1
|
Wang Q, Pang B, Bucci J, Jiang J, Li Y. The emerging role of extracellular vesicles and particles in prostate cancer diagnosis, and risk stratification. Biochim Biophys Acta Rev Cancer 2024; 1879:189210. [PMID: 39510450 DOI: 10.1016/j.bbcan.2024.189210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Current approaches for prostate cancer (PCa) diagnosis and risk stratification require greater accuracy. Extracellular vesicles and particles (EVPs) containing diverse cargos from parent cells are released into the extracellular microenvironment and play a critical role in intercellular communication. Accumulating evidence demonstrates that EVPs are emerging as a promising focus for the exploration of cancer biomarkers and therapeutic targets. However, the precise categorisation and nomenclature of EVP subpopulations remains challenging due to their compositional complexity, inherent heterogeneity in molecular composition, and structure. The recent identification of two novel non-vesicular extracellular particle subtypes, exomeres and supermeres, has altered our understanding of the distinct subpopulations of EVPs and their roles in biological and physiological processes. Here, we discuss recent advances in the field of EVPs, describe characteristics of EVP subpopulations, focus on the application and potential of EVPs in PCa diagnosis and risk stratification by liquid biopsy, and highlight the major challenges and prospects of EVP research in PCa area.
Collapse
Affiliation(s)
- Qi Wang
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Bairen Pang
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Ningbo Clinical Research Centre for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Translational Research Laboratory for Urology, The Key Laboratory of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Zhejiang Engineering Research Centre of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang 315010, China
| | - Joseph Bucci
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Junhui Jiang
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Ningbo Clinical Research Centre for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Translational Research Laboratory for Urology, The Key Laboratory of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Zhejiang Engineering Research Centre of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang 315010, China.
| | - Yong Li
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia.
| |
Collapse
|
2
|
Lee JC, Ray RM, Scott TA. Prospects and challenges of tissue-derived extracellular vesicles. Mol Ther 2024; 32:2950-2978. [PMID: 38910325 PMCID: PMC11403234 DOI: 10.1016/j.ymthe.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
Extracellular vesicles (EVs) are considered a vital component of cell-to-cell communication and represent a new frontier in diagnostics and a means to identify pathways for therapeutic intervention. Recently, studies have revealed the importance of tissue-derived EVs (Ti-EVs), which are EVs present in the interstitial spaces between cells, as they better represent the underlying physiology of complex, multicellular tissue microenvironments in biology and disease. EVs are native, lipid bilayer membraned nano-sized particles produced by all cells that are packaged with varied functional biomolecules including proteins, lipids, and nucleic acids. They are implicated in short- and long-range cellular communication and may elicit functional responses in recipient cells. To date, studies have often utilized cultured cells or biological fluids as a source for EVs that do not capture local molecular signatures of the tissue microenvironment. Recent work utilizing Ti-EVs has elucidated novel biomarkers for disease and provided insights into disease mechanisms that may lead to the development of novel therapeutic agents. Still, there are considerable challenges facing current studies. This review explores the vast potential and unique challenges for Ti-EV research and provides considerations for future studies that seek to advance this exciting field.
Collapse
Affiliation(s)
- Justin C Lee
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roslyn M Ray
- Gene Therapy Research, CSL Behring, Pasadena, CA 91106, USA
| | - Tristan A Scott
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute, Duarte, CA 91010, USA.
| |
Collapse
|
3
|
Lin Y, Wei D, He X, Huo L, Wang J, Zhang X, Wu Y, Zhang R, Gao Y, Kang T. RAB22A sorts epithelial growth factor receptor (EGFR) from early endosomes to recycling endosomes for microvesicles release. J Extracell Vesicles 2024; 13:e12494. [PMID: 39051763 PMCID: PMC11270584 DOI: 10.1002/jev2.12494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Microvesicles (MVs) containing proteins, nucleic acid or organelles are shed from the plasma membrane. Although the mechanisms of MV budding are well elucidated, the connection between endosomal trafficking and MV formation remains poorly understood. In this report, RAB22A is revealed to be crucial for EGFR-containing MVs formation by the RAB GTPase family screening. RAB22A recruits TBC1D2B, a GTPase-activating protein (GAP) of RAB7A, to inactivate RAB7A, thus preventing EGFR from being transported to late endosomes and lysosomes. RAB22A also engages SH3BP5L, a guanine-nucleotide exchange factor (GEF) of RAB11A, to activate RAB11A on early endosomes. Consequently, EGFR is recycled to the cell surface and packaged into MVs. Furthermore, EGFR can phosphorylate RAB22A at Tyr136, which in turn promotes EGFR-containing MVs formation. Our findings illustrate that RAB22A acts as a sorter on early endosomes to sort EGFR to recycling endosomes for MV shedding by both activating RAB11A and inactivating RAB7A.
Collapse
Affiliation(s)
- Yujie Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Denghui Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Xiaobo He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Lanqing Huo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Jingxuan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Xia Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Ying Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| |
Collapse
|
4
|
Pang B, Wang Q, Chen H, Liu Z, Han M, Gong J, Yue L, Ding X, Wang S, Yan Z, Chen Y, Malouf D, Bucci J, Guo T, Zhou C, Jiang J, Li Y. Proteomic Identification of Small Extracellular Vesicle Proteins LAMB1 and Histone H4 for Prostate Cancer Diagnosis and Risk Stratification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402509. [PMID: 38590132 PMCID: PMC11187897 DOI: 10.1002/advs.202402509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 04/10/2024]
Abstract
Diagnosis and stratification of prostate cancer (PCa) patients using the prostate-specific antigen (PSA) test is challenging. Extracellular vesicles (EVs), as a new star of liquid biopsy, has attracted interest to complement inaccurate PSA screening and invasiveness of tissue biopsy. In this study, a panel of potential small EV (sEV) protein biomarkers is identified from PCa cell lines using label-free LC-MS/MS proteomics. These biomarkers underwent further validation with plasma and urine samples from different PCa stages through parallel reaction monitoring-based targeted proteomics, western blotting, and ELISA. Additionally, a tissue microarray containing cancerous and noncancerous tissues is screened to provide additional evidence of selected sEV proteins associated with cancer origin. Results indicate that sEV protein LAMB1 is highly expressed in human plasma of metastatic PCa patients compared with localised PCa patients and control subjects, while sEV protein Histone H4 is highly expressed in human urine of high-risk PCa patients compared to low-risk PCa patients and control subjects. These two sEV proteins demonstrate higher specificity and sensitivity than the PSA test and show promise for metastatic PCa diagnosis, progression monitoring, and risk stratification.
Collapse
Affiliation(s)
- Bairen Pang
- Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Ningbo Clinical Research Centre for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Translational Research Laboratory for UrologyThe Key Laboratory of NingboThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Zhejiang Engineering Research Center of Innovative technologies and diagnostic and therapeutic equipment for urinary system diseasesNingboZhejiang315010China
| | - Qi Wang
- Cancer Care CentreSt George HospitalKogarahNSW2217Australia
- St. George and Sutherland Clinical CampusesSchool of Clinical MedicineUNSW SydneyKensingtonNSW2052Australia
| | - Haotian Chen
- Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Ningbo Clinical Research Centre for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Health Science CentreNingbo UniversityNingboZhejiang315211China
| | - Zhihan Liu
- Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Ningbo Clinical Research Centre for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Health Science CentreNingbo UniversityNingboZhejiang315211China
| | - Meng Han
- Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Ningbo Clinical Research Centre for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Translational Research Laboratory for UrologyThe Key Laboratory of NingboThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Zhejiang Engineering Research Center of Innovative technologies and diagnostic and therapeutic equipment for urinary system diseasesNingboZhejiang315010China
| | - Jie Gong
- Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Ningbo Clinical Research Centre for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Translational Research Laboratory for UrologyThe Key Laboratory of NingboThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
| | - Liang Yue
- Westlake Centre for Intelligent ProteomicsWestlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310030China
- Key Laboratory of Structural Biology of Zhejiang ProvinceSchool of Life SciencesWestlake UniversityHangzhouZhejiang310030China
| | - Xuan Ding
- Westlake Centre for Intelligent ProteomicsWestlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310030China
- Key Laboratory of Structural Biology of Zhejiang ProvinceSchool of Life SciencesWestlake UniversityHangzhouZhejiang310030China
| | - Suying Wang
- Department of PathologyNingbo Diagnostic Pathology CentreNingboZhejiang315021China
| | - Zejun Yan
- Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
| | - Yingzhi Chen
- Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
| | - David Malouf
- Department of UrologySt George HospitalKogarahNSW2217Australia
| | - Joseph Bucci
- Cancer Care CentreSt George HospitalKogarahNSW2217Australia
- St. George and Sutherland Clinical CampusesSchool of Clinical MedicineUNSW SydneyKensingtonNSW2052Australia
| | - Tiannan Guo
- Westlake Centre for Intelligent ProteomicsWestlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310030China
- Key Laboratory of Structural Biology of Zhejiang ProvinceSchool of Life SciencesWestlake UniversityHangzhouZhejiang310030China
| | - Cheng Zhou
- Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Ningbo Clinical Research Centre for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Translational Research Laboratory for UrologyThe Key Laboratory of NingboThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Zhejiang Engineering Research Center of Innovative technologies and diagnostic and therapeutic equipment for urinary system diseasesNingboZhejiang315010China
| | - Junhui Jiang
- Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Ningbo Clinical Research Centre for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Translational Research Laboratory for UrologyThe Key Laboratory of NingboThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Zhejiang Engineering Research Center of Innovative technologies and diagnostic and therapeutic equipment for urinary system diseasesNingboZhejiang315010China
| | - Yong Li
- Cancer Care CentreSt George HospitalKogarahNSW2217Australia
- St. George and Sutherland Clinical CampusesSchool of Clinical MedicineUNSW SydneyKensingtonNSW2052Australia
| |
Collapse
|
5
|
Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, Falcon‐Perez JM, Fu Q, Hill AF, Lenassi M, Lim SK, Mahoney MG, Mohanty S, Möller A, Nieuwland R, Ochiya T, Sahoo S, Torrecilhas AC, Zheng L, Zijlstra A, Abuelreich S, Bagabas R, Bergese P, Bridges EM, Brucale M, Burger D, Carney RP, Cocucci E, Colombo F, Crescitelli R, Hanser E, Harris AL, Haughey NJ, Hendrix A, Ivanov AR, Jovanovic‐Talisman T, Kruh‐Garcia NA, Ku'ulei‐Lyn Faustino V, Kyburz D, Lässer C, Lennon KM, Lötvall J, Maddox AL, Martens‐Uzunova ES, Mizenko RR, Newman LA, Ridolfi A, Rohde E, Rojalin T, Rowland A, Saftics A, Sandau US, Saugstad JA, Shekari F, Swift S, Ter‐Ovanesyan D, Tosar JP, Useckaite Z, Valle F, Varga Z, van der Pol E, van Herwijnen MJC, Wauben MHM, Wehman AM, Williams S, Zendrini A, Zimmerman AJ, MISEV Consortium, Théry C, Witwer KW. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles 2024; 13:e12404. [PMID: 38326288 PMCID: PMC10850029 DOI: 10.1002/jev2.12404] [Citation(s) in RCA: 602] [Impact Index Per Article: 602.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
Collapse
Affiliation(s)
- Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of PathologyNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Deborah C. I. Goberdhan
- Nuffield Department of Women's and Reproductive HealthUniversity of Oxford, Women's Centre, John Radcliffe HospitalOxfordUK
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland
- Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Trinity St. James's Cancer InstituteTrinity College DublinDublinIreland
| | - Edit I. Buzas
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- HCEMM‐SU Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
- HUN‐REN‐SU Translational Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
| | - Cherie Blenkiron
- Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | | | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Tom A. P. Driedonks
- Department CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Uta Erdbrügger
- University of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Qing‐Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Extracellular Vesicle Research and Clinical Translational CenterThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| | - Metka Lenassi
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Paracrine Therapeutics Pte. Ltd.SingaporeSingapore
- Department of Surgery, YLL School of MedicineNational University SingaporeSingaporeSingapore
| | - Mỹ G. Mahoney
- Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Sujata Mohanty
- Stem Cell FacilityAll India Institute of Medical SciencesNew DelhiIndia
| | - Andreas Möller
- Chinese University of Hong KongHong KongHong Kong S.A.R.
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Susmita Sahoo
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ana C. Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP) Campus DiademaDiademaBrazil
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Andries Zijlstra
- Department of PathologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- GenentechSouth San FranciscoCaliforniaUSA
| | - Sarah Abuelreich
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Reem Bagabas
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Paolo Bergese
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
- National Center for Gene Therapy and Drugs based on RNA TechnologyPaduaItaly
| | - Esther M. Bridges
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Dylan Burger
- Kidney Research CentreOttawa Hopsital Research InstituteOttawaCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
- School of Pharmaceutical SciencesUniversity of OttawaOttawaCanada
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Edveena Hanser
- Department of BiomedicineUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | - Norman J. Haughey
- Departments of Neurology and PsychiatryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Tijana Jovanovic‐Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Nicole A. Kruh‐Garcia
- Bio‐pharmaceutical Manufacturing and Academic Resource Center (BioMARC)Infectious Disease Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Vroniqa Ku'ulei‐Lyn Faustino
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Diego Kyburz
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Department of RheumatologyUniversity Hospital BaselBaselSwitzerland
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical NutritionInstitute of Medicine at Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Kathleen M. Lennon
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Adam L. Maddox
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Elena S. Martens‐Uzunova
- Erasmus MC Cancer InstituteUniversity Medical Center Rotterdam, Department of UrologyRotterdamThe Netherlands
| | - Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Lauren A. Newman
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andrea Ridolfi
- Department of Physics and Astronomy, and LaserLaB AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Eva Rohde
- Department of Transfusion Medicine, University HospitalSalzburger Landeskliniken GmbH of Paracelsus Medical UniversitySalzburgAustria
- GMP Unit, Paracelsus Medical UniversitySalzburgAustria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies, EV‐TTSalzburgAustria
| | - Tatu Rojalin
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Expansion Therapeutics, Structural Biology and BiophysicsJupiterFloridaUSA
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andras Saftics
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Celer DiagnosticsTorontoCanada
| | - Simon Swift
- Waipapa Taumata Rau University of AucklandAucklandNew Zealand
| | - Dmitry Ter‐Ovanesyan
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Juan P. Tosar
- Universidad de la RepúblicaMontevideoUruguay
- Institut Pasteur de MontevideoMontevideoUruguay
| | - Zivile Useckaite
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Zoltan Varga
- Biological Nanochemistry Research GroupInstitute of Materials and Environmental Chemistry, Research Centre for Natural SciencesBudapestHungary
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Edwin van der Pol
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Martijn J. C. van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marca H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Andrea Zendrini
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
| | - Alan J. Zimmerman
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | | | - Clotilde Théry
- Institut Curie, INSERM U932PSL UniversityParisFrance
- CurieCoreTech Extracellular Vesicles, Institut CurieParisFrance
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- EV Core Facility “EXCEL”, Institute for Basic Biomedical SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
6
|
Shen L, Huang H, Wei Z, Chen W, Li J, Yao Y, Zhou J, Liu J, Sun S, Xia W, Zhang T, Yu X, Shen J, Wang W, Jiang J, Huang J, Jiang M, Ni C. Integrated transcriptomics, proteomics, and functional analysis to characterize the tissue-specific small extracellular vesicle network of breast cancer. MedComm (Beijing) 2023; 4:e433. [PMID: 38053815 PMCID: PMC10694390 DOI: 10.1002/mco2.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
Small extracellular vesicles (sEVs) are essential mediators of intercellular communication within the tumor microenvironment (TME). Although the biological features of sEVs have been characterized based on in vitro culture models, recent evidence indicates significant differences between sEVs derived from tissue and those derived from in vitro models in terms of both content and biological function. However, comprehensive comparisons and functional analyses are still limited. Here, we collected sEVs from breast cancer tissues (T-sEVs), paired normal tissues (N-sEVs), corresponding plasma (B-sEVs), and tumor organoids (O-sEVs) to characterize their transcriptomic and proteomic profiles. We identified the actual cancer-specific sEV signatures characterized by enriched cell adhesion and immunomodulatory molecules. Furthermore, we revealed the significant contribution of cancer-associated fibroblasts in the sEV network within the TME. In vitro model-derived sEVs did not entirely inherit the extracellular matrix- and immunity regulation-related features of T-sEVs. Also, we demonstrated the greater immunostimulatory ability of T-sEVs on macrophages and CD8+ T cells compared to O-sEVs. Moreover, certain sEV biomarkers derived from noncancer cells in the circulation exhibited promising diagnostic potential. This study provides valuable insights into the functional characteristics of tumor tissue-derived sEVs, highlighting their potential as diagnostic markers and therapeutic agents for breast cancer.
Collapse
Affiliation(s)
- Lesang Shen
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Huanhuan Huang
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Zichen Wei
- Center for Genetic MedicineThe Fourth Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Department of AnesthesiologyTaihe HospitalHubei University of MedicineShiyanChina
| | - Wuzhen Chen
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Jiaxin Li
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Yao Yao
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Jun Zhou
- Department of Breast SurgeryAffiliated Hangzhou First People's HospitalZhejiang UniversityHangzhouChina
| | - Jian Liu
- Department of Breast SurgeryAffiliated Hangzhou First People's HospitalZhejiang UniversityHangzhouChina
| | - Shanshan Sun
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Wenjie Xia
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhouChina
| | - Ting Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
- Department of Radiation OncologySecond Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Xiuyan Yu
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Jun Shen
- Department of Surgical OncologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
| | - Weilan Wang
- Department of Breast SurgeryChangxing People's HospitalHuzhouChina
| | - Jingxin Jiang
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Jian Huang
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Ming Jiang
- Center for Genetic MedicineThe Fourth Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersHangzhouChina
| | - Chao Ni
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| |
Collapse
|
7
|
Banerjee A, Lino M, Jesus C, Ribeiro Q, Abrunhosa A, Ferreira L. Imaging platforms to dissect the in vivo communication, biodistribution and controlled release of extracellular vesicles. J Control Release 2023; 360:549-563. [PMID: 37406818 DOI: 10.1016/j.jconrel.2023.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Extracellular vesicles (EVs) work as communication vehicles, allowing the exchange of bioactive molecules (microRNAs, mRNAs, proteins, etc) between neighbouring and distant cells in the organism. EVs are thus important players in several physiological and pathological processes. Thus, it is critical to understand their role in cellular/organ communication to fully evaluate their biological, diagnosis and therapeutic potential. In addition, recent studies have explored the controlled release of EVs for regenerative medicine applications and thus the evaluation of their release profile is important to correlate with biological activity. Here, we give a brief introduction about EV imaging platforms in terms of their sensitivity, penetration depth, cost, and operational simplicity, followed by a discussion of different EV labelling processes with their advantages and limitations. Next, we cover the relevance of these imaging platforms to dissect the tropism and biological role of endogenous EVs. We also cover the relevance of imaging platforms to monitor the accumulation of exogenous EVs and their potential cellular targets. Finally, we highlight the importance of imaging platforms to investigate the release profile of EVs from different controlled systems.
Collapse
Affiliation(s)
- Arnab Banerjee
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Miguel Lino
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carlos Jesus
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Quélia Ribeiro
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Antero Abrunhosa
- ICNAS/CIBIT - Institute for Nuclear Sciences Applied to Health/Coimbra Institute for Biomedical Imaging and Translational research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lino Ferreira
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
8
|
Rufino-Ramos D, Leandro K, Perdigão PRL, O'Brien K, Pinto MM, Santana MM, van Solinge TS, Mahjoum S, Breakefield XO, Breyne K, Pereira de Almeida L. Extracellular communication between brain cells through functional transfer of Cre mRNA mediated by extracellular vesicles. Mol Ther 2023; 31:2220-2239. [PMID: 37194237 PMCID: PMC10362460 DOI: 10.1016/j.ymthe.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023] Open
Abstract
In the central nervous system (CNS), the crosstalk between neural cells is mediated by extracellular mechanisms, including brain-derived extracellular vesicles (bdEVs). To study endogenous communication across the brain and periphery, we explored Cre-mediated DNA recombination to permanently record the functional uptake of bdEVs cargo over time. To elucidate functional cargo transfer within the brain at physiological levels, we promoted the continuous secretion of physiological levels of neural bdEVs containing Cre mRNA from a localized region in the brain by in situ lentiviral transduction of the striatum of Flox-tdTomato Ai9 mice reporter of Cre activity. Our approach efficiently detected in vivo transfer of functional events mediated by physiological levels of endogenous bdEVs throughout the brain. Remarkably, a spatial gradient of persistent tdTomato expression was observed along the whole brain, exhibiting an increment of more than 10-fold over 4 months. Moreover, bdEVs containing Cre mRNA were detected in the bloodstream and extracted from brain tissue to further confirm their functional delivery of Cre mRNA in a novel and highly sensitive Nanoluc reporter system. Overall, we report a sensitive method to track bdEV transfer at physiological levels, which will shed light on the role of bdEVs in neural communication within the brain and beyond.
Collapse
Affiliation(s)
- David Rufino-Ramos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Kevin Leandro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Pedro R L Perdigão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Killian O'Brien
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Maria Manuel Pinto
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Magda M Santana
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Thomas S van Solinge
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Shadi Mahjoum
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
9
|
Jiang X, Wu S, Hu C. A narrative review of the role of exosomes and caveolin-1 in liver diseases and cancer. Int Immunopharmacol 2023; 120:110284. [PMID: 37196562 DOI: 10.1016/j.intimp.2023.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Exosomes are nanoscale (40-100 nm) vesicles secreted by different types of cells and have attracted extensive interest in recent years because of their unique role in disease development. It can carry related goods, such as lipids, proteins, and nucleic acids, to mediate intercellular communication. This review summarizes exosome biogenesis, release, uptake, and their role in mediating the development of liver diseases and cancer, such as viral hepatitis, drug-induced liver injury, alcohol-related liver disease, non-alcoholic fatty liver disease, hepatocellular carcinoma, and other tumors. Meanwhile, a fossa structural protein, caveolin-1(CAV-1), has also been proposed to be involved in the development of various diseases, especially liver diseases and tumors. In this review, we discuss the role of CAV-1 in liver diseases and different tumor stages (inhibition of early growth and promotion of late metastasis) and the underlying mechanisms by which CAV-1 regulates the process. In addition, CAV-1 has also been found to be a secreted protein that can be released directly through the exosome pathway or change the cargo composition of the exosomes, thus contributing to enhancing the metastasis and invasion of cancer cells during the late stage of tumor development. In conclusion, the role of CAV-1 and exosomes in disease development and the association between them remains to be one challenging uncharted area.
Collapse
Affiliation(s)
- Xiangfu Jiang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui medical university, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Shuai Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui medical university, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Chengmu Hu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui medical university, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
10
|
Almagro J, Messal HA. Volume imaging to interrogate cancer cell-tumor microenvironment interactions in space and time. Front Immunol 2023; 14:1176594. [PMID: 37261345 PMCID: PMC10228654 DOI: 10.3389/fimmu.2023.1176594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Volume imaging visualizes the three-dimensional (3D) complexity of tumors to unravel the dynamic crosstalk between cancer cells and the heterogeneous landscape of the tumor microenvironment (TME). Tissue clearing and intravital microscopy (IVM) constitute rapidly progressing technologies to study the architectural context of such interactions. Tissue clearing enables high-resolution imaging of large samples, allowing for the characterization of entire tumors and even organs and organisms with tumors. With IVM, the dynamic engagement between cancer cells and the TME can be visualized in 3D over time, allowing for acquisition of 4D data. Together, tissue clearing and IVM have been critical in the examination of cancer-TME interactions and have drastically advanced our knowledge in fundamental cancer research and clinical oncology. This review provides an overview of the current technical repertoire of fluorescence volume imaging technologies to study cancer and the TME, and discusses how their recent applications have been utilized to advance our fundamental understanding of tumor architecture, stromal and immune infiltration, vascularization and innervation, and to explore avenues for immunotherapy and optimized chemotherapy delivery.
Collapse
Affiliation(s)
- Jorge Almagro
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, United States
| | - Hendrik A. Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, Netherlands
| |
Collapse
|
11
|
Jiang Y, Liu X, Ye J, Ma Y, Mao J, Feng D, Wang X. Migrasomes, a new mode of intercellular communication. Cell Commun Signal 2023; 21:105. [PMID: 37158915 PMCID: PMC10165304 DOI: 10.1186/s12964-023-01121-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Migrasomes are newly discovered extracellular vesicles (EVs) that are formed in migrating cells and mediate intercellular communication. However, their size, biological generation, cargo packaging, transport, and effects on recipient cells by migrasomes are different from those of other EVs. In addition to mediating organ morphogenesis during zebrafish gastrulation, discarding damaged mitochondria, and lateral transport of mRNA and proteins, growing evidence has demonstrated that migrasomes mediate a variety of pathological processes. In this review, we summarize the discovery, mechanisms of formation, isolation, identification, and mediation of cellular communication in migrasomes. We discuss migrasome-mediated disease processes, such as osteoclast differentiation, proliferative vitreoretinopathy, tumor cell metastasis by PD-L1 transport, immune cell chemotaxis to the site of infection by chemokines, angiogenesis promotion via angiogenic factors by immune cells, and leukemic cells chemotaxis to the site of mesenchymal stromal cells. Moreover, as new EVs, we propose the potential of migrasomes for disease diagnosis and treatment. Video Abstract.
Collapse
Affiliation(s)
- Yuyun Jiang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xi Liu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jixian Ye
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yongbin Ma
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Central Laboratory, Jintan Hospital, Jiangsu University, 500 Avenue Jintan, Jintan, 213200, People's Republic of China.
| | - Jiahui Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Dingqi Feng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Nuclear Medicine and Institute of Digestive Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
12
|
Odeh A, Eddini H, Shawasha L, Chaban A, Avivi A, Shams I, Manov I. Senescent Secretome of Blind Mole Rat Spalax Inhibits Malignant Behavior of Human Breast Cancer Cells Triggering Bystander Senescence and Targeting Inflammatory Response. Int J Mol Sci 2023; 24:ijms24065132. [PMID: 36982207 PMCID: PMC10049022 DOI: 10.3390/ijms24065132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/10/2023] Open
Abstract
Subterranean blind mole rat, Spalax, has developed strategies to withstand cancer by maintaining genome stability and suppressing the inflammatory response. Spalax cells undergo senescence without the acquisition of senescence-associated secretory phenotype (SASP) in its canonical form, namely, it lacks the main inflammatory mediators. Since senescence can propagate through paracrine factors, we hypothesize that conditioned medium (CM) from senescent Spalax fibroblasts can transmit the senescent phenotype to cancer cells without inducing an inflammatory response, thereby suppressing malignant behavior. To address this issue, we investigated the effect of CMs of Spalax senescent fibroblasts on the proliferation, migration, and secretory profile in MDA-MB-231 and MCF-7 human breast cancer cells. The results suggest that Spalax CM induced senescence in cancer cells, as evidenced by increased senescence-associated beta-galactosidase (SA-β-Gal) activity, growth suppression and overexpression of senescence-related p53/p21 genes. Contemporaneously, Spalax CM suppressed the secretion of the main inflammatory factors in cancer cells and decreased their migration. In contrast, human CM, while causing a slight increase in SA-β-Gal activity in MDA-MB-231 cells, did not decrease proliferation, inflammatory response, and cancer cell migration. Dysregulation of IL-1α under the influence of Spalax CM, especially the decrease in the level of membrane-bound IL1-α, plays an important role in suppressing inflammatory secretion in cancer cells, which in turn leads to inhibition of cancer cell migration. Overcoming of SASP in tumor cells in response to paracrine factors of senescent microenvironment or anti-cancer drugs represents a promising senotherapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Amani Odeh
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Hossam Eddini
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Lujain Shawasha
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Anastasia Chaban
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Aaron Avivi
- Institute of Evolution, University of Haifa, 199 Aba Khoushy Avenue, Haifa 3498838, Israel
| | - Imad Shams
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, Haifa 3498838, Israel
- Institute of Evolution, University of Haifa, 199 Aba Khoushy Avenue, Haifa 3498838, Israel
- Correspondence: (I.S.); (I.M.)
| | - Irena Manov
- Institute of Evolution, University of Haifa, 199 Aba Khoushy Avenue, Haifa 3498838, Israel
- Correspondence: (I.S.); (I.M.)
| |
Collapse
|
13
|
Robado de Lope L, Sánchez‐Herrero E, Serna‐Blasco R, Provencio M, Romero A. Cancer as an infective disease: the role of EVs in tumorigenesis. Mol Oncol 2023; 17:390-406. [PMID: 36168102 PMCID: PMC9980310 DOI: 10.1002/1878-0261.13316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Cancer is conventionally considered an evolutionary disease where tumor cells adapt to the environment and evolve eventually leading to the formation of metastasis through the seeding and growth of metastasis-initiating cells in distant organs. Tumor cell and tumor-stroma communication via soluble factors and extracellular vesicles (EVs) are essential for the success of the metastatic process. As the field of EVs advances, growing data support the role of tumor-derived EVs not only in modifying the microenvironment to facilitate tumor progression but also in inducing changes in cells outside the primary tumor that may lead to a malignant transformation. Thus, an alternative hypothesis has emerged suggesting the conceptualization of cancer as an 'infective' disease. Still, tackling EVs as a possible cancer treatment has not been widely explored. A major understanding is needed to unveil possible additional contributions of EVs in progression and metastasis, which may be essential for the development of novel approaches to treat cancer patients. Here, we review the contribution of EVs to cancer progression and the possible implication of these factors in the oncogenic transformation of indolent cells.
Collapse
Affiliation(s)
- Lucia Robado de Lope
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
| | - Estela Sánchez‐Herrero
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Atrys HealthBarcelonaSpain
| | - Roberto Serna‐Blasco
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
| | - Mariano Provencio
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| | - Atocha Romero
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| |
Collapse
|
14
|
Liu Y, Wang J, Hu X, Pan Z, Xu T, Xu J, Jiang L, Huang P, Zhang Y, Ge M. Radioiodine therapy in advanced differentiated thyroid cancer: Resistance and overcoming strategy. Drug Resist Updat 2023; 68:100939. [PMID: 36806005 DOI: 10.1016/j.drup.2023.100939] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Thyroid cancer is the most prevalent endocrine tumor and its incidence is fast-growing worldwide in recent years. Differentiated thyroid cancer (DTC) is the most common pathological subtype which is typically curable with surgery and Radioactive iodine (RAI) therapy (approximately 85%). Radioactive iodine is the first-line treatment for patients with metastatic Papillary Thyroid Cancer (PTC). However, 60% of patients with aggressive metastasis DTC developed resistance to RAI treatment and had a poor overall prognosis. The molecular mechanisms of RAI resistance include gene mutation and fusion, failure to transport RAI into the DTC cells, and interference with the tumor microenvironment (TME). However, it is unclear whether the above are the main drivers of the inability of patients with DTC to benefit from iodine therapy. With the development of new biological technologies, strategies that bolster RAI function include TKI-targeted therapy, DTC cell redifferentiation, and improved drug delivery via extracellular vesicles (EVs) have emerged. Despite some promising data and early success, overall survival was not prolonged in the majority of patients, and the disease continued to progress. It is still necessary to understand the genetic landscape and signaling pathways leading to iodine resistance and enhance the effectiveness and safety of the RAI sensitization approach. This review will summarize the mechanisms of RAI resistance, predictive biomarkers of RAI resistance, and the current RAI sensitization strategies.
Collapse
Affiliation(s)
- Yujia Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiafeng Wang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiajie Xu
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liehao Jiang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China.
| | - Minghua Ge
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Schwager SC, Young KM, Hapach LA, Carlson CM, Mosier JA, McArdle TJ, Wang W, Schunk C, Jayathilake AL, Bates ME, Bordeleau F, Antonyak MA, Cerione RA, Reinhart-King CA. Weakly migratory metastatic breast cancer cells activate fibroblasts via microvesicle-Tg2 to facilitate dissemination and metastasis. eLife 2022; 11:e74433. [PMID: 36475545 PMCID: PMC9767463 DOI: 10.7554/elife.74433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer cell migration is highly heterogeneous, and the migratory capability of cancer cells is thought to be an indicator of metastatic potential. It is becoming clear that a cancer cell does not have to be inherently migratory to metastasize, with weakly migratory cancer cells often found to be highly metastatic. However, the mechanism through which weakly migratory cells escape from the primary tumor remains unclear. Here, utilizing phenotypically sorted highly and weakly migratory human breast cancer cells, we demonstrate that weakly migratory metastatic cells disseminate from the primary tumor via communication with stromal cells. While highly migratory cells are capable of single cell migration, weakly migratory cells rely on cell-cell signaling with fibroblasts to escape the primary tumor. Weakly migratory cells release microvesicles rich in tissue transglutaminase 2 (Tg2) which activate murine fibroblasts and lead weakly migratory cancer cell migration in vitro. These microvesicles also induce tumor stiffening and fibroblast activation in vivo and enhance the metastasis of weakly migratory cells. Our results identify microvesicles and Tg2 as potential therapeutic targets for metastasis and reveal a novel aspect of the metastatic cascade in which weakly migratory cells release microvesicles which activate fibroblasts to enhance cancer cell dissemination.
Collapse
Affiliation(s)
- Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Katherine M Young
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Lauren A Hapach
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
- Department of Biomedical Engineering, Cornell UniversityIthacaUnited States
| | - Caroline M Carlson
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Jenna A Mosier
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | | | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Curtis Schunk
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | | | - Madison E Bates
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Francois Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology division), UniversitéLaval Cancer Research Center and Faculty of Medicine, Université LavalQuébeccCanada
| | - Marc A Antonyak
- Department of Biomedical Science, Cornell UniversityIthacaUnited States
| | - Richard A Cerione
- Department of Biomedical Science, Cornell UniversityIthacaUnited States
| | | |
Collapse
|
16
|
Scheele CLGJ, Herrmann D, Yamashita E, Celso CL, Jenne CN, Oktay MH, Entenberg D, Friedl P, Weigert R, Meijboom FLB, Ishii M, Timpson P, van Rheenen J. Multiphoton intravital microscopy of rodents. NATURE REVIEWS. METHODS PRIMERS 2022; 2:89. [PMID: 37621948 PMCID: PMC10449057 DOI: 10.1038/s43586-022-00168-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 08/26/2023]
Abstract
Tissues are heterogeneous with respect to cellular and non-cellular components and in the dynamic interactions between these elements. To study the behaviour and fate of individual cells in these complex tissues, intravital microscopy (IVM) techniques such as multiphoton microscopy have been developed to visualize intact and live tissues at cellular and subcellular resolution. IVM experiments have revealed unique insights into the dynamic interplay between different cell types and their local environment, and how this drives morphogenesis and homeostasis of tissues, inflammation and immune responses, and the development of various diseases. This Primer introduces researchers to IVM technologies, with a focus on multiphoton microscopy of rodents, and discusses challenges, solutions and practical tips on how to perform IVM. To illustrate the unique potential of IVM, several examples of results are highlighted. Finally, we discuss data reproducibility and how to handle big imaging data sets.
Collapse
Affiliation(s)
- Colinda L. G. J. Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - David Herrmann
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Department, Sydney, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Erika Yamashita
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Cristina Lo Celso
- Department of Life Sciences and Centre for Hematology, Imperial College London, London, UK
- Sir Francis Crick Institute, London, UK
| | - Craig N. Jenne
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Maja H. Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - David Entenberg
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
- David H. Koch Center for Applied Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Franck L. B. Meijboom
- Department of Population Health Sciences, Sustainable Animal Stewardship, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Faculty of Humanities, Ethics Institute, Utrecht University, Utrecht, Netherlands
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Department, Sydney, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jacco van Rheenen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
17
|
Gustafson CM, Gammill LS. Extracellular Vesicles and Membrane Protrusions in Developmental Signaling. J Dev Biol 2022; 10:39. [PMID: 36278544 PMCID: PMC9589955 DOI: 10.3390/jdb10040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 02/08/2023] Open
Abstract
During embryonic development, cells communicate with each other to determine cell fate, guide migration, and shape morphogenesis. While the relevant secreted factors and their downstream target genes have been characterized extensively, how these signals travel between embryonic cells is still emerging. Evidence is accumulating that extracellular vesicles (EVs), which are well defined in cell culture and cancer, offer a crucial means of communication in embryos. Moreover, the release and/or reception of EVs is often facilitated by fine cellular protrusions, which have a history of study in development. However, due in part to the complexities of identifying fragile nanometer-scale extracellular structures within the three-dimensional embryonic environment, the nomenclature of developmental EVs and protrusions can be ambiguous, confounding progress. In this review, we provide a robust guide to categorizing these structures in order to enable comparisons between developmental systems and stages. Then, we discuss existing evidence supporting a role for EVs and fine cellular protrusions throughout development.
Collapse
Affiliation(s)
- Callie M. Gustafson
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Laura S. Gammill
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Gustafson CM, Roffers-Agarwal J, Gammill LS. Chick cranial neural crest cells release extracellular vesicles that are critical for their migration. J Cell Sci 2022; 135:jcs260272. [PMID: 35635292 PMCID: PMC9270958 DOI: 10.1242/jcs.260272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
The content and activity of extracellular vesicles purified from cell culture media or bodily fluids have been studied extensively; however, the physiological relevance of exosomes within normal biological systems is poorly characterized, particularly during development. Although exosomes released by invasive metastatic cells alter migration of neighboring cells in culture, it is unclear whether cancer cells misappropriate exosomes released by healthy differentiated cells or reactivate dormant developmental programs that include exosome cell-cell communication. Using chick cranial neural fold cultures, we show that migratory neural crest cells, a developmentally critical cell type and model for metastasis, release and deposit CD63-positive 30-100 nm particles into the extracellular environment. Neural crest cells contain ceramide-rich multivesicular bodies and produce larger vesicles positive for migrasome markers as well. We conclude that neural crest cells produce extracellular vesicles including exosomes and migrasomes. When Rab27a plasma membrane docking is inhibited, neural crest cells become less polarized and rounded, leading to a loss of directional migration and reduced speed. These results indicate that neural crest cell exosome release is critical for migration.
Collapse
Affiliation(s)
- Callie M. Gustafson
- Departmentof Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Julaine Roffers-Agarwal
- Departmentof Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Laura S. Gammill
- Departmentof Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Gan J, Zeng X, Wang X, Wu Y, Lei P, Wang Z, Yang C, Hu Z. Effective Diagnosis of Prostate Cancer Based on mRNAs From Urinary Exosomes. Front Med (Lausanne) 2022; 9:736110. [PMID: 35402423 PMCID: PMC8983915 DOI: 10.3389/fmed.2022.736110] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 03/01/2022] [Indexed: 12/16/2022] Open
Abstract
Background Novel non-invasive biomarkers are urgently required to improve the diagnostic sensitivity and specificity of prostate cancer (PCa). Therefore, the diagnostic value of following candidate genes (ERG, PCA3, ARV7, PSMA, CK19, and EpCAM) were estimated by testing mRNAs from urinary exosomes of patients with primary PCa. Methods Exosomes were obtained using size-exclusion chromatography (SEC), out of which RNAs were extracted, then analyzed by quantitative reverse transcription-polymerase chain reaction according to manufacturer's protocol. Results The expression of urinary exosomal ERG, PCA3, PSMA, CK19, and EpCAM were significantly increased in patients with PCa compared with healthy males. In addition, the levels of urinary exosomal ERG, ARV7, and PSMA were intimately correlated with the Gleason score in PCa patients (P < 0.05). The receiver operating characteristic curves (ROCs) showed that urinary exosomal ERG, PCA3, PSMA, CK19, and EpCAM were able to distinguish patients with PCa from healthy individuals with the area under the curve (AUC) of 0.782, 0.783, 0.772, 0.731, and 0.739, respectively. Urinary exosomal PCA3 and PSMA distinguished PCa patients from healthy individuals with an AUC of 0.870. Combination of urinary exosomal PCA3, PSMA with serum PSA and PI-RADS achieved higher AUC compared with PSA alone (0.914 and 0.846, respectively). Kaplan-Meier curves demonstrated that PCA3, ARV7, and EpCAM were associated in androgen-deprivation therapy (ADT) failure time which is defined as from the initiation of ADT in hormone-sensitive stage to the development of castration-resistant prostate cancer. Conclusion These findings suggested that mRNAs from urinary exosomes have the potential in serving as novel and non-invasive indicators for PCa diagnosis and prediction.
Collapse
Affiliation(s)
- Jiahua Gan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Wu
- Wuhan YZY Medical Science and Technology Co., Ltd., Wuhan, China
| | - Ping Lei
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Dagenais M, Gerlach JQ, Geary TG, Long T. Sugar Coating: Utilisation of Host Serum Sialoglycoproteins by Schistosoma mansoni as a Potential Immune Evasion Mechanism. Pathogens 2022; 11:pathogens11040426. [PMID: 35456101 PMCID: PMC9030049 DOI: 10.3390/pathogens11040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
Parasitic helminths resort to various mechanisms to evade and modulate their host’s immune response, several of which have been described for Schistosoma mansoni. We recently reported the presence of sialic acid residues on the surface of adult S. mansoni extracellular vesicles (EVs). We now report that these sialylated molecules are mammalian serum proteins. In addition, our data suggest that most sialylated EV-associated proteins do not elicit a humoral response upon injection into mice, or in sera obtained from infected animals. Sialic acids frequently terminate glycans on the surface of vertebrate cells, where they serve important functions in physiological processes such as cell adhesion and signalling. Interestingly, several pathogens have evolved ways to mimic or utilise host sialic acid beneficially by coating their own proteins, thereby facilitating cell invasion and providing protection from host immune effectors. Together, our results indicate that S. mansoni EVs are coated with host glycoproteins, which may contribute to immune evasion by masking antigenic sites, protecting EVs from removal from serum and aiding in cell adhesion and entry to exert their functions.
Collapse
Affiliation(s)
- Maude Dagenais
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (T.G.G.); (T.L.)
- Correspondence:
| | - Jared Q. Gerlach
- Advanced Glycoscience Research Cluster, National University of Ireland-Galway, H91 TK33 Galway, Ireland;
| | - Timothy G. Geary
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (T.G.G.); (T.L.)
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University-Belfast, Belfast BT9 5DL, UK
| | - Thavy Long
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (T.G.G.); (T.L.)
| |
Collapse
|
21
|
BRAFV600E Induction in Thyrocytes Triggers Important Changes in the miRNAs Content and the Populations of Extracellular Vesicles Released in Thyroid Tumor Microenvironment. Biomedicines 2022; 10:biomedicines10040755. [PMID: 35453506 PMCID: PMC9029139 DOI: 10.3390/biomedicines10040755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 12/12/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most common endocrine malignancy for which diagnosis and recurrences still challenge clinicians. New perspectives to overcome these issues could come from the study of extracellular vesicle (EV) populations and content. Here, we aimed to elucidate the heterogeneity of EVs circulating in the tumor and the changes in their microRNA content during cancer progression. Using a mouse model expressing BRAFV600E, we isolated and characterized EVs from thyroid tissue by ultracentrifugations and elucidated their microRNA content by small RNA sequencing. The cellular origin of EVs was investigated by ExoView and that of deregulated EV-microRNA by qPCR on FACS-sorted cell populations. We found that PTC released more EVs bearing epithelial and immune markers, as compared to the healthy thyroid, so that changes in EV-microRNAs abundance were mainly due to their deregulated expression in thyrocytes. Altogether, our work provides a full description of in vivo-derived EVs produced by, and within, normal and cancerous thyroid. We elucidated the global EV-microRNAs signature, the dynamic loading of microRNAs in EVs upon BRAFV600E induction, and their cellular origin. Finally, we propose that thyroid tumor-derived EV-microRNAs could support the establishment of a permissive immune microenvironment.
Collapse
|
22
|
Li SR, Man QW, Gao X, Lin H, Wang J, Su FC, Wang HQ, Bu LL, Liu B, Chen G. Tissue-derived extracellular vesicles in cancers and non-cancer diseases: Present and future. J Extracell Vesicles 2021; 10:e12175. [PMID: 34918479 PMCID: PMC8678102 DOI: 10.1002/jev2.12175] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/02/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid‐bilayer membrane structures secreted by most cell types. EVs act as messengers via the horizontal transfer of lipids, proteins, and nucleic acids, and influence various pathophysiological processes in both parent and recipient cells. Compared to EVs obtained from body fluids or cell culture supernatants, EVs isolated directly from tissues possess a number of advantages, including tissue specificity, accurate reflection of tissue microenvironment, etc., thus, attention should be paid to tissue‐derived EVs (Ti‐EVs). Ti‐EVs are present in the interstitium of tissues and play pivotal roles in intercellular communication. Moreover, Ti‐EVs provide an excellent snapshot of interactions among various cell types with a common histological background. Thus, Ti‐EVs may be used to gain insights into the development and progression of diseases. To date, extensive investigations have focused on the role of body fluid‐derived EVs or cell culture‐derived EVs; however, the number of studies on Ti‐EVs remains insufficient. Herein, we summarize the latest advances in Ti‐EVs for cancers and non‐cancer diseases. We propose the future application of Ti‐EVs in basic research and clinical practice. Workflows for Ti‐EV isolation and characterization between cancers and non‐cancer diseases are reviewed and compared. Moreover, we discuss current issues associated with Ti‐EVs and provide potential directions.
Collapse
Affiliation(s)
- Su-Ran Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qi-Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xin Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fu-Chuan Su
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Han-Qi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
23
|
GOLM1 exacerbates CD8 + T cell suppression in hepatocellular carcinoma by promoting exosomal PD-L1 transport into tumor-associated macrophages. Signal Transduct Target Ther 2021; 6:397. [PMID: 34795203 PMCID: PMC8602261 DOI: 10.1038/s41392-021-00784-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
The immunosuppressive microenvironment plays an important role in tumor progression and immunotherapy responses. Golgi membrane protein 1 (GOLM1) is correlated to hepatocellular carcinoma (HCC) progression and metastasis. However, little is known about the role of GOLM1 in regulating the immunosuppressive environment and its impact on immunotherapeutic efficacy in HCC. In this study, GOLM1 was positively correlated with infiltrating tumor-associated macrophages (TAMs) expressed high levels of programmed death-ligand 1 (PD-L1) and CD8+ T cell suppression in HCC tissues. Both gain- and loss-of-function studies determined a close correlation between GOLM1 and immunosuppression. In the mechanism, GOLM1 promoted COP9 signalosome 5-mediated PD-L1 deubiquitination in HCC cells and increased the transport of PD-L1 into exosomes via suppression of Rab27b expression. Furthermore, co-culture with exosomes derived from HCC cells upregulated the expression of PD-L1 on macrophages. Zoledronic acid in combination with anti-PD-L1 therapy reduced PD-L1+ TAMs infiltration and alleviated CD8+ T cell suppression, resulting in tumor growth inhibition in the mouse HCC model. Together, our study unveils a mechanism by which GOLM1 induces CD8+ T cells suppression through promoting PD-L1 stabilization and transporting PD-L1 into TAMs with exosome dependent. Targeting PD-L1+ TAM could be a novel strategy to enhance the efficacy of anti-PD-L1 therapy in HCC.
Collapse
|
24
|
Qin B, Hu XM, Su ZH, Zeng XB, Ma HY, Xiong K. Tissue-derived extracellular vesicles: Research progress from isolation to application. Pathol Res Pract 2021; 226:153604. [PMID: 34500372 DOI: 10.1016/j.prp.2021.153604] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are the structures that all cells release into the environment. They are separated by a lipid bilayer and contain the cellular components that release them. To date, most studies have been performed on EVs derived from cell supernatants or different body fluids, while the number of studies on EV isolation directly from tissues is still limited. Studies of EV isolation directly from tissues may provide us with better information. This review summarizes the role of EV in the extracellular matrix, the protocol for isolation of EV in the tissue interstitium, and the application of the protocol in different tissues.
Collapse
Affiliation(s)
- Bo Qin
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District Guilin North Road No.16, Huangshi 435003, China
| | - Xi-Min Hu
- Clinical Medicine Eight-year Program, 02 Class, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Zhen-Hong Su
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District Guilin North Road No.16, Huangshi 435003, China
| | - Xiao-Bo Zeng
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District Guilin North Road No.16, Huangshi 435003, China
| | - Hong-Ying Ma
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District Guilin North Road No.16, Huangshi 435003, China
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, China.
| |
Collapse
|
25
|
Staufer O, Dietrich F, Rimal R, Schröter M, Fabritz S, Boehm H, Singh S, Möller M, Platzman I, Spatz JP. Bottom-up assembly of biomedical relevant fully synthetic extracellular vesicles. SCIENCE ADVANCES 2021; 7:eabg6666. [PMID: 34516902 PMCID: PMC8442894 DOI: 10.1126/sciadv.abg6666] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Extracellular vesicles (EVs) are fundamental for intercellular communication and influence nearly every process in cell physiology. However, because of their intricate molecular complexity, quantitative knowledge on their signaling mechanisms is missing, particularly impeding their therapeutic application. We used a complementary and quantitative engineering approach based on sequential synthetic bottom-up assembly of fully functional EVs with precisely controlled lipid, protein, and RNA composition. We show that the functionalities of synthetic EVs are analogous to natural EVs and demonstrate their programmable therapeutic administration for wound healing and neovascularization therapy. We apply transcriptome profiling to systematically decode synergistic effects between individual EV constituents, enabling analytical dissection and a fundamental understanding of EV signaling.
Collapse
Affiliation(s)
- Oskar Staufer
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, 69120 Heidelberg, Germany
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
- Corresponding author. (O.S.); (I.P.); (J.P.S.)
| | - Franziska Dietrich
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, 69120 Heidelberg, Germany
| | - Rahul Rimal
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - Martin Schröter
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, 69120 Heidelberg, Germany
| | - Sebastian Fabritz
- Department for Chemical Biology, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Heike Boehm
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, 69120 Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Smriti Singh
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - Martin Möller
- Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - Ilia Platzman
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, 69120 Heidelberg, Germany
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Corresponding author. (O.S.); (I.P.); (J.P.S.)
| | - Joachim Pius Spatz
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, 69120 Heidelberg, Germany
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK
- Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
- Corresponding author. (O.S.); (I.P.); (J.P.S.)
| |
Collapse
|
26
|
Erozenci LA, Piersma SR, Pham TV, Bijnsdorp IV, Jimenez CR. Longitudinal stability of urinary extracellular vesicle protein patterns within and between individuals. Sci Rep 2021; 11:15629. [PMID: 34341426 PMCID: PMC8329217 DOI: 10.1038/s41598-021-95082-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
The protein content of urinary extracellular vesicles (EVs) is considered to be an attractive non-invasive biomarker source. However, little is known about the consistency and variability of urinary EV proteins within and between individuals over a longer time-period. Here, we evaluated the stability of the urinary EV proteomes of 8 healthy individuals at 9 timepoints over 6 months using data-independent-acquisition mass spectrometry. The 1802 identified proteins had a high correlation amongst all samples, with 40% of the proteome detected in every sample and 90% detected in more than 1 individual at all timepoints. Unsupervised analysis of top 10% most variable proteins yielded person-specific profiles. The core EV-protein-interaction network of 516 proteins detected in all measured samples revealed sub-clusters involved in the biological processes of G-protein signaling, cytoskeletal transport, cellular energy metabolism and immunity. Furthermore, gender-specific expression patterns were detected in the urinary EV proteome. Our findings indicate that the urinary EV proteome is stable in longitudinal samples of healthy subjects over a prolonged time-period, further underscoring its potential for reliable non-invasive diagnostic/prognostic biomarkers.
Collapse
Affiliation(s)
- Leyla A Erozenci
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
- Department of Urology, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
| | - Thang V Pham
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
| | - Irene V Bijnsdorp
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands.
- Department of Urology, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands.
| | - Connie R Jimenez
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design. Adv Drug Deliv Rev 2021; 173:252-278. [PMID: 33798644 DOI: 10.1016/j.addr.2021.03.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are submicron cell-secreted structures containing proteins, nucleic acids and lipids. EVs can functionally transfer these cargoes from one cell to another to modulate physiological and pathological processes. Due to their presumed biocompatibility and capacity to circumvent canonical delivery barriers encountered by synthetic drug delivery systems, EVs have attracted considerable interest as drug delivery vehicles. However, it is unclear which mechanisms and molecules orchestrate EV-mediated cargo delivery to recipient cells. Here, we review how EV properties have been exploited to improve the efficacy of small molecule drugs. Furthermore, we explore which EV surface molecules could be directly or indirectly involved in EV-mediated cargo transfer to recipient cells and discuss the cellular reporter systems with which such transfer can be studied. Finally, we elaborate on currently identified cellular processes involved in EV cargo delivery. Through these topics, we provide insights in critical effectors in the EV-cell interface which may be exploited in nature-inspired drug delivery strategies.
Collapse
|
28
|
Intravital microscopy to illuminate cell state plasticity during metastasis. Curr Opin Cell Biol 2021; 72:28-35. [PMID: 34020117 DOI: 10.1016/j.ceb.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/06/2023]
Abstract
Microenvironmental cues in tumors induce in a wide variety of cellular states that subsequently lead to cancer cells with distinct cellular identity, behavior, and fate. Recent literature suggests that the ability to change cellular states, a process defined as cell state plasticity, enable cells to rapidly adapt to their changing environment during tumor progression and metastasis. In this review, we will discuss how recent high-resolution intravital microscopy studies have been instrumental to reveal the real-time dynamics of tumor cell state plasticity during the different steps of the metastatic cascade. In addition, we will highlight the role of tumor plasticity during anticancer treatment response, and how plasticity can be used as a potential druggable target.
Collapse
|
29
|
Beltraminelli T, Perez CR, De Palma M. Disentangling the complexity of tumor-derived extracellular vesicles. Cell Rep 2021; 35:108960. [PMID: 33826890 DOI: 10.1016/j.celrep.2021.108960] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/21/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment encompasses an intertwined ensemble of both transformed cancer cells and non-transformed host cells, which together establish a signaling network that regulates tumor progression. By conveying both homo- and heterotypic cell-to-cell communication cues, tumor-derived extracellular vesicles (tEVs) modulate several cancer-associated processes, such as immunosuppression, angiogenesis, invasion, and metastasis. Herein we discuss how recent methodological advances in the isolation and characterization of tEVs may help to broaden our understanding of their functions in tumor biology and, potentially, establish their utility as cancer biomarkers.
Collapse
Affiliation(s)
- Tim Beltraminelli
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Caleb R Perez
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland; Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
30
|
Zonneveld MI, van Herwijnen MJC, Fernandez-Gutierrez MM, Giovanazzi A, de Groot AM, Kleinjan M, van Capel TMM, Sijts AJAM, Taams LS, Garssen J, de Jong EC, Kleerebezem M, Nolte-'t Hoen ENM, Redegeld FA, Wauben MHM. Human milk extracellular vesicles target nodes in interconnected signalling pathways that enhance oral epithelial barrier function and dampen immune responses. J Extracell Vesicles 2021; 10:e12071. [PMID: 33732416 PMCID: PMC7944547 DOI: 10.1002/jev2.12071] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/18/2020] [Accepted: 01/31/2021] [Indexed: 12/24/2022] Open
Abstract
Maternal milk is nature's first functional food. It plays a crucial role in the development of the infant's gastrointestinal (GI) tract and the immune system. Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayer enclosed vesicles released by cells for intercellular communication and are a component of milk. Recently, we discovered that human milk EVs contain a unique proteome compared to other milk components. Here, we show that physiological concentrations of milk EVs support epithelial barrier function by increasing cell migration via the p38 MAPK pathway. Additionally, milk EVs inhibit agonist‐induced activation of endosomal Toll like receptors TLR3 and TLR9. Furthermore, milk EVs directly inhibit activation of CD4+ T cells by temporarily suppressing T cell activation without inducing tolerance. We show that milk EV proteins target key hotspots of signalling networks that can modulate cellular processes in various cell types of the GI tract.
Collapse
Affiliation(s)
- Marijke I Zonneveld
- Department of Biomolecular Health Sciences Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands.,Division of Pharmacology Department of Pharmaceutical Sciences Faculty of Science Utrecht University Utrecht The Netherlands
| | - Martijn J C van Herwijnen
- Department of Biomolecular Health Sciences Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | | | - Alberta Giovanazzi
- Department of Biomolecular Health Sciences Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Anne Marit de Groot
- Division of Infectious Diseases & Immunology Department of Biomolecular Health Sciences Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Marije Kleinjan
- Department of Biomolecular Health Sciences Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Toni M M van Capel
- Department of Experimental Immunology Academic Medical Center Amsterdam The Netherlands Centre for inflammation University of Amsterdam Amsterdam Infection & Immunity Institute (AI&II) Amsterdam The Netherlands
| | - Alice J A M Sijts
- Division of Infectious Diseases & Immunology Department of Biomolecular Health Sciences Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Leonie S Taams
- Centre for Inflammation Biology and Cancer Immunology Department of Inflammation Biology School of Immunology & Microbial Sciences King's College London London UK
| | - Johan Garssen
- Division of Pharmacology Department of Pharmaceutical Sciences Faculty of Science Utrecht University Utrecht The Netherlands.,Global Centre of Excellence Immunology Danone Nutricia Research Utrecht The Netherlands
| | - Esther C de Jong
- Department of Experimental Immunology Academic Medical Center Amsterdam The Netherlands Centre for inflammation University of Amsterdam Amsterdam Infection & Immunity Institute (AI&II) Amsterdam The Netherlands
| | - Michiel Kleerebezem
- Host-Microbe Interactomics Group Department of Animal Sciences Wageningen University Wageningen The Netherlands
| | - Esther N M Nolte-'t Hoen
- Department of Biomolecular Health Sciences Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Frank A Redegeld
- Division of Pharmacology Department of Pharmaceutical Sciences Faculty of Science Utrecht University Utrecht The Netherlands
| | - Marca H M Wauben
- Department of Biomolecular Health Sciences Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| |
Collapse
|
31
|
Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat Protoc 2021; 16:1548-1580. [PMID: 33495626 DOI: 10.1038/s41596-020-00466-1] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayered membrane structures released by all cells. Most EV studies have been performed by using cell lines or body fluids, but the number of studies on tissue-derived EVs is still limited. Here, we present a protocol to isolate up to six different EV subpopulations directly from tissues. The approach includes enzymatic treatment of dissociated tissues followed by differential ultracentrifugation and density separation. The isolated EV subpopulations are characterized by electron microscopy and RNA profiling. In addition, their protein cargo can be determined with mass spectrometry, western blot and ExoView. Tissue-EV isolation can be performed in 22 h, but a simplified version can be completed in 8 h. Most experiments with the protocol have used human melanoma metastases, but the protocol can be applied to other cancer and non-cancer tissues. The procedure can be adopted by researchers experienced with cell culture and EV isolation.
Collapse
|
32
|
Ritchie S, Reed DA, Pereira BA, Timpson P. The cancer cell secretome drives cooperative manipulation of the tumour microenvironment to accelerate tumourigenesis. Fac Rev 2021; 10:4. [PMID: 33659922 PMCID: PMC7894270 DOI: 10.12703/r/10-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular secretions are a fundamental aspect of cell-cell and cell-matrix interactions in vivo. In malignancy, cancer cells have an aberrant secretome compared to their non-malignant counterparts, termed the "cancer cell secretome". The cancer cell secretome can influence every stage of the tumourigenic cascade. At the primary site, cancer cells can secrete a multitude of factors that facilitate invasion into surrounding tissue, allowing interaction with the local tumour microenvironment (TME), driving tumour development and progression. In more advanced disease, the cancer cell secretome can be involved in extravasation and metastasis, including metastatic organotropism, pre-metastatic niche (PMN) preparation, and metastatic outgrowth. In this review, we will explore the latest advances in the field of cancer cell secretions, including its dynamic and complex role in activating the TME and potentiating invasion and metastasis, with comments on how these secretions may also promote therapy resistance.
Collapse
Affiliation(s)
- Shona Ritchie
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Daniel A Reed
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Brooke A Pereira
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
33
|
Stefanius K, Servage K, Orth K. Exosomes in cancer development. Curr Opin Genet Dev 2021; 66:83-92. [PMID: 33477017 DOI: 10.1016/j.gde.2020.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
Exosomes are secreted small extracellular vesicles (EVs) packaged with diverse biological cargo. They mediate complex intercellular communications among cells in maintenance of normal physiology or to trigger profound disease progression. Increasing numbers of studies have identified exosome-mediated functions contributing to cancer progression, including roles in paracrine cell-to-cell communication, stromal reprogramming, angiogenesis, and immune responses. Despite the growing body of knowledge, the specific role of exosomes in mediating pre-cancerous conditions is not fully understood and their ability to transform a healthy cell is still controversial. Here we review recent studies describing functions attributed to exosomes in different stages of carcinogenesis. We also explore how exosomes ultimately contribute to the progression of a primary tumor to metastatic disease.
Collapse
Affiliation(s)
- Karoliina Stefanius
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Kelly Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
34
|
Pedrioli G, Paganetti P. Hijacking Endocytosis and Autophagy in Extracellular Vesicle Communication: Where the Inside Meets the Outside. Front Cell Dev Biol 2021; 8:595515. [PMID: 33490063 PMCID: PMC7817780 DOI: 10.3389/fcell.2020.595515] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022] Open
Abstract
Extracellular vesicles, phospholipid bilayer-membrane vesicles of cellular origin, are emerging as nanocarriers of biological information between cells. Extracellular vesicles transport virtually all biologically active macromolecules (e.g., nucleotides, lipids, and proteins), thus eliciting phenotypic changes in recipient cells. However, we only partially understand the cellular mechanisms driving the encounter of a soluble ligand transported in the lumen of extracellular vesicles with its cytosolic receptor: a step required to evoke a biologically relevant response. In this context, we review herein current evidence supporting the role of two well-described cellular transport pathways: the endocytic pathway as the main entry route for extracellular vesicles and the autophagic pathway driving lysosomal degradation of cytosolic proteins. The interplay between these pathways may result in the target engagement between an extracellular vesicle cargo protein and its cytosolic target within the acidic compartments of the cell. This mechanism of cell-to-cell communication may well own possible implications in the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Giona Pedrioli
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland
- Member of the International Ph.D. Program of the Biozentrum, University of Basel, Basel, Switzerland
| | - Paolo Paganetti
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
35
|
|
36
|
Yoh KE, Lowe CJ, Mahajan S, Suttmann R, Nguy T, Reichelt M, Yang J, Melendez R, Li Y, Molinero L, Ruppel J, Xu W, Plaks V. Enrichment of circulating tumor-derived extracellular vesicles from human plasma. J Immunol Methods 2020; 490:112936. [PMID: 33242493 DOI: 10.1016/j.jim.2020.112936] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/18/2020] [Indexed: 01/02/2023]
Abstract
Extracellular vesicles (EVs) are gaining considerable traction within the liquid biopsy arena, as carriers of information from cells in distant sites that may not be accessible for biopsy. Therefore, there is a need to develop methods to enrich for specific EV subtypes, based on their cells of origin. Here we describe the development of an automated method to enrich tumor-derived EVs from plasma using the CellSearch technology compared to Total EVs isolated using differential ultracentrifugation (DUC). We use a modified CellSearch protocol to enrich EpCAM+ EVs from the plasma of patients with non-small cell lung carcinoma (NSCLC) and triple negative breast cancer (TNBC). As a test case, we examined PD-L1, an immune checkpoint ligand known to be expressed in some tumor tissues, to demonstrate enrichment for EpCAM+ EVs. For this purpose, we developed two custom immunoassays utilizing the Simoa HD-1 analyzer (Quanterix) to detect PD-L1 in EVs and interrogate specific EV populations from human plasma. PD-L1 was present in Total EVs from the plasma of healthy individuals and cancer patients, since it is also expressed on several immune cells. However, EpCAM+ EVs were only detectable from the plasma of cancer patients, suggesting these are tumor-derived EVs. As low as 250 μL of plasma could be used to reliably detect PD-L1 from patient-derived EpCAM+ EVs. In summary, this report demonstrates the development of a robust tumor-derived EV enrichment method from human blood. Furthermore, this proof-of-concept study is extendable to other known cancer-specific proteins expressed on EVs exuded from tumors.
Collapse
Affiliation(s)
- Kathryn E Yoh
- Departments of BioAnalytical Sciences, South San Francisco, CA, United States of America
| | - Christopher J Lowe
- Departments of BioAnalytical Sciences, South San Francisco, CA, United States of America
| | - Shilpi Mahajan
- Departments of BioAnalytical Sciences, South San Francisco, CA, United States of America
| | - Rebecca Suttmann
- Oncology Biomarker Development, South San Francisco, CA, United States of America
| | - Trung Nguy
- Departments of BioAnalytical Sciences, South San Francisco, CA, United States of America
| | - Mike Reichelt
- Pathology; Genentech, Inc., South San Francisco, CA, United States of America
| | - Jenny Yang
- Departments of BioAnalytical Sciences, South San Francisco, CA, United States of America
| | - Rachel Melendez
- Departments of BioAnalytical Sciences, South San Francisco, CA, United States of America
| | - Yijin Li
- Oncology Biomarker Development, South San Francisco, CA, United States of America
| | - Luciana Molinero
- Oncology Biomarker Development, South San Francisco, CA, United States of America
| | - Jane Ruppel
- Departments of BioAnalytical Sciences, South San Francisco, CA, United States of America
| | - Wenfeng Xu
- Departments of BioAnalytical Sciences, South San Francisco, CA, United States of America
| | - Vicki Plaks
- Departments of BioAnalytical Sciences, South San Francisco, CA, United States of America.
| |
Collapse
|
37
|
Margarido AS, Bornes L, Vennin C, van Rheenen J. Cellular Plasticity during Metastasis: New Insights Provided by Intravital Microscopy. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037267. [PMID: 31615867 DOI: 10.1101/cshperspect.a037267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metastasis is a highly dynamic process during which cancer and microenvironmental cells undergo a cascade of events required for efficient dissemination throughout the body. During the metastatic cascade, tumor cells can change their state and behavior, a phenomenon commonly defined as cellular plasticity. To monitor cellular plasticity during metastasis, high-resolution intravital microscopy (IVM) techniques have been developed and allow us to visualize individual cells by repeated imaging in animal models. In this review, we summarize the latest technological advancements in the field of IVM and how they have been applied to monitor metastatic events. In particular, we highlight how longitudinal imaging in native tissues can provide new insights into the plastic physiological and developmental processes that are hijacked by cancer cells during metastasis.
Collapse
Affiliation(s)
- Andreia S Margarido
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Laura Bornes
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Claire Vennin
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Jacco van Rheenen
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
38
|
Deng C, Liu L, Liu L, Wang Q, Guo X, Lee W, Li S, Zhang Y. A secreted pore‐forming protein modulates cellular endolysosomes to augment antigen presentation. FASEB J 2020; 34:13609-13625. [DOI: 10.1096/fj.202001176r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Cheng‐Jie Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming China
| | - Long Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming China
| | - Ling‐Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming China
| | - Qi‐Quan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming China
| | - Xiao‐Long Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
| | - Wen‐Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
| | - Sheng‐An Li
- Department of Pathogen Biology and Immunology Faculty of Basic Medical Science Kunming Medical University Kunming China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| |
Collapse
|
39
|
Guglielmi L, Nardella M, Musa C, Cifola I, Porru M, Cardinali B, Iannetti I, Di Pietro C, Bolasco G, Palmieri V, Vilardo L, Panini N, Bonaventura F, Papi M, Scavizzi F, Raspa M, Leonetti C, Falcone G, Felsani A, D’Agnano I. Circulating miRNAs in Small Extracellular Vesicles Secreted by a Human Melanoma Xenograft in Mouse Brains. Cancers (Basel) 2020; 12:cancers12061635. [PMID: 32575666 PMCID: PMC7352810 DOI: 10.3390/cancers12061635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
The identification of liquid biomarkers remains a major challenge to improve the diagnosis of melanoma patients with brain metastases. Circulating miRNAs packaged into tumor-secreted small extracellular vesicles (sEVs) contribute to tumor progression. To investigate the release of tumor-secreted miRNAs by brain metastasis, we developed a xenograft model where human metastatic melanoma cells were injected intracranially in nude mice. The comprehensive profiles of both free miRNAs and those packaged in sEVs secreted by the melanoma cells in the plasma demonstrated that most (80%) of the sEV-associated miRNAs were also present in serum EVs from a cohort of metastatic melanomas, included in a publicly available dataset. Remarkably, among them, we found three miRNAs (miR-224-5p, miR-130a-3p and miR-21-5p) in sEVs showing a trend of upregulation during melanoma progression. Our model is proven to be valuable for identifying miRNAs in EVs that are unequivocally secreted by melanoma cells in the brain and could be associated to disease progression.
Collapse
Affiliation(s)
- Loredana Guglielmi
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
| | - Marta Nardella
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Carla Musa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
| | - Manuela Porru
- UOSD SAFU–IRCCS-Regina Elena Cancer Institute, 00168 Rome, Italy; (M.P.); (C.L.)
| | - Beatrice Cardinali
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Ilaria Iannetti
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | | | - Valentina Palmieri
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (V.P.); (M.P.)
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Laura Vilardo
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
| | - Nicolò Panini
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Fabrizio Bonaventura
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Massimiliano Papi
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (V.P.); (M.P.)
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Carlo Leonetti
- UOSD SAFU–IRCCS-Regina Elena Cancer Institute, 00168 Rome, Italy; (M.P.); (C.L.)
| | - Germana Falcone
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | | | - Igea D’Agnano
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
- Correspondence:
| |
Collapse
|
40
|
The GABARAP Co-Secretome Identified by APEX2-GABARAP Proximity Labelling of Extracellular Vesicles. Cells 2020; 9:cells9061468. [PMID: 32560054 PMCID: PMC7349886 DOI: 10.3390/cells9061468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 01/07/2023] Open
Abstract
The autophagy-related ATG8 protein GABARAP has not only been shown to be involved in the cellular self-degradation process called autophagy but also fulfils functions in intracellular trafficking processes such as receptor transport to the plasma membrane. Notably, available mass spectrometry data suggest that GABARAP is also secreted into extracellular vesicles (EVs). Here, we confirm this finding by the immunoblotting of EVs isolated from cell culture supernatants and human blood serum using specific anti-GABARAP antibodies. To investigate the mechanism by which GABARAP is secreted, we applied proximity labelling, a method for studying the direct environment of a protein of interest in a confined cellular compartment. By expressing an engineered peroxidase (APEX2)-tagged variant of GABARAP—which, like endogenous GABARAP, was present in EVs prepared from HEK293 cells—we demonstrate the applicability of APEX2-based proximity labelling to EVs. The biotinylated protein pool which contains the APEX2-GABARAP co-secretome contained not only known GABARAP interaction partners but also proteins that were found in APEX2-GABARAP’s proximity inside of autophagosomes in an independent study. All in all, we not only introduce a versatile tool for co-secretome analysis in general but also uncover the first details about autophagy-based pathways as possible biogenesis mechanisms of GABARAP-containing EVs.
Collapse
|
41
|
López-Leal R, Díaz-Viraqué F, Catalán RJ, Saquel C, Enright A, Iraola G, Court FA. Schwann cell reprogramming into repair cells increases miRNA-21 expression in exosomes promoting axonal growth. J Cell Sci 2020; 133:jcs.239004. [PMID: 32409566 DOI: 10.1242/jcs.239004] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/24/2020] [Indexed: 12/23/2022] Open
Abstract
Functional recovery after peripheral nerve damage is dependent on the reprogramming of differentiated Schwann cells (dSCs) into repair Schwann cells (rSCs), which promotes axonal regeneration and tissue homeostasis. Transition into a repair phenotype requires expression of c-Jun and Sox2, which transcriptionally mediates inhibition of the dSC program of myelination and activates a non-cell-autonomous repair program, characterized by the secretion of neuronal survival and regenerative molecules, formation of a cellular scaffold to guide regenerating axons and activation of an innate immune response. Moreover, rSCs release exosomes that are internalized by peripheral neurons, promoting axonal regeneration. Here, we demonstrate that reprogramming of Schwann cells (SCs) is accompanied by a shift in the capacity of their secreted exosomes to promote neurite growth, which is dependent on the expression of c-Jun (also known as Jun) and Sox2 by rSCs. Furthermore, increased expression of miRNA-21 is responsible for the pro-regenerative capacity of rSC exosomes, which is associated with PTEN downregulation and PI3-kinase activation in neurons. We propose that modification of exosomal cargo constitutes another important feature of the repair program of SCs, contributing to axonal regeneration and functional recovery after nerve injury.
Collapse
Affiliation(s)
- Rodrigo López-Leal
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago 7800003, Chile
| | - Florencia Díaz-Viraqué
- Laboratorio de Interacciones Hospedero Patógeno - Unidad de Biología Molecular, Institut de Pasteur Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Romina J Catalán
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago 7800003, Chile
| | - Cristian Saquel
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago 7800003, Chile
| | - Anton Enright
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Gregorio Iraola
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile.,Microbial Genomics Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile .,Fondap Geroscience Center for Brain Health and Metabolism, Santiago 7800003, Chile.,Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
42
|
de Camargo LCB, Guaddachi F, Bergerat D, Ourari N, Coillard L, Parietti V, Le Bras M, Lehmann-Che J, Jauliac S. Extracellular vesicles produced by NFAT3-expressing cells hinder tumor growth and metastatic dissemination. Sci Rep 2020; 10:8964. [PMID: 32488182 PMCID: PMC7265394 DOI: 10.1038/s41598-020-65844-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Metastases are the main cause of cancer-induced deaths worldwide. To block tissue invasion, development of extracellular vesicles (EVs) as therapeutic carriers, appears as an exciting challenge. To this aim, we took advantage of the anti-invasive function of NFAT3 transcription factor we identified previously in breast cancer and addressed the opportunity to transfer this inhibitory function by EVs. We show here that EVs produced by poorly invasive NFAT3-expressing breast cancer cell lines are competent to block in vitro invasion of aggressive cancer cells from different origins and, in cooperation with macrophages, inhibit cell proliferation and induce apoptosis. Moreover, this inhibitory effect can be improved by overexpression of NFAT3 in the EVs-producing cells. These results were extended in a mouse breast cancer model, with clear impact of inhibitory EVs on tumor growth and metastases spreading. This work identifies EVs produced by NFAT3-expressing breast cancer cells as an anti-tumoral tool to tackle cancer development and metastases dissemination.
Collapse
Affiliation(s)
| | - Frédéric Guaddachi
- Université de Paris, Research Saint Louis Institute (IRSL), INSERM HIPI U976, F-75010, Paris, France
| | - David Bergerat
- Inovarion SAS, (Paris, ile de France, France), Paris, F-75013, France
| | - Nadia Ourari
- Université de Paris, Research Saint Louis Institute (IRSL), INSERM HIPI U976, F-75010, Paris, France
| | - Lucie Coillard
- Université de Paris, Research Saint Louis Institute (IRSL), INSERM HIPI U976, F-75010, Paris, France
| | - Veronique Parietti
- Université de Paris, Saint-Louis Hospital, Research Saint Louis Institute (IRSL), Département d'Expérimentation Animale (Paris, ile de France, France), Paris, F-75010, France
| | - Morgane Le Bras
- Université de Paris, Research Saint Louis Institute (IRSL), INSERM HIPI U976, F-75010, Paris, France
| | - Jacqueline Lehmann-Che
- Université de Paris, Research Saint Louis Institute (IRSL), INSERM HIPI U976, F-75010, Paris, France.,Molecular Oncology Unit, AP-HP, Hôpital Saint Louis, F-75010, Paris, France
| | - Sébastien Jauliac
- Université de Paris, Research Saint Louis Institute (IRSL), INSERM HIPI U976, F-75010, Paris, France.
| |
Collapse
|
43
|
Shi X, Cheng Q, Zhang Y. Reprogramming extracellular vesicles with engineered proteins. Methods 2020; 177:95-102. [PMID: 31568822 DOI: 10.1016/j.ymeth.2019.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) have been emerging as a new class of cell-free therapy for the treatment of a variety of diseases, including cancer, tissue injuries, and inflammatory diseases. Reprograming native EVs by genetic engineering and other approaches offers an attractive prospect of extending therapeutic capabilities of EVs beyond their natural functions and properties. In this review article, we survey the state-of-the-art methods of EVs engineering and summarize major therapeutic applications of the reprogrammed EVs.
Collapse
Affiliation(s)
- Xiaojing Shi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
44
|
Turaihi AH, Serné EH, Molthoff CFM, Koning JJ, Knol J, Niessen HW, Goumans MJTH, van Poelgeest EM, Yudkin JS, Smulders YM, Jimenez CR, van Hinsbergh VWM, Eringa EC. Perivascular Adipose Tissue Controls Insulin-Stimulated Perfusion, Mitochondrial Protein Expression, and Glucose Uptake in Muscle Through Adipomuscular Arterioles. Diabetes 2020; 69:603-613. [PMID: 32005705 DOI: 10.2337/db18-1066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/24/2020] [Indexed: 11/13/2022]
Abstract
Insulin-mediated microvascular recruitment (IMVR) regulates delivery of insulin and glucose to insulin-sensitive tissues. We have previously proposed that perivascular adipose tissue (PVAT) controls vascular function through outside-to-inside communication and through vessel-to-vessel, or "vasocrine," signaling. However, direct experimental evidence supporting a role of local PVAT in regulating IMVR and insulin sensitivity in vivo is lacking. Here, we studied muscles with and without PVAT in mice using combined contrast-enhanced ultrasonography and intravital microscopy to measure IMVR and gracilis artery diameter at baseline and during the hyperinsulinemic-euglycemic clamp. We show, using microsurgical removal of PVAT from the muscle microcirculation, that local PVAT depots regulate insulin-stimulated muscle perfusion and glucose uptake in vivo. We discovered direct microvascular connections between PVAT and the distal muscle microcirculation, or adipomuscular arterioles, the removal of which abolished IMVR. Local removal of intramuscular PVAT altered protein clusters in the connected muscle, including upregulation of a cluster featuring Hsp90ab1 and Hsp70 and downregulation of a cluster of mitochondrial protein components of complexes III, IV, and V. These data highlight the importance of PVAT in vascular and metabolic physiology and are likely relevant for obesity and diabetes.
Collapse
Affiliation(s)
- Alexander H Turaihi
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Erik H Serné
- Department of Internal Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Carla F M Molthoff
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jaco Knol
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Hans W Niessen
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Marie Jose T H Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik M van Poelgeest
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - John S Yudkin
- Institute of Cardiovascular Science, Division of Medicine, University College London, London, U.K
| | - Yvo M Smulders
- Department of Internal Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Victor W M van Hinsbergh
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
45
|
Umu SU, Langseth H, Keller A, Meese E, Helland Å, Lyle R, Rounge TB. A 10-year prediagnostic follow-up study shows that serum RNA signals are highly dynamic in lung carcinogenesis. Mol Oncol 2020; 14:235-247. [PMID: 31851411 PMCID: PMC6998662 DOI: 10.1002/1878-0261.12620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
The majority of lung cancer (LC) patients are diagnosed at a late stage, and survival is poor. Circulating RNA molecules are known to have a role in cancer; however, their involvement before diagnosis remains an open question. In this study, we investigated circulating RNA dynamics in prediagnostic LC samples, focusing on smokers, to identify if and when disease-related signals can be detected in serum. We sequenced small RNAs in 542 serum LC samples donated up to 10 years before diagnosis and 519 matched cancer-free controls coming from 905 individuals in the Janus Serum Bank. This sample size provided sufficient statistical power to independently analyze time to diagnosis, stage, and histology. The results showed dynamic changes in differentially expressed circulating RNAs specific to LC histology and stage. The greatest number of differentially expressed RNAs was identified around 7 years before diagnosis for early-stage LC and 1-4 years prior to diagnosis for locally advanced and advanced-stage LC, regardless of LC histology. Furthermore, NSCLC and SCLC histologies have distinct prediagnostic signals. The majority of differentially expressed RNAs were associated with cancer-related pathways. The dynamic RNA signals pinpointed different phases of tumor development over time. Stage-specific RNA profiles may be associated with tumor aggressiveness. Our results improve the molecular understanding of carcinogenesis. They indicate substantial opportunity for screening and improved treatment and will guide further research on early detection of LC. However, the dynamic nature of the RNA signals also suggests challenges for prediagnostic biomarker discovery.
Collapse
Affiliation(s)
- Sinan Uğur Umu
- Department of ResearchCancer Registry of NorwayOsloNorway
| | - Hilde Langseth
- Department of ResearchCancer Registry of NorwayOsloNorway
| | - Andreas Keller
- Department of Clinical BioinformaticsSaarland UniversitySaarbrückenGermany
- Department of Neurology and Neurological SciencesSchool of MedicineStanford UniversityCAUSA
| | - Eckart Meese
- Department of Human GeneticsSaarland UniversityHomburgSaarGermany
| | - Åslaug Helland
- Department of OncologyOslo University HospitalNorway
- Institute for Cancer ResearchOslo University HospitalNorway
- Institute of Clinical MedicineUniversity of OsloNorway
| | - Robert Lyle
- Department of Medical GeneticsOslo University Hospital and University of OsloNorway
- Faculty of Mathematics and Natural SciencesPharmaTox Strategic Research InitiativeSchool of PharmacyUniversity of OsloNorway
| | - Trine B. Rounge
- Department of ResearchCancer Registry of NorwayOsloNorway
- Department of InformaticsUniversity of OsloNorway
| |
Collapse
|
46
|
Perrin L, Bayarmagnai B, Gligorijevic B. Frontiers in Intravital Multiphoton Microscopy of Cancer. Cancer Rep (Hoboken) 2020; 3:e1192. [PMID: 32368722 PMCID: PMC7197974 DOI: 10.1002/cnr2.1192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background Cancer is a highly complex disease which involves the co-operation of tumor cells with multiple types of host cells and the extracellular matrix. Cancer studies which rely solely on static measurements of individual cell types are insufficient to dissect this complexity. In the last two decades, intravital microscopy has established itself as a powerful technique that can significantly improve our understanding of cancer by revealing the dynamic interactions governing cancer initiation, progression and treatment effects, in living animals. This review focuses on intravital multiphoton microscopy (IV-MPM) applications in mouse models of cancer. Recent Findings IV-MPM studies have already enabled a deeper understanding of the complex events occurring in cancer, at the molecular, cellular and tissue levels. Multiple cells types, present in different tissues, influence cancer cell behavior via activation of distinct signaling pathways. As a result, the boundaries in the field of IV-MPM are continuously being pushed to provide an integrated comprehension of cancer. We propose that optics, informatics and cancer (cell) biology are co-evolving as a new field. We have identified four emerging themes in this new field. First, new microscopy systems and image processing algorithms are enabling the simultaneous identification of multiple interactions between the tumor cells and the components of the tumor microenvironment. Second, techniques from molecular biology are being exploited to visualize subcellular structures and protein activities within individual cells of interest, and relate those to phenotypic decisions, opening the door for "in vivo cell biology". Third, combining IV-MPM with additional imaging modalities, or omics studies, holds promise for linking the cell phenotype to its genotype, metabolic state or tissue location. Finally, the clinical use of IV-MPM for analyzing efficacy of anti-cancer treatments is steadily growing, suggesting a future role of IV-MPM for personalized medicine. Conclusion IV-MPM has revolutionized visualization of tumor-microenvironment interactions in real time. Moving forward, incorporation of novel optics, automated image processing, and omics technologies, in the study of cancer biology, will not only advance our understanding of the underlying complexities but will also leverage the unique aspects of IV-MPM for clinical use.
Collapse
Affiliation(s)
- Louisiane Perrin
- Department of BioengineeringTemple UniversityPhiladelphiaPennsylvania
| | | | - Bojana Gligorijevic
- Department of BioengineeringTemple UniversityPhiladelphiaPennsylvania
- Fox Chase Cancer CenterCancer Biology ProgramPhiladelphiaPennsylvania
| |
Collapse
|
47
|
Erozenci LA, Böttger F, Bijnsdorp IV, Jimenez CR. Urinary exosomal proteins as (pan‐)cancer biomarkers: insights from the proteome. FEBS Lett 2019; 593:1580-1597. [DOI: 10.1002/1873-3468.13487] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Leyla Ayse Erozenci
- Department of Medical Oncology Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
- OncoProteomics Laboratory Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
| | - Franziska Böttger
- Department of Medical Oncology Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
- OncoProteomics Laboratory Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
| | - Irene V. Bijnsdorp
- OncoProteomics Laboratory Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
- Department of Urology Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
| | - Connie R. Jimenez
- Department of Medical Oncology Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
- OncoProteomics Laboratory Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
| |
Collapse
|
48
|
Schwager SC, Bordeleau F, Zhang J, Antonyak MA, Cerione RA, Reinhart-King CA. Matrix stiffness regulates microvesicle-induced fibroblast activation. Am J Physiol Cell Physiol 2019; 317:C82-C92. [PMID: 31017799 PMCID: PMC6689748 DOI: 10.1152/ajpcell.00418.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 11/22/2022]
Abstract
Extracellular vesicles released by cancer cells have recently been implicated in the differentiation of stromal cells to their activated, cancer-supporting states. Microvesicles, a subset of extracellular vesicles released from the plasma membrane of cancer cells, contain biologically active cargo, including DNA, mRNA, and miRNA, which are transferred to recipient cells and induce a phenotypic change in behavior. While it is known that microvesicles can alter recipient cell phenotype, little is known about how the physical properties of the tumor microenvironment affect fibroblast response to microvesicles. Here, we utilized cancer cell-derived microvesicles and synthetic substrates designed to mimic the stiffness of the tumor and tumor stroma to investigate the effects of microvesicles on fibroblast phenotype as a function of the mechanical properties of the microenvironment. We show that microvesicles released by highly malignant breast cancer cells cause an increase in fibroblast spreading, α-smooth muscle actin expression, proliferation, cell-generated traction force, and collagen gel compaction. Notably, our data indicate that these phenotypic changes occur only on stiff matrices mimicking the stiffness of the tumor periphery and are dependent on the cell type from which the microvesicles are shed. Overall, these results show that the effects of cancer cell-derived microvesicles on fibroblast activation are regulated by the physical properties of the microenvironment, and these data suggest that microvesicles may have a more robust effect on fibroblasts located at the tumor periphery to influence cancer progression.
Collapse
Affiliation(s)
- Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Francois Bordeleau
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Jian Zhang
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Marc A Antonyak
- Department of Biomedical Science, Cornell University , Ithaca, New York
| | - Richard A Cerione
- Department of Biomedical Science, Cornell University , Ithaca, New York
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York
| | | |
Collapse
|
49
|
Cianciaruso C, Beltraminelli T, Duval F, Nassiri S, Hamelin R, Mozes A, Gallart-Ayala H, Ceada Torres G, Torchia B, Ries CH, Ivanisevic J, De Palma M. Molecular Profiling and Functional Analysis of Macrophage-Derived Tumor Extracellular Vesicles. Cell Rep 2019; 27:3062-3080.e11. [PMID: 31167148 PMCID: PMC6581796 DOI: 10.1016/j.celrep.2019.05.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, modulate multiple aspects of cancer biology. Tumor-associated macrophages (TAMs) secrete EVs, but their molecular features and functions are poorly characterized. Here, we report methodology for the enrichment, quantification, and proteomic and lipidomic analysis of EVs released from mouse TAMs (TAM-EVs). Compared to source TAMs, TAM-EVs present molecular profiles associated with a Th1/M1 polarization signature, enhanced inflammation and immune response, and a more favorable patient prognosis. Accordingly, enriched TAM-EV preparations promote T cell proliferation and activation ex vivo. TAM-EVs also contain bioactive lipids and biosynthetic enzymes, which may alter pro-inflammatory signaling in the cancer cells. Thus, whereas TAMs are largely immunosuppressive, their EVs may have the potential to stimulate, rather than limit, anti-tumor immunity.
Collapse
Affiliation(s)
- Chiara Cianciaruso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Tim Beltraminelli
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Florent Duval
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sina Nassiri
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Romain Hamelin
- Proteomics Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - André Mozes
- Flow Cytometry Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Gerardo Ceada Torres
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Bruno Torchia
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Carola H Ries
- Roche Innovation Center Munich, Roche Pharma Research and Early Development, 82377 Penzberg, Germany
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
50
|
Majumdar R, Steen K, Coulombe PA, Parent CA. Non-canonical processes that shape the cell migration landscape. Curr Opin Cell Biol 2019; 57:123-134. [PMID: 30852463 PMCID: PMC7087401 DOI: 10.1016/j.ceb.2018.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022]
Abstract
Migration is a vital, intricate, and multi-faceted process that involves the entire cell, entails the integration of multiple external cues and, at times, necessitates high-level coordination among fields of cells that can be physically attached or not, depending on the physiological setting. Recent advances have highlighted the essential role of cellular components that have not been traditionally considered when studying cell migration. This review details how much we recently learned by studying the role of intermediate filaments, the nucleus, extracellular vesicles, and mitochondria during cell migration.
Collapse
Affiliation(s)
- Ritankar Majumdar
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kaylee Steen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|