1
|
Dasgupta S, Pandya MA, Zanin JP, Liu T, Sun Q, Li H, Friedman WJ. ProNGF elicits retrograde axonal degeneration of basal forebrain neurons through p75 NTR and induction of amyloid precursor protein. Sci Signal 2024; 17:eadn2616. [PMID: 39316663 PMCID: PMC11487763 DOI: 10.1126/scisignal.adn2616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/15/2024] [Indexed: 09/26/2024]
Abstract
Basal forebrain cholinergic neurons (BFCNs) extend long projections to multiple regions in the brain to regulate cognitive functions. Degeneration of BFCNs is seen with aging, after brain injury, and in neurodegenerative disorders. An increase in the amount of the immature proform of nerve growth factor (proNGF) in the cerebral cortex results in retrograde degeneration of BFCNs through activation of proNGF receptor p75NTR. Here, we investigated the signaling cascades initiated at the axon terminal that mediate proNGF-induced retrograde degeneration. We found that local axonal protein synthesis and retrograde transport mediated proNGF-induced degeneration initiated from the axon terminal. Analysis of the nascent axonal proteome revealed that proNGF stimulation of axonal terminals triggered the synthesis of numerous proteins within the axon, and pathway analysis showed that amyloid precursor protein (APP) was a key upstream regulator in cultured BFCNs and in mice. Our findings reveal a functional role for APP in mediating BFCN axonal degeneration and cell death induced by proNGF.
Collapse
Affiliation(s)
- Srestha Dasgupta
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Mansi A. Pandya
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Juan P. Zanin
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Tong Liu
- New Jersey Medical School, Medical Science Building, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Qian Sun
- New Jersey Medical School, Medical Science Building, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Hong Li
- New Jersey Medical School, Medical Science Building, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Wilma J. Friedman
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
2
|
Berta T, Strong JA, Zhang JM, Ji RR. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain: an update. Expert Opin Ther Targets 2023; 27:665-678. [PMID: 37574713 PMCID: PMC10530032 DOI: 10.1080/14728222.2023.2247563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Current treatments for chronic pain are inadequate. Here, we provide an update on the new therapeutic strategies that target dorsal root ganglia (DRGs) in the peripheral nervous system for a better and safer treatment of chronic pain. AREAS COVERED Despite the complex nature of chronic pain and its underlying mechanisms, we do know that changes in the plasticity and modality of neurons in DRGs play a pivotal role. DRG neurons are heterogenous and offer potential pain targets for different therapeutic interventions. We discuss the last advancements of these interventions, which include the use of systemic and local administrations, selective nerve drug delivery, and gene therapy. In particular, we provide updates and further details on the molecular characterization of primary sensory neurons, new analgesics entering the market, and future gene therapy approaches. EXPERT OPINION DRGs and primary sensory neurons are promising targets for chronic pain treatment due to their key role in pain signaling, unique anatomical location, and the potential for different targeted therapeutic interventions.
Collapse
Affiliation(s)
- Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Judith A. Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
3
|
Holz E, Darwish M, Tesar DB, Shatz-Binder W. A Review of Protein- and Peptide-Based Chemical Conjugates: Past, Present, and Future. Pharmaceutics 2023; 15:600. [PMID: 36839922 PMCID: PMC9959917 DOI: 10.3390/pharmaceutics15020600] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Over the past few decades, the complexity of molecular entities being advanced for therapeutic purposes has continued to evolve. A main propellent fueling innovation is the perpetual mandate within the pharmaceutical industry to meet the needs of novel disease areas and/or delivery challenges. As new mechanisms of action are uncovered, and as our understanding of existing mechanisms grows, the properties that are required and/or leveraged to enable therapeutic development continue to expand. One rapidly evolving area of interest is that of chemically enhanced peptide and protein therapeutics. While a variety of conjugate molecules such as antibody-drug conjugates, peptide/protein-PEG conjugates, and protein conjugate vaccines are already well established, others, such as antibody-oligonucleotide conjugates and peptide/protein conjugates using non-PEG polymers, are newer to clinical development. This review will evaluate the current development landscape of protein-based chemical conjugates with special attention to considerations such as modulation of pharmacokinetics, safety/tolerability, and entry into difficult to access targets, as well as bioavailability. Furthermore, for the purpose of this review, the types of molecules discussed are divided into two categories: (1) therapeutics that are enhanced by protein or peptide bioconjugation, and (2) protein and peptide therapeutics that require chemical modifications. Overall, the breadth of novel peptide- or protein-based therapeutics moving through the pipeline each year supports a path forward for the pursuit of even more complex therapeutic strategies.
Collapse
Affiliation(s)
- Emily Holz
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Martine Darwish
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Devin B. Tesar
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Whitney Shatz-Binder
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
4
|
Mallick AM, Tripathi A, Mishra S, Mukherjee A, Dutta C, Chatterjee A, Sinha Roy R. Emerging Approaches for Enabling RNAi Therapeutics. Chem Asian J 2022; 17:e202200451. [PMID: 35689534 DOI: 10.1002/asia.202200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Indexed: 11/07/2022]
Abstract
RNA interference (RNAi) is a primitive evolutionary mechanism developed to escape incorporation of foreign genetic material. siRNA has been instrumental in achieving the therapeutic potential of RNAi by theoretically silencing any gene of interest in a reversible and sequence-specific manner. Extrinsically administered siRNA generally needs a delivery vehicle to span across different physiological barriers and load into the RISC complex in the cytoplasm in its functional form to show its efficacy. This review discusses the designing principles and examples of different classes of delivery vehicles that have proved to be efficient in RNAi therapeutics. We also briefly discuss the role of RNAi therapeutics in genetic and rare diseases, epigenetic modifications, immunomodulation and combination modality to inch closer in creating a personalized therapy for metastatic cancer. At the end, we present, strategies and look into the opportunities to develop efficient delivery vehicles for RNAi which can be translated into clinics.
Collapse
Affiliation(s)
- Argha M Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Archana Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Sukumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Asmita Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Chiranjit Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Present address:Department of Biological Sciences, NUS Environmental Research Institute (NERI), National University of Singapore (NUS), Block S2 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Ananya Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Rituparna Sinha Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India.,Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| |
Collapse
|
5
|
Tarvirdipour S, Skowicki M, Schoenenberger CA, Palivan CG. Peptide-Assisted Nucleic Acid Delivery Systems on the Rise. Int J Mol Sci 2021; 22:9092. [PMID: 34445799 PMCID: PMC8396486 DOI: 10.3390/ijms22169092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Concerns associated with nanocarriers' therapeutic efficacy and side effects have led to the development of strategies to advance them into targeted and responsive delivery systems. Owing to their bioactivity and biocompatibility, peptides play a key role in these strategies and, thus, have been extensively studied in nanomedicine. Peptide-based nanocarriers, in particular, have burgeoned with advances in purely peptidic structures and in combinations of peptides, both native and modified, with polymers, lipids, and inorganic nanoparticles. In this review, we summarize advances on peptides promoting gene delivery systems. The efficacy of nucleic acid therapies largely depends on cell internalization and the delivery to subcellular organelles. Hence, the review focuses on nanocarriers where peptides are pivotal in ferrying nucleic acids to their site of action, with a special emphasis on peptides that assist anionic, water-soluble nucleic acids in crossing the membrane barriers they encounter on their way to efficient function. In a second part, we address how peptides advance nanoassembly delivery tools, such that they navigate delivery barriers and release their nucleic acid cargo at specific sites in a controlled fashion.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
6
|
Hall R, Alasmari A, Mozaffari S, Mahdipoor P, Parang K, Montazeri Aliabadi H. Peptide/Lipid-Associated Nucleic Acids (PLANAs) as a Multicomponent siRNA Delivery System. Mol Pharm 2021; 18:986-1002. [PMID: 33496597 DOI: 10.1021/acs.molpharmaceut.0c00969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RNAi is a biological process that utilizes small interfering RNA (siRNA) to prevent the translation of mRNA to protein. This mechanism could be beneficial in preventing the overexpression of proteins in cancer. However, the cellular delivery of siRNA has proven to be challenging due to its inherent negative charge and relative instability. Here, we designed a multicomponent delivery system composed of a specifically designed peptide (linear or cyclic fatty acyl peptide conjugates and hybrid cyclic/linear peptides) and several lipids (DOTAP, DOPE, cholesterol, and phosphatidylcholine) to form a nanoparticle, which we have termed as peptide lipid-associated nucleic acids (PLANAs). Five formulations were prepared (a formulation with no peptide, which was named lipid-associated nucleic acid or LANA, and PLANA formulations A-D) using a mini extruder to form uniform nanoparticles around 100 nm in size with a slightly positive charge (less than +10 mv). Formulations were evaluated for peptide incorporation, siRNA encapsulation efficiency, release profile, toxicity, cellular uptake, and protein silencing. Our experiments showed effective encapsulation of siRNA (>95%), a controlled release profile, and negligible toxicity in formulations that did not contain a positively charged lipid. The results also revealed that PLANAs C and D exhibited optimum cellular uptake (with 80-90% siRNA-positive cells for most of the formulations). PLANA D formulation was selected to silence two model proteins (Src and RPS6KA5) in the triple-negative human breast cancer cell line MDA-MB-231, with promising silencing efficiency, which diminished the expression of RPS6KA5 and Src to approximately 29 and 38% compared to naïve cells, respectively. Many approaches have been investigated for safe and efficient delivery of nucleic acids in the last 20 years; however, many have failed due to the multifaceted challenges to overcome. Our results show a promising potential for a multicomponent design that incorporates different components for a variety of delivery tasks, which warrants further investigation of PLANAs in vivo.
Collapse
Affiliation(s)
- Ryley Hall
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Abdulaziz Alasmari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Parvin Mahdipoor
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| |
Collapse
|
7
|
Basu I, Maiti PK. Insight into the Mechanism of Carrier-Mediated Delivery of siRNA in the Cell Membrane Using MD Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:266-277. [PMID: 33369423 DOI: 10.1021/acs.langmuir.0c02871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effective translocation of small interfering RNA (siRNA) across cell membranes has become one of the main challenges in gene silencing therapy. In this study, we have carried out molecular dynamics simulations to investigate a systematic procedure with different carriers that could be convenient for efficient siRNA delivery into the cell. Starting with poly-amido-amine (PAMAM) dendrimers and cholesterol molecules as carriers, we have found cholesterol as the most efficient carrier for siRNA when it is covalently attached with the siRNA terminal group. Our simulations show that binding of this complex in the lipid membrane alters the structure and dynamics of the nearby lipids to initiate the translocation process. Potential of mean force (PMF) was computed for siRNA with the carriers along the bilayer normal to understand the spontaneity of the process. Though all the PMF profiles show repulsive interaction inside the bilayer, the siRNA with cholesterol shows a comparative attractive interaction (∼27 kcal/mol) with respect to the siRNA-PAMAM complex. Altogether, our results demonstrate the binding interaction of the siRNA-carrier complex in the lipid membrane and propose a theoretical model for the efficient carrier by comparative study of the binding. The probable mechanism of the translocation process is also provided by the alteration of the lipid structure and dynamics for specifically siRNA-cholesterol binding.
Collapse
Affiliation(s)
- Ipsita Basu
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
8
|
Abstract
Cell-Penetrating Peptides (CPP) are valuable tools capable of crossing the plasma membrane to deliver therapeutic cargo inside cells. Small interfering RNAs (siRNA) are double-stranded RNA molecules capable of silencing the expression of a specific protein triggering the RNA interference (RNAi) pathway, but they are unable to cross the plasma membrane and have a short half-life in the bloodstream. In this overview, we assessed the many different approaches used and developed in the last two decades to deliver siRNA through the plasma membrane through different CPPs sorted according to three different loading strategies: covalent conjugation, complex formation, and CPP-decorated (functionalized) nanocomplexes. Each of these strategies has pros and cons, but it appears the latter two are the most commonly reported and emerging as the most promising strategies due to their simplicity of synthesis, use, and versatility. Recent progress with siRNA delivered by CPPs seems to focus on targeted delivery to reduce side effects and amount of drugs used, and it appears to be among the most promising use for CPPs in future clinical applications.
Collapse
|
9
|
Sahoo PK, Kar AN, Samra N, Terenzio M, Patel P, Lee SJ, Miller S, Thames E, Jones B, Kawaguchi R, Coppola G, Fainzilber M, Twiss JL. A Ca 2+-Dependent Switch Activates Axonal Casein Kinase 2α Translation and Drives G3BP1 Granule Disassembly for Axon Regeneration. Curr Biol 2020; 30:4882-4895.e6. [PMID: 33065005 DOI: 10.1016/j.cub.2020.09.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/15/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
The main limitation on axon regeneration in the peripheral nervous system (PNS) is the slow rate of regrowth. We recently reported that nerve regeneration can be accelerated by axonal G3BP1 granule disassembly, releasing axonal mRNAs for local translation to support axon growth. Here, we show that G3BP1 phosphorylation by casein kinase 2α (CK2α) triggers G3BP1 granule disassembly in injured axons. CK2α activity is temporally and spatially regulated by local translation of Csnk2a1 mRNA in axons after injury, but this requires local translation of mTor mRNA and buffering of the elevated axonal Ca2+ that occurs after axotomy. CK2α's appearance in axons after PNS nerve injury correlates with disassembly of axonal G3BP1 granules as well as increased phospho-G3BP1 and axon growth, although depletion of Csnk2a1 mRNA from PNS axons decreases regeneration and increases G3BP1 granules. Phosphomimetic G3BP1 shows remarkably decreased RNA binding in dorsal root ganglion (DRG) neurons compared with wild-type and non-phosphorylatable G3BP1; combined with other studies, this suggests that CK2α-dependent G3BP1 phosphorylation on Ser 149 after axotomy releases axonal mRNAs for translation. Translation of axonal mRNAs encoding some injury-associated proteins is known to be increased with Ca2+ elevations, and using a dual fluorescence recovery after photobleaching (FRAP) reporter assay for axonal translation, we see that translational specificity switches from injury-associated protein mRNA translation to CK2α translation with endoplasmic reticulum (ER) Ca2+ release versus cytoplasmic Ca2+ chelation. Our results point to axoplasmic Ca2+ concentrations as a determinant for the temporal specificity of sequential translational activation of different axonal mRNAs as severed axons transition from injury to regenerative growth.
Collapse
Affiliation(s)
- Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Nitzan Samra
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovat, Israel
| | - Marco Terenzio
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovat, Israel; Molecular Neuroscience Unit, Okinawa Institute of Science and Technology, Kunigami, Okinawa 904-0412, Japan
| | - Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Sharmina Miller
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Elizabeth Thames
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Blake Jones
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Riki Kawaguchi
- Department of Neurology, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA
| | - Giovanni Coppola
- Department of Neurology, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovat, Israel
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
10
|
Rudra A, Li J, Shakur R, Bhagchandani S, Langer R. Trends in Therapeutic Conjugates: Bench to Clinic. Bioconjug Chem 2020; 31:462-473. [PMID: 31990184 DOI: 10.1021/acs.bioconjchem.9b00828] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, therapeutic conjugates have attracted considerable attention as a new class of drug due to their unique pharmacological properties, especially from the pharmaceutical community. Their molecular structure tunability, improved targeting specificity, and therapeutic efficacy have been demonstrated in a wide range of research and clinical applications. In this topical review, we summarize selected recent advances in bioconjugation strategies for the development of therapeutic conjugates, their emerging application in clinical settings, as well as perspectives on the direction of future research.
Collapse
Affiliation(s)
- Arnab Rudra
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Junwei Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rameen Shakur
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sachin Bhagchandani
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Montroull LE, Rothbard DE, Kanal HD, D’Mello V, Dodson V, Troy CM, Zanin JP, Levison SW, Friedman WJ. Proneurotrophins Induce Apoptotic Neuronal Death After Controlled Cortical Impact Injury in Adult Mice. ASN Neuro 2020; 12:1759091420930865. [PMID: 32493127 PMCID: PMC7273561 DOI: 10.1177/1759091420930865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 11/29/2022] Open
Abstract
The p75 neurotrophin receptor (p75NTR) can regulate multiple cellular functions including proliferation, survival, and apoptotic cell death. The p75NTR is widely expressed in the developing brain and is downregulated as the nervous system matures, with only a few neuronal subpopulations retaining expression into adulthood. However, p75NTR expression is induced following damage to the adult brain, including after traumatic brain injury, which is a leading cause of mortality and disability worldwide. A major consequence of traumatic brain injury is the progressive neuronal loss that continues secondary to the initial trauma, which ultimately contributes to cognitive decline. Understanding mechanisms governing this progressive neuronal death is key to developing targeted therapeutic strategies to provide neuroprotection and salvage cognitive function. In this study, we demonstrate that a cortical impact injury to the sensorimotor cortex elicits p75NTR expression in apoptotic neurons in the injury penumbra, confirming previous studies. To establish whether preventing p75NTR induction or blocking the ligands would reduce the extent of secondary neuronal cell death, we used a noninvasive intranasal strategy to deliver either siRNA to block the induction of p75NTR, or function-blocking antibodies to the ligands pro-nerve growth factor and pro-brain-derived neurotrophic factor. We demonstrate that either preventing the induction of p75NTR or blocking the proneurotrophin ligands provides neuroprotection and preserves sensorimotor function.
Collapse
Affiliation(s)
- Laura E. Montroull
- Department of Biological
Sciences, Rutgers University, Newark, New Jersey, United States
| | - Deborah E. Rothbard
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Hur D. Kanal
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Veera D’Mello
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Vincent Dodson
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Carol M. Troy
- Department of Pathology and
Cell Biology, Columbia University Medical Center, New York, NY, United
States
| | - Juan P. Zanin
- Department of Biological
Sciences, Rutgers University, Newark, New Jersey, United States
| | - Steven W. Levison
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Wilma J. Friedman
- Department of Biological
Sciences, Rutgers University, Newark, New Jersey, United States
| |
Collapse
|
12
|
Stasińska AR, Putaj P, Chmielewski MK. Disulfide bridge as a linker in nucleic acids' bioconjugation. Part II: A summary of practical applications. Bioorg Chem 2019; 95:103518. [PMID: 31911308 DOI: 10.1016/j.bioorg.2019.103518] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022]
Abstract
Disulfide conjugation invariably remains a key tool in research on nucleic acids. This versatile and cost-effective method plays a crucial role in structural studies of DNA and RNA as well as their interactions with other macromolecules in a variety of biological systems. In this article we review applications of disulfide-bridged conjugates of oligonucleotides with other (bio)molecules such as peptides, proteins etc. and present key findings obtained with their help.
Collapse
Affiliation(s)
- Anna R Stasińska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznań, Poland; FutureSynthesis sp. z o.o. ul. Rubież 46H, 61-612 Poznań, Poland
| | - Piotr Putaj
- FutureSynthesis sp. z o.o. ul. Rubież 46H, 61-612 Poznań, Poland
| | - Marcin K Chmielewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznań, Poland; FutureSynthesis sp. z o.o. ul. Rubież 46H, 61-612 Poznań, Poland.
| |
Collapse
|
13
|
A dual role for peripheral GDNF signaling in nociception and cardiovascular reflexes in the mouse. Proc Natl Acad Sci U S A 2019; 117:698-707. [PMID: 31848242 DOI: 10.1073/pnas.1910905116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Group III/IV muscle afferents transduce nociceptive signals and modulate exercise pressor reflexes (EPRs). However, the mechanisms governing afferent responsiveness to dually modulate these processes are not well characterized. We and others have shown that ischemic injury can induce both nociception-related behaviors and exacerbated EPRs in the same mice. This correlated with primary muscle afferent sensitization and increased expression of glial cell line-derived neurotrophic factor (GDNF) in injured muscle and increased expression of GDNF family receptor α1 (GFRα1) in dorsal root ganglia (DRG). Here, we report that increased GDNF/GFRα1 signaling to sensory neurons from ischemia/reperfusion-affected muscle directly modulated nociceptive-like behaviors and increased exercise-mediated reflexes and group III/IV muscle afferent sensitization. This appeared to have taken effect through increased cyclic adenosine monophosphate (cAMP) response element binding (CREB)/CREB binding protein-mediated expression of the purinergic receptor P2X5 in the DRGs. Muscle GDNF signaling to neurons may, therefore, play an important dual role in nociception and sympathetic reflexes and could provide a therapeutic target for treating complications from ischemic injuries.
Collapse
|
14
|
Cummings JC, Zhang H, Jakymiw A. Peptide carriers to the rescue: overcoming the barriers to siRNA delivery for cancer treatment. Transl Res 2019; 214:92-104. [PMID: 31404520 PMCID: PMC6848774 DOI: 10.1016/j.trsl.2019.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
Cancer is a significant health concern worldwide and its clinical treatment presents many challenges. Consequently, much research effort has focused on the development of new anticancer drugs to combat this disease. One area of exploration, in particular, has been in the therapeutic application of RNA interference (RNAi). Although RNAi appears to be an attractive therapeutic tool for the treatment of cancer, one of the primary obstacles towards its pervasive use in the clinic has been cell/tissue type-specific cytosolic delivery of therapeutic small interfering RNA (siRNA) molecules. Consequently, varied drug delivery platforms have been developed and widely explored for siRNA delivery. Among these candidate drug delivery systems, peptides have shown great promise as siRNA carriers due to their varied physiochemical properties and functions, simple formulations, and flexibility in design. In this review, we will focus on distinguishing between the different classes of peptide carriers based on their functions, as well as summarize and discuss the various design strategies and advancements that have been made in circumventing the barriers to siRNA delivery for cancer treatment. Resolution of these challenges by peptide carriers will accelerate the translation of RNAi-based therapies to the clinic.
Collapse
Affiliation(s)
- James C Cummings
- Departments of Oral Health Sciences and Biochemistry & Molecular Biology, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina
| | - Haiwen Zhang
- Departments of Oral Health Sciences and Biochemistry & Molecular Biology, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina
| | - Andrew Jakymiw
- Departments of Oral Health Sciences and Biochemistry & Molecular Biology, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina.
| |
Collapse
|
15
|
Jagrosse ML, Dean DA, Rahman A, Nilsson BL. RNAi therapeutic strategies for acute respiratory distress syndrome. Transl Res 2019; 214:30-49. [PMID: 31401266 PMCID: PMC7316156 DOI: 10.1016/j.trsl.2019.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Acute respiratory distress syndrome (ARDS), replacing the clinical term acute lung injury, involves serious pathophysiological lung changes that arise from a variety of pulmonary and nonpulmonary injuries and currently has no pharmacological therapeutics. RNA interference (RNAi) has the potential to generate therapeutic effects that would increase patient survival rates from this condition. It is the purpose of this review to discuss potential targets in treating ARDS with RNAi strategies, as well as to outline the challenges of oligonucleotide delivery to the lung and tactics to circumvent these delivery barriers.
Collapse
Affiliation(s)
| | - David A Dean
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Arshad Rahman
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York.
| |
Collapse
|
16
|
Abstract
The RNA interference (RNAi) pathway regulates mRNA stability and translation in nearly all human cells. Small double-stranded RNA molecules can efficiently trigger RNAi silencing of specific genes, but their therapeutic use has faced numerous challenges involving safety and potency. However, August 2018 marked a new era for the field, with the US Food and Drug Administration approving patisiran, the first RNAi-based drug. In this Review, we discuss key advances in the design and development of RNAi drugs leading up to this landmark achievement, the state of the current clinical pipeline and prospects for future advances, including novel RNAi pathway agents utilizing mechanisms beyond post-translational RNAi silencing.
Collapse
|
17
|
Kardani K, Milani A, H Shabani S, Bolhassani A. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin Drug Deliv 2019; 16:1227-1258. [PMID: 31583914 DOI: 10.1080/17425247.2019.1676720] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Cell penetrating peptides (CPPs) known as protein translocation domains (PTD), membrane translocating sequences (MTS), or Trojan peptides (TP) are able to cross biological membranes without clear toxicity using different mechanisms, and facilitate the intracellular delivery of a variety of bioactive cargos. CPPs could overcome some limitations of drug delivery and combat resistant strains against a broad range of diseases. Despite delivery of different therapeutic molecules by CPPs, they lack cell specificity and have a short duration of action. These limitations led to design of combined cargo delivery systems and subsequently improvement of their clinical applications. Areas covered: This review covers all our studies and other researchers in different aspects of CPPs such as classification, uptake mechanisms, and biomedical applications. Expert opinion: Due to low cytotoxicity of CPPs as compared to other carriers and final degradation to amino acids, they are suitable for preclinical and clinical studies. Generally, the efficiency of CPPs was suitable to penetrate the cell membrane and deliver different cargos to specific intracellular sites. However, no CPP-based therapeutic approach has approved by FDA, yet; because there are some disadvantages for CPPs including short half-life in blood, and nonspecific CPP-mediated delivery to normal tissue. Thus, some methods were used to develop the functions of CPPs in vitro and in vivo including the augmentation of cell specificity by activatable CPPs, specific transport into cell organelles by insertion of corresponding localization sequences, incorporation of CPPs into multifunctional dendrimeric or liposomal nanocarriers to improve selectivity and efficiency especially in tumor cells.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Samaneh H Shabani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
18
|
Current Aspects of siRNA Bioconjugate for In Vitro and In Vivo Delivery. Molecules 2019; 24:molecules24122211. [PMID: 31200490 PMCID: PMC6631009 DOI: 10.3390/molecules24122211] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023] Open
Abstract
Studies on siRNA delivery have seen intense growth in the past decades since siRNA has emerged as a new class of gene therapeutics for the treatment of various diseases. siRNA bioconjugate, as one of the major delivery strategies, offers the potential to enhance and broaden pharmacological properties of siRNA, while minimizing the heterogeneity and stability-correlated toxicology. This review summarizes the recent developments of siRNA bioconjugate, including the conjugation with antibody, peptide, aptamer, small chemical, lipidoid, cell-penetrating peptide polymer, and nanoparticle. These siRNA bioconjugate, either administrated alone or formulated with other agents, could significantly improve pharmacokinetic behavior, enhance the biological half-life, and increase the targetability while maintaining sufficient gene silencing activity, with a concomitant improvement of the therapeutic outcomes and diminishment of adverse effects. This review emphasizes the delivery application of these siRNA bioconjugates, especially the conjugation strategy that control the integrity, stability and release of siRNA bioconjugates. The limitations conferred by these conjugation strategies have also been covered.
Collapse
|
19
|
Olabarria M, Pasini S, Corona C, Robador P, Song C, Patel H, Lefort R. Dysfunction of the ubiquitin ligase E3A Ube3A/E6-AP contributes to synaptic pathology in Alzheimer's disease. Commun Biol 2019; 2:111. [PMID: 30937395 PMCID: PMC6430817 DOI: 10.1038/s42003-019-0350-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
Synaptic dysfunction and synapse loss are prominent features in Alzheimer's disease. Members of the Rho-family of guanosine triphosphatases, specifically RhoA, and the synaptic protein Arc are implicated in these pathogenic processes. They share a common regulatory molecule, the E3 ligase Ube3A/E6-AP. Here, we show that Ube3A is reduced in an Alzheimer's disease mouse model, Tg2576 mouse, which overexpresses human APP695 carrying the Swedish mutation, and accumulates Aβ in the brain. Depletion of Ube3A precedes the age-dependent behavioral deficits and loss of dendritic spines in these mice, and results from a decrease in solubility following phosphorylation by c-Abl, after Aβ exposure. Loss of Ube3A triggers the accumulation of Arc and Ephexin-5, driving internalization of GluR1, and activation of RhoA, respectively, culminating in pruning of synapses, which is blocked by restoring Ube3A. Taken together, our results place Ube3A as a critical player in Alzheimer's disease pathogenesis, and as a potential therapeutic target.
Collapse
Affiliation(s)
- Markel Olabarria
- Taub Institute for Research on Alzheimer’s Disease & the Aging Brain and the Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA
| | - Silvia Pasini
- Taub Institute for Research on Alzheimer’s Disease & the Aging Brain and the Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA
- Present Address: Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37205 USA
| | - Carlo Corona
- Taub Institute for Research on Alzheimer’s Disease & the Aging Brain and the Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA
| | - Pablo Robador
- Taub Institute for Research on Alzheimer’s Disease & the Aging Brain and the Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA
| | - Cheng Song
- Taub Institute for Research on Alzheimer’s Disease & the Aging Brain and the Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA
| | - Hardik Patel
- Taub Institute for Research on Alzheimer’s Disease & the Aging Brain and the Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA
| | - Roger Lefort
- Taub Institute for Research on Alzheimer’s Disease & the Aging Brain and the Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA
| |
Collapse
|
20
|
Peptide-based targeted therapeutics: Focus on cancer treatment. J Control Release 2018; 292:141-162. [DOI: 10.1016/j.jconrel.2018.11.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 12/14/2022]
|
21
|
Lu P, Hudgins RC, Liu X, Ford ZK, Hofmann MC, Queme LF, Jankowski MP. Upregulation of P2Y1 in neonatal nociceptors regulates heat and mechanical sensitization during cutaneous inflammation. Mol Pain 2018; 13:1744806917730255. [PMID: 28845731 PMCID: PMC5590703 DOI: 10.1177/1744806917730255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The upregulation of various channels and receptors classically linked to sensory transduction from the periphery tightly correspond with changes in the responsiveness of specific subpopulations of primary afferents to mechanical and heat stimulation of the skin at different ages. Previous reports in adults have suggested that the purinergic adenosine diphosphate receptor, P2Y1 can specifically regulate sensory neuron responsiveness to heat stimuli in addition to neurochemical alterations in primary afferents during cutaneous inflammation. To determine if the upregulation of P2Y1 found in the dorsal root ganglia of neonatal mice with cutaneous inflammation initiated at postnatal day 7 (P7) was responsible for the specific alteration in heat sensitivity found in faster conducting (“A”-fiber) nociceptors, we assessed the response properties of cutaneous afferents using an ex vivo hairy hindpaw skin-saphenous nerve-dorsal root ganglion-spinal cord preparation in conjunction with nerve-targeted knockdown of P2Y1. We found that P2Y1 knockdown during neonatal cutaneous inflammation was sufficient to reduce the sensitization of “A”-fiber nociceptors to heat stimuli. Surprisingly, we also found that nerve-specific downregulation of P2Y1 could reduce the observed sensitization of these afferent subtypes to mechanical deformation of the skin. Immunocytochemical analysis of dorsal root ganglia showed that P2Y1 may mediate its effects through modulation of the injury-induced increase of transient receptor potential vanilloid type 1 receptor. This suggests that the upregulation of P2Y1 in cutaneous nociceptors during early life peripheral inflammation can regulate the sensitization of myelinated nociceptors to both mechanical and heat stimuli possibly through modulation of transient receptor potential vanilloid type 1 expression.
Collapse
Affiliation(s)
- Peilin Lu
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center
| | - Renita C Hudgins
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center
| | - Xiaohua Liu
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center
| | - Zachary K Ford
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center
| | - Megan C Hofmann
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center
| | - Luis F Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center
| | | |
Collapse
|
22
|
Increased Expression of Transcription Factor SRY-box-Containing Gene 11 (Sox11) Enhances Neurite Growth by Regulating Neurotrophic Factor Responsiveness. Neuroscience 2018; 382:93-104. [PMID: 29746989 DOI: 10.1016/j.neuroscience.2018.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/21/2022]
Abstract
The peripherally projecting axons of dorsal root ganglion (DRG) neurons readily regenerate after damage while their centrally projecting branches do not regenerate to the same degree after injury. One important reason for this inconsistency is the lack of pro-regeneration gene expression that occurs in DRG neurons after central injury relative to peripheral damage. The transcription factor SRY-box-containing gene 11 (Sox11) may be a crucial player in the regenerative capacity of axons as previous evidence has shown that it is highly upregulated after peripheral axon damage but not after central injury. Studies have also shown that overexpression or inhibition of Sox11 after peripheral nerve damage can promote or block axon regeneration, respectively. To further understand the mechanisms of how Sox11 regulates axon growth, we artificially overexpressed Sox11 in DRG neurons in vitro to determine if increased levels of this transcription factor could enhance neurite growth. We found that Sox11 overexpression significantly enhanced neurite branching in vitro, and specifically induced the expression of glial cell line-derived neurotrophic factor (GDNF) family receptors, GFRα1 and GFRα3. The upregulation of these receptors by Sox11 overproduction altered the neurite growth patterns of DRG neurons alone and in response to growth factors GDNF and artemin; ligands for GFRα1 and GFRα3, respectively. These data support the role of Sox11 to promote neurite growth by altering responsiveness of neurotrophic factors and may provide mechanistic insight as to why peripheral axons of sensory neurons readily regenerate after injury, but the central projections do not have an extensive regenerative capacity.
Collapse
|
23
|
He Y, Li F, Huang Y. Smart Cell-Penetrating Peptide-Based Techniques for Intracellular Delivery of Therapeutic Macromolecules. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 112:183-220. [PMID: 29680237 DOI: 10.1016/bs.apcsb.2018.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many therapeutic macromolecules must enter cells to take their action. However, their treatment outcomes are often hampered by their poor transportation into target cells. Therefore, efficient intracellular delivery of these macromolecules is critical for improving their therapeutic efficacy. Cell-penetrating peptide (CPP)-based approaches are one of the most efficient methods for intracellular delivery of macromolecular therapeutics. Nevertheless, poor specificity is a significant concern for systemic administrated CPP-based delivery systems. This chapter will review recent advances in CPP-mediated macromolecule delivery with a focus on various smart strategies which not only enhance the intracellular delivery but also improve the targeting specificity.
Collapse
Affiliation(s)
- Yang He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Feng Li
- Harrison School of Pharmacy, Auburn University, Auburn, AL, United states.
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
Gagat M, Zielińska W, Grzanka A. Cell-penetrating peptides and their utility in genome function modifications (Review). Int J Mol Med 2017; 40:1615-1623. [PMID: 29039455 PMCID: PMC5716439 DOI: 10.3892/ijmm.2017.3172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/26/2017] [Indexed: 01/02/2023] Open
Abstract
For almost 30 years, studies have confirmed the effectiveness of cell-penetrating peptides (CPPs) in the facilitation of the intracellular delivery of various cargo molecules, including RNA, DNA, plasmids, proteins or nanoparticles, under in vitro and in vivo conditions. The cellular uptake of CPPs occurs via energy-dependent, as well as -independent mechanisms. In this relatively new direction of research, studies have attempted to introduce genome modification systems into cells by CPPs. Cellular uptake of CPPs carrying either covalently bound or electrostatically conjugated cargo, has several advantages over viral delivery systems, as it does not lead to any significant cytotoxicity or immunogenicity, and simultaneously it is more efficient than other non-viral systems. So far, CPPs have been successfully used to introduce Cre recombinase, zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats systems into cells. The present article systematically reviewed the information obtained from studies on CPPs and assessed their utility with regard to their effectiveness and safety of use.
Collapse
Affiliation(s)
- Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Pl-85-092 Bydgoszcz, Poland
| | - Wioletta Zielińska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Pl-85-092 Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Pl-85-092 Bydgoszcz, Poland
| |
Collapse
|
25
|
Muscle IL1β Drives Ischemic Myalgia via ASIC3-Mediated Sensory Neuron Sensitization. J Neurosci 2017; 36:6857-71. [PMID: 27358445 DOI: 10.1523/jneurosci.4582-15.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/11/2016] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Musculoskeletal pain is a significantly common clinical complaint. Although it is known that muscles are quite sensitive to alterations in blood flow/oxygenation and a number of muscle pain disorders are based in problems of peripheral perfusion, the mechanisms by which ischemic-like conditions generate myalgia remain unclear. We found, using a multidisciplinary experimental approach, that ischemia and reperfusion injury (I/R) in male Swiss Webster mice altered ongoing and evoked pain-related behaviors in addition to activity levels through enhanced muscle interleukin-1 beta (IL1β)/IL1 receptor signaling to group III/IV muscle afferents. Peripheral sensitization depended on acid-sensing ion channels (ASICs) because treatment of sensory afferents in vitro with IL1β-upregulated ASIC3 in single cells, and nerve-specific knock-down of ASIC3 recapitulated the results of inhibiting the enhanced IL1β/IL1r1 signaling after I/R, which was also found to regulate afferent sensitization and pain-related behaviors. This suggests that targeting muscle IL1β signaling may be a potential analgesic therapy for ischemic myalgia. SIGNIFICANCE STATEMENT Here, we have described a novel pathway whereby increased inflammation within the muscle tissue during ischemia/reperfusion injury sensitizes group III and IV muscle afferents via upregulation of acid-sensing ion channel 3 (ASIC3), leading not only to alterations in mechanical and chemical responsiveness in individual afferents, but also to pain-related behavioral changes. Furthermore, these I/R-induced changes can be prevented using an afferent-specific siRNA knock-down strategy targeting either ASIC3 or the upstream mediator of its expression, interleukin 1 receptor 1. Therefore, this knowledge may contribute to the development of alternative therapeutics for muscle pain and may be especially relevant to pain caused by issues of peripheral circulation, which is commonly observed in disorders such as complex regional pain syndrome, sickle cell anemia, or fibromyalgia.
Collapse
|
26
|
Watson G, Kulkarni K, Brandt R, Del Borgo MP, Aguilar MI, Wilce JA. Shortened Penetratin Cell-Penetrating Peptide Is Insufficient for Cytosolic Delivery of a Grb7 Targeting Peptide. ACS OMEGA 2017; 2:670-677. [PMID: 29152602 PMCID: PMC5683694 DOI: 10.1021/acsomega.6b00561] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/13/2017] [Indexed: 06/07/2023]
Abstract
Delivery across the cell membrane is of critical importance for the development of therapeutics targeting intracellular proteins. The use of cell-penetrating peptides (CPPs), such as Penetratin (P16), has facilitated the delivery of otherwise cell-impermeable molecules allowing them to carry out their biological function. A truncated form of Penetratin (RRMKWKK) has been previously described as the minimal Penetratin sequence that is required for translocation across the cell membrane. Here, we performed a detailed comparison of cellular uptake by Penetratin (P16) and the truncated Penetratin peptide (P7), including their ability to deliver G7-18NATE, a cyclic peptide targeting the cytosolic cancer target Grb7-adapter protein into cells. We identified that both P16 and P7 were internalized by cells to comparable levels; however, only P16 was effective in delivering G7-18NATE to produce a biological response. Live-cell imaging of fluorescein isothiocyanate-labeled peptides suggested that while P7 may be taken up into cells, it does not gain access to the cytosolic compartment. Thus, this study has identified that the P7 peptide is a poor CPP for the delivery of G7-18NATE and may also be insufficient for the intracellular delivery of other bioactive molecules.
Collapse
|
27
|
Tai W, Gao X. Functional peptides for siRNA delivery. Adv Drug Deliv Rev 2017; 110-111:157-168. [PMID: 27530388 PMCID: PMC5305781 DOI: 10.1016/j.addr.2016.08.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/21/2016] [Accepted: 08/05/2016] [Indexed: 11/19/2022]
Abstract
siRNA is considered as a potent therapeutic agent because of its high specificity and efficiency in suppressing genes that are overexpressed during disease development. For nearly two decades, a significant amount of efforts has been dedicated to bringing the siRNA technology into clinical uses. However, only limited success has been achieved to date, largely due to the lack of a cell type-specific, safe, and efficient delivery technology to carry siRNA into the target cells' cytosol where RNA interference takes place. Among the emerging candidate nanocarriers for siRNA delivery, peptides have gained popularity because of their structural and functional diversity. A variety of peptides have been discovered for their ability to translocate siRNA into living cells via different mechanisms such as direct penetration through the cellular membrane, endocytosis-mediated cell entry followed by endosomolysis, and receptor-mediated uptake. This review is focused on the multiple roles played by peptides in siRNA delivery, such as membrane penetration, endosome disruption, targeting, as well as the combination of these functionalities.
Collapse
Affiliation(s)
- Wanyi Tai
- Department of Bioengineering, University of Washington, William H Foege Building N561, Seattle, WA 98195, USA
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, William H Foege Building N561, Seattle, WA 98195, USA.
| |
Collapse
|
28
|
Mutations in CRADD Result in Reduced Caspase-2-Mediated Neuronal Apoptosis and Cause Megalencephaly with a Rare Lissencephaly Variant. Am J Hum Genet 2016; 99:1117-1129. [PMID: 27773430 PMCID: PMC5097945 DOI: 10.1016/j.ajhg.2016.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/19/2016] [Indexed: 12/02/2022] Open
Abstract
Lissencephaly is a malformation of cortical development typically caused by deficient neuronal migration resulting in cortical thickening and reduced gyration. Here we describe a “thin” lissencephaly (TLIS) variant characterized by megalencephaly, frontal predominant pachygyria, intellectual disability, and seizures. Trio-based whole-exome sequencing and targeted re-sequencing identified recessive mutations of CRADD in six individuals with TLIS from four unrelated families of diverse ethnic backgrounds. CRADD (also known as RAIDD) is a death-domain-containing adaptor protein that oligomerizes with PIDD and caspase-2 to initiate apoptosis. TLIS variants cluster in the CRADD death domain, a platform for interaction with other death-domain-containing proteins including PIDD. Although caspase-2 is expressed in the developing mammalian brain, little is known about its role in cortical development. CRADD/caspase-2 signaling is implicated in neurotrophic factor withdrawal- and amyloid-β-induced dendritic spine collapse and neuronal apoptosis, suggesting a role in cortical sculpting and plasticity. TLIS-associated CRADD variants do not disrupt interactions with caspase-2 or PIDD in co-immunoprecipitation assays, but still abolish CRADD’s ability to activate caspase-2, resulting in reduced neuronal apoptosis in vitro. Homozygous Cradd knockout mice display megalencephaly and seizures without obvious defects in cortical lamination, supporting a role for CRADD/caspase-2 signaling in mammalian brain development. Megalencephaly and lissencephaly associated with defective programmed cell death from loss of CRADD function in humans implicate reduced apoptosis as an important pathophysiological mechanism of cortical malformation. Our data suggest that CRADD/caspase-2 signaling is critical for normal gyration of the developing human neocortex and for normal cognitive ability.
Collapse
|
29
|
Lee SH, Kang YY, Jang HE, Mok H. Current preclinical small interfering RNA (siRNA)-based conjugate systems for RNA therapeutics. Adv Drug Deliv Rev 2016; 104:78-92. [PMID: 26514375 DOI: 10.1016/j.addr.2015.10.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/01/2015] [Accepted: 10/12/2015] [Indexed: 01/01/2023]
Abstract
Recent promising clinical results of RNA therapeutics have drawn big attention of academia and industries to RNA therapeutics and their carrier systems. To improve their feasibility in clinics, systemic evaluations of currently available carrier systems under clinical trials and preclinical studies are needed. In this review, we focus on recent noticeable preclinical studies and clinical results regarding siRNA-based conjugates for clinical translations. Advantages and drawbacks of siRNA-based conjugates are discussed, compared to particle-based delivery systems. Then, representative siRNA-based conjugates with aptamers, peptides, carbohydrates, lipids, polymers, and nanostructured materials are introduced. To improve feasibility of siRNA conjugates in preclinical studies, several considerations for the rational design of siRNA conjugates in terms of cleavability, immune responses, multivalent conjugations, and mechanism of action are also presented. Lastly, we discuss lessons from previous preclinical and clinical studies related to siRNA conjugates and perspectives of their clinical applications.
Collapse
Affiliation(s)
- Soo Hyeon Lee
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland
| | - Yoon Young Kang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyo-Eun Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
30
|
Abstract
RNA interference mediated gene silencing has tremendous applicability in fields ranging from basic biological research to clinical therapy. However, delivery of siRNA across the cell membrane into the cytoplasm, where the RNA silencing machinery is located, is a significant hurdle in most primary cells. Cell-penetrating peptides (CPPs), peptides that possess an intrinsic ability to translocate across cell membranes, have been explored as a means to achieve cellular delivery of siRNA. Approaches using CPPs by themselves or through incorporation into other siRNA delivery platforms have been investigated with the intent of improving cytoplasmic delivery. Here, we review the utilization of CPPs for siRNA delivery with a focus on strategies developed to enhance cellular uptake, endosomal escape and cytoplasmic localization of CPP/siRNA complexes.
Collapse
|
31
|
Gooding M, Malhotra M, Evans JC, Darcy R, O'Driscoll CM. Oligonucleotide conjugates - Candidates for gene silencing therapeutics. Eur J Pharm Biopharm 2016; 107:321-40. [PMID: 27521696 DOI: 10.1016/j.ejpb.2016.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022]
Abstract
The potential therapeutic and diagnostic applications of oligonucleotides (ONs) have attracted great attention in recent years. The capability of ONs to selectively inhibit target genes through antisense and RNA interference mechanisms, without causing un-intended sideeffects has led them to be investigated for various biomedical applications, especially for the treatment of viral diseases and cancer. In recent years, many researchers have focused on enhancing the stability and target specificity of ONs by encapsulating/complexing them with polymers or lipid chains to formulate nanoparticles/nanocomplexes/micelles. Also, chemical modification of nucleic acids has emerged as an alternative to impart stability to ONs against nucleases and other degrading enzymes and proteins found in blood. In addition to chemically modifying the nucleic acids directly, another strategy that has emerged, involves conjugating polymers/peptide/aptamers/antibodies/proteins, preferably to the sense strand (3'end) of siRNAs. Conjugation to the siRNA not only enhances the stability and targeting specificity of the siRNA, but also allows for the development of self-administering siRNA formulations, with a much smaller size than what is usually observed for nanoparticle (∼200nm). This review concentrates mainly on approaches and studies involving ON-conjugates for biomedical applications.
Collapse
Affiliation(s)
- Matt Gooding
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - James C Evans
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Raphael Darcy
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | | |
Collapse
|
32
|
Guha I, Slamova I, Chun S, Clegg A, Golos M, Thrasivoulou C, Simons JP, Al-Shawi R. The effects of short-term JNK inhibition on the survival and growth of aged sympathetic neurons. Neurobiol Aging 2016; 46:138-48. [PMID: 27490965 DOI: 10.1016/j.neurobiolaging.2016.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/30/2016] [Accepted: 06/24/2016] [Indexed: 11/27/2022]
Abstract
During the course of normal aging, certain populations of nerve growth factor (NGF)-responsive neurons become selectively vulnerable to cell death. Studies using dissociated neurons isolated from neonates have shown that c-Jun N-terminal kinases (JNKs) are important in regulating the survival and neurite outgrowth of NGF-responsive sympathetic neurons. Unlike neonatal neurons, adult sympathetic neurons are not dependent on NGF for their survival. Moreover, the NGF precursor, proNGF, is neurotoxic for aging but not young adult NGF-responsive neurons. Because of these age-related differences, the effects of JNK inhibition on the survival and growth of sympathetic neurons isolated from aged mice were studied. Aged neurons, as well as glia, were found to be dependent on JNK for their growth but not their survival. Conversely, proNGF neurotoxicity was JNK-dependent and mediated by the p75-interacting protein NRAGE, whereas neurite outgrowth was independent of NRAGE. These results have implications for the potential use of JNK inhibitors as therapies for ameliorating age-related neurodegenerative disease.
Collapse
Affiliation(s)
- Isa Guha
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Ivana Slamova
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Soyon Chun
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Arthur Clegg
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Michal Golos
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Chris Thrasivoulou
- Research Department of Cell and Developmental Biology, University College London, London, UK
| | - J Paul Simons
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK.
| | - Raya Al-Shawi
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK.
| |
Collapse
|
33
|
Lavorgna G, Vago R, Sarmini M, Montorsi F, Salonia A, Bellone M. Long non-coding RNAs as novel therapeutic targets in cancer. Pharmacol Res 2016; 110:131-138. [DOI: 10.1016/j.phrs.2016.05.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023]
|
34
|
Yang Y, Yang Y, Xie X, Xu X, Xia X, Wang H, Li L, Dong W, Ma P, Liu Y. Dual stimulus of hyperthermia and intracellular redox environment triggered release of siRNA for tumor-specific therapy. Int J Pharm 2016; 506:158-73. [DOI: 10.1016/j.ijpharm.2016.04.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 01/06/2023]
|
35
|
Dual Modulation of Nociception and Cardiovascular Reflexes during Peripheral Ischemia through P2Y1 Receptor-Dependent Sensitization of Muscle Afferents. J Neurosci 2016; 36:19-30. [PMID: 26740646 DOI: 10.1523/jneurosci.2856-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Numerous musculoskeletal pain disorders are based in dysfunction of peripheral perfusion and are often comorbid with altered cardiovascular responses to muscle contraction/exercise. We have recently found in mice that 24 h peripheral ischemia induced by a surgical occlusion of the brachial artery (BAO) induces increased paw-guarding behaviors, mechanical hypersensitivity, and decreased grip strength. These behavioral changes corresponded to increased heat sensitivity as well as an increase in the numbers of chemosensitive group III/IV muscle afferents as assessed by an ex vivo forepaw muscles/median and ulnar nerves/dorsal root ganglion (DRG)/spinal cord (SC) recording preparation. Behaviors also corresponded to specific upregulation of the ADP-responsive P2Y1 receptor in the DRGs. Since group III/IV muscle afferents have separately been associated with regulating muscle nociception and exercise pressor reflexes (EPRs), and P2Y1 has been linked to heat responsiveness and phenotypic switching in cutaneous afferents, we sought to determine whether upregulation of P2Y1 was responsible for the observed alterations in muscle afferent function, leading to modulation of muscle pain-related behaviors and EPRs after BAO. Using an afferent-specific siRNA knockdown strategy, we found that inhibition of P2Y1 during BAO not only prevented the increased mean blood pressure after forced exercise, but also significantly reduced alterations in pain-related behaviors. Selective P2Y1 knockdown also prevented the increased firing to heat stimuli and the BAO-induced phenotypic switch in chemosensitive muscle afferents, potentially through regulating membrane expression of acid sensing ion channel 3. These results suggest that enhanced P2Y1 in muscle afferents during ischemic-like conditions may dually regulate muscle nociception and cardiovascular reflexes. SIGNIFICANCE STATEMENT Our current results suggest that P2Y1 modulates heat responsiveness and chemosensation in muscle afferents to play a key role in the development of pain-related behaviors during ischemia. At the same time, under these pathological conditions, the changes in muscle sensory neurons appear to modulate an increase in mean systemic blood pressure after exercise. This is the first report of the potential peripheral mechanisms by which group III/IV muscle afferents can dually regulate muscle nociception and the exercise pressor reflex. These data provide evidence related to the potential underlying reasons for the comorbidity of muscle pain and altered sympathetic reflexes in disease states that are based in problems with peripheral perfusion and may indicate a potential target for therapeutic intervention.
Collapse
|
36
|
|
37
|
Roberts TC, Ezzat K, El Andaloussi S, Weinberg MS. Synthetic SiRNA Delivery: Progress and Prospects. Methods Mol Biol 2016; 1364:291-310. [PMID: 26472459 DOI: 10.1007/978-1-4939-3112-5_23] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Small interfering RNA (siRNA) is a powerful tool for modulating gene expression by RNA interference (RNAi). Duplex RNA oligonucleotides induce cleavage of homologous target transcripts, thereby enabling posttranscriptional silencing of potentially any gene. As such, siRNAs may have utility as novel pharmaceuticals for a wide range of diseases. However, a lack of "drug-likeness," physiological barriers, and potential toxicities have meant that systemic delivery of SiRNAs in vivo remains a major challenge. Here we discuss various strategies that have been employed to solve the problem of SiRNA delivery. These include chemical modification of the SiRNA, direct conjugation to bioactive moieties, and nanoparticle formulations.
Collapse
Affiliation(s)
- Thomas C Roberts
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kariem Ezzat
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Marc S Weinberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Johannesburg, WITS 2050, South Africa.
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Johannesburg, WITS 2050, South Africa.
| |
Collapse
|
38
|
Cell Penetrating Peptide Conjugated Chitosan for Enhanced Delivery of Nucleic Acid. Int J Mol Sci 2015; 16:28912-30. [PMID: 26690119 PMCID: PMC4691089 DOI: 10.3390/ijms161226142] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 01/05/2023] Open
Abstract
Gene therapy is an emerging therapeutic strategy for the cure or treatment of a spectrum of genetic disorders. Nevertheless, advances in gene therapy are immensely reliant upon design of an efficient gene carrier that can deliver genetic cargoes into the desired cell populations. Among various nonviral gene delivery systems, chitosan-based carriers have gained increasing attention because of their high cationic charge density, excellent biocompatibility, nearly nonexistent cytotoxicity, negligible immune response, and ideal ability to undergo chemical conjugation. However, a major shortcoming of chitosan-based carriers is their poor cellular uptake, leading to inadequate transfection efficiency. The intrinsic feature of cell penetrating peptides (CPPs) for transporting diverse cargoes into multiple cell and tissue types in a safe manner suggests that they can be conjugated to chitosan for improving its transfection efficiency. In this review, we briefly discuss CPPs and their classification, and also the major mechanisms contributing to the cellular uptake of CPPs and cargo conjugates. We also discuss immense improvements for the delivery of nucleic acids using CPP-conjugated chitosan-based carriers with special emphasis on plasmid DNA and small interfering RNA.
Collapse
|
39
|
Fanutza T, Del Prete D, Ford MJ, Castillo PE, D’Adamio L. APP and APLP2 interact with the synaptic release machinery and facilitate transmitter release at hippocampal synapses. eLife 2015; 4:e09743. [PMID: 26551565 PMCID: PMC4755753 DOI: 10.7554/elife.09743] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/08/2015] [Indexed: 12/16/2022] Open
Abstract
The amyloid precursor protein (APP), whose mutations cause familial Alzheimer's disease, interacts with the synaptic release machinery, suggesting a role in neurotransmission. Here we mapped this interaction to the NH2-terminal region of the APP intracellular domain. A peptide encompassing this binding domain -named JCasp- is naturally produced by a γ-secretase/caspase double-cut of APP. JCasp interferes with the APP-presynaptic proteins interaction and, if linked to a cell-penetrating peptide, reduces glutamate release in acute hippocampal slices from wild-type but not APP deficient mice, indicating that JCasp inhibits APP function.The APP-like protein-2 (APLP2) also binds the synaptic release machinery. Deletion of APP and APLP2 produces synaptic deficits similar to those caused by JCasp. Our data support the notion that APP and APLP2 facilitate transmitter release, likely through the interaction with the neurotransmitter release machinery. Given the link of APP to Alzheimer's disease, alterations of this synaptic role of APP could contribute to dementia.
Collapse
Affiliation(s)
- Tomas Fanutza
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| | - Dolores Del Prete
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| | | | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Luciano D’Adamio
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| |
Collapse
|
40
|
Hou KK, Pan H, Schlesinger PH, Wickline SA. A role for peptides in overcoming endosomal entrapment in siRNA delivery - A focus on melittin. Biotechnol Adv 2015; 33:931-40. [PMID: 26025036 PMCID: PMC4540690 DOI: 10.1016/j.biotechadv.2015.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/20/2015] [Accepted: 05/23/2015] [Indexed: 12/21/2022]
Abstract
siRNA has the possibility to revolutionize medicine by enabling highly specific and efficient silencing of proteins involved in disease pathogenesis. Despite nearly 20 years of research dedicated to translating siRNA from a research tool into a clinically relevant therapeutic, minimal success has been had to date. Access to RNA interference machinery located in the cytoplasm is often overlooked, but must be considered when designing the next generation of siRNA delivery strategies. Peptide transduction domains (PTDs) have demonstrated moderate siRNA transfection, which is primarily limited by endosomal entrapment. Strategies aimed at overcoming endosomal entrapment associated with peptide vectors are reviewed here, including osmotic methods, lipid conjugation, and fusogenic peptides. As an alternative to traditional PTD, the hemolytic peptide melittin exhibits the native capacity for endosomal disruption but causes cytotoxicity. However, appropriate packaging and protection of melittin with activation and release in the endosomal compartment has allowed melittin-based strategies to demonstrate both in vitro and in vivo safety and efficacy. These data suggest that melittin's membrane disruptive properties can enable safe and effective endosomolysis, building a case for melittin as a key component in a new generation of siRNA therapeutics.
Collapse
Affiliation(s)
- Kirk K Hou
- Computational and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Hua Pan
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Paul H Schlesinger
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Samuel A Wickline
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63108, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63108, USA.
| |
Collapse
|
41
|
Kokil GR, Veedu RN, Ramm GA, Prins JB, Parekh HS. Type 2 diabetes mellitus: limitations of conventional therapies and intervention with nucleic acid-based therapeutics. Chem Rev 2015; 115:4719-43. [PMID: 25918949 DOI: 10.1021/cr5002832] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ganesh R Kokil
- †School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Rakesh N Veedu
- §Center for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.,∥Western Australian Neuroscience Research Institute, Perth, WA 6150, Australia.,‡School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072 Australia
| | - Grant A Ramm
- ⊥The Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.,#Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Johannes B Prins
- ∇Mater Research Institute, The University of Queensland, Brisbane, QLD 4101, Australia
| | - Harendra S Parekh
- †School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
42
|
Delivery of nucleic acids and nanomaterials by cell-penetrating peptides: opportunities and challenges. BIOMED RESEARCH INTERNATIONAL 2015; 2015:834079. [PMID: 25883975 PMCID: PMC4391616 DOI: 10.1155/2015/834079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 12/20/2022]
Abstract
Many viral and nonviral systems have been developed to aid delivery of biologically active molecules into cells. Among these, cell-penetrating peptides (CPPs) have received increasing attention in the past two decades for biomedical applications. In this review, we focus on opportunities and challenges associated with CPP delivery of nucleic acids and nanomaterials. We first describe the nature of versatile CPPs and their interactions with various types of cargoes. We then discuss in vivo and in vitro delivery of nucleic acids and nanomaterials by CPPs. Studies on the mechanisms of cellular entry and limitations in the methods used are detailed.
Collapse
|
43
|
Karthikeyan K, Krishnaswamy VR, Lakra R, Kiran MS, Korrapati PS. Fabrication of electrospun zein nanofibers for the sustained delivery of siRNA. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:101. [PMID: 25655500 DOI: 10.1007/s10856-015-5439-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/29/2014] [Indexed: 06/04/2023]
Abstract
In this study, zein nanofibers based siRNA delivery system has been attempted for the first time. Here, the amphiphilic property of zein and the size advantage of nanofibers have been brought together in developing an ideal delivery system for siRNA. The morphological analysis of the GAPDH-siRNA loaded zein nanofibers revealed the proper encapsulation of the siRNA in the polymeric matrix. The loading efficiency of this delivery system was found to be 58.57±2.4% (w/w). The agarose gel analysis revealed that the zein nanofibers preserved the integrity of siRNA for a longer period even at the room temperature. The in vitro release studies not only depicted the sustaining potential of the zein nanofibers but also ensured the release of sufficient quantity of siRNA required to induce the gene silencing effect. The amphiphilic property of zein supported the cell attachment and thereby facilitated the transfection of siRNA into the cells. qRT-PCR analysis confirmed the potential of the developed system in inducing the desired gene silencing effect. Thus, electrospun zein nanofibers have been successfully employed for the delivery of siRNA which has a great therapeutic potential.
Collapse
Affiliation(s)
- K Karthikeyan
- Biomaterials Department, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | | | | | | | | |
Collapse
|
44
|
Zhang R, Song Z, Yin L, Zheng N, Tang H, Lu H, Gabrielson NP, Lin Y, Kim K, Cheng J. Ionic α-helical polypeptides toward nonviral gene delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:98-110. [PMID: 25377262 PMCID: PMC4545666 DOI: 10.1002/wnan.1307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/08/2014] [Accepted: 09/02/2014] [Indexed: 01/08/2023]
Abstract
The advent of polymeric materials has significantly promoted the development and rapid growth of various technologies in biomedical applications, such as tissue engineering and controlled drug and gene delivery. Water-soluble polypeptides bearing functional side chains and adopting stable secondary structures are a new class of functional polymeric materials of potentially broad applications in medicine and biotechnology. In this article, we summarize our recent effort on the design and synthesis of the water-soluble α-helical ionic polypeptides originally developed in our laboratory and highlight their applications in cell membrane penetration and nonviral gene/small interfering RNA (siRNA) delivery.
Collapse
Affiliation(s)
- Rujing Zhang
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Lichen Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Nan Zheng
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Haoyu Tang
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Hua Lu
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Nathan P. Gabrielson
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Yao Lin
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Kyung Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| |
Collapse
|
45
|
Abstract
Cell-penetrating peptides provide a promising strategy for delivery of drugs across the blood-brain barrier. Here, we present an overview of CPP and peptide-mediated delivery to the central nervous system as well as a Transwell in vitro model to evaluate passage across an endothelial cell layer mimic of the blood-brain barrier.
Collapse
Affiliation(s)
- Artita Srimanee
- Department of Neurochemistry, Stockholm University, S.Arrheniusv. 16B, SE-106 91, Stockholm, Sweden,
| | | | | |
Collapse
|
46
|
Borna H, Imani S, Iman M, Azimzadeh Jamalkandi S. Therapeutic face of RNAi: in vivo challenges. Expert Opin Biol Ther 2014; 15:269-85. [PMID: 25399911 DOI: 10.1517/14712598.2015.983070] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION RNA interference is a sequence-specific gene silencing phenomenon in which small interfering RNAs (siRNAs) can trigger gene transcriptional and post-transcriptional silencing. This phenomenon represents an emerging therapeutic approach for in vivo studies by efficient delivery of specific synthetic siRNAs against diseases. Therefore, simultaneous development of synthetic siRNAs along with novel delivery techniques is considered as novel and interesting therapeutic challenges. AREAS COVERED This review provides a basic explanation to siRNA signaling pathways and their therapeutic challenges. Here, we provide a comprehensive explanation to failed and successful trials and their in vivo challenges. EXPERT OPINION Specific, efficient and targeted delivery of siRNAs is the major concern for their in vivo administrations. Also, anatomical barriers, drug stability and availability, immunoreactivity and existence of various delivery routes, different genetic backgrounds are major clinical challenges. However, successful administration of siRNA-based drugs is expected during foreseeable features. But, their systemic applications will depend on strong targeted drug delivery strategies.
Collapse
Affiliation(s)
- Hojat Borna
- Baqiyatallah University of Medical Sciences, Chemical Injuries Research Center , Tehran , Iran
| | | | | | | |
Collapse
|
47
|
Lee MK, Lim YB. Facile synthesis, optical and conformational characteristics, and efficient intracellular delivery of a peptide-DNA conjugate. Bioorg Med Chem 2014; 22:4204-9. [PMID: 24924424 DOI: 10.1016/j.bmc.2014.05.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/17/2014] [Accepted: 05/19/2014] [Indexed: 12/01/2022]
Abstract
Covalent conjugation of disparate peptide and oligonucleotide biomacromolecular species produces peptide-oligonucleotide conjugates (POCs), which are interesting molecules with great potential for use in diverse bioapplications. However, peptide-oligonucleotide conjugation methods are not well established, and the intracellular delivery efficacy of POCs is debatable. Here, we describe a simple method for the synthesis and purification of POCs. When peptides are carefully designed to have a near-neutral charge state, a relatively hydrophobic polarity, and receptor-targeting ligands, synthesis and purification become highly efficient and straightforward. UV-vis, fluorescence, and circular dichroism studies show that both types of molecules mutually influence each other, changing their optical and conformational characteristics in the context of POCs. The combined effect of peptide design strategy, targeting ligands, and relatively hydrophobic property, enables the efficient cellular delivery of POCs.
Collapse
Affiliation(s)
- Mun-kyung Lee
- Translational Research Center for Protein Function Control and Department of Materials Science & Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Yong-beom Lim
- Translational Research Center for Protein Function Control and Department of Materials Science & Engineering, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
48
|
Li H, Zheng X, Koren V, Vashist YK, Tsui TY. Highly efficient delivery of siRNA to a heart transplant model by a novel cell penetrating peptide-dsRNA binding domain. Int J Pharm 2014; 469:206-13. [PMID: 24768403 DOI: 10.1016/j.ijpharm.2014.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 11/19/2022]
Abstract
Small interfering RNAs (siRNAs) delivery remains a bottleneck for RNA interference (RNAi) - based therapies in the clinic. In the present study, a fusion protein with two cell-penetrating peptides (CPP), Hph1-Hph1, and a double-stranded RNA binding domain (dsRBD), was constructed for the siRNA delivery: dsRBD was designed to bind siRNA, and CPP would subsequently transport the dsRBD/siRNA complex into cells. We assessed the efficiency of the fusion protein, Hph1-Hph1-dsRBD, as a siRNA carrier. Calcium-condensed effects were assessed on GAPDH and green fluorescent protein (GFP) genes by western blot, real time polymerase chain reaction (RT-PCR), and flow cytometry analysis in vitro. Evaluations were also made in an in vivo heart transplantation model. The results demonstrated that the fusion protein, Hph1-Hph1-dsRBD, is highly efficient at delivering siRNA in vitro, and exhibits efficiency on GAPDH and GFP genes similar to or greater than lipofectamine. Interestingly, the calcium-condensed effects dramatically enhanced cellular uptake of the protein-siRNA complex. In vivo, Hph1-Hph1-dsRBD transferred and distributed ^ targeted siRNA throughout the whole mouse heart graft. Together, these results indicate that Hph1-Hph1-dsRBD has potential as an siRNA carrier for applications in the clinic or in biomedical research.
Collapse
Affiliation(s)
- Hua Li
- The Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute for Regenerative Medicine and Cancer, Huzhou University School of Medicine, Huzhou, China
| | - Xiangtao Zheng
- The Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktoria Koren
- The Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yogesh Kumar Vashist
- The Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tung Yu Tsui
- The Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
49
|
Vigneswara V, Akpan N, Berry M, Logan A, Troy CM, Ahmed Z. Combined suppression of CASP2 and CASP6 protects retinal ganglion cells from apoptosis and promotes axon regeneration through CNTF-mediated JAK/STAT signalling. ACTA ACUST UNITED AC 2014; 137:1656-75. [PMID: 24727569 DOI: 10.1093/brain/awu037] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have previously shown that crushing the optic nerve induces death of retinal ganglion cells by apoptosis, but suppression of CASP2, which is predominantly activated in retinal ganglion cells, using a stably modified short interfering RNA CASP2, inhibits retinal ganglion cell apoptosis. Here, we report that combined delivery of short interfering CASP2 and inhibition of CASP6 using a dominant negative CASP6 mutant activates astrocytes and Müller cells, increases CNTF levels in the retina and leads to enhanced retinal ganglion cell axon regeneration. In dissociated adult rat mixed retinal cultures, dominant negative CASP6 mutant + short interfering CASP2 treatment also significantly increases GFAP+ glial activation, increases the expression of CNTF in culture, and subsequently increases the number of retinal ganglion cells with neurites and the mean retinal ganglion cell neurite length. These effects are abrogated by the addition of MAB228 (a monoclonal antibody targeted to the gp130 component of the CNTF receptor) and AG490 (an inhibitor of the JAK/STAT pathway downstream of CNTF signalling). Similarly, in the optic nerve crush injury model, MAB228 and AG490 neutralizes dominant negative CASP6 mutant + short interfering CASP2-mediated retinal ganglion cell axon regeneration, Müller cell activation and CNTF production in the retina without affecting retinal ganglion cell survival. We therefore conclude that axon regeneration promoted by suppression of CASP2 and CASP6 is CNTF-dependent and mediated through the JAK/STAT signalling pathway. This study offers insights for the development of effective therapeutics for promoting retinal ganglion cell survival and axon regeneration.
Collapse
Affiliation(s)
- Vasanthy Vigneswara
- 1 Neurotrauma and Neurodegeneration Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nsikan Akpan
- 2 Department of Pathology and Cell Biology, Neurology, Taub Institute for Research on Alzheimer's Disease and the Ageing Brain, Columbia University Medical Centre, New York, USA
| | - Martin Berry
- 1 Neurotrauma and Neurodegeneration Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann Logan
- 1 Neurotrauma and Neurodegeneration Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Carol M Troy
- 2 Department of Pathology and Cell Biology, Neurology, Taub Institute for Research on Alzheimer's Disease and the Ageing Brain, Columbia University Medical Centre, New York, USA
| | - Zubair Ahmed
- 1 Neurotrauma and Neurodegeneration Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
50
|
Nielsen C, Kjems J, Sørensen KR, Engelholm LH, Behrendt N. Advances in targeted delivery of small interfering RNA using simple bioconjugates. Expert Opin Drug Deliv 2014; 11:791-822. [PMID: 24669756 DOI: 10.1517/17425247.2014.896898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Development of drugs based on RNA interference by small interfering RNA (siRNA) has been progressing slowly due to a number of challenges associated with the in vivo behavior of siRNA. A central problem is controlling siRNA delivery to specific cell types. Here, we review existing literature on one type of strategy for solving the issue of cell-specific delivery of siRNA, namely delivering the siRNA as part of simple bioconjugate constructs. AREAS COVERED This review presents current experience from strategies aimed at targeting siRNA to specific cell types, by associating the siRNA with a targeting moiety, in a simple bioconjugate construct. We discuss the use of different types of targeting moieties, as well as the different conjugation strategies employed for preparing these bioconjugate constructs that deliver the siRNA to target cells. We focus especially on the in-built or passive functionalities associated with each strategy, in order to identify key elements of successful siRNA delivery strategies with potential for further exploration. EXPERT OPINION By evaluating the current literature on this subject, we identify strategies and concepts that are suitable for future studies, to enable the development of highly efficient simple bioconjugates for targeted siRNA delivery with therapeutic application.
Collapse
Affiliation(s)
- Christoffer Nielsen
- University of Copenhagen, Copenhagen University Hospital and Biotech Research and Innovation Centre (BRIC), Copenhagen Biocenter, Finsen Laboratory , Ole Maaloes Vej 5, DK-2200 Copenhagen N , Denmark +45 35 45 60 33 ;
| | | | | | | | | |
Collapse
|