1
|
Smallwood D, Lockey RF, Kolliputi N. PANoptosis opens new treatment options for allergic bronchopulmonary aspergillosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100298. [PMID: 39170913 PMCID: PMC11338086 DOI: 10.1016/j.jacig.2024.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/23/2024] [Accepted: 04/05/2024] [Indexed: 08/23/2024]
Abstract
Background Allergic bronchopulmonary aspergillosis (ABPA) is a rare airway disorder primarily affecting patients with asthma and cystic fibrosis. Persistent airway inflammation brought on by Aspergillus fumigatus exacerbates the underlying condition and can cause significant respiratory damage. Treatments center on reducing inflammation with the use of corticosteroids and antifungals. PANoptosis is a new concept in the field of cell death and inflammation that posits the existence of cross talk and a master control system for the 3 programmed cell death (PCD) pathways, namely, apoptosis, pyroptosis, and necroptosis. This concept has revolutionized the understanding of PCD and opened new avenues for its exploration. Studies show that Aspergillus is one of the pathogens that is capable of activating PANoptosis via the Z-DNA binding protein 1 (ZBP1) pathway and plays an active role in the inflammation caused by this organism. Objective This article explores the nature of inflammation in ABPA and ways in which PCD could lead to novel treatment options. Method PubMed was used to review the literature surrounding Aspergillus infection-related inflammation and PANoptosis. Results There is evidence that apoptosis and pyroptosis protect against Aspergillus-induced inflammation, whereas necroptosis promotes inflammation. Conclusion Experimental medications, in particular, necroptosis inhibitors such as necrosulfonamide and necrostatin-1, should be studied for use in the treatment of ABPA.
Collapse
Affiliation(s)
- Dalan Smallwood
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa Fla
| | - Richard F. Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa Fla
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa Fla
| |
Collapse
|
2
|
Liu P, Chen W, Wu D, Zhang Z, Li W, Yang Y. The preparation, modification and hepatoprotective activity of chitooligosaccharides: A review. Int J Biol Macromol 2024; 277:134489. [PMID: 39111493 DOI: 10.1016/j.ijbiomac.2024.134489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/13/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Chitooligosaccharides (COS) has attracted increasing attention due to the various promising bioactivities, tremendous potential in agricultural, environmental nutritional and functional food fields. COS as the major degradation product from chitosan or chitin is prepared via enzymatic, chemical and physical methods. Further obtained COS generally possesses different structural characteristics, such as molecular weight, degree of acetylation and degree of polymerization. Innovations into COS modification has also broadened application of COS in nutrition as well as in agricultural safety. Due to the affinity between structure and bioactivity, diversity of structural characteristics endows COS with various bioactivities like antitumor, antioxidant and anti-inflammatory effects, especially hepatoprotective activity. Therefore, the present review narrates the recent developments in COS physicochemical properties, while paying considerable attention to preparation strategies of COS and their advantages and disadvantages. Moreover, the modification of COS is also discussed including alkylation, quaternization and sulfation, herein the structure-activity relationship of COS was highlighted. Additionally, we summarize the latest research on hepatoprotective activity and mechanisms of COS. Eventually, the future directions of research on COS were discussed, which would provide a new appreciation for the future use of COS.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China.
| |
Collapse
|
3
|
Ellis DA, Jones M, Willems HME, Cheung S, Makullah M, Aimanianda V, Steele C. Fungal chitin is not an independent mediator of allergic fungal asthma severity. Am J Physiol Lung Cell Mol Physiol 2024; 327:L293-L303. [PMID: 38915287 PMCID: PMC11442099 DOI: 10.1152/ajplung.00041.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024] Open
Abstract
Chitin, a polysaccharide found in the fungal cell wall and the exoskeletons of house dust mites and cockroaches, has garnered attention as a potential immunoreactive allergen. Mammals have evolved to express chitin-degrading chitinases (acidic mammalian chitinase/AMCase and chitotriosidase) that may modulate immune responses to chitin. We have previously reported that mice deficient in AMCase (Chia-/-) demonstrated better lung function during allergic fungal asthma. As expected, we show that mice overexpressing AMCase (SPAM mice) had worse airway hyperreactivity (AHR) during allergic fungal asthma. We further demonstrate that chitin-positive Aspergillus fumigatus conidia are detectable in the allergic lung during chronic exposure. Lung function in Chia-/- and SPAM mice is directly correlated with the level of chitinase activity during chronic fungal exposure (Chia-/- mice, negligible chitinase activity, lower AHR; SPAM mice, heightened chitinase activity, higher AHR), suggesting that the breakdown of chitin promoted AHR. However, chronic exposure of normal mice to purified A. fumigatus chitin resulted in only moderate inflammatory changes in the lung that were not sufficient to induce AHR. Moreover, despite having dramatic differences in chitinase activity, chronic exposure of Chia-/- and SPAM mice to purified A. fumigatus chitin likewise did not modulate AHR. Collectively, these results indicate that chronic exposure to fungal chitin alone is incapable of driving AHR. Furthermore, our data suggest that the chitinase-mediated degradation of chitin associated with A. fumigatus conidia may facilitate unmasking and/or liberation of other fungal cell wall components that drive inflammatory responses that contribute to AHR.NEW & NOTEWORTHY Humans with asthma sensitized to fungi often have more severe asthma than those who are not fungal-sensitized. Chitin makes up a significant portion of the cell wall of fungi and has been implicated as a pathogenic factor in allergic asthma. Ellis et al. demonstrate that chronic exposure to fungal chitin alone is unable to modulate lung function, even in the presence of differential lung chitinase activity.
Collapse
Affiliation(s)
- Diandra A Ellis
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - MaryJane Jones
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Hubertine M E Willems
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Suki Cheung
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Mgayya Makullah
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Vishukumar Aimanianda
- Unité de Mycologie Moléculaire, Institut Pasteur, Université de Paris, CNRS, UMR2000, Paris, France
| | - Chad Steele
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
4
|
Honorato L, Bonilla JJA, Valdez AF, Frases S, Araújo GRDS, Sabino ALRDN, da Silva NM, Ribeiro L, Ferreira MDS, Kornetz J, Rodrigues ML, Cunningham I, Gow NAR, Gacser A, Guimarães AJ, Dutra FF, Nimrichter L. Toll-like receptor 4 (TLR4) is the major pattern recognition receptor triggering the protective effect of a Candida albicans extracellular vesicle-based vaccine prototype in murine systemic candidiasis. mSphere 2024; 9:e0046724. [PMID: 39037263 PMCID: PMC11351041 DOI: 10.1128/msphere.00467-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
Systemic candidiasis remains a significant public health concern worldwide, with high mortality rates despite available antifungal drugs. Drug-resistant strains add to the urgency for alternative therapies. In this context, vaccination has reemerged as a prominent immune-based strategy. Extracellular vesicles (EVs), nanosized lipid bilayer particles, carry a diverse array of native fungal antigens, including proteins, nucleic acids, lipids, and glycans. Previous studies from our laboratory demonstrated that Candida albicans EVs triggered the innate immune response, activating bone marrow-derived dendritic cells (BMDCs) and potentially acting as a bridge between innate and adaptive immunity. Vaccination with C. albicans EVs induced the production of specific antibodies, modulated cytokine production, and provided protection in immunosuppressed mice infected with lethal C. albicans inoculum. To elucidate the mechanisms underlying EV-induced immune activation, our study investigated pathogen-associated molecular patterns (PAMPs) and pattern recognition receptors (PRRs) involved in EVs-phagocyte engagement. EVs from wild-type and mutant C. albicans strains with truncated mannoproteins were compared for their ability to stimulate BMDCs. Our findings revealed that EV decoration with O- and N-linked mannans and the presence of β-1,3-glucans and chitin oligomers may modulate the activation of specific PRRs, in particular Toll-like receptor 4 (TLR4) and dectin-1. The protective effect of vaccination with wild-type EVs was found to be dependent on TLR4. These results suggest that fungal EVs can be harnessed in vaccine formulations to selectively activate PRRs in phagocytes, offering potential avenues for combating or preventing candidiasis.IMPORTANCESystemic candidiasis is a serious global health concern with high mortality rates and growing drug resistance. Vaccination offers a promising solution. A unique approach involves using tiny lipid-coated particles called extracellular vesicles (EVs), which carry various fungal components. Previous studies found that Candida albicans EVs activate the immune response and may bridge the gap between innate and adaptive immunity. To understand this better, we investigated how these EVs activate immune cells. We demonstrated that specific components on EV surfaces, such as mannans and glucans, interact with receptors on immune cells, including Toll-like receptor 4 (TLR4) and dectin-1. Moreover, vaccinating with these EVs led to strong immune responses and full protection in mice infected with Candida. This work shows how harnessing fungal EVs might lead to effective vaccines against candidiasis.
Collapse
Affiliation(s)
- Leandro Honorato
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jhon J. Artunduaga Bonilla
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro F. Valdez
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filhos (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
| | - Glauber Ribeiro de Sousa Araújo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filhos (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Natalia Martins da Silva
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Ribeiro
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marina da Silva Ferreira
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Julio Kornetz
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcio L. Rodrigues
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Carlos Chagas (ICC), Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
| | - Iain Cunningham
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Attila Gacser
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Allan J. Guimarães
- Rede Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Fabianno F. Dutra
- Rede Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Hellmann MJ, Gillet D, Trombotto S, Raetz S, Moerschbacher BM, Cord-Landwehr S. Heterogeneously deacetylated chitosans possess an unexpected regular pattern favoring acetylation at every third position. Nat Commun 2024; 15:6695. [PMID: 39107282 PMCID: PMC11303684 DOI: 10.1038/s41467-024-50857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/23/2024] [Indexed: 08/09/2024] Open
Abstract
Chitosans are promising biopolymers for diverse applications, with material properties and bioactivities depending i.a. on their pattern of acetylation (PA). Commercial chitosans are typically produced by heterogeneous deacetylation of chitin, but whether this process yields chitosans with a random or block-wise PA has been debated for decades. Using a combination of recently developed in vitro assays and in silico modeling surprisingly revealed that both hypotheses are wrong; instead, we found a more regular PA in heterogeneously deacetylated chitosans, with acetylated units overrepresented at every third position in the polymer chain. Compared to random-PA chitosans produced by homogeneous deacetylation of chitin or chemical N-acetylation of polyglucosamine, this regular PA increases the elicitation activity in plants, and generates different product profiles and distributions after enzymatic and chemical cleavage. A regular PA may be beneficial for some applications but detrimental for others, stressing the relevance of the production process for product development.
Collapse
Affiliation(s)
- Margareta J Hellmann
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany
| | - Dominique Gillet
- Gillet Chitosan SAS, La Ville Es Comte, 22350, Plumaudan, France
| | - Stéphane Trombotto
- Ingénierie des Matériaux Polymères (IMP), UMR 5223, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Université Jean Monnet Saint-Etienne, F-69622, Villeurbanne, France
| | - Sonja Raetz
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany.
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143, Münster, Germany
| |
Collapse
|
6
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
7
|
Wei L, Liu L, Meng Z, Qi K, Gao X, Feng J, Luo J. Recognition of Mycobacterium tuberculosis by macrophage Toll-like receptor and its role in autophagy. Inflamm Res 2024; 73:753-770. [PMID: 38563966 DOI: 10.1007/s00011-024-01864-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/25/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The pathogen responsible for tuberculosis is called Mycobacterium tuberculosis. Its interaction with macrophages has a significant impact on the onset and progression of the disease. METHODS The respiratory pathway allows Mycobacterium tuberculosis to enter the body's lungs where it battles immune cells before being infected latently or actively. In the progress of tuberculosis, Mycobacterium tuberculosis activates the body's immune system and creates inflammatory factors, which cause tissue inflammation to infiltrate and the creation of granulomas, which seriously harms the body. Toll-like receptors of macrophage can mediate host recognition of Mycobacterium tuberculosis, initiate immune responses, and participate in macrophage autophagy. New host-directed therapeutic approaches targeting autophagy for drug-resistant Mycobacterium tuberculosis have emerged, providing new ideas for the effective treatment of tuberculosis. CONCLUSIONS In-depth understanding of the mechanisms by which macrophage autophagy interacts with intracellular Mycobacterium tuberculosis, as well as the study of potent and specific autophagy-regulating molecules, will lead to much-needed advances in drug discovery and vaccine design, which will improve the prevention and treatment of human tuberculosis.
Collapse
Affiliation(s)
- Linna Wei
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, China
| | - Liping Liu
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, China
| | - Zudi Meng
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, China
| | - Kai Qi
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, China
| | - Xuehan Gao
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, China
| | - Jihong Feng
- Department of Oncology, Lishui People's Hospital, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Junmin Luo
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
8
|
Kawai T, Ikegawa M, Ori D, Akira S. Decoding Toll-like receptors: Recent insights and perspectives in innate immunity. Immunity 2024; 57:649-673. [PMID: 38599164 DOI: 10.1016/j.immuni.2024.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Toll-like receptors (TLRs) are an evolutionarily conserved family in the innate immune system and are the first line of host defense against microbial pathogens by recognizing pathogen-associated molecular patterns (PAMPs). TLRs, categorized into cell surface and endosomal subfamilies, recognize diverse PAMPs, and structural elucidation of TLRs and PAMP complexes has revealed their intricate mechanisms. TLRs activate common and specific signaling pathways to shape immune responses. Recent studies have shown the importance of post-transcriptional regulation in TLR-mediated inflammatory responses. Despite their protective functions, aberrant responses of TLRs contribute to inflammatory and autoimmune disorders. Understanding the delicate balance between TLR activation and regulatory mechanisms is crucial for deciphering their dual role in immune defense and disease pathogenesis. This review provides an overview of recent insights into the history of TLR discovery, elucidation of TLR ligands and signaling pathways, and their relevance to various diseases.
Collapse
Affiliation(s)
- Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan; Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan.
| | - Moe Ikegawa
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Shizuo Akira
- Center for Advanced Modalities and DSS (CAMaD), Osaka University, Osaka 565-0871, Japan; Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
9
|
Yin X, Wang L, Niu Y, Xie D, Zhang Q, Xiao J, Dong L, Wang C. Unmasking Chemokine-Inducing Specificity in Oligosaccharide Biomaterial to Promote Hair Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304655. [PMID: 37567583 DOI: 10.1002/adma.202304655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/23/2023] [Indexed: 08/13/2023]
Abstract
Hair loss affects over 50 million people worldwide with limited therapeutic options. Despite evidence highlighting the vital role of local immune cells in regulating the life cycle of hair follicles (HFs), accurate regulation of immunocytes to directly promote hair growth remains unachieved. Here, inspired by the physiological feedback in the skin immunity to suppress microbe-triggered inflammation, an oligosaccharide biomaterial with "unmasked" specific activity is developed to recruit regulatory T (Treg ) cells around HFs, leading to accelerated hair growth in mice. By processing the glucomannan polysaccharide via controllable enzymatic cleavage, a series of oligosaccharide fractions with more specific chemokine-inducing functions is obtained. Notably, a hexasaccharide-based fraction (OG6) stimulates macrophages to selectively express Treg -chemoattractant C-C Motif Chemokine Ligand 5 (CCL5) through a mannose receptor-mediated endocytosis and NOD1/2-dependent signaling, as evidenced by molecular docking, inhibition assays, and a Foxp3-reporter mouse model. Intradermal delivery of OG6 to the depilated mouse skin promotes Treg mobilization around HFs and stimulates de novo regeneration of robust hairs. This study demonstrates that unmasking precise immunomodulatory functions in oligosaccharides from their parental polysaccharide can potentially solve the long-lasting dilemma with polysaccharide biomaterials that are widely renowned for versatile activities yet high heterogeneity, opening new avenues to designing glycan-based therapeutic tools with improved specificity and safety.
Collapse
Affiliation(s)
- Xiaoyu Yin
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
- State Key Laboratory in Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lintao Wang
- State Key Laboratory in Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yiming Niu
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Daping Xie
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Qingwen Zhang
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lei Dong
- State Key Laboratory in Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- National Resource Center For Mutant Mice, Nanjing, 210023, China
| | - Chunming Wang
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
- Zhuhai UM Science & Technology Research Institute, University of Macau, Hengqin, 519000, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
10
|
Lee VK, Lee T, Ghosh A, Saha T, Bais MV, Bharani KK, Chag M, Parikh K, Bhatt P, Namgung B, Venkataramanan G, Agrawal A, Sonaje K, Mavely L, Sengupta S, Mashelkar RA, Jang HL. An architecturally rational hemostat for rapid stopping of massive bleeding on anticoagulation therapy. Proc Natl Acad Sci U S A 2024; 121:e2316170121. [PMID: 38252814 PMCID: PMC10835033 DOI: 10.1073/pnas.2316170121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
Hemostatic devices are critical for managing emergent severe bleeding. With the increased use of anticoagulant therapy, there is a need for next-generation hemostats. We rationalized that a hemostat with an architecture designed to increase contact with blood, and engineered from a material that activates a distinct and undrugged coagulation pathway can address the emerging need. Inspired by lung alveolar architecture, here, we describe the engineering of a next-generation single-phase chitosan hemostat with a tortuous spherical microporous design that enables rapid blood absorption and concentrated platelets and fibrin microthrombi in localized regions, a phenomenon less observed with other classical hemostats without structural optimization. The interaction between blood components and the porous hemostat was further amplified based on the charged surface of chitosan. Contrary to the dogma that chitosan does not directly affect physiological clotting mechanism, the hemostat induced coagulation via a direct activation of platelet Toll-like receptor 2. Our engineered porous hemostat effectively stopped the bleeding from murine liver wounds, swine liver and carotid artery injuries, and the human radial artery puncture site within a few minutes with significantly reduced blood loss, even under the anticoagulant treatment. The integration of engineering design principles with an understanding of the molecular mechanisms can lead to hemostats with improved functions to address emerging medical needs.
Collapse
Affiliation(s)
- Vivian K. Lee
- Center for Engineered Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Division of Health Sciences and Technology, Harvard–Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Taewoo Lee
- Center for Engineered Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Division of Health Sciences and Technology, Harvard–Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Amrit Ghosh
- Center for Engineered Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Division of Health Sciences and Technology, Harvard–Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tanmoy Saha
- Center for Engineered Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Division of Health Sciences and Technology, Harvard–Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Manish V. Bais
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA02118
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, P. V. Narasimha Rao Telangana Veterinary University, Hyderabad 500030, India
| | - Milan Chag
- Care Institute of Medical Sciences, Ahmedabad 380060, India
| | - Keyur Parikh
- Care Institute of Medical Sciences, Ahmedabad 380060, India
| | - Parloop Bhatt
- Care Institute of Medical Sciences, Ahmedabad 380060, India
| | - Bumseok Namgung
- Center for Engineered Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Division of Health Sciences and Technology, Harvard–Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Geethapriya Venkataramanan
- Center for Engineered Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Division of Health Sciences and Technology, Harvard–Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Kiran Sonaje
- Axio Biosolutions Private Limited, Ahmedabad 382220, India
| | - Leo Mavely
- Axio Biosolutions Private Limited, Ahmedabad 382220, India
- Advamedica Inc., Boston, MA 02138
| | - Shiladitya Sengupta
- Center for Engineered Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Division of Health Sciences and Technology, Harvard–Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Hae Lin Jang
- Center for Engineered Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
11
|
Petrucelli MF, Martins-Santana L, Rossi A, Martinez-Rossi NM. Molecular Signaling and Metabolic Responses during the Interaction between Human Keratinocytes (HaCaT) and the Dermatophyte Trichophyton rubrum. J Fungi (Basel) 2024; 10:72. [PMID: 38248981 PMCID: PMC10820588 DOI: 10.3390/jof10010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Trichophyton rubrum is the leading causative agent of dermatophytosis worldwide. Keratinocytes are the first line of defense that drives an immune response against fungal invasion. Host-specific pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs) to trigger immunological pathways. Fungal cell wall components are the primary sources of fungal PAMPs, and some pathogens increase cell wall rearrangement to evade the immune system. Glycolysis and enhanced lactate levels are critical for improving host immune responses to fungal infections. Using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), we evaluated the transcriptional responses of human genes involved in fungal recognition and glycolytic metabolism and fungal cell-wall-related genes in a co-culture model of human keratinocytes with T. rubrum. We observed the upregulation of several Toll-like receptors (TLRs), NOD-like receptors (NLRs), and glycolytic genes. Complementarily, we measured intra- and extracellular glucose levels and the increase in lactate production in the co-culture supernatant. We noted a distinct transcriptional regulation pattern of fungal cell-wall-related genes from fungal growth on keratin as the primary carbon source compared to co-culture with human keratinocytes. Our results showed new insights into the transcriptional adaptation of keratinocytes, particularly in regulating genes involved in sensing and metabolic processes, during the interaction with T. rubrum.
Collapse
Affiliation(s)
| | | | | | - Nilce Maria Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.F.P.); (L.M.-S.); (A.R.)
| |
Collapse
|
12
|
Muraosa Y, Hino Y, Takatsuka S, Watanabe A, Sakaida E, Saijo S, Miyazaki Y, Yamasaki S, Kamei K. Fungal chitin-binding glycoprotein induces Dectin-2-mediated allergic airway inflammation synergistically with chitin. PLoS Pathog 2024; 20:e1011878. [PMID: 38170734 PMCID: PMC10763971 DOI: 10.1371/journal.ppat.1011878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Although chitin in fungal cell walls is associated with allergic airway inflammation, the precise mechanism underlying this association has yet to be elucidated. Here, we investigated the involvement of fungal chitin-binding protein and chitin in allergic airway inflammation. Recombinant Aspergillus fumigatus LdpA (rLdpA) expressed in Pichia pastoris was shown to be an O-linked glycoprotein containing terminal α-mannose residues recognized by the host C-type lectin receptor, Dectin-2. Chitin particles were shown to induce acute neutrophilic airway inflammation mediated release of interleukin-1α (IL-1α) associated with cell death. Furthermore, rLdpA-Dectin-2 interaction was shown to promote phagocytosis of rLdpA-chitin complex and activation of mouse bone marrow-derived dendritic cells (BMDCs). Moreover, we showed that rLdpA potently induced T helper 2 (Th2)-driven allergic airway inflammation synergistically with chitin, and Dectin-2 deficiency attenuated the rLdpA-chitin complex-induced immune response in vivo. In addition, we showed that serum LdpA-specific immunoglobulin levels were elevated in patients with pulmonary aspergillosis.
Collapse
Affiliation(s)
- Yasunori Muraosa
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yutaro Hino
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Shogo Takatsuka
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akira Watanabe
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Emiko Sakaida
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Katsuhiko Kamei
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Division of Infection Control and Prevention, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Department of Infectious Diseases, Japanese Red Cross Ishinomaki Hospital, Miyagi, Japan
| |
Collapse
|
13
|
Tripathi AS, Zaki MEA, Al-Hussain SA, Dubey BK, Singh P, Rind L, Yadav RK. Material matters: exploring the interplay between natural biomaterials and host immune system. Front Immunol 2023; 14:1269960. [PMID: 37936689 PMCID: PMC10627157 DOI: 10.3389/fimmu.2023.1269960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Biomaterials are widely used for various medical purposes, for instance, implants, tissue engineering, medical devices, and drug delivery systems. Natural biomaterials can be obtained from proteins, carbohydrates, and cell-specific sources. However, when these biomaterials are introduced into the body, they trigger an immune response which may lead to rejection and failure of the implanted device or tissue. The immune system recognizes natural biomaterials as foreign substances and triggers the activation of several immune cells, for instance, macrophages, dendritic cells, and T cells. These cells release pro-inflammatory cytokines and chemokines, which recruit other immune cells to the implantation site. The activation of the immune system can lead to an inflammatory response, which can be beneficial or detrimental, depending on the type of natural biomaterial and the extent of the immune response. These biomaterials can also influence the immune response by modulating the behavior of immune cells. For example, biomaterials with specific surface properties, such as charge and hydrophobicity, can affect the activation and differentiation of immune cells. Additionally, biomaterials can be engineered to release immunomodulatory factors, such as anti-inflammatory cytokines, to promote a tolerogenic immune response. In conclusion, the interaction between biomaterials and the body's immune system is an intricate procedure with potential consequences for the effectiveness of therapeutics and medical devices. A better understanding of this interplay can help to design biomaterials that promote favorable immune responses and minimize adverse reactions.
Collapse
Affiliation(s)
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Bidhyut Kumar Dubey
- Department of Pharmaceutical Chemistry, Era College of Pharmacy, Era University, Lucknow, India
| | - Prabhjot Singh
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Laiba Rind
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Rajnish Kumar Yadav
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| |
Collapse
|
14
|
Ueno K, Nagamori A, Honkyu NO, Kataoka M, Shimizu K, Chang YC, Kwon-Chung KJ, Miyazaki Y. Cryptococcus neoformans requires the TVF1 gene for thermotolerance and virulence. Med Mycol 2023; 61:myad101. [PMID: 37818721 PMCID: PMC10565887 DOI: 10.1093/mmy/myad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023] Open
Abstract
Cryptococcus neoformans is the primary causative agent of cryptococcosis. Since C. neoformans thrives in environments and its optimal growth temperature is 25-30°C, it needs to adapt to heat stress in order to cause infection in mammalian hosts. In this study, we aimed to investigate the role of an uncharacterized gene, CNAG_03308. Although the CNAG_03308 deletion strain grew as well as the parent strain KN99, it produced yeast cells with abnormal morphology at 37°C and failed to propagate at 39°C. Furthermore, the deletion strain exhibited slower growth at 37°C in the presence of congo red, which is a cell wall stressor. When cultured at 39°C, the deletion strain showed strong staining with fluorescent probes for cell wall chitin and chitosan, including FITC-labeled wheat germ agglutinin, Eosin Y, and calcofluor white. The transmission electron microscopy of the deletion strain revealed a thickened inner layer of the cell wall containing chitin and chitosan under heat stress. This cell-surface altered deletion strain induced dendritic cells to secrete more interleukin (IL)-6 and IL-23 than the control strains under heat stress. In a murine infection study, C57BL/6 mice infected with the deletion strain exhibited lower mortality and lower fungal burden in the lungs and brain compared to those infected with the control strains. Based on these findings, we concluded that CNAG_03308 gene is necessary for C. neoformans to adapt to heat stress both in vitro and in the host environment. Therefore, we designated the CNAG_03308 gene as TVF1, which stands for thermotolerance and virulence-related factor 1.
Collapse
Affiliation(s)
- Keigo Ueno
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Akiko Nagamori
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Nahoko Oniyama Honkyu
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kiminori Shimizu
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Yun C Chang
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kyung J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
15
|
Yu L, McGarry S, Cruickshank D, Jensen GS. Rapid increase in immune surveillance and expression of NKT and γδT cell activation markers after consuming a nutraceutical supplement containing Aloe vera gel, extracts of Poria cocos and rosemary. A randomized placebo-controlled cross-over trial. PLoS One 2023; 18:e0291254. [PMID: 37699014 PMCID: PMC10497150 DOI: 10.1371/journal.pone.0291254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/19/2023] [Indexed: 09/14/2023] Open
Abstract
GOAL To evaluate the acute impact of a nutraceutical blend on immune surveillance. STUDY DESIGN A randomized, double-blind, placebo-controlled, cross-over trial was conducted in 11 healthy subjects. Blood samples were taken immediately before and at 1, 2, and 3 hours after consuming placebo or 500 mg of UP360, which is a blend of botanicals from Aloe vera, Poria cocos, and rosemary (APR extract). Immunophenotyping and flow cytometry quantified numbers of monocytes, NK cells, NKT cells, CD8+ cytotoxic T cells, γδT cells, and total T cells, and expression of CD25 and CD69 activation markers. Plasma was tested for cytokines, chemokines, growth factors, and enzymatic activity of superoxide dismutase and catalase. RESULTS Compared to the placebo, consumption of APR extract triggered rapid increases in chemokine levels starting at 1 hour, including IP-10 (P<0.05) and MCP-1 (P<0.1), which peaked at 2 hours (P<0.01) and 3 hours (P<0.05), respectively. The stem cell-mobilizing growth factor G-CSF increased at 2 hours (P<0.05). Increased immune surveillance involved a transient effect for monocytes at 1 hour, followed by NKT cells, CD8+ cytotoxic T cells, and γδT cells at 2-3 hours. Increased immune cell alertness was seen at 1 hour by increased CD25 expression on monocytes (P<0.01), NKT cells (P<0.01), and T cells (P<0.05). NKT cells showed upregulation of CD69 at 2 hours (P<0.01). Increased enzymatic activity was seen at 2 hours for the antioxidant enzymes superoxide dismutase (P<0.05) and catalase (P<0.01). CONCLUSION Consumption of APR extract triggered acute changes to chemokine levels. In addition, immune alertness was increased via the expression of activation markers on multiple types of innate immune cells, followed by increased immune surveillance and antioxidant protection. This suggests a beneficial enhancement of natural immune surveillance, likely via a combination of gut-mediated cytokine release and vagus nerve communication, in combination with cellular protection from oxidative stress.
Collapse
Affiliation(s)
- Liu Yu
- NIS Labs, Port Dover, Ontario, Canada
| | | | | | | |
Collapse
|
16
|
Choi W, Shin WR, Kim YH, Min J. Inducing a Proinflammatory Response with Bioengineered Yeast Vacuoles with TLR2-Binding Peptides (Vac T2BP) as a Drug Carrier for Daunorubicin Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41258-41270. [PMID: 37615983 DOI: 10.1021/acsami.3c06669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Immune adjuvants have roles in immune activation for cancer therapy, and adjuvants derived from microbes have been applied. In this study, we propose the use of bioengineered vacuoles, derived from recombinant yeast with acute myeloid leukemia (AML) specificity and having a TLR-2-binding peptide (VacT2BP) on their surface, to induce a proinflammatory response as a dual-function nanomaterial for daunorubicin (DNR) delivery. Our results demonstrate that nanosized, isolated VacT2BP induced HL-60 cell-specific DNR delivery and apoptosis. Furthermore, we observed the selective release of high-mobility group box 1 from apoptotic HL-60 cells by DNR@VacT2BP. We concluded that DNR@VacT2BP exhibited target selectivity, and the indiscriminate occurrence of damage-associated molecular patterns (DAMPs) was inhibited by the VacT2BP carrier. The therapeutic efficacy of DNR@VacT2BP was confirmed in AML xenograft mice, with about 82% tumor growth inhibition. Following drug delivery, apoptotic cells and DAMPs with residual VacT2BP (apopDNR@VacT2BP) upregulated the proinflammatory immune response of macrophages. In addition, apopDNR@VacT2BP enhanced phagocytosis activity. Macrophages stimulated by apopDNR@VacT2BP suppressed cancer proliferation by about 40%. In summary, our results suggest that dual-functional vacuoles with a target-specific peptide can be a potential strategy for selective drug delivery and construction of an immune environment to fight cancer, thereby improving prognosis.
Collapse
Affiliation(s)
- Wooil Choi
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu Jeonju, Jeonbuk 54896, South Korea
| | - Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1, Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1, Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu Jeonju, Jeonbuk 54896, South Korea
| |
Collapse
|
17
|
Abstract
The worldwide prevalence of asthma and allergic disorders (allergic rhinitis, atopic dermatitis, food allergy) has been steadily rising in recent decades. It is now estimated that up to 20% of the global population is afflicted by an allergic disease, with increasing incidence rates in both high- and low-income countries. The World Allergy Organization estimates that the total economic burden of asthma and allergic rhinitis alone is approximately $21 billion per year. While allergic stimuli are a complex and heterogenous class of inputs including parasites, pollens, food antigens, drugs, and metals, it has become clear that fungi are major drivers of allergic disease, with estimates that fungal sensitization occurs in 20-30% of atopic individuals and up to 80% of asthma patients. Fungi are eukaryotic microorganisms that can be found throughout the world in high abundance in both indoor and outdoor environments. Understanding how and why fungi act as triggers of allergic type 2 inflammation will be crucial for combating this important health problem. In recent years, there have been significant advances in our understanding of fungi-induced type 2 immunity, however there is still much we don't understand, including why fungi have a tendency to induce allergic reactions in the first place. Here, we will discuss how fungi trigger type 2 immune responses and posit why this response has been evolutionarily selected for induction during fungal encounter.
Collapse
Affiliation(s)
- Yufan Zheng
- Molecular Mycology and Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eric V. Dang
- Molecular Mycology and Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
18
|
Jackson Hoffman BA, Pumford EA, Enueme AI, Fetah KL, Friedl OM, Kasko AM. Engineered macromolecular Toll-like receptor agents and assemblies. Trends Biotechnol 2023; 41:1139-1154. [PMID: 37068999 DOI: 10.1016/j.tibtech.2023.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 04/19/2023]
Abstract
Macromolecular Toll-like receptor (TLR) agents have been utilized as agonists and inhibitors in preclinical and clinical settings. These agents interface with the TLR class of innate immune receptors which recognize macromolecular ligands that are characteristic of pathogenic material. As such, many agents that have been historically investigated are derived from the natural macromolecules which activate or inhibit TLRs. This review covers recent research and clinically available TLR agents that are macromolecular or polymeric. Synthetic materials that have been found to interface with TLRs are also discussed. Assemblies of these materials are investigated in the context of improving stability or efficacy of ligands. Attention is given to strategies which modify or enhance the current agents and to future outlooks on the development of these agents.
Collapse
Affiliation(s)
| | - Elizabeth A Pumford
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Amaka I Enueme
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kirsten L Fetah
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Olivia M Friedl
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Andrea M Kasko
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA; California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Chen YH, Yeung F, Lacey KA, Zaldana K, Lin JD, Bee GCW, McCauley C, Barre RS, Liang SH, Hansen CB, Downie AE, Tio K, Weiser JN, Torres VJ, Bennett RJ, Loke P, Graham AL, Cadwell K. Rewilding of laboratory mice enhances granulopoiesis and immunity through intestinal fungal colonization. Sci Immunol 2023; 8:eadd6910. [PMID: 37352372 PMCID: PMC10350741 DOI: 10.1126/sciimmunol.add6910] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 05/31/2023] [Indexed: 06/25/2023]
Abstract
The paucity of blood granulocyte populations such as neutrophils in laboratory mice is a notable difference between this model organism and humans, but the cause of this species-specific difference is unclear. We previously demonstrated that laboratory mice released into a seminatural environment, referred to as rewilding, display an increase in blood granulocytes that is associated with expansion of fungi in the gut microbiota. Here, we find that tonic signals from fungal colonization induce sustained granulopoiesis through a mechanism distinct from emergency granulopoiesis, leading to a prolonged expansion of circulating neutrophils that promotes immunity. Fungal colonization after either rewilding or oral inoculation of laboratory mice with Candida albicans induced persistent expansion of myeloid progenitors in the bone marrow. This increase in granulopoiesis conferred greater long-term protection from bloodstream infection by gram-positive bacteria than by the trained immune response evoked by transient exposure to the fungal cell wall component β-glucan. Consequently, introducing fungi into laboratory mice may restore aspects of leukocyte development and provide a better model for humans and free-living mammals that are constantly exposed to environmental fungi.
Collapse
Affiliation(s)
- Ying-Han Chen
- Kimmel Center for Biology and Medicine at the Skirball Institute
| | - Frank Yeung
- Kimmel Center for Biology and Medicine at the Skirball Institute
| | - Keenan A. Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kimberly Zaldana
- Kimmel Center for Biology and Medicine at the Skirball Institute
| | - Jian-Da Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei City, Taiwan
| | - Gavyn Chern Wei Bee
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Caroline McCauley
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ramya S. Barre
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Shen-Huan Liang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Christina B. Hansen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Alexander E Downie
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Kyle Tio
- Kimmel Center for Biology and Medicine at the Skirball Institute
| | - Jeffrey N. Weiser
- Antimicrobial-Resistant Pathogens Program
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Victor J Torres
- Antimicrobial-Resistant Pathogens Program
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - P’ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
20
|
Suwanchaikasem P, Nie S, Idnurm A, Selby‐Pham J, Walker R, Boughton BA. Effects of chitin and chitosan on root growth, biochemical defense response and exudate proteome of Cannabis sativa. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:115-133. [PMID: 37362423 PMCID: PMC10290428 DOI: 10.1002/pei3.10106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 06/28/2023]
Abstract
Fungal pathogens pose a major threat to Cannabis sativa production, requiring safe and effective management procedures to control disease. Chitin and chitosan are natural molecules that elicit plant defense responses. Investigation of their effects on C. sativa will advance understanding of plant responses towards elicitors and provide a potential pathway to enhance plant resistance against diseases. Plants were grown in the in vitro Root-TRAPR system and treated with colloidal chitin and chitosan. Plant morphology was monitored, then plant tissues and exudates were collected for enzymatic activity assays, phytohormone quantification, qPCR analysis and proteomics profiling. Chitosan treatments showed increased total chitinase activity and expression of pathogenesis-related (PR) genes by 3-5 times in the root tissues. In the exudates, total peroxidase and chitinase activities and levels of defense proteins such as PR protein 1 and endochitinase 2 were increased. Shoot development was unaffected, but root development was inhibited after chitosan exposure. In contrast, chitin treatments had no significant impact on any defense parameters, including enzymatic activities, hormone quantities, gene expression levels and root secreted proteins. These results indicate that colloidal chitosan, significantly enhancing defense responses in C. sativa root system, could be used as a potential elicitor, particularly in hydroponic scenarios to manage crop diseases.
Collapse
Affiliation(s)
| | - Shuai Nie
- Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneMelbourneVictoria3052Australia
| | - Alexander Idnurm
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
| | - Jamie Selby‐Pham
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
- Cannabis and Biostimulants Research Group Pty LtdMelbourneVictoria3020Australia
| | - Robert Walker
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
| | - Berin A. Boughton
- School of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
- Australian National Phenome CentreMurdoch UniversityPerthWestern Australia6150Australia
| |
Collapse
|
21
|
Declercq J, Hammad H, Lambrecht BN, Smole U. Chitinases and chitinase-like proteins in asthma. Semin Immunol 2023; 67:101759. [PMID: 37031560 DOI: 10.1016/j.smim.2023.101759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
Despite the lack of endogenous chitin synthesis, mammalian genomes encode two enzymatically active true chitinases (chitotriosidase and acidic mammalian chitinase) and a variable number of chitinase-like proteins (CLPs) that have no enzyme activity but bind chitin. Chitinases and CLPs are prominent components of type-2 immune response-mediated respiratory diseases. However, despite extensive research into their role in allergic airway disease, there is still no agreement on whether they are mere biomarkers of disease or actual disease drivers. Functions ascribed to chitinases and CLPs include, but are not limited to host defense against chitin-containing pathogens, directly promoting inflammation, and modulating tissue remodeling and fibrosis. Here, we discuss in detail the chitin-dependent and -independent roles of chitinases and CLPs in the context of allergic airway disease, and recent advances and emerging concepts in the field that might identify opportunities for new therapies.
Collapse
Affiliation(s)
- Jozefien Declercq
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, the Netherlands.
| | - Ursula Smole
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
22
|
Jaswal K, Todd OA, Behnsen J. Neglected gut microbiome: interactions of the non-bacterial gut microbiota with enteric pathogens. Gut Microbes 2023; 15:2226916. [PMID: 37365731 PMCID: PMC10305517 DOI: 10.1080/19490976.2023.2226916] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
A diverse array of commensal microorganisms inhabits the human intestinal tract. The most abundant and most studied members of this microbial community are undoubtedly bacteria. Their important role in gut physiology, defense against pathogens, and immune system education has been well documented over the last decades. However, the gut microbiome is not restricted to bacteria. It encompasses the entire breadth of microbial life: viruses, archaea, fungi, protists, and parasitic worms can also be found in the gut. While less studied than bacteria, their divergent but important roles during health and disease have become increasingly more appreciated. This review focuses on these understudied members of the gut microbiome. We will detail the composition and development of these microbial communities and will specifically highlight their functional interactions with enteric pathogens, such as species of the family Enterobacteriaceae. The interactions can be direct through physical interactions, or indirect through secreted metabolites or modulation of the immune response. We will present general concepts and specific examples of how non-bacterial gut communities modulate bacterial pathogenesis and present an outlook for future gut microbiome research that includes these communities.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Olivia A Todd
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Lee S, Hao LT, Park J, Oh DX, Hwang DS. Nanochitin and Nanochitosan: Chitin Nanostructure Engineering with Multiscale Properties for Biomedical and Environmental Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203325. [PMID: 35639091 DOI: 10.1002/adma.202203325] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Nanochitin and nanochitosan (with random-copolymer-based multiscale architectures of glucosamine and N-acetylglucosamine units) have recently attracted immense attention for the development of green, sustainable, and advanced functional materials. Nanochitin and nanochitosan are multiscale materials from small oligomers, rod-shaped nanocrystals, longer nanofibers, to hierarchical assemblies of nanofibers. Various physical properties of chitin and chitosan depend on their molecular- and nanostructures; translational research has utilized them for a wide range of applications (biomedical, industrial, environmental, and so on). Instead of reviewing the entire extensive literature on chitin and chitosan, here, recent developments in multiscale-dependent material properties and their applications are highlighted; immune, medical, reinforcing, adhesive, green electrochemical materials, biological scaffolds, and sustainable food packaging are discussed considering the size, shape, and assembly of chitin nanostructures. In summary, new perspectives for the development of sustainable advanced functional materials based on nanochitin and nanochitosan by understanding and engineering their multiscale properties are described.
Collapse
Affiliation(s)
- Suyoung Lee
- Division of Environmental Science and Engineering, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Republic of Korea
| | - Lam Tan Hao
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jeyoung Park
- Division of Environmental Science and Engineering, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Republic of Korea
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Dongyeop X Oh
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Republic of Korea
| |
Collapse
|
24
|
Fourati S, Tomalin LE, Mulè MP, Chawla DG, Gerritsen B, Rychkov D, Henrich E, Miller HER, Hagan T, Diray-Arce J, Dunn P, Levy O, Gottardo R, Sarwal MM, Tsang JS, Suárez-Fariñas M, Pulendran B, Kleinstein SH, Sékaly RP. Pan-vaccine analysis reveals innate immune endotypes predictive of antibody responses to vaccination. Nat Immunol 2022; 23:1777-1787. [PMID: 36316476 PMCID: PMC9747610 DOI: 10.1038/s41590-022-01329-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022]
Abstract
Several studies have shown that the pre-vaccination immune state is associated with the antibody response to vaccination. However, the generalizability and mechanisms that underlie this association remain poorly defined. Here, we sought to identify a common pre-vaccination signature and mechanisms that could predict the immune response across 13 different vaccines. Analysis of blood transcriptional profiles across studies revealed three distinct pre-vaccination endotypes, characterized by the differential expression of genes associated with a pro-inflammatory response, cell proliferation, and metabolism alterations. Importantly, individuals whose pre-vaccination endotype was enriched in pro-inflammatory response genes known to be downstream of nuclear factor-kappa B showed significantly higher serum antibody responses 1 month after vaccination. This pro-inflammatory pre-vaccination endotype showed gene expression characteristic of the innate activation state triggered by Toll-like receptor ligands or adjuvants. These results demonstrate that wide variations in the transcriptional state of the immune system in humans can be a key determinant of responsiveness to vaccination.
Collapse
Affiliation(s)
- Slim Fourati
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Lewis E Tomalin
- Center for Biostatistics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew P Mulè
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID and Center for Human Immunology (CHI), NIH, Bethesda, MD, USA
- NIH-Oxford-Cambridge Scholars Program, Cambridge University, Cambridge, UK
| | | | | | - Dmitry Rychkov
- Division of Transplant Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Evan Henrich
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Thomas Hagan
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patrick Dunn
- ImmPort Curation Team, NG Health Solutions, Rockville, MD, USA
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Raphael Gottardo
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Biomedical Data Science Center, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Minnie M Sarwal
- Division of Transplant Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID and Center for Human Immunology (CHI), NIH, Bethesda, MD, USA
| | - Mayte Suárez-Fariñas
- Center for Biostatistics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bali Pulendran
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Rafick-Pierre Sékaly
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
25
|
Sreekumar S, Wattjes J, Niehues A, Mengoni T, Mendes AC, Morris ER, Goycoolea FM, Moerschbacher BM. Biotechnologically produced chitosans with nonrandom acetylation patterns differ from conventional chitosans in properties and activities. Nat Commun 2022; 13:7125. [PMID: 36418307 PMCID: PMC9684148 DOI: 10.1038/s41467-022-34483-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Chitosans are versatile biopolymers with multiple biological activities and potential applications. They are linear copolymers of glucosamine and N-acetylglucosamine defined by their degree of polymerisation (DP), fraction of acetylation (FA), and pattern of acetylation (PA). Technical chitosans produced chemically from chitin possess defined DP and FA but random PA, while enzymatically produced natural chitosans probably have non-random PA. This natural process has not been replicated using biotechnology because chitin de-N-acetylases do not efficiently deacetylate crystalline chitin. Here, we show that such enzymes can partially N-acetylate fully deacetylated chitosan in the presence of excess acetate, yielding chitosans with FA up to 0.7 and an enzyme-dependent non-random PA. The biotech chitosans differ from technical chitosans both in terms of physicochemical and nanoscale solution properties and biological activities. As with synthetic block co-polymers, controlling the distribution of building blocks within the biopolymer chain will open a new dimension of chitosan research and exploitation.
Collapse
Affiliation(s)
- Sruthi Sreekumar
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark ,grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Jasper Wattjes
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Anna Niehues
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Tamara Mengoni
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Ana C. Mendes
- grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Edwin R. Morris
- grid.7872.a0000000123318773School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Francisco M. Goycoolea
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Bruno M. Moerschbacher
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| |
Collapse
|
26
|
Fang X, Lian H, Bi S, Liu S, Yuan X, Liao C. Roles of pattern recognition receptors in response to fungal keratitis. Life Sci 2022; 307:120881. [PMID: 35963303 DOI: 10.1016/j.lfs.2022.120881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
Fungal keratitis is one of the leading causes of blindness worldwide, which has become an increasingly serious threat to public ocular health, but no effective treatment strategies are available now. Pattern recognition receptors (PRRs) of the innate immune system are the first line of host defense against fungal infections. They could recognize pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) and trigger an array of inflammatory responses. Over the last decades, research has resulted in significant progress regarding the roles of PRRs in fungal keratitis. This review will highlight the importance of several pattern recognition receptors (C-type lectin-like receptors, Toll-like receptors, and NOD-like receptors) in regulating the innate immunity under fungal keratitis and describe the crosstalk and collaboration in PRRs contributing to disease pathology. Meanwhile, some potential therapy-based PRRs against corneal fungal infections are discussed.
Collapse
Affiliation(s)
- Xiaolong Fang
- The School of Medicine, Nankai University, Tianjin 300071, China; Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huifang Lian
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China; Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Ophthalmology, Baoding First Central Hospital, Baoding, Hebei 071000, China
| | - Shihao Bi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoyong Yuan
- The School of Medicine, Nankai University, Tianjin 300071, China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China; Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China.
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
27
|
Tan Y, Chen L, Li K, Lou B, Liu Y, Liu Z. Yeast as carrier for drug delivery and vaccine construction. J Control Release 2022; 346:358-379. [PMID: 35483637 DOI: 10.1016/j.jconrel.2022.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022]
Abstract
Yeast has been employed as an effective derived drug carrier as a unicellular microorganism. Many research works have been devoted to the encapsulation of nucleic acid compounds, insoluble small molecule drugs, small molecules, liposomes, polymers, and various nanoparticles in yeast for the treatment of disease. Recombinant yeast-based vaccine carriers (WYV) have played a major role in the development of vaccines. Herein, the latest reports on the application of yeast carriers and the development of related research are summarized, a conceptual description of gastrointestinal absorption of yeast carriers, as well as the various package forms of different drug molecules and nanoparticles in yeast carriers are introduced. In addition, the advantages and development of recombinant yeast vaccine carriers for the disease, veterinary and aquaculture applications are discussed. Moreover, the current challenges and future directions of yeast carriers are proposed.
Collapse
Affiliation(s)
- Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
28
|
Lee S, Byun S, Lee C, Park SH, Rudra D, Iwakura Y, Lee YJ, Im S, Hwang DS. Resolving the Mutually Exclusive Immune Responses of Chitosan with Nanomechanics and Immunological Assays. Adv Healthc Mater 2022; 11:e2102667. [PMID: 35397156 DOI: 10.1002/adhm.202102667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/18/2022] [Indexed: 12/22/2022]
Abstract
Multifaceted functions displayed by both pro- and anti-inflammatory properties of chitosan hinder its effective development as an immunomodulatory agent. Herein, the contributions of the bending stiffness of chitosan with regard to its immune regulatory properties toward inflammation are investigated. The anti-inflammatory properties of chitosan molecular weight (MW) with a shorter (≈1 kDa) or longer (≈15 kDa) than the persistent length (LP ) are compared using immunological assays and nanomechanics-based experiments on the surface forces apparatus (SFA). Interestingly, 1 kDa chitosan significantly enhances the generation of anti-inflammatory regulatory T cells (Tregs) through the Dectin-1-dependent pattern recognition receptor (PRR) on antigen-presenting cells. SFA analyses also show a similar trend of interaction forces between chitosan and diverse PRRs depending on their MW. The results obtained in the immunological and nanomechanical experiments are consistent and imply that the binding features of PRRs vary depending on the MW of chitosan, which may alter immune activity. In accordance, in vivo administration of only 1 kDa represses inflammatory responses and suppresses the progression of experimental colitis. This study elucidates a previously unexplored bending stiffness-dependent immune regulatory property of chitosan and suggests the applicability of low MW (rod-like) chitosan as a pharmaceutical ingredient to treat diverse inflammatory disorders.
Collapse
Affiliation(s)
- Suyoung Lee
- Division of Integrative Biosciences and Biotechnology Department of Life Science Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro Pohang 37673 Republic of Korea
- Division of Environmental Science and Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro Pohang 37673 Republic of Korea
| | - Seohyun Byun
- Division of Integrative Biosciences and Biotechnology Department of Life Science Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro Pohang 37673 Republic of Korea
| | - Changhon Lee
- Division of Integrative Biosciences and Biotechnology Department of Life Science Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro Pohang 37673 Republic of Korea
| | - Sun Hee Park
- ImmmunoBiome Inc. 77 Cheongam‐Ro, Nam‐Gu Pohang 37673 Republic of Korea
| | - Dipayan Rudra
- ImmmunoBiome Inc. 77 Cheongam‐Ro, Nam‐Gu Pohang 37673 Republic of Korea
- School of Life Sciences and Technology ShanghaiTech University 393 Huaxia Middle Rd Pudong Shanghai 201210 China
| | - Yoichiro Iwakura
- Center for Animal Disease Models Research Institute for Science and Technology Tokyo University of Science 2669 Yamazaki Noda Chiba 278‐0022 Japan
- Center for Experimental Medicine and Systems Biology Institute of Medical Science the University of Tokyo Minato‐ku Tokyo 108‐0071 Japan
| | - You Jeong Lee
- Division of Integrative Biosciences and Biotechnology Department of Life Science Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro Pohang 37673 Republic of Korea
- Department of Pharmacy Seoul National University Gwanak‐ro 38‐gil Seoul 08826 Republic of Korea
| | - Sin‐Hyeog Im
- Division of Integrative Biosciences and Biotechnology Department of Life Science Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro Pohang 37673 Republic of Korea
- ImmmunoBiome Inc. 77 Cheongam‐Ro, Nam‐Gu Pohang 37673 Republic of Korea
| | - Dong Soo Hwang
- Division of Integrative Biosciences and Biotechnology Department of Life Science Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro Pohang 37673 Republic of Korea
- Division of Environmental Science and Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐ro Pohang 37673 Republic of Korea
| |
Collapse
|
29
|
Solberg A, Mo IV, Omtvedt LA, Strand BL, Aachmann FL, Schatz C, Christensen BE. Carbohydr Polym Special Issue Invited contribution: Click chemistry for block polysaccharides with dihydrazide and dioxyamine linkers - A review. Carbohydr Polym 2022; 278:118840. [PMID: 34973722 DOI: 10.1016/j.carbpol.2021.118840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023]
Abstract
Engineered block polysaccharides is a relatively new class of biomacromolecules consisting of chemical assembly of separate block structures at the chain termini. In contrast to conventional, laterally substituted polysaccharide derivatives, the block arrangement allows for much higher preservation of inherent chain properties such as biodegradability and stimuli-responsive self-assembly, while at the same time inducing new macromolecular properties. Abundant, carbon neutral, and even recalcitrant biomass is an excellent source of blocks, opening for numerous new uses of biomass for a wide range of novel biomaterials. Among a limited range of methodologies available for block conjugation, bifunctional linkers allowing for oxyamine and hydrazide 'click' reactions have recently proven useful additions to the repertoire. This article focuses the chemistry and kinetics of these reactions. It also presents some new data with the aim to provide useful protocols and methods for general use towards new block polysaccharides.
Collapse
Affiliation(s)
- Amalie Solberg
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway
| | - Ingrid V Mo
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway
| | - Line Aa Omtvedt
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway
| | - Berit L Strand
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway
| | - Christophe Schatz
- LCPO, Université de Bordeaux, UMR 5629, ENSCBP, 16, Avenue Pey Berland, 33607 Pessac Cedex, France.
| | - Bjørn E Christensen
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway.
| |
Collapse
|
30
|
Norris HL, Kumar R, Edgerton M. A Novel Role for Histatin 5 in Combination with Zinc to Promote Commensalism in C. albicans Survivor Cells. Pathogens 2021; 10:pathogens10121609. [PMID: 34959564 PMCID: PMC8703888 DOI: 10.3390/pathogens10121609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is maintained as a commensal by immune mechanisms at the oral epithelia. Oral antifungal peptide Histatin 5 (Hst 5) may function in innate immunity, but the specific role Hst 5 plays in C. albicans commensalism is unclear. Since Zn-binding potentiates the candidacidal activity of Hst 5, we hypothesized that Hst 5+Zn would elicit a unique fungal stress response to shape interactions between C. albicans and oral epithelial cells (OECs). We found that Hst 5+Zn but not Hst 5 alone resulted in the activation of cell wall integrity (CWI) signaling, and deletion mutants were then used to determine that CWI-mediated chitin synthesis was protective against killing. Using flow cytometry, we confirmed that Hst 5+Zn-treated cells had significantly elevated levels of cell-wall chitin, mannan and β-1,3 glucan compared to Hst 5-treated cells. We then tested the activation of host signaling components involved in C. albicans cell-wall recognition. The immunoblot assay of C. albicans-exposed oral epithelial cells showed increased activation of EphA2 and NF-κB but not EGFR. Interestingly, C. albicans treated with Hst 5+Zn induced the global suppression of pro-inflammatory cytokine release from OECs, but an increase in negative regulator IL-10. Hst 5+Zn-treated cells were more adherent but ultimately less invasive to OECs than control cells, thus indicating lowered virulence. Therefore, Hst 5+Zn-treated C. albicans cells are discerned by epithelial monolayers, but are less virulent and promote anti-inflammatory signaling, suggesting that Hst 5+Zn in combination could play a role in regulating commensalism of oral C. albicans through cell wall reorganization.
Collapse
|
31
|
Cord-Landwehr S, Moerschbacher BM. Deciphering the ChitoCode: fungal chitins and chitosans as functional biopolymers. Fungal Biol Biotechnol 2021; 8:19. [PMID: 34893090 PMCID: PMC8665597 DOI: 10.1186/s40694-021-00127-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Chitins and chitosans are among the most widespread and versatile functional biopolymers, with interesting biological activities and superior material properties. While chitins are evolutionary ancient and present in many eukaryotes except for higher plants and mammals, the natural distribution of chitosans, i.e. extensively deacetylated derivatives of chitin, is more limited. Unequivocal evidence for its presence is only available for fungi where chitosans are produced from chitin by the action of chitin deacetylases. However, neither the structural details such as fraction and pattern of acetylation nor the physiological roles of natural chitosans are known at present. We hypothesise that the chitin deacetylases are generating chitins and chitosans with specific acetylation patterns and that these provide information for the interaction with specific chitin- and chitosan-binding proteins. These may be structural proteins involved in the assembly of the complex chitin- and chitosan-containing matrices such as fungal cell walls and insect cuticles, chitin- and chitosan-modifying and -degrading enzymes such as chitin deacetylases, chitinases, and chitosanases, but also chitin- and chitosan-recognising receptors of the innate immune systems of plants, animals, and humans. The acetylation pattern, thus, may constitute a kind of 'ChitoCode', and we are convinced that new in silico, in vitro, and in situ analytical tools as well as new synthetic methods of enzyme biotechnology and organic synthesis are currently offering an unprecedented opportunity to decipher this code. We anticipate a deeper understanding of the biology of chitin- and chitosan-containing matrices, including their synthesis, assembly, mineralisation, degradation, and perception. This in turn will improve chitin and chitosan biotechnology and the development of reliable chitin- and chitosan-based products and applications, e.g. in medicine and agriculture, food and feed sciences, as well as cosmetics and material sciences.
Collapse
Affiliation(s)
- Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany.
| |
Collapse
|
32
|
Briard B, Fontaine T, Kanneganti TD, Gow NA, Papon N. Fungal cell wall components modulate our immune system. Cell Surf 2021; 7:100067. [PMID: 34825116 PMCID: PMC8603304 DOI: 10.1016/j.tcsw.2021.100067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/16/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022] Open
Abstract
Invasive fungal infections remain highly problematic for human health. Collectively, they account for more than 1 million deaths a year in addition to more than 100 million mucosal infections and 1 billion skin infections. To be able to make progress it is important to understand the pathobiology of fungal interactions with the immune system. Here, we highlight new advancements pointing out the pivotal role of fungal cell wall components (β-glucan, mannan, galactosaminogalactan and melanin) in modulating host immunity and discuss how these open new opportunities for the development of immunomodulatory strategies to combat deadly fungal infectious diseases.
Collapse
Affiliation(s)
- Benoit Briard
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Thierry Fontaine
- Unité de Biologie et Pathogénicité Fongiques, Institut Pasteur, Paris, France
| | | | - Neil A.R. Gow
- The Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, UK
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, F-49000 Angers, France
| |
Collapse
|
33
|
Nassar A, Ibrahim IM, Amin FG, Magdy M, Elgharib AM, Azzam EB, Nasser F, Yousry K, Shamkh IM, Mahdy SM, Elfiky AA. A Review of Human Coronaviruses' Receptors: The Host-Cell Targets for the Crown Bearing Viruses. Molecules 2021; 26:6455. [PMID: 34770863 PMCID: PMC8587140 DOI: 10.3390/molecules26216455] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
A novel human coronavirus prompted considerable worry at the end of the year 2019. Now, it represents a significant global health and economic burden. The newly emerged coronavirus disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the primary reason for the COVID-19 global pandemic. According to recent global figures, COVID-19 has caused approximately 243.3 million illnesses and 4.9 million deaths. Several human cell receptors are involved in the virus identification of the host cells and entering them. Hence, understanding how the virus binds to host-cell receptors is crucial for developing antiviral treatments and vaccines. The current work aimed to determine the multiple host-cell receptors that bind with SARS-CoV-2 and other human coronaviruses for the purpose of cell entry. Extensive research is needed using neutralizing antibodies, natural chemicals, and therapeutic peptides to target those host-cell receptors in extremely susceptible individuals. More research is needed to map SARS-CoV-2 cell entry pathways in order to identify potential viral inhibitors.
Collapse
Affiliation(s)
- Aaya Nassar
- Biophysics Department, Faculty of Science, Cairo University, Giza 12511, Egypt; (I.M.I.); (F.G.A.); (M.M.); (A.M.E.)
| | - Ibrahim M. Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza 12511, Egypt; (I.M.I.); (F.G.A.); (M.M.); (A.M.E.)
| | - Fatma G. Amin
- Biophysics Department, Faculty of Science, Cairo University, Giza 12511, Egypt; (I.M.I.); (F.G.A.); (M.M.); (A.M.E.)
- Physics Department, Faculty of Science, Alexandria University, Alexandria 21519, Egypt
| | - Merna Magdy
- Biophysics Department, Faculty of Science, Cairo University, Giza 12511, Egypt; (I.M.I.); (F.G.A.); (M.M.); (A.M.E.)
| | - Ahmed M. Elgharib
- Biophysics Department, Faculty of Science, Cairo University, Giza 12511, Egypt; (I.M.I.); (F.G.A.); (M.M.); (A.M.E.)
| | - Eman B. Azzam
- Physics Department, Medical Biophysics Division, Faculty of Science, Helwan University, Cairo 11511, Egypt;
| | - Filopateer Nasser
- Biochemistry Department, Faculty of Science, Cairo University, Giza 12511, Egypt;
| | - Kirllos Yousry
- Faculty of Medicine, Cairo University, Cairo 11511, Egypt;
| | | | - Samah M. Mahdy
- National Museum of Egyptian Civilization, Ain Elsira-Elfustat, Cairo 11511, Egypt;
| | - Abdo A. Elfiky
- Biophysics Department, Faculty of Science, Cairo University, Giza 12511, Egypt; (I.M.I.); (F.G.A.); (M.M.); (A.M.E.)
| |
Collapse
|
34
|
Trbojević-Akmačić I, Petrović T, Lauc G. SARS-CoV-2 S glycoprotein binding to multiple host receptors enables cell entry and infection. Glycoconj J 2021; 38:611-623. [PMID: 34542788 PMCID: PMC8450557 DOI: 10.1007/s10719-021-10021-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
The severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) infection displays a wide array of clinical manifestations. Although some risk factors for coronavirus disease 2019 (COVID-19) severity and outcomes have been identified the underlying biologic mechanisms are still not well understood. The surface SARS-CoV-2 proteins are heavily glycosylated enabling host cell interaction and viral entry. Angiotensin-converting enzyme 2 (ACE2) has been identified to be the main host cell receptor enabling SARS-CoV-2 cell entry after interaction with its S glycoprotein. However, recent studies report SARS-CoV-2 S glycoprotein interaction with other cell receptors, mainly C-type lectins which recognize specific glycan epitopes facilitating SARS-CoV-2 entry to susceptible cells. Here, we are summarizing the main findings on SARS-CoV-2 interactions with ACE2 and other cell membrane surface receptors and soluble lectins involved in the viral cell entry modulating its infectivity and potentially playing a role in subsequent clinical manifestations of COVID-19.
Collapse
Affiliation(s)
| | - Tea Petrović
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
35
|
Mo IV, Schatz C, Christensen BE. Functionalisation of the non-reducing end of chitin by selective periodate oxidation: A new approach to form complex block polysaccharides and water-soluble chitin-based block polymers. Carbohydr Polym 2021; 267:118193. [PMID: 34119160 DOI: 10.1016/j.carbpol.2021.118193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
Most polysaccharides used in polysaccharide-based block copolymers are attached to the second block through the reducing end, due to the few and highly polysaccharide specific non-reducing end (NRE) functionalisation methods available. Chitin oligomers, prepared by nitrous acid degradation of chitosan (AnM) can, however, be selectively oxidised by periodate since they only possess a single vicinal diol in the NRE residue. Here, we show that both aldehydes formed after oxidation are highly reactive towards bifunctional oxyamines and hydrazide linkers. Sub-stochiometric amounts of linkers resulted in conjugation of AnM oligomers through both chain termini to yield a discrete distribution of 'polymerised' oligomers. Such chitin-based block polymers were, in contrast to chitins of the same chain lengths, water-soluble. Oxidised AnM oligomers, functionalised at both termini can also enable the preparation of more complex block polysaccharides such as ABA- or ABC-type.
Collapse
Affiliation(s)
- Ingrid Vikøren Mo
- NOBIPOL, Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Saelands veg 6/8, NO-7491 Trondheim, Norway
| | - Christophe Schatz
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 33600 Pessac, France.
| | - Bjørn E Christensen
- NOBIPOL, Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Saelands veg 6/8, NO-7491 Trondheim, Norway.
| |
Collapse
|
36
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
37
|
He X, Howard BA, Liu Y, Neumann AK, Li L, Menon N, Roach T, Kale SD, Samuels DC, Li H, Kite T, Kita H, Hu TY, Luo M, Jones CN, Okaa UJ, Squillace DL, Klein BS, Lawrence CB. LYSMD3: A mammalian pattern recognition receptor for chitin. Cell Rep 2021; 36:109392. [PMID: 34289364 PMCID: PMC8344708 DOI: 10.1016/j.celrep.2021.109392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Chitin, a major component of fungal cell walls, has been associated with allergic disorders such as asthma. However, it is unclear how mammals recognize chitin and the principal receptor(s) on epithelial cells that sense chitin remain to be determined. In this study, we show that LYSMD3 is expressed on the surface of human airway epithelial cells and demonstrate that LYSMD3 is able to bind chitin, as well as β-glucan, on the cell walls of fungi. Knockdown or knockout of LYSMD3 also sharply blunts the production of inflammatory cytokines by epithelial cells in response to chitin and fungal spores. Competitive inhibition of the LYSMD3 ectodomain by soluble LYSMD3 protein, multiple ligands, or antibody against LYSMD3 also blocks chitin signaling. Our study reveals LYSMD3 as a mammalian pattern recognition receptor (PRR) for chitin and establishes its role in epithelial cell inflammatory responses to chitin and fungi.
Collapse
Affiliation(s)
- Xin He
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Brad A Howard
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Aaron K Neumann
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Nidhi Menon
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - Tiffany Roach
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Shiv D Kale
- Nutritional Immunology and Molecular Medicine Institute, Blacksburg, VA 24060, USA
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Hongyan Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Trenton Kite
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Hirohito Kita
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Tony Y Hu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mengyao Luo
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Caroline N Jones
- Department of Bioengineering, University of Texas, Dallas, TX 75080, USA
| | - Uju Joy Okaa
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Diane L Squillace
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Bruce S Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
38
|
Yu H, Bruneau RC, Brennan G, Rothenburg S. Battle Royale: Innate Recognition of Poxviruses and Viral Immune Evasion. Biomedicines 2021; 9:biomedicines9070765. [PMID: 34356829 PMCID: PMC8301327 DOI: 10.3390/biomedicines9070765] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/17/2022] Open
Abstract
Host pattern recognition receptors (PRRs) sense pathogen-associated molecular patterns (PAMPs), which are molecular signatures shared by different pathogens. Recognition of PAMPs by PRRs initiate innate immune responses via diverse signaling pathways. Over recent decades, advances in our knowledge of innate immune sensing have enhanced our understanding of the host immune response to poxviruses. Multiple PRR families have been implicated in poxvirus detection, mediating the initiation of signaling cascades, activation of transcription factors, and, ultimately, the expression of antiviral effectors. To counteract the host immune defense, poxviruses have evolved a variety of immunomodulators that have diverse strategies to disrupt or circumvent host antiviral responses triggered by PRRs. These interactions influence the outcomes of poxvirus infections. This review focuses on our current knowledge of the roles of PRRs in the recognition of poxviruses, their elicited antiviral effector functions, and how poxviral immunomodulators antagonize PRR-mediated host immune responses.
Collapse
|
39
|
Discriminating symbiosis and immunity signals by receptor competition in rice. Proc Natl Acad Sci U S A 2021; 118:2023738118. [PMID: 33853950 DOI: 10.1073/pnas.2023738118] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants encounter various microbes in nature and must respond appropriately to symbiotic or pathogenic ones. In rice, the receptor-like kinase OsCERK1 is involved in recognizing both symbiotic and immune signals. However, how these opposing signals are discerned via OsCERK1 remains unknown. Here, we found that receptor competition enables the discrimination of symbiosis and immunity signals in rice. On the one hand, the symbiotic receptor OsMYR1 and its short-length chitooligosaccharide ligand inhibit complex formation between OsCERK1 and OsCEBiP and suppress OsCERK1 phosphorylating the downstream substrate OsGEF1, which reduces the sensitivity of rice to microbe-associated molecular patterns. Indeed, OsMYR1 overexpression lines are more susceptible to the fungal pathogen Magnaporthe oryzae, whereas Osmyr1 mutants show higher resistance. On the other hand, OsCEBiP can bind OsCERK1 and thus block OsMYR1-OsCERK1 heteromer formation. Consistently, the Oscebip mutant displayed a higher rate of mycorrhizal colonization at early stages of infection. Our results indicate that OsMYR1 and OsCEBiP receptors compete for OsCERK1 to determine the outcome of symbiosis and immunity signals.
Collapse
|
40
|
Tyrikos‐Ergas T, Bordoni V, Fittolani G, Chaube MA, Grafmüller A, Seeberger PH, Delbianco M. Systematic Structural Characterization of Chitooligosaccharides Enabled by Automated Glycan Assembly. Chemistry 2021; 27:2321-2325. [PMID: 33290603 PMCID: PMC7898498 DOI: 10.1002/chem.202005228] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 01/01/2023]
Abstract
Chitin, a polymer composed of β(1-4)-linked N-acetyl-glucosamine monomers, and its partially deacetylated analogue chitosan, are abundant biopolymers with outstanding mechanical as well as elastic properties. Their degradation products, chitooligosaccharides (COS), can trigger the innate immune response in humans and plants. Both material and biological properties are dependent on polymer length, acetylation, as well as the pH. Without well-defined samples, a complete molecular description of these factors is still missing. Automated glycan assembly (AGA) enabled rapid access to synthetic well-defined COS. Chitin-cellulose hybrid oligomers were prepared as important tools for a systematic structural analysis. Intramolecular interactions, identified by molecular dynamics simulations and NMR analysis, underscore the importance of the chitosan amino group for the stabilization of specific geometries.
Collapse
Affiliation(s)
- Theodore Tyrikos‐Ergas
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Vittorio Bordoni
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Giulio Fittolani
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Manishkumar A. Chaube
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Andrea Grafmüller
- Department of TheoryMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Martina Delbianco
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
41
|
Gadanec LK, McSweeney KR, Qaradakhi T, Ali B, Zulli A, Apostolopoulos V. Can SARS-CoV-2 Virus Use Multiple Receptors to Enter Host Cells? Int J Mol Sci 2021; 22:992. [PMID: 33498183 PMCID: PMC7863934 DOI: 10.3390/ijms22030992] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The occurrence of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for coronavirus disease 2019 (COVD-19), represents a catastrophic threat to global health. Protruding from the viral surface is a densely glycosylated spike (S) protein, which engages angiotensin-converting enzyme 2 (ACE2) to mediate host cell entry. However, studies have reported viral susceptibility in intra- and extrapulmonary immune and non-immune cells lacking ACE2, suggesting that the S protein may exploit additional receptors for infection. Studies have demonstrated interactions between S protein and innate immune system, including C-lectin type receptors (CLR), toll-like receptors (TLR) and neuropilin-1 (NRP1), and the non-immune receptor glucose regulated protein 78 (GRP78). Recognition of carbohydrate moieties clustered on the surface of the S protein may drive receptor-dependent internalization, accentuate severe immunopathological inflammation, and allow for systemic spread of infection, independent of ACE2. Furthermore, targeting TLRs, CLRs, and other receptors (Ezrin and dipeptidyl peptidase-4) that do not directly engage SARS-CoV-2 S protein, but may contribute to augmented anti-viral immunity and viral clearance, may represent therapeutic targets against COVID-19.
Collapse
|
42
|
Chen H, Raffaele S, Dong S. Silent control: microbial plant pathogens evade host immunity without coding sequence changes. FEMS Microbiol Rev 2021; 45:6095737. [PMID: 33440001 DOI: 10.1093/femsre/fuab002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Both animals and plants have evolved a robust immune system to surveil and defeat invading pathogenic microbes. Evasion of host immune surveillance is the key for pathogens to initiate successful infection. To evade the host immunity, plant pathogens evolved a variety of strategies such as masking themselves from host immune recognitions, blocking immune signaling transductions, reprogramming immune responses and adapting to immune microenvironmental changes. Gain of new virulence genes, sequence and structural variations enables plant pathogens to evade host immunity through changes in the genetic code. However, recent discoveries demonstrated that variations at the transcriptional, post-transcriptional, post-translational and glycome level enable pathogens to cope with the host immune system without coding sequence changes. The biochemical modification of pathogen associated molecular patterns and silencing of effector genes emerged as potent ways for pathogens to hide from host recognition. Altered processing in mRNA activities provide pathogens with resilience to microenvironment changes. Importantly, these hiding variants are directly or indirectly modulated by catalytic enzymes or enzymatic complexes and cannot be revealed by classical genomics alone. Unveiling these novel host evasion mechanisms in plant pathogens enables us to better understand the nature of plant disease and pinpoints strategies for rational diseases management in global food protection.
Collapse
Affiliation(s)
- Han Chen
- Department of Plant Pathology and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes, INRAE, CNRS, 24 Chemin de Borde Rouge - Auzeville, CS52627, F31326 Castanet Tolosan Cedex, France
| | - Suomeng Dong
- Department of Plant Pathology and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
43
|
Urban CF, Backman E. Eradicating, retaining, balancing, swarming, shuttling and dumping: a myriad of tasks for neutrophils during fungal infection. Curr Opin Microbiol 2020; 58:106-115. [DOI: 10.1016/j.mib.2020.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022]
|
44
|
Tsvetkov YE, Paulovičová E, Paulovičová L, Farkaš P, Nifantiev NE. Synthesis of Biotin-Tagged Chitosan Oligosaccharides and Assessment of Their Immunomodulatory Activity. Front Chem 2020; 8:554732. [PMID: 33335882 PMCID: PMC7736555 DOI: 10.3389/fchem.2020.554732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/20/2020] [Indexed: 01/10/2023] Open
Abstract
Chitin, a polymer of β-(1→4)-linked N-acetyl-d-glucosamine, is one of the main polysaccharide components of the fungal cell wall. Its N-deacetylated form, chitosan, is enzymatically produced in the cell wall by chitin deacetylases. It exerts immunomodulative, anti-inflammatory, anti-cancer, anti-bacterial, and anti-fungal activities with various medical applications. To study the immunobiological properties of chitosan oligosaccharides, we synthesized a series of β-(1→4)-linked N-acetyl-d-glucosamine oligomers comprising 3, 5, and 7 monosaccharide units equipped with biotin tags. The key synthetic intermediate employed for oligosaccharide chain elongation, a disaccharide thioglycoside, was prepared by orthogonal glycosylation of a 4-OH thioglycoside acceptor with a glycosyl trichloroacetimidate bearing the temporary 4-O-tert-butyldimethylsilyl group. The use of silyl protection suppressed aglycon transfer and provided a high yield for the target disaccharide donor. Using synthesized chitosan oligomers, as well as previously obtained chitin counterparts, the immunobiological relationship between these synthetic oligosaccharides and RAW 264.7 cells was studied in vitro. Evaluation of cell proliferation, phagocytosis, respiratory burst, and Th1, Th2, Th17, and Treg polarized cytokine expression demonstrated effective immune responsiveness and immunomodulation in RAW 264.7 cells exposed to chitin- and chitosan-derived oligosaccharides. Macrophage reactivity was accompanied by significant inductive dose- and structure-dependent protective Th1 and Th17 polarization, which was greater with exposure to chitosan- rather than chitin-derived oligosaccharides. Moreover, no antiproliferative or cytotoxic effects were observed, even following prolonged 48 h exposure. The obtained results demonstrate the potent immunobiological activity of these synthetically prepared chito-oligosaccharides.
Collapse
Affiliation(s)
- Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ema Paulovičová
- Cell Culture & Immunology Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Paulovičová
- Cell Culture & Immunology Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Farkaš
- Cell Culture & Immunology Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
45
|
Coptis chinensis Franch Directly Inhibits Proteolytic Activation of Kallikrein 5 and Cathelicidin Associated with Rosacea in Epidermal Keratinocytes. Molecules 2020; 25:molecules25235556. [PMID: 33256158 PMCID: PMC7729574 DOI: 10.3390/molecules25235556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
Rosacea is a common and chronic inflammatory skin disease that is characterized by dysfunction of the immune and vascular system. The excessive production and activation of kallikerin 5 (KLK5) and cathelicidin have been implicated in the pathogenesis of rosacea. Coptis chinensis Franch (CC) has been used as a medicinal herb in traditional oriental medicine. However, little is known about the efficacy and mechanism of action of CC in rosacea. In this study, we evaluate the effect of CC and its molecular mechanism on rosacea in human epidermal keratinocytes. CC has the capacity to downregulate the expression of KLK5 and cathelicidin, and also inhibits KLK5 protease activity, which leads to reduced processing of inactive cathelicidin into active LL-37. It was determined that CC ameliorates the expression of pro-inflammatory cytokines through the inhibition of LL-37 processing. In addition, it was confirmed that chitin, an exoskeleton of Demodex mites, mediates an immune response through TLR2 activation, and CC inhibits TLR2 expression and downstream signal transduction. Furthermore, CC was shown to inhibit the proliferation of human microvascular endothelial cells induced by LL-37, the cause of erythematous rosacea. These results demonstrate that CC improved rosacea by regulating the immune response and angiogenesis, and revealed its mechanism of action, indicating that CC may be a useful therapeutic agent for rosacea.
Collapse
|
46
|
Preparation of Defined Chitosan Oligosaccharides Using Chitin Deacetylases. Int J Mol Sci 2020; 21:ijms21217835. [PMID: 33105791 PMCID: PMC7660110 DOI: 10.3390/ijms21217835] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
During the past decade, detailed studies using well-defined 'second generation' chitosans have amply proved that both their material properties and their biological activities are dependent on their molecular structure, in particular on their degree of polymerisation (DP) and their fraction of acetylation (FA). Recent evidence suggests that the pattern of acetylation (PA), i.e., the sequence of acetylated and non-acetylated residues along the linear polymer, is equally important, but chitosan polymers with defined, non-random PA are not yet available. One way in which the PA will influence the bioactivities of chitosan polymers is their enzymatic degradation by sequence-dependent chitosan hydrolases present in the target tissues. The PA of the polymer substrates in conjunction with the subsite preferences of the hydrolases determine the type of oligomeric products and the kinetics of their production and further degradation. Thus, the bioactivities of chitosan polymers will at least in part be carried by the chitosan oligomers produced from them, possibly through their interaction with pattern recognition receptors in target cells. In contrast to polymers, partially acetylated chitosan oligosaccharides (paCOS) can be fully characterised concerning their DP, FA, and PA, and chitin deacetylases (CDAs) with different and known regio-selectivities are currently emerging as efficient tools to produce fully defined paCOS in quantities sufficient to probe their bioactivities. In this review, we describe the current state of the art on how CDAs can be used in forward and reverse mode to produce all of the possible paCOS dimers, trimers, and tetramers, most of the pentamers and many of the hexamers. In addition, we describe the biotechnological production of the required fully acetylated and fully deacetylated oligomer substrates, as well as the purification and characterisation of the paCOS products.
Collapse
|
47
|
Alsina C, Sancho-Vaello E, Aranda-Martínez A, Faijes M, Planas A. Auxiliary active site mutations enhance the glycosynthase activity of a GH18 chitinase for polymerization of chitooligosaccharides. Carbohydr Polym 2020; 252:117121. [PMID: 33183587 DOI: 10.1016/j.carbpol.2020.117121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/14/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Depolymerization of chitin results in chitooligosaccharides (COS) that induce immunostimulatory effects and disease protective responses and have many potential applications in agriculture and medicine. Isolation of bioactive COS with degree of polymerization (DP) larger than six from chitin hydrolyzates is hampered by their water insolubility. Enzymatic synthesis by exploiting the transglycosylation activity of GH18 chitinases offers a potential strategy to access oligomers in the range of bioactive DPs. We engineered SpChiD chitinase as a glycosynthase by mutation of the assisting residue of the catalytic triad in the substrate-assisted mechanism for polymerization of an oxazoline substrate (DP5ox). The insoluble polymer containing DP10 was partially hydrolyzed due to the significant residual hydrolase activity of the mutant enzyme. Combined mutations that strongly reduce the hydrolytic activity, in which the original catalytic triad only retains the essential acid/base residue, together with neighboring mutations in the -1/+1 subsites region, render glycosynthase-like chitinases able to produce chitin oligomers with DP10 as major product in good yields.
Collapse
Affiliation(s)
- Cristina Alsina
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, Barcelona, Spain
| | - Enea Sancho-Vaello
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, Barcelona, Spain
| | | | - Magda Faijes
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, Barcelona, Spain
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, Barcelona, Spain.
| |
Collapse
|
48
|
Gong BQ, Wang FZ, Li JF. Hide-and-Seek: Chitin-Triggered Plant Immunity and Fungal Counterstrategies. TRENDS IN PLANT SCIENCE 2020; 25:805-816. [PMID: 32673581 DOI: 10.1016/j.tplants.2020.03.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/01/2020] [Accepted: 03/10/2020] [Indexed: 05/05/2023]
Abstract
Fungal pathogens are major destructive microorganisms for land plants and pose growing challenges to global crop production. Chitin is a vital building block for fungal cell walls and also a broadly effective elicitor of plant immunity. Here we review the rapid progress in understanding chitin perception and signaling in plants and highlight similarities and differences of these processes between arabidopsis and rice. We also outline moonlight functions of CERK1, an indispensable chitin coreceptor conserved across the plant kingdom, which imply potential crosstalk between chitin signaling and symbiotic or biotic/abiotic stress signaling in plants via CERK1. Moreover, we summarize current knowledge about fungal counterstrategies for subverting chitin-triggered plant immunity and propose open questions and future directions in this field.
Collapse
Affiliation(s)
- Ben-Qiang Gong
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Feng-Zhu Wang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Feng Li
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
49
|
Mo IV, Dalheim MØ, Aachmann FL, Schatz C, Christensen BE. 2,5-Anhydro-d-Mannose End-Functionalized Chitin Oligomers Activated by Dioxyamines or Dihydrazides as Precursors of Diblock Oligosaccharides. Biomacromolecules 2020; 21:2884-2895. [PMID: 32539358 PMCID: PMC7660591 DOI: 10.1021/acs.biomac.0c00620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Diblock
oligosaccharides based on renewable resources allow for
a range of new but, so far, little explored biomaterials. Coupling
of blocks through their reducing ends ensures retention of many of
their intrinsic properties that otherwise are perturbed in classical
lateral modifications. Chitin is an abundant, biodegradable, bioactive,
and self-assembling polysaccharide. However, most coupling protocols
relevant for chitin blocks have shortcomings. Here we exploit the
highly reactive 2,5-anhydro-d-mannose residue at the reducing
end of chitin oligomers obtained by nitrous acid depolymerization.
Subsequent activation by dihydrazides or dioxyamines provides precursors
for chitin-based diblock oligosaccharides. These reactions are much
faster than for other carbohydrates, and only acyclic imines (hydrazones
or oximes) are formed (no cyclic N-glycosides). α-Picoline
borane and cyanoborohydride are effective reductants of imines, but
in contrast to most other carbohydrates, they are not selective for
the imines in the present case. This could be circumvented by a simple
two-step procedure. Attachment of a second block to hydrazide- or
aminooxy-functionalized chitin oligomers turned out to be even faster
than the attachment of the first block. The study provides simple
protocols for the preparation of chitin-b-chitin
and chitin-b-dextran diblock oligosaccharides without
involving protection/deprotection strategies.
Collapse
Affiliation(s)
- Ingrid Vikøren Mo
- NOBIPOL, Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Saelands veg 6/8, NO-7491 Trondheim, Norway
| | - Marianne Øksnes Dalheim
- NOBIPOL, Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Saelands veg 6/8, NO-7491 Trondheim, Norway
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Saelands veg 6/8, NO-7491 Trondheim, Norway
| | - Christophe Schatz
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 33600 Pessac, France
| | - Bjørn E Christensen
- NOBIPOL, Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Saelands veg 6/8, NO-7491 Trondheim, Norway
| |
Collapse
|
50
|
Campuzano A, Zhang H, Ostroff GR, Dos Santos Dias L, Wüthrich M, Klein BS, Yu JJ, Lara HH, Lopez-Ribot JL, Hung CY. CARD9-Associated Dectin-1 and Dectin-2 Are Required for Protective Immunity of a Multivalent Vaccine against Coccidioides posadasii Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:3296-3306. [PMID: 32358020 PMCID: PMC7323849 DOI: 10.4049/jimmunol.1900793] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Coccidioides species are fungal pathogens that can cause a widely varied clinical manifestation from mild pulmonary symptom to disseminated, life-threatening disease. We have previously created a subunit vaccine by encapsulating a recombinant coccidioidal Ag (rCpa1) in glucan-chitin particles (GCPs) as an adjuvant-delivery system. The GCP-rCpa1 vaccine has shown to elicit a mixed Th1 and Th17 response and confers protection against pulmonary coccidioidomycosis in mice. In this study, we further delineated the vaccine-induced protective mechanisms. Depletion of IL-17A in vaccinated C57BL/6 mice prior to challenge abrogated the protective efficacy of GCP-rCpa1 vaccine. Global transcriptome and Ingenuity Pathway Analysis of murine bone marrow-derived macrophages after exposure to this vaccine revealed the upregulation of proinflammatory cytokines (TNF-α, IL-6, and IL-1β) that are associated with activation of C-type lectin receptors (CLR) Dectin-1- and Dectin-2-mediated CARD9 signaling pathway. The GCP formulation of rCpa1 bound soluble Dectin-1 and Dectin-2 and triggered ITAM signaling of corresponding CLR reporter cells. Furthermore, macrophages that were isolated from Dectin-1 -/-, Dectin-2 -/-, and CARD9 -/- mice significantly reduced production of inflammatory cytokines in response to the GCP-rCpa1 vaccine compared with those of wild-type mice. The GCP-rCpa1 vaccine had significantly reduced protective efficacy in Dectin-1 -/-, Dectin-2 -/-, and CARD9 -/- mice that showed decreased acquisition of Th cells in Coccidioides-infected lungs compared with vaccinated wild-type mice, especially Th17 cells. Collectively, we conclude that the GCP-rCpa1 vaccine stimulates a robust Th17 immunity against Coccidioides infection through activation of the CARD9-associated Dectin-1 and Dectin-2 signal pathways.
Collapse
Affiliation(s)
- Althea Campuzano
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Hao Zhang
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Gary R Ostroff
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Lucas Dos Santos Dias
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Bruce S Klein
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Humberto H Lara
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Jose L Lopez-Ribot
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Chiung-Yu Hung
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249;
| |
Collapse
|