1
|
Lahogue C, Boulouard M, Menager F, Freret T, Billard JM, Bouet V. A new 2-hit model combining serine racemase deletion and maternal separation displays behavioral and cognitive deficits associated with schizophrenia. Behav Brain Res 2025; 477:115301. [PMID: 39442565 DOI: 10.1016/j.bbr.2024.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Schizophrenia (SCZ) is a multifactorial psychotic disorder characterized by positive and negative symptoms as well as cognitive impairments. To advance the current treatments, it is important to improve animal models by considering the multifactorial etiology, thus by combining different risk factors. The objective of our study was to explore in a new mouse model, the impact of genetic deletion of serine racemase (genetic vulnerability) combined with an early stress factor induced by maternal separation (early environmental exposure) in the context of SCZ development. The face validity of the model was assessed through a wide range of behavioral experiments. The 2-hit mice displayed an increased locomotor activity mimicking positive symptoms, working memory impairment, cognitive deficits and recognition memory alterations, which could reflect neophobia. This new multifactorial model therefore presents an interesting phenotype for modelling animal model with partial behavioral and cognitive deficits associated with SCZ.
Collapse
Affiliation(s)
- Caroline Lahogue
- Normandie Univ, UNICAEN, INSERM, FHU A2M2P, COMETE, Caen 14000, France.
| | - Michel Boulouard
- Normandie Univ, UNICAEN, INSERM, FHU A2M2P, COMETE, Caen 14000, France
| | - François Menager
- Normandie Univ, UNICAEN, INSERM, FHU A2M2P, COMETE, Caen 14000, France
| | - Thomas Freret
- Normandie Univ, UNICAEN, INSERM, FHU A2M2P, COMETE, Caen 14000, France
| | | | - Valentine Bouet
- Normandie Univ, UNICAEN, INSERM, FHU A2M2P, COMETE, Caen 14000, France.
| |
Collapse
|
2
|
Schaer R, Mueller FS, Notter T, Weber-Stadlbauer U, Meyer U. Intrauterine position effects in a mouse model of maternal immune activation. Brain Behav Immun 2024; 120:391-402. [PMID: 38897330 DOI: 10.1016/j.bbi.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024] Open
Abstract
Rodent models of maternal immune activation (MIA) are increasingly used as experimental tools in preclinical research of immune-mediated neurodevelopmental disorders and mental illnesses. Using a viral-like MIA model that is based on prenatal poly(I:C) exposure in mice, we have recently identified the existence of subgroups of MIA-exposed offspring that show dissociable behavioral, transcriptional, brain network and inflammatory profiles even under conditions of genetic homogeneity and identical MIA. Here, we tested the hypothesis that the intrauterine positions of fetuses, which are known to shape individual variability in litter-bearing mammals through variations in fetal hormone exposure, may contribute to the variable outcomes of MIA in mice. MIA was induced by maternal administration of poly(I:C) on gestation day 12 in C57BL/6N mice. Determining intrauterine positions using delivery by Cesarean section (C-section), we found that MIA-exposed offspring developing between female fetuses only (0M-MIA offspring) displayed significant deficits in sociability and sensorimotor gating at adult age, whereas MIA-exposed offspring developing between one or two males in utero (1/2M-MIA offspring) did not show the same deficits. These intrauterine position effects similarly emerged in male and female offspring. Furthermore, while MIA elevated fetal brain levels of pro- and anti-inflammatory cytokines independently of the precise intrauterine position and sex of adjacent fetuses during the acute phase, fetal brain levels of TNF-α remained elevated in 0M-MIA but not 1/2M-MIA offspring until the post-acute phase in late gestation. As expected, 1/2M offspring generally showed higher testosterone levels in the fetal brain during late gestation as compared to 0M offspring, confirming the transfer of testosterone from male fetuses to adjacent male or female fetuses. Taken together, our findings identify a novel source of within-litter variability contributing to heterogeneous outcomes of short- and long-term effects in a mouse model of MIA. In broader context, our findings highlight that individual differences in fetal exposure to hormonal and inflammatory signals may be a perinatal factor that shapes risk and resilience to MIA.
Collapse
Affiliation(s)
- Ron Schaer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Tina Notter
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Wu R, Chou S, Li M. Continuous oral olanzapine or clozapine treatment initiated in adolescence has differential short- and long-term impacts on antipsychotic sensitivity than those initiated in adulthood. Eur J Pharmacol 2024; 972:176567. [PMID: 38582275 PMCID: PMC11128075 DOI: 10.1016/j.ejphar.2024.176567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
One of the major discoveries in recent research on antipsychotic drugs is that antipsychotic treatment in adolescence could induce robust long-term alterations in antipsychotic sensitivity that persist into adulthood. These long-term impacts are likely influenced by various factors, including the "diseased" state of animals, sex, type of drugs, mode of drug administration, and age of treatment onset. In this study we compared the short- and long-term behavioral effects of 21-day continuous oral olanzapine (7.5 mg/kg/day) or clozapine (30.0 mg/kg/day) administration in heathy or maternal immune activated adolescent (33-53 days old) or adult (80-100 days old) rats of both sexes. We used a conditioned avoidance response model to assess the drug-induced alterations in antipsychotic sensitivity. Here, we report that while under the chronic drug treatment period, olanzapine progressively increased its suppression of avoidance responding over time, especially when treatment was initiated in adulthood. Clozapine's suppression depended on the age of drug exposure, with treatment initiated in adulthood showing a suppression while that initiated in adolescent did not. After a 17-day drug-free interval, in a drug challenge test, olanzapine treatment initiated in adolescence caused a decrease in drug sensitivity, as reflected by less avoidance suppression (a tolerance effect); whereas that initiated in adulthood appeared to cause an increase (more avoidance suppression, a sensitization effect). Clozapine treatments initiated in both adolescence and adulthood caused a similar tolerance effect. Our findings indicate that the same chronic antipsychotic treatment regimen initiated in adolescence or adulthood can have differential short- and long-term impacts on drug sensitivity.
Collapse
Affiliation(s)
- Ruiyong Wu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Shinnyi Chou
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ming Li
- Department of Psychology, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Debs SR, Conn I, Navaneethan B, Penklis AG, Meyer U, Killcross S, Weickert CS, Purves-Tyson TD. Maternal immune activation and estrogen receptor modulation induce sex-specific dopamine-related behavioural and molecular alterations in adult rat offspring. Brain Behav Immun 2024; 118:236-251. [PMID: 38431238 DOI: 10.1016/j.bbi.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Dopamine dysregulation contributes to psychosis and cognitive deficits in schizophrenia that can be modelled in rodents by inducing maternal immune activation (MIA). The selective estrogen receptor (ER) modulator, raloxifene, can improve psychosis and cognition in men and women with schizophrenia. However, few studies have examined how raloxifene may exert its therapeutic effects in mammalian brain in both sexes during young adulthood (age relevant to most prevalent age at diagnosis). Here, we tested the extent to which raloxifene alters dopamine-related behaviours and brain transcripts in young adult rats, both control and MIA-exposed females and males. We found that raloxifene increased amphetamine (AMPH)-induced locomotor activity in female controls, and in contrast, raloxifene reduced AMPH-induced locomotor activity in male MIA offspring. We did not detect overt prepulse inhibition (PPI) deficits in female or male MIA offspring, yet raloxifene enhanced PPI in male MIA offspring. Whereas, raloxifene ameliorated increased startle responsivity in female MIA offspring. In the substantia nigra (SN), we found reduced Drd2s mRNA in raloxifene-treated female offspring with or without MIA, and increased Comt mRNA in placebo-treated male MIA offspring relative to placebo-treated controls. These data demonstrate an underlying dopamine dysregulation in MIA animals that can become more apparent with raloxifene treatment, and may involve selective alterations in dopamine receptor levels and dopamine breakdown processes in the SN. Our findings support sex-specific, differential behavioural responses to ER modulation in MIA compared to control offspring, with beneficial effects of raloxifene treatment on dopamine-related behaviours relevant to schizophrenia found in male MIA offspring only.
Collapse
Affiliation(s)
- Sophie R Debs
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Illya Conn
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Brendan Navaneethan
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Andriane G Penklis
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland; Switzerland Neuroscience Centre Zürich, Zürich, Switzerland
| | - Simon Killcross
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia; Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, USA
| | - Tertia D Purves-Tyson
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
5
|
Egorova M, Egorov V, Zabrodskaya Y. Maternal Influenza and Offspring Neurodevelopment. Curr Issues Mol Biol 2024; 46:355-366. [PMID: 38248325 PMCID: PMC10814929 DOI: 10.3390/cimb46010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
This review examines the complex interactions between maternal influenza infection, the immune system, and the neurodevelopment of the offspring. It highlights the importance of high-quality studies to clarify the association between maternal exposure to the virus and neuropsychiatric disorders in the offspring. Additionally, it emphasizes that the development of accurate animal models is vital for studying the impact of infectious diseases during pregnancy and identifying potential therapeutic targets. By drawing attention to the complex nature of these interactions, this review underscores the need for ongoing research to improve the understanding and outcomes for pregnant women and their offspring.
Collapse
Affiliation(s)
- Marya Egorova
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; (M.E.); (V.E.)
| | - Vladimir Egorov
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; (M.E.); (V.E.)
- Institute of Experimental Medicine, 12 Ulitsa Akademika Pavlova, St. Petersburg 197376, Russia
| | - Yana Zabrodskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; (M.E.); (V.E.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg 194064, Russia
| |
Collapse
|
6
|
Rosenberg JB, Richardt Møllegaard Jepsen J, Mohammadzadeh P, Sevelsted A, Vinding R, Sørensen ME, Horner D, Aagaard K, Fagerlund B, Brix S, Følsgaard N, Schoos AMM, Stokholm J, Chawes B, Pantelis C, Dalsgaard S, Glenthøj BY, Bilenberg N, Bønnelykke K, Ebdrup BH. Maternal inflammation during pregnancy is associated with risk of ADHD in children at age 10. Brain Behav Immun 2024; 115:450-457. [PMID: 37914103 DOI: 10.1016/j.bbi.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/04/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
INTRODUCTION Maternal inflammation during pregnancy may affect early neurodevelopment in offspring as suggested by preclinical and register data. However, clinical evidence for risk of aberrant neurodevelopment later in childhood is scarce. In the population-based COPSAC2010 mother-child cohort, we investigated associations between maternal inflammation levels during pregnancy and the risk of a diagnosis of ADHD as well as the load of ADHD symptoms in the children at age 10. METHODS The COPSAC2010 cohort consists of 700 mother-child pairs followed prospectively since pregnancy week 24.Maternal high-sensitivity C-Reactive Protein (hs-CRP) level at week 24 of gestation was investigated in relation to child neurodevelopment by age 10 using logistic and linear regression models with extensive confounder adjustment, including socioeconomic status and maternal polygenic risk of ADHD. The children completed a comprehensive examination of neurodevelopment including categorical (i.e., diagnostic) and dimensional (i.e., symptom load) psychopathology using the Kiddie Schedule for Affective Disorders and Schizophrenia Present and Lifetime Version (K-SADS-PL) and parental rated ADHD-Rating Scale (ADHD-RS). RESULTS A total of 604 (86 %) of the 700 children in the COPSAC2010 cohort participated in the COPSYCH visit at age 10. Sixty-five (10.8 %) fulfilled a research diagnosis of ADHD (16 girls and 49 boys). Higher maternal hs-CRP level in pregnancy at week 24 (median 5.4 mg/L) was significantly associated with increased risk for a diagnosis of ADHD, adjusted OR 1.40, 95 %CI (1.16-1.70), p = 0.001. Additionally, higher maternal hs-CRP was associated with increased ADHD symptom load in the entire cohort, reflected by ADHD-RS raw scores. DISCUSSION These clinical data demonstrated a robust association of prenatal maternal inflammation assessed by hs-CRP with a diagnosis of ADHD by age 10. Moreover, maternal inflammation was associated with ADHD symptom load in the complete cohort. Identifying inflammation as an important marker will provide a potential target for future increased awareness and prevention during pregnancy thereby ultimately improving neurodevelopmental outcomes in children.
Collapse
Affiliation(s)
- Julie B Rosenberg
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Jens Richardt Møllegaard Jepsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Parisa Mohammadzadeh
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Sevelsted
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Rebecca Vinding
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Mikkel E Sørensen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - David Horner
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristina Aagaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Brix
- DTU, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Nilofar Følsgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Ann-Marie M Schoos
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark; Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark; Department of Food Science, University of Copenhagen, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Søren Dalsgaard
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark; National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Bilenberg
- Department of Child and Adolescent Mental Health Odense, Mental Health Services in the Region of Southern Denmark, University of Southern Denmark, Odense, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Ehlinger JV, Goodrich JM, Dolinoy DC, Watkins DJ, Cantoral A, Mercado-García A, Téllez-Rojo MM, Peterson KE. Associations between blood leukocyte DNA methylation and sustained attention in mid-to-late childhood. Epigenomics 2023; 15:965-981. [PMID: 37942546 PMCID: PMC10718163 DOI: 10.2217/epi-2023-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Aims: To identify associations between DNA methylation (DNAm) across the epigenome and symptoms related to attention-deficit/hyperactivity disorder in a population of Hispanic children. Materials & methods: Among 517 participants in the ELEMENT study aged 9-18 years, we conducted an epigenome-wide association study examining associations between blood leukocyte DNAm and performance on the Conners' continuous performance test (CPT3). Results: DNAm at loci in or near ZNF814, ELF4 and OR6K6 and functional enrichment for gene pathways pertaining to ferroptosis, inflammation, immune response and neurotransmission were significantly related to CPT3 scores. Conclusion: DNAm was associated with CPT3 performance. Further analysis is warranted to understand how these genes and enriched pathways contribute to attention-deficit/hyperactivity disorder.
Collapse
Affiliation(s)
- Jessa V Ehlinger
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jaclyn M Goodrich
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah J Watkins
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | - Karen E Peterson
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
García-Yagüe ÁJ, Cuadrado A. Mechanisms of NURR1 Regulation: Consequences for Its Biological Activity and Involvement in Pathology. Int J Mol Sci 2023; 24:12280. [PMID: 37569656 PMCID: PMC10419244 DOI: 10.3390/ijms241512280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
NURR1 (Nuclear receptor-related 1 protein or NR4A2) is a nuclear protein receptor transcription factor with an essential role in the development, regulation, and maintenance of dopaminergic neurons and mediates the response to stressful stimuli during the perinatal period in mammalian brain development. The dysregulation of NURR1 activity may play a role in various diseases, including the onset and progression of neurodegenerative diseases, and several other pathologies. NURR1 is regulated by multiple mechanisms, among which phosphorylation by kinases or SUMOylation are the best characterized. Both post-translational modifications can regulate the activity of NURR1, affecting its stability and transcriptional activity. Other non-post-translational regulatory mechanisms include changes in its subcellular distribution or interaction with other protein partners by heterodimerization, also affecting its transcription activity. Here, we summarize the currently known regulatory mechanisms of NURR1 and provide a brief overview of its participation in pathological alterations.
Collapse
Affiliation(s)
- Ángel Juan García-Yagüe
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28027 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-CIBERNED), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta, 28029 Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28027 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-CIBERNED), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta, 28029 Madrid, Spain
| |
Collapse
|
9
|
Takahashi N, Nishimura T, Harada T, Okumura A, Iwabuchi T, Rahman MS, Kuwabara H, Takagai S, Usui N, Makinodan M, Matsuzaki H, Ozaki N, Itoh H, Nomura Y, Newcorn JH, Tsuchiya KJ. Interaction of genetic liability for attention deficit hyperactivity disorder (ADHD) and perinatal inflammation contributes to ADHD symptoms in children. Brain Behav Immun Health 2023; 30:100630. [PMID: 37251547 PMCID: PMC10213186 DOI: 10.1016/j.bbih.2023.100630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/24/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Genetic and environmental factors contribute to the development of Attention Deficit/Hyperactivity Disorder (ADHD). Perinatal inflammation is one of the promising environmental risk factors for ADHD, but the relationship between the genetic risk for ADHD and perinatal inflammation requires further examination. Methods A possible gene-environmental interaction between perinatal inflammation and ADHD polygenic risk score (ADHD-PRS) on ADHD symptoms was investigated in children aged 8-9 from the Hamamatsu Birth Cohort for Mothers and Children (N = 531). Perinatal inflammation was evaluated by the level of concentration of three cytokines assayed in umbilical cord blood. The genetic risk for ADHD was assessed by calculating ADHD-PRS for each individual using a previously collected genome-wide association study of ADHD. Results Perinatal inflammation (β [SE], 0.263 [0.017]; P < 0.001), ADHD-PRS (β [SE], 0.116[0.042]; P = 0.006), and an interaction between the two (β [SE], 0.031[0.011]; P = 0.010) were associated with ADHD symptoms. The association between perinatal inflammation and ADHD symptoms measured by ADHD-PRS was evident only in the two higher genetic risk groups (β [SE], 0.623[0.122]; P < 0.001 for the medium-high risk group; β [SE], 0.664[0.152]; P < 0.001 for the high-risk group). Conclusion Inflammation in the perinatal period both directly elevated ADHD symptoms and magnified the impact of genetic vulnerability on ADHD risk particularly among children aged 8-9 with genetically higher risk for ADHD.
Collapse
Affiliation(s)
- Nagahide Takahashi
- Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Japan
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Japan
| | - Tomoko Nishimura
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Japan
| | - Taeko Harada
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Japan
| | - Akemi Okumura
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Japan
| | - Toshiki Iwabuchi
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Japan
| | - Md Shafiur Rahman
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Saitama University School of Medicine, Japan
| | - Shu Takagai
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Japan
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Japan
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Japan
| | | | - Hideo Matsuzaki
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Japan
- Research Center for Child Mental Development, University of Fukui, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Japan
| | - Hiroaki Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Japan
| | - Yoko Nomura
- Queens College and Graduate Center, City University of New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey H. Newcorn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenji J. Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Japan
| |
Collapse
|
10
|
Guma E, Cupo L, Ma W, Gallino D, Moquin L, Gratton A, Devenyi GA, Chakravarty MM. Investigating the "two-hit hypothesis": Effects of prenatal maternal immune activation and adolescent cannabis use on neurodevelopment in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110642. [PMID: 36150422 DOI: 10.1016/j.pnpbp.2022.110642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/09/2022]
Abstract
Prenatal exposure to maternal immune activation (MIA) and chronic adolescent cannabis use are both risk factors for neuropsychiatric disorders. However, exposure to a single risk factor may not result in major mental illness, indicating that multiple exposures may be required for illness onset. Here, we examine whether combined exposure to prenatal MIA and adolescent delta-9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, lead to enduring neuroanatomical and behavioural changes in adulthood. Mice were prenatally exposed to viral mimetic, poly I:C (5 mg/kg), or vehicle at gestational day (GD) 9, and postnatally exposed to chronic THC (5 mg/kg, intraperitoneal) or vehicle during adolescence (postnatal day [PND]28-45). Longitudinal magnetic resonance imaging (MRI) was performed pre-treatment, PND 25, post-treatment, PND 50, and in adulthood, PND85, followed by behavioural tests for anxiety-like, social, and sensorimotor gating. Post-mortem assessment of cannabinoid (CB)1 and 2 receptor expressing cells was performed in altered regions identified by MRI (anterior cingulate and somatosensory cortices, striatum, and hippocampus). Subtle deviations in neurodevelopmental trajectory and subthreshold anxiety-like behaviours were observed in mice exposed to both risk factors. Sex-dependent effects were observed in patterns of shared brain-behaviour covariation, indicative of potential sex differences in response to MIA and THC. Density of CB1 and CB2 receptor positive cells was significantly decreased in all mice exposed to MIA, THC, or both. These findings suggest that there may be a cumulative effect of risk factor exposure on gross neuroanatomical development, and that the endocannabinoid system may be sensitive to both prenatal MIA, adolescent THC, or the combination.
Collapse
Affiliation(s)
- Elisa Guma
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA.
| | - Lani Cupo
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Weiya Ma
- Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Daniel Gallino
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Luc Moquin
- Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Alain Gratton
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Gabriel A Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
12
|
Bucknor MC, Gururajan A, Dale RC, Hofer MJ. A comprehensive approach to modeling maternal immune activation in rodents. Front Neurosci 2022; 16:1071976. [PMID: 36590294 PMCID: PMC9800799 DOI: 10.3389/fnins.2022.1071976] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Prenatal brain development is a highly orchestrated process, making it a very vulnerable window to perturbations. Maternal stress and subsequent inflammation during pregnancy leads to a state referred to as, maternal immune activation (MIA). If persistent, MIA can pose as a significant risk factor for the manifestation of neurodevelopmental disorders (NDDs) such as autism spectrum disorder and schizophrenia. To further elucidate this association between MIA and NDD risk, rodent models have been used extensively across laboratories for many years. However, there are few uniform approaches for rodent MIA models which make not only comparisons between studies difficult, but some established approaches come with limitations that can affect experimental outcomes. Here, we provide researchers with a comprehensive review of common experimental variables and potential limitations that should be considered when designing an MIA study based in a rodent model. Experimental variables discussed include: innate immune stimulation using poly I:C and LPS, environmental gestational stress paradigms, rodent diet composition and sterilization, rodent strain, neonatal handling, and the inclusion of sex-specific MIA offspring analyses. We discuss how some aspects of these variables have potential to make a profound impact on MIA data interpretation and reproducibility.
Collapse
Affiliation(s)
- Morgan C. Bucknor
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Anand Gururajan
- The Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Russell C. Dale
- The Children’s Hospital at Westmead, Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Markus J. Hofer
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Fung SG, Fakhraei R, Condran G, Regan AK, Dimanlig-Cruz S, Ricci C, Foo D, Sarna M, Török E, Fell DB. Neuropsychiatric outcomes in offspring after fetal exposure to maternal influenza infection during pregnancy: A systematic review. Reprod Toxicol 2022; 113:155-169. [PMID: 36100136 DOI: 10.1016/j.reprotox.2022.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 01/15/2023]
Abstract
Increasing evidence suggests that influenza infection in pregnancy may disrupt fetal neurodevelopment. The impact of maternal influenza infection on offspring neuropsychiatric health has not been comprehensively reviewed. We systematically reviewed comparative studies evaluating associations between maternal influenza infection and neuropsychiatric health outcomes in offspring. We searched MEDLINE, EMBASE, CINAHL, and Web of Science for articles published until January 7, 2022. Included were English studies evaluating neuropsychiatric outcomes in offspring aged > 6 months born to women with and without influenza during pregnancy, defined as clinical or laboratory-confirmed influenza illness, or being pregnant during pandemics/epidemics. Of 12,010 records screened, 42 studies were included. Heterogeneity in study design, exposures, and outcome definitions precluded meta-analyses. Four of 14 studies assessing schizophrenia reported adjusted ratio estimates from 0.5 to 8.2; most 95% CIs contained the null value; study quality was high in three of four. Two studies reported an increased risk of schizophrenia with influenza exposure any time during pregnancy (adjusted incidence rate ratio 8.2, 95% CI: 1.4-48.8; adjusted odds ratio 1.3, 95% CI: 1.2-1.5); another reported a reduced risk with first-trimester exposure (adjusted risk ratio 0.5, 95% CI: 0.3-0.9). Seven studies of autism spectrum disorder reported adjusted ratio estimates from 0.9 to 4.0; all 95% CIs included the null value; study quality was high in four. No conclusions could be drawn about the association between exposure to maternal influenza and neuropsychiatric outcomes due to the limited quantity and quality of available research. Large observational studies with long-term follow-up are required to investigate these associations.
Collapse
Affiliation(s)
- Stephen G Fung
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON, Canada
| | - Romina Fakhraei
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON, Canada; The Ottawa Hospital Research Institute, Ottawa, ON, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | | | - Annette K Regan
- School of Nursing and Health Professions, University of San Francisco, San Francisco, CA, United States; Curtin School of Population Health, Curtin University, Perth, WA, Australia; Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | | | | | - Damien Foo
- Curtin School of Population Health, Curtin University, Perth, WA, Australia; Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Mohinder Sarna
- Curtin School of Population Health, Curtin University, Perth, WA, Australia; Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | | | - Deshayne B Fell
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
14
|
Freitag K, Sterczyk N, Wendlinger S, Obermayer B, Schulz J, Farztdinov V, Mülleder M, Ralser M, Houtman J, Fleck L, Braeuning C, Sansevrino R, Hoffmann C, Milovanovic D, Sigrist SJ, Conrad T, Beule D, Heppner FL, Jendrach M. Spermidine reduces neuroinflammation and soluble amyloid beta in an Alzheimer's disease mouse model. J Neuroinflammation 2022; 19:172. [PMID: 35780157 PMCID: PMC9250727 DOI: 10.1186/s12974-022-02534-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/16/2022] [Indexed: 12/27/2022] Open
Abstract
Background Deposition of amyloid beta (Aβ) and hyperphosphorylated tau along with glial cell-mediated neuroinflammation are prominent pathogenic hallmarks of Alzheimer’s disease (AD). In recent years, impairment of autophagy has been identified as another important feature contributing to AD progression. Therefore, the potential of the autophagy activator spermidine, a small body-endogenous polyamine often used as dietary supplement, was assessed on Aβ pathology and glial cell-mediated neuroinflammation. Results Oral treatment of the amyloid prone AD-like APPPS1 mice with spermidine reduced neurotoxic soluble Aβ and decreased AD-associated neuroinflammation. Mechanistically, single nuclei sequencing revealed AD-associated microglia to be the main target of spermidine. This microglia population was characterized by increased AXL levels and expression of genes implicated in cell migration and phagocytosis. A subsequent proteome analysis of isolated microglia confirmed the anti-inflammatory and cytoskeletal effects of spermidine in APPPS1 mice. In primary microglia and astrocytes, spermidine-induced autophagy subsequently affected TLR3- and TLR4-mediated inflammatory processes, phagocytosis of Aβ and motility. Interestingly, spermidine regulated the neuroinflammatory response of microglia beyond transcriptional control by interfering with the assembly of the inflammasome. Conclusions Our data highlight that the autophagy activator spermidine holds the potential to enhance Aβ degradation and to counteract glia-mediated neuroinflammation in AD pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02534-7.
Collapse
Affiliation(s)
- Kiara Freitag
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany
| | - Nele Sterczyk
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sarah Wendlinger
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Julia Schulz
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Vadim Farztdinov
- Core Facility, High-Throughput Mass Spectrometry, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility, High-Throughput Mass Spectrometry, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.,Department of Biochemistry, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Judith Houtman
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Lara Fleck
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Caroline Braeuning
- Genomics Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Roberto Sansevrino
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany
| | - Stephan J Sigrist
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany.,Cluster of Excellence, NeuroCure, Berlin, Germany.,Institute for Biology and Genetics, Freie Universität Berlin, Berlin, Germany
| | - Thomas Conrad
- Genomics Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany.,Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Marina Jendrach
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
15
|
Montarolo F, Martire S, Chiara F, Allegra S, De Francia S, Hoxha E, Tempia F, Capobianco MA, Bertolotto A. NURR1-deficient mice have age- and sex-specific behavioral phenotypes. J Neurosci Res 2022; 100:1747-1754. [PMID: 35593070 PMCID: PMC9539971 DOI: 10.1002/jnr.25067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
The transcription factor NURR1 is essential to the generation and maintenance of midbrain dopaminergic (mDA) neurons and its deregulation is involved in the development of dopamine (DA)‐associated brain disorders, such as Parkinson's disease (PD). The old male NURR1 heterozygous knockout (NURR1‐KO) mouse has been proposed as a model of PD due to its altered motor performance that was, however, not confirmed in a subsequent study. Based on these controversial results, we explored the effects of the NURR1 deficiency on locomotor activity, motor coordination, brain and plasma DA levels, blood pressure and heart rate of old mice, also focusing on the potential effect of sex. As a probable consequence of the role of NURR1 in DA pathway, we observed that the old NURR1‐KO mouse is characterized by motor impairment, and increased brain DA level and heart rate, independently from sex. However, we also observed an alteration in spontaneous locomotor activity that only affects males. In conclusion, NURR1 deficiency triggers sex‐ and age‐specific alterations of behavioral responses, of DA levels and cardiovascular abnormalities. Further studies in simplified systems will be necessary to dissect the mechanism underlying these observations.
Collapse
Affiliation(s)
- Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurology Department and Regional Referring Center of Multiple Sclerosis (CReSM), University Hospital San Luigi Gonzaga, Orbassano, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Serena Martire
- Neurology Department and Regional Referring Center of Multiple Sclerosis (CReSM), University Hospital San Luigi Gonzaga, Orbassano, Italy
| | - Francesco Chiara
- Department of Biological and Clinical Sciences, University of Turin, AOU San Luigi Gonzaga, Orbassano, Italy
| | - Sarah Allegra
- Department of Biological and Clinical Sciences, University of Turin, AOU San Luigi Gonzaga, Orbassano, Italy
| | - Silvia De Francia
- Department of Biological and Clinical Sciences, University of Turin, AOU San Luigi Gonzaga, Orbassano, Italy
| | - Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Marco Alfonso Capobianco
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurology Department and Regional Referring Center of Multiple Sclerosis (CReSM), University Hospital San Luigi Gonzaga, Orbassano, Italy
| | | |
Collapse
|
16
|
Breach MR, Dye CN, Galan A, Lenz KM. Prenatal allergic inflammation in rats programs the developmental trajectory of dendritic spine patterning in brain regions associated with cognitive and social behavior. Brain Behav Immun 2022; 102:279-291. [PMID: 35245680 PMCID: PMC9070022 DOI: 10.1016/j.bbi.2022.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/04/2022] [Accepted: 02/26/2022] [Indexed: 12/01/2022] Open
Abstract
Allergic inflammation during pregnancy increases risk for a diagnosis of neurodevelopmental disorders such as Attention Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) in the offspring. Previously, we found a model of such inflammation, allergy-induced maternal immune activation (MIA), produced symptoms analogous to those associated with neurodevelopmental disorders in rats, including reduced juvenile play behavior, hyperactivity, and cognitive inflexibility. These behaviors were preceded by perinatal changes in microglia colonization and phenotype in multiple relevant brain regions. Given the role that microglia play in synaptic patterning as well as evidence for altered synaptic architecture in neurodevelopmental disorders, we investigated whether allergic MIA altered the dynamics of dendritic spine patterning throughout key regions of the rat forebrain across neurodevelopment. Adult virgin female rats were sensitized to the allergen, ovalbumin, with alum adjuvant, bred, and allergically challenged on gestational day 15. Brain tissue was collected from male and female offspring on postnatal days (P) 5, 15, 30, and 100-120 and processed for Golgi-Cox staining. Mean dendritic spine density was calculated for neurons in brain regions associated with cognition and social behavior, including the medial prefrontal cortex (mPFC), basal ganglia, septum, nucleus accumbens (NAc), and amygdala. Allergic MIA reduced dendritic spine density in the neonatal (P5) and juvenile (P15) mPFC, but these mPFC spine deficits were normalized by P30. Allergic inflammation reduced spine density in the septum of juvenile (P30) rats, with an interaction suggesting increased density in males and reduced density in females. MIA-induced reductions in spine density were also found in the female basal ganglia at P15, as well as in the NAc at P30. Conversely, MIA-induced increases were found in the NAc in adulthood. While amygdala dendritic spine density was generally unaffected throughout development, MIA reduced density in both medial and basolateral subregions in adult offspring. Correlational analyses revealed disruption to amygdala-related networks in the neonatal animals and cortico-striatal related networks in juvenile and adult animals in a sex-specific manner. Collectively, these data suggest that communication within and between these cognitive and social brain regions may be altered dynamically throughout development after prenatal exposure to allergic inflammation. They also provide a basis for future intervention studies targeted at rescuing spine and behavior changes via immunomodulatory treatments.
Collapse
Affiliation(s)
- Michaela R. Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Courtney N. Dye
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Anabel Galan
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kathryn M. Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
17
|
Sandoval KC, Thackray SE, Wong A, Niewinski N, Chipak C, Rehal S, Dyck RH. Lack of Vesicular Zinc Does Not Affect the Behavioral Phenotype of Polyinosinic:Polycytidylic Acid-Induced Maternal Immune Activation Mice. Front Behav Neurosci 2022; 16:769322. [PMID: 35273483 PMCID: PMC8902171 DOI: 10.3389/fnbeh.2022.769322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Zinc is important in neural and synaptic development and neuronal transmission. Within the brain, zinc transporter 3 (ZnT3) is essential for zinc uptake into vesicles. Loss of vesicular zinc has been shown to produce neurodevelopmental disorder (NDD)-like behavior, such as decreased social interaction and increased anxiety- and repetitive-like behavior. Maternal immune activation (MIA) has been identified as an environmental factor for NDDs, such as autism spectrum disorders (ASDs) and schizophrenia (SZ), in offspring, which occurs during pregnancy when the mother’s immune system reacts to the exposure to viruses or infectious diseases. In this study, we investigated the interaction effect of a genetic factor [ZnT3 knockout (KO) mice] and an environmental factor (MIA). We induced MIA in pregnant female (dams) mice during mid-gestation, using polyinosinic:polycytidylic acid (polyI:C), which mimics a viral infection. Male and female ZnT3 KO and wild-type (WT) offspring were tested in five behavioral paradigms: Ultrasonic Vocalizations (USVs) at postnatal day 9 (P9), Open Field Test, Marble Burying Test, three-Chamber Social Test, and Pre-pulse Inhibition (PPI) in adulthood (P60–75). Our results indicate that loss of vesicular zinc does not result in enhanced ASD- and SZ-like phenotype compared to WT, nor does it show a more pronounced phenotype in male ZnT3 KO compared to female ZnT3 KO. Finally, MIA offspring demonstrated an ASD- and SZ-like phenotype only in specific behavioral tests: increased calls emitted in USVs and fewer marbles buried. Our results suggest that there is no interaction between the loss of vesicular zinc and MIA induction in the susceptibility to developing an ASD- and SZ-like phenotype.
Collapse
Affiliation(s)
- Katy Celina Sandoval
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Sarah E. Thackray
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Alison Wong
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Nicole Niewinski
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Colten Chipak
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Suhkjinder Rehal
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Richard H. Dyck
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
- *Correspondence: Richard H. Dyck,
| |
Collapse
|
18
|
Vlasova RM, Iosif AM, Ryan AM, Funk LH, Murai T, Chen S, Lesh TA, Rowland DJ, Bennett J, Hogrefe CE, Maddock RJ, Gandal MJ, Geschwind DH, Schumann CM, Van de Water J, McAllister AK, Carter CS, Styner MA, Amaral DG, Bauman MD. Maternal Immune Activation during Pregnancy Alters Postnatal Brain Growth and Cognitive Development in Nonhuman Primate Offspring. J Neurosci 2021; 41:9971-9987. [PMID: 34607967 PMCID: PMC8638691 DOI: 10.1523/jneurosci.0378-21.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Human epidemiological studies implicate exposure to infection during gestation in the etiology of neurodevelopmental disorders. Animal models of maternal immune activation (MIA) have identified the maternal immune response as the critical link between maternal infection and aberrant offspring brain and behavior development. Here we evaluate neurodevelopment of male rhesus monkeys (Macaca mulatta) born to MIA-treated dams (n = 14) injected with a modified form of the viral mimic polyinosinic:polycytidylic acid at the end of the first trimester. Control dams received saline injections at the same gestational time points (n = 10) or were untreated (n = 4). MIA-treated dams exhibited a strong immune response as indexed by transient increases in sickness behavior, temperature, and inflammatory cytokines. Although offspring born to control or MIA-treated dams did not differ on measures of physical growth and early developmental milestones, the MIA-treated animals exhibited subtle changes in cognitive development and deviated from species-typical brain growth trajectories. Longitudinal MRI revealed significant gray matter volume reductions in the prefrontal and frontal cortices of MIA-treated offspring at 6 months that persisted through the final time point at 45 months along with smaller frontal white matter volumes in MIA-treated animals at 36 and 45 months. These findings provide the first evidence of early postnatal changes in brain development in MIA-exposed nonhuman primates and establish a translationally relevant model system to explore the neurodevelopmental trajectory of risk associated with prenatal immune challenge from birth through late adolescence.SIGNIFICANCE STATEMENT Women exposed to infection during pregnancy have an increased risk of giving birth to a child who will later be diagnosed with a neurodevelopmental disorder. Preclinical maternal immune activation (MIA) models have demonstrated that the effects of maternal infection on fetal brain development are mediated by maternal immune response. Since the majority of MIA models are conducted in rodents, the nonhuman primate provides a unique system to evaluate the MIA hypothesis in a species closely related to humans. Here we report the first longitudinal study conducted in a nonhuman primate MIA model. MIA-exposed offspring demonstrate subtle changes in cognitive development paired with marked reductions in frontal gray and white matter, further supporting the association between prenatal immune challenge and alterations in offspring neurodevelopment.
Collapse
Affiliation(s)
- Roza M Vlasova
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, 27514
| | - Ana-Maria Iosif
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Amy M Ryan
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- California National Primate Research Center, University of California, Davis, California, 95616
| | - Lucy H Funk
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Takeshi Murai
- California National Primate Research Center, University of California, Davis, California, 95616
| | - Shuai Chen
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Douglas J Rowland
- Center for Genomic and Molecular Imaging, University of California, Davis, California, 95616
| | - Jeffrey Bennett
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Casey E Hogrefe
- California National Primate Research Center, University of California, Davis, California, 95616
| | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Michael J Gandal
- Neurogenetics Program, Department of Neurology, University of California, Los Angeles, California, 90095
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, University of California, Los Angeles, California, 90095
| | - Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Judy Van de Water
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - A Kimberley McAllister
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- Center for Neuroscience, University of California, Davis, California, 95618
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, 27514
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- California National Primate Research Center, University of California, Davis, California, 95616
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California, 95817
- The MIND Institute, School of Medicine, University of California, Davis, Sacramento, California, 95817
- California National Primate Research Center, University of California, Davis, California, 95616
| |
Collapse
|
19
|
Guerrin CGJ, Doorduin J, Sommer IE, de Vries EFJ. The dual hit hypothesis of schizophrenia: Evidence from animal models. Neurosci Biobehav Rev 2021; 131:1150-1168. [PMID: 34715148 DOI: 10.1016/j.neubiorev.2021.10.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a heterogeneous psychiatric disorder, which can severely impact social and professional functioning. Epidemiological and clinical studies show that schizophrenia has a multifactorial aetiology comprising genetic and environmental risk factors. Although several risk factors have been identified, it is still not clear how they result in schizophrenia. This knowledge gap, however, can be investigated in animal studies. In this review, we summarise animal studies regarding molecular and cellular mechanisms through which genetic and environmental factors may affect brain development, ultimately causing schizophrenia. Preclinical studies suggest that early environmental risk factors can affect the immune, GABAergic, glutamatergic, or dopaminergic system and thus increase the susceptibility to another risk factor later in life. A second insult, like social isolation, stress, or drug abuse, can further disrupt these systems and the interactions between them, leading to behavioural abnormalities. Surprisingly, first insults like maternal infection and early maternal separation can also have protective effects. Single gene mutations associated with schizophrenia did not have a major impact on the susceptibility to subsequent environmental hits.
Collapse
Affiliation(s)
- Cyprien G J Guerrin
- Department of Nuclear Medicine and Medical Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Medical Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Medical Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
20
|
Inflammation, Anxiety, and Stress in Attention-Deficit/Hyperactivity Disorder. Biomedicines 2021; 9:biomedicines9101313. [PMID: 34680430 PMCID: PMC8533349 DOI: 10.3390/biomedicines9101313] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent and serious neurodevelopmental disorder characterized by symptoms of inattention and/or hyperactivity/impulsivity. Chronic and childhood stress is involved in ADHD development, and ADHD is highly comorbid with anxiety. Similarly, inflammatory diseases and a pro-inflammatory state have been associated with ADHD. However, while several works have studied the relationship between peripheral inflammation and stress in affective disorders such as depression or bipolar disorder, fewer have explored this association in ADHD. In this narrative review we synthetize evidence showing an interplay between stress, anxiety, and immune dysregulation in ADHD, and we discuss the implications of a potential disrupted neuroendocrine stress response in ADHD. Moreover, we highlight confounding factors and limitations of existing studies on this topic and critically debate multidirectional hypotheses that either suggest inflammation, stress, or anxiety as a cause in ADHD pathophysiology or inflammation as a consequence of this disease. Untangling these relationships will have diagnostic, therapeutic and prognostic implications for ADHD patients.
Collapse
|
21
|
Guma E, Bordignon PDC, Devenyi GA, Gallino D, Anastassiadis C, Cvetkovska V, Barry AD, Snook E, Germann J, Greenwood CMT, Misic B, Bagot RC, Chakravarty MM. Early or Late Gestational Exposure to Maternal Immune Activation Alters Neurodevelopmental Trajectories in Mice: An Integrated Neuroimaging, Behavioral, and Transcriptional Study. Biol Psychiatry 2021; 90:328-341. [PMID: 34053674 DOI: 10.1016/j.biopsych.2021.03.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure to maternal immune activation (MIA) in utero is a risk factor for neurodevelopmental disorders later in life. The impact of the gestational timing of MIA exposure on downstream development remains unclear. METHODS We characterized neurodevelopmental trajectories of mice exposed to the viral mimetic poly I:C (polyinosinic:polycytidylic acid) either on gestational day 9 (early) or on day 17 (late) using longitudinal structural magnetic resonance imaging from weaning to adulthood. Using multivariate methods, we related neuroimaging and behavioral variables for the time of greatest alteration (adolescence/early adulthood) and identified regions for further investigation using RNA sequencing. RESULTS Early MIA exposure was associated with accelerated brain volume increases in adolescence/early adulthood that normalized in later adulthood in the striatum, hippocampus, and cingulate cortex. Similarly, alterations in anxiety-like, stereotypic, and sensorimotor gating behaviors observed in adolescence normalized in adulthood. MIA exposure in late gestation had less impact on anatomical and behavioral profiles. Multivariate maps associated anxiety-like, social, and sensorimotor gating deficits with volume of the dorsal and ventral hippocampus and anterior cingulate cortex, among others. The most transcriptional changes were observed in the dorsal hippocampus, with genes enriched for fibroblast growth factor regulation, autistic behaviors, inflammatory pathways, and microRNA regulation. CONCLUSIONS Leveraging an integrated hypothesis- and data-driven approach linking brain-behavior alterations to the transcriptome, we found that MIA timing differentially affects offspring development. Exposure in late gestation leads to subthreshold deficits, whereas exposure in early gestation perturbs brain development mechanisms implicated in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elisa Guma
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Pedro do Couto Bordignon
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Gabriel A Devenyi
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Daniel Gallino
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Chloe Anastassiadis
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Institute of Medical Science & Collaborative Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada
| | | | - Amadou D Barry
- Departments of Human Genetics and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Emily Snook
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jurgen Germann
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; University Health Network, Toronto, Ontario, Canada
| | - Celia M T Greenwood
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Departments of Human Genetics and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rosemary C Bagot
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - M Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| |
Collapse
|
22
|
Woods RM, Lorusso JM, Potter HG, Neill JC, Glazier JD, Hager R. Maternal immune activation in rodent models: A systematic review of neurodevelopmental changes in gene expression and epigenetic modulation in the offspring brain. Neurosci Biobehav Rev 2021; 129:389-421. [PMID: 34280428 DOI: 10.1016/j.neubiorev.2021.07.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/11/2021] [Accepted: 07/11/2021] [Indexed: 01/06/2023]
Abstract
Maternal immune activation (mIA) during pregnancy is hypothesised to disrupt offspring neurodevelopment and predispose offspring to neurodevelopmental disorders such as schizophrenia. Rodent models of mIA have explored possible mechanisms underlying this paradigm and provide a vital tool for preclinical research. However, a comprehensive analysis of the molecular changes that occur in mIA-models is lacking, hindering identification of robust clinical targets. This systematic review assesses mIA-driven transcriptomic and epigenomic alterations in specific offspring brain regions. Across 118 studies, we focus on 88 candidate genes and show replicated changes in expression in critical functional areas, including elevated inflammatory markers, and reduced myelin and GABAergic signalling proteins. Further, disturbed epigenetic markers at nine of these genes support mIA-driven epigenetic modulation of transcription. Overall, our results demonstrate that current outcome measures have direct relevance for the hypothesised pathology of schizophrenia and emphasise the importance of mIA-models in contributing to the understanding of biological pathways impacted by mIA and the discovery of new drug targets.
Collapse
Affiliation(s)
- Rebecca M Woods
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom.
| | - Jarred M Lorusso
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Harry G Potter
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Joanna C Neill
- Division of Pharmacy & Optometry, School of Health Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Jocelyn D Glazier
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Reinmar Hager
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
23
|
Breach MR, Dye CN, Joshi A, Platko S, Gilfarb RA, Krug AR, Franceschelli DV, Galan A, Dodson CM, Lenz KM. Maternal allergic inflammation in rats impacts the offspring perinatal neuroimmune milieu and the development of social play, locomotor behavior, and cognitive flexibility. Brain Behav Immun 2021; 95:269-286. [PMID: 33798637 PMCID: PMC8187275 DOI: 10.1016/j.bbi.2021.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 01/07/2023] Open
Abstract
Maternal systemic inflammation increases risk for neurodevelopmental disorders like autism, ADHD, and schizophrenia in offspring. Notably, these disorders are male-biased. Studies have implicated immune system dysfunction in the etiology of these disorders, and rodent models of maternal immune activation provide useful tools to examine mechanisms of sex-dependent effects on brain development, immunity, and behavior. Here, we employed an allergen-induced model of maternal inflammation in rats to characterize levels of mast cells and microglia in the perinatal period in male and female offspring, as well as social, emotional, and cognitive behaviors throughout the lifespan. Adult female rats were sensitized to ovalbumin (OVA), bred, and challenged intranasally on gestational day 15 of pregnancy with OVA or saline. Allergic inflammation upregulated microglia in the fetal brain, increased mast cell number in the hippocampus on the day of birth, and conferred region-, time- and sex- specific changes in microglia measures. Additionally, offspring of OVA-exposed mothers subsequently exhibited abnormal social behavior, hyperlocomotion, and reduced cognitive flexibility. These data demonstrate the long-term effects of maternal allergic challenge on offspring development and provide a basis for understanding neurodevelopmental disorders linked to maternal systemic inflammation in humans.
Collapse
Affiliation(s)
- Michaela R. Breach
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Courtney N. Dye
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Aarohi Joshi
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Steven Platko
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Rachel A. Gilfarb
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Annemarie R. Krug
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | | | - Anabel Galan
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Claire M. Dodson
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kathryn M. Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
24
|
Partington HS, Nutter JM, Eells JB. Nurr1 deficiency shortens free running period, enhances photoentrainment to phase advance, and disrupts circadian cycling of the dopamine neuron phenotype. Behav Brain Res 2021; 411:113347. [PMID: 33991560 DOI: 10.1016/j.bbr.2021.113347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023]
Abstract
Neurological and neuropsychiatric disorders, including addiction, schizophrenia, and Parkinson's disease (PD), involve dysfunction in midbrain dopamine (DA) neurotransmission with severity of disease symptoms and progression associated with disrupted circadian rhythms. The nuclear transcription factor Nurr1, essential for DA neuron (DAN) development, survival, and maintenance, is also known to interact with circadian rhythm regulating clock proteins. In the Nurr1-null heterozygous (+/-) mice, a Nurr1 deficient model which reproduces some of the alterations in DA function found in schizophrenia and PD, we measured, using wheel-running activity, the free running period (tau) and photoperiod entrainment. Because Nurr1 has a role in regulating the DA phenotype, we also measured the circadian fluctuations in the number of DANs using tyrosine hydroxylase (TH) immunofluorescence. In Nurr1 +/- mice, tau was significantly shorter and entrainment to a 6 h earlier shift in the dark cycle was accelerated. The Nurr1 wild-type (+/+) mice cycled DAN numbers across time, with a significantly greater number (∼2-fold increase) of DANs at zeitgeber time (ZT) 0 than ZT12. The +/- mice, however, did not cycle the DA phenotype, as no differences in DAN numbers were observed between ZT0 and ZT12. Additionally, the +/- mice had significantly fewer DANs at ZT0 but not at ZT12 as compared to +/+ mice. Based these data, circadian rhythms and fluctuations in the DA phenotype requires normal Nurr1 function. A better understanding is needed of the mechanisms regulating the DA phenotype and subsequent neurotransmission across the circadian cycle and how this is altered in circadian rhythm and DA neurotransmission-associated disorders.
Collapse
Affiliation(s)
- Heath S Partington
- East Carolina University, Department of Anatomy and Cell Biology, Brody School of Medicine, Greenville, NC, USA
| | - Jennifer Makenzie Nutter
- East Carolina University, Department of Anatomy and Cell Biology, Brody School of Medicine, Greenville, NC, USA
| | - Jeffrey B Eells
- East Carolina University, Department of Anatomy and Cell Biology, Brody School of Medicine, Greenville, NC, USA.
| |
Collapse
|
25
|
Purves-Tyson TD, Weber-Stadlbauer U, Richetto J, Rothmond DA, Labouesse MA, Polesel M, Robinson K, Shannon Weickert C, Meyer U. Increased levels of midbrain immune-related transcripts in schizophrenia and in murine offspring after maternal immune activation. Mol Psychiatry 2021; 26:849-863. [PMID: 31168068 PMCID: PMC7910216 DOI: 10.1038/s41380-019-0434-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/10/2019] [Accepted: 04/29/2019] [Indexed: 12/03/2022]
Abstract
The pathophysiology of dopamine dysregulation in schizophrenia involves alterations at the ventral midbrain level. Given that inflammatory mediators such as cytokines influence the functional properties of midbrain dopamine neurons, midbrain inflammation may play a role in schizophrenia by contributing to presynaptic dopamine abnormalities. Thus, we quantified inflammatory markers in dopaminergic areas of the midbrain of people with schizophrenia and matched controls. We also measured these markers in midbrain of mice exposed to maternal immune activation (MIA) during pregnancy, an established risk factor for schizophrenia and other psychiatric disorders. We found diagnostic increases in SERPINA3, TNFα, IL1β, IL6, and IL6ST transcripts in schizophrenia compared with controls (p < 0.02-0.001). The diagnostic differences in these immune markers were accounted for by a subgroup of schizophrenia cases (~ 45%, 13/28) showing high immune status. Consistent with the human cohort, we identified increased expression of immune markers in the midbrain of adult MIA offspring (SERPINA3, TNFα, and IL1β mRNAs, all p ≤ 0.01), which was driven by a subset of MIA offspring (~ 40%, 13/32) with high immune status. There were no diagnostic (human cohort) or group-wise (mouse cohort) differences in cellular markers indexing the density and/or morphology of microglia or astrocytes, but an increase in the transcription of microglial and astrocytic markers in schizophrenia cases and MIA offspring with high inflammation. These data demonstrate that immune-related changes in schizophrenia extend to dopaminergic areas of the midbrain and exist in the absence of changes in microglial cell number, but with putative evidence of microglial and astrocytic activation in the high immune subgroup. MIA may be one of the contributing factors underlying persistent neuroimmune changes in the midbrain of people with schizophrenia.
Collapse
Affiliation(s)
- Tertia D Purves-Tyson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
| | - Marie A Labouesse
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, NYC, 10032, NY, USA
| | | | - Kate Robinson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia.
- School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia.
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, 13210, New York, USA.
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Jash S, Sharma S. In utero immune programming of autism spectrum disorder (ASD). Hum Immunol 2021; 82:379-384. [PMID: 33612392 DOI: 10.1016/j.humimm.2021.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Maladaptation of immune tolerance at the maternal-fetal interface affects balanced maternal-fetal cross-talk and placental health and is associated with adverse pregnancy outcomes. The concept of in utero programming of childhood and adulthood diseases has revolutionized the research on the role of pregnancy in maternal, neonatal, and adult health. However, it is not yet well understood whether dysregulation of uterine immunity contributes to any health consequences during childhood or later in life. Recent observations in mice and humans have strongly supported the notion that uterine immunity during pregnancy determines the health trajectory of the offspring and significantly impacts cognitive function and mental health. Importantly, IL-17a producing Th17 T cells have been projected as the main contributors to heterogeneous pathological and behavioral phenotypes associated with autism spectrum disorder (ASD). However, since normal pregnancy is associated with little or no Th17 cells at the maternal-fetal interface, it is not clear how and when the Th17 T cells are generated and which interventions can ameliorate the ASD-like features in newborns. We propose that infection-associated uterine immune activation within a critical window of development may propel trans-differentiation of Th17 T cells that eventually affect fetal brain development and induce ASD-like behavioral phenotype in the offspring.
Collapse
Affiliation(s)
- Sukanta Jash
- Department of Pediatrics, Women and Infants Hospital of Rhode Island-Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital of Rhode Island-Warren Alpert Medical School of Brown University, Providence, RI, United States.
| |
Collapse
|
27
|
Xie L, Hu Y, Yan D, McQuillan P, Liu Y, Zhu S, Zhu Z, Jiang Y, Hu Z. The relationship between exposure to general anesthetic agents and the risk of developing an impulse control disorder. Pharmacol Res 2021; 165:105440. [PMID: 33493656 DOI: 10.1016/j.phrs.2021.105440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/18/2022]
Abstract
Most studies examining the effect of extended exposure to general anesthetic agents (GAAs) have demonstrated that extended exposure induces both structural and functional changes in the central nervous system. These changes are frequently accompanied by neurobehavioral changes that include impulse control disorders that are generally characterized by deficits in behavioral inhibition and executive function. In this review, we will.
Collapse
Affiliation(s)
- Linghua Xie
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhan Hu
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Dandan Yan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - P McQuillan
- Department of Anesthesiology, Penn State Hershey Medical Centre, Penn State College of Medicine, Hershey, PA, USA
| | - Yue Liu
- Department of Anesthesiology, The Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhirui Zhu
- Department of Anesthesiology, The Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yilei Jiang
- Department of Anesthesiology, The Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
28
|
Bordoni L, Petracci I, Calleja-Agius J, Lalor JG, Gabbianelli R. NURR1 Alterations in Perinatal Stress: A First Step towards Late-Onset Diseases? A Narrative Review. Biomedicines 2020; 8:E584. [PMID: 33302583 PMCID: PMC7764589 DOI: 10.3390/biomedicines8120584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Perinatal life represents a delicate phase of development where stimuli of all sorts, coming to or from the mother, can influence the programming of the future baby's health. These stimuli may have consequences that persist throughout adulthood. Nuclear receptor related 1 protein (NURR1), a transcription factor with a critical role in the development of the dopaminergic neurons in the midbrain, mediates the response to stressful environmental stimuli in the perinatal period. During pregnancy, low-grade inflammation triggered by maternal obesity, hyperinsulinemia or vaginal infections alters NURR1 expression in human gestational tissues. A similar scenario is triggered by exposure to neurotoxic compounds, which are associated with NURR1 epigenetic deregulation in the offspring, with potential intergenerational effects. Since these alterations have been associated with an increased risk of developing late-onset diseases in children, NURR1, alone, or in combination with other molecular markers, has been proposed as a new prognostic tool and a potential therapeutic target for several pathological conditions. This narrative review describes perinatal stress associated with NURR1 gene deregulation, which is proposed here as a mediator of late-onset consequences of early life events.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Irene Petracci
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy;
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta;
| | - Joan G. Lalor
- School of Nursing and Midwifery, Trinity College Dublin, 24 D’Olier Street, Dublin 2, Ireland;
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| |
Collapse
|
29
|
Martino D, Johnson I, Leckman JF. What Does Immunology Have to Do With Normal Brain Development and the Pathophysiology Underlying Tourette Syndrome and Related Neuropsychiatric Disorders? Front Neurol 2020; 11:567407. [PMID: 33041996 PMCID: PMC7525089 DOI: 10.3389/fneur.2020.567407] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: The goal of this article is to review the past decade's literature and provide a critical commentary on the involvement of immunological mechanisms in normal brain development, as well as its role in the pathophysiology of Tourette syndrome, other Chronic tic disorders (CTD), and related neuropsychiatric disorders including Obsessive-compulsive disorder (OCD) and Attention deficit hyperactivity disorder (ADHD). Methods: We conducted a literature search using the Medline/PubMed and EMBASE electronic databases to locate relevant articles and abstracts published between 2009 and 2020, using a comprehensive list of search terms related to immune mechanisms and the diseases of interest, including both clinical and animal model studies. Results: The cellular and molecular processes that constitute our "immune system" are crucial to normal brain development and the formation and maintenance of neural circuits. It is also increasingly evident that innate and adaptive systemic immune pathways, as well as neuroinflammatory mechanisms, play an important role in the pathobiology of at least a subset of individuals with Tourette syndrome and related neuropsychiatric disorders In the conceptual framework of the holobiont theory, emerging evidence points also to the importance of the "microbiota-gut-brain axis" in the pathobiology of these neurodevelopmental disorders. Conclusions: Neural development is an enormously complex and dynamic process. Immunological pathways are implicated in several early neurodevelopmental processes including the formation and refinement of neural circuits. Hyper-reactivity of systemic immune pathways and neuroinflammation may contribute to the natural fluctuations of the core behavioral features of CTD, OCD, and ADHD. There is still limited knowledge of the efficacy of direct and indirect (i.e., through environmental modifications) immune-modulatory interventions in the treatment of these disorders. Future research also needs to focus on the key molecular pathways through which dysbiosis of different tissue microbiota influence neuroimmune interactions in these disorders, and how microbiota modification could modify their natural history. It is also possible that valid biomarkers will emerge that will guide a more personalized approach to the treatment of these disorders.
Collapse
Affiliation(s)
- Davide Martino
- Department of Clinical Neurosciences & Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Isaac Johnson
- Child Study Center, Yale University, New Haven, CT, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - James F. Leckman
- Child Study Center, Yale University, New Haven, CT, United States
- Departments of Psychiatry, Pediatrics and Psychology, Yale University, New Haven, CT, United States
| |
Collapse
|
30
|
Abstract
Fetal neurodevelopment in utero is profoundly shaped by both systemic maternal immunity and local processes at the maternal-fetal interface. Immune pathways are a critical participant in the normal physiology of pregnancy and perturbations of maternal immunity due to infections during this period have been increasingly linked to a diverse array of poor neurological outcomes, including diseases that manifest much later in postnatal life. While experimental models of maternal immune activation (MIA) have provided groundbreaking characterizations of the maternal pathways underlying pathogenesis, less commonly examined are the immune factors that serve pathogen-independent developmental functions in the embryo and fetus. In this review, we explore what is known about the in vivo role of immune factors in fetal neurodevelopment during normal pregnancy and provide an overview of how MIA perturbs the proper orchestration of this sequence of events. Finally, we discuss how the dysregulation of immune factors may contribute to the manifestation of a variety of neurological disorders.
Collapse
Affiliation(s)
- Alice Lu-Culligan
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06519, USA; .,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06519, USA
| |
Collapse
|
31
|
Jeon SG, Yoo A, Chun DW, Hong SB, Chung H, Kim JI, Moon M. The Critical Role of Nurr1 as a Mediator and Therapeutic Target in Alzheimer's Disease-related Pathogenesis. Aging Dis 2020; 11:705-724. [PMID: 32489714 PMCID: PMC7220289 DOI: 10.14336/ad.2019.0718] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/18/2019] [Indexed: 01/16/2023] Open
Abstract
Several studies have revealed that the transcription factor nuclear receptor related 1 (Nurr1) plays several roles not only in the regulation of gene expression related to dopamine synthesis, but also in alternative splicing, and miRNA targeting. Moreover, it regulates cognitive functions and protects against inflammation-induced neuronal death. In particular, the role of Nurr1 in the pathogenesis of Parkinson's disease (PD) has been well investigated; for example, it has been shown that it restores behavioral and histological impairments in PD models. Although many studies have evaluated the connection between Nurr1 and PD pathogenesis, the role of Nurr1 in Alzheimer's disease (AD) remain to be studied. There have been several studies describing Nurr1 protein expression in the AD brain. However, only a few studies have examined the role of Nurr1 in the context of AD. Therefore, in this review, we highlight the overall effects of Nurr1 under the neuropathologic conditions related to AD. Furthermore, we suggest the possibility of using Nurr1 as a therapeutic target for AD or other neurodegenerative disorders.
Collapse
Affiliation(s)
- Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Anji Yoo
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Dong Wook Chun
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sang Bum Hong
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Hyunju Chung
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Jin-il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| |
Collapse
|
32
|
Haddad FL, Patel SV, Schmid S. Maternal Immune Activation by Poly I:C as a preclinical Model for Neurodevelopmental Disorders: A focus on Autism and Schizophrenia. Neurosci Biobehav Rev 2020; 113:546-567. [PMID: 32320814 DOI: 10.1016/j.neubiorev.2020.04.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 01/28/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Maternal immune activation (MIA) in response to a viral infection during early and mid-gestation has been linked through various epidemiological studies to a higher risk for the child to develop autism or schizophrenia-related symptoms.. This has led to the establishment of the pathogen-free poly I:C-induced MIA animal model for neurodevelopmental disorders, which shows relatively high construct and face validity. Depending on the experimental variables, particularly the timing of poly I:C administration, different behavioural and molecular phenotypes have been described that relate to specific symptoms of neurodevelopmental disorders such as autism spectrum disorder and/or schizophrenia. We here review and summarize epidemiological evidence for the effects of maternal infection and immune activation, as well as major findings in different poly I:C MIA models with a focus on poly I:C exposure timing, behavioural and molecular changes in the offspring, and characteristics of the model that relate it to autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Faraj L Haddad
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Salonee V Patel
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Susanne Schmid
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
33
|
Cárdenas-Tueme M, Montalvo-Martínez L, Maldonado-Ruiz R, Camacho-Morales A, Reséndez-Pérez D. Neurodegenerative Susceptibility During Maternal Nutritional Programing: Are Central and Peripheral Innate Immune Training Relevant? Front Neurosci 2020; 14:13. [PMID: 32116490 PMCID: PMC7010854 DOI: 10.3389/fnins.2020.00013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
Maternal overnutrition modulates body weight, development of metabolic failure and, potentially, neurodegenerative susceptibility in the offspring. Overnutrition sets a chronic pro-inflammatory profile that integrates peripheral and central immune activation nodes, damaging neuronal physiology and survival. Innate immune cells exposed to hypercaloric diets might experience trained immunity. Here, we address the role of maternal overnutrition as a trigger for central and peripheral immune training and its contribution to neurodegeneration and the molecular nodes implicated in the Nod-like receptor protein 3 (NLRP3) inflammasome pathway leading to immune training. We propose that maternal overnutrition leads to peripheral or central immune training that favor neurodegenerative susceptibility in the offspring.
Collapse
Affiliation(s)
- Marcela Cárdenas-Tueme
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Larisa Montalvo-Martínez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Roger Maldonado-Ruiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Alberto Camacho-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
- Centro de Investigación y Desarrollo en Ciencias de la Salud, Unidad de Neurometabolismo, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Diana Reséndez-Pérez
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|
34
|
Al-Haddad BJS, Oler E, Armistead B, Elsayed NA, Weinberger DR, Bernier R, Burd I, Kapur R, Jacobsson B, Wang C, Mysorekar I, Rajagopal L, Adams Waldorf KM. The fetal origins of mental illness. Am J Obstet Gynecol 2019; 221:549-562. [PMID: 31207234 PMCID: PMC6889013 DOI: 10.1016/j.ajog.2019.06.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
Abstract
The impact of infections and inflammation during pregnancy on the developing fetal brain remains incompletely defined, with important clinical and research gaps. Although the classic infectious TORCH pathogens (ie, Toxoplasma gondii, rubella virus, cytomegalovirus [CMV], herpes simplex virus) are known to be directly teratogenic, emerging evidence suggests that these infections represent the most extreme end of a much larger spectrum of injury. We present the accumulating evidence that prenatal exposure to a wide variety of viral and bacterial infections-or simply inflammation-may subtly alter fetal brain development, leading to neuropsychiatric consequences for the child later in life. The link between influenza infections in pregnant women and an increased risk for development of schizophrenia in their children was first described more than 30 years ago. Since then, evidence suggests that a range of infections during pregnancy may also increase risk for autism spectrum disorder and depression in the child. Subsequent studies in animal models demonstrated that both pregnancy infections and inflammation can result in direct injury to neurons and neural progenitor cells or indirect injury through activation of microglia and astrocytes, which can trigger cytokine production and oxidative stress. Infectious exposures can also alter placental serotonin production, which can perturb neurotransmitter signaling in the developing brain. Clinically, detection of these subtle injuries to the fetal brain is difficult. As the neuropsychiatric impact of perinatal infections or inflammation may not be known for decades after birth, our construct for defining teratogenic infections in pregnancy (eg, TORCH) based on congenital anomalies is insufficient to capture the full adverse impact on the child. We discuss the clinical implications of this body of evidence and how we might place greater emphasis on prevention of prenatal infections. For example, increasing uptake of the seasonal influenza vaccine is a key strategy to reduce perinatal infections and the risk for fetal brain injury. An important research gap exists in understanding how antibiotic therapy during pregnancy affects the fetal inflammatory load and how to avoid inflammation-mediated injury to the fetal brain. In summary, we discuss the current evidence and mechanisms linking infections and inflammation with the increased lifelong risk of neuropsychiatric disorders in the child, and how we might improve prenatal care to protect the fetal brain.
Collapse
Affiliation(s)
| | - Elizabeth Oler
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA
| | - Blair Armistead
- Department of Global Health, University of Washington Seattle, WA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Nada A Elsayed
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Departments of Psychiatry, Neurology, Neuroscience, and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD
| | - Raphael Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Raj Kapur
- Department of Pediatrics, University of Washington, Seattle Children's Hospital, Seattle, WA
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Genetics and Bioinformatics, Domain of Health Data and Digitalization, Institute of Public Health, Oslo, Norway
| | - Caihong Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO
| | - Indira Mysorekar
- Departments of Obstetrics and Gynecology and Pathology and Immunology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO
| | - Lakshmi Rajagopal
- Center for Innate Immunity and Immune Disease, Department of Pediatrics, University of Washington, Seattle, WA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Kristina M Adams Waldorf
- Department of Obstetrics & Gynecology and Global Health, Center for Innate Immunity and Immune Disease, Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, WA; Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
35
|
NURR1 deficiency is associated to ADHD-like phenotypes in mice. Transl Psychiatry 2019; 9:207. [PMID: 31455763 PMCID: PMC6712038 DOI: 10.1038/s41398-019-0544-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/09/2019] [Accepted: 07/17/2019] [Indexed: 01/10/2023] Open
Abstract
The transcription factor NURR1 regulates the dopamine (DA) signaling pathway and exerts a critical role in the development of midbrain dopaminergic neurons (mDA). NURR1 alterations have been linked to DA-associated brain disorders, such as Parkinson's disease and schizophrenia. However, the association between NURR1 defects and the attention-deficit hyperactivity disorder (ADHD), a DA-associated brain disease characterized by hyperactivity, impulsivity and inattention, has never been demonstrated. To date, a comprehensive murine model of ADHD truly reflecting the whole complex human psychiatric disorder still does not exist. NURR1-knockout (NURR1-KO) mice have been reported to exhibit increased spontaneous locomotor activity, but their complete characterization is still lacking. In the present study a wide-ranging test battery was used to perform a comprehensive analysis of the behavioral phenotype of the male NURR1-KO mice. As a result, their hyperactive phenotype was confirmed, while their impulsive behavior was reported for the first time. On the other hand, no anxiety and alterations in motor coordination, sociability and memory were observed. Also, the number of mDA expressing tyrosine hydroxylase, a rate-limiting enzyme of catecholamines biosynthesis, and DA level in brain were not impaired in NURR1-KO mice. Finally, hyperactivity has been shown to be recovered by treatment with methylphenidate, the first line psychostimulant drug used for ADHD. Overall, our study suggests that the NURR1 deficient male mouse may be a satisfactory model to study some ADHD behavioral phenotypes and to test the clinical efficacy of potential therapeutic agents.
Collapse
|
36
|
Mueller FS, Richetto J, Hayes LN, Zambon A, Pollak DD, Sawa A, Meyer U, Weber-Stadlbauer U. Influence of poly(I:C) variability on thermoregulation, immune responses and pregnancy outcomes in mouse models of maternal immune activation. Brain Behav Immun 2019; 80:406-418. [PMID: 30980948 DOI: 10.1016/j.bbi.2019.04.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 12/24/2022] Open
Abstract
Maternal immune activation (MIA) models that are based on administration of the viral mimetic, poly(I:C), are widely used as experimental tools to study neuronal and behavioral dysfunctions in relation to immune-mediated neurodevelopmental disorders and mental illnesses. Evidence from investigations in non-pregnant rodents suggests that different poly(I:C) products can vary in terms of their immunogenicity, even if they are obtained from the same vendor. The present study aimed at extending these findings to pregnant mice, while also controlling various poly(I:C) products for potential contamination with lipopolysaccharide (LPS). We found significant variability between different batches of poly(I:C) potassium salt obtained from the same vendor (Sigma-Aldrich) in terms of the relative amount of dsRNA fragments in the high molecular weight range (1000-6000 nucleotides long) and with regards to their effects on maternal thermoregulation and immune responses in maternal plasma, placenta and fetal brain. Batches of poly(I:C) potassium salt containing larger amounts of high molecular weight fragments induced more extensive effects on thermoregulation and immune responses compared to batches with minimal amounts of high molecular weight fragments. Consistent with these findings, poly(I:C) enriched for high molecular weight dsRNA (HMW) caused larger maternal and placental immune responses compared to low molecular weight (LMW) poly(I:C). These variable effects were unrelated to possible LPS contamination. Finally, we found marked variability between different batches of the poly(I:C) potassium salt in terms of their effects on spontaneous abortion rates. This batch-to-batch variability was confirmed by three independent research groups using distinct poly(I:C) administration protocols in mice. Taken together, the present data confirm that different poly(I:C) products can induce varying immune responses and can differentially affect maternal physiology and pregnancy outcomes. It is therefore pivotal that researchers working with poly(I:C)-based MIA models ascertain and consider the precise molecular composition and immunogenicity of the product in use. We recommend the establishment of reference databases that combine phenotype data with empirically acquired quality information, which can aid the design, implementation and interpretation of poly(I:C)-based MIA models.
Collapse
Affiliation(s)
- Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| | - Lindsay N Hayes
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Alice Zambon
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, and Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA; Department of Mental Health, Johns Hopkins University, Baltimore, USA; Bloomberg School of Medicine, Johns Hopkins Hospital and Medical Institutions, Baltimore, USA
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| |
Collapse
|
37
|
Pollak DD, Weber-Stadlbauer U. Transgenerational consequences of maternal immune activation. Semin Cell Dev Biol 2019; 97:181-188. [PMID: 31233834 DOI: 10.1016/j.semcdb.2019.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/12/2019] [Accepted: 06/20/2019] [Indexed: 01/10/2023]
Abstract
Prenatal exposure to infectious or inflammatory insults is increasingly recognized in the etiology of neuropsychiatric diseases, including schizophrenia, autism, depression and bipolar disorder. New discoveries highlight that maternal immune activation can lead to pathological effects on brain and behavior in multiple generations. This review describes the transgenerational consequences of maternal immune activation in shaping brain and behavior anomalies and disease risk across generations. We discuss potential underlying mechanisms of transmission, by which prenatal immune activation can mediate generation-spanning changes in brain development and functions and how external influences could further determine the specificity of the phenotype across generations. The identification of the underlying mechanisms appears relevant to infection-related neuropsychiatric illnesses independently of existing diagnostic classifications and may help identifying complex patterns of generation-spanning transmission beyond genetic inheritance. The herein described principles emphasize the importance of considering ancestral infectious histories in clinical research aiming at developing new preventive treatment strategies against infection-related neurodevelopmental disorders and mental illnesses.
Collapse
Affiliation(s)
- Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
| |
Collapse
|
38
|
Dunn GA, Nigg JT, Sullivan EL. Neuroinflammation as a risk factor for attention deficit hyperactivity disorder. Pharmacol Biochem Behav 2019; 182:22-34. [PMID: 31103523 PMCID: PMC6855401 DOI: 10.1016/j.pbb.2019.05.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/08/2023]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a persistent, and impairing pediatric-onset neurodevelopmental condition. Its high prevalence, and recurrent controversy over its widespread identification and treatment, drive strong interest in its etiology and mechanisms. Emerging evidence for a role for neuroinflammation in ADHD pathophysiology is of great interest. This evidence includes 1) the above-chance comorbidity of ADHD with inflammatory and autoimmune disorders, 2) initial studies indicating an association with ADHD and increased serum cytokines, 3) preliminary evidence from genetic studies demonstrating associations between polymorphisms in genes associated with inflammatory pathways and ADHD, 4) emerging evidence that early life exposure to environmental factors may increase risk for ADHD via an inflammatory mechanism, and 5) mechanistic evidence from animal models of maternal immune activation documenting behavioral and neural outcomes consistent with ADHD. Prenatal exposure to inflammation is associated with changes in offspring brain development including reductions in cortical gray matter volume and the volume of certain cortical areas -parallel to observations associated with ADHD. Alterations in neurotransmitter systems, including the dopaminergic, serotonergic and glutamatergic systems, are observed in ADHD populations. Animal models provide strong evidence that development and function of these neurotransmitters systems are sensitive to exposure to in utero inflammation. In summary, accumulating evidence from human studies and animal models, while still incomplete, support a potential role for neuroinflammation in the pathophysiology of ADHD. Confirmation of this association and the underlying mechanisms have become valuable targets for research. If confirmed, such a picture may be important in opening new intervention routes.
Collapse
Affiliation(s)
| | - Joel T Nigg
- Oregon Health and Science University, United States of America
| | - Elinor L Sullivan
- University of Oregon, United States of America; Oregon Health and Science University, United States of America; Oregon National Primate Research Center, United States of America.
| |
Collapse
|
39
|
Abstract
Latent inhibition (LI) is a startlingly simple effect in which preexposure of a stimulus without consequence retards subsequent responding to a stimulus-consequence relation. The effect was first demonstrated with Pavlovian conditioning in animals and was later suggested to be a marker of human psychopathology such as schizophrenia. Individual differences in LI has supported the continued use of animal models to understand human mental health. In this review, we ask whether there is sufficient evidence to support the continued application of LI from animal models to human psychopathology because of the weak evidence for LI in humans. There is considerable variability in the methods used to assess LI, sustaining different theoretical accounts of the effects observed, which differ from the accepted accounts of LI as demonstrated in animals. The review shows that although there have been many experiments testing human LI, none provide the necessary experimental controls to support the conclusion that retarded responding is caused simply by preexposure to a stimulus, as has been demonstrated with animal models. Establishing this conflict, we set out a framework for future research.
Collapse
|
40
|
Bergdolt L, Dunaevsky A. Brain changes in a maternal immune activation model of neurodevelopmental brain disorders. Prog Neurobiol 2018; 175:1-19. [PMID: 30590095 DOI: 10.1016/j.pneurobio.2018.12.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022]
Abstract
The developing brain is sensitive to a variety of insults. Epidemiological studies have identified prenatal exposure to infection as a risk factor for a range of neurological disorders, including autism spectrum disorder and schizophrenia. Animal models corroborate this association and have been used to probe the contribution of gene-environment interactions to the etiology of neurodevelopmental disorders. Here we review the behavior and brain phenotypes that have been characterized in MIA offspring, including the studies that have looked at the interaction between maternal immune activation and genetic risk factors for autism spectrum disorder or schizophrenia. These phenotypes include behaviors relevant to autism, schizophrenia, and other neurological disorders, alterations in brain anatomy, and structural and functional neuronal impairments. The link between maternal infection and these phenotypic changes is not fully understood, but there is increasing evidence that maternal immune activation induces prolonged immune alterations in the offspring's brain which could underlie epigenetic alterations which in turn may mediate the behavior and brain changes. These concepts will be discussed followed by a summary of the pharmacological interventions that have been tested in the maternal immune activation model.
Collapse
Affiliation(s)
- Lara Bergdolt
- University of Nebraska Medical Center, Neurological Sciences, 985960 Nebraska Medical Center, 68105, Omaha, NE, United States
| | - Anna Dunaevsky
- University of Nebraska Medical Center, Neurological Sciences, 985960 Nebraska Medical Center, 68105, Omaha, NE, United States.
| |
Collapse
|
41
|
Bonapersona V, Joëls M, Sarabdjitsingh RA. Effects of early life stress on biochemical indicators of the dopaminergic system: A 3 level meta-analysis of rodent studies. Neurosci Biobehav Rev 2018; 95:1-16. [PMID: 30201218 DOI: 10.1016/j.neubiorev.2018.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/31/2022]
Abstract
Adverse early life events are a well-established risk factor for the precipitation of behavioral disorders characterized by anomalies in the dopaminergic system, such as schizophrenia and addiction. The correlation between early life conditions and the dopaminergic system has been causally investigated in more than 90 rodent publications. Here, we tested the validity of the hypothesis that early life stress (ELS) alters dopamine signaling by performing an extensive 3-level mixed effect meta-analysis. We included several ELS models and biochemical indicators of the dopaminergic system in a variety of brain areas, for a total of 1009 comparisons. Contrary to our expectations, only a few comparisons displayed a significant effect. Specifically, the striatal area was the most vulnerable, displaying decreased dopamine precursor and increased metabolites after ELS. To make all data openly accessible, we created MaDEapp (https://osf.io/w25m4/), a tool to explore data of the meta-analysis with the intent to guide future (pre)clinical research and allow power calculations. All in all, ELS induces a few yet robust changes on biochemical indicators of the dopaminergic system.
Collapse
Affiliation(s)
- V Bonapersona
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, Utrecht University, The Netherlands.
| | - M Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, Utrecht University, The Netherlands; University Medical Center Groningen, University of Groningen, The Netherlands
| | - R A Sarabdjitsingh
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, Utrecht University, The Netherlands
| |
Collapse
|
42
|
Brown AS, Meyer U. Maternal Immune Activation and Neuropsychiatric Illness: A Translational Research Perspective. Am J Psychiatry 2018; 175:1073-1083. [PMID: 30220221 PMCID: PMC6408273 DOI: 10.1176/appi.ajp.2018.17121311] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epidemiologic studies, including prospective birth cohort investigations, have implicated maternal immune activation in the etiology of neuropsychiatric disorders. Maternal infectious pathogens and inflammation are plausible risk factors for these outcomes and have been associated with schizophrenia, autism spectrum disorder, and bipolar disorder. Concurrent with epidemiologic research are animal models of prenatal immune activation, which have documented behavioral, neurochemical, neuroanatomic, and neurophysiologic disruptions that mirror phenotypes observed in these neuropsychiatric disorders. Epidemiologic studies of maternal immune activation offer the advantage of directly evaluating human populations but are limited in their ability to uncover pathogenic mechanisms. Animal models, on the other hand, are limited in their generalizability to psychiatric disorders but have made significant strides toward discovering causal relationships and biological pathways between maternal immune activation and neuropsychiatric phenotypes. Incorporating these risk factors in reverse translational animal models of maternal immune activation has yielded a wealth of data supporting the predictive potential of epidemiologic studies. To further enhance the translatability between epidemiology and basic science, the authors propose a complementary approach that includes deconstructing neuropsychiatric outcomes of maternal immune activation into key pathophysiologically defined phenotypes that are identifiable in humans and animals and that evaluate the interspecies concordance regarding interactions between maternal immune activation and genetic and epigenetic factors, including processes involving intergenerational disease transmission. [AJP AT 175: Remembering Our Past As We Envision Our Future October 1857: The Pathology of Insanity J.C. Bucknill: "In the brain the state of inflammation itself either very quickly ceases or very soon causes death; but when it does cease it leaves behind it consequences which are frequently the causes of insanity, and the conditions of cerebral atrophy." (Am J Psychiatry 1857; 14:172-193 )].
Collapse
Affiliation(s)
- Alan S. Brown
- New York State Psychiatric Institute, Columbia University Medical Center, New York, NY
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Scarborough J, Mueller F, Weber-Stadlbauer U, Richetto J, Meyer U. Dependency of prepulse inhibition deficits on baseline startle reactivity in a mouse model of the human 22q11.2 microdeletion syndrome. GENES BRAIN AND BEHAVIOR 2018; 18:e12523. [PMID: 30267483 DOI: 10.1111/gbb.12523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 12/21/2022]
Abstract
Hemizygous microdeletion at the chromosomal locus 22q11.2 is a copy number variation with strong genetic linkage to schizophrenia and related disorders. This association, along with its phenotypic overlap with the 22q11.2 microdeletion syndrome, has motivated the establishment of Df[h22q11]/+ mice, in which the human 22q11.2 orthologous region is deleted. Previous investigations using this model showed the presence of reduced prepulse inhibition (PPI) of the acoustic startle reflex, a form of sensorimotor gating known to be impaired in a number of psychiatric disorders. Concomitantly to reduced PPI, however, Df[h22q11]/+ mice are also characterized by a robust increase in baseline startle reactivity, which may complicate or confound the interpretation of PPI. Therefore, the present study re-examined the relationship between acoustic startle reactivity and PPI in this mouse model. We found that while PPI is reduced in Df[h22q11]/+ mice when using its relative indexation (ie, % PPI), this deficit is no longer apparent when using the absolute quantification, that is, the direct comparison between pulse-alone and prepulse-plus-pulse conditions with successively increasing prepulse intensities. We further identified marked negative correlations between % PPI and startle reactivity in Df[h22q11]/+ mice. Moreover, when stratifying Df[h22q11]/+ mice into subgroups displaying low- and high-startle reactivity, only the latter subgroup displayed a significant reduction in % PPI. Collectively, our data suggest that alterations in baseline startle reactivity can confound the outcomes and interpretation of PPI in this mouse model of the human 22q11.2 microdeletion syndrome.
Collapse
Affiliation(s)
- Joseph Scarborough
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Flavia Mueller
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Mueller FS, Polesel M, Richetto J, Meyer U, Weber-Stadlbauer U. Mouse models of maternal immune activation: Mind your caging system! Brain Behav Immun 2018; 73:643-660. [PMID: 30026057 DOI: 10.1016/j.bbi.2018.07.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/27/2018] [Accepted: 07/14/2018] [Indexed: 12/19/2022] Open
Abstract
Rodent models of maternal immune activation (MIA) are increasingly used as experimental tools to study neuronal and behavioral dysfunctions in relation to infection-mediated neurodevelopmental disorders. One of the most widely used MIA models is based on gestational administration of poly(I:C) (= polyriboinosinic-polyribocytdilic acid), a synthetic analog of double-stranded RNA that induces a cytokine-associated viral-like acute phase response. The effects of poly(I:C)-induced MIA on phenotypic changes in the offspring are known to be influenced by various factors, including the precise prenatal timing, genetic background, and immune stimulus intensity. Thus far, however, it has been largely ignored whether differences in the basic type of laboratory housing can similarly affect the outcomes of MIA models. Here, we examined this possibility by comparing the poly(I:C)-based MIA model in two housing systems that are commonly used in preclinical mouse research, namely the open cage (OC) and individually ventilated cage (IVC) systems. Pregnant C57BL6/N mice were kept in OCs or IVCs and treated with a low (1 mg/kg, i.v.) or high (5 mg/kg, i.v.) dose of poly(I:C), or with control vehicle solution. MIA or control treatment was induced on gestation day (GD) 9 or 12, and the resulting offspring were raised and maintained in OCs or IVCs until adulthood for behavioral testing. An additional cohort of dams was used to assess the influence of the different caging systems on poly(I:C)-induced cytokine and stress responses in the maternal plasma. Maternal poly(I:C) administration on GD9 caused a dose-dependent increase in spontaneous abortion in IVCs but not in OCs, whereas MIA in IVC systems during a later gestational time-point (GD12) did not affect pregnancy outcomes. Moreover, the precise type of caging system markedly affected maternal cytokines and chemokines at basal states and in response to poly(I:C) and further influenced the maternal levels of the stress hormone, corticosterone. The efficacy of MIA to induce deficits in working memory, social interaction, and sensorimotor gating in the adult offspring was influenced by the different housing conditions, the dosing of poly(I:C), and the precise prenatal timing. Taken together, the present study identifies the basic type of caging system as a novel factor that can confound the outcomes of MIA in mice. Our findings thus urge the need to consider and report the kind of laboratory housing systems used to implement MIA models. Providing this information seems pivotal to yield reproducible results in these models.
Collapse
Affiliation(s)
- Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| | | | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland.
| |
Collapse
|
45
|
Prenatal inflammation and risk for schizophrenia: A role for immune proteins in neurodevelopment. Dev Psychopathol 2018; 30:1157-1178. [DOI: 10.1017/s0954579418000317] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractPrenatal inflammation is an established risk factor for schizophrenia. However, the specific inflammatory pathways that mediate this association remain unclear. Potential candidate systems include inflammatory markers produced by microglia, such as cytokines and complement. Accumulating evidence suggests that these markers play a role in typical neurodevelopmental processes, such as synapse formation and interneuron migration. Rodent models demonstrate that altered marker levels during the prenatal period can cause lasting deficits in these systems, leading to cognitive deficits that resemble schizophrenia. This review assesses the potential role of prenatal cytokine and complement elevations on the etiology of schizophrenia. The current neurobiological understanding of the development of schizophrenia is reviewed to identify candidate cellular mechanisms that may be influenced by prenatal inflammation. We discuss the functions that cytokines and complement may play in prenatal neurodevelopment, review evidence that links exposure to these factors with risk for schizophrenia, and consider how these markers may interact with genetic vulnerabilities to influence the neurodevelopment of schizophrenia. We consider how prenatal inflammatory exposure may influence childhood and adolescent developmental risk trajectories for schizophrenia. Finally, we identify areas of further research needed to support the development of anti-inflammatory treatments to prevent the development of schizophrenia in at-risk neonates.
Collapse
|
46
|
Khan A, Powell SB. Sensorimotor gating deficits in "two-hit" models of schizophrenia risk factors. Schizophr Res 2018; 198:68-83. [PMID: 29070440 PMCID: PMC5911431 DOI: 10.1016/j.schres.2017.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023]
Abstract
Genetic and environmental models of neuropsychiatric disease have grown exponentially over the last 20years. One measure that is often used to evaluate the translational relevance of these models to human neuropsychiatric disease is prepulse inhibition of startle (PPI), an operational measure of sensorimotor gating. Deficient PPI characterizes several neuropsychiatric disorders but has been most extensively studied in schizophrenia. It has become a useful tool in translational neuropharmacological and molecular genetics studies because it can be measured across species using almost the same experimental parameters. Although initial studies of PPI in rodents were pharmacological because of the robust predictive validity of PPI for antipsychotic efficacy, more recently, PPI has become standard common behavioral measures used in genetic and neurodevelopmental models of schizophrenia. Here we review "two hit" models of schizophrenia and discuss the utility of PPI as a tool in phenotyping these models of relevant risk factors. In the review, we consider approaches to rodent models of genetic and neurodevelopmental risk factors and selectively review "two hit" models of gene×environment and environment×environment interactions in which PPI has been measured.
Collapse
Affiliation(s)
- Asma Khan
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, United States; Research Service, VA San Diego Healthcare System, La Jolla, CA, United States
| | - Susan B Powell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, United States; Research Service, VA San Diego Healthcare System, La Jolla, CA, United States.
| |
Collapse
|
47
|
Luan W, Hammond LA, Vuillermot S, Meyer U, Eyles DW. Maternal Vitamin D Prevents Abnormal Dopaminergic Development and Function in a Mouse Model of Prenatal Immune Activation. Sci Rep 2018; 8:9741. [PMID: 29950608 PMCID: PMC6021387 DOI: 10.1038/s41598-018-28090-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022] Open
Abstract
Dysfunction in dopamine (DA) systems is a prominent feature in schizophrenia patients and may result from the abnormal development of mesencephalic (mes)DA systems. Maternal immune activation (MIA) and developmental vitamin D (DVD)-deficiency both induce schizophrenia-relevant dopaminergic abnormalities in adult offspring. In this study, we investigated whether maternal administration of the vitamin D hormone (1,25OHD, VITD) could prevent MIA-induced abnormalities in DA-related behaviors and mesDA development. We administrated the viral mimetic polyriboinosinic-polyribocytidylic (poly (I:C)) simultaneously with 1,25OHD and/or their vehicles, to pregnant mouse dams at gestational day 9. Maternal treatment with VITD prevented MIA-induced hypersensitivity to acute DA stimulation induced by amphetamine, whereas it failed to block prepulse inhibition deficiency in MIA-exposed offspring. MIA and VITD both reduced fetal mesDA progenitor (Lmx1a + Sox2+) cells, while VITD treatment increased the number of mature (Nurr1 + TH+) mesDA neurons. Single-cell quantification of protein expression showed that VITD treatment increased the expression of Lmx1a, Nurr1 and TH in individual mesDA cells and restored normal mesDA positioning. Our data demonstrate that VITD prevents abnormal dopaminergic phenotypes in MIA offspring possibly via its early neuroprotective actions on fetal mesDA neurons. Maternal supplementation with the dietary form of vitamin D, cholecalciferol may become a valuable strategy for the prevention of MIA-induced neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Wei Luan
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | | | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Darryl Walter Eyles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| |
Collapse
|
48
|
Solek CM, Farooqi N, Verly M, Lim TK, Ruthazer ES. Maternal immune activation in neurodevelopmental disorders. Dev Dyn 2017; 247:588-619. [PMID: 29226543 DOI: 10.1002/dvdy.24612] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022] Open
Abstract
Converging lines of evidence from basic science and clinical studies suggest a relationship between maternal immune activation (MIA) and neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. The mechanisms through which MIA increases the risk of neurodevelopmental disorders have become a subject of intensive research. This review aims to describe how dysregulation of microglial function and immune mechanisms may link MIA and neurodevelopmental pathologies. We also summarize the current evidence in animal models of MIA. Developmental Dynamics 247:588-619, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cynthia M Solek
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Nasr Farooqi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Myriam Verly
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Tony K Lim
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Edward S Ruthazer
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
49
|
Konefal SC, Stellwagen D. Tumour necrosis factor-mediated homeostatic synaptic plasticity in behavioural models: testing a role in maternal immune activation. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0160. [PMID: 28093554 DOI: 10.1098/rstb.2016.0160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
The proinflammatory cytokine tumour necrosis factor-alpha (TNFα) has long been characterized for its role in the innate immune system, but more recently has been found to have a distinct role in the nervous system that does not overlap with other proinflammatory cytokines. Through regulation of neuronal glutamate and GABA receptor trafficking, TNF mediates a homeostatic form of synaptic plasticity, but plays no direct role in Hebbian forms of plasticity. As yet, there is no evidence to suggest that this adaptive plasticity plays a significant role in normal development, but it does maintain neuronal circuit function in the face of several types of disruption. This includes developmental plasticity in primary sensory cortices, as well as modulating the response to antidepressants, chronic antipsychotics and drugs of abuse. TNF is also a prominent component of the neuroinflammation occurring in most neuropathologies, but the role of TNF-mediated synaptic plasticity in this context remains to be determined. We tested this in a maternal immune activation (MIA) model of neurodevelopmental disorders. Using TNF-/- mice, we observed that TNF is not required for the expression of abnormal social or anxious behaviour in this model. This indicates that TNF does not uniquely contribute to the development of neuronal dysfunction in this model, and suggests that during neuroinflammatory events, compensation between the various proinflammatory cytokines is the norm.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Sarah C Konefal
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada H3G 1A4
| | - David Stellwagen
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada H3G 1A4
| |
Collapse
|
50
|
Makinson R, Lloyd K, Rayasam A, McKee S, Brown A, Barila G, Grissom N, George R, Marini M, Fabry Z, Elovitz M, Reyes TM. Intrauterine inflammation induces sex-specific effects on neuroinflammation, white matter, and behavior. Brain Behav Immun 2017; 66:277-288. [PMID: 28739513 PMCID: PMC6916731 DOI: 10.1016/j.bbi.2017.07.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 02/06/2023] Open
Abstract
Exposure to inflammation during pregnancy has been linked to adverse neurodevelopmental consequences for the offspring. One common route through which a developing fetus is exposed to inflammation is with intrauterine inflammation. To that end, we utilized an animal model of intrauterine inflammation (IUI; intrauterine lipopolysaccharide (LPS) administration, 50µg, E15) to assess placental and fetal brain inflammatory responses, white matter integrity, anxiety-related behaviors (elevated zero maze, light dark box, open field), microglial counts, and the CNS cytokine response to an acute injection of LPS in both males and females. These studies revealed that for multiple endpoints (fetal brain cytokine levels, cytokine response to adult LPS challenge) male IUI offspring were uniquely affected by intrauterine inflammation, while for other endpoints (behavior, microglial number) both sexes were similarly affected. These data advance our understanding of sex-specific effects of early life exposure to inflammation in a translationally- relevant model.
Collapse
Affiliation(s)
- Ryan Makinson
- University of Cincinnati, College of Medicine, Cincinnati, OH
| | - Kelsey Lloyd
- University of Cincinnati, College of Medicine, Cincinnati, OH
| | - Aditya Rayasam
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison
| | - Sarah McKee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Amy Brown
- Maternal and Child Health Research Center, Department of OBGYN, University of Pennsylvania, Philadelphia, PA
| | - Guillermo Barila
- Maternal and Child Health Research Center, Department of OBGYN, University of Pennsylvania, Philadelphia, PA
| | - Nicola Grissom
- University of Cincinnati, College of Medicine, Cincinnati, OH
| | - Robert George
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Matt Marini
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison
| | - Michal Elovitz
- Maternal and Child Health Research Center, Department of OBGYN, University of Pennsylvania, Philadelphia, PA
| | - Teresa M. Reyes
- University of Cincinnati, College of Medicine, Cincinnati, OH
| |
Collapse
|