1
|
Cheng KH, Hung YC, Ling P, Hsu KS. Oxytocin treatment rescues irritability-like behavior in Cc2d1a conditional knockout mice. Neuropsychopharmacology 2024; 49:1792-1802. [PMID: 39014123 PMCID: PMC11399130 DOI: 10.1038/s41386-024-01920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
Irritability, a state of excessive reactivity to negative emotional stimuli, is common in individuals with autism spectrum disorder (ASD). Although it has a significant negative impact of patients' disease severity and quality of life, the neural mechanisms underlying irritability in ASD remain largely unclear. We have previously demonstrated that male mice lacking the Coiled-coil and C2 domain containing 1a (Cc2d1a) in forebrain excitatory neurons recapitulate numerous ASD-like behavioral phenotypes, including impaired social behaviors and pronounced repetitive behaviors. Here, using the bottle-brush test (BBT) to trigger and evaluate aggressive and defensive responses, we show that Cc2d1a deletion increases irritability-like behavior in male but not female mice, which is correlated with reduced number of oxytocin (OXT)-expressing neurons in the paraventricular nucleus (PVN) of the hypothalamus. Intranasal OXT administration or chemogenetic activation of OXT neurons in the PVN rescues irritability-like behavior in Cc2d1a conditional knockout (cKO) mice. Administration of a selective melanocortin receptor 4 agonist, RO27-3225, which potentiates endogenous OXT release, also alleviates irritability-like behavior in Cc2d1a cKO mice, an effect blocked by a specific OXT receptor antagonist, L-368,899. We additionally identify a projection connecting the posterior ventral segment of the medial amygdala (MeApv) and ventromedial nucleus of the ventromedial hypothalamus (VMHvl) for governing irritability-like behavior during the BBT. Chemogenetic suppression of the MeApv-VMHvl pathway alleviates irritability-like behavior in Cc2d1a cKO mice. Together, our study uncovers dysregulation of OXT system in irritability-like behavior in Cc2d1a cKO mice during the BBT and provide translatable insights into the development of OXT-based therapeutics for clinical interventions.
Collapse
Affiliation(s)
- Kuan-Hsiang Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chieh Hung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pin Ling
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Sen Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Khil J, Chen QY, Lee DH, Hong KW, Keum N. Water intake and obesity: By amount, timing, and perceived temperature of drinking water. PLoS One 2024; 19:e0301373. [PMID: 38662725 PMCID: PMC11045127 DOI: 10.1371/journal.pone.0301373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Water intake has been suggested to be associated with weight control, but evidence for optimal water intake in terms of amount, timing, and temperature is sparse. Additionally, genetic predisposition to obesity, which affects satiety and energy expenditure, might interact with water intake in regulating individual adiposity risk. We conducted a cross-sectional study recruiting 172 Korean adults. Information on water intake and lifestyle factors was collected through self-reported questionnaires, and height, weight, and waist circumference (WC) were measured by researchers. The oral buccal swab was performed for genotyping of FTO rs9939609, MC4R rs17782313, BDNF rs6265 and genetic risk of obesity was calculated. Linear regression was performed to estimate mean difference in body mass index (BMI) and WC by water intake and its 95% confidence interval (95% CI). As a sensitivity analysis, logistic regression was performed to estimate odds ratio (OR) of obesity/overweight (BMI of ≥23kg/m2; WC of ≥90cm for men and of ≥80cm for women) and its 95% CI. Drinking >1L/day was significantly associated with higher BMI (mean difference: 0.90, 95% CI 0.09, 1.72) and WC (mean difference: 3.01, 95% CI 0.62, 5.41) compared with drinking ≤1L/day. Independent of total water intake, drinking before bedtime was significantly associated with lower BMI (mean difference: -0.98, 95% CI -1.91, -0.05). The results remained consistent when continuous BMI and WC were analyzed as categorical outcomes. By perceived temperature, drinking >1L/day of cold water was associated with higher BMI and WC compared with drinking ≤1L/day of water at room-temperature. By genetic predisposition to obesity, a positive association between water intake and WC was confined to participants with low genetic risk of obesity (P interaction = 0.04). In conclusion, amount, timing, and perceived temperature of water intake may be associated with adiposity risk and the associations might vary according to genetic predisposition to obesity.
Collapse
Affiliation(s)
- Jaewon Khil
- Department of Food Science and Biotechnology, Dongguk University, Goyang, South Korea
| | - Qiao-Yi Chen
- Department of Food Science and Biotechnology, Dongguk University, Goyang, South Korea
| | - Dong Hoon Lee
- Department of Sport Industry Studies, Yonsei University, Seoul, South Korea
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | | | - NaNa Keum
- Department of Food Science and Biotechnology, Dongguk University, Goyang, South Korea
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| |
Collapse
|
3
|
Fansa S, Acosta A. The melanocortin-4 receptor pathway and the emergence of precision medicine in obesity management. Diabetes Obes Metab 2024; 26 Suppl 2:46-63. [PMID: 38504134 DOI: 10.1111/dom.15555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
Over the past few decades, there has been a global surge in the prevalence of obesity, rendering it a globally recognized epidemic. Contrary to simply being a medical condition, obesity is an intricate disease with a multifactorial aetiology. Understanding the precise cause of obesity remains a challenge; nevertheless, there seems to be a complex interplay among biological, psychosocial and behavioural factors. Studies on the genetic factors of obesity have revealed several pathways in the brain that play a crucial role in food intake regulation. The best characterized pathway, thus far, is the leptin-melanocortin pathway, from which disruptions are responsible for the majority of monogenic obesity disorders. The effectiveness of conservative lifestyle interventions in addressing monogenic obesity has been limited. Therefore, it is crucial to complement the management strategy with pharmacological and surgical options. Emphasis has been placed on developing drugs aimed at replacing the absent signals, with the goal of restoring the pathway. In both monogenic and polygenic forms of obesity, outcomes differ across various interventions, likely due to the multifaceted nature of the disease. This underscores the need to explore alternative therapeutic strategies that can mitigate this heterogeneity. Precision medicine can be regarded as a powerful tool that can address this concern, as it values the understanding of the underlying abnormality triggering the disease and provides a tailored treatment accordingly. This would assist in optimizing outcomes of the current therapeutic approaches and even aid in the development of novel treatments capable of more effectively managing the global obesity epidemic.
Collapse
Affiliation(s)
- Sima Fansa
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Ford CL, McDonough AA, Horie K, Young LJ. Melanocortin agonism in a social context selectively activates nucleus accumbens in an oxytocin-dependent manner. Neuropharmacology 2024; 247:109848. [PMID: 38253222 PMCID: PMC10923148 DOI: 10.1016/j.neuropharm.2024.109848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 10/18/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Social deficits are debilitating features of many psychiatric disorders, including autism. While time-intensive behavioral therapy is moderately effective, there are no pharmacological interventions for social deficits in autism. Many studies have attempted to treat social deficits using the neuropeptide oxytocin for its powerful neuromodulatory abilities and influence on social behaviors and cognition. However, clinical trials utilizing supplementation paradigms in which exogenous oxytocin is chronically administered independent of context have failed. An alternative treatment paradigm suggests pharmacologically activating the endogenous oxytocin system during behavioral therapy to enhance the efficacy of therapy by facilitating social learning. To this end, melanocortin receptor agonists like Melanotan II (MTII), which induces central oxytocin release and accelerates formation of partner preference, a form of social learning, in prairie voles, are promising pharmacological tools. To model pharmacological activation of the endogenous oxytocin system during behavioral therapy, we administered MTII prior to social interactions between male and female voles. We assessed its effect on oxytocin-dependent activity in brain regions subserving social learning using Fos expression as a proxy for neuronal activation. In non-social contexts, MTII only activated hypothalamic paraventricular nucleus, a primary site of oxytocin synthesis. However, during social interactions, MTII selectively increased oxytocin-dependent activation of nucleus accumbens, a site critical for social learning. These results suggest a mechanism for the MTII-induced acceleration of partner preference formation observed in previous studies. Moreover, they are consistent with the hypothesis that pharmacologically activating the endogenous oxytocin system with a melanocortin agonist during behavioral therapy has potential to facilitate social learning.
Collapse
Affiliation(s)
- Charles L Ford
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Atlanta, GA, 30329, USA.
| | - Anna A McDonough
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Atlanta, GA, 30329, USA
| | - Kengo Horie
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Atlanta, GA, 30329, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
5
|
Semple EA, Harberson MT, Xu B, Rashleigh R, Cartwright TL, Braun JJ, Custer AC, Liu C, Hill JW. Melanocortin 4 receptor signaling in Sim1 neurons permits sexual receptivity in female mice. Front Endocrinol (Lausanne) 2023; 14:983670. [PMID: 37033219 PMCID: PMC10080118 DOI: 10.3389/fendo.2023.983670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Female sexual dysfunction affects approximately 40% of women in the United States, yet few therapeutic options exist for these patients. The melanocortin system is a new treatment target for hypoactive sexual desire disorder (HSDD), but the neuronal pathways involved are unclear. Methods In this study, the sexual behavior of female MC4R knockout mice lacking melanocortin 4 receptors (MC4Rs) was examined. The mice were then bred to express MC4Rs exclusively on Sim1 neurons (tbMC4RSim1 mice) or on oxytocin neurons (tbMC4ROxt mice) to examine the effect on sexual responsiveness. Results MC4R knockout mice were found to approach males less and have reduced receptivity to copulation, as indicated by a low lordosis quotient. These changes were independent of body weight. Lordosis behavior was normalized in tbMC4RSim1 mice and improved in tbMC4ROxt mice. In contrast, approach behavior was unchanged in tbMC4RSim1 mice but greatly increased in tbMC4ROxt animals. The changes were independent of melanocortin-driven metabolic effects. Discussion These results implicate MC4R signaling in Oxt neurons in appetitive behaviors and MC4R signaling in Sim1 neurons in female sexual receptivity, while suggesting melanocortin-driven sexual function does not rely on metabolic neural circuits.
Collapse
Affiliation(s)
- Erin A. Semple
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Mitchell T. Harberson
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Baijie Xu
- Center for Hypothalamic Research, University of Texas Southwestern, Dallas, TX, United States
| | - Rebecca Rashleigh
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Tori L. Cartwright
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Jessica J. Braun
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Amy C. Custer
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Chen Liu
- Center for Hypothalamic Research, University of Texas Southwestern, Dallas, TX, United States
| | - Jennifer W. Hill
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, United States
| |
Collapse
|
6
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
7
|
Hall MAL, Kohut-Jackson AL, Peyla AC, Friedman GD, Simco NJ, Borland JM, Meisel RL. Melanocortin receptor 3 and 4 mRNA expression in the adult female Syrian hamster brain. Front Mol Neurosci 2023; 16:1038341. [PMID: 36910260 PMCID: PMC9995703 DOI: 10.3389/fnmol.2023.1038341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Melanocortin 3 receptors (MC3R) and melanocortin 4 receptors (MC4R) are vital in regulating a variety of functions across many species. For example, the dysregulation of these receptors results in obesity and dysfunction in sexual behaviors. Only a handful of studies have mapped the expression of MC3R and MC4R mRNA across the central nervous system, with the primary focus on mice and rats. Because Syrian hamsters are valuable models for functions regulated by melanocortin receptors, our current study maps the distribution of MC3R and MC4R mRNA in the Syrian hamster telencephalon, diencephalon, and midbrain using RNAscope. We found that the expression of MC3R mRNA was lowest in the telencephalon and greatest in the diencephalon, whereas the expression of MC4R mRNA was greatest in the midbrain. A comparison of these findings to previous studies found that MC3R and MC4R expression is similar in some brain regions across species and divergent in others. In addition, our study identifies novel brain regions for the expression of MC3Rs and MC4Rs, and identifies cells that co-express bothMC3 and MC4 receptors within certain brain regions.
Collapse
Affiliation(s)
- Megan A. L. Hall
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | | | | | | | | | | |
Collapse
|
8
|
Piper NBC, Whitfield EA, Stewart GD, Xu X, Furness SGB. Targeting appetite and satiety in diabetes and obesity, via G protein-coupled receptors. Biochem Pharmacol 2022; 202:115115. [PMID: 35671790 DOI: 10.1016/j.bcp.2022.115115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes and obesity have reached pandemic proportions throughout the world, so much so that the World Health Organisation coined the term "Globesity" to help encapsulate the magnitude of the problem. G protein-coupled receptors (GPCRs) are highly tractable drug targets due to their wide involvement in all aspects of physiology and pathophysiology, indeed, GPCRs are the targets of approximately 30% of the currently approved drugs. GPCRs are also broadly involved in key physiologies that underlie type 2 diabetes and obesity including feeding reward, appetite and satiety, regulation of blood glucose levels, energy homeostasis and adipose function. Despite this, only two GPCRs are the target of approved pharmaceuticals for treatment of type 2 diabetes and obesity. In this review we discuss the role of these, and select other candidate GPCRs, involved in various facets of type 2 diabetic or obese pathophysiology, how they might be targeted and the potential reasons why pharmaceuticals against these targets have not progressed to clinical use. Finally, we provide a perspective on the current development pipeline of anti-obesity drugs that target GPCRs.
Collapse
Affiliation(s)
- Noah B C Piper
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emily A Whitfield
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gregory D Stewart
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Sebastian G B Furness
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia; Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
9
|
Narjabadifam M, Bonyadi M, Rafat SA, Mahdavi R, Aliasghari F. Association study of rs17782313 polymorphism near MC4R gene with obesity/overweight, BMI, and hedonic hunger among women from Northwestern Iran. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2021. [DOI: 10.3233/mnm-200530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Obesity, as a medical condition, results from interactions between environmental and genetic factors. The rs17782313 polymorphism, located 188kb downstream of the Melanocortin 4 Receptor (MC4R) gene, is one of the essential candidate genetic markers that has shown the highest association with obesity in different populations. OBJECTIVE: This study aimed to investigate the possible associations of rs17782313 polymorphism near the MC4R gene with obesity/overweight, body mass index (BMI), and hedonic hunger among women from the Iranian Azeri ethnic group. METHODS: Five hundred sixty-three women, composed of 396 patients with obesity/overweight and 167 unrelated healthy controls, were genotyped for the rs17782313 polymorphism by applying the polymerase chain reaction-restriction fragment length polymorphism (PCR–RFLP) method. RESULTS: This population was in Hardy-Weinberg equilibrium (P = 0.878). The study confirmed a significant association of rs17782313 with obesity, where subjects carrying the C/C genotype had higher odds of obesity (OR = 2.681, P = 0.005, 95%CI:1.340–5.365). Also, C allele carriers have statistically significantly higher BMI scores than those carrying the T allele (P = 0.029). However, no significant associations were found among PFS scores and genotypic/allelic groups of rs17782313 polymorphism (P = 0.368). CONCLUSIONS: Our findings suggest that rs17782313 polymorphism is strongly associated with obesity and BMI but not with hedonic hunger among Northwest Iran women. Moreover, the sequencing data analysis in several homozygous and heterozygous carriers of the C allele led to identifying a novel frameshift variant with TCT deletion (rs534212081) in the 166 upstream of rs17782313, which has not been reported so far.
Collapse
Affiliation(s)
- Mahan Narjabadifam
- Center of Excellence for Biodiversity, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Morteza Bonyadi
- Center of Excellence for Biodiversity, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Seyed Abbas Rafat
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Reza Mahdavi
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Aliasghari
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Correa‐da‐Silva F, Fliers E, Swaab DF, Yi C. Hypothalamic neuropeptides and neurocircuitries in Prader Willi syndrome. J Neuroendocrinol 2021; 33:e12994. [PMID: 34156126 PMCID: PMC8365683 DOI: 10.1111/jne.12994] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Prader-Willi Syndrome (PWS) is a rare and incurable congenital neurodevelopmental disorder, resulting from the absence of expression of a group of genes on the paternally acquired chromosome 15q11-q13. Phenotypical characteristics of PWS include infantile hypotonia, short stature, incomplete pubertal development, hyperphagia and morbid obesity. Hypothalamic dysfunction in controlling body weight and food intake is a hallmark of PWS. Neuroimaging studies have demonstrated that PWS subjects have abnormal neurocircuitry engaged in the hedonic and physiological control of feeding behavior. This is translated into diminished production of hypothalamic effector peptides which are responsible for the coordination of energy homeostasis and satiety. So far, studies with animal models for PWS and with human post-mortem hypothalamic specimens demonstrated changes particularly in the infundibular and the paraventricular nuclei of the hypothalamus, both in orexigenic and anorexigenic neural populations. Moreover, many PWS patients have a severe endocrine dysfunction, e.g. central hypogonadism and/or growth hormone deficiency, which may contribute to the development of increased fat mass, especially if left untreated. Additionally, the role of non-neuronal cells, such as astrocytes and microglia in the hypothalamic dysregulation in PWS is yet to be determined. Notably, microglial activation is persistently present in non-genetic obesity. To what extent microglia, and other glial cells, are affected in PWS is poorly understood. The elucidation of the hypothalamic dysfunction in PWS could prove to be a key feature of rational therapeutic management in this syndrome. This review aims to examine the evidence for hypothalamic dysfunction, both at the neuropeptidergic and circuitry levels, and its correlation with the pathophysiology of PWS.
Collapse
Affiliation(s)
- Felipe Correa‐da‐Silva
- Department of Endocrinology and MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Eric Fliers
- Department of Endocrinology and MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
| | - Dick F. Swaab
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Chun‐Xia Yi
- Department of Endocrinology and MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| |
Collapse
|
11
|
Xu H, Zhang H, Fang Y, Yang H, Chen Y, Zhang C, Lin G. Activation of the Melanocortin-4 receptor signaling by α-MSH stimulates nerve-dependent mouse digit regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:19. [PMID: 33937937 PMCID: PMC8089069 DOI: 10.1186/s13619-021-00081-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Expression of Mc4r in peripheral organs indicates it has broader roles in organ homeostasis and regeneration. However, the expression and function of Mc4r in the mouse limb and digit has not been fully investigated. Our previous work showed that Mc4r-/- mice fail to regenerate the digit, but whether activation of MC4R signaling could rescue digit regeneration, or stimulate proximal digit regeneration is not clear. RESULTS We analyzed the expression dynamics of Mc4r in the embryonic and postnatal mouse limb and digit using the Mc4r-gfp mice. We found that Mc4r-GFP is mainly expressed in the limb nerves, and in the limb muscles that are undergoing secondary myogenesis. Expression of Mc4r-GFP in the adult mouse digit is restricted to the nail matrix. We also examined the effect of α-MSH on mouse digit regeneration. We found that administration of α-MSH in the Mc4r+/- mice rescue the delayed regeneration of distal digit tip. α-MSH could rescue distal digit regeneration in denervated hindlimbs. In addition, α-MSH could stimulate regeneration of the proximally amputated digit, which is non-regenerative. CONCLUSIONS Mc4r expression in the mouse limb and digit is closely related to nerve tissues, and α-MSH/MC4R signaling has a neurotrophic role in mouse digit tip regeneration.
Collapse
Affiliation(s)
- Hanqian Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hailin Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanqing Fang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Huiran Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ying Chen
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
Kalsbeek MJT, Yi CX. The infundibular peptidergic neurons and glia cells in overeating, obesity, and diabetes. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:315-325. [PMID: 34225937 DOI: 10.1016/b978-0-12-820107-7.00019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dysfunctional regulation of energy homeostasis results in increased bodyweight and obesity, eventually leading to type 2 diabetes mellitus. The infundibular nucleus (IFN) of the hypothalamus is the main regulator of energy homeostasis. The peptidergic neurons and glia cells of the IFN receive metabolic cues concerning energy state of the body from the circulation. The IFN can monitor hormones like insulin and leptin and nutrients like glucose and fatty acids. All these metabolic cues are integrated into an output signal regulating energy homeostasis through the release of neuropeptides. These neuropeptides are released in several inter- and extrahypothalamic brain regions involved in regulation of energy homeostasis. This review will give an overview of the peripheral signals involved in the regulation of energy homeostasis, the peptidergic neurons and glial cells of the IFN, and will highlight the main intra-hypothalamic projection sites of the IFN.
Collapse
Affiliation(s)
- Martin J T Kalsbeek
- Laboratory of Endocrinology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology Metabolism, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Chun-Xia Yi
- Laboratory of Endocrinology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology Metabolism, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Kim DH, Kim KK, Lee TH, Eom H, Kim JW, Park JW, Jeong JK, Lee BJ. Transcription Factor TonEBP Stimulates Hyperosmolality-Dependent Arginine Vasopressin Gene Expression in the Mouse Hypothalamus. Front Endocrinol (Lausanne) 2021; 12:627343. [PMID: 33796071 PMCID: PMC8008816 DOI: 10.3389/fendo.2021.627343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
The hypothalamic neuroendocrine system is strongly implicated in body energy homeostasis. In particular, the degree of production and release of arginine vasopressin (AVP) in the hypothalamus is affected by plasma osmolality, and that hypothalamic AVP is responsible for thirst and osmolality-dependent water and metabolic balance. However, the osmolality-responsive intracellular mechanism within AVP cells that regulates AVP synthesis is not clearly understood. Here, we report a role for tonicity-responsive enhancer binding protein (TonEBP), a transcription factor sensitive to cellular tonicity, in regulating osmosensitive hypothalamic AVP gene transcription. Our immunohistochemical work shows that hypothalamic AVP cellular activity, as recognized by c-fos, was enhanced in parallel with an elevation in TonEBP expression within AVP cells following water deprivation. Interestingly, our in vitro investigations found a synchronized pattern of TonEBP and AVP gene expression in response to osmotic stress. Those results indicate a positive correlation between hypothalamic TonEBP and AVP production during dehydration. Promoter and chromatin immunoprecipitation assays confirmed that TonEBP can bind directly to conserved binding motifs in the 5'-flanking promoter regions of the AVP gene. Furthermore, dehydration- and TonEBP-mediated hypothalamic AVP gene activation was reduced in TonEBP haploinsufficiency mice, compared with wild TonEBP homozygote animals. Therefore, our result support the idea that TonEBP is directly necessary, at least in part, for the elevation of AVP transcription in dehydration conditions. Additionally, dehydration-induced reductions in body weight were rescued in TonEBP haploinsufficiency mice. Altogether, our results demonstrate an intracellular machinery within hypothalamic AVP cells that is responsible for dehydration-induced AVP synthesis.
Collapse
Affiliation(s)
- Dong Hee Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Kwang Kon Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Tae Hwan Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Hyejin Eom
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jin Kwon Jeong
- Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, United States
- *Correspondence: Byung Ju Lee, ; Jin Kwon Jeong,
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
- *Correspondence: Byung Ju Lee, ; Jin Kwon Jeong,
| |
Collapse
|
14
|
Al-Thuwaini TM, Al-Shuhaib MBS, Lepretre F, Dawud HH. Two co-inherited novel SNPs in the MC4R gene related to live body weight and hormonal assays in Awassi and Arabi sheep breeds of Iraq. Vet Med Sci 2020; 7:897-907. [PMID: 33369226 PMCID: PMC8136946 DOI: 10.1002/vms3.421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 11/10/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
Melanocortin‐4 receptor (MC4R) gene plays a key role in the regulation of body weight and energy homeostasis. This study aims to evaluate the association of single nucleotide polymorphisms (SNPs) of the MC4R gene with live body weight and hormonal assays in two breeds of sheep that differ in productive performance, Awassi and Arabi. All known coding sequences of the MC4R gene were covered in this study. DNA samples from 150 animals (Awassi and Arabi breed) were genotyped by PCR‐single‐strand conformation polymorphism (PCR‐SSCP) to assess their pattern of genetic variation. Concerning exon 1, clear heterogeneity was detected with three different SSCP‐banding patterns. The sequencing reactions confirmed these variations by detecting the presence of the two novel SNPs, 107G/C and 138A/C, and three genotypes, GC, AC and AA. The 107G/C SNP was detected in GC genotype, while the 138A/C was detected on both GC and AC genotypes. The other SSCP‐banding pattern (AA genotype) did not show any detectable unique variation. Both SNPs were closely and strongly linked in both breeds (D' and r2 values were 1.00), which signifies that both loci were co‐inherited as one unit. Association analysis indicated that both breeds with GC/AC haplotype showed higher live body weight (37.250 ± 0.790) relative to the GG/AA (30.244 ± 0.968) and CC/CC (47.231 ± 1.230) haplotypes (p < .05). Concerning the genotyping of exon 2, only 362 bp showed heterogeneity with a missense mutation, with no significant association (p > .05) with the measured traits. In conclusion, the two novel SNPs (107G/C and 138 A/C) were highly associated with live body weight in both breeds. Haplotype analysis confirmed that these two novel SNPs were in strong linkage disequilibrium (LD) and could be used as genetic markers for sheep phenotypic trait improvement.
Collapse
Affiliation(s)
- Tahreer M Al-Thuwaini
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Babil, Iraq
| | | | - Frederic Lepretre
- University of Lille, Plateau de Genomique Fonctionnelle et Structurale, Lille, France
| | - Halla Hassan Dawud
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Babil, Iraq
| |
Collapse
|
15
|
Berruien NNA, Smith CL. Emerging roles of melanocortin receptor accessory proteins (MRAP and MRAP2) in physiology and pathophysiology. Gene 2020; 757:144949. [PMID: 32679290 DOI: 10.1016/j.gene.2020.144949] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/07/2023]
Abstract
Melanocortin-2 receptor accessory protein (MRAP) has an unusual dual topology and influences the expression, localisation, signalling and internalisation of the melanocortin receptor 2 (MC2); the adrenocorticotropic hormone (ACTH) receptor. Mutations in MRAP are associated with familial glucocorticoid deficiency type-2 and evidence is emerging of the importance of MRAP in adrenal development and ACTH signalling. Human MRAP has two functional splice variants: MRAP-α and MRAP-β, unlike MRAP-β, MRAP-α has little expression in brain but is highly expressed in ovary. MRAP2, identified through whole human genome sequence analysis, has approximately 40% sequence homology to MRAP. MRAP2 facilitates MC2 localisation to the cell surface but not ACTH signalling. MRAP and MRAP2 have been found to regulate the surface expression and signalling of all melanocortin receptors (MC1-5). Additionally, MRAP2 moderates the signalling of the G-protein coupled receptors (GCPRs): orexin, prokineticin and GHSR1a; the ghrelin receptor. Whilst MRAP appears to be mainly involved in glucocorticoid synthesis, an important role is emerging for MRAP2 in regulating appetite and energy homeostasis. Transgenic models indicate the importance of MRAP in adrenal gland formation. Like MC3R and MC4R knockout mice, MRAP2 knockout mice have an obese phenotype. In vitro studies indicate that MRAP2 enhances the MC3 and MC4 response to the agonist αMSH, which, like ACTH, is produced through precursor polypeptide proopiomelanocortin (POMC) cleavage. Analysis of cohorts of individuals with obesity have revealed several MRAP2 genetic variants with loss of function mutations which are causative of monogenic hyperphagic obesity with hyperglycaemia and hypertension. MRAP2 may also be associated with female infertility. This review summarises current knowledge of MRAP and MRAP2, their influence on GPCR signalling, and focusses on pathophysiology, particularly familial glucocorticoid deficiency type-2 and obesity.
Collapse
Affiliation(s)
- Nasrin N A Berruien
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
| | - Caroline L Smith
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
| |
Collapse
|
16
|
Gao S, Zhang T, Jin L, Liang D, Fan G, Song Y, Lucassen PJ, Yu R, Swaab DF. CAPON Is a Critical Protein in Synaptic Molecular Networks in the Prefrontal Cortex of Mood Disorder Patients and Contributes to Depression-Like Behavior in a Mouse Model. Cereb Cortex 2020; 29:3752-3765. [PMID: 30307500 DOI: 10.1093/cercor/bhy254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 08/16/2018] [Indexed: 12/16/2022] Open
Abstract
Aberrant regulation and activity of synaptic proteins may cause synaptic pathology in the prefrontal cortex (PFC) of mood disorder patients. Carboxy-terminal PDZ ligand of NOS1 (CAPON) is a critical scaffold protein linked to synaptic proteins like nitric oxide synthase 1, synapsins. We hypothesized that CAPON is altered together with its interacting synaptic proteins in the PFC in mood disorder patients and may contribute to depression-like behaviors in mice subjected to chronic unpredictable mild stress (CUMS). Here, we found that CAPON-immunoreactivity (ir) was significantly increased in the dorsolateral PFC (DLPFC) and anterior cingulate cortex in major depressive disorder (MDD), which was accompanied by an upregulation of spinophilin-ir and a downregulation of synapsin-ir. The increases in CAPON and spinophilin and the decrease in synapsin in the DLPFC of MDD patients were also seen in the PFC of CUMS mice. CAPON-ir positively correlated with spinophilin-ir (but not with synapsin-ir) in mood disorder patients. CAPON colocalized with spinophilin in the DLPFC of MDD patients and interacted with spinophilin in human brain. Viral-mediated CAPON downregulation in the medial PFC notably reversed the depression-like behaviors in the CUMS mice. These data suggest that CAPON may contribute to aspects of depressive behavior, possibly as an interacting protein for spinophilin in the PFC.
Collapse
Affiliation(s)
- Shangfeng Gao
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou, Jiangsu, P. R. China.,Brain Hospital, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, Jiangsu, P. R. China
| | - Tong Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou, Jiangsu, P. R. China.,Brain Hospital, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, Jiangsu, P. R. China
| | - Lei Jin
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou, Jiangsu, P. R. China.,Brain Hospital, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, Jiangsu, P. R. China
| | - Dong Liang
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou, Jiangsu, P. R. China.,Brain Hospital, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, Jiangsu, P. R. China
| | - Guangwei Fan
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou, Jiangsu, P. R. China.,Brain Hospital, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, Jiangsu, P. R. China
| | - Yunnong Song
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou, Jiangsu, P. R. China.,Brain Hospital, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, Jiangsu, P. R. China
| | - Paul J Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, XH, Amsterdam, The Netherlands
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou, Jiangsu, P. R. China.,Brain Hospital, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, Jiangsu, P. R. China
| | - Dick F Swaab
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, The Netherlands
| |
Collapse
|
17
|
The Role of Ventromedial Hypothalamus Receptors in the Central Regulation of Food Intake. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10120-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Tsilingiris D, Liatis S, Dalamaga M, Kokkinos A. The Fight Against Obesity Escalates: New Drugs on the Horizon and Metabolic Implications. Curr Obes Rep 2020; 9:136-149. [PMID: 32388792 DOI: 10.1007/s13679-020-00378-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW There is currently a steep rise in the global prevalence of obesity. Pharmaceutical therapy is a valuable component of conservative obesity therapy. Herein, medications currently in the phase of preclinical or clinical testing are reviewed, along with an overview of the mechanisms that regulate energy intake and expenditure. In addition, the current and potential future directions of obesity drug therapy are discussed. RECENT FINDINGS Although the current arsenal of obesity pharmacotherapy is limited, a considerable number of agents that exert their actions through a variety of pharmacodynamic targets and mechanisms are in the pipeline. This expansion shapes a potential near future of obesity conservative management, characterized by tailored combined therapeutic regimens, targeting not only weight loss but also improved overall health outcomes. The progress regarding the elucidation of the mechanisms which regulate the bodily energy equilibrium has led to medications which mimic hormonal adaptations that follow bariatric surgery, in the quest for a "Medical bypass." These, combined with agents which could increase energy expenditure, point to a brilliant future in the conservative treatment of obesity.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Ag. Thoma Street, 11527, Athens, Greece
| | - Stavros Liatis
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Ag. Thoma Street, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Ag. Thoma Street, 11527, Athens, Greece.
| |
Collapse
|
19
|
Qian Y, Lei G, Wen L. Brain-specific deletion of TRIM13 promotes metabolic stress-triggered insulin resistance, glucose intolerance, and neuroinflammation. Biochem Biophys Res Commun 2020; 527:138-145. [PMID: 32446357 DOI: 10.1016/j.bbrc.2020.03.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/12/2020] [Indexed: 11/26/2022]
Abstract
Diabetes has been associated with metabolic disorder, insulin resistance and neuroinflammation. However, the pathogenesis for HFD-induced injury of central nervous system (CNS) is still unclear. Tripartite Motif Containing 13 (TRIM13), also known as RFP2, is a member of TRIM proteins, and is associated with multiple cellular processes, such as apoptosis, survival and inflammation. However, the effects of TRIM13 on brain injury, especially the HFD-induced CNS damage, have not been investigated. To address this issue, the TRIM13flox/flox (fl/fl) mice were produced and then crossed them with Nestin-Cre mice to delete TRIM13 specifically in the brain (cKO). Then, T2D mice with obesity were established by chronic feeding of HFD. We found that brain-specific deletion of TRIM13 accelerated HFD-induced metabolic disorder, insulin resistance and systematic inflammatory response. In addition, HFDcKO mice exhibited significantly higher pro-inflammatory cytokines, including interleukin (IL)-6, IL-1β and tumor necrosis factor-α (TNF-α), in cortex, hippocampus and hypothalamus tissues, which were comparable to the HFDfl/fl mice. Consistently, the activation of nuclear factor-κB (NF-κB) induced by HFD was further aggravated in mice with brain-specific loss of TRIM13. Moreover, glial activation in CNS stimulated by HFD was further promoted by TRIM13 knockout in brain, as evidenced by the up-regulated expression of glial fibrillary acidic protein (GFAP) and Iba-1. In hypothalamus, HFD reduced proopiomelanocortin (POMC) and enhanced neuropeptide Y (NPY) expression, which were further promoted in mice with brain-specific deletion of TRIM13. Meanwhile, insulin signaling pathway was disrupted by HFD in hypothalamus of mice, and these effects were exacerbated in HFDcKO mice. The in vitro analysis confirmed that TRIM13 knockout in glial cells considerably promoted palmitate (PAL)-induced inflammatory response by accelerating NF-κB signal, contributing to the insulin resistance in the isolated primary neurons. Together, these findings demonstrated that TRIM13 was involved in HFD-induced CNS injury and insulin resistance through regulating neuroinflammatory response, contributing to the modulation of peripheral metabolic disorders.
Collapse
Affiliation(s)
- Yang Qian
- Department of Endocrine, The 521 Hospital of the China North Industries Group, Xi'an City, Shaanxi Province, 710065, China
| | - Gao Lei
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710004, China
| | - Liu Wen
- Department of Geriatric, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, 116011, China.
| |
Collapse
|
20
|
Lawson EA, Olszewski PK, Weller A, Blevins JE. The role of oxytocin in regulation of appetitive behaviour, body weight and glucose homeostasis. J Neuroendocrinol 2020; 32:e12805. [PMID: 31657509 PMCID: PMC7186135 DOI: 10.1111/jne.12805] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022]
Abstract
Obesity and its associated complications have reached epidemic proportions in the USA and also worldwide, highlighting the need for new and more effective treatments. Although the neuropeptide oxytocin (OXT) is well recognised for its peripheral effects on reproductive behaviour, the release of OXT from somatodendrites and axonal terminals within the central nervous system (CNS) is also implicated in the control of energy balance. In this review, we summarise historical data highlighting the effects of exogenous OXT as a short-term regulator of food intake in a context-specific manner and the receptor populations that may mediate these effects. We also describe what is known about the physiological role of endogenous OXT in the control of energy balance and whether serum and brain levels of OXT relate to obesity on a consistent basis across animal models and humans with obesity. We describe recent data on the effectiveness of chronic CNS administration of OXT to decrease food intake and weight gain or to elicit weight loss in diet-induced obese (DIO) and genetically obese mice and rats. Of clinical importance is the finding that chronic central and peripheral OXT treatments both evoke weight loss in obese animal models with impaired leptin signalling at doses that are not associated with visceral illness, tachyphylaxis or adverse cardiovascular effects. Moreover, these results have been largely recapitulated following chronic s.c. or intranasal treatment in DIO non-human primates (rhesus monkeys) and obese humans, respectively. We also identify plausible mechanisms that contribute to the effects of OXT on body weight and glucose homeostasis in rodents, non-human primates and humans. We conclude by describing the ongoing challenges that remain before OXT-based therapeutics can be used as a long-term strategy to treat obesity in humans.
Collapse
Affiliation(s)
- Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Aron Weller
- Psychology Department and Gonda Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - James E Blevins
- Department of Veterans Affairs Medical Center, Office of Research and Development Medical Research Service, VA Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
21
|
Hume C, Leng G. Oxytocin neurons: integrators of hypothalamic and brainstem circuits in the regulation of macronutrient-specific satiety. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Kabasakalian A, Ferretti CJ, Hollander E. Oxytocin and Prader-Willi Syndrome. Curr Top Behav Neurosci 2018; 35:529-557. [PMID: 28956320 DOI: 10.1007/7854_2017_28] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the chapter, we explore the relationship between the peptide hormone, oxytocin (OT), and behavioral and metabolic disturbances observed in the genetic disorder Prader-Willi Syndrome (PWS). Phenotypic and genotypic characteristics of PWS are described, as are the potential implications of an abnormal OT system with respect to neural development including the possible effects of OT dysfunction on interactions with other regulatory mediators, including neurotransmitters, neuromodulators, and hormones. The major behavioral characteristics are explored in the context of OT dysfunction, including hyperphagia, impulsivity, anxiety and emotion dysregulation, sensory processing and interoception, repetitive and restrictive behaviors, and dysfunctional social cognition. Behavioral overlaps with autistic spectrum disorders are discussed. The implications of OT dysfunction on the mechanisms of reward and satiety and their possible role in informing behavioral characteristics are also discussed. Treatment implications and future directions for investigation are considered.
Collapse
Affiliation(s)
- Anahid Kabasakalian
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Casara J Ferretti
- Ferkauf Graduate School of Psychology, Yeshiva University, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eric Hollander
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
23
|
Arase K, Hashimoto H, Sonoda S, Ueno H, Saito R, Motojima Y, Yoshimura M, Maruyama T, Hirata K, Uezono Y, Ueta Y. Possible involvement of central oxytocin in cisplatin-induced anorexia in rats. J Physiol Sci 2018; 68:471-482. [PMID: 28616820 PMCID: PMC10717369 DOI: 10.1007/s12576-017-0550-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/05/2017] [Indexed: 12/01/2022]
Abstract
During cancer chemotherapy, drugs such as 5-HT3 receptor antagonists have typically been used to control vomiting and anorexia. We examined the effects of oxytocin (OXT), which has been linked to appetite, on cisplatin-induced anorexia in rats. Fos-like immunoreactivity (Fos-LI) expressed in the supraoptic nucleus (SON), the paraventricular nucleus (PVN), the area postrema and the nucleus of the solitary tract (NTS) after intraperitoneal (ip) administration of cisplatin. We also examined the fluorescence intensity of OXT-mRFP1 after ip administration of cisplatin in OXT-mRFP1 transgenic rats. The mRFP1 fluorescence intensity was significantly increased in the SON, the PVN, and the NTS after administration of cisplatin. The cisplatin-induced anorexia was abolished by OXT receptor antagonist (OXTR-A) pretreatment. In the OXT-LI cells, cisplatin-induced Fos expression in the SON and the PVN was also suppressed by OXTR-A pretreatment. These results suggested that central OXT may be involved in cisplatin-induced anorexia in rats.
Collapse
Affiliation(s)
- Koichi Arase
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hirofumi Hashimoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Reiko Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yasuhito Motojima
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Keiji Hirata
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
24
|
Liao MJ, Lin H, He YW, Zou C. NFATc3 deficiency protects against high fat diet (HFD)-induced hypothalamus inflammation and apoptosis via p38 and JNK suppression. Biochem Biophys Res Commun 2018; 499:743-750. [PMID: 29596828 DOI: 10.1016/j.bbrc.2018.03.182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 12/18/2022]
Abstract
Hypothalamic inflammation and apoptosis cause neural injury, playing an important role in metabolic syndrome development. Nuclear Factors of Activated T cells (NFATc3) show many physiological and pathological effects. However, the function of NFATc3 in high fat diet (HFD)-induced hypothalamus injury remains unknown. The wild type (WT) and NFATc3-knockout (KO) mice were subjected to HFD feeding for 16 weeks to examine NFATc3 function in vivo. Astrocytes isolated from WT or KO mice were cultured and exposed to fructose (Fru) in vitro. The liver damage, hypothalamus injury, pro-inflammatory markers, NF-κB (p65), Caspase-3 and mitogen-activated protein kinases (MAPKs) pathways were evaluated. NFATc3 was significantly up-regulated in hypothalamus from mice challenged with HFD, and in astrocytes incubated with Fru. Both in vivo and in vitro studies indicated that NFATc3-deletion attenuated metabolism syndrome, reduced inflammatory regulators expression, inactivated NF-κB (p65), Caspase-3 and p38/JNK signaling pathway. Of note, we identified that promoting p38 or JNK activation could rescue inflammatory response and apoptosis in NFATc3-KO astrocytes stimulated by Fru. Together, these findings revealed an important role of NFATc3 NFATc3 for HFD-induced metabolic syndrome and particularly hypothalamus injury, and understanding of the regulatory molecular mechanism might provide new and effective therapeutic strategies for prevention and treatment of hypothalamic damage associated with dietary obesity-associated neuroinflammation and apoptosis.
Collapse
Affiliation(s)
- Meng-Jun Liao
- Department of Anesthesiology, South China Hospital Affiliated to University of South China, Hengyang 421001, China
| | - Hua Lin
- Department of Anesthesia & surgery, BaoJi Municipal Central hospital, Baoji 721008, China
| | - Yun-Wu He
- Department of Pain, The Second Hospital Affiliated to University of South China, Hengyang 421001, China
| | - Cong Zou
- Department of Pain, The Second Hospital Affiliated to University of South China, Hengyang 421001, China.
| |
Collapse
|
25
|
Maejima Y, Yokota S, Nishimori K, Shimomura K. The Anorexigenic Neural Pathways of Oxytocin and Their Clinical Implication. Neuroendocrinology 2018; 107:91-104. [PMID: 29660735 DOI: 10.1159/000489263] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/15/2018] [Indexed: 12/21/2022]
Abstract
Oxytocin was discovered in 1906 as a peptide that promotes delivery and milk ejection; however, its additional physiological functions were determined 100 years later. Many recent articles have reported newly discovered effects of oxytocin on social communication, bonding, reward-related behavior, adipose tissue, and muscle and food intake regulation. Because oxytocin neurons project to various regions in the brain that contribute to both feeding reward (hedonic feeding) and the regulation of energy balance (homeostatic feeding), the mechanisms of oxytocin on food intake regulation are complicated and largely unknown. Oxytocin neurons in the paraventricular nucleus (PVN) receive neural projections from the arcuate nucleus (ARC), which is an important center for feeding regulation. On the other hand, these neurons in the PVN and supraoptic nucleus project to the ARC. PVN oxytocin neurons also project to the brain stem and the reward-related limbic system. In addition to this, oxytocin induces lipolysis and decreases fat mass. However, these effects in feeding and adipose tissue are known to be dependent on body weight (BW). Oxytocin treatment is more effective in food intake regulation and fat mass decline for individuals with leptin resistance and higher BW, but is known to be less effective in individuals with normal BW. In this review, we present in detail the recent findings on the physiological role of oxytocin in feeding regulation and the anorexigenic neural pathway of oxytocin neurons, as well as the advantage of oxytocin usage for anti-obesity treatment.
Collapse
Affiliation(s)
- Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shoko Yokota
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Katsuhiko Nishimori
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
26
|
Lear T, Liu L, O'Donnell M, McConn BR, Denbow DM, Cline MA, Gilbert ER. Alpha-melanocyte stimulating hormone-induced anorexia in Japanese quail (Coturnix japonica) likely involves the ventromedial hypothalamus and paraventricular nucleus of the hypothalamus. Gen Comp Endocrinol 2017; 252:97-102. [PMID: 28782535 DOI: 10.1016/j.ygcen.2017.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
Abstract
Alpha-melanocyte stimulating hormone (α-MSH) reduces food intake in birds and mammals. The objective of this experiment was to determine effects of α-MSH on food and water intake, and hypothalamic c-Fos immunoreactivity and appetite-associated factor mRNA in Japanese quail (Coturnix japonica), a species that has not undergone the same artificial selection for growth-related traits as the chicken. At 7days post-hatch, 3-h-fasted quail were intracerebroventricularly (ICV) injected into the lateral ventricle with 0 (vehicle), 0.5, 5, or 50pmol of α-MSH and food and water intake were recorded at 30min intervals for 180min. In the second and third experiment, quail were injected with 50pmol α-MSH and hypothalami were collected at 1h to determine c-Fos immunoreactivity and mRNA abundance, respectively. At 30min, quail injected with 5 or 50pmol of α-MSH ate and drank less than vehicle-injected quail. Quail injected with 50pmol ate less for the entire duration of the experiment and drank less than vehicle-injected quail for 120min post-injection. Hypothalamic expression of agouti-related peptide and DOPA decarboxylase were greater in vehicle- than α-MSH-injected quail, whereas melanocortin receptor 4 (MC4R) mRNA was greater in α-MSH- than vehicle-injected birds. Alpha-MSH injection was associated with more c-Fos immunoreactive cells in the ventromedial hypothalamus (VMH) and paraventricular nucleus (PVN) of the hypothalamus. Results suggest that the anorexigenic effect of α-MSH is conserved among avians and that effects in quail are associated with the VMH and PVN and involve MC4R.
Collapse
Affiliation(s)
- Taylor Lear
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Lingbin Liu
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Madison O'Donnell
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Betty R McConn
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - D Michael Denbow
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
27
|
Nies VJM, Struik D, Wolfs MGM, Rensen SS, Szalowska E, Unmehopa UA, Fluiter K, van der Meer TP, Hajmousa G, Buurman WA, Greve JW, Rezaee F, Shiri-Sverdlov R, Vonk RJ, Swaab DF, Wolffenbuttel BHR, Jonker JW, van Vliet-Ostaptchouk JV. TUB gene expression in hypothalamus and adipose tissue and its association with obesity in humans. Int J Obes (Lond) 2017; 42:376-383. [PMID: 28852204 DOI: 10.1038/ijo.2017.214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/21/2017] [Accepted: 07/30/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND/OBJECTIVES Mutations in the Tubby gene (TUB) cause late-onset obesity and insulin resistance in mice and syndromic obesity in humans. Although TUB gene function has not yet been fully elucidated, studies in rodents indicate that TUB is involved in the hypothalamic pathways regulating food intake and adiposity. Aside from the function in central nervous system, TUB has also been implicated in energy metabolism in adipose tissue in rodents. We aimed to determine the expression and distribution patterns of TUB in man as well as its potential association with obesity. SUBJECTS/METHODS In situ hybridization was used to localize the hypothalamic regions and cells expressing TUB mRNA. Using RT-PCR, we determined the mRNA expression level of the two TUB gene alternative splicing isoforms, the short and the long transcript variants, in the hypothalami of 12 obese and 12 normal-weight subjects, and in biopsies from visceral (VAT) and subcutaneous (SAT) adipose tissues from 53 severely obese and 24 non-obese control subjects, and correlated TUB expression with parameters of obesity and metabolic health. RESULTS Expression of both TUB transcripts was detected in the hypothalamus, whereas only the short TUB isoform was found in both VAT and SAT. TUB mRNA was detected in several hypothalamic regions involved in body weight regulation, including the nucleus basalis of Meynert and the paraventricular, supraoptic and tuberomammillary nuclei. We found no difference in the hypothalamic TUB expression between obese and control groups, whereas the level of TUB mRNA was significantly lower in adipose tissue of obese subjects as compared to controls. Also, TUB expression was negatively correlated with indices of body weight and obesity in a fat-depot-specific manner. CONCLUSIONS Our results indicate high expression of TUB in the hypothalamus, especially in areas involved in body weight regulation, and the correlation between TUB expression in adipose tissue and obesity. These findings suggest a role for TUB in human obesity.
Collapse
Affiliation(s)
- V J M Nies
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D Struik
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M G M Wolfs
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - S S Rensen
- Department of General Surgery, Maastricht University Medical Center, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - E Szalowska
- Centre for Medical Biomics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - U A Unmehopa
- Department of Endocrinology & Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - K Fluiter
- Department of Genome Analysis, Academic Medical Center, Amsterdam, The Netherlands
| | - T P van der Meer
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G Hajmousa
- Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - W A Buurman
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - J W Greve
- Department of Surgery, Zuyderland Medical Center Heerlen; Dutch Obesity Clinic South, Heerlen, The Netherlands
| | - F Rezaee
- Centre for Medical Biomics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R Shiri-Sverdlov
- Departments of Molecular Genetics, School of Nutrition & Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - R J Vonk
- Centre for Medical Biomics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D F Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - B H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J W Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J V van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Navarro M. The Role of the Melanocortin System in Drug and Alcohol Abuse. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:121-150. [DOI: 10.1016/bs.irn.2017.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
Rotter I, Skonieczna-Żydecka K, Kosik-Bogacka D, Adler G, Rył A, Laszczyńska M. Relationships between FTO rs9939609, MC4R rs17782313, and PPARγ rs1801282 polymorphisms and the occurrence of selected metabolic and hormonal disorders in middle-aged and elderly men - a preliminary study. Clin Interv Aging 2016; 11:1723-1732. [PMID: 27920511 PMCID: PMC5126003 DOI: 10.2147/cia.s120253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Metabolic disorders, including MetS, obesity, and lipid disorders, may be related to genetic factors. Metabolic disorders are associated with decreased TS levels in aging men. The aim of this study was to evaluate the relationship between FTO rs9939609, MC4R rs17782313, and PPARγ rs1801282 polymorphisms and the presence of MetS and its components, the concurrent lipid disorders, as well as sex hormone concentrations. SUBJECTS AND METHODS This study involved 272 men of Caucasian descent aged 50-75 years. Lipid profile, including TCh, LDL, HDL, and TG, was evaluated by spectrophotometric method. Anthropometric measurements concerned WC and blood pressure. MetS was diagnosed according to the criteria of the IDF. Sex hormone profile, including TST, FTS, E2, DHEAS, and SHBG, was examined using enzyme-linked immunosorbent assay. Polymorphisms within FTO, MC4R, and PPARγ genes were identified using polymerase chain reaction-restriction fragments length polymorphism. RESULTS This study did not show links between the analyzed genetic polymorphisms and the presence of MetS, T2DM, HT, and obesity. However, higher concentrations of TCh and LDL were found in men with the FTO rs9939609 polymorphism in the recessive mode of inheritance (P=0.03 and P=0.05, respectively). Lower WC was found to be associated with MC4R rs17782313 gene inherited in the same model (P=0.005). CONCLUSION FTO rs9939609, MC4R rs17782313, and PPARγ rs1801282 polymorphisms seem to have little effect on the incidence of metabolic malfunctions and no effect on androgen-related disorders in the examined middle-aged and elderly men.
Collapse
Affiliation(s)
| | | | | | | | - Aleksandra Rył
- Department of Histology and Developmental Biology, Pomeranian Medical University, Szczecin, Poland
| | - Maria Laszczyńska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
30
|
Tumour biology of obesity-related cancers: understanding the molecular concept for better diagnosis and treatment. Tumour Biol 2016; 37:14363-14380. [PMID: 27623943 DOI: 10.1007/s13277-016-5357-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
Obesity continues to be a major global problem. Various cancers are related to obesity and proper understanding of their aetiology, especially their molecular tumour biology is important for early diagnosis and better treatment. Genes play an important role in the development of obesity. Few genes such as leptin, leptin receptor encoded by the db (diabetes), pro-opiomelanocortin, AgRP and NPY and melanocortin-4 receptors and insulin-induced gene 2 were linked to obesity. MicroRNAs control gene expression via mRNA degradation and protein translation inhibition and influence cell differentiation, cell growth and cell death. Overexpression of miR-143 inhibits tumour growth by suppressing B cell lymphoma 2, extracellular signal-regulated kinase-5 activities and KRAS oncogene. Cancers of the breast, uterus, renal, thyroid and liver are also related to obesity. Any disturbance in the production of sex hormones and insulin, leads to distortion in the balance between cell proliferation, differentiation and apoptosis. The possible mechanism linking obesity to cancer involves alteration in the level of adipokines and sex hormones. These mediators act as biomarkers for cancer progression and act as targets for cancer therapy and prevention. Interestingly, many anti-cancerous drugs are also beneficial in treating obesity and vice versa. We also reviewed the possible link in the mechanism of few drugs which act both on cancer and obesity. The present review may be important for molecular biologists, oncologists and clinicians treating cancers and also pave the way for better therapeutic options.
Collapse
|
31
|
Motojima Y, Kawasaki M, Matsuura T, Saito R, Yoshimura M, Hashimoto H, Ueno H, Maruyama T, Suzuki H, Ohnishi H, Sakai A, Ueta Y. Effects of peripherally administered cholecystokinin-8 and secretin on feeding/drinking and oxytocin-mRFP1 fluorescence in transgenic rats. Neurosci Res 2016; 109:63-9. [PMID: 26919961 DOI: 10.1016/j.neures.2016.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/27/2022]
Abstract
Peripheral administration of cholecystokinin (CCK)-8 or secretin activates oxytocin (OXT)-secreting neurons in the hypothalamus. Although OXT is involved in the regulation of feeding behavior, detailed mechanism remains unclear. In the present study, we examined the central OXTergic pathways after intraperitoneally (i.p.) administration of CCK-8 and secretin using male OXT-monomeric red fluorescent protein 1 (mRFP1) transgenic rats and male Wistar rats. I.p. administration of CCK-8 (50μg/kg) and secretin (100μg/kg) decreased food intake in these rats. While i.p. administration of CCK-8 decreased water intake, i.p. administration of secretin increased water intake. Immunohistochemical study revealed that Fos-Like-Immunoreactive cells were observed abundantly in the brainstem and in the OXT neurons in the dorsal division of the parvocellular paraventricular nucleus (dpPVN). We could observe marked increase of mRFP1 fluorescence, as an indicator for OXT, in the dpPVN and mRFP1-positive granules in axon terminals of the dpPVN OXT neurons in the nucleus tractus solitarius (NTS) after i.p. administration of CCK-8 and secretin. These results provide us the evidence that, at least in part, i.p. administration of CCK-8 or secretin might be involved in the regulation of feeding/drinking via a OXTergic pathway from the dpPVN to the NTS.
Collapse
Affiliation(s)
- Yasuhito Motojima
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan; Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Makoto Kawasaki
- Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Takanori Matsuura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan; Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Reiko Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hirofumi Hashimoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedics, Wakamatsu Hospital for University of Occupational and Environmental Health, Kitakyushu 808-0024, Japan
| | - Hideo Ohnishi
- Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| |
Collapse
|
32
|
Impact of obesity on taste receptor expression in extra-oral tissues: emphasis on hypothalamus and brainstem. Sci Rep 2016; 6:29094. [PMID: 27388805 PMCID: PMC4937374 DOI: 10.1038/srep29094] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022] Open
Abstract
Sweet perception promotes food intake, whereas that of bitterness is inhibitory. Surprisingly, the expression of sweet G protein-coupled taste receptor (GPCTR) subunits (T1R2 and T1R3) and bitter GPCTRs (T2R116, T2R118, T2R138 and T2R104), as well as the α-subunits of the associated signalling complex (αGustducin, Gα14 and αTransducin), in oral and extra-oral tissues from lean and obese mice, remains poorly characterized. We focused on the impact of obesity on taste receptor expression in brain areas involved in energy homeostasis, namely the hypothalamus and brainstem. We demonstrate that many of the GPCTRs and α-subunits are co-expressed in these tissues and that obesity decreases expression of T1R3, T2R116, Gα14, αTrans and TRPM5. In vitro high levels of glucose caused a prominent down-regulation of T1R2 and Gα14 expression in cultured hypothalamic neuronal cells, leptin caused a transient down-regulation of T1R2 and T1R3 expression. Intriguingly, expression differences were also observed in other extra-oral tissues of lean and obese mice, most strikingly in the duodenum where obesity reduced the expression of most bitter and sweet receptors. In conclusion, obesity influences components of sweet and bitter taste sensing in the duodenum as well as regions of the mouse brain involved in energy homeostasis, including hypothalamus and brainstem.
Collapse
|
33
|
Anderson EJP, Çakir I, Carrington SJ, Cone RD, Ghamari-Langroudi M, Gillyard T, Gimenez LE, Litt MJ. 60 YEARS OF POMC: Regulation of feeding and energy homeostasis by α-MSH. J Mol Endocrinol 2016; 56:T157-74. [PMID: 26939593 PMCID: PMC5027135 DOI: 10.1530/jme-16-0014] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
Abstract
The melanocortin peptides derived from pro-opiomelanocortin (POMC) were originally understood in terms of the biological actions of α-melanocyte-stimulating hormone (α-MSH) on pigmentation and adrenocorticotrophic hormone on adrenocortical glucocorticoid production. However, the discovery of POMC mRNA and melanocortin peptides in the CNS generated activities directed at understanding the direct biological actions of melanocortins in the brain. Ultimately, discovery of unique melanocortin receptors expressed in the CNS, the melanocortin-3 (MC3R) and melanocortin-4 (MC4R) receptors, led to the development of pharmacological tools and genetic models leading to the demonstration that the central melanocortin system plays a critical role in the regulation of energy homeostasis. Indeed, mutations in MC4R are now known to be the most common cause of early onset syndromic obesity, accounting for 2-5% of all cases. This review discusses the history of these discoveries, as well as the latest work attempting to understand the molecular and cellular basis of regulation of feeding and energy homeostasis by the predominant melanocortin peptide in the CNS, α-MSH.
Collapse
Affiliation(s)
- Erica J P Anderson
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Isin Çakir
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sheridan J Carrington
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roger D Cone
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Masoud Ghamari-Langroudi
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Taneisha Gillyard
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA Meharry Medical CollegeDepartment of Neuroscience and Pharmacology, Nashville, Tennessee, USA
| | - Luis E Gimenez
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michael J Litt
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
34
|
Moehlecke M, Canani LH, Silva LOJE, Trindade MRM, Friedman R, Leitão CB. Determinants of body weight regulation in humans. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2016; 60:152-62. [PMID: 26910628 DOI: 10.1590/2359-3997000000129] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/07/2015] [Indexed: 11/21/2022]
Abstract
Body weight is regulated by the ability of hypothalamic neurons to orchestrate behavioral, endocrine and autonomic responses via afferent and efferent pathways to the brainstem and the periphery. Weight maintenance requires a balance between energy intake and energy expenditure. Although several components that participate in energy homeostasis have been identified, there is a need to know in more detail their actions as well as their interactions with environmental and psychosocial factors in the development of human obesity. In this review, we examine the role of systemic mediators such as leptin, ghrelin and insulin, which act in the central nervous system by activating or inhibiting neuropeptide Y, Agouti-related peptide protein, melanocortin, transcript related to cocaine and amphetamine, and others. As a result, modifications in energy homeostasis occur through regulation of appetite and energy expenditure. We also examine compensatory changes in the circulating levels of several peripheral hormones after diet-induced weight loss.
Collapse
|
35
|
Müller A, Niederstadt L, Jonas W, Yi CX, Meyer F, Wiedmer P, Fischer J, Grötzinger C, Schürmann A, Tschöp M, Kleinau G, Grüters A, Krude H, Biebermann H. Ring Finger Protein 11 Inhibits Melanocortin 3 and 4 Receptor Signaling. Front Endocrinol (Lausanne) 2016; 7:109. [PMID: 27551276 PMCID: PMC4976663 DOI: 10.3389/fendo.2016.00109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/26/2016] [Indexed: 01/07/2023] Open
Abstract
Intact melanocortin signaling via the G protein-coupled receptors (GPCRs), melanocortin receptor 4 (MC4R), and melanocortin receptor 3 (MC3R) is crucial for body weight maintenance. So far, no connection between melanocortin signaling and hypothalamic inflammation has been reported. Using a bimolecular fluorescence complementation library screen, we identified a new interaction partner for these receptors, ring finger protein 11 (RNF11). RNF11 participates in the constitution of the A20 complex that is involved in reduction of tumor necrosis factor α (TNFα)-induced NFκB signaling, an important pathway in hypothalamic inflammation. Mice treated with high-fat diet (HFD) for 3 days demonstrated a trend toward an increase in hypothalamic Rnf11 expression, as shown for other inflammatory markers under HFD. Furthermore, Gs-mediated signaling of MC3/4R was demonstrated to be strongly reduced to 20-40% by co-expression of RNF11 despite unchanged total receptor expression. Cell surface expression was not affected for MC3R but resulted in a significant reduction of MC4R to 61% by co-expression with RNF11. Mechanisms linking HFD, inflammation, and metabolism remain partially understood. In this study, a new axis between signaling of specific body weight regulating GPCRs and factors involved in hypothalamic inflammation is suggested.
Collapse
Affiliation(s)
- Anne Müller
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Niederstadt
- Tumor Targeting Laboratory, Department of Hepatology and Gastroenterology, Molecular Cancer Research Center (MKFZ), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center of Diabetes Research, Neuherberg, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - Franziska Meyer
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Wiedmer
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Jana Fischer
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Grötzinger
- Tumor Targeting Laboratory, Department of Hepatology and Gastroenterology, Molecular Cancer Research Center (MKFZ), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center of Diabetes Research, Neuherberg, Germany
| | - Matthias Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Germany, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Technische Universität München, München, Germany
| | - Gunnar Kleinau
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Annette Grüters
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Krude
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Heike Biebermann,
| |
Collapse
|
36
|
Yoon YR, Baik JH. Melanocortin 4 Receptor and Dopamine D2 Receptor Expression in Brain Areas Involved in Food Intake. Endocrinol Metab (Seoul) 2015; 30:576-83. [PMID: 26790386 PMCID: PMC4722414 DOI: 10.3803/enm.2015.30.4.576] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 08/19/2015] [Accepted: 10/15/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The melanocortin 4 receptor (MC4R) is involved in the regulation of homeostatic energy balance by the hypothalamus. Recent reports showed that MC4R can also control the motivation for food in association with a brain reward system, such as dopamine. We investigated the expression levels of MC4R and the dopamine D2 receptor (D2R), which is known to be related to food rewards, in both the hypothalamus and brain regions involved in food rewards. METHODS We examined the expression levels of D2R and MC4R by dual immunofluorescence histochemistry in hypothalamic regions and in the bed nucleus of the stria terminalis (BNST), the central amygdala, and the ventral tegmental area of transgenic mice expressing enhanced green fluorescent protein under the control of the D2R gene. RESULTS In the hypothalamic area, significant coexpression of MC4R and D2R was observed in the arcuate nucleus. We observed a significant coexpression of D2R and MC4R in the BNST, which has been suggested to be an important site for food reward. CONCLUSION We suggest that MC4R and D2R function in the hypothalamus for control of energy homeostasis and that within the brain regions related with rewards, such as the BNST, the melanocortin system works synergistically with dopamine for the integration of food motivation in the control of feeding behaviors.
Collapse
Affiliation(s)
- Ye Ran Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | - Ja Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea.
| |
Collapse
|
37
|
Labbé SM, Caron A, Lanfray D, Monge-Rofarello B, Bartness TJ, Richard D. Hypothalamic control of brown adipose tissue thermogenesis. Front Syst Neurosci 2015; 9:150. [PMID: 26578907 PMCID: PMC4630288 DOI: 10.3389/fnsys.2015.00150] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022] Open
Abstract
It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system (CNS), which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The characterization of these neurons has always represented a challenging issue. The available literature suggests that the neuronal circuits controlling BAT thermogenesis are largely part of an autonomic circuitry involving the hypothalamus, brainstem and the SNS efferent neurons. In the present review, we recapitulate the latest progresses in regards to the hypothalamic regulation of BAT metabolism. We briefly addressed the role of the thermoregulatory pathway and its interactions with the energy balance systems in the control of thermogenesis. We also reviewed the involvement of the brain melanocortin and endocannabinoid systems as well as the emerging role of steroidogenic factor 1 (SF1) neurons in BAT thermogenesis. Finally, we examined the link existing between these systems and the homeostatic factors that modulate their activities.
Collapse
Affiliation(s)
- Sebastien M Labbé
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Alexandre Caron
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Damien Lanfray
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Boris Monge-Rofarello
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Timothy J Bartness
- Department of Biology, Center for Obesity Reversal (COR), Georgia State University Atlanta, GA, USA
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| |
Collapse
|
38
|
Shukla C, Koch LG, Britton SL, Cai M, Hruby VJ, Bednarek M, Novak CM. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats. Neuroscience 2015; 310:252-67. [PMID: 26404873 DOI: 10.1016/j.neuroscience.2015.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/13/2022]
Abstract
Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of MC peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT.
Collapse
Affiliation(s)
- C Shukla
- Department of Biological Sciences, Kent State University, Kent, OH, United States; Harvard Medical School - VA Boston Healthcare System, Boston, MA, United States.
| | - L G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - S L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - M Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - V J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - M Bednarek
- MedImmune Limited, Cambridge, United Kingdom
| | - C M Novak
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
39
|
Peñagarikano O, Lázaro MT, Lu XH, Gordon A, Dong H, Lam HA, Peles E, Maidment NT, Murphy NP, Yang XW, Golshani P, Geschwind DH. Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Sci Transl Med 2015; 7:271ra8. [PMID: 25609168 DOI: 10.1126/scitranslmed.3010257] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mouse models of neuropsychiatric diseases provide a platform for mechanistic understanding and development of new therapies. We previously demonstrated that knockout of the mouse homolog of CNTNAP2 (contactin-associated protein-like 2), in which mutations cause cortical dysplasia and focal epilepsy (CDFE) syndrome, displays many features that parallel those of the human disorder. Because CDFE has high penetrance for autism spectrum disorder (ASD), we performed an in vivo screen for drugs that ameliorate abnormal social behavior in Cntnap2 mutant mice and found that acute administration of the neuropeptide oxytocin improved social deficits. We found a decrease in the number of oxytocin immunoreactive neurons in the paraventricular nucleus (PVN) of the hypothalamus in mutant mice and an overall decrease in brain oxytocin levels. Administration of a selective melanocortin receptor 4 agonist, which causes endogenous oxytocin release, also acutely rescued the social deficits, an effect blocked by an oxytocin antagonist. We confirmed that oxytocin neurons mediated the behavioral improvement by activating endogenous oxytocin neurons in the paraventricular hypothalamus with Designer Receptors Exclusively Activated by Designer Drugs (DREADD). Last, we showed that chronic early postnatal treatment with oxytocin led to more lasting behavioral recovery and restored oxytocin immunoreactivity in the PVN. These data demonstrate dysregulation of the oxytocin system in Cntnap2 knockout mice and suggest that there may be critical developmental windows for optimal treatment to rectify this deficit.
Collapse
Affiliation(s)
- Olga Peñagarikano
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA. Center for Autism Research and Treatment and Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - María T Lázaro
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiao-Hong Lu
- Center for Neurobehavioral Genetics, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aaron Gordon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hongmei Dong
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hoa A Lam
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nigel T Maidment
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Niall P Murphy
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peyman Golshani
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA. Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA 90095, USA. West Los Angeles VA Medical Center, Los Angeles, CA 90073, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA. Center for Autism Research and Treatment and Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA. Center for Neurobehavioral Genetics, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
40
|
Yoshimura M, Uezono Y, Ueta Y. Anorexia in human and experimental animal models: physiological aspects related to neuropeptides. J Physiol Sci 2015; 65:385-95. [PMID: 26123258 PMCID: PMC10717229 DOI: 10.1007/s12576-015-0386-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/16/2015] [Indexed: 01/20/2023]
Abstract
Anorexia, a loss of appetite for food, can be caused by various physiological and pathophysiological conditions. In this review, firstly, clinical aspects of anorexia nervosa are summarized in brief. Secondly, hypothalamic neuropeptides responsible for feeding regulation in each hypothalamic nucleus are discussed. Finally, three different types of anorexigenic animal models; dehydration-induced anorexia, cisplatin-induced anorexia and cancer anorexia-cachexia, are introduced. In conclusion, hypothalamic neuropeptides may give us novel insight to understand and find effective therapeutics strategy essential for various kinds of anorexia.
Collapse
Affiliation(s)
- Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, 104-0045 Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| |
Collapse
|
41
|
Dölen G. Oxytocin: parallel processing in the social brain? J Neuroendocrinol 2015; 27:516-35. [PMID: 25912257 DOI: 10.1111/jne.12284] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/29/2015] [Accepted: 04/07/2015] [Indexed: 12/31/2022]
Abstract
Early studies attempting to disentangle the network complexity of the brain exploited the accessibility of sensory receptive fields to reveal circuits made up of synapses connected both in series and in parallel. More recently, extension of this organisational principle beyond the sensory systems has been made possible by the advent of modern molecular, viral and optogenetic approaches. Here, evidence supporting parallel processing of social behaviours mediated by oxytocin is reviewed. Understanding oxytocinergic signalling from this perspective has significant implications for the design of oxytocin-based therapeutic interventions aimed at disorders such as autism, where disrupted social function is a core clinical feature. Moreover, identification of opportunities for novel technology development will require a better appreciation of the complexity of the circuit-level organisation of the social brain.
Collapse
Affiliation(s)
- Gül Dölen
- Department of Neuroscience, Brain Science Institute, Wendy Klag Center for Developmental Disabilities and Autism, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
42
|
Arble DM, Holland J, Ottaway N, Sorrell J, Pressler JW, Morano R, Woods SC, Seeley RJ, Herman JP, Sandoval DA, Perez-Tilve D. The melanocortin-4 receptor integrates circadian light cues and metabolism. Endocrinology 2015; 156:1685-91. [PMID: 25730108 PMCID: PMC4398770 DOI: 10.1210/en.2014-1937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The melanocortin system directs diverse physiological functions from coat color to body weight homoeostasis. A commonality among melanocortin-mediated processes is that many animals modulate similar processes on a circannual basis in response to longer, summer days, suggesting an underlying link between circadian biology and the melanocortin system. Despite key neuroanatomical substrates shared by both circadian and melanocortin-signaling pathways, little is known about the relationship between the two. Here we identify a link between circadian disruption and the control of glucose homeostasis mediated through the melanocortin-4 receptor (Mc4r). Mc4r-deficient mice exhibit exaggerated circadian fluctuations in baseline blood glucose and glucose tolerance. Interestingly, exposure to lighting conditions that disrupt circadian rhythms improve their glucose tolerance. This improvement occurs through an increase in glucose clearance by skeletal muscle and is food intake and body weight independent. Restoring Mc4r expression to the paraventricular nucleus prevents the improvement in glucose tolerance, supporting a role for the paraventricular nucleus in the integration of circadian light cues and metabolism. Altogether these data suggest that Mc4r signaling plays a protective role in minimizing glucose fluctuations due to circadian rhythms and environmental light cues and demonstrate a previously undiscovered connection between circadian biology and glucose metabolism mediated through the melanocortin system.
Collapse
Affiliation(s)
- Deanna M Arble
- Departments of Internal Medicine (D.M.A., J.H., N.O., J.S., J.W.P., R.J.S., D.A.S., D.P.-T.) and Psychiatry (R.M., S.C.W., J.P.H.), University of Cincinnati, Cincinnati, Ohio 45237; and Department of Surgery (D.M.A., R.J.S., D.A.S.), University of Michigan, Ann Arbor, Michigan 48109
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Voigt JP, Fink H. Serotonin controlling feeding and satiety. Behav Brain Res 2015; 277:14-31. [DOI: 10.1016/j.bbr.2014.08.065] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 02/06/2023]
|
44
|
Li JM, Ge CX, Xu MX, Wang W, Yu R, Fan CY, Kong LD. Betaine recovers hypothalamic neural injury by inhibiting astrogliosis and inflammation in fructose-fed rats. Mol Nutr Food Res 2014; 59:189-202. [DOI: 10.1002/mnfr.201400307] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Chen-Xu Ge
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Min-Xuan Xu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Wei Wang
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Rong Yu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Chen-Yu Fan
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing P. R. China
| |
Collapse
|
45
|
Abstract
The field of anatomic pathology has changed significantly over the last decades and, as a result of the technological developments in molecular pathology and genetics, has had increasing pressures put on it to become quantitative and to provide more information about protein expression on a cellular level in tissue sections. Multispectral imaging (MSI) has a long history as an advanced imaging modality and has been used for over a decade now in pathology to improve quantitative accuracy, enable the analysis of multicolor immunohistochemistry, and drastically reduce the impact of contrast-robbing tissue autofluorescence common in formalin-fixed, paraffin-embedded tissues. When combined with advanced software for the automated segmentation of different tissue morphologies (eg, tumor vs stroma) and cellular and subcellular segmentation, MSI can enable the per-cell quantitation of many markers simultaneously. This article covers the role that MSI has played in anatomic pathology in the analysis of formalin-fixed, paraffin-embedded tissue sections, discusses the technological aspects of why MSI has been adopted, and provides a review of the literature of the application of MSI in anatomic pathology.
Collapse
|
46
|
Schwenk RW, Vogel H, Schürmann A. Genetic and epigenetic control of metabolic health. Mol Metab 2013; 2:337-47. [PMID: 24327950 PMCID: PMC3854991 DOI: 10.1016/j.molmet.2013.09.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/09/2013] [Accepted: 09/13/2013] [Indexed: 02/06/2023] Open
Abstract
Obesity is characterized as an excess accumulation of body fat resulting from a positive energy balance. It is the major risk factor for type 2 diabetes (T2D). The evidence for familial aggregation of obesity and its associated metabolic diseases is substantial. To date, about 150 genetic loci identified in genome-wide association studies (GWAS) are linked with obesity and T2D, each accounting for only a small proportion of the predicted heritability. However, the percentage of overall trait variance explained by these associated loci is modest (~5-10% for T2D, ~2% for BMI). The lack of powerful genetic associations suggests that heritability is not entirely attributable to gene variations. Some of the familial aggregation as well as many of the effects of environmental exposures, may reflect epigenetic processes. This review summarizes our current knowledge on the genetic basis to individual risk of obesity and T2D, and explores the potential role of epigenetic contribution.
Collapse
Key Words
- ADCY3, adenylate cyclase 3
- AQP9, aquaporin 9
- BDNF, brain-derived neurotrophic factor
- CDKAL1, CDK5 regulatory subunit associated protein 1-like 1
- CPEB4, cytoplasmic polyadenylation element binding protein 4
- DUSP22, dual specificity phosphatase 22
- DUSP8, dual specificity phosphatase 8
- Epigenetics
- GALNT10, UDP-N-acetyl-alpha-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase 10 (GalNAc-T10)
- GIPR, gastric inhibitory polypeptide receptor
- GNPDA2, glucosamine-6-phosphate deaminase 2
- GP2, glycoprotein 2 (zymogen granule membrane)
- GWAS
- HIPK3, homeodomain interacting protein kinase 3
- IFI16, interferon, gamma-inducible protein 16
- KCNQ1, potassium voltage-gated channel, KQT-like subfamily, member 1
- KLHL32, kelch-like family member 32
- LEPR, leptin receptor
- MAP2K4, mitogen-activated protein kinase kinase 4
- MAP2K5, mitogen-activated protein kinase kinase 5
- MIR148A, microRNA 148a
- MMP9, matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type IV collagenase)
- MNDA, myeloid cell nuclear differentiation antigen
- NFE2L3, nuclear factor, erythroid 2-like 3
- Obesity
- PACS1, phosphofurin acidic cluster sorting protein 1
- PAX6, paired box gene 6
- PCSK1, proprotein convertase subtilisin/kexin type 1
- PGC1α, peroxisome proliferative activated receptor, gamma, coactivator 1 alpha, PM2OD1
- PRKCH, protein kinase C, eta
- PRKD1, protein kinase D1
- PRKG1, protein kinase, cGMP-dependent, type I
- Positional cloning
- QPCTL, glutaminyl-peptide cyclotransferase-like
- RBJ, DnaJ (Hsp40) homolog, subfamily C, member 27
- RFC5, replication factor C (activator 1) 5
- RMST, rhabdomyosarcoma 2 associated transcript (non-protein coding)
- SEC16B, SEC16 homolog B
- TFAP2B, transcription factor AP-2 beta (activating enhancer binding protein 2 beta)
- TNNI3, troponin I type 3 (cardiac)
- TNNT1, troponin T type 1 (skeletal, slow)
- Type 2 diabetes
Collapse
Affiliation(s)
| | | | - Annette Schürmann
- Corresponding author. Tel.: +49 33200 882368; fax: +49 33200 882334.
| |
Collapse
|
47
|
Zhang H, Wu C, Chen Q, Chen X, Xu Z, Wu J, Cai D. Treatment of obesity and diabetes using oxytocin or analogs in patients and mouse models. PLoS One 2013; 8:e61477. [PMID: 23700406 PMCID: PMC3658979 DOI: 10.1371/journal.pone.0061477] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/09/2013] [Indexed: 01/06/2023] Open
Abstract
Obesity is important for the development of type-2 diabetes as a result of obesity-induced insulin resistance accompanied by impaired compensation of insulin secretion from pancreatic beta cells. Here, based on a randomized pilot clinical trial, we report that intranasal oxytocin administration over an 8-week period led to effective reduction of obesity and reversal of related prediabetic changes in patients. Using mouse models, we further systematically evaluated whether oxytocin and its analogs yield therapeutic effects against prediabetic or diabetic disorders regardless of obesity. Our results showed that oxytocin and two analogs including [Ser4, Ile8]-oxytocin or [Asu1,6]-oxytocin worked in mice to reverse insulin resistance and glucose intolerance prior to reduction of obesity. In parallel, using streptozotocin-induced diabetic mouse model, we found that treatment with oxytocin or its analogs reduced the magnitude of glucose intolerance through improving insulin secretion. The anti-diabetic effects of oxytocin and its analogs in these animal models can be produced similarly whether central or peripheral administration was used. In conclusion, oxytocin and its analogs have multi-level effects in improving weight control, insulin sensitivity and insulin secretion, and bear potentials for being developed as therapeutic peptides for obesity and diabetes.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Chenguang Wu
- Department of Medicine, Endocrine Division, the Affiliated People’s Hospital of Jiangsu University, Jiangsu Province, Zhenjiang, P. R. China
| | - Qiaofen Chen
- Department of Medicine, Endocrine Division, the Affiliated People’s Hospital of Jiangsu University, Jiangsu Province, Zhenjiang, P. R. China
| | - Xiaoluo Chen
- Department of Medicine, Endocrine Division, the Affiliated People’s Hospital of Jiangsu University, Jiangsu Province, Zhenjiang, P. R. China
| | - Zhigang Xu
- Department of Medicine, Endocrine Division, the Affiliated People’s Hospital of Jiangsu University, Jiangsu Province, Zhenjiang, P. R. China
| | - Jing Wu
- Department of Medicine, Endocrine Division, the Affiliated People’s Hospital of Jiangsu University, Jiangsu Province, Zhenjiang, P. R. China
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|