved in experience-dependent plasticity, learning, and memory. Using m6A RNA-sequencing, we have discovered a distinct population of learning-related m6A- modified RNAs at the synapse, which includes the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1). RNA immunoprecipitation and mass spectrometry revealed 12 new synapse-specific learning-induced m6A readers in the mPFC of male C57/BL6 mice, with m6A-modified Malat1 binding to a subset of these, including CYFIP2 and DPYSL2. In addition, a cell type- and synapse-specific, and state-dependent, reduction of m6A on Malat1 impairs fear-extinction memory; an effect that likely occurs through a disruption in the interaction between Malat1 and DPYSL2 and an associated decrease in dendritic spine formation. These findings highlight the critical role of m6A in regulating the functional state of RNA during the consolidation of fear-extinction memory, and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.SIGNIFICANCE STATEMENT We have discovered that learning-induced m6A-modified RNA (including the long noncoding RNA, Malat1) accumulates in the synaptic compartment. We have identified several new m6A readers that are associated with fear extinction learning and demonstrate a causal relationship between m6A-modified Malat1 and the formation of fear-extinction memory. These findings highlight the role of m6A in regulating the functional state of an RNA during memory formation and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.
Collapse
Affiliation(s)
| | - Wei-Siang Liau
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Qiongyi Zhao
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China 430071
- Medical Research Institute, Wuhan University, Wuhan, China 430014
| | - Hao Gong
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Paul R Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Ambika Periyakaruppiah
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Esmi L Zajaczkowski
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Laura J Leighton
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Haobin Ren
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Mason R B Musgrove
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Joshua W A Davies
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Gwangmin Kim
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Simone Rauch
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Bryan C Dickinson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Barbora Fulopova
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Lee N Fletcher
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Stephen R Williams
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Timothy W Bredy
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| |
Collapse
|
10
|
Sempert K, Shohayeb B, Lanoue V, O'Brien EA, Flores C, Cooper HM. RGMa and Neogenin control dendritic spine morphogenesis via WAVE Regulatory Complex-mediated actin remodeling. Front Mol Neurosci 2023; 16:1253801. [PMID: 37928069 PMCID: PMC10620725 DOI: 10.3389/fnmol.2023.1253801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Structural plasticity, the ability of dendritic spines to change their volume in response to synaptic stimulation, is an essential determinant of synaptic strength and long-term potentiation (LTP), the proposed cellular substrate for learning and memory. Branched actin polymerization is a major force driving spine enlargement and sustains structural plasticity. The WAVE Regulatory Complex (WRC), a pivotal branched actin regulator, controls spine morphology and therefore structural plasticity. However, the molecular mechanisms that govern WRC activation during spine enlargement are largely unknown. Here we identify a critical role for Neogenin and its ligand RGMa (Repulsive Guidance Molecule a) in promoting spine enlargement through the activation of WRC-mediated branched actin remodeling. We demonstrate that Neogenin regulates WRC activity by binding to the highly conserved Cyfip/Abi binding pocket within the WRC. We find that after Neogenin or RGMa depletion, the proportions of filopodia and immature thin spines are dramatically increased, and the number of mature mushroom spines concomitantly decreased. Wildtype Neogenin, but not Neogenin bearing mutations in the Cyfip/Abi binding motif, is able to rescue the spine enlargement defect. Furthermore, Neogenin depletion inhibits actin polymerization in the spine head, an effect that is not restored by the mutant. We conclude that RGMa and Neogenin are critical modulators of WRC-mediated branched actin polymerization promoting spine enlargement. This study also provides mechanistic insight into Neogenin's emerging role in LTP induction.
Collapse
Affiliation(s)
- Kai Sempert
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Belal Shohayeb
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Vanessa Lanoue
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth A O'Brien
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Kramer DA, Narvaez-Ortiz HY, Patel U, Shi R, Shen K, Nolen BJ, Roche J, Chen B. The intrinsically disordered cytoplasmic tail of a dendrite branching receptor uses two distinct mechanisms to regulate the actin cytoskeleton. eLife 2023; 12:e88492. [PMID: 37555826 PMCID: PMC10411975 DOI: 10.7554/elife.88492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 08/10/2023] Open
Abstract
Dendrite morphogenesis is essential for neural circuit formation, yet the molecular mechanisms underlying complex dendrite branching remain elusive. Previous studies on the highly branched Caenorhabditis elegans PVD sensory neuron identified a membrane co-receptor complex that links extracellular signals to intracellular actin remodeling machinery, promoting high-order dendrite branching. In this complex, the claudin-like transmembrane protein HPO-30 recruits the WAVE regulatory complex (WRC) to dendrite branching sites, stimulating the Arp2/3 complex to polymerize actin. We report here our biochemical and structural analysis of this interaction, revealing that the intracellular domain (ICD) of HPO-30 is intrinsically disordered and employs two distinct mechanisms to regulate the actin cytoskeleton. First, HPO-30 ICD binding to the WRC requires dimerization and involves the entire ICD sequence, rather than a short linear peptide motif. This interaction enhances WRC activation by the GTPase Rac1. Second, HPO-30 ICD directly binds to the sides and barbed end of actin filaments. Binding to the barbed end requires ICD dimerization and inhibits both actin polymerization and depolymerization, resembling the actin capping protein CapZ. These dual functions provide an intriguing model of how membrane proteins can integrate distinct mechanisms to fine-tune local actin dynamics.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Heidy Y Narvaez-Ortiz
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Urval Patel
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Rebecca Shi
- Department of Biology, Stanford UniversityStanfordUnited States
- Neurosciences IDP, Stanford UniversityStanfordUnited States
| | - Kang Shen
- Department of Biology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Brad J Nolen
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Julien Roche
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Baoyu Chen
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| |
Collapse
|
12
|
Collins KB, Scott JD. Phosphorylation, compartmentalization, and cardiac function. IUBMB Life 2023; 75:353-369. [PMID: 36177749 PMCID: PMC10049969 DOI: 10.1002/iub.2677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Protein phosphorylation is a fundamental element of cell signaling. First discovered as a biochemical switch in glycogen metabolism, we now know that this posttranslational modification permeates all aspects of cellular behavior. In humans, over 540 protein kinases attach phosphate to acceptor amino acids, whereas around 160 phosphoprotein phosphatases remove phosphate to terminate signaling. Aberrant phosphorylation underlies disease, and kinase inhibitor drugs are increasingly used clinically as targeted therapies. Specificity in protein phosphorylation is achieved in part because kinases and phosphatases are spatially organized inside cells. A prototypic example is compartmentalization of the cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase A through association with A-kinase anchoring proteins. This configuration creates autonomous signaling islands where the anchored kinase is constrained in proximity to activators, effectors, and selected substates. This article primarily focuses on A kinase anchoring protein (AKAP) signaling in the heart with an emphasis on anchoring proteins that spatiotemporally coordinate excitation-contraction coupling and hypertrophic responses.
Collapse
Affiliation(s)
- Kerrie B. Collins
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| | - John D. Scott
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| |
Collapse
|
13
|
Diab AM, Wigerius M, Quinn DP, Qi J, Shahin I, Paffile J, Krueger K, Karten B, Krueger SR, Fawcett JP. NCK1 Modulates Neuronal Actin Dynamics and Promotes Dendritic Spine, Synapse, and Memory Formation. J Neurosci 2023; 43:885-901. [PMID: 36535770 PMCID: PMC9908320 DOI: 10.1523/jneurosci.0495-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Memory formation and maintenance is a dynamic process involving the modulation of the actin cytoskeleton at synapses. Understanding the signaling pathways that contribute to actin modulation is important for our understanding of synapse formation and function, as well as learning and memory. Here, we focused on the importance of the actin regulator, noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1), in hippocampal dependent behaviors and development. We report that male mice lacking NCK1 have impairments in both short-term and working memory, as well as spatial learning. Additionally, we report sex differences in memory impairment showing that female mice deficient in NCK1 fail at reversal learning in a spatial learning task. We find that NCK1 is expressed in postmitotic neurons but is dispensable for neuronal proliferation and migration in the developing hippocampus. Morphologically, NCK1 is not necessary for overall neuronal dendrite development. However, neurons lacking NCK1 have lower dendritic spine and synapse densities in vitro and in vivo EM analysis reveal increased postsynaptic density (PSD) thickness in the hippocampal CA1 region of NCK1-deficient mice. Mechanistically, we find the turnover of actin-filaments in dendritic spines is accelerated in neurons that lack NCK1. Together, these findings suggest that NCK1 contributes to hippocampal-dependent memory by stabilizing actin dynamics and dendritic spine formation.SIGNIFICANCE STATEMENT Understanding the molecular signaling pathways that contribute to memory formation, maintenance, and elimination will lead to a better understanding of the genetic influences on cognition and cognitive disorders and will direct future therapeutics. Here, we report that the noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1) adaptor protein modulates actin-filament turnover in hippocampal dendritic spines. Mice lacking NCK1 show sex-dependent deficits in hippocampal memory formation tasks, have altered postsynaptic densities, and reduced synaptic density. Together, our work implicates NCK1 in the regulation of actin cytoskeleton dynamics and normal synapse development which is essential for memory formation.
Collapse
Affiliation(s)
- Antonios M Diab
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Michael Wigerius
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Dylan P Quinn
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jiansong Qi
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ibrahim Shahin
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Julia Paffile
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kavita Krueger
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Barbara Karten
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Stefan R Krueger
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - James P Fawcett
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
14
|
Biomolecular condensate assembly of nArgBP2 tunes its functionality to manifest the structural plasticity of dendritic spines. Exp Mol Med 2023; 55:108-119. [PMID: 36599935 PMCID: PMC9898538 DOI: 10.1038/s12276-022-00918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 01/05/2023] Open
Abstract
nArgBP2, a candidate gene for intellectual disability, is a postsynaptic protein critical for dendritic spine development and morphogenesis, and its knockdown (KD) in developing neurons severely impairs spine-bearing excitatory synapse formation. Surprisingly, nArgBP2 KD in mature neurons did not cause morphological defects in the existing spines at rest, raising questions of how it functions in mature neurons. We found that unlike its inaction at rest, nArgBP2 KD completely inhibited the enlargement of dendritic spines during chemically induced long-term potentiation (cLTP) in mature neurons. We further found that nArgBP2 forms condensates in dendritic spines and that these condensates are dispersed by cLTP, which spatiotemporally coincides with spine head enlargement. Condensates with CaMKII phosphorylation-deficient mutant or CaMKII inhibition are neither dispersed nor accompanied by spine enlargement during cLTP. We found that nArgBP2 condensates in spines exhibited liquid-like properties, and in heterologous and in vitro expression systems, nArgBP2 undergoes liquid-liquid phase separation via multivalent intermolecular interactions between SH3 domains and proline-rich domains. It also forms coacervates with CaMKIIα, which is rapidly dissembled by calcium/CaMKIIα-dependent phosphorylation. We further showed that the interaction between nArgBP2 and WAVE1 competes with nArgBP2 phase separation and that blocking the nArgBP2-WAVE1 interaction prevents spine enlargement during cLTP. Together, our results suggest that nArgBP2 at rest is confined to the condensates but is released by CaMKIIα-mediated phosphorylation during synaptic plasticity, which regulates its timely interaction with WAVE1 to induce spine head enlargement in mature neurons.
Collapse
|
15
|
Lin CH, Chen YC, Chan SP, Ou CY. TIAM-1 differentially regulates dendritic and axonal microtubule organization in patterning neuronal development through its multiple domains. PLoS Genet 2022; 18:e1010454. [PMID: 36223408 PMCID: PMC9612824 DOI: 10.1371/journal.pgen.1010454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 10/27/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
Axon and dendrite development require the cooperation of actin and microtubule cytoskeletons. Microtubules form a well-organized network to direct polarized trafficking and support neuronal processes formation with distinct actin structures. However, it is largely unknown how cytoskeleton regulators differentially regulate microtubule organization in axon and dendrite development. Here, we characterize the role of actin regulators in axon and dendrite development and show that the RacGEF TIAM-1 regulates dendritic patterns through its N-terminal domains and suppresses axon growth through its C-terminal domains. TIAM-1 maintains plus-end-out microtubule orientation in posterior dendrites and prevents the accumulation of microtubules in the axon. In somatodendritic regions, TIAM-1 interacts with UNC-119 and stabilizes the organization between actin filaments and microtubules. UNC-119 is required for TIAM-1 to control axon growth, and its expression levels determine axon length. Taken together, TIAM-1 regulates neuronal microtubule organization and patterns axon and dendrite development respectively through its different domains.
Collapse
Affiliation(s)
- Chih-Hsien Lin
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Chun Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Peng Chan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chan-Yen Ou
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
16
|
Triantopoulou N, Vidaki M. Local mRNA translation and cytoskeletal reorganization: Mechanisms that tune neuronal responses. Front Mol Neurosci 2022; 15:949096. [PMID: 35979146 PMCID: PMC9376447 DOI: 10.3389/fnmol.2022.949096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022] Open
Abstract
Neurons are highly polarized cells with significantly long axonal and dendritic extensions that can reach distances up to hundreds of centimeters away from the cell bodies in higher vertebrates. Their successful formation, maintenance, and proper function highly depend on the coordination of intricate molecular networks that allow axons and dendrites to quickly process information, and respond to a continuous and diverse cascade of environmental stimuli, often without enough time for communication with the soma. Two seemingly unrelated processes, essential for these rapid responses, and thus neuronal homeostasis and plasticity, are local mRNA translation and cytoskeletal reorganization. The axonal cytoskeleton is characterized by high stability and great plasticity; two contradictory attributes that emerge from the powerful cytoskeletal rearrangement dynamics. Cytoskeletal reorganization is crucial during nervous system development and in adulthood, ensuring the establishment of proper neuronal shape and polarity, as well as regulating intracellular transport and synaptic functions. Local mRNA translation is another mechanism with a well-established role in the developing and adult nervous system. It is pivotal for axonal guidance and arborization, synaptic formation, and function and seems to be a key player in processes activated after neuronal damage. Perturbations in the regulatory pathways of local translation and cytoskeletal reorganization contribute to various pathologies with diverse clinical manifestations, ranging from intellectual disabilities (ID) to autism spectrum disorders (ASD) and schizophrenia (SCZ). Despite the fact that both processes are essential for the orchestration of pathways critical for proper axonal and dendritic function, the interplay between them remains elusive. Here we review our current knowledge on the molecular mechanisms and specific interaction networks that regulate and potentially coordinate these interconnected processes.
Collapse
Affiliation(s)
- Nikoletta Triantopoulou
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Marina Vidaki
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
- *Correspondence: Marina Vidaki,
| |
Collapse
|
17
|
Kramer DA, Piper HK, Chen B. WASP family proteins: Molecular mechanisms and implications in human disease. Eur J Cell Biol 2022; 101:151244. [PMID: 35667337 PMCID: PMC9357188 DOI: 10.1016/j.ejcb.2022.151244] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in regulating actin cytoskeletal dynamics in a wide range of cellular processes. Genetic mutations or misregulation of these proteins are tightly associated with many diseases. The WASP-family proteins act by transmitting various upstream signals to their conserved WH2-Central-Acidic (WCA) peptide sequence at the C-terminus, which in turn binds to the Arp2/3 complex to stimulate the formation of branched actin networks at membranes. Despite this common feature, the regulatory mechanisms and cellular functions of distinct WASP-family proteins are very different. Here, we summarize and clarify our current understanding of WASP-family proteins and how disruption of their functions is related to human disease.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Hannah K Piper
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
18
|
Ji Y, Koch D, González Delgado J, Günther M, Witte OW, Kessels MM, Frahm C, Qualmann B. Poststroke dendritic arbor regrowth requires the actin nucleator Cobl. PLoS Biol 2021; 19:e3001399. [PMID: 34898601 PMCID: PMC8699704 DOI: 10.1371/journal.pbio.3001399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/23/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
Ischemic stroke is a major cause of death and long-term disability. We demonstrate that middle cerebral artery occlusion (MCAO) in mice leads to a strong decline in dendritic arborization of penumbral neurons. These defects were subsequently repaired by an ipsilateral recovery process requiring the actin nucleator Cobl. Ischemic stroke and excitotoxicity, caused by calpain-mediated proteolysis, significantly reduced Cobl levels. In an apparently unique manner among excitotoxicity-affected proteins, this Cobl decline was rapidly restored by increased mRNA expression and Cobl then played a pivotal role in poststroke dendritic arbor repair in peri-infarct areas. In Cobl knockout (KO) mice, the dendritic repair window determined to span day 2 to 4 poststroke in wild-type (WT) strikingly passed without any dendritic regrowth. Instead, Cobl KO penumbral neurons of the primary motor cortex continued to show the dendritic impairments caused by stroke. Our results thereby highlight a powerful poststroke recovery process and identified causal molecular mechanisms critical during poststroke repair. Ischemic stroke is a major cause of death and long-term disability. This study reveals that, in mice, stroke-induced damage to dendritic arborization in the area around an infarct is rapidly repaired via dendritic regrowth; this plasticity requires the actin nucleator Cobl.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Dennis Koch
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Jule González Delgado
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Madlen Günther
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W. Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Michael M. Kessels
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| |
Collapse
|
19
|
Zhang H, Ben Zablah Y, Zhang H, Jia Z. Rho Signaling in Synaptic Plasticity, Memory, and Brain Disorders. Front Cell Dev Biol 2021; 9:729076. [PMID: 34671600 PMCID: PMC8520953 DOI: 10.3389/fcell.2021.729076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Memory impairments are associated with many brain disorders such as autism, Alzheimer's disease, and depression. Forming memories involves modifications of synaptic transmission and spine morphology. The Rho family small GTPases are key regulators of synaptic plasticity by affecting various downstream molecules to remodel the actin cytoskeleton. In this paper, we will review recent studies on the roles of Rho proteins in the regulation of hippocampal long-term potentiation (LTP) and long-term depression (LTD), the most extensively studied forms of synaptic plasticity widely regarded as cellular mechanisms for learning and memory. We will also discuss the involvement of Rho signaling in spine morphology, the structural basis of synaptic plasticity and memory formation. Finally, we will review the association between brain disorders and abnormalities of Rho function. It is expected that studying Rho signaling at the synapse will contribute to the understanding of how memory is formed and disrupted in diseases.
Collapse
Affiliation(s)
- Haorui Zhang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Youssif Ben Zablah
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Haiwang Zhang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhengping Jia
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Khanal P, Hotulainen P. Dendritic Spine Initiation in Brain Development, Learning and Diseases and Impact of BAR-Domain Proteins. Cells 2021; 10:cells10092392. [PMID: 34572042 PMCID: PMC8468246 DOI: 10.3390/cells10092392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Dendritic spines are small, bulbous protrusions along neuronal dendrites where most of the excitatory synapses are located. Dendritic spine density in normal human brain increases rapidly before and after birth achieving the highest density around 2-8 years. Density decreases during adolescence, reaching a stable level in adulthood. The changes in dendritic spines are considered structural correlates for synaptic plasticity as well as the basis of experience-dependent remodeling of neuronal circuits. Alterations in spine density correspond to aberrant brain function observed in various neurodevelopmental and neuropsychiatric disorders. Dendritic spine initiation affects spine density. In this review, we discuss the importance of spine initiation in brain development, learning, and potential complications resulting from altered spine initiation in neurological diseases. Current literature shows that two Bin Amphiphysin Rvs (BAR) domain-containing proteins, MIM/Mtss1 and SrGAP3, are involved in spine initiation. We review existing literature and open databases to discuss whether other BAR-domain proteins could also take part in spine initiation. Finally, we discuss the potential molecular mechanisms on how BAR-domain proteins could regulate spine initiation.
Collapse
Affiliation(s)
- Pushpa Khanal
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland;
- HiLIFE-Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland;
- Correspondence:
| |
Collapse
|
21
|
Zhao A, Zhou R, Gu Q, Liu M, Zhang B, Huang J, Yang B, Yao R, Wang J, Lv H, Wang J, Shen Y, Wang H, Chen X. Trio exome sequencing identified a novel de novo WASF1 missense variant leading to recurrent site substitution in a Chinese patient with developmental delay, microcephaly, and early-onset seizures: A mutational hotspot p.Trp161 and literature review. Clin Chim Acta 2021; 523:10-18. [PMID: 34478686 DOI: 10.1016/j.cca.2021.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/28/2021] [Accepted: 08/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neurodevelopmental disorder with absent language and variable seizures (NEDALVS, OMIM # 618707) is a newly described autosomal dominant condition caused by heterozygous de novo mutation in WASF1 gene. WASF1 is a key component of the WAVE regulatory complex (WRC) required for actin polymerization. So far, only 3 distinct truncating variants clustering at the WCA domain, 3 missense variants localized to the meander region and a copy number variant (CNV) of WASF1 have been identified among 11 NEDALVS cases previously reported. CASE REPORT We report a pediatric patient carrying novel de novo heterozygous missense variant (NM_003931.2: c.481T > C, p.Trp161Arg) in WASF1 gene. During the first hospitalization at age of 5.5 months, the patient was initially diagnosed with infantile spasms, developmental delay (DD) and microcephaly due to nodding-like epileptic spasms in clusters and hypsarrhythmia on video-electroencephalography, lacking head control and body rollover, and abnormal head circumference 39 cm (<-2SD). The genetic diagnosis with a causal WASF1 variant detected by trio exome sequencing indicated the rare NEDALVS. LITERATURE REVIEW All the reported NEDALVS cases published in the PubMed English literature were reviewed to summarize the genetic and phenotypic spectrum of this novel disorder. CONCLUSION We describe the third patient with a recurrently mutated amino acid site at p.Trp161 in WASF1, currently the 12th patient with NEDALVS. This hotspot missense variant and the truncating variants in WASF1 lead to similar phenotypic patterns with core features of severe DD/ID, and seizures, hypotonia, and microcephaly frequently observed. Our finding expands the WASF1 mutation spectrum and confirms the de novo hotspot missense variant at p.Trp161, further supporting the association of the novel NEDALVS with WASF1 gene and the actin regulatory pathway.
Collapse
Affiliation(s)
- Arman Zhao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China.
| | - Rui Zhou
- Department of Neurology, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China
| | - Qin Gu
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China
| | - Min Liu
- Department of Neurology, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China
| | - Bingbing Zhang
- Department of Neurology, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China
| | - Jing Huang
- Department of Neurology, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China
| | - Bin Yang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Pudong New District, Shanghai 200127, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Pudong New District, Shanghai 200127, China.
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China
| | - Jian Wang
- Department of Pediatric Surgery, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China
| | - Yiping Shen
- Department of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, Guangxi, China; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, United States.
| | - Hongying Wang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China; Department of Clinical Laboratory, Children's Hospital of Wujiang District, Suzhou, 169 Park Road, Wujiang District, Suzhou 215234, Jiangsu, China.
| | - Xuqin Chen
- Department of Neurology, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China.
| |
Collapse
|
22
|
O'Neil SD, Rácz B, Brown WE, Gao Y, Soderblom EJ, Yasuda R, Soderling SH. Action potential-coupled Rho GTPase signaling drives presynaptic plasticity. eLife 2021; 10:63756. [PMID: 34269176 PMCID: PMC8285108 DOI: 10.7554/elife.63756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 07/06/2021] [Indexed: 12/30/2022] Open
Abstract
In contrast to their postsynaptic counterparts, the contributions of activity-dependent cytoskeletal signaling to presynaptic plasticity remain controversial and poorly understood. To identify and evaluate these signaling pathways, we conducted a proteomic analysis of the presynaptic cytomatrix using in vivo biotin identification (iBioID). The resultant proteome was heavily enriched for actin cytoskeleton regulators, including Rac1, a Rho GTPase that activates the Arp2/3 complex to nucleate branched actin filaments. Strikingly, we find Rac1 and Arp2/3 are closely associated with synaptic vesicle membranes in adult mice. Using three independent approaches to alter presynaptic Rac1 activity (genetic knockout, spatially restricted inhibition, and temporal optogenetic manipulation), we discover that this pathway negatively regulates synaptic vesicle replenishment at both excitatory and inhibitory synapses, bidirectionally sculpting short-term synaptic depression. Finally, we use two-photon fluorescence lifetime imaging to show that presynaptic Rac1 activation is coupled to action potentials by voltage-gated calcium influx. Thus, this study uncovers a previously unrecognized mechanism of actin-regulated short-term presynaptic plasticity that is conserved across excitatory and inhibitory terminals. It also provides a new proteomic framework for better understanding presynaptic physiology, along with a blueprint of experimental strategies to isolate the presynaptic effects of ubiquitously expressed proteins.
Collapse
Affiliation(s)
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Walter Evan Brown
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Yudong Gao
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Erik J Soderblom
- Department of Cell Biology, Duke University Medical Center, Durham, United States.,Proteomics and Metabolomics Shared Resource and Center for Genomic and Computational Biology, Duke University Medical Center, Durham, United States
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - Scott H Soderling
- Department of Neurobiology, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States
| |
Collapse
|
23
|
Srivastava S, Macke EL, Swanson LC, Coulter D, Klee EW, Mullegama SV, Xie Y, Lanpher BC, Bedoukian EC, Skraban CM, Villard L, Milh M, Leppert MLO, Cohen JS. Expansion of the Genotypic and Phenotypic Spectrum of WASF1-Related Neurodevelopmental Disorder. Brain Sci 2021; 11:brainsci11070931. [PMID: 34356165 PMCID: PMC8307306 DOI: 10.3390/brainsci11070931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
In humans, de novo truncating variants in WASF1 (Wiskott–Aldrich syndrome protein family member 1) have been linked to presentations of moderate-to-profound intellectual disability (ID), autistic features, and epilepsy. Apart from one case series, there is limited information on the phenotypic spectrum and genetic landscape of WASF1-related neurodevelopmental disorder (NDD). In this report, we describe detailed clinical characteristics of six individuals with WASF1-related NDD. We demonstrate a broader spectrum of neurodevelopmental impairment including more mildly affected individuals. Further, we report new variant types, including a copy number variant (CNV), resulting in the partial deletion of WASF1 in monozygotic twins, and three missense variants, two of which alter the same residue, p.W161. This report adds further evidence that de novo variants in WASF1 cause an autosomal dominant NDD.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.S.); (L.C.S.); (D.C.)
| | - Erica L. Macke
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55902, USA; (E.L.M.); (E.W.K.); (B.C.L.)
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA
| | - Lindsay C. Swanson
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.S.); (L.C.S.); (D.C.)
| | - David Coulter
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.S.); (L.C.S.); (D.C.)
| | - Eric W. Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55902, USA; (E.L.M.); (E.W.K.); (B.C.L.)
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA
| | | | - Yili Xie
- GeneDx Inc., Gaithersburg, MD 20877, USA; (S.V.M.); (Y.X.)
| | - Brendan C. Lanpher
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55902, USA; (E.L.M.); (E.W.K.); (B.C.L.)
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55902, USA
| | - Emma C. Bedoukian
- Roberts Individualized Medical Genetics Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (E.C.B.); (C.M.S.)
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cara M. Skraban
- Roberts Individualized Medical Genetics Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (E.C.B.); (C.M.S.)
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laurent Villard
- Department of Medical Genetics, AP-HM, La Timone Children’s Hospital, 13385 Marseille, France;
- Inserm, Marseille Medical Genetics Center, Faculté de Médecine de Marseille, Aix Marseille University, 13385 Marseille, France;
| | - Mathieu Milh
- Inserm, Marseille Medical Genetics Center, Faculté de Médecine de Marseille, Aix Marseille University, 13385 Marseille, France;
- Department of Pediatric Neurology, AP-HM, La Timone Children’s Hospital, 13385 Marseille, France
| | - Mary L. O. Leppert
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Julie S. Cohen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Correspondence:
| |
Collapse
|
24
|
Sculpting Dendritic Spines during Initiation and Maintenance of Neuropathic Pain. J Neurosci 2021; 40:7578-7589. [PMID: 32998955 DOI: 10.1523/jneurosci.1664-20.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence has established a firm role for synaptic plasticity in the pathogenesis of neuropathic pain. Recent advances have highlighted the importance of dendritic spine remodeling in driving synaptic plasticity within the CNS. Identifying the molecular players underlying neuropathic pain induced structural and functional maladaptation is therefore critical to understanding its pathophysiology. This process of dynamic reorganization happens in unique phases that have diverse pathologic underpinnings in the initiation and maintenance of neuropathic pain. Recent evidence suggests that pharmacological targeting of specific proteins during distinct phases of neuropathic pain development produces enhanced antinociception. These findings outline a potential new paradigm for targeted treatment and the development of novel therapies for neuropathic pain. We present a concise review of the role of dendritic spines in neuropathic pain and outline the potential for modulation of spine dynamics by targeting two proteins, srGAP3 and Rac1, critically involved in the regulation of the actin cytoskeleton.
Collapse
|
25
|
Alexander CJ, Barzik M, Fujiwara I, Remmert K, Wang YX, Petralia RS, Friedman TB, Hammer JA. Myosin 18Aα targets the guanine nucleotide exchange factor β-Pix to the dendritic spines of cerebellar Purkinje neurons and promotes spine maturation. FASEB J 2021; 35:e21092. [PMID: 33378124 PMCID: PMC8357457 DOI: 10.1096/fj.202001449r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Myosin 18Aα is a myosin 2-like protein containing unique N- and C-terminal protein interaction domains that co-assembles with myosin 2. One protein known to bind to myosin 18Aα is β-Pix, a guanine nucleotide exchange factor (GEF) for Rac1 and Cdc42 that has been shown to promote dendritic spine maturation by activating the assembly of actin and myosin filaments in spines. Here, we show that myosin 18A⍺ concentrates in the spines of cerebellar Purkinje neurons via co-assembly with myosin 2 and through an actin binding site in its N-terminal extension. miRNA-mediated knockdown of myosin 18A⍺ results in a significant defect in spine maturation that is rescued by an RNAi-immune version of myosin 18A⍺. Importantly, β-Pix co-localizes with myosin 18A⍺ in spines, and its spine localization is lost upon myosin 18A⍺ knockdown or when its myosin 18A⍺ binding site is deleted. Finally, we show that the spines of myosin 18A⍺ knockdown Purkinje neurons contain significantly less F-actin and myosin 2. Together, these data argue that mixed filaments of myosin 2 and myosin 18A⍺ form a complex with β-Pix in Purkinje neuron spines that promotes spine maturation by enhancing the assembly of actin and myosin filaments downstream of β-Pix's GEF activity.
Collapse
Affiliation(s)
- Christopher J Alexander
- Molecular Cell Biology Laboratory, Cell and Developmental Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Melanie Barzik
- Laboratory of Molecular Genetics, NIDCD, NIH, Bethesda, MD, USA
| | - Ikuko Fujiwara
- Graduate School of Science, Osaka City University, Osaka, Japan
| | | | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD, NIH, Betheda, MD, USA
| | | | | | - John A Hammer
- Molecular Cell Biology Laboratory, Cell and Developmental Biology Center, NHLBI, NIH, Bethesda, MD, USA
| |
Collapse
|
26
|
Gonda Y, Namba T, Hanashima C. Beyond Axon Guidance: Roles of Slit-Robo Signaling in Neocortical Formation. Front Cell Dev Biol 2020; 8:607415. [PMID: 33425915 PMCID: PMC7785817 DOI: 10.3389/fcell.2020.607415] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
The formation of the neocortex relies on intracellular and extracellular signaling molecules that are involved in the sequential steps of corticogenesis, ranging from the proliferation and differentiation of neural progenitor cells to the migration and dendrite formation of neocortical neurons. Abnormalities in these steps lead to disruption of the cortical structure and circuit, and underly various neurodevelopmental diseases, including dyslexia and autism spectrum disorder (ASD). In this review, we focus on the axon guidance signaling Slit-Robo, and address the multifaceted roles of Slit-Robo signaling in neocortical development. Recent studies have clarified the roles of Slit-Robo signaling not only in axon guidance but also in progenitor cell proliferation and migration, and the maturation of neocortical neurons. We further discuss the etiology of neurodevelopmental diseases, which are caused by defects in Slit-Robo signaling during neocortical formation.
Collapse
Affiliation(s)
- Yuko Gonda
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Neuroscience Center, HiLIFE – Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Carina Hanashima
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
27
|
Sulistomo HW, Nemoto T, Kage Y, Fujii H, Uchida T, Takamiya K, Sumimoto H, Kataoka H, Bito H, Takeya R. Fhod3 Controls the Dendritic Spine Morphology of Specific Subpopulations of Pyramidal Neurons in the Mouse Cerebral Cortex. Cereb Cortex 2020; 31:2205-2219. [PMID: 33251537 DOI: 10.1093/cercor/bhaa355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023] Open
Abstract
Changes in the shape and size of the dendritic spines are critical for synaptic transmission. These morphological changes depend on dynamic assembly of the actin cytoskeleton and occur differently in various types of neurons. However, how the actin dynamics are regulated in a neuronal cell type-specific manner remains largely unknown. We show that Fhod3, a member of the formin family proteins that mediate F-actin assembly, controls the dendritic spine morphogenesis of specific subpopulations of cerebrocortical pyramidal neurons. Fhod3 is expressed specifically in excitatory pyramidal neurons within layers II/III and V of restricted areas of the mouse cerebral cortex. Immunohistochemical and biochemical analyses revealed the accumulation of Fhod3 in postsynaptic spines. Although targeted deletion of Fhod3 in the brain did not lead to any defects in the gross or histological appearance of the brain, the dendritic spines in pyramidal neurons within presumptive Fhod3-positive areas were morphologically abnormal. In primary cultures prepared from the Fhod3-depleted cortex, defects in spine morphology were only detected in Fhod3 promoter-active cells, a small population of pyramidal neurons, and not in Fhod3 promoter-negative pyramidal neurons. Thus, Fhod3 plays a crucial role in dendritic spine morphogenesis only in a specific population of pyramidal neurons in a cell type-specific manner.
Collapse
Affiliation(s)
- Hikmawan Wahyu Sulistomo
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Takayuki Nemoto
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yohko Kage
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Hajime Fujii
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Taku Uchida
- Department of Integrative Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Kogo Takamiya
- Department of Integrative Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Hiroaki Kataoka
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryu Takeya
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
28
|
Tanaka S, Masuda Y, Harada A, Okabe S. Impaired actin dynamics and suppression of Shank2-mediated spine enlargement in cortactin knockout mice. ACTA ACUST UNITED AC 2020; 69:44-52. [PMID: 31990031 DOI: 10.1093/jmicro/dfaa001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 12/22/2022]
Abstract
Cortactin regulates actin polymerization and stabilizes branched actin network. In neurons, cortactin is enriched in dendritic spines that contain abundant actin polymers. To explore the function of cortactin in dendritic spines, we examined spine morphology and dynamics in cultured neurons taken from cortactin knockout (KO) mice. Histological analysis revealed that the density and morphology of dendritic spines were not significantly different between wild-type (WT) and cortactin KO neurons. Time-lapse imaging of hippocampal slice cultures showed that the extent of spine volume change was similar between WT and cortactin KO neurons. Despite little effect of cortactin deletion on spine morphology and dynamics, actin turnover in dendritic spines was accelerated in cortactin KO neurons. Furthermore, we detected a suppressive effect of cortactin KO on spine head size under the condition of excessive spine enlargement induced by overexpression of a prominent postsynaptic density protein Shank2. These results suggest that cortactin may have a role in maintaining actin organization by stabilizing actin filaments near the postsynaptic density.
Collapse
Affiliation(s)
- Shinji Tanaka
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasutaka Masuda
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
29
|
Tang Q, Schaks M, Koundinya N, Yang C, Pollard LW, Svitkina TM, Rottner K, Goode BL. WAVE1 and WAVE2 have distinct and overlapping roles in controlling actin assembly at the leading edge. Mol Biol Cell 2020; 31:2168-2178. [PMID: 32697617 PMCID: PMC7550694 DOI: 10.1091/mbc.e19-12-0705] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SCAR/WAVE proteins and Arp2/3 complex assemble branched actin networks at the leading edge. Two isoforms of SCAR/WAVE, WAVE1 and WAVE2, reside at the leading edge, yet it has remained unclear whether they perform similar or distinct roles. Further, there have been conflicting reports about the Arp2/3-independent biochemical activities of WAVE1 on actin filament elongation. To investigate this in vivo, we knocked out WAVE1 and WAVE2 genes, individually and together, in B16-F1 melanoma cells. We demonstrate that WAVE1 and WAVE2 are redundant for lamellipodia formation and motility. However, there is a significant decrease in the rate of leading edge actin extension in WAVE2 KO cells, and an increase in WAVE1 KO cells. The faster rates of actin extension in WAVE1 KO cells are offset by faster retrograde flow, and therefore do not translate into faster lamellipodium protrusion. Thus, WAVE1 restricts the rate of actin extension at the leading edge, and appears to couple actin networks to the membrane to drive protrusion. Overall, these results suggest that WAVE1 and WAVE2 have redundant roles in promoting Arp2/3-dependent actin nucleation and lamellipodia formation, but distinct roles in controlling actin network extension and harnessing network growth to cell protrusion.
Collapse
Affiliation(s)
- Qing Tang
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Matthias Schaks
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Neha Koundinya
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| |
Collapse
|
30
|
Lee SH, Zhang Y, Park J, Kim B, Kim Y, Lee SH, Kim GH, Huh YH, Lee B, Kim Y, Lee Y, Kim JY, Kang H, Choi SY, Jang S, Li Y, Kim S, Jin C, Pang K, Kim E, Lee Y, Kim H, Kim E, Choi JH, Kim J, Lee KJ, Choi SY, Han K. Haploinsufficiency of Cyfip2 Causes Lithium-Responsive Prefrontal Dysfunction. Ann Neurol 2020; 88:526-543. [PMID: 32562430 DOI: 10.1002/ana.25827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/22/2020] [Accepted: 06/14/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Genetic variants of the cytoplasmic FMR1-interacting protein 2 (CYFIP2) encoding an actin-regulatory protein are associated with brain disorders, including intellectual disability and epilepsy. However, specific in vivo neuronal defects and potential treatments for CYFIP2-associated brain disorders remain largely unknown. Here, we characterized Cyfip2 heterozygous (Cyfip2+/- ) mice to understand their neurobehavioral phenotypes and the underlying pathological mechanisms. Furthermore, we examined a potential treatment for such phenotypes of the Cyfip2+/- mice and specified a neuronal function mediating its efficacy. METHODS We performed behavioral analyses of Cyfip2+/- mice. We combined molecular, ultrastructural, and in vitro and in vivo electrophysiological analyses of Cyfip2+/- prefrontal neurons. We also selectively reduced CYFIP2 in the prefrontal cortex (PFC) of mice with virus injections. RESULTS Adult Cyfip2+/- mice exhibited lithium-responsive abnormal behaviors. We found increased filamentous actin, enlarged dendritic spines, and enhanced excitatory synaptic transmission and excitability in the adult Cyfip2+/- PFC that was restricted to layer 5 (L5) neurons. Consistently, adult Cyfip2+/- mice showed increased seizure susceptibility and auditory steady-state responses from the cortical electroencephalographic recordings. Among the identified prefrontal defects, lithium selectively normalized the hyperexcitability of Cyfip2+/- L5 neurons. RNA sequencing revealed reduced expression of potassium channel genes in the adult Cyfip2+/- PFC. Virus-mediated reduction of CYFIP2 in the PFC was sufficient to induce L5 hyperexcitability and lithium-responsive abnormal behavior. INTERPRETATION These results suggest that L5-specific prefrontal dysfunction, especially hyperexcitability, underlies both the pathophysiology and the lithium-mediated amelioration of neurobehavioral phenotypes in adult Cyfip2+/- mice, which can be implicated in CYFIP2-associated brain disorders. ANN NEUROL 2020;88:526-543.
Collapse
Affiliation(s)
- Seung-Hyun Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry
| | - Yinhua Zhang
- Department of Neuroscience, College of Medicine, Korea University.,Department of Biomedical Sciences, College of Medicine, Korea University
| | - Jina Park
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul
| | - Bowon Kim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul
| | - Yangsik Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon
| | - Sang Hoon Lee
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu
| | - Gyu Hyun Kim
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Chungcheongbuk-do
| | - Bokyoung Lee
- Department of Neuroscience, College of Medicine, Korea University
| | - Yoonhee Kim
- Department of Neuroscience, College of Medicine, Korea University.,Department of Biomedical Sciences, College of Medicine, Korea University
| | - Yeunkum Lee
- Department of Neuroscience, College of Medicine, Korea University.,Department of Biomedical Sciences, College of Medicine, Korea University
| | - Jin Yong Kim
- Department of Biomedical Sciences, College of Medicine, Korea University.,Department of Anatomy, College of Medicine, Korea University, Seoul
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, South Korea
| | - Su-Yeon Choi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon
| | - Seil Jang
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon
| | - Yan Li
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon
| | - Shinhyun Kim
- Department of Neuroscience, College of Medicine, Korea University.,Department of Biomedical Sciences, College of Medicine, Korea University
| | - Chunmei Jin
- Department of Neuroscience, College of Medicine, Korea University.,Department of Biomedical Sciences, College of Medicine, Korea University
| | - Kaifang Pang
- Department of Pediatrics, Baylor College of Medicine.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Eunjeong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang
| | - Hyun Kim
- Department of Biomedical Sciences, College of Medicine, Korea University.,Department of Anatomy, College of Medicine, Korea University, Seoul
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul
| | - Jeongjin Kim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul
| | - Kea Joo Lee
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, South Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry
| | - Kihoon Han
- Department of Neuroscience, College of Medicine, Korea University.,Department of Biomedical Sciences, College of Medicine, Korea University
| |
Collapse
|
31
|
Dendritic Spines in Alzheimer's Disease: How the Actin Cytoskeleton Contributes to Synaptic Failure. Int J Mol Sci 2020; 21:ijms21030908. [PMID: 32019166 PMCID: PMC7036943 DOI: 10.3390/ijms21030908] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by Aβ-driven synaptic dysfunction in the early phases of pathogenesis. In the synaptic context, the actin cytoskeleton is a crucial element to maintain the dendritic spine architecture and to orchestrate the spine’s morphology remodeling driven by synaptic activity. Indeed, spine shape and synaptic strength are strictly correlated and precisely governed during plasticity phenomena in order to convert short-term alterations of synaptic strength into long-lasting changes that are embedded in stable structural modification. These functional and structural modifications are considered the biological basis of learning and memory processes. In this review we discussed the existing evidence regarding the role of the spine actin cytoskeleton in AD synaptic failure. We revised the physiological function of the actin cytoskeleton in the spine shaping and the contribution of actin dynamics in the endocytosis mechanism. The internalization process is implicated in different aspects of AD since it controls both glutamate receptor membrane levels and amyloid generation. The detailed understanding of the mechanisms controlling the actin cytoskeleton in a unique biological context as the dendritic spine could pave the way to the development of innovative synapse-tailored therapeutic interventions and to the identification of novel biomarkers to monitor synaptic loss in AD.
Collapse
|
32
|
Iwasaki K, Obashi K, Okabe S. Vasodilator‐stimulated phosphoprotein (VASP) is recruited into dendritic spines via G‐actin‐dependent mechanism and contributes to spine enlargement and stabilization. Eur J Neurosci 2019; 51:806-821. [DOI: 10.1111/ejn.14634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/11/2019] [Accepted: 11/26/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Kanako Iwasaki
- Department of Cellular Neurobiology Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Kazuki Obashi
- Department of Cellular Neurobiology Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology Graduate School of Medicine The University of Tokyo Tokyo Japan
| |
Collapse
|
33
|
Kojima H, Rosendale M, Sugiyama Y, Hayashi M, Horiguchi Y, Yoshihara T, Ikegaya Y, Saneyoshi T, Hayashi Y. The role of CaMKII-Tiam1 complex on learning and memory. Neurobiol Learn Mem 2019; 166:107070. [PMID: 31445077 DOI: 10.1016/j.nlm.2019.107070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 11/18/2022]
Abstract
A stimulation inducing long-term potentiation (LTP) of synaptic transmission induces a persistent expansion of dendritic spines, a phenomenon known as structural LTP (sLTP). We previously proposed that the formation of a reciprocally activating kinase-effector complex (RAKEC) between CaMKII and Tiam1, an activator of the small G-protein Rac1, locks CaMKII into an active conformation, which in turn maintains the phosphorylation status of Tiam1. This makes Rac1 persistently active, specifically in the stimulated spine. To understand the significance of the CaMKII-Tiam1 RAKEC in vivo, we generated a Tiam1 mutant knock-in mouse line in which critical residues for CaMKII binding were mutated into alanines. We confirmed the central role of this interaction on sLTP by observing that KI mice showed reduced Rac1 activity, had smaller spines and a diminished sLTP as compared to their wild-type littermates. Moreover, behavioral tests showed that the novel object recognition memory of these animals was impaired. We thus propose that the CaMKII-Tiam1 interaction regulates spine morphology in vivo and is required for memory storage.
Collapse
Affiliation(s)
- Hiroto Kojima
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Morgane Rosendale
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Yui Sugiyama
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mariko Hayashi
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yoko Horiguchi
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Toru Yoshihara
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeo Saneyoshi
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| | - Yasunori Hayashi
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
34
|
Roesler MK, Lombino FL, Freitag S, Schweizer M, Hermans-Borgmeyer I, Schwarz JR, Kneussel M, Wagner W. Myosin XVI Regulates Actin Cytoskeleton Dynamics in Dendritic Spines of Purkinje Cells and Affects Presynaptic Organization. Front Cell Neurosci 2019; 13:330. [PMID: 31474830 PMCID: PMC6705222 DOI: 10.3389/fncel.2019.00330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/04/2019] [Indexed: 11/29/2022] Open
Abstract
The actin cytoskeleton is crucial for function and morphology of neuronal synapses. Moreover, altered regulation of the neuronal actin cytoskeleton has been implicated in neuropsychiatric diseases such as autism spectrum disorder (ASD). Myosin XVI is a neuronally expressed unconventional myosin known to bind the WAVE regulatory complex (WRC), a regulator of filamentous actin (F-actin) polymerization. Notably, the gene encoding the myosin’s heavy chain (MYO16) shows genetic association with neuropsychiatric disorders including ASD. Here, we investigated whether myosin XVI plays a role for actin cytoskeleton regulation in the dendritic spines of cerebellar Purkinje cells (PCs), a neuronal cell type crucial for motor learning, social cognition and vocalization. We provide evidence that both myosin XVI and the WRC component WAVE1 localize to PC spines. Fluorescence recovery after photobleaching (FRAP) analysis of GFP-actin in cultured PCs shows that Myo16 knockout as well as PC-specific Myo16 knockdown, lead to faster F-actin turnover in the dendritic spines of PCs. We also detect accelerated F-actin turnover upon interference with the WRC, and upon inhibition of Arp2/3 that drives formation of branched F-actin downstream of the WRC. In contrast, inhibition of formins that are responsible for polymerization of linear actin filaments does not cause faster F-actin turnover. Together, our data establish myosin XVI as a regulator of the postsynaptic actin cytoskeleton and suggest that it is an upstream activator of the WRC-Arp2/3 pathway in PC spines. Furthermore, ultra-structural and electrophysiological analyses of Myo16 knockout cerebellum reveals the presence of reduced numbers of synaptic vesicles at presynaptic terminals in the absence of the myosin. Therefore, we here define myosin XVI as an F-actin regulator important for presynaptic organization in the cerebellum.
Collapse
Affiliation(s)
- Mona Katrin Roesler
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franco Luis Lombino
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Freitag
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Electron Microscopy Unit, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Animal Unit, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen R Schwarz
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Wagner
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
35
|
Spence EF, Dube S, Uezu A, Locke M, Soderblom EJ, Soderling SH. In vivo proximity proteomics of nascent synapses reveals a novel regulator of cytoskeleton-mediated synaptic maturation. Nat Commun 2019; 10:386. [PMID: 30674877 PMCID: PMC6344529 DOI: 10.1038/s41467-019-08288-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022] Open
Abstract
Excitatory synapse formation during development involves the complex orchestration of both structural and functional alterations at the postsynapse. However, the molecular mechanisms that underlie excitatory synaptogenesis are only partially resolved, in part because the internal machinery of developing synapses is largely unknown. To address this, we apply a chemicogenetic approach, in vivo biotin identification (iBioID), to discover aspects of the proteome of nascent synapses. This approach uncovered sixty proteins, including a previously uncharacterized protein, CARMIL3, which interacts in vivo with the synaptic cytoskeletal regulator proteins SrGAP3 (or WRP) and actin capping protein. Using new CRISPR-based approaches, we validate that endogenous CARMIL3 is localized to developing synapses where it facilitates the recruitment of capping protein and is required for spine structural maturation and AMPAR recruitment associated with synapse unsilencing. Together these proteomic and functional studies reveal a previously unknown mechanism important for excitatory synapse development in the developing perinatal brain.
Collapse
Affiliation(s)
- Erin F Spence
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Shataakshi Dube
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Akiyoshi Uezu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Margaret Locke
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Erik J Soderblom
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Proteomics and Metabolomics Shared Resource, Duke Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
36
|
Gerosa L, Francolini M, Bassani S, Passafaro M. The Role of Protocadherin 19 (PCDH19) in Neurodevelopment and in the Pathophysiology of Early Infantile Epileptic Encephalopathy-9 (EIEE9). Dev Neurobiol 2019; 79:75-84. [PMID: 30431232 DOI: 10.1002/dneu.22654] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 01/15/2023]
Abstract
PCDH19 is considered one of the most clinically relevant genes in epilepsy, second only to SCN1A. To date about 150 mutations have been identified as causative for PCDH19-female epilepsy (also known as early infantile epileptic encephalopathy-9, EIEE9), which is characterized by early onset epilepsy, intellectual disabilities, and behavioral disturbances. Although little is known about the physiological role of PCDH19 and the pathogenic mechanisms that lead to EIEE9, in this review, we will present latest researches focused on these aspects, underlining protein expression, its known functions and the mechanisms by which the protein acts, with particular interest in PCDH19 extracellular and intracellular roles in neurons.
Collapse
Affiliation(s)
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | | | | |
Collapse
|
37
|
Chen Y, Milenkovic M, Horsfall W, Salahpour A, Soderling SH, Ramsey AJ. Restoring striatal WAVE-1 improves maze exploration performance of GluN1 knockdown mice. PLoS One 2018; 13:e0199341. [PMID: 30352064 PMCID: PMC6198945 DOI: 10.1371/journal.pone.0199341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/06/2018] [Indexed: 11/19/2022] Open
Abstract
NMDA receptors are important for cognition and are implicated in neuropsychiatric disorders. GluN1 knockdown (GluN1KD) mice have reduced NMDA receptor levels, striatal spine density deficits, and cognitive impairments. However, how NMDA depletion leads to these effects is unclear. Since Rho GTPases are known to regulate spine density and cognition, we examined the levels of RhoA, Rac1, and Cdc42 signaling proteins. Striatal Rac1-pathway components are reduced in GluN1KD mice, with Rac1 and WAVE-1 deficits at 6 and 12 weeks of age. Concurrently, medium spiny neuron (MSN) spine density deficits are present in mice at these ages. To determine whether WAVE-1 deficits were causal or compensatory in relation to these phenotypes, we intercrossed GluN1KD mice with WAVE-1 overexpressing (WAVE-Tg) mice to restore WAVE-1 levels. GluN1KD-WAVE-Tg hybrids showed rescue of striatal WAVE-1 protein levels and MSN spine density, as well as selective behavioral rescue in the Y-maze and 8-arm radial maze tests. GluN1KD-WAVE-Tg mice expressed normalized WAVE-1 protein levels in the hippocampus, yet spine density of hippocampal CA1 pyramidal neurons was not significantly altered. Our data suggest a nuanced role for WAVE-1 effects on cognition and a delineation of specific cognitive domains served by the striatum. Rescue of striatal WAVE-1 and MSN spine density may be significant for goal-directed exploration and associated long-term memory in mice.
Collapse
Affiliation(s)
- Yuxiao Chen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Marija Milenkovic
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Wendy Horsfall
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Scott H. Soderling
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Amy J. Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Ito Y, Carss KJ, Duarte ST, Hartley T, Keren B, Kurian MA, Marey I, Charles P, Mendonça C, Nava C, Pfundt R, Sanchis-Juan A, van Bokhoven H, van Essen A, van Ravenswaaij-Arts C, Boycott KM, Kernohan KD, Dyack S, Raymond FL, Aitman T, Bennett D, Caulfield M, Chinnery P, Gale D, Koziell A, Kuijpers TW, Laffan MA, Maher E, Markus HS, Morrell NW, Ouwehand WH, Perry DJ, Raymond FL, Roberts I, Smith KG, Thrasher A, Watkins H, Williamson C, Woods G, Ashford S, Bradley JR, Fletcher D, Hammerton T, James R, Kingston N, Penkett CJ, Stirrups K, Veltman M, Young T, Brown M, Clements-Brod N, Davis J, Dewhurst E, Dolling H, Erwood M, Frary A, Linger R, Martin JM, Papadia S, Rehnstrom K, Stark H, Allsup D, Austin S, Bakchoul T, Bariana TK, Bolton-Maggs P, Chalmers E, Collins J, Collins P, Erber WN, Everington T, Favier R, Freson K, Furie B, Gattens M, Gebhart J, Gomez K, Greene D, Greinacher A, Gresele P, Hart D, Heemskerk JW, Henskens Y, Kazmi R, Keeling D, Kelly AM, Lambert MP, Lentaigne C, Liesner R, Makris M, Mangles S, Mathias M, Millar CM, Mumford A, Nurden P, Payne J, Pasi J, Peerlinck K, Revel-Vilk S, Richards M, Rondina M, Roughley C, Schulman S, Schulze H, Scully M, Sivapalaratnam S, Stubbs M, Tait RC, Talks K, Thachil J, Toh CH, Turro E, Van Geet C, De Vries M, Warner TQ, Watson H, Westbury S, Furnell A, Mapeta R, Rayner-Matthews P, Simeoni I, Staines S, Stephens J, Watt C, Whitehorn D, Attwood A, Daugherty L, Deevi SV, Halmagyi C, Hu F, Matser V, Meacham S, Megy K, Shamardina O, Titterton C, Tuna S, Yu P, von Ziegenweldt J, Astle W, Bleda M, Carss KJ, Gräf S, Haimel M, Lango-Allen H, Richardson S, Calleja P, Rankin S, Turek W, Anderson J, Bryson C, Carmichael J, McJannet C, Stock S, Allen L, Ambegaonkar G, Armstrong R, Arno G, Bitner-Glindzicz M, Brady A, Canham N, Chitre M, Clement E, Clowes V, Deegan P, Deshpande C, Doffinger R, Firth H, Flinter F, French C, Gardham A, Ghali N, Gissen P, Grozeva D, Henderson R, Hensiek A, Holden S, Holder M, Holder S, Hurst J, Josifova D, Krishnakumar D, Kurian MA, Lees M, MacLaren R, Maw A, Mehta S, Michaelides M, Moore A, Murphy E, Park SM, Parker A, Patch C, Paterson J, Rankin J, Reid E, Rosser E, Sanchis-Juan A, Sandford R, Santra S, Scott R, Sohal A, Stein P, Thomas E, Thompson D, Tischkowitz M, Vogt J, Wakeling E, Wassmer E, Webster A, Ali S, Ali S, Boggard HJ, Church C, Coghlan G, Cookson V, Corris PA, Creaser-Myers A, DaCosta R, Dormand N, Eyries M, Gall H, Ghataorhe PK, Ghio S, Ghofrani A, Gibbs JSR, Girerd B, Greenhalgh A, Hadinnapola C, Houweling AC, Humbert M, in’t Veld AH, Kennedy F, Kiely DG, Kovacs G, Lawrie A, Ross RVM, Machado R, Masati L, Meehan S, Moledina S, Montani D, Othman S, Peacock AJ, Pepke-Zaba J, Pollock V, Polwarth G, Ranganathan L, Rhodes CJ, Rue-Albrecht K, Schotte G, Shipley D, Soubrier F, Southgate L, Scelsi L, Suntharalingam J, Tan Y, Toshner M, Treacy CM, Trembath R, Vonk Noordegraaf A, Walker S, Wanjiku I, Wharton J, Wilkins M, Wort SJ, Yates K, Alachkar H, Antrobus R, Arumugakani G, Bacchelli C, Baxendale H, Bethune C, Bibi S, Booth C, Browning M, Burns S, Chandra A, Cooper N, Davies S, Devlin L, Drewe E, Edgar D, Egner W, Ghurye R, Gilmour K, Goddard S, Gordins P, Grigoriadou S, Hackett S, Hague R, Harper L, Hayman G, Herwadkar A, Huissoon A, Jolles S, Kelleher P, Kumararatne D, Lear S, Longhurst H, Lorenzo L, Maimaris J, Manson A, McDermott E, Murng S, Nejentsev S, Noorani S, Oksenhendler E, Ponsford M, Qasim W, Quinti I, Richter A, Samarghitean C, Sargur R, Savic S, Seneviratne S, Sewell C, Staples E, Stauss H, Thaventhiran J, Thomas M, Welch S, Willcocks L, Yeatman N, Yong P, Ancliff P, Babbs C, Layton M, Louka E, McGowan S, Mead A, Roy N, Chambers J, Dixon P, Estiu C, Hague B, Marschall HU, Simpson M, Chong S, Emmerson I, Ginsberg L, Gosal D, Hadden R, Horvath R, Mahdi-Rogers M, Manzur A, Marshall A, Matthews E, McCarthy M, Reilly M, Renton T, Rice A, Themistocleous A, Vale T, Van Zuydam N, Walker S, Ormondroyd L, Hudson G, Wei W, Yu Wai Man P, Whitworth J, Afzal M, Colby E, Saleem M, Alavijeh OS, Cook HT, Johnson S, Levine AP, Wong EK, Tan R, Boycott KM, MacKenzie A, Majewski J, Brudno M, Bulman D, Dyment D. De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures. Am J Hum Genet 2018; 103:144-153. [PMID: 29961568 PMCID: PMC6037130 DOI: 10.1016/j.ajhg.2018.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/04/2018] [Indexed: 10/28/2022] Open
Abstract
Next-generation sequencing has been invaluable in the elucidation of the genetic etiology of many subtypes of intellectual disability in recent years. Here, using exome sequencing and whole-genome sequencing, we identified three de novo truncating mutations in WAS protein family member 1 (WASF1) in five unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. WASF1, also known as WAVE1, is part of the WAVE complex and acts as a mediator between Rac-GTPase and actin to induce actin polymerization. The three mutations connected by Matchmaker Exchange were c.1516C>T (p.Arg506Ter), which occurs in three unrelated individuals, c.1558C>T (p.Gln520Ter), and c.1482delinsGCCAGG (p.Ile494MetfsTer23). All three variants are predicted to partially or fully disrupt the C-terminal actin-binding WCA domain. Functional studies using fibroblast cells from two affected individuals with the c.1516C>T mutation showed a truncated WASF1 and a defect in actin remodeling. This study provides evidence that de novo heterozygous mutations in WASF1 cause a rare form of intellectual disability.
Collapse
|
39
|
Rho GTPases in Intellectual Disability: From Genetics to Therapeutic Opportunities. Int J Mol Sci 2018; 19:ijms19061821. [PMID: 29925821 PMCID: PMC6032284 DOI: 10.3390/ijms19061821] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 12/22/2022] Open
Abstract
Rho-class small GTPases are implicated in basic cellular processes at nearly all brain developmental steps, from neurogenesis and migration to axon guidance and synaptic plasticity. GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Rho GTPases are highly regulated by a complex set of activating (GEFs) and inactivating (GAPs) partners, via protein:protein interactions (PPI). Misregulated RhoA, Rac1/Rac3 and cdc42 activity has been linked with intellectual disability (ID) and other neurodevelopmental conditions that comprise ID. All genetic evidences indicate that in these disorders the RhoA pathway is hyperactive while the Rac1 and cdc42 pathways are consistently hypoactive. Adopting cultured neurons for in vitro testing and specific animal models of ID for in vivo examination, the endophenotypes associated with these conditions are emerging and include altered neuronal networking, unbalanced excitation/inhibition and altered synaptic activity and plasticity. As we approach a clearer definition of these phenotype(s) and the role of hyper- and hypo-active GTPases in the construction of neuronal networks, there is an increasing possibility that selective inhibitors and activators might be designed via PPI, or identified by screening, that counteract the misregulation of small GTPases and result in alleviation of the cognitive condition. Here we review all knowledge in support of this possibility.
Collapse
|
40
|
Joensuu M, Lanoue V, Hotulainen P. Dendritic spine actin cytoskeleton in autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:362-381. [PMID: 28870634 DOI: 10.1016/j.pnpbp.2017.08.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses. Changes in the shape and size of dendritic spines correlate with the functional changes in excitatory synapses and are heavily dependent on the remodeling of the underlying actin cytoskeleton. Recent evidence implicates synapses at dendritic spines as important substrates of pathogenesis in neuropsychiatric disorders, including autism spectrum disorder (ASD). Although synaptic perturbations are not the only alterations relevant for these diseases, understanding the molecular underpinnings of the spine and synapse pathology may provide insight into their etiologies and could reveal new drug targets. In this review, we will discuss recent findings of defective actin regulation in dendritic spines associated with ASD.
Collapse
Affiliation(s)
- Merja Joensuu
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland.
| |
Collapse
|
41
|
Basu S, Lamprecht R. The Role of Actin Cytoskeleton in Dendritic Spines in the Maintenance of Long-Term Memory. Front Mol Neurosci 2018; 11:143. [PMID: 29765302 PMCID: PMC5938600 DOI: 10.3389/fnmol.2018.00143] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
Evidence indicates that long-term memory formation involves alterations in synaptic efficacy produced by modifications in neural transmission and morphology. However, it is not clear how such alterations induced by learning, that encode memory, are maintained over long period of time to preserve long-term memory. This is especially intriguing as the half-life of most of the proteins that underlie such changes is usually in the range of hours to days and these proteins may change their location over time. In this review we describe studies that indicate the involvement of dendritic spines in memory formation and its maintenance. These studies show that learning leads to changes in the number and morphology of spines. Disruption in spines morphology or manipulations that lead to alteration in their number after consolidation are associated with impairment in memory maintenance. We further ask how changes in dendritic spines morphology, induced by learning and reputed to encode memory, are maintained to preserve long-term memory. We propose a mechanism, based on studies described in the review, whereby the actin cytoskeleton and its regulatory proteins involved in the initial alteration in spine morphology induced by learning are also essential for spine structural stabilization that maintains long-term memory. In this model glutamate receptors and other synaptic receptors activation during learning leads to the creation of new actin cytoskeletal scaffold leading to changes in spines morphology and memory formation. This new actin cytoskeletal scaffold is preserved beyond actin and its regulatory proteins turnover and dynamics by active stabilization of the level and activity of actin regulatory proteins within these memory spines.
Collapse
Affiliation(s)
- Sreetama Basu
- Sagol Departmant of Neurobiology, Faculty of Natural Sciences, The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Departmant of Neurobiology, Faculty of Natural Sciences, The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| |
Collapse
|
42
|
Russell TA, Grubisha MJ, Remmers CL, Kang SK, Forrest MP, Smith KR, Kopeikina KJ, Gao R, Sweet RA, Penzes P. A Schizophrenia-Linked KALRN Coding Variant Alters Neuron Morphology, Protein Function, and Transcript Stability. Biol Psychiatry 2018; 83:499-508. [PMID: 29241584 PMCID: PMC5809265 DOI: 10.1016/j.biopsych.2017.10.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/12/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Large-scale genetic studies have revealed that rare sequence variants, including single nucleotide variants (SNVs), in glutamatergic synaptic genes are enriched in schizophrenia patients. However, the majority are too rare to show any association with disease and have not been examined functionally. One such SNV, KALRN-P2255T, displays a penetrance that greatly exceeds that of previously identified schizophrenia-associated SNVs. Therefore, we sought to characterize its effects on the function of kalirin (Kal)-9, a dual Ras-related C3 botulinum toxin substrate 1 and Ras homologue gene family, member A (RhoA) guanine nucleotide exchange factor, upregulated in human schizophrenia brain tissue. METHODS Kal9 was overexpressed in primary rat cortical neurons or human embryonic kidney 293 (HEK293) cells. The effects of the P2255T variant on dendritic branching, dendritic spine morphology, protein and messenger RNA stability, and catalytic activity were examined. RESULTS Kal9-P2255T leads to diminished basal dendritic branching and dendritic spine size, compared with wild-type Kal9. The P2255T SNV directly affected Kal9 protein function, causing increased RhoA activation in HEK293 cells, but had no effect on Ras-related C3 botulinum toxin substrate 1 activation. Consistent with human postmortem findings, we found that Kal9-P2255T protein levels were higher than those of wild-type Kal9 in neurons. Increased messenger RNA stability was detected in HEK293 cells, indicating that this was the cause of the higher protein levels. When analyzed together, increased intrinsic RhoA guanine nucleotide exchange factor catalytic activity combined with increased messenger RNA expression led to net enhancement of RhoA activation, known to negatively impact neuronal morphology. CONCLUSIONS Taken together, our data reveal a novel mechanism for disease-associated SNVs and provide a platform for modeling morphological changes in mental disorders.
Collapse
Affiliation(s)
- Theron A. Russell
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Melanie J. Grubisha
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Christine L. Remmers
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Seok Kyu Kang
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Marc P. Forrest
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Katharine R. Smith
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Katherine J. Kopeikina
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ruoqi Gao
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA,VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
43
|
Sungur AÖ, Stemmler L, Wöhr M, Rust MB. Impaired Object Recognition but Normal Social Behavior and Ultrasonic Communication in Cofilin1 Mutant Mice. Front Behav Neurosci 2018. [PMID: 29515378 PMCID: PMC5825895 DOI: 10.3389/fnbeh.2018.00025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorder (ASD), schizophrenia (SCZ) and intellectual disability (ID) show a remarkable overlap in symptoms, including impairments in cognition, social behavior and communication. Human genetic studies revealed an enrichment of mutations in actin-related genes for these disorders, and some of the strongest candidate genes control actin dynamics. These findings led to the hypotheses: (i) that ASD, SCZ and ID share common disease mechanisms; and (ii) that, at least in a subgroup of affected individuals, defects in the actin cytoskeleton cause or contribute to their pathologies. Cofilin1 emerged as a key regulator of actin dynamics and we previously demonstrated its critical role for synaptic plasticity and associative learning. Notably, recent studies revealed an over-activation of cofilin1 in mutant mice displaying ASD- or SCZ-like behavioral phenotypes, suggesting that dysregulated cofilin1-dependent actin dynamics contribute to their behavioral abnormalities, such as deficits in social behavior. These findings let us hypothesize: (i) that, apart from cognitive impairments, cofilin1 mutants display additional behavioral deficits with relevance to ASD or SCZ; and (ii) that our cofilin1 mutants represent a valuable tool to study the underlying disease mechanisms. To test our hypotheses, we compared social behavior and ultrasonic communication of juvenile mutants to control littermates, and we did not obtain evidence for impaired direct reciprocal social interaction, social approach or social memory. Moreover, concomitant emission of ultrasonic vocalizations was not affected and time-locked to social activity, supporting the notion that ultrasonic vocalizations serve a pro-social communicative function as social contact calls maintaining social proximity. Finally, cofilin1 mutants did not display abnormal repetitive behaviors. Instead, they performed weaker in novel object recognition, thereby demonstrating that cofilin1 is relevant not only for associative learning, but also for “non-matching-to-sample” learning. Here we report the absence of an ASD- or a SCZ-like phenotype in cofilin1 mutants, and we conclude that cofilin1 is relevant specifically for non-social cognition.
Collapse
Affiliation(s)
- A Özge Sungur
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, Marburg, Germany.,Department of Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Lea Stemmler
- Department of Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Markus Wöhr
- Department of Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University of Marburg, Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University of Marburg, Marburg, Germany.,DFG Research Training Group-Membrane Plasticity in Tissue Development and Remodeling, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
44
|
Aspenström P. BAR Domain Proteins Regulate Rho GTPase Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:33-53. [PMID: 30151649 DOI: 10.1007/5584_2018_259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Bin-Amphiphysin-Rvs (BAR) domain is a membrane lipid binding domain present in a wide variety of proteins, often proteins with a role in Rho-regulated signaling pathways. BAR domains do not only confer binding to lipid bilayers, they also possess a membrane sculpturing ability and thereby directly control the topology of biomembranes. BAR domain-containing proteins participate in a plethora of physiological processes but the common denominator is their capacity to link membrane dynamics to actin dynamics and thereby integrate processes such as endocytosis, exocytosis, vesicle trafficking, cell morphogenesis and cell migration. The Rho family of small GTPases constitutes an important bridging theme for many BAR domain-containing proteins. This review article will focus predominantly on the role of BAR proteins as regulators or effectors of Rho GTPases and it will only briefly discuss the structural and biophysical function of the BAR domains.
Collapse
Affiliation(s)
- Pontus Aspenström
- Department of Microbiology, and Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
45
|
Abstract
The Slit-Robo GTPase-activating proteins (srGAPs) were first identified as potential Slit-Robo effectors that influence growth cone guidance. Given their N-terminal F-BAR, central GAP and C-terminal SH3 domains, srGAPs have the potential to affect membrane dynamics, Rho family GTPase activity and other binding partners. Recent research has clarified how srGAP family members act in distinct ways at the cell membrane, and has expanded our understanding of the roles of srGAPs in neuronal and non-neuronal cells. Gene duplication of the human-specific paralog of srGAP2 has resulted in srGAP2 family proteins that may have increased the density of dendritic spines and promoted neoteny of the human brain during crucial periods of human evolution, underscoring the importance of srGAPs in the unique sculpting of the human brain. Importantly, srGAPs also play roles outside of the nervous system, including during contact inhibition of cell movement and in establishing and maintaining cell adhesions in epithelia. Changes in srGAP expression may contribute to neurodevelopmental disorders, cancer metastasis and inflammation. As discussed in this Review, much remains to be discovered about how this interesting family of proteins functions in a diverse set of processes in metazoans and the functional roles srGAPs play in human disease.
Collapse
Affiliation(s)
- Bethany Lucas
- Program in Genetics, University of Wisconsin-Madison, 1117 W. Johnson St., Madison, WI 53706, USA
| | - Jeff Hardin
- Program in Genetics, University of Wisconsin-Madison, 1117 W. Johnson St., Madison, WI 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, 1117 W. Johnson St., Madison, WI 53706, USA
| |
Collapse
|
46
|
Ledda F, Paratcha G. Mechanisms regulating dendritic arbor patterning. Cell Mol Life Sci 2017; 74:4511-4537. [PMID: 28735442 PMCID: PMC11107629 DOI: 10.1007/s00018-017-2588-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
The nervous system is populated by diverse types of neurons, each of which has dendritic trees with strikingly different morphologies. These neuron-specific morphologies determine how dendritic trees integrate thousands of synaptic inputs to generate different firing properties. To ensure proper neuronal function and connectivity, it is necessary that dendrite patterns are precisely controlled and coordinated with synaptic activity. Here, we summarize the molecular and cellular mechanisms that regulate the formation of cell type-specific dendrite patterns during development. We focus on different aspects of vertebrate dendrite patterning that are particularly important in determining the neuronal function; such as the shape, branching, orientation and size of the arbors as well as the development of dendritic spine protrusions that receive excitatory inputs and compartmentalize postsynaptic responses. Additionally, we briefly comment on the implications of aberrant dendritic morphology for nervous system disease.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina.
| |
Collapse
|
47
|
Bhuiyan MMH, Haque MN, Mohibbullah M, Kim YK, Moon IS. Radix Puerariae modulates glutamatergic synaptic architecture and potentiates functional synaptic plasticity in primary hippocampal neurons. JOURNAL OF ETHNOPHARMACOLOGY 2017; 209:100-107. [PMID: 28734961 DOI: 10.1016/j.jep.2017.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/12/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Neurologic disorders are frequently characterized by synaptic pathology, including abnormal density and morphology of dendritic spines, synapse loss, and aberrant synaptic signaling and plasticity. Therefore, to promote and/or protect synapses by the use of natural molecules capable of modulating neurodevelopmental events, such as, spinogenesis and synaptic plasticity, could offer a preventive and curative strategy for nervous disorders associated with synaptic pathology. Radix Puerariae, the root of Pueraria monatana var. lobata (Willd.) Sanjappa&Pradeep, is a Chinese ethnomedicine, traditionally used for the treatment of memory-related nervous disorders including Alzheimer's disease. In the previous study, we showed that the ethanolic extracts of Radix Puerariae (RPE) and its prime constituent, puerarin induced neuritogenesis and synapse formation in cultured hippocampal neurons, and thus could improve memory functions. AIMS OF THE STUDY In the present study, we specifically investigated the abilities of RPE and puerarin to improve memory-related brain disorders through modulating synaptic maturation and functional potentiation. MATERIALS AND METHODS Rat embryonic (E19) brain neurons were cultured in the absence or presence of RPE or puerarin. At predetermined times, cells were live-stained with DiO or fixed and immunostained to visualize neuronal morphologies, or lysed for protein harvesting. Morphometric analyses of dendritic spines and synaptogenesis were performed using Image J software. Functional pre- and postsynaptic plasticity was measured by FM1-43 staining and whole-cell patch clamping, respectively. RPE or puerarin-mediated changes in actin-related protein 2 were assessed by Western blotting. Neuronal survivals were measured using propidium iodide exclusion assay. RESULTS RPE and puerarin both: (1) promoted a significant increase in the numbers, and maturation, of dendritic spines; (2) modulated the formation of glutamatergic synapses; (3) potentiated synaptic transmission by increasing the sizes of reserve vesicle pools at presynaptic terminals; (4) enhanced NMDA receptor-mediated postsynaptic currents, and (5) increased cell viability against naturally occurring cell death. Moreover, upregulation of actin-related protein 2 (ARP2) in RPE and puerarin treated brain neurons suggest that RPE and puerarin induced synaptic plasticity might be associated, at least in part, with ARP2-mediated actin-dependent regulation of spinogenesis. CONCLUSIONS Our findings indicate that RPE and puerarin might play a substantial role in the morphological and functional maturation of brain neurons and suggest that RPE and puerarin are potentially valuable preventative therapeutics for memory-related nervous disorders.
Collapse
Affiliation(s)
| | - Md Nazmul Haque
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea
| | - Md Mohibbullah
- Department of Biotechnology, Pukyong National University, Namku, Busan 48513, Republic of Korea
| | - Yung Kyu Kim
- Department of Physiology, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
48
|
The Arp2/3 Complex Is Essential for Distinct Stages of Spine Synapse Maturation, Including Synapse Unsilencing. J Neurosci 2017; 36:9696-709. [PMID: 27629719 DOI: 10.1523/jneurosci.0876-16.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Dendritic filopodia are actin-rich structures that are thought to contribute to early spine synapse formation; however, the actin regulatory proteins important for early synaptogenesis are poorly defined. Using organotypic hippocampal slice cultures and primary neuron hippocampal cultures from Arp2/3 conditional knock-out mice, we analyze the roles of the Arp2/3 complex, an actin regulator that creates branched actin networks, and demonstrate it is essential for distinct stages of both structural and functional maturation of excitatory spine synapses. Our data show that initially the Arp2/3 complex inhibits the formation of dendritic filopodia but that later during development, the Arp2/3 complex drives the morphological maturation from filopodia to typical spine morphology. Furthermore, we demonstrate that although the Arp2/3 complex is not required for key spine maturation steps, such as presynaptic contact and recruitment of MAGUK (membrane-associated guanylate kinase) scaffolding proteins or NMDA receptors, it is necessary for the recruitment of AMPA receptors. This latter process, also known as synapse unsilencing, is a final and essential step in the neurodevelopment of excitatory postsynaptic synaptogenesis, setting the stage for neuronal interconnectivity. These findings provide the first evidence that the Arp2/3 complex is directly involved in functional maturation of dendritic spines during the developmental period of spinogenesis. SIGNIFICANCE STATEMENT Excitatory spine synapse formation (spinogenesis) is a poorly understood yet pivotal period of neurodevelopment that occurs within 2-3 weeks after birth. Neurodevelopmental disorders such as intellectual disability and autism are characterized by abnormal spine structure, which may arise from abnormal excitatory synaptogenesis. The initial stage of spinogenesis is thought to begin with the emergence of actin-rich dendritic filopodia that initiate contact with presynaptic axonal boutons. However, it remains enigmatic how actin cytoskeletal regulation directs dendritic filopodial emergence or their subsequent maturation into dendritic spines during development and on into adulthood. In this study, we provide the first evidence that the Arp2/3 complex, a key actin nucleator, is involved in distinct stages of spine formation and is required for synapse unsilencing.
Collapse
|
49
|
Synaptic Actin Dysregulation, a Convergent Mechanism of Mental Disorders? J Neurosci 2017; 36:11411-11417. [PMID: 27911743 DOI: 10.1523/jneurosci.2360-16.2016] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022] Open
Abstract
Actin polymerization governs activity-dependent modulation of excitatory synapses, including their morphology and functionality. It is clear from human genetics that neuropsychiatric and neurodevelopmental disturbances are multigenetic in nature, highlighting the need to better understand the critical neural pathways associated with these disorders and how they are altered by genetic risk alleles. One such signaling pathway that is heavily implicated by candidate genes for psychiatric and neurodevelopmental disorders are regulators of signaling to the actin cytoskeleton, suggesting that its disruption and the ensuring abnormalities of spine structures and postsynaptic complexes is a commonly affected pathway in brain disorders. This review will discuss recent experimental findings that strongly support genetic evidence linking the synaptic cytoskeleton to mental disorders, such as schizophrenia and autism spectrum disorders.
Collapse
|
50
|
Ramaker JM, Copenhaver PF. Amyloid Precursor Protein family as unconventional Go-coupled receptors and the control of neuronal motility. NEUROGENESIS 2017; 4:e1288510. [PMID: 28321435 PMCID: PMC5345750 DOI: 10.1080/23262133.2017.1288510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 01/06/2023]
Abstract
Cleavage of the Amyloid Precursor Protein (APP) generates amyloid peptides that accumulate in Alzheimer Disease (AD), but APP is also upregulated by developing and injured neurons, suggesting that it regulates neuronal motility. APP can also function as a G protein-coupled receptor that signals via the heterotrimeric G protein Gαo, but evidence for APP-Gαo signaling in vivo has been lacking. Using Manduca as a model system, we showed that insect APP (APPL) regulates neuronal migration in a Gαo-dependent manner. Recently, we also demonstrated that Manduca Contactin (expressed by glial cells) induces APPL-Gαo retraction responses in migratory neurons, consistent with evidence that mammalian Contactins also interact with APP family members. Preliminary studies using cultured hippocampal neurons suggest that APP-Gαo signaling can similarly regulate growth cone motility. Whether Contactins (or other APP ligands) induce this response within the developing nervous system, and how this pathway is disrupted in AD, remains to be explored.
Collapse
Affiliation(s)
- Jenna M Ramaker
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University , Portland, OR, USA
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University , Portland, OR, USA
| |
Collapse
|