1
|
Holendová B, Benáková Š, Křivonosková M, Plecitá-Hlavatá L. Redox Status as a Key Driver of Healthy Pancreatic Beta-Cells. Physiol Res 2024; 73:S139-S152. [PMID: 38647167 PMCID: PMC11412338 DOI: 10.33549/physiolres.935259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Redox status plays a multifaceted role in the intricate physiology and pathology of pancreatic beta-cells, the pivotal regulators of glucose homeostasis through insulin secretion. They are highly responsive to changes in metabolic cues where reactive oxygen species are part of it, all arising from nutritional intake. These molecules not only serve as crucial signaling intermediates for insulin secretion but also participate in the nuanced heterogeneity observed within the beta-cell population. A central aspect of beta-cell redox biology revolves around the localized production of hydrogen peroxide and the activity of NADPH oxidases which are tightly regulated and serve diverse physiological functions. Pancreatic beta-cells possess a remarkable array of antioxidant defense mechanisms although considered relatively modest compared to other cell types, are efficient in preserving redox balance within the cellular milieu. This intrinsic antioxidant machinery operates in concert with redox-sensitive signaling pathways, forming an elaborate redox relay system essential for beta-cell function and adaptation to changing metabolic demands. Perturbations in redox homeostasis can lead to oxidative stress exacerbating insulin secretion defect being a hallmark of type 2 diabetes. Understanding the interplay between redox signaling, oxidative stress, and beta-cell dysfunction is paramount for developing effective therapeutic strategies aimed at preserving beta-cell health and function in individuals with type 2 diabetes. Thus, unraveling the intricate complexities of beta-cell redox biology presents exciting avenues for advancing our understanding and treatment of metabolic disorders.
Collapse
Affiliation(s)
- B Holendová
- Laboratory of Pancreatic Islet Research, Czech Academy of Sciences, Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
2
|
Noguchi GM, Castillo VC, Donaldson CJ, Flisher MR, Momen AT, Saghatelian A, Huising MO. Urocortin 3 contributes to paracrine inhibition of islet alpha cells in mice. J Endocrinol 2024; 261:e240018. [PMID: 38593829 PMCID: PMC11095665 DOI: 10.1530/joe-24-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
Pancreatic alpha cell activity and glucagon secretion lower as glucose levels increase. While part of the decrease is regulated by glucose itself, paracrine signaling by their neighboring beta and delta cells also plays an important role. Somatostatin from delta cells is an important local inhibitor of alpha cells at high glucose. Additionally, urocortin 3 (UCN3) is a hormone that is co-released from beta cells with insulin and acts locally to potentiate somatostatin secretion from delta cells. UCN3 thus inhibits insulin secretion via a negative feedback loop with delta cells, but its role with respect to alpha cells and glucagon secretion is not understood. We hypothesize that the somatostatin-driven glucagon inhibition at high glucose is regulated in part by UCN3 from beta cells. Here, we use a combination of live functional Ca2+ and cAMP imaging as well as direct glucagon secretion measurement, all from alpha cells in intact mouse islets, to determine the contributions of UCN3 to alpha cell behavior. Exogenous UCN3 treatment decreased alpha cell Ca2+ and cAMP levels and inhibited glucagon release. Blocking endogenous UCN3 signaling increased alpha cell Ca2+ by 26.8 ± 7.6%, but this did not result in increased glucagon release at high glucose. Furthermore, constitutive deletion of Ucn3 did not increase Ca2+ activity or glucagon secretion relative to controls. UCN3 is thus capable of inhibiting mouse alpha cells, but, given the subtle effects of endogenous UCN3 signaling on alpha cells, we propose that UCN3-driven somatostatin may serve to regulate local paracrine glucagon levels in the islet instead of inhibiting gross systemic glucagon release.
Collapse
Affiliation(s)
- Glyn M. Noguchi
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
| | - Vincent C. Castillo
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
| | | | - Marcus R. Flisher
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
| | - Ariana T. Momen
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
| | | | - Mark O. Huising
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
3
|
Tamarit-Rodriguez J. Regulatory Role of Fatty Acid Metabolism on Glucose-Induced Changes in Insulin and Glucagon Secretion by Pancreatic Islet Cells. Int J Mol Sci 2024; 25:6052. [PMID: 38892240 PMCID: PMC11172437 DOI: 10.3390/ijms25116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
A detailed study of palmitate metabolism in pancreatic islets subject to different experimental conditions, like varying concentrations of glucose, as well as fed or starved conditions, has allowed us to explore the interaction between the two main plasma nutrients and its consequences on hormone secretion. Palmitate potentiates glucose-induced insulin secretion in a concentration-dependent manner, in a physiological range of both palmitate (0-2 mM) and glucose (6-20 mM) concentrations; at glucose concentrations lower than 6 mM, no metabolic interaction with palmitate was apparent. Starvation (48 h) increased islet palmitate oxidation two-fold, and the effect was resistant to its inhibition by glucose (6-20 mM). Consequently, labelled palmitate and glucose incorporation into complex lipids were strongly suppressed, as well as glucose-induced insulin secretion and its potentiation by palmitate. 2-bromostearate, a palmitate oxidation inhibitor, fully recovered the synthesis of complex lipids and insulin secretion. We concluded that palmitate potentiation of the insulin response to glucose is not attributable to its catabolic mitochondrial oxidation but to its anabolism to complex lipids: islet lipid biosynthesis is dependent on the uptake of plasma fatty acids and the supply of α-glycerol phosphate from glycolysis. Islet secretion of glucagon and somatostatin showed a similar dependence on palmitate anabolism as insulin. The possible mechanisms implicated in the metabolic coupling between glucose and palmitate were commented on. Moreover, possible mechanisms responsible for islet gluco- or lipotoxicity after a long-term stimulation of insulin secretion were also discussed. Our own data on the simultaneous stimulation of insulin, glucagon, and somatostatin by glucose, as well as their modification by 2-bromostearate in perifused rat islets, give support to the conclusion that increased FFA anabolism, rather than its mitochondrial oxidation, results in a potentiation of their stimulated release. Starvation, besides suppressing glucose stimulation of insulin secretion, also blocks the inhibitory effect of glucose on glucagon secretion: this suggests that glucagon inhibition might be an indirect or direct effect of insulin, but not of glucose. In summary, there seems to exist three mechanisms of glucagon secretion stimulation: 1. glucagon stimulation through the same secretion coupling mechanism as insulin, but in a different range of glucose concentrations (0 to 5 mM). 2. Direct or indirect inhibition by secreted insulin in response to glucose (5-20 mM). 3. Stimulation by increased FFA anabolism in glucose intolerance or diabetes in the context of hyperlipidemia, hyperglycemia, and hypo-insulinemia. These conclusions were discussed and compared with previous published data in the literature. Specially, we discussed the mechanism for inhibition of glucagon release by glucose, which was apparently contradictory with the secretion coupling mechanism of its stimulation.
Collapse
|
4
|
Armour SL, Stanley JE, Cantley J, Dean ED, Knudsen JG. Metabolic regulation of glucagon secretion. J Endocrinol 2023; 259:e230081. [PMID: 37523232 PMCID: PMC10681275 DOI: 10.1530/joe-23-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Since the discovery of glucagon 100 years ago, the hormone and the pancreatic islet alpha cells that produce it have remained enigmatic relative to insulin-producing beta cells. Canonically, alpha cells have been described in the context of glucagon's role in glucose metabolism in liver, with glucose as the primary nutrient signal regulating alpha cell function. However, current data reveal a more holistic model of metabolic signalling, involving glucagon-regulated metabolism of multiple nutrients by the liver and other tissues, including amino acids and lipids, providing reciprocal feedback to regulate glucagon secretion and even alpha cell mass. Here we describe how various nutrients are sensed, transported and metabolised in alpha cells, providing an integrative model for the metabolic regulation of glucagon secretion and action. Importantly, we discuss where these nutrient-sensing pathways intersect to regulate alpha cell function and highlight key areas for future research.
Collapse
Affiliation(s)
- Sarah L Armour
- Section for cell biology and physiology, Department of Biology, University of Copenhagen, DK
| | - Jade E. Stanley
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, USA
| | - James Cantley
- Division of Cellular and systems medicine, School of Medicine, University of Dundee, UK
| | - E. Danielle Dean
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, USA
- Division of Diabetes, Endocrinology, & Metabolism, Vanderbilt University Medical Center school of medicine, USA
| | - Jakob G Knudsen
- Section for cell biology and physiology, Department of Biology, University of Copenhagen, DK
| |
Collapse
|
5
|
Al-Abdulla R, Ferrero H, Boronat-Belda T, Soriano S, Quesada I, Alonso-Magdalena P. Exploring the Effects of Metabolism-Disrupting Chemicals on Pancreatic α-Cell Viability, Gene Expression and Function: A Screening Testing Approach. Int J Mol Sci 2023; 24:ijms24021044. [PMID: 36674557 PMCID: PMC9862653 DOI: 10.3390/ijms24021044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Humans are constantly exposed to many environmental pollutants, some of which have been largely acknowledged as key factors in the development of metabolic disorders such as diabetes and obesity. These chemicals have been classified as endocrine-disrupting chemicals (EDCs) and, more recently, since they can interfere with metabolic functions, they have been renamed as metabolism-disrupting chemicals (MDCs). MDCs are present in many consumer products, including food packaging, personal care products, plastic bottles and containers, and detergents. The scientific literature has ever-increasingly focused on insulin-releasing pancreatic β-cells as one of the main targets for MDCs. Evidence highlights that these substances may disrupt glucose homeostasis by altering pancreatic β-cell physiology. However, their potential impact on glucagon-secreting pancreatic α-cells remains poorly known despite the essential role that this cellular type plays in controlling glucose metabolism. In the present study, we have selected seven paradigmatic MDCs representing major toxic classes, including bisphenols, phthalates, perfluorinated compounds, metals, and pesticides. By using an in vitro cell-based model, the pancreatic α-cell line αTC1-9, we have explored the effects of these compounds on pancreatic α-cell viability, gene expression, and secretion. We found that cell viability was moderately affected after bisphenol-A (BPA), bisphenol-F (BPF), and perfluorooctanesulfonic acid (PFOS) exposure, although cytotoxicity was relatively low. In addition, all bisphenols, as well as di(2-ethylhexyl) phthalate (DEHP) and cadmium chloride (CdCl2), promoted a marked decreased on glucagon secretion, together with changes in the expression of glucagon and/or transcription factors involved in cell function and identity, such as Foxo1 and Arx. Overall, our results indicated that most of the selected chemicals studied caused functional alterations in pancreatic α-cells. Moreover, we revealed, for the first time, their direct effects on key molecular aspects of pancreatic α-cell biology.
Collapse
Affiliation(s)
- Ruba Al-Abdulla
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
| | - Hilda Ferrero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Talía Boronat-Belda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
| | - Sergi Soriano
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 Alicante, Spain
| | - Iván Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
6
|
Kaczmarek I, Suchý T, Prömel S, Schöneberg T, Liebscher I, Thor D. The relevance of adhesion G protein-coupled receptors in metabolic functions. Biol Chem 2021; 403:195-209. [PMID: 34218541 DOI: 10.1515/hsz-2021-0146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023]
Abstract
G protein-coupled receptors (GPCRs) modulate a variety of physiological functions and have been proven to be outstanding drug targets. However, approximately one-third of all non-olfactory GPCRs are still orphans in respect to their signal transduction and physiological functions. Receptors of the class of Adhesion GPCRs (aGPCRs) are among these orphan receptors. They are characterized by unique features in their structure and tissue-specific expression, which yields them interesting candidates for deorphanization and testing as potential therapeutic targets. Capable of G-protein coupling and non-G protein-mediated function, aGPCRs may extend our repertoire of influencing physiological function. Besides their described significance in the immune and central nervous systems, growing evidence indicates a high importance of these receptors in metabolic tissue. RNAseq analyses revealed high expression of several aGPCRs in pancreatic islets, adipose tissue, liver, and intestine but also in neurons governing food intake. In this review, we focus on aGPCRs and their function in regulating metabolic pathways. Based on current knowledge, this receptor class represents high potential for future pharmacological approaches addressing obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Tomáš Suchý
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Simone Prömel
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
- Institute of Cell Biology, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| |
Collapse
|
7
|
Vielreicher M, Bozec A, Schett G, Friedrich O. Murine Metatarsus Bone and Joint Collagen-I Fiber Morphologies and Networks Studied With SHG Multiphoton Imaging. Front Bioeng Biotechnol 2021; 9:608383. [PMID: 34178952 PMCID: PMC8226188 DOI: 10.3389/fbioe.2021.608383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic inflammatory disease of bones and joints (e.g., rheumatoid arthritis, gout, etc.), but also acute bone injury and healing, or degenerative resorptive processes inducing osteoporosis, are associated with structural remodeling that ultimately have impact on function. For instance, bone stability is predominantly orchestrated by the structural arrangement of extracellular matrix fibrillar networks, i.e., collagen-I, -IV, elastin, and other proteins. These components may undergo distinct network density and orientation alterations that may be causative for decreased toughness, resilience and load bearing capacity or even increased brittleness. Diagnostic approaches are usually confined to coarse imaging modalities of X-ray or computer tomography that only provide limited optical resolution and lack specificity to visualize the fibrillary collagen network. However, studying collagen structure at the microscopic scale is of considerable interest to understand the mechanisms of tissue pathologies. Multiphoton Second Harmonic Generation (SHG) microscopy, is able to visualize the sterical topology of the collagen-I fibrillar network in 3D, in a minimally invasive and label-free manner. Penetration depths exceed those of conventional visible light imaging and can be further optimized through employing decalcification or optical clearing processing ex vivo. The goal of this proof-of-concept study was to use SHG and two-photon excited fluorescence (2-PEF) imaging to mainly characterize the fibrillary collagen organization within ex vivo decalcified normal mouse metatarsus bone and joint. The results show that the technique resolved the fibrillar collagen network of complete bones and joints with almost no artifacts and enabled to study the complex collagen-I networks with various fiber types (straight, crimped) and network arrangements of mature and woven bone with high degree of detail. Our imaging approach enabled to identify cavities within both cortical and trabecular bone architecture as well as interfaces with sharply changing fiber morphology and network structure both within bone, in tendon and ligament and within joint areas. These possibilities are highly advantageous since the technology can easily be applied to animal models, e.g., of rheumatoid arthritis to study structural effects of chronic joint inflammation, and to many others and to compare to the structure of human bone.
Collapse
Affiliation(s)
- Martin Vielreicher
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Clinic, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Clinic, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Lafferty RA, O’Harte FPM, Irwin N, Gault VA, Flatt PR. Proglucagon-Derived Peptides as Therapeutics. Front Endocrinol (Lausanne) 2021; 12:689678. [PMID: 34093449 PMCID: PMC8171296 DOI: 10.3389/fendo.2021.689678] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Initially discovered as an impurity in insulin preparations, our understanding of the hyperglycaemic hormone glucagon has evolved markedly over subsequent decades. With description of the precursor proglucagon, we now appreciate that glucagon was just the first proglucagon-derived peptide (PGDP) to be characterised. Other bioactive members of the PGDP family include glucagon-like peptides -1 and -2 (GLP-1 and GLP-2), oxyntomodulin (OXM), glicentin and glicentin-related pancreatic peptide (GRPP), with these being produced via tissue-specific processing of proglucagon by the prohormone convertase (PC) enzymes, PC1/3 and PC2. PGDP peptides exert unique physiological effects that influence metabolism and energy regulation, which has witnessed several of them exploited in the form of long-acting, enzymatically resistant analogues for treatment of various pathologies. As such, intramuscular glucagon is well established in rescue of hypoglycaemia, while GLP-2 analogues are indicated in the management of short bowel syndrome. Furthermore, since approval of the first GLP-1 mimetic for the management of Type 2 diabetes mellitus (T2DM) in 2005, GLP-1 therapeutics have become a mainstay of T2DM management due to multifaceted and sustainable improvements in glycaemia, appetite control and weight loss. More recently, longer-acting PGDP therapeutics have been developed, while newfound benefits on cardioprotection, bone health, renal and liver function and cognition have been uncovered. In the present article, we discuss the physiology of PGDP peptides and their therapeutic applications, with a focus on successful design of analogues including dual and triple PGDP receptor agonists currently in clinical development.
Collapse
Affiliation(s)
| | | | | | - Victor A. Gault
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | | |
Collapse
|
9
|
Mitochondrial gene expression in single cells shape pancreatic beta cells' sub-populations and explain variation in insulin pathway. Sci Rep 2021; 11:466. [PMID: 33432158 PMCID: PMC7801437 DOI: 10.1038/s41598-020-80334-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial gene expression is pivotal to cell metabolism. Nevertheless, it is unknown whether it diverges within a given cell type. Here, we analysed single-cell RNA-seq experiments from human pancreatic alpha (N = 3471) and beta cells (N = 1989), as well as mouse beta cells (N = 1094). Cluster analysis revealed two distinct human beta cells populations, which diverged by mitochondrial (mtDNA) and nuclear DNA (nDNA)-encoded oxidative phosphorylation (OXPHOS) gene expression in healthy and diabetic individuals, and in newborn but not in adult mice. Insulin gene expression was elevated in beta cells with higher mtDNA gene expression in humans and in young mice. Such human beta cell populations also diverged in mitochondrial RNA mutational repertoire, and in their selective signature, thus implying the existence of two previously overlooked distinct and conserved beta cell populations. While applying our approach to human alpha cells, two sub-populations of cells were identified which diverged in mtDNA gene expression, yet these cellular populations did not consistently diverge in nDNA OXPHOS genes expression, nor did they correlate with the expression of glucagon, the hallmark of alpha cells. Thus, pancreatic beta cells within an individual are divided into distinct groups with unique metabolic-mitochondrial signature.
Collapse
|
10
|
Grubelnik V, Zmazek J, Markovič R, Gosak M, Marhl M. Mitochondrial Dysfunction in Pancreatic Alpha and Beta Cells Associated with Type 2 Diabetes Mellitus. Life (Basel) 2020; 10:E348. [PMID: 33327428 PMCID: PMC7764865 DOI: 10.3390/life10120348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus is a complex multifactorial disease of epidemic proportions. It involves genetic and lifestyle factors that lead to dysregulations in hormone secretion and metabolic homeostasis. Accumulating evidence indicates that altered mitochondrial structure, function, and particularly bioenergetics of cells in different tissues have a central role in the pathogenesis of type 2 diabetes mellitus. In the present study, we explore how mitochondrial dysfunction impairs the coupling between metabolism and exocytosis in the pancreatic alpha and beta cells. We demonstrate that reduced mitochondrial ATP production is linked with the observed defects in insulin and glucagon secretion by utilizing computational modeling approach. Specifically, a 30-40% reduction in alpha cells' mitochondrial function leads to a pathological shift of glucagon secretion, characterized by oversecretion at high glucose concentrations and insufficient secretion in hypoglycemia. In beta cells, the impaired mitochondrial energy metabolism is accompanied by reduced insulin secretion at all glucose levels, but the differences, compared to a normal beta cell, are the most pronounced in hyperglycemia. These findings improve our understanding of metabolic pathways and mitochondrial bioenergetics in the pathology of type 2 diabetes mellitus and might help drive the development of innovative therapies to treat various metabolic diseases.
Collapse
Affiliation(s)
- Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000 Maribor, Slovenia; (V.G.); (R.M.)
| | - Jan Zmazek
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia; (J.Z.); (M.G.)
| | - Rene Markovič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000 Maribor, Slovenia; (V.G.); (R.M.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia; (J.Z.); (M.G.)
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia; (J.Z.); (M.G.)
- Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia; (J.Z.); (M.G.)
- Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
- Faculty of Education, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
11
|
Grubelnik V, Zmazek J, Markovič R, Gosak M, Marhl M. Modelling of energy-driven switch for glucagon and insulin secretion. J Theor Biol 2020; 493:110213. [PMID: 32109481 DOI: 10.1016/j.jtbi.2020.110213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
We present a mathematical model of the energy-driven metabolic switch for glucagon and insulin secretion from pancreatic alpha and beta cells, respectively. The energy status related to hormone secretion is studied for various glucose concentrations. Additionally, the physiological response is studied with regards to the presence of other metabolites, particularly the free-fatty acids. At low glucose, the ATP production in alpha cells is high due to free-fatty acids oxidation in mitochondria, which enables glucagon secretion. When the glucose concentration is elevated above the threshold value, the glucagon secretion is switched off due to the contribution of glycolytic ATP production, representing an "anaerobic switch". On the other hand, during hypoglycemia, the ATP production in beta cells is low, reflecting a "waiting state" for glucose as the main metabolite. When glucose is elevated above the threshold value, the oxidative fate of glucose in mitochondria is the main source of energy required for effective insulin secretion, i.e. the "aerobic switch". Our results show the importance of well-regulated and fine-tuned energetic processes in pancreatic alpha and beta cells required for efficient hormone secretion and hence effective blood glucose regulation. These energetic processes have to be appropriately switched on and off based on the sensing of different metabolites by alpha and beta cells. Our computational results indicate that disturbances in cell energetics (e.g. mitochondrial dysfunction), and dysfunctional metabolite sensing and distribution throughout the cell might be related to pathologies such as metabolic syndrome and diabetes.
Collapse
Affiliation(s)
- Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor SI-2000, Slovenia
| | - Jan Zmazek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor SI-2000, Slovenia
| | - Rene Markovič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor SI-2000, Slovenia; Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor SI-2000, Slovenia
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor SI-2000, Slovenia; Faculty of Medicine, University of Maribor, Maribor SI-2000, Slovenia
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor SI-2000, Slovenia; Faculty of Medicine, University of Maribor, Maribor SI-2000, Slovenia; Faculty of Education, University of Maribor, Maribor SI-2000, Slovenia.
| |
Collapse
|
12
|
Pozuelo-Sanchez I, Villasanta-Gonzalez A, Alcala-Diaz JF, Vals-Delgado C, Leon-Acuña A, Gonzalez-Requero A, Yubero-Serrano EM, Luque RM, Caballero-Villarraso J, Quesada I, Ordovas JM, Pérez-Martinez P, Roncero-Ramos I, Lopez-Miranda J. Postprandial Lipemia Modulates Pancreatic Alpha-Cell Function in the Prediction of Type 2 Diabetes Development: The CORDIOPREV Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1266-1275. [PMID: 31937103 DOI: 10.1021/acs.jafc.9b06801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Diabetes (T2DM) is a major global health issue, and developing new approaches to its prevention is of paramount importance. We hypothesized that abnormalities in lipid metabolism are involved in alpha-cell deregulation. We therefore studied the metabolic factors underlying alpha-cell dysfunction in T2DM progression after a dietary intervention (Mediterranean and low-fat). Additionally, we evaluated whether postprandial glucagon levels may be considered as a predictive factor of T2DM in cardiovascular patients. Non-T2DM participants from the CORDIOPREV study were categorized by tertiles of the area under the curve (AUC) for triacylglycerols and also by tertiles of AUC for glucagon. Our results showed that patients with higher triacylglycerols levels presented elevated postprandial glucagon (P = 0.009). Moreover, we observed higher risk of T2DM (hazard ratio: 2.65; 95% confidence interval: 1.56-4.53) in subjects with elevated glucagon. In conclusion, high postprandial lipemia may induce alpha-cell dysfunction in cardiovascular patients. Our results also showed that postprandial glucagon levels could be used to predict T2DM development.
Collapse
Affiliation(s)
- Isabel Pozuelo-Sanchez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| | - Alejandro Villasanta-Gonzalez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| | - Juan Francisco Alcala-Diaz
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| | - Cristina Vals-Delgado
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| | - Ana Leon-Acuña
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| | - Anabel Gonzalez-Requero
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| | - Elena Maria Yubero-Serrano
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| | - Raul Miguel Luque
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
- Department of Cell Biology, Physiology, and Immunology, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital , University of Córdoba , Córdoba 14004 , Spain
| | | | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) , Universidad Miguel Hernández and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Elche 03202 , Spain
| | - José María Ordovas
- Nutrition and Genomics Laboratory , J.M.-US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University , Boston , Massachusetts 02111 , United States
- IMDEA Alimentacion , Madrid 28049 , Spain
| | - Pablo Pérez-Martinez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| | - Irene Roncero-Ramos
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| |
Collapse
|
13
|
Moin ASM, Cory M, Gurlo T, Saisho Y, Rizza RA, Butler PC, Butler AE. Pancreatic alpha-cell mass across adult human lifespan. Eur J Endocrinol 2020; 182:219-231. [PMID: 31821160 PMCID: PMC6944979 DOI: 10.1530/eje-19-0844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022]
Abstract
AIM To establish pancreatic alpha-cell mass in lean, non-diabetic humans over the adult lifespan, performed as a follow-up study to beta-cell mass across the adult human lifespan. METHODS We examined human pancreatic autopsy tissue from 66 lean, non-diabetic individuals aged from 30 to 102 years, grouped into deciles: 3rd (30-39 years), 4th (40-49 years), 5th (50-59 years), 6th (60-69 years), 7th (70-79 years), 8th (80-89 years) and 9th deciles (90+ years). Sections of pancreas were immunostained for glucagon and analyzed for fractional alpha-cell area. Population-based pancreatic volume data were used to calculate alpha-cell mass. RESULTS With advanced age, the exocrine pancreas undergoes atrophy demonstrated by increased fat area (as % exocrine area) (0.05 ± 0.01 vs 1.6 ± 0.7% fat area of total exocrine pancreas, 3rd vs 9th decile, P < 0.05). Consequently, islet density increases with age (2.7 ± 0.4 vs 10.5 ± 3.3 islets/mm2, 3rd vs 9th decile, P < 0.05). Alpha-cell fractional area increases with advanced age (0.34 ± 0.05% vs 0.73 ± 0.26%, 3rd vs 9th decile, P < 0.05). However, alpha-cell mass remains constant at ~190 mg throughout the adult lifespan in lean, non-diabetic humans. Within islets, alpha-cell distribution between mantle and core is unchanged across deciles (1862 ± 220 vs 1945 ± 200 vs 1948 ± 139 alpha cells in islet mantle/mm2, 3rd vs 6th vs 9th decile, P = 0.93 and 1912 ± 442 vs 1449 ± 123 vs 1514 ± 168 alpha cells in islet core/mm2, 3rd vs 6th vs 9th decile, P = 0.47), suggesting that human islets retain their structural organization in the setting of age-related exocrine atrophy. CONCLUSIONS Consistent with our previous findings for beta-cell mass, alpha-cell mass remains constant in humans, even with advanced age. Pancreatic endocrine cells are much more robustly preserved than exocrine cells in aged humans, and islets maintain their structural integrity throughout life.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Megan Cory
- Larry Hillblom Islet Research Center, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Tatyana Gurlo
- Larry Hillblom Islet Research Center, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Yoshifumi Saisho
- Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Robert A Rizza
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Peter C Butler
- Larry Hillblom Islet Research Center, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Alexandra E Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| |
Collapse
|
14
|
Grubelnik V, Markovič R, Lipovšek S, Leitinger G, Gosak M, Dolenšek J, Valladolid-Acebes I, Berggren PO, Stožer A, Perc M, Marhl M. Modelling of dysregulated glucagon secretion in type 2 diabetes by considering mitochondrial alterations in pancreatic α-cells. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191171. [PMID: 32218947 PMCID: PMC7029933 DOI: 10.1098/rsos.191171] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/16/2019] [Indexed: 05/15/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has been associated with insulin resistance and the failure of β-cells to produce and secrete enough insulin as the disease progresses. However, clinical treatments based solely on insulin secretion and action have had limited success. The focus is therefore shifting towards α-cells, in particular to the dysregulated secretion of glucagon. Our qualitative electron-microscopy-based observations gave an indication that mitochondria in α-cells are altered in Western-diet-induced T2DM. In particular, α-cells extracted from mouse pancreatic tissue showed a lower density of mitochondria, a less expressed matrix and a lower number of cristae. These deformities in mitochondrial ultrastructure imply a decreased efficiency in mitochondrial ATP production, which prompted us to theoretically explore and clarify one of the most challenging problems associated with T2DM, namely the lack of glucagon secretion in hypoglycaemia and its oversecretion at high blood glucose concentrations. To this purpose, we constructed a novel computational model that links α-cell metabolism with their electrical activity and glucagon secretion. Our results show that defective mitochondrial metabolism in α-cells can account for dysregulated glucagon secretion in T2DM, thus improving our understanding of T2DM pathophysiology and indicating possibilities for new clinical treatments.
Collapse
Affiliation(s)
- Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
| | - Rene Markovič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
| | - Saška Lipovšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Ismael Valladolid-Acebes
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, 171 76 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, 171 76 Stockholm, Sweden
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Complexity Science Hub Vienna, 1080 Vienna, Austria
- Authors for correspondence: Matjač Perc e-mail:
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Education, University of Maribor, 2000 Maribor, Slovenia
- Authors for correspondence: Marko Marhl e-mail:
| |
Collapse
|
15
|
Grubelnik V, Markovič R, Lipovšek S, Leitinger G, Gosak M, Dolenšek J, Valladolid-Acebes I, Berggren PO, Stožer A, Perc M, Marhl M. Modelling of dysregulated glucagon secretion in type 2 diabetes by considering mitochondrial alterations in pancreatic α-cells. ROYAL SOCIETY OPEN SCIENCE 2020. [PMID: 32218947 DOI: 10.5061/dryad.9n2k1vk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has been associated with insulin resistance and the failure of β-cells to produce and secrete enough insulin as the disease progresses. However, clinical treatments based solely on insulin secretion and action have had limited success. The focus is therefore shifting towards α-cells, in particular to the dysregulated secretion of glucagon. Our qualitative electron-microscopy-based observations gave an indication that mitochondria in α-cells are altered in Western-diet-induced T2DM. In particular, α-cells extracted from mouse pancreatic tissue showed a lower density of mitochondria, a less expressed matrix and a lower number of cristae. These deformities in mitochondrial ultrastructure imply a decreased efficiency in mitochondrial ATP production, which prompted us to theoretically explore and clarify one of the most challenging problems associated with T2DM, namely the lack of glucagon secretion in hypoglycaemia and its oversecretion at high blood glucose concentrations. To this purpose, we constructed a novel computational model that links α-cell metabolism with their electrical activity and glucagon secretion. Our results show that defective mitochondrial metabolism in α-cells can account for dysregulated glucagon secretion in T2DM, thus improving our understanding of T2DM pathophysiology and indicating possibilities for new clinical treatments.
Collapse
Affiliation(s)
- Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
| | - Rene Markovič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
| | - Saška Lipovšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Ismael Valladolid-Acebes
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, 171 76 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, 171 76 Stockholm, Sweden
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Complexity Science Hub Vienna, 1080 Vienna, Austria
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Education, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
16
|
Briant LJB, Dodd MS, Chibalina MV, Rorsman NJG, Johnson PRV, Carmeliet P, Rorsman P, Knudsen JG. CPT1a-Dependent Long-Chain Fatty Acid Oxidation Contributes to Maintaining Glucagon Secretion from Pancreatic Islets. Cell Rep 2019; 23:3300-3311. [PMID: 29898400 PMCID: PMC6581793 DOI: 10.1016/j.celrep.2018.05.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/19/2018] [Accepted: 05/11/2018] [Indexed: 12/30/2022] Open
Abstract
Glucagon, the principal hyperglycemic hormone, is secreted from pancreatic islet α cells as part of the counter-regulatory response to hypoglycemia. Hence, secretory output from α cells is under high demand in conditions of low glucose supply. Many tissues oxidize fat as an alternate energy substrate. Here, we show that glucagon secretion in low glucose conditions is maintained by fatty acid metabolism in both mouse and human islets, and that inhibiting this metabolic pathway profoundly decreases glucagon output by depolarizing α cell membrane potential and decreasing action potential amplitude. We demonstrate, by using experimental and computational approaches, that this is not mediated by the KATP channel, but instead due to reduced operation of the Na+-K+ pump. These data suggest that counter-regulatory secretion of glucagon is driven by fatty acid metabolism, and that the Na+-K+ pump is an important ATP-dependent regulator of α cell function. Glucagon secretion in low glucose is maintained by CPT1a-dependent FAO Loss of CPT1a-dependent FAO in mouse and human islets decreases glucagon secretion CPT1a-dependent FAO maintains glucagon secretion by supplying ATP to the Na+-K+-ATPase CPT1a-dependent FAO contributes to the counter-regulatory secretion of glucagon
Collapse
Affiliation(s)
- Linford J B Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
| | - Michael S Dodd
- Department of Physiology, Anatomy & Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK; Faculty of Health and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Margarita V Chibalina
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Nils J G Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Paul R V Johnson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; Metabolic Research, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Göteborg, Box 433, 405 30 Göteborg, Sweden
| | - Jakob G Knudsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK.
| |
Collapse
|
17
|
Leavesley SJ, Walters M, Lopez C, Baker T, Favreau PF, Rich TC, Rider PF, Boudreaux CW. Hyperspectral imaging fluorescence excitation scanning for colon cancer detection. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:104003. [PMID: 27792808 PMCID: PMC5084534 DOI: 10.1117/1.jbo.21.10.104003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/04/2016] [Indexed: 05/06/2023]
Abstract
Optical spectroscopy and hyperspectral imaging have shown the potential to discriminate between cancerous and noncancerous tissue with high sensitivity and specificity. However, to date, these techniques have not been effectively translated to real-time endoscope platforms. Hyperspectral imaging of the fluorescence excitation spectrum represents new technology that may be well suited for endoscopic implementation. However, the feasibility of detecting differences between normal and cancerous mucosa using fluorescence excitation-scanning hyperspectral imaging has not been evaluated. The goal of this study was to evaluate the initial feasibility of using fluorescence excitation-scanning hyperspectral imaging for measuring changes in fluorescence excitation spectrum concurrent with colonic adenocarcinoma using a small pre-pilot-scale sample size. Ex vivo analysis was performed using resected pairs of colorectal adenocarcinoma and normal mucosa. Adenocarcinoma was confirmed by histologic evaluation of hematoxylin and eosin (H&E) permanent sections. Specimens were imaged using a custom hyperspectral imaging fluorescence excitation-scanning microscope system. Results demonstrated consistent spectral differences between normal and cancerous tissues over the fluorescence excitation range of 390 to 450 nm that could be the basis for wavelength-dependent detection of colorectal cancers. Hence, excitation-scanning hyperspectral imaging may offer an alternative approach for discriminating adenocarcinoma from surrounding normal colonic mucosa, but further studies will be required to evaluate the accuracy of this approach using a larger patient cohort.
Collapse
Affiliation(s)
- Silas J. Leavesley
- University of South Alabama, Department of Chemical and Biomolecular Engineering, 150 Jaguar Drive, SH 4129, Mobile, Alabama 36688, United States
- University of South Alabama, Department of Pharmacology, 5851 USA North Drive, MSB 3372, Mobile, Alabama 36688, United States
- University of South Alabama, Center for Lung Biology, 5851 USA North Drive, MSB 3340, Mobile, Alabama 36688, United States
| | - Mikayla Walters
- University of South Alabama, Department of Chemical and Biomolecular Engineering, 150 Jaguar Drive, SH 4129, Mobile, Alabama 36688, United States
| | - Carmen Lopez
- University of South Alabama, Medical Sciences Program, 5851 USA North Drive, MSB 3340, Mobile, Alabama 36688, United States
| | - Thomas Baker
- University of South Alabama, Department of Pharmacology, 5851 USA North Drive, MSB 3372, Mobile, Alabama 36688, United States
| | - Peter F. Favreau
- University of South Alabama, Department of Chemical and Biomolecular Engineering, 150 Jaguar Drive, SH 4129, Mobile, Alabama 36688, United States
- University of South Alabama, Center for Lung Biology, 5851 USA North Drive, MSB 3340, Mobile, Alabama 36688, United States
| | - Thomas C. Rich
- University of South Alabama, Department of Pharmacology, 5851 USA North Drive, MSB 3372, Mobile, Alabama 36688, United States
- University of South Alabama, Center for Lung Biology, 5851 USA North Drive, MSB 3340, Mobile, Alabama 36688, United States
| | - Paul F. Rider
- University of South Alabama, Department of Surgery, 2451 Fillingim Street, Mastin Building, Suite 701, Mobile, Alabama 36617, United States
| | - Carole W. Boudreaux
- University of South Alabama, Department of Pathology, 2451 Fillingim Street, Mobile, Alabama 36617, United States
| |
Collapse
|
18
|
Gregg T, Poudel C, Schmidt BA, Dhillon RS, Sdao SM, Truchan NA, Baar EL, Fernandez LA, Denu JM, Eliceiri KW, Rogers JD, Kimple ME, Lamming DW, Merrins MJ. Pancreatic β-Cells From Mice Offset Age-Associated Mitochondrial Deficiency With Reduced KATP Channel Activity. Diabetes 2016; 65:2700-10. [PMID: 27284112 PMCID: PMC5001174 DOI: 10.2337/db16-0432] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022]
Abstract
Aging is accompanied by impaired glucose homeostasis and an increased risk of type 2 diabetes, culminating in the failure of insulin secretion from pancreatic β-cells. To investigate the effects of age on β-cell metabolism, we established a novel assay to directly image islet metabolism with NAD(P)H fluorescence lifetime imaging (FLIM). We determined that impaired mitochondrial activity underlies an age-dependent loss of insulin secretion in human islets. NAD(P)H FLIM revealed a comparable decline in mitochondrial function in the pancreatic islets of aged mice (≥24 months), the result of 52% and 57% defects in flux through complex I and II, respectively, of the electron transport chain. However, insulin secretion and glucose tolerance are preserved in aged mouse islets by the heightened metabolic sensitivity of the β-cell triggering pathway, an adaptation clearly encoded in the metabolic and Ca(2+) oscillations that trigger insulin release (Ca(2+) plateau fraction: young 0.211 ± 0.006, aged 0.380 ± 0.007, P < 0.0001). This enhanced sensitivity is driven by a reduction in KATP channel conductance (diazoxide: young 5.1 ± 0.2 nS; aged 3.5 ± 0.5 nS, P < 0.01), resulting in an ∼2.8 mmol/L left shift in the β-cell glucose threshold. The results demonstrate how mice but not humans are able to successfully compensate for age-associated metabolic dysfunction by adjusting β-cell glucose sensitivity and highlight an essential mechanism for ensuring the maintenance of insulin secretion.
Collapse
Affiliation(s)
- Trillian Gregg
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI Biophysics Graduate Training Program, University of Wisconsin-Madison, Madison, WI Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI
| | - Chetan Poudel
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI
| | - Brian A Schmidt
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI
| | - Rashpal S Dhillon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Sophia M Sdao
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Nathan A Truchan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI
| | - Emma L Baar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI
| | - Luis A Fernandez
- Department of Surgery, Division of Transplantation, University of Wisconsin-Madison, Madison, WI
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI
| | - Jeremy D Rogers
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI
| | - Michelle E Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Dudley W Lamming
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI William S. Middleton Memorial Veterans Hospital, Madison, WI
| |
Collapse
|
19
|
Gylfe E. Glucose control of glucagon secretion-'There's a brand-new gimmick every year'. Ups J Med Sci 2016; 121:120-32. [PMID: 27044660 PMCID: PMC4900067 DOI: 10.3109/03009734.2016.1154905] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 11/13/2022] Open
Abstract
Glucagon from the pancreatic α-cells is a major blood glucose-regulating hormone whose most important role is to prevent hypoglycaemia that can be life-threatening due to the brain's strong dependence on glucose as energy source. Lack of blood glucose-lowering insulin after malfunction or autoimmune destruction of the pancreatic β-cells is the recognized cause of diabetes, but recent evidence indicates that diabetic hyperglycaemia would not develop unless lack of insulin was accompanied by hypersecretion of glucagon. Glucagon release has therefore become an increasingly important target in diabetes management. Despite decades of research, an understanding of how glucagon secretion is regulated remains elusive, and fundamentally different mechanisms continue to be proposed. The autonomous nervous system is an important determinant of glucagon release, but it is clear that secretion is also directly regulated within the pancreatic islets. The present review focuses on pancreatic islet mechanisms involved in glucose regulation of glucagon release. It will be argued that α-cell-intrinsic processes are most important for regulation of glucagon release during recovery from hypoglycaemia and that paracrine inhibition by somatostatin from the δ-cells shapes pulsatile glucagon release in hyperglycaemia. The electrically coupled β-cells ultimately determine islet hormone pulsatility by releasing synchronizing factors that affect the α- and δ-cells.
Collapse
Affiliation(s)
- Erik Gylfe
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Inhibition of the malate-aspartate shuttle in mouse pancreatic islets abolishes glucagon secretion without affecting insulin secretion. Biochem J 2015; 468:49-63. [PMID: 25731850 DOI: 10.1042/bj20140697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Altered secretion of insulin as well as glucagon has been implicated in the pathogenesis of Type 2 diabetes (T2D), but the mechanisms controlling glucagon secretion from α-cells largely remain unresolved. Therefore, we studied the regulation of glucagon secretion from αTC1-6 (αTC1 clone 6) cells and compared it with insulin release from INS-1 832/13 cells. We found that INS-1 832/13 and αTC1-6 cells respectively secreted insulin and glucagon concentration-dependently in response to glucose. In contrast, tight coupling of glycolytic and mitochondrial metabolism was observed only in INS-1 832/13 cells. Although glycolytic metabolism was similar in the two cell lines, TCA (tricarboxylic acid) cycle metabolism, respiration and ATP levels were less glucose-responsive in αTC1-6 cells. Inhibition of the malate-aspartate shuttle, using phenyl succinate (PhS), abolished glucose-provoked ATP production and hormone secretion from αTC1-6 but not INS-1 832/13 cells. Blocking the malate-aspartate shuttle increased levels of glycerol 3-phosphate only in INS-1 832/13 cells. Accordingly, relative expression of constituents in the glycerol phosphate shuttle compared with malate-aspartate shuttle was lower in αTC1-6 cells. Our data suggest that the glycerol phosphate shuttle augments the malate-aspartate shuttle in INS-1 832/13 but not αTC1-6 cells. These results were confirmed in mouse islets, where PhS abrogated secretion of glucagon but not insulin. Furthermore, expression of the rate-limiting enzyme of the glycerol phosphate shuttle was higher in sorted primary β- than in α-cells. Thus, suppressed glycerol phosphate shuttle activity in the α-cell may prevent a high rate of glycolysis and consequently glucagon secretion in response to glucose. Accordingly, pyruvate- and lactate-elicited glucagon secretion remains unaffected since their signalling is independent of mitochondrial shuttles.
Collapse
|
21
|
Irles E, Ñeco P, Lluesma M, Villar-Pazos S, Santos-Silva JC, Vettorazzi JF, Alonso-Magdalena P, Carneiro EM, Boschero AC, Nadal Á, Quesada I. Enhanced glucose-induced intracellular signaling promotes insulin hypersecretion: pancreatic beta-cell functional adaptations in a model of genetic obesity and prediabetes. Mol Cell Endocrinol 2015; 404:46-55. [PMID: 25633666 DOI: 10.1016/j.mce.2015.01.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/13/2022]
Abstract
Obesity is associated with insulin resistance and is known to be a risk factor for type-2 diabetes. In obese individuals, pancreatic beta-cells try to compensate for the increased insulin demand in order to maintain euglycemia. Most studies have reported that this adaptation is due to morphological changes. However, the involvement of beta-cell functional adaptations in this process needs to be clarified. For this purpose, we evaluated different key steps in the glucose-stimulated insulin secretion (GSIS) in intact islets from female ob/ob obese mice and lean controls. Obese mice showed increased body weight, insulin resistance, hyperinsulinemia, glucose intolerance and fed hyperglycemia. Islets from ob/ob mice exhibited increased glucose-induced mitochondrial activity, reflected by enhanced NAD(P)H production and mitochondrial membrane potential hyperpolarization. Perforated patch-clamp examination of beta-cells within intact islets revealed several alterations in the electrical activity such as increased firing frequency and higher sensitivity to low glucose concentrations. A higher intracellular Ca(2+) mobilization in response to glucose was also found in ob/ob islets. Additionally, they displayed a change in the oscillatory pattern and Ca(2+) signals at low glucose levels. Capacitance experiments in intact islets revealed increased exocytosis in individual ob/ob beta-cells. All these up-regulated processes led to increased GSIS. In contrast, we found a lack of beta-cell Ca(2+) signal coupling, which could be a manifestation of early defects that lead to beta-cell malfunction in the progression to diabetes. These findings indicate that beta-cell functional adaptations are an important process in the compensatory response to obesity.
Collapse
Affiliation(s)
- Esperanza Irles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Patricia Ñeco
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Mónica Lluesma
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Sabrina Villar-Pazos
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Junia Carolina Santos-Silva
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Jean F Vettorazzi
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Paloma Alonso-Magdalena
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Everardo M Carneiro
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Antonio C Boschero
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Ángel Nadal
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Ivan Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
22
|
Abstract
Glucose homeostasis is precisely regulated by glucagon and insulin, which are released by pancreatic α- and β-cells, respectively. While β-cells have been the focus of intense research, less is known about α-cell function and the actions of glucagon. In recent years, the study of this endocrine cell type has experienced a renewed drive. The present review contains a summary of established concepts as well as new information about the regulation of α-cells by glucose, amino acids, fatty acids and other nutrients, focusing especially on glucagon release, glucagon synthesis and α-cell survival. We have also discussed the role of glucagon in glucose homeostasis and in energy and lipid metabolism as well as its potential as a modulator of food intake and body weight. In addition to the well-established action on the liver, we discuss the effects of glucagon in other organs, where the glucagon receptor is expressed. These tissues include the heart, kidneys, adipose tissue, brain, small intestine and the gustatory epithelium. Alterations in α-cell function and abnormal glucagon concentrations are present in diabetes and are thought to aggravate the hyperglycaemic state of diabetic patients. In this respect, several experimental approaches in diabetic models have shown important beneficial results in improving hyperglycaemia after the modulation of glucagon secretion or action. Moreover, glucagon receptor agonism has also been used as a therapeutic strategy to treat obesity.
Collapse
|
23
|
Abstract
Glucagon secreted by pancreatic α-cells is the major hyperglycemic hormone correcting acute hypoglycaemia (glucose counterregulation). In diabetes the glucagon response to hypoglycaemia becomes compromised and chronic hyperglucagonemia appears. There is increasing awareness that glucagon excess may underlie important manifestations of diabetes. However opinions differ widely how glucose controls glucagon secretion. The autonomous nervous system plays an important role in the glucagon response to hypoglycaemia. But it is clear that glucose controls glucagon secretion also by mechanisms involving direct effects on α-cells or indirect effects via paracrine factors released from non-α-cells within the pancreatic islets. The present review discusses these mechanisms and argues that different regulatory processes are involved in a glucose concentration-dependent manner. Direct glucose effects on the α-cell and autocrine mechanisms are probably most significant for the glucagon response to hypoglycaemia. During hyperglycaemia, when secretion from β- and δ-cells is stimulated, paracrine inhibitory factors generate pulsatile glucagon release in opposite phase to pulsatile release of insulin and somatostatin. High concentrations of glucose have also stimulatory effects on glucagon secretion that tend to balance and even exceed the inhibitory influence. The latter actions might underlie the paradoxical hyperglucagonemia that aggravates hyperglycaemia in persons with diabetes.
Collapse
Affiliation(s)
- Erik Gylfe
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, SE-751 23, Uppsala, Sweden.
| | - Patrick Gilon
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
24
|
Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2013; 2:863-914. [PMID: 22943001 DOI: 10.1002/cphy.c110024] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol, and dehydroascorbicacid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into three classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been coopted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 is a proton/myoinositol cotransporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity, and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption,distribution, cellular transport and metabolism, and recovery/retention. Glucose transport and metabolism have coevolved in mammals to support cerebral glucose utilization.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
25
|
Merrins MJ, Van Dyke AR, Mapp AK, Rizzo MA, Satin LS. Direct measurements of oscillatory glycolysis in pancreatic islet β-cells using novel fluorescence resonance energy transfer (FRET) biosensors for pyruvate kinase M2 activity. J Biol Chem 2013; 288:33312-22. [PMID: 24100037 DOI: 10.1074/jbc.m113.508127] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pulses of insulin released from pancreatic β-cells maintain blood glucose in a narrow range, although the source of these pulses is unclear. We and others have proposed that positive feedback mediated by the glycolytic enzyme phosphofructokinase-1 (PFK1) enables β-cells to generate metabolic oscillations via autocatalytic activation by its product fructose 1,6-bisphosphate (FBP). Although much indirect evidence has accumulated in favor of this hypothesis, a direct measurement of oscillating glycolytic intermediates has been lacking. To probe glycolysis directly, we engineered a family of inter- and intramolecular FRET biosensors based on the glycolytic enzyme pyruvate kinase M2 (PKAR; pyruvate kinase activity reporter), which multimerizes and is activated upon binding FBP. When introduced into Min6 β-cells, PKAR FRET efficiency increased rapidly in response to glucose. Importantly, however, metabolites entering downstream of PFK1 (glyceraldehyde, pyruvate, and ketoisocaproate) failed to activate PKAR, consistent with sensor activation by FBP; the dependence of PKAR on FBP was further confirmed using purified sensor in vitro. Using a novel imaging modality for monitoring mitochondrial flavin fluorescence in mouse islets, we show that slow oscillations in mitochondrial redox potential stimulated by 10 mm glucose are in phase with glycolytic efflux through PKM2, measured simultaneously from neighboring islet β-cells expressing PKAR. These results indicate that PKM2 activity in β-cells is oscillatory and are consistent with pulsatile PFK1 being the mediator of slow glycolytic oscillations.
Collapse
Affiliation(s)
- Matthew J Merrins
- From the Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | | | | | | | | |
Collapse
|
26
|
Cheng-Xue R, Gómez-Ruiz A, Antoine N, Noël LA, Chae HY, Ravier MA, Chimienti F, Schuit FC, Gilon P. Tolbutamide controls glucagon release from mouse islets differently than glucose: involvement of K(ATP) channels from both α-cells and δ-cells. Diabetes 2013; 62:1612-22. [PMID: 23382449 PMCID: PMC3636641 DOI: 10.2337/db12-0347] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We evaluated the role of ATP-sensitive K⁺ (K(ATP)) channels, somatostatin, and Zn²⁺ in the control of glucagon secretion from mouse islets. Switching from 1 to 7 mmol/L glucose inhibited glucagon release. Diazoxide did not reverse the glucagonostatic effect of glucose. Tolbutamide decreased glucagon secretion at 1 mmol/L glucose (G1) but stimulated it at 7 mmol/L glucose (G7). The reduced glucagon secretion produced by high concentrations of tolbutamide or diazoxide, or disruption of K(ATP) channels (Sur1(-/-) mice) at G1 could be inhibited further by G7. Removal of the somatostatin paracrine influence (Sst(-/-) mice or pretreatement with pertussis toxin) strongly increased glucagon release, did not prevent the glucagonostatic effect of G7, and unmasked a marked glucagonotropic effect of tolbutamide. Glucose inhibited glucagon release in the absence of functional K(ATP) channels and somatostatin signaling. Knockout of the Zn²⁺ transporter ZnT8 (ZnT8(-/-) mice) did not prevent the glucagonostatic effect of glucose. In conclusion, glucose can inhibit glucagon release independently of Zn²⁺, K(ATP) channels, and somatostatin. Closure of K(ATP) channels controls glucagon secretion by two mechanisms, a direct stimulation of α-cells and an indirect inhibition via somatostatin released from δ-cells. The net effect on glucagon release results from a balance between both effects.
Collapse
Affiliation(s)
- Rui Cheng-Xue
- Pôle d’Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ana Gómez-Ruiz
- Pôle d’Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Nancy Antoine
- Pôle d’Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Laura A. Noël
- Pôle d’Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hee-Young Chae
- Pôle d’Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Magalie A. Ravier
- Institut de Génomique Fonctionnelle, CNRS UMR-5203, INSERM U661, Universités de Montpellier 1 et 2, Montpellier, France
| | | | - Frans C. Schuit
- Gene Expression Unit, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Patrick Gilon
- Pôle d’Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Corresponding author: Patrick Gilon,
| |
Collapse
|
27
|
Habegger KM, Stemmer K, Cheng C, Müller TD, Heppner KM, Ottaway N, Holland J, Hembree JL, Smiley D, Gelfanov V, Krishna R, Arafat AM, Konkar A, Belli S, Kapps M, Woods SC, Hofmann SM, D’Alessio D, Pfluger PT, Perez-Tilve D, Seeley RJ, Konishi M, Itoh N, Kharitonenkov A, Spranger J, DiMarchi RD, Tschöp MH. Fibroblast growth factor 21 mediates specific glucagon actions. Diabetes 2013; 62:1453-63. [PMID: 23305646 PMCID: PMC3636653 DOI: 10.2337/db12-1116] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glucagon, an essential regulator of glucose homeostasis, also modulates lipid metabolism and promotes weight loss, as reflected by the wasting observed in glucagonoma patients. Recently, coagonist peptides that include glucagon agonism have emerged as promising therapeutic candidates for the treatment of obesity and diabetes. We developed a novel stable and soluble glucagon receptor (GcgR) agonist, which allowed for in vivo dissection of glucagon action. As expected, chronic GcgR agonism in mice resulted in hyperglycemia and lower body fat and plasma cholesterol. Notably, GcgR activation also raised hepatic expression and circulating levels of fibroblast growth factor 21 (FGF21). This effect was retained in isolated primary hepatocytes from wild-type (WT) mice, but not GcgR knockout mice. We confirmed this link in healthy human volunteers, where injection of natural glucagon increased plasma FGF21 within hours. Functional relevance was evidenced in mice with genetic deletion of FGF21, where GcgR activation failed to induce the body weight loss and lipid metabolism changes observed in WT mice. Taken together, these data reveal for the first time that glucagon controls glucose, energy, and lipid metabolism at least in part via FGF21-dependent pathways.
Collapse
Affiliation(s)
- Kirk M. Habegger
- Metabolic Disease Institute, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
| | - Christine Cheng
- Diabetes Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana
| | - Timo D. Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
| | - Kristy M. Heppner
- Metabolic Disease Institute, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Nickki Ottaway
- Metabolic Disease Institute, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Jenna Holland
- Metabolic Disease Institute, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Jazzminn L. Hembree
- Metabolic Disease Institute, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - David Smiley
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | - Vasily Gelfanov
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | - Radha Krishna
- Metabolic Disease Institute, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Ayman M. Arafat
- Department of Endocrinology, Diabetes, and Nutrition, Charité University Hospitals, Berlin, Germany
| | | | - Sara Belli
- F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Stephen C. Woods
- Metabolic Disease Institute, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Susanna M. Hofmann
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, München/Neuherberg, Germany
| | - David D’Alessio
- Metabolic Disease Institute, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Paul T. Pfluger
- Institute for Diabetes and Obesity, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
| | - Diego Perez-Tilve
- Metabolic Disease Institute, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Randy J. Seeley
- Metabolic Disease Institute, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Morichika Konishi
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Nobuyujki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Alexei Kharitonenkov
- Diabetes Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana
| | - Joachim Spranger
- Department of Endocrinology, Diabetes, and Nutrition, Charité University Hospitals, Berlin, Germany
| | | | - Matthias H. Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
- Corresponding author: Matthias H. Tschöp,
| |
Collapse
|
28
|
Hauge-Evans AC, Anderson RL, Persaud SJ, Jones PM. Delta cell secretory responses to insulin secretagogues are not mediated indirectly by insulin. Diabetologia 2012; 55:1995-2004. [PMID: 22526610 DOI: 10.1007/s00125-012-2546-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
AIMS/HYPOTHESIS Somatostatin from islet delta cells inhibits insulin and glucagon secretion, but knowledge of the regulation of pancreatic somatostatin release is limited. Some insulin secretagogues stimulate somatostatin secretion, and here we investigated whether delta cell secretory responses are indirectly regulated in a paracrine manner by insulin released from beta cells. METHODS Hormone release from static incubations of primary mouse islets or somatostatin-secreting TGP52 cells was measured by RIA. mRNA expression was assessed by RT-PCR. RESULTS Glucose and a range of other physiological and pharmacological agents stimulated insulin and somatostatin release, and insulin receptor mRNA was expressed in islets, MIN6 beta cells and TGP52 cells. However, exogenous insulin did not modulate basal or glucose-induced somatostatin secretion from islets, nor did pre-incubation with an antibody against the insulin receptor or with the insulin receptor tyrosine kinase inhibitor, HNMPA(AM)(3). Glucose and tolbutamide stimulated somatostatin release from TGP52 cells, whereas a range of receptor-operating agents had no effect, the latter being consistent with a lack of corresponding receptor mRNA expression in these cells. Parasympathetic activation stimulated insulin, but inhibited somatostatin release from mouse islets in accordance with differences in muscarinic receptor mRNA expression in islets, MIN6 and TGP52 cells. The inhibitory effect on somatostatin secretion was reversed by pertussis toxin or the muscarinic receptor 2 antagonist, methoctramine. CONCLUSIONS/INTERPRETATIONS A number of insulin secretagogues have analogous effects on insulin and somatostatin release, but this similarity of response is not mediated by an indirect, paracrine action of insulin on delta cells.
Collapse
Affiliation(s)
- A C Hauge-Evans
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, School of Medicine, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK.
| | | | | | | |
Collapse
|
29
|
Köhler M, Daré E, Ali MY, Rajasekaran SS, Moede T, Leibiger B, Leibiger IB, Tibell A, Juntti-Berggren L, Berggren PO. One-step purification of functional human and rat pancreatic alpha cells. Integr Biol (Camb) 2012; 4:209-19. [PMID: 22267247 DOI: 10.1039/c2ib00125j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic alpha cells contribute to glucose homeostasis by the regulated secretion of glucagon, which increases glycogenolysis and hepatic gluconeogenesis in response to hypoglycemia. Alterations of glucagon secretion are observed in diabetic patients and exacerbate the disease. The restricted availability of purified primary alpha cells has limited our understanding of their function in health and disease. This study was designed to establish convenient protocols for the purification of viable alpha cells from rat and human pancreatic islets by FACS, using intrinsic cellular properties. Islets were isolated from the pancreata of Wistar rats or deceased human organ donors. Dispersed islet cells were separated by FACS based on light scatter and autofluorescence. Purity of sorted cells was evaluated by immunocytochemistry using hormone specific antibodies. Relative hormone expression was further determined by quantitative RT-PCR. Viability was determined by Annexin V and propidium iodide staining and function was assessed by monitoring cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) using Fura-2/AM. We developed species-specific FACS gating strategies that resulted in populations consisting mainly of alpha cells (96.6 ± 1.4%, n = 3 for rat; 95.4 ± 1.7%, n = 4 for human, mean ± SEM). These cell fractions showed ~5-fold and ~4-fold enrichment (rat and human, respectively) of glucagon mRNA expression compared to total ungated islet cells. Most of the sorted cells were viable and functional, as they responded with an increase in [Ca(2+)](i) upon stimulation with L-arginine (10 mM). The majority of the sorted human alpha cells responded also to stimulation with kainate (100 μM), whereas this response was infrequent in rat alpha cells. Using the same sample preparation, but a different gating strategy, we were also able to sort rat and human populations enriched in beta cells. In conclusion, we have simplified and optimized a method for the purification of rat alpha cells, as well as established a novel approach to separate human alpha cells using neither antibodies nor dyes possibly interfering with cellular functions.
Collapse
Affiliation(s)
- Martin Köhler
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1:03, SE-17176, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dittmar R, Potier E, van Zandvoort M, Ito K. Assessment of cell viability in three-dimensional scaffolds using cellular auto-fluorescence. Tissue Eng Part C Methods 2011; 18:198-204. [PMID: 21981657 DOI: 10.1089/ten.tec.2011.0334] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
After assessing cell viability (CV), tissue-engineered constructs are often discarded, as current CV assays commonly require specific (fluorescent) dyes to stain cells and may need scaffold/tissue digestion before quantifying the live and dead cells. Here, we demonstrate and evaluate how cellular auto-fluorescence can be exploited to facilitate a noninvasive CV estimation in three-dimensional scaffolds using two advanced microscopy methods. Mixtures of live and dead C2C12 myoblasts (0%, 25%, 50%, 75%, and 100% live cells) were prepared, and CV was determined before seeding cells into collagen carriers using the trypan blue (TB) assay. Cell-seeded collagen gels ([CSCGs], n=5/cell mixture) were produced by mixing collagen solution with the live/dead cell mixtures (7×10(6) cells/mL). After polymerization, two-photon microscopy (TPM) and confocal microscopy images of the CSCG were acquired (n=30 images/CSCG). It was found that live and dead cells systematically emit auto-fluorescent light with different spectral characteristics. Viable cells showed predominantly blue fluorescence with a peak emission around 470 nm, whereas dead cells appeared to mainly emit green fluorescent light with a peak intensity around 560 nm. For TPM, live and dead cells were distinguished spectrally. For confocal images, the intensity ratio of images taken with band-pass filters was used to distinguish live from dead cells. CV values obtained with both TPM and confocal imaging did not significantly differ from those acquired with the established TB method. In comparison to TPM, confocal microscopy was found to be less accurate in assessing the exact CV in constructs containing mostly live or dead cells. In summary, monitoring cellular auto-fluorescence using advanced microscopy techniques allows CV assessment requiring no additional dyes and/or scaffold digestion and, thus, may be especially suitable for tissue-engineering studies where CV is measured at multiple time points.
Collapse
Affiliation(s)
- Roman Dittmar
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | |
Collapse
|
31
|
Habegger KM, Heppner KM, Geary N, Bartness TJ, DiMarchi R, Tschöp MH. The metabolic actions of glucagon revisited. Nat Rev Endocrinol 2010; 6:689-97. [PMID: 20957001 PMCID: PMC3563428 DOI: 10.1038/nrendo.2010.187] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The initial identification of glucagon as a counter-regulatory hormone to insulin revealed this hormone to be of largely singular physiological and pharmacological purpose. Glucagon agonism, however, has also been shown to exert effects on lipid metabolism, energy balance, body adipose tissue mass and food intake. The ability of glucagon to stimulate energy expenditure, along with its hypolipidemic and satiating effects, in particular, make this hormone an attractive pharmaceutical agent for the treatment of dyslipidemia and obesity. Studies that describe novel preclinical applications of glucagon, alone and in concert with glucagon-like peptide 1 agonism, have revealed potential benefits of glucagon agonism in the treatment of the metabolic syndrome. Collectively, these observations challenge us to thoroughly investigate the physiology and therapeutic potential of insulin's long-known opponent.
Collapse
Affiliation(s)
- Kirk M Habegger
- Department of Medicine, University of Cincinnati, Metabolic Diseases Institute, Office E-217, 2170 East Galbraith Road, Cincinnati, OH 45237, USA
| | | | | | | | | | | |
Collapse
|
32
|
Ropero AB, Soriano S, Tudurí E, Marroquí L, Téllez N, Gassner B, Juan-Picó P, Montanya E, Quesada I, Kuhn M, Nadal A. The atrial natriuretic peptide and guanylyl cyclase-A system modulates pancreatic beta-cell function. Endocrinology 2010; 151:3665-74. [PMID: 20555029 DOI: 10.1210/en.2010-0119] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atrial natriuretic peptide (ANP) and its guanylyl cyclase-A (GC-A) receptor are being involved in metabolism, although their role in the endocrine pancreas is still greatly unknown. The aim of this work is to study a possible role for the ANP/GC-A system in modulating pancreatic beta-cell function. The results presented here show a direct effect of the GC-A receptor in regulating glucose-stimulated insulin secretion (GSIS) and beta-cell mass. GC-A activation by its natural ligand, ANP, rapidly blocked ATP-dependent potassium (K(ATP)) channel activity, increased glucose-elicited Ca(2+) signals, and enhanced GSIS in islets of Langerhans. The effect in GSIS was inhibited in islets from GC-A knockout (KO) mice. Pancreatic islets from GC-A KO mice responded to increasing glucose concentrations with enhanced insulin secretion compared with wild type (WT). Remarkably, islets from GC-A KO mice were smaller, presented lower beta-cell mass and decreased insulin content. However, glucose-induced Ca(2+) response was more vigorous in GC-A KO islets, and basal K(ATP) channel activity in GC-A KO beta-cells was greatly diminished compared with WT. When protein levels of the two K(ATP) channel constitutive subunits sulfonylurea receptor 1 and Inward rectifier potassium channel 6.2 were measured, both were diminished in GC-A KO islets. These alterations on beta-cell function were not associated with disruption of glucose tolerance or insulin sensitivity in vivo. Glucose and insulin tolerance tests were similar in WT and GC-A KO mice. Our data suggest that the ANP/GC-A system may have a modulating effect on beta-cell function.
Collapse
Affiliation(s)
- Ana B Ropero
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas andInstituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Soria B, Tudurí E, González A, Hmadcha A, Martin F, Nadal A, Quesada I. Pancreatic islet cells: a model for calcium-dependent peptide release. HFSP JOURNAL 2010; 4:52-60. [PMID: 20885773 DOI: 10.2976/1.3364560] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 02/25/2010] [Indexed: 11/19/2022]
Abstract
In mammals the concentration of blood glucose is kept close to 5 mmol∕l. Different cell types in the islet of Langerhans participate in the control of glucose homeostasis. β-cells, the most frequent type in pancreatic islets, are responsible for the synthesis, storage, and release of insulin. Insulin, released with increases in blood glucose promotes glucose uptake into the cells. In response to glucose changes, pancreatic α-, β-, and δ-cells regulate their electrical activity and Ca(2+) signals to release glucagon, insulin, and somatostatin, respectively. While all these signaling steps are stimulated in hypoglycemic conditions in α-cells, the activation of these events require higher glucose concentrations in β and also in δ-cells. The stimulus-secretion coupling process and intracellular Ca(2+) ([Ca(2+)](i)) dynamics that allow β-cells to secrete is well-accepted. Conversely, the mechanisms that regulate α- and δ-cell secretion are still under study. Here, we will consider the glucose-induced signaling mechanisms in each cell type and the mathematical models that explain Ca(2+) dynamics.
Collapse
|
34
|
Le Marchand SJ, Piston DW. Glucose suppression of glucagon secretion: metabolic and calcium responses from alpha-cells in intact mouse pancreatic islets. J Biol Chem 2010; 285:14389-98. [PMID: 20231269 DOI: 10.1074/jbc.m109.069195] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucagon is released from alpha-cells present in intact pancreatic islets at glucose concentrations below 4 mm, whereas higher glucose levels inhibit its secretion. The mechanisms underlying the suppression of alpha-cell secretory activity are poorly understood, but two general types of models have been proposed as follows: direct inhibition by glucose or paracrine inhibition from non-alpha-cells within the islet of Langerhans. To identify alpha-cells for analysis, we utilized transgenic mice expressing fluorescent proteins targeted specifically to these cells. Measurements of glucagon secretion from pure populations of flow-sorted alpha-cells show that contrary to its effect on intact islets, glucose does stimulate glucagon secretion from isolated alpha-cells. This observation argues against a direct inhibition of glucagon secretion by glucose and supports the paracrine inhibition model. Imaging of cellular metabolism by two-photon excitation of NAD(P)H autofluorescence indicates that glucose is metabolized in alpha-cells and that glucokinase is the likely rate-limiting step in this process. Imaging calcium dynamics of alpha-cells in intact islets reveals that inhibiting concentrations of glucose increase the intracellular calcium concentration and the frequency of alpha-cell calcium oscillations. Application of candidate paracrine inhibitors leads to reduced glucagon secretion but did not decrease the alpha-cell calcium activity. Taken together, the data suggest that suppression occurs downstream from alpha-cell calcium signaling, presumably at the level of vesicle trafficking or exocytotic machinery.
Collapse
Affiliation(s)
- Sylvain J Le Marchand
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
35
|
Rafacho A, Marroquí L, Taboga SR, Abrantes JLF, Silveira LR, Boschero AC, Carneiro EM, Bosqueiro JR, Nadal A, Quesada I. Glucocorticoids in vivo induce both insulin hypersecretion and enhanced glucose sensitivity of stimulus-secretion coupling in isolated rat islets. Endocrinology 2010; 151:85-95. [PMID: 19880808 DOI: 10.1210/en.2009-0704] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca(2+) signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca(2+) signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally, we explored the status of Ca(2+)-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase C alpha as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the beta-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity.
Collapse
Affiliation(s)
- Alex Rafacho
- Instituto de Bioingeniería, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Elche 03202, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tudurí E, Marroquí L, Soriano S, Ropero AB, Batista TM, Piquer S, López-Boado MA, Carneiro EM, Gomis R, Nadal A, Quesada I. Inhibitory effects of leptin on pancreatic alpha-cell function. Diabetes 2009; 58:1616-24. [PMID: 19401420 PMCID: PMC2699864 DOI: 10.2337/db08-1787] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Leptin released from adipocytes plays a key role in the control of food intake, energy balance, and glucose homeostasis. In addition to its central action, leptin directly affects pancreatic beta-cells, inhibiting insulin secretion, and, thus, modulating glucose homeostasis. However, despite the importance of glucagon secretion in glucose homeostasis, the role of leptin in alpha-cell function has not been studied in detail. In the present study, we have investigated this functional interaction. RESEARCH DESIGN AND METHODS The presence of leptin receptors (ObR) was demonstrated by RT-PCR analysis, Western blot, and immunocytochemistry. Electrical activity was analyzed by patch-clamp and Ca(2+) signals by confocal microscopy. Exocytosis and glucagon secretion were assessed using fluorescence methods and radioimmunoassay, respectively. RESULTS The expression of several ObR isoforms (a-e) was detected in glucagon-secreting alphaTC1-9 cells. ObRb, the main isoform involved in leptin signaling, was identified at the protein level in alphaTC1-9 cells as well as in mouse and human alpha-cells. The application of leptin (6.25 nmol/l) hyperpolarized the alpha-cell membrane potential, suppressing the electrical activity induced by 0.5 mmol/l glucose. Additionally, leptin inhibited Ca(2+) signaling in alphaTC1-9 cells and in mouse and human alpha-cells within intact islets. A similar result occurred with 0.625 nmol/l leptin. These effects were accompanied by a decrease in glucagon secretion from mouse islets and were counteracted by the phosphatidylinositol 3-kinase inhibitor, wortmannin, suggesting the involvement of this pathway in leptin action. CONCLUSIONS These results demonstrate that leptin inhibits alpha-cell function, and, thus, these cells are involved in the adipoinsular communication.
Collapse
Affiliation(s)
- Eva Tudurí
- Instituto de Bioingeniería, Universidad Miguel Hernandez, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Laura Marroquí
- Instituto de Bioingeniería, Universidad Miguel Hernandez, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Sergi Soriano
- Instituto de Bioingeniería, Universidad Miguel Hernandez, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Ana B. Ropero
- Instituto de Bioingeniería, Universidad Miguel Hernandez, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Thiago M. Batista
- Instituto Nacional de Pesquisa em Obesidade e Diabetes, Departmento de Anatomia, Biologia Celulare Fisiologia, Institute of Biology, Unicamp, Campinas, Brazil
| | - Sandra Piquer
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- Endocrinology and Diabetes Unit, Laboratory of Diabetes and Obesity, IDIBAPS-Fundació Clínic, Hospital Clínic, Barcelona, Spain
| | | | - Everardo M. Carneiro
- Instituto Nacional de Pesquisa em Obesidade e Diabetes, Departmento de Anatomia, Biologia Celulare Fisiologia, Institute of Biology, Unicamp, Campinas, Brazil
| | - Ramón Gomis
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- Endocrinology and Diabetes Unit, Laboratory of Diabetes and Obesity, IDIBAPS-Fundació Clínic, Hospital Clínic, Barcelona, Spain
| | - Angel Nadal
- Instituto de Bioingeniería, Universidad Miguel Hernandez, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Ivan Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernandez, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- Corresponding author: Ivan Quesada,
| |
Collapse
|
37
|
Gomez-Pinilla PJ, Camello PJ, Pozo MJ. Pancreatic calcium signaling: role in health and disease. Pancreatology 2009; 9:329-33. [PMID: 19451741 DOI: 10.1159/000213412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In order to control cell functions, extracellular agents, such as hormones or neurotransmitters among others, generate a diversity of calcium (Ca(2+)) signals in target cells. Here, we review the components involved in Ca(2+) handling and effectors, both members of the known calcium signaling pathways. In the pancreas, Ca(2+) signal appears as local increases, global elevations or Ca(2+) oscillations. Ca(2+) plays a key role in the pancreatic cells, regulating secretion in exocrine cells, a widely used model for studying the coupling between Ca(2+) signaling and secretion, and the release of insulin, glucagon and somatostatin in the exocrine pancreas. Interestingly, Ca(2+) deregulations have been related to pancreatitis and aging of the pancreas, and treatment with melatonin has shown beneficial effects suggesting that melatonin could be an adequate therapeutic approach.
Collapse
Affiliation(s)
- Pedro J Gomez-Pinilla
- Department of Physiology, Nursing School, University of Extremadura, Cáceres, Spain.
| | | | | |
Collapse
|
38
|
Quoix N, Cheng-Xue R, Mattart L, Zeinoun Z, Guiot Y, Beauvois MC, Henquin JC, Gilon P. Glucose and pharmacological modulators of ATP-sensitive K+ channels control [Ca2+]c by different mechanisms in isolated mouse alpha-cells. Diabetes 2009; 58:412-21. [PMID: 19008345 PMCID: PMC2628615 DOI: 10.2337/db07-1298] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE We studied how glucose and ATP-sensitive K(+) (K(ATP)) channel modulators affect alpha-cell [Ca(2+)](c). RESEARCH DESIGN AND METHODS GYY mice (expressing enhanced yellow fluorescent protein in alpha-cells) and NMRI mice were used. [Ca(2+)](c), the K(ATP) current (I(KATP), perforated mode) and cell metabolism [NAD(P)H fluorescence] were monitored in single alpha-cells and, for comparison, in single beta-cells. RESULTS In 0.5 mmol/l glucose, [Ca(2+)](c) oscillated in some alpha-cells and was basal in the others. Increasing glucose to 15 mmol/l decreased [Ca(2+)](c) by approximately 30% in oscillating cells and was ineffective in the others. alpha-Cell I(KATP) was inhibited by tolbutamide and activated by diazoxide or the mitochondrial poison azide, as in beta-cells. Tolbutamide increased alpha-cell [Ca(2+)](c), whereas diazoxide and azide abolished [Ca(2+)](c) oscillations. Increasing glucose from 0.5 to 15 mmol/l did not change I(KATP) and NAD(P)H fluorescence in alpha-cells in contrast to beta-cells. The use of nimodipine showed that L-type Ca(2+) channels are the main conduits for Ca(2+) influx in alpha-cells. gamma-Aminobutyric acid and zinc did not decrease alpha-cell [Ca(2+)](c), and insulin, although lowering [Ca(2+)](c) very modestly, did not affect glucagon secretion. CONCLUSIONS alpha-Cells display similarities with beta-cells: K(ATP) channels control Ca(2+) influx mainly through L-type Ca(2+) channels. However, alpha-cells have distinct features from beta-cells: Most K(ATP) channels are already closed at low glucose, glucose does not affect cell metabolism and I(KATP), and it slightly decreases [Ca(2+)](c). Hence, glucose and K(ATP) channel modulators exert distinct effects on alpha-cell [Ca(2+)](c). The direct small glucose-induced drop in alpha-cell [Ca(2+)](c) contributes likely only partly to the strong glucose-induced inhibition of glucagon secretion in islets.
Collapse
Affiliation(s)
- Nicolas Quoix
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Beneficial effects of intercellular interactions between pancreatic islet cells in blood glucose regulation. J Theor Biol 2008; 257:312-9. [PMID: 19135066 DOI: 10.1016/j.jtbi.2008.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 11/26/2008] [Accepted: 12/03/2008] [Indexed: 11/20/2022]
Abstract
Glucose homeostasis is controlled by the islets of Langerhans which are equipped with alpha-cells increasing the blood glucose level, beta-cells decreasing it, and delta-cells the precise role of which still needs identifying. Although intercellular communications between these endocrine cells have recently been observed, their roles in glucose homeostasis have not been clearly understood. In this study, we construct a mathematical model for an islet consisting of two-state alpha-, beta-, and delta-cells, and analyze effects of known chemical interactions between them with emphasis on the combined effects of those interactions. In particular, such features as paracrine signals of neighboring cells and cell-to-cell variations in response to external glucose concentrations as well as glucose dynamics, depending on insulin and glucagon hormone, are considered explicitly. Our model predicts three possible benefits of the cell-to-cell interactions: First, the asymmetric interaction between alpha- and beta-cells contributes to the dynamic stability while the perturbed glucose level recovers to the normal level. Second, the inhibitory interactions of delta-cells for glucagon and insulin secretion prevent the wasteful co-secretion of them at the normal glucose level. Finally, the glucose dose-responses of insulin secretion is modified to become more pronounced at high glucose levels due to the inhibition by delta-cells. It is thus concluded that the intercellular communications in islets of Langerhans should contribute to the effective control of glucose homeostasis.
Collapse
|
40
|
Tudurí E, Filiputti E, Carneiro EM, Quesada I. Inhibition of Ca2+ signaling and glucagon secretion in mouse pancreatic alpha-cells by extracellular ATP and purinergic receptors. Am J Physiol Endocrinol Metab 2008; 294:E952-60. [PMID: 18349114 DOI: 10.1152/ajpendo.00641.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucagon secreted from pancreatic alpha-cells plays a critical role in glycemia, mainly by hepatic glucose mobilization. In diabetic patients, an impaired control of glucagon release can worsen glucose homeostasis. Despite its importance, the mechanisms that regulate its secretion are still poorly understood. Since alpha-cells are particularly sensitive to neural and paracrine factors, in this report we studied the role of purinergic receptors and extracellular ATP, which can be released from nerve terminals and beta-cell secretory granules. Using immunocytochemistry, we identified in alpha-cells the P2 receptor subtype P2Y1, as well as the P1 receptors A1 and A2A. In contrast, only P2Y1 and A1 receptors were localized in beta-cells. To analyze the role of purinergic receptors in alpha-cell function, we studied their participation in Ca2+ signaling. At low glucose concentrations, mouse alpha-cells exhibited the characteristic oscillatory Ca2+ signals that lead to secretion. Application of ATP (1-10 microM) abolished these oscillations or reduced their frequency in alpha-cells within intact islets and isolated in culture. ATPgammaS, a nonhydrolyzable ATP derivative, indicated that the ATP effect was mainly direct rather than through ATP-hydrolytic products. Additionally, adenosine (1-10 microM) was also found to reduce Ca2+ signals. ATP-mediated inhibition of Ca2+ signaling was accompanied by a decrease in glucagon release from intact islets in contrast to the adenosine effect. Using pharmacological agonists, we found that only P2Y1 and A2A were likely involved in the inhibitory effect on Ca2+ signaling. All these findings indicate that extracellular ATP and purinergic stimulation are effective regulators of the alpha-cell function.
Collapse
Affiliation(s)
- Eva Tudurí
- Institute of Bioengineering, Miguel Hernandez University, Elche, Spain
| | | | | | | |
Collapse
|
41
|
Meyer AJ, Fricker MD. Imaging Thiol-Based Redox Processes in Live Cells. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Wikstrom JD, Katzman SM, Mohamed H, Twig G, Graf SA, Heart E, Molina AJA, Corkey BE, de Vargas LM, Danial NN, Collins S, Shirihai OS. beta-Cell mitochondria exhibit membrane potential heterogeneity that can be altered by stimulatory or toxic fuel levels. Diabetes 2007; 56:2569-78. [PMID: 17686943 DOI: 10.2337/db06-0757] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE beta-Cell response to glucose is characterized by mitochondrial membrane potential (Delta Psi) hyperpolarization and the production of metabolites that serve as insulin secretory signals. We have previously shown that glucose-induced mitochondrial hyperpolarization accompanies the concentration-dependent increase in insulin secretion within a wide range of glucose concentrations. This observation represents the integrated response of a large number of mitochondria within each individual cell. However, it is currently unclear whether all mitochondria within a single beta-cell represent a metabolically homogenous population and whether fuel or other stimuli can recruit or silence sizable subpopulations of mitochondria. This study offers insight into the different metabolic states of beta-cell mitochondria. RESULTS We show that mitochondria display a wide heterogeneity in Delta Psi and a millivolt range that is considerably larger than the change in millivolts induced by fuel challenge. Increasing glucose concentration recruits mitochondria into higher levels of homogeneity, while an in vitro diabetes model results in increased Delta Psi heterogeneity. Exploration of the mechanism behind heterogeneity revealed that temporary changes in Delta Psi of individual mitochondria, ATP-hydrolyzing mitochondria, and uncoupling protein 2 are not significant contributors to Delta Psi heterogeneity. We identified BAD, a proapoptotic BCL-2 family member previously implicated in mitochondrial recruitment of glucokinase, as a significant factor influencing the level of heterogeneity. CONCLUSIONS We suggest that mitochondrial Delta Psi heterogeneity in beta-cells reflects a metabolic reservoir recruited by an increased level of fuels and therefore may serve as a therapeutic target.
Collapse
Affiliation(s)
- Jakob D Wikstrom
- Tufts University, Department of Pharmacology and Experimental Therapeutics, 136 Harrison Ave., Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Quesada I, Villalobos C, Núñez L, Chamero P, Alonso MT, Nadal A, García-Sancho J. Glucose induces synchronous mitochondrial calcium oscillations in intact pancreatic islets. Cell Calcium 2007; 43:39-47. [PMID: 17499355 DOI: 10.1016/j.ceca.2007.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 03/14/2007] [Accepted: 03/15/2007] [Indexed: 11/16/2022]
Abstract
Mitochondria shape Ca(2+) signaling and exocytosis by taking up calcium during cell activation. In addition, mitochondrial Ca(2+) ([Ca(2+)](M)) stimulates respiration and ATP synthesis. Insulin secretion by pancreatic beta-cells is coded mainly by oscillations of cytosolic Ca(2+) ([Ca(2+)](C)), but mitochondria are also important in excitation-secretion coupling. Here, we have monitored [Ca(2+)](M) in single beta-cells within intact mouse islets by imaging bioluminescence of targeted aequorins. We find an increase of [Ca(2+)](M) in islet-cells in response to stimuli that induce either Ca(2+) entry, such as extracellular glucose, tolbutamide or high K(+), or Ca(2+) mobilization from the intracellular stores, such as ATP or carbamylcholine. Many cells responded to glucose with synchronous [Ca(2+)](M) oscillations, indicating that mitochondrial function is coordinated at the whole islet level. Mitochondrial Ca(2+) uptake in permeabilized beta-cells increased exponentially with increasing [Ca(2+)], and, particularly, it became much faster at [Ca(2+)](C)>2 microM. Since the bulk [Ca(2+)](C) signals during stimulation with glucose are smaller than 2 microM, mitochondrial Ca(2+) uptake could be not uniform, but to take place preferentially from high [Ca(2+)](C) microdomains formed near the mouth of the plasma membrane Ca(2+) channels. Measurements of mitochondrial NAD(P)H fluorescence in stimulated islets indicated that the [Ca(2+)](M) changes evidenced here activated mitochondrial dehydrogenases and therefore they may modulate the function of beta-cell mitochondria. Diazoxide, an activator of K(ATP), did not modify mitochondrial Ca(2+) uptake.
Collapse
Affiliation(s)
- Ivan Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | | | | | | | | | | | | |
Collapse
|
44
|
Lechin F, van der Dijs B. Central nervous system circuitry involved in the hyperinsulinism syndrome. Neuroendocrinology 2006; 84:222-34. [PMID: 17167239 DOI: 10.1159/000098005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 10/30/2006] [Indexed: 12/29/2022]
Abstract
Raised plasma levels of insulin, glucose and glucagon are found in patients affected by 'hyperinsulinism'. Obesity, hypertension, mammary plus ovary cysts and rheumatic symptoms are frequently observed in these patients. Sleep disorders and depression are also present in most subjects affected by this polysymptomatic disorder. The simultaneous increases of glucose, insulin and glucagon plasma levels seen in these patients indicate that the normal crosstalk between A cells, B cells and D cells is disrupted. With respect to this, it is well known that glucose excites B cells (which secrete insulin) and inhibits A cells (which secrete glucagon), which in turn excites D cells (which secrete somatostatin). Gastrointestinal hormones (incretins) modulate this crosstalk both directly and indirectly throughout pancreatic and hepatobiliary mechanisms. The above factors depend on autonomic nervous system mediation. For instance, acetylcholine released from parasympathetic nerves excites both B and A cells. Noradrenaline released from sympathetic nerves and adrenaline secreted from the adrenal glands inhibit B cells and excite A cells, which are crowded with beta(2)- and alpha(2)-receptors, respectively. Noradrenaline released from sympathetic nerves also excites A cells by acting at alpha(1)-receptors located at this level. According to this, the excessive release of noradrenaline from these nerves should provoke an enhancement of glucagon secretion which will result in overexcitation of insulin secretion from B cells. That is the disorder seen in the so-called 'hyperinsulinism', in which raised plasma levels of glucose, insulin and glucagon coexist. Taking into account that neural sympathetic activity is positively correlated to the A5 noradrenergic nucleus and median raphe serotonergic neurons, and negatively correlated to the A6 noradrenergic, the dorsal raphe serotonergic and the C1 adrenergic neurons, we postulate that this unbalanced central nervous system circuitry is responsible for the hyperinsulinism syndrome.
Collapse
Affiliation(s)
- Fuad Lechin
- Department of Physiological Sciences, Sections of Neurochemistry, Neurophysiology, Neuroimmunology and Neuropharmacology, Instituto de Medicina Experimental, Universidad Central de Venezuela, Caracas, Venezuela.
| | | |
Collapse
|