1
|
Qu J, Fang Y, Tao R, Zhao J, Xu T, Chen R, Zhang J, Meng K, Yang Q, Zhang K, Yan X, Sun D, Chen X. Advancing thyroid disease research: The role and potential of zebrafish model. Life Sci 2024; 357:123099. [PMID: 39374770 DOI: 10.1016/j.lfs.2024.123099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
Thyroid disorders significantly affect human metabolism, cardiovascular function, skeletal health, and reproductive systems, presenting a complex challenge due to their multifactorial nature. Understanding the underlying mechanisms and developing novel therapeutic approaches require appropriate models. Zebrafish, with their genetic tractability, short life cycle, and physiological relevance, have emerged as a valuable model for investigating thyroid diseases. This review provides a comprehensive analysis of the zebrafish thyroid gland's structure and function, explores its application in modeling thyroid pathologies such as hypothyroidism, hyperthyroidism, and thyroid cancer, and discusses current limitations and possible improvements. Furthermore, it outlines future directions for zebrafish-based research, focusing on enhancing the model's relevance to human thyroid disease and its potential to expedite the development of clinical therapies.
Collapse
Affiliation(s)
- Junying Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Runchao Tao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jing Zhao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Ting Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Rongbing Chen
- Department of Biomedical, City university of Hong Kong, Kowloon 999077, Hong Kong
| | - Junbei Zhang
- Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Kaikai Meng
- Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China; Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China.
| | - Xia Chen
- Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China.
| |
Collapse
|
2
|
Zhang YZ, Huo DY, Liu Z, Li XD, Wang Z, Li W. Review on ginseng and its potential active substance G-Rg2 against age-related diseases: Traditional efficacy and mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118781. [PMID: 39260708 DOI: 10.1016/j.jep.2024.118781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/04/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Shen Nong Herbal Classic, Ginseng (Panax ginseng C.A. Meyer) is documented to possess life-prolonging effects and is extensively utilized in traditional Chinese medicine for the treatment of various ailments such as qi deficiency, temper deficiency, insomnia, and forgetfulness. Ginseng is commonly employed for replenishing qi and nourishing blood, fortifying the body and augmenting immunity; it has demonstrated efficacy in alleviating fatigue, enhancing memory, and retarding aging. Furthermore, it exhibits a notable ameliorative impact on age-related conditions including cardiovascular diseases and neurodegenerative disorders. One of its active constituents - ginsenoside Rg2 (G-Rg2) - exhibits potential therapeutic efficacy in addressing these ailments. AIM OF THE REVIEW The aim of this review is to explore the traditional efficacy of ginseng in anti-aging diseases and the modern pharmacological mechanism of its potential active substance G-Rg2, in order to provide strong theoretical support for further elucidating the mechanism of its anti-aging effect. METHODS This review provides a comprehensive analysis of the traditional efficacy of ginseng and the potential mechanisms underlying the anti-age-related disease properties of G-Rg2, based on an extensive literature review up to March 12, 2024, from PubMed, Web of Science, Scopus, Cochrane, and Google Scholar databases. Potential anti-aging mechanisms of G-Rg2 were predicted using network pharmacology and molecular docking analysis techniques. RESULTS In traditional Chinese medicine theory, ginseng has been shown to improve aging-related diseases with a variety of effects, including tonifying qi, strengthening the spleen and stomach, nourishing yin, regulating yin and yang, as well as calming the mind. Its potential active ingredient G-Rg2 has demonstrated significant therapeutic potential in age-related diseases, especially central nervous system and cardiovascular diseases. G-Rg2 exhibited a variety of pharmacological activities, including anti-apoptotic, anti-inflammatory and antioxidant effects. Meanwhile, the network pharmacological analyses and molecular docking results were consistent with the existing literature review, further validating the potential efficacy of G-Rg2 as an anti-aging agent. CONCLUSION The review firstly explores the ameliorative effects of ginseng on a wide range of age-related diseases based on TCM theories. Secondly, the article focuses on the remarkable significance and value demonstrated by G-Rg2 in age-related cardiovascular and neurodegenerative diseases. Consequently, G-Rg2 has broad prospects for development in intervening in aging and treating age-related health problems.
Collapse
Affiliation(s)
- Yu-Zhuo Zhang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - De-Yang Huo
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Xin-Dian Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Polacchini G, Venerando A, Colitti M. Antioxidant and anti-ageing effects of oleuropein aglycone in canine skeletal muscle cells. Tissue Cell 2024; 88:102369. [PMID: 38555794 DOI: 10.1016/j.tice.2024.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Reactive oxygen species (ROS) are normally produced in skeletal muscle. However, an imbalance in their regulatory systems can lead to their accumulation and ultimately to oxidative stress, which is one of the causes of the ageing process. Companion dogs share the same environment and lifestyle as humans, making them an excellent comparative model for the study of ageing, as well as they constitute a growing market for bioactive molecules that improve the quality of life of pets. The anti-ageing properties of oleuropein aglycone (OLE), a bioactive compound from olive leaves known for its antioxidant properties, were investigated in Myok9 canine muscle cell model. After incubation with OLE, senescence was induced in the canine cellular model by hydrogen peroxide (H2O2). Analyses were performed on cells after seven days of differentiation. The oxidative stress induced by H2O2 treatment on differentiated canine muscle cells led to a significant increase in ROS formation, which was reduced by OLE pretreatment alone or in combination with H2O2 by about 34% and 32%, respectively. Cells treated with H2O2 showed a 48% increase the area of senescent cells stained by SA-β-gal, while OLE significantly reduced the coloured area by 52%. OLE, alone or in combination with H2O2, showed a significant antioxidant activity, possibly through autophagy activation, as indicated by the expression of autophagic markers.
Collapse
Affiliation(s)
- Giulia Polacchini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - Andrea Venerando
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - Monica Colitti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy.
| |
Collapse
|
4
|
Bel’skaya LV, Dyachenko EI. Oxidative Stress in Breast Cancer: A Biochemical Map of Reactive Oxygen Species Production. Curr Issues Mol Biol 2024; 46:4646-4687. [PMID: 38785550 PMCID: PMC11120394 DOI: 10.3390/cimb46050282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This review systematizes information about the metabolic features of breast cancer directly related to oxidative stress. It has been shown those redox changes occur at all levels and affect many regulatory systems in the human body. The features of the biochemical processes occurring in breast cancer are described, ranging from nonspecific, at first glance, and strictly biochemical to hormone-induced reactions, genetic and epigenetic regulation, which allows for a broader and deeper understanding of the principles of oncogenesis, as well as maintaining the viability of cancer cells in the mammary gland. Specific pathways of the activation of oxidative stress have been studied as a response to the overproduction of stress hormones and estrogens, and specific ways to reduce its negative impact have been described. The diversity of participants that trigger redox reactions from different sides is considered more fully: glycolytic activity in breast cancer, and the nature of consumption of amino acids and metals. The role of metals in oxidative stress is discussed in detail. They can act as both co-factors and direct participants in oxidative stress, since they are either a trigger mechanism for lipid peroxidation or capable of activating signaling pathways that affect tumorigenesis. Special attention has been paid to the genetic and epigenetic regulation of breast tumors. A complex cascade of mechanisms of epigenetic regulation is explained, which made it possible to reconsider the existing opinion about the triggers and pathways for launching the oncological process, the survival of cancer cells and their ability to localize.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | | |
Collapse
|
5
|
Vasantharekha R, Priyanka HP, Nair RS, Hima L, Pratap UP, Srinivasan AV, ThyagaRajan S. Alterations in Immune Responses Are Associated with Dysfunctional Intracellular Signaling in Peripheral Blood Mononuclear Cells of Men and Women with Mild Cognitive Impairment and Alzheimer's disease. Mol Neurobiol 2024; 61:2964-2977. [PMID: 37957423 DOI: 10.1007/s12035-023-03764-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Deficits in the neuroendocrine-immune network in the periphery associated with the onset and progression of mild cognitive impairment (MCI) and Alzheimer's disease (AD) have not been extensively studied. The present study correlatively examines the association between cell-mediated immune responses, stress hormones, amyloid precursor protein (APP) expression, peripheral blood mononuclear cells (PBMC), and intracellular signaling molecules in the pathophysiology of MCI and AD compared to adults. Serum APP, lymphocyte proliferation, total cholinesterase (TChE), butyrylcholinesterase (BChE) activities, cytokines (IL-2, IFN-γ, IL-6, and TNF-α), and intracellular signaling molecules (p-ERK, p-CREB, and p-Akt) were measured in the PBMCs of adult, old, MCI, and AD men and women initially and after 3 years in the same population. An age- and disease-associated decline in mini-mental state examination (MMSE) scores and lymphocyte proliferation of MCI and AD men and women were observed. An age- and disease-related increase in serum APP, cortisol levels, and TChE activity were observed in men and women. Enhanced production of Th1 cytokine, IL-2, pro-inflammatory cytokines, and suppressed intracellular transcription factors may promote the inflammatory environment in MCI and AD patients. The expression of CREB and Akt was lower in MCI and AD men, while the expression of p-ERK was higher, and p-CREB was lower in MCI and AD women after 3 years. These results suggest that changes in specific intracellular signaling pathways may influence alterations in cell-mediated immunity to promote disease progression in MCI and AD patients.
Collapse
Affiliation(s)
- Ramasamy Vasantharekha
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science & Technology, Kattankulathur, 603203, Tamil Nadu, India.
| | - Hannah P Priyanka
- Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Speciality Hospital, Omandurar Government Estate, Chennai, Tamil Nadu, India
| | - Rahul S Nair
- Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Speciality Hospital, Omandurar Government Estate, Chennai, Tamil Nadu, India
| | - Lalgi Hima
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science & Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Uday P Pratap
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science & Technology, Kattankulathur, 603203, Tamil Nadu, India
| | | | - Srinivasan ThyagaRajan
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science & Technology, Kattankulathur, 603203, Tamil Nadu, India
| |
Collapse
|
6
|
Shihab EM, Kadhim HM, Shahooth SS. Dapagliflozin mitigates oxidative stress, inflammatory, and histopathological markers of aging in mice. J Med Life 2024; 17:157-163. [PMID: 38813367 PMCID: PMC11131629 DOI: 10.25122/jml-2023-0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 05/31/2024] Open
Abstract
Aging, a complex physiological process affecting all living things, is a major area of research, particularly focused on interventions to slow its progression. This study assessed the antiaging efficacy of dapagliflozin (DAPA) on various aging-related parameters in a mouse model artificially induced to age. Forty male Swiss albino mice were randomly divided into four groups of ten animals each. The control group (Group I) received normal saline. The aging model group (Group II) was administered D-galactose orally at 500mg/kg to induce aging. Following the aging induction, the positive control group received Vitamin C supplementation (Group III), while the DAPA group (Group IV) was treated with dapagliflozin. The inflammatory mediators (TNF-α and IL-1β) showed similar patterns of change. No statistically significant difference was observed between groups III and IV. Both groups had significantly lower values compared to GII, while it was significantly higher compared to GI. Glutathione peroxidase (GSH-Px) showed no statistically significant difference between groups GIII and GIV, but it was higher in GIII compared to GII and significantly lower in GIII compared to GI. The study demonstrated that dapagliflozin exerts a beneficial impact on many indicators of aging in mice. The intervention resulted in a reduction in hypertrophy in cardiomyocytes, an enhancement in skin vitality, a decrease in the presence of inflammatory mediators, and an improvement in the efficacy of antioxidants.
Collapse
Key Words
- AGEs, Advanced Glycation End Products
- CVD, Cardiovascular Disease
- Ca2+, Calcium
- Col-I, Collagen I
- Col-III, Collagen III
- DAPA, Dapagliflozin
- Dapagliflozin
- GSH-Px, Glutathione Peroxidase
- H&E, Hematoxylin and Eosin Stain
- HPF, High Power Fields
- IL-1β, Interleukin-1 Beta
- IP, Intraperitoneally
- MDA, Malondialdehyde
- ROS, Reactive Oxygen Species
- SD, Standard Deviation
- SGLT2, Sodium-Glucose Cotransporter-2
- SGLT2i, Sodium-Glucose Cotransporter 2 Inhibitors
- TNF-α, Tumor Necrosis Factor-Alpha
- aging
- heart
- inflammation
- oxidative stress
- skin
Collapse
Affiliation(s)
- Elaf Mahmood Shihab
- Department of Pharmacology, College of Pharmacy, Al-Esraa University, Baghdad, Iraq
| | - Haitham Mahmood Kadhim
- Department of Clinical Pharmacy, College of Pharmacy, Al-Nahrain University, Baghdad, Iraq
| | - Samer Salim Shahooth
- Department of Pharmacology, College of Health and Medical Technology, Uruk University, Baghdad, Iraq
| |
Collapse
|
7
|
Li Y, Wang J, Wang R, Chang Y, Wang X. Gut bacteria induce IgA expression in pituitary hormone-secreting cells during aging. iScience 2023; 26:107747. [PMID: 37692284 PMCID: PMC10492204 DOI: 10.1016/j.isci.2023.107747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
Pituitary hormone decline is a hallmark of aging. However, the precise gene regulation mechanism during pituitary aging is unclear. Here, we characterized the cell population alteration and global transcriptional change during pituitary aging through single-cell RNA sequencing (scRNA-seq). We found that mRNA-encoding components of protein translational machinery declined the most in the pituitary during aging. Remarkably, Immunoglobulin A (IgA) was found to be expressed in hormone-secreting cells, and the IgA expression level increased dramatically in aged pituitary. Moreover, the pituitary IgA expression was regulated by gut microbiota. The non-hematopoietic origin of the IgA+ cells in the pituitary was further confirmed through bone marrow transplantation. Somatotropes were identified as the most prominent IgA-producing cells through lineage tracing. Thus, pituitary hormone-secreting cells can generate IgA in an age-dependent manner, and such a process is influenced by gut bacteria.
Collapse
Affiliation(s)
- Yehua Li
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jiawen Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Rui Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Ying Chang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xiaodong Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Özkan Karasu Y, Orbak R, Kaşalı K, Berker E, Kantarci A. Porphyromonas gingivalis enhances the senescence-induced increase of 5-alpha reductase in gingival fibroblasts. Clin Oral Investig 2023; 27:5977-5989. [PMID: 37608238 DOI: 10.1007/s00784-023-05211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVES Aging is characterized by chronic inflammatory activity. Senescent cells increase with chronic inflammation and age-related pathologies, including periodontal disease. As a critical regulator of tissue inflammaging, we hypothesized that 5α reductase (5αR) is associated with periodontal disease and bacteria-induced senescence in gingival fibroblasts. MATERIALS AND METHODS We recruited 36 patients with periodontitis, measured 5αR immunohistochemically before and after periodontal treatment, and compared the expression of 5αR in gingival biopsies from 12 healthy individuals. We then tested the impact of Porphyromonas gingivalis on gingival fibroblasts treated with or without D-galactose-induced cell senescence. We treated primary gingival fibroblasts with D-galactose-supplemented media (0 µM, 50 µM, 100 µM, 1 mM, 10 mM, 50 mM) to induce senescence. The expression of type 1 and type 2 5αR was analyzed with real-time PCR and immunocytochemistry. The levels of IL-6, IL-8, TNF-α, and MCP-1 in fibroblast cultures were evaluated by multiplex immunoassay. RESULTS In gingival biopsies from patients with periodontal disease, the expression of 5αR was significantly higher than in samples from individuals without periodontal disease (p < 0.001). Periodontal treatment significantly reduced the expression of 5αR in gingival tissues (p < 0.001) to levels comparable in healthy individuals. Gingival fibroblasts exposed to D-galactose-supplemented media had a dose-dependent and significant increase in 5αR expression (p < 0.001). P. gingivalis caused statistically higher type 1 and type 2 5αR expression in gingival fibroblast cells. This effect was exacerbated by the lower doses of D-galactose (p = 0.037). Cells infected with P. gingivalis produced significantly higher levels of IL-6, IL-8, TNF-α, and MCP-1 (p < 0.05) regardless of the D-galactose exposure. CONCLUSION The results suggested that 5αR plays a role in periodontal disease and mediates the senescence-induced response to P. gingivalis in gingival fibroblasts. CLINICAL RELEVANCE Periodontal diseases and aging can increase the production of 5-alpha reductase in the gingival tissue.
Collapse
Affiliation(s)
- Yerda Özkan Karasu
- The Forsyth Institute, Cambridge, MA, USA
- Faculty of Dentistry, Department of Periodontology, Ataturk University, Erzurum, Turkey
| | - Recep Orbak
- Faculty of Dentistry, Department of Periodontology, Ataturk University, Erzurum, Turkey
| | - Kamber Kaşalı
- Faculty of Medicine, Department of Biostatistics, Ataturk University, Erzurum, Turkey
| | - Ezel Berker
- Faculty of Dentistry, Department of Periodontology, Hacettepe University, Ankara, Turkey
- Faculty of Dentistry, Department of Periodontology, Istanbul Medipol University, Istanbul, Turkey
| | - Alpdogan Kantarci
- The Forsyth Institute, Cambridge, MA, USA.
- School of Dental Medicine, Harvard University, Boston, MA, USA.
| |
Collapse
|
9
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
10
|
Teramoto S, Tahara S, Fukuda I, Hattori Y, Kondo A, Sugihara H, Morita A. Exploring endocrinological pitfalls in pituitary surgery in the elderly. Heliyon 2023; 9:e17060. [PMID: 37484278 PMCID: PMC10361224 DOI: 10.1016/j.heliyon.2023.e17060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Background Endoscopic transsphenoidal surgery (ETSS) is performed more frequently in elderly patients. We investigated endocrinological pitfalls in pituitary surgery in the elderly by a comparative study focusing only on elderly patients. Methods Ninety-nine elderly patients aged 65 years and over with non-functioning pituitary adenoma (NFPA) who underwent ETSS were retrospectively examined and classified into the early (aged 65-74 years) and late (aged 75 years and over) elderly groups. The baseline characteristics and anterior pituitary function were compared between the groups. Results Seventy patients were assigned to the early elderly group and 29 to the late elderly group. Thyroid-stimulating hormone (TSH) response in preoperative and postoperative thyrotropin-releasing hormone (TRH) tests revealed a significant difference between the groups. Preoperative and postoperative TSH responses were significantly correlated in both groups. Residual analysis of the correlation between preoperative free triiodothyronine (T3) secretion quantity and preoperative TSH response in both groups, which was significant, indicated that preoperative TSH response was significantly normal when preoperative free T3 secretion quantity was normal in the early elderly group, but preoperative free T3 secretion quantity was significantly lower regardless of preoperative TSH response in the late elderly group. Conculsions The present study suggested that preoperative and postoperative TSH secretory capacity was presumed to be normal when preoperative free T3 levels were normal in the early elderly patients with NFPA. On the other hand, TSH secretory capacity in the late elderly patients could only be assessed by the TRH test, which should be taken into account.
Collapse
Affiliation(s)
- Shinichiro Teramoto
- Department of Neurological Surgery, Nippon Medical School, Tokyo 113-8603, Japan
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Shigeyuki Tahara
- Department of Neurological Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Izumi Fukuda
- Department of Endocrinology, Diabetes and Metabolism, Nippon Medical School, Tokyo 113-8603, Japan
| | - Yujiro Hattori
- Department of Neurological Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Hitoshi Sugihara
- Department of Endocrinology, Diabetes and Metabolism, Nippon Medical School, Tokyo 113-8603, Japan
| | - Akio Morita
- Department of Neurological Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| |
Collapse
|
11
|
Wang Y, Wang J, Li H, Lao J, Jia D, Liu J, Wang J, Luo J, Guan G, Yin H, Li Y. Antioxidant effects of Bifidobacterium longum T37a in mice weight loss and aging model induced by D-galactose. BMC Microbiol 2023; 23:103. [PMID: 37061697 PMCID: PMC10105457 DOI: 10.1186/s12866-023-02846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/02/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Probiotics can reduce free radical scavenging rate and oxidative damage, and improve activity of crucial antioxidative enzymes in host cells. This study aimed to isolate Bifidobacterium spp. from faeces of babies, and investigate the antioxidant effects of the Bif. longum T37a in mice weight loss and aging model induced by D-galactose. RESULTS T37a have good antioxidant properties in the DPPH assay and anti-lipid peroxidation test. Compared with the model group, T37a low group significantly increased the thymus index and the levels of T-AOC and GSH-Px of mice. T37a high group significantly decreased the spleen and liver index of mice and the levels of MDA in liver, significantly increased in liver HDL-C levels, and decreased LDL-C in liver. CONCLUSIONS T37a may be an anti-aging and weight-loss probiotics for its antioxidant capacity, and it is necessary to study further the molecular mechanism of T37a as antioxidant.
Collapse
Affiliation(s)
- Ya Wang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jiahui Wang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Hehai Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Jianlong Lao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Dan Jia
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Youquan Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China.
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
12
|
Clark BJ, Klinge CM. Structure-function of DHEA binding proteins. VITAMINS AND HORMONES 2022; 123:587-617. [PMID: 37717999 DOI: 10.1016/bs.vh.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) and its sulfated metabolite DHEA-S are the most abundant circulating steroids and are precursors for active sex steroid hormones, estradiol and testosterone. DHEA has a broad range of reported effects in the central nervous system (CNS), cardiovascular system, adipose tissue, kidney, liver, and in the reproductive system. The mechanisms by which DHEA and DHEA-S initiate their biological effects are diverse. DHEA and DHEA-S may directly bind to plasma membrane (PM) receptors, including a DHEA-specific, G-protein coupled receptor (GPCR) in endothelial cells; various neuroreceptors, e.g., aminobutyric-acid-type A (GABA(A)), N-methyl-d-aspartate (NMDA) and sigma-1 (S1R) receptors (NMDAR and SIG-1R). DHEA and DHEA-S directly bind the nuclear androgen and estrogen receptors (AR, ERα, or ERβ) although with significantly lower binding affinities compared to the steroid hormones, e.g., testosterone, dihydrotestosterone, and estradiol, which are the cognate ligands for AR and ERs. Thus, extra-gonadal metabolism of DHEA to the sex hormones must be considered for many of the biological benefits of DHEA. DHEA also actives GPER1 (G protein coupled estrogen receptor 1). DHEA activates constitutive androstane receptor CAR (CAR) and proliferator activated receptor (PPARα) by indirect dephosphorylation. DHEA affects voltage-gated sodium and calcium ion channels and DHEA-2 activates TRPM3 (Transient Receptor Potential Cation Channel Subfamily M Member 3). This chapter updates our previous 2018 review pertaining to the physiological, biochemical, and molecular mechanisms of DHEA and DHEA-S activity.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry & Molecular Genetics, Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville School of Medicine, Louisville, KY, United States
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville School of Medicine, Louisville, KY, United States.
| |
Collapse
|
13
|
Abstract
Objective: The literature on testosterone (T) in men reports diverse correlates of T, some with minimal empirical support and most with little indication of how they change with advancing age. We test eight putative correlations across age.Method: Correlations were tested on a large sample of British men.Results: Seven of eight correlations replicated. Most change across men's life courses. The diurnal cycle of T is considerably weaker among older than younger men. Single men have higher T than married men of the same age; however, this difference lessens as men get older. Elevated T among smokers is less pronounced as men age. The inverse relationship between obesity and T is sustained across the adult age range. The lessening of T with age is well established, however there is disagreement about the course of decline. We find T having a steep decline around age 30, with possibly a rebound around age 50, after which levels remain roughly constant. Correlations involving health become stronger among older men. After age 30 or 40, the inverse relationships between T and HbA1c, diabetes, and metabolic syndrome all become increasingly significant, though not necessarily strong in magnitude.Conclusion: Most putative correlates of T are replicated. There is a basis here for the generalization that among older men, those healthy have higher T than those who are not, but not a lot higher.
Collapse
Affiliation(s)
- Ricky Kanabar
- Department of Social and Policy Sciences, University of Bath, Bath, UK
| | - Allan Mazur
- Maxwell School, Syracuse University, Syracuse, NY, USA
| | - Alexander Plum
- NZWRI, Auckland University of Technology, Auckland, New Zealand
| | - Julian Schmied
- Max Planck Institute for Demographic Research, Rostock, Germany
| |
Collapse
|
14
|
Fraile M, Eiro N, Costa LA, Martín A, Vizoso FJ. Aging and Mesenchymal Stem Cells: Basic Concepts, Challenges and Strategies. BIOLOGY 2022; 11:1678. [PMID: 36421393 PMCID: PMC9687158 DOI: 10.3390/biology11111678] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023]
Abstract
Aging and frailty are complex processes implicating multifactorial mechanisms, such as replicative senescence, oxidative stress, mitochondrial dysfunction, or autophagy disorder. All of these mechanisms drive dramatic changes in the tissue environment, such as senescence-associated secretory phenotype factors and inflamm-aging. Thus, there is a demand for new therapeutic strategies against the devastating effects of the aging and associated diseases. Mesenchymal stem cells (MSC) participate in a "galaxy" of tissue signals (proliferative, anti-inflammatory, and antioxidative stress, and proangiogenic, antitumor, antifibrotic, and antimicrobial effects) contributing to tissue homeostasis. However, MSC are also not immune to aging. Three strategies based on MSC have been proposed: remove, rejuvenate, or replace the senescent MSC. These strategies include the use of senolytic drugs, antioxidant agents and genetic engineering, or transplantation of younger MSC. Nevertheless, these strategies may have the drawback of the adverse effects of prolonged use of the different drugs used or, where appropriate, those of cell therapy. In this review, we propose the new strategy of "Exogenous Restitution of Intercellular Signalling of Stem Cells" (ERISSC). This concept is based on the potential use of secretome from MSC, which are composed of molecules such as growth factors, cytokines, and extracellular vesicles and have the same biological effects as their parent cells. To face this cell-free regenerative therapy challenge, we have to clarify key strategy aspects, such as establishing tools that allow us a more precise diagnosis of aging frailty in order to identify the therapeutic requirements adapted to each case, identify the ideal type of MSC in the context of the functional heterogeneity of these cellular populations, to optimize the mass production and standardization of the primary materials (cells) and their secretome-derived products, to establish the appropriate methods to validate the anti-aging effects and to determine the most appropriate route of administration for each case.
Collapse
Affiliation(s)
- Maria Fraile
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Luis A. Costa
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Arancha Martín
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
- Department of Emergency, Hospital Universitario de Cabueñes, Los Prados, 395, 33394 Gijon, Spain
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
- Department of Surgery, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| |
Collapse
|
15
|
M. Heshmati H. Comparative Senescence and Lifespan. Physiology (Bethesda) 2022. [DOI: 10.5772/intechopen.105137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The word senescence is derived from the Latin word “senex” (meaning old). In biology, senescence is a process by which a cell ages and permanently stops dividing. Senescence is a natural universal phenomenon affecting all living organisms (e.g., humans, animals, and plants). It is the process of growing old (aging). The underlying mechanisms of senescence and aging at the cellular level are not fully understood. Senescence is a multifactorial process that can be induced by several stimuli including cellular stress, DNA damage, telomere shortening, and oncogene activation. The most popular theory to explain aging is the free radical theory. Senescence plays a role in the development of several age-related chronic diseases in humans (e.g., ischemic heart disease, osteoporosis, and cancer). Lifespan is a biological characteristic of every species. The lifespan of living organisms ranges from few hours (with mayfly) to potential eternity (with jellyfish and hydra). The maximum theoretical lifespan in humans is around 120 years. The lifespan in humans is influenced by multiple factors including genetic, epigenetic, lifestyle, environmental, metabolic, and endocrine factors. There are several ways to potentially extend the lifespan of humans and eventually surpass the maximum theoretical lifespan of 120 years. The tools that can be proposed include lifestyle, reduction of several life-threatening diseases and disabilities, hormonal replacement, antioxidants, autophagy inducers, senolytic drugs, stem cell therapy, and gene therapy.
Collapse
|
16
|
Ru M, Wang W, Zhai Z, Wang R, Li Y, Liang J, Kothari D, Niu K, Wu X. Nicotinamide mononucleotide supplementation protects the intestinal function in aging mice and D-galactose induced senescent cells. Food Funct 2022; 13:7507-7519. [PMID: 35678708 DOI: 10.1039/d2fo00525e] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nicotinamide adenine dinucleotide (NAD+) level shows a temporal decrease during the aging process, which has been deemed as an aging hallmark. Nicotinamide mononucleotide (NMN), a key NAD+ precursor, shows the potential to retard the age-associated functional decline in organs. In the current study, to explore whether NMN has an impact on the intestine during the aging process, the effects of NMN supplementation on the intestinal morphology, microbiota, and NAD+ content, as well as its anti-inflammatory, anti-oxidative and barrier functions were investigated in aging mice and D-galactose (D-gal) induced senescent IPEC-J2 cells. The results showed that 4 months of NMN administration had little impact on the colonic microbiota and NAD+ content in aging mice, while it significantly increased the jejunal NAD+ content and improved the jejunal structure including increasing the villus length and shortening the crypt. Moreover, NMN supplementation significantly up-regulated the mRNA expression of SIRT3, SIRT6, nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), the catalytic subunit of glutamate-cysteine ligase (GCLC), superoxide dismutase 2 (SOD2), occludin, and claudin-1, but down-regulated the mRNA expression of tumor necrosis factor alpha (TNF-α). Specifically, in the D-gal induced senescent IPEC-J2 cells, 500 μM NMN restored the increased mRNA expression of interleukin 6 (IL6ST), IL-1A, nuclear factor (NF-κB1), and claudin-1 to normal levels to some extent. Furthermore, NMN treatment significantly affected the mRNA expression of antioxidant enzymes including NQO1, GCLC, SOD 2 and 3, and GSH-PX1, 3 and 4. In addition, 200 μM NMN enhanced the cell viability and total antioxidant capacity and lowered the reactive oxygen species level of senescent IPEC-J2 cells. Notably, NMN restored the down-regulated protein expression of occludin and claudin-1 induced by D-gal. The above data demonstrated the potential of NMN in ameliorating the structural and functional decline in the intestine during aging.
Collapse
Affiliation(s)
- Meng Ru
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Wanwan Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Zhenya Zhai
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Ruxia Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Yumeng Li
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China.
| | - Jiang Liang
- ERA Biotechnology (Shenzhen) Co., Ltd, Shenzhen 518155, China
| | - Damini Kothari
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, South Korea
| | - Kaimin Niu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China. .,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Xin Wu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China. .,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| |
Collapse
|
17
|
Caputo M, Mele C, Ferrero A, Leone I, Daffara T, Marzullo P, Prodam F, Aimaretti G. Dynamic Tests in Pituitary Endocrinology: Pitfalls in Interpretation during Aging. Neuroendocrinology 2022; 112:1-14. [PMID: 33454712 DOI: 10.1159/000514434] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/12/2021] [Indexed: 11/19/2022]
Abstract
Aging and age-related diseases represent hot topics of current research. Progressive damage in morphology and function of cells and tissue characterizes the normal process of aging that is influenced by both genetic and environmental factors. The ability of each individual to adapt to these stressors defines the type of aging and the onset of age-related diseases (i.e., metabolic syndrome, inflammatory disorders, cancer, and neurodegenerative diseases). The endocrine system plays a critical role in this process because of its complex relationships with brain, immune system, and skeletal muscle; thus, alterations in hormonal networks occur during aging to maintain homeostasis, with consequent under- or overactivity of specific hypothalamic-pituitary-peripheral hormone axes. On the other hand, the increase in life expectancy has led to increasing incidence of age-related diseases, including endocrine disorders, which may prompt assessment of endocrine function in aging individuals. In this context, there is growing awareness that natural changes of endocrine physiology and physiopathology occurring with increasing age may necessitate age-driven diagnostic cutoffs requiring validation in the elderly. This review aims to analyze the available literature on the hormone response to the most important dynamic tests currently used in the clinical practice for the screening of anterior pituitary-related diseases to underline pitfalls in interpretation during aging.
Collapse
Affiliation(s)
- Marina Caputo
- Endocrinology, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy,
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy,
| | - Chiara Mele
- Endocrinology, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Alice Ferrero
- Endocrinology, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Ilaria Leone
- Endocrinology, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Tommaso Daffara
- Endocrinology, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Paolo Marzullo
- Endocrinology, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- IRCCS Istituto Auxologico Italiano, Laboratory of Metabolic Research, Novara/Milan, Italy
| | - Flavia Prodam
- Endocrinology, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy
| | - Gianluca Aimaretti
- Endocrinology, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| |
Collapse
|
18
|
Chen T, Luo S, Wang X, Zhou Y, Dai Y, Zhou L, Feng S, Yuan M, Ding C. Polyphenols from Blumea laciniata Extended the Lifespan and Enhanced Resistance to Stress in Caenorhabditis elegans via the Insulin Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10111744. [PMID: 34829615 PMCID: PMC8614712 DOI: 10.3390/antiox10111744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Blumea laciniata is widely used as a folk medicine in Asia, but relevant literature on it is rarely reported. We confirmed that polyphenol extract (containing chlorogenic acid, rutin, and luteolin-4-O-glucoside) from B. laciniata (EBL) showed strong antioxidant ability in vitro. Hence, in this work, we applied Caenorhabditis elegans to further investigate the antioxidant and anti-ageing abilities of EBL in vivo. The results showed that EBL enhanced the survival of C. elegans under thermal stress by 12.62% and sharply reduced the reactive oxygen species level as well as the content of malonaldehyde. Moreover, EBL increased the activities of antioxidant enzymes such as catalase and superoxide dismutase. Additionally, EBL promoted DAF-16, a transcription factor, into the nucleus. Besides, EBL extended the lifespan of C. elegans by 17.39%, showing an anti-ageing effect. Different mutants indicated that the insulin/IGF-1 signaling pathway participated in the antioxidant and anti-ageing effect of EBL on C. elegans.
Collapse
|
19
|
Faraji J, Metz GAS. Aging, Social Distancing, and COVID-19 Risk: Who is more Vulnerable and Why? Aging Dis 2021; 12:1624-1643. [PMID: 34631211 PMCID: PMC8460299 DOI: 10.14336/ad.2021.0319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/19/2021] [Indexed: 01/08/2023] Open
Abstract
Perceived social support represents an important predictor of healthy aging. The global COVID-19 pandemic has dramatically changed the face of social relationships and revealed elderly to be particularly vulnerable to the effects of social isolation. Social distancing may represent a double-edged sword for older adults, protecting them against COVID-19 infection while also sacrificing personal interaction and attention at a critical time. Here, we consider the moderating role of social relationships as a potential influence on stress resilience, allostatic load, and vulnerability to infection and adverse health outcomes in the elderly population. Understanding the mechanisms how social support enhances resilience to stress and promotes mental and physical health into old age will enable new preventive strategies. Targeted social interventions may provide effective relief from the impact of COVID-19-related isolation and loneliness. In this regard, a pandemic may also offer a window of opportunity for raising awareness and mobilizing resources for new strategies that help build resilience in our aging population and future generations.
Collapse
Affiliation(s)
- Jamshid Faraji
- 1Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,2Faculty of Nursing & Midwifery, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gerlinde A S Metz
- 1Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
20
|
Abstract
Frailty is an important clinical syndrome of age-related decline in physiologic reserve and increased vulnerability. In older adults, frailty leads to progressive multisystem decline and increased adverse clinical outcomes. The pathophysiology of frailty is hypothesized to be driven by dysregulation of neuroendocrine, inflammatory, and metabolic pathways. Sex-specific differences in the prevalence of frailty have been observed. Treatment interventions of geriatric care can be applied to the care of frail older women with these differences in mind. As additional evidence regarding sex-specific differences in frailty emerges, research efforts should encompass the development of screening tools and therapeutic interventions that optimize outcomes.
Collapse
Affiliation(s)
- Caroline Park
- Section of Geriatrics, Division of Primary Care & Population Health, Stanford School of Medicine, Stanford Senior Care, 211 Quarry Road. Suite 4C, Palo Alto, CA 94304, USA
| | - Fred C Ko
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1070, New York, NY 10029, USA; Geriatric Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
21
|
Mediterranean Diet and Physical Activity for Successful Aging: An Update for Nutritionists and Endocrinologists. ENDOCRINES 2021. [DOI: 10.3390/endocrines2040034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The constant advancement in the medical field has allowed for the diagnosis and treatment of several health conditions. It has also contributed to increasing the average human lifespan, which is considered an outstanding achievement in history. Nevertheless, the impact of this in an ever-increasing aged population with chronic diseases and, most of the time, with limited and poor quality of life was not considered. Thus, it is imperative to establish strategies to age successfully. In order to do have a better understanding of this crucial issue, this review will analyze the endocrine changes in the elderly. It will present common conditions found in this population, chronic inflammation, and oxidative stress. Additionally, we will explain aging-related metabolic and physical performance decline related to hormone changes and lifestyle modifications. We will propose the Mediterranean diet and some specific guidelines about physical activity as part of the plan to have an active and successful aging process.
Collapse
|
22
|
Nadeeshani H, Li J, Ying T, Zhang B, Lu J. Nicotinamide mononucleotide (NMN) as an anti-aging health product – Promises and safety concerns. J Adv Res 2021; 37:267-278. [PMID: 35499054 PMCID: PMC9039735 DOI: 10.1016/j.jare.2021.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/07/2023] Open
Abstract
Provides an overview of promises and safety concerns of NMN as an anti-aging product. Shows that NMN’s beneficial effects supported by in vivo studies. Reveals that there is a lack of NMN’s clinical safety and efficacy studies Suggests that proper clinical investigations are urgently needed on the effectiveness and safety of NMN supplementation.
Background Aim of review Key scientific concepts of review
Collapse
Affiliation(s)
- Harshani Nadeeshani
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0627, New Zealand
- Institute of Biomedical Technology, Auckland University of Technology, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Discovery, Auckland 1010, New Zealand
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, Guangdong Province, China
- College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi Province, China
- Corresponding author at: Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0627, New Zealand.
| |
Collapse
|
23
|
Tsuchiya T, Takei A, Tsujikado K, Inukai T. Effects of androgens and estrogens on sirtuin 1 gene expression in human aortic endothelial cells. Saudi Med J 2021; 41:361-368. [PMID: 32291422 PMCID: PMC7841601 DOI: 10.15537/smj.2020.4.25006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objectives: To investigate the effect of androgens and estrogens on surtuin 1 (SIRT1) expression in human aortic endothelial cells (HAECs). Methods: Real-time polymerase chain reaction analysis of SIRT-1 expression over 48 hours (h) was performed in HAECs treated with various concentrations of dehydroepiandrostendione (DHEA), androstenedione and testosterone (androgens), estrone (E1), estradiol (E2), and estriol (E3) (estrogens) to investigate the dose-dependency of time courses. The influence of high glucose on SIRT1 expression induced by the androgens and estrogens was also examined. Results: Dehydroepiandrostendione, androstenedione, and testosterone remarkably produced a dose-dependent increase in SIRT1 expression in the range of 10 to 20 μg/ml. High glucose (40mM) medium had significantly inhibitory effects on 10 μg/ml DHEA-induced SIRT1 expression (p=0.024). Estrone and E2, but not E3, caused a marked dose-dependent increase in SIRT1 expression from 10 to 20 μg/ml. Treatment with 20 mM or 40 mM glucose medium did not significantly inhibit E1- and E3-induced SIRT1 expression in control medium; however, both high glucose mediums significantly emphasized E2-induced SIRT1 expression in control medium (p=0.007, p=0.005). Conclusion: These results suggest that DHEA, androstenedione, testosterone, E1, and E2 definitely activate SIRT1 expression in HAECs. A high glucose medium is potent to inhibit the basal gene expression; however, it could not reduce powerful androgen- and estrogen-induced SIRT1 expression in HAECs.
Collapse
Affiliation(s)
- Takafumi Tsuchiya
- Department of Internal Medicine, Dokkyo Medical University, Saitama Medical Center, Koshigaya, Japan. E-mail.
| | | | | | | |
Collapse
|
24
|
Zhu Y, Ge J, Huang C, Liu H, Jiang H. Application of mesenchymal stem cell therapy for aging frailty: from mechanisms to therapeutics. Theranostics 2021; 11:5675-5685. [PMID: 33897874 PMCID: PMC8058725 DOI: 10.7150/thno.46436] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Aging frailty is a complex geriatric syndrome that becomes more prevalent with advancing age. It constitutes a major health problem due to frequent adverse outcomes. Frailty is characterized by disruption of physiological homeostasis and progressive decline of health status. Multiple factors contribute to development of frailty with advancing age, including genome instability, DNA damage, epigenetic alternations, stem cell exhaustion, among others. These interrelated factors comprehensively result in loss of tissue homeostasis and diminished reserve capacity in frailty. Therefore, the aged organism gradually represents symptoms of frailty with decline in physiological functions of organs. Notably, the brain, cardiovascular system, skeletal muscle, and endocrine system are intrinsically interrelated to frailty. The patients with frailty may display the diminished reserves capacity of organ systems. Due to the complex pathophysiology, no specific treatments have been approved for prevention of this syndrome. At such, effective strategies for intervening in pathogenic process to improve health status of frail patients are highly needed. Recent progress in cell-based therapy has greatly contributed to the amelioration of degenerative diseases related to age. Mesenchymal stem cells (MSCs) can exert regenerative effects and possess anti-inflammatory properties. Transplantation of MSCs represents as a promising therapeutic strategy to address the pathophysiologic problems of frail syndrome. Currently, MSC therapy have undergone the phase I and II trials in human subjects that have endorsed the safety and efficacy of MSCs for aging frailty. However, despite these positive results, caution is still needed with regard to potential to form tumors, and further large-scale studies are warranted to confirm the therapeutic efficacy of MSC therapy.
Collapse
|
25
|
Duntas LH. Aging and the hypothalamic-pituitary-thyroid axis. VITAMINS AND HORMONES 2021; 115:1-14. [PMID: 33706944 DOI: 10.1016/bs.vh.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The world's population is increasingly aging, this noted particularly in the Western world where there are ever greater numbers of centenarians and those over 85 years. Given the immense importance of the thyroid gland for optimal health and the fact that morphological and functional changes in the hypothalamic-pituitary-thyroid (HPT) axis take place as a natural adaptation to the aging process, a clear distinction must be made in older individuals between these and the onset of disease. However, this is problematic since, frequently, subtle differences exist between them, making diagnosis a challenging task, especially as concerns subclinical disease. The newly emerging interdisciplinary field of geroscience offers the prospect of being used as a platform to investigate the effect of disrupted HPT function on functional capacity and cognitive ability among the aged, as well as the risk or onset of age-associated diseases, thus enhancing healthspan and lifespan. Because optimal functioning of the thyroid gland is a prerequisite for longevity as well as for mental and physical wellbeing, this review summarizes the recent scientific data regarding HPT and aging while discussing alternative and personalized treatment approaches to maintaining a healthy thyroid as a means to ensuring a long, active, and healthy life.
Collapse
Affiliation(s)
- Leonidas H Duntas
- Evgenideion Hospital, Unit of Endocrinology, Diabetes and Metabolism, University of Athens, Athens, Greece.
| |
Collapse
|
26
|
Aging and age-related diseases: from mechanisms to therapeutic strategies. Biogerontology 2021; 22:165-187. [PMID: 33502634 PMCID: PMC7838467 DOI: 10.1007/s10522-021-09910-5] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/01/2021] [Indexed: 01/10/2023]
Abstract
Aging is a physiological process mediated by numerous biological and genetic pathways, which are directly linked to lifespan and are a driving force for all age-related diseases. Human life expectancy has greatly increased in the past few decades, but this has not been accompanied by a similar increase in their healthspan. At present, research on aging biology has focused on elucidating the biochemical and genetic pathways that contribute to aging over time. Several aging mechanisms have been identified, primarily including genomic instability, telomere shortening, and cellular senescence. Aging is a driving factor of various age-related diseases, including neurodegenerative diseases, cardiovascular diseases, cancer, immune system disorders, and musculoskeletal disorders. Efforts to find drugs that improve the healthspan by targeting the pathogenesis of aging have now become a hot topic in this field. In the present review, the status of aging research and the development of potential drugs for aging-related diseases, such as metformin, rapamycin, resveratrol, senolytics, as well as caloric restriction, are summarized. The feasibility, side effects, and future potential of these treatments are also discussed, which will provide a basis to develop novel anti-aging therapeutics for improving the healthspan and preventing aging-related diseases.
Collapse
|
27
|
Abstract
Several correlations have been reported between men's testosterone (T) and other characteristics. Stalwart findings are a decline in T during the day, decline with obesity, and decline with advancing age. Here seven previously reported correlations are tested among older American men in the National Social Life, Health and Aging Project (NSHAP), their salivary T measured by enzyme immunoassays (EIA). Few significant correlations are found, with most tests producing weak or null results. These findings, overall, suggest that T does not "work" much among older men. However, a threat to this conclusion is raised by Welker et al. namely that EIA of salivary T may contain large errors, invalidating the tests. To check this possibility, these correlations from the literature were tested among older British men whose salivary T was measured by liquid chromatography-tandem mass spectroscopy (LC-MS/MS), a technique noted for its specificity. Not all could be tested, but the relationships of T with age, obesity, and health are significant among British men, indicating that T remains active in older men, and throwing doubt on the adequacy of EIA for measuring salivary T.
Collapse
Affiliation(s)
- Allan Mazur
- Maxwell School, Syracuse University, Syracuse, NY, USA
| | | |
Collapse
|
28
|
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:1-35. [PMID: 32854851 DOI: 10.1016/bs.irn.2020.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-communicable diseases (NCDs) that involve neurodegenerative disorders and metabolic disease impact over 400 million individuals globally. Interestingly, metabolic disorders, such as diabetes mellitus, are significant risk factors for the development of neurodegenerative diseases. Given that current therapies for these NCDs address symptomatic care, new avenues of discovery are required to offer treatments that affect disease progression. Innovative strategies that fill this void involve the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR complex 1 (mTORC1), mTOR complex 2 (mTORC2), AMP activated protein kinase (AMPK), trophic factors that include erythropoietin (EPO), and the programmed cell death pathways of autophagy and apoptosis. These pathways are intriguing in their potential to provide effective care for metabolic and neurodegenerative disorders. Yet, future work is necessary to fully comprehend the entire breadth of the mTOR pathways that can effectively and safely translate treatments to clinical medicine without the development of unexpected clinical disabilities.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY, United States.
| |
Collapse
|
29
|
Zeng R, Farooq MU, Zhang G, Tang Z, Zheng T, Su Y, Hussain S, Liang Y, Ye X, Jia X, Zhu J. Dissecting the Potential of Selenoproteins Extracted from Selenium-Enriched Rice on Physiological, Biochemical and Anti-Ageing Effects In Vivo. Biol Trace Elem Res 2020; 196:119-130. [PMID: 31786753 DOI: 10.1007/s12011-019-01896-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022]
Abstract
Ageing is an irreversible phenomenon and the processes which can delay it are under consideration for a long time by the scientific community. Selenium is an important candidate for it, but the impact of selenoprotein on nutritional changes and ageing has not been reported well. In this regard, antioxidant activities and free radical scavenging effect of selenoproteins extracted from selenium-rich rice were studied. Mice were administered a subcutaneous abdominal injection of D-galactose to induce the ageing model and fed with different selenoprotein dosage diet. Deviations among biochemical activities (total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and malondialdehyde (MDA)) in liver and serum of the mice were assessed. The degree of liver injury, antioxidant genes and protein relative expression were estimated. The protein content, selenium content, hydroxyl scavenging and DPPH radicals were accessed in selenoprotein components. The selenoprotein constituent had protein and selenium contents in different components as water-soluble proteins > alkali-soluble proteins > salt-soluble proteins > ethanol-soluble proteins. The enzymatic activity (total antioxidant capacity, GSH-Px and SOD) in liver and serum of mice was significantly enhanced in selenoprotein diet groups. D-Galactose-induced liver injury was significantly reduced by selenoprotein diet of 25 μg/(kg day). Real-time qPCR and Western blot disclosed the enhanced relative expression of antioxidant genes (SOD2, GPX1, TrxR2 and Nrf2) and HO-1 protein in the positive control (Vc) and selenoprotein diet groups. In conclusion, selenoprotein treatment was found to have a positive influence on liver hepatocytes and biochemical features in mice. It might be used as a potential diet in scavenging oxidative injury and supporting enzymatic antioxidant system.
Collapse
Affiliation(s)
- Rui Zeng
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
- Dujiangyan Agriculture and Rural Bureau, Dujiangyan, 611830, Sichuan, China
| | - Muhammad Umer Farooq
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Guo Zhang
- Chengdu Agriculture College, Chengdu, 611130, Sichuan, China
| | - Zhichen Tang
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Tengda Zheng
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Yang Su
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuanke Liang
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Xiaoying Ye
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Xiaomei Jia
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jianqing Zhu
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
30
|
Haynes EMK, Neubauer NA, Cornett KMD, O'Connor BP, Jones GR, Jakobi JM. Age and sex-related decline of muscle strength across the adult lifespan: a scoping review of aggregated data. Appl Physiol Nutr Metab 2020; 45:1185-1196. [PMID: 32598857 DOI: 10.1139/apnm-2020-0081] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Muscle strength is sex-related and declines with advancing age; yet, a comprehensive comparative evaluation of age-related strength loss in human females and males has not been undertaken. To do so, segmented piecewise regression analysis was performed on aggregated data from studies published from 1990 to 2018 and are available in CINAHL, EMBASE, MEDLINE, and PsycINFO databases. The search identified 5613 articles that were reviewed for physical assessment results stratified by sex and age. Maximal isometric and isokinetic 60°·s-1 knee extension (KE) and knee flexion (KF) contractions from 57 studies and 15 283 subjects (N = 7918 females) had sufficient data reported on females and males for meaningful statistical evaluation to be undertaken. The analysis revealed that isometric KE and KF strength undergo similar rapid declines in both sexes late in the sixth decade of life. Yet, there is an abrupt age-related decline in KE 60°·s-1 peak torque earlier in females (aged 41.8 years) than males (aged 66.7 years). In the assessment of KF peak torque, an age-related acceleration in strength loss was only identified in males (aged 49.3 years). The results suggest that age-related isometric strength loss is similar between sexes while the characteristics of KE and KF peak torque decline are sex-related, which likely explains the differential rate of age-related functional decline. Novelty Inclusion of muscle strength and torque of KE and KF data from >15 000 subjects. Isometric KE and KF strength loss are similar between sexes. Isokinetic 60°·s-1 KE torque decline accelerates 25 years earlier in females and female age-related KF peak torque decline does not accelerate with age.
Collapse
Affiliation(s)
- E M K Haynes
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - N A Neubauer
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - K M D Cornett
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - B P O'Connor
- Psychology, School of Arts and Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - G R Jones
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - J M Jakobi
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
31
|
Najar J, Östling S, Waern M, Zettergren A, Kern S, Wetterberg H, Hällström T, Skoog I. Reproductive period and dementia: A 44-year longitudinal population study of Swedish women. Alzheimers Dement 2020; 16:1153-1163. [PMID: 32573980 DOI: 10.1002/alz.12118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Longitudinal studies examining the effect of endogenous estrogens on dementia risk are needed to understand why women have higher dementia incidence than men after age 85. METHODS A population-based sample of women with natural menopause (N = 1364) from Gothenburg, Sweden, was followed from 1968-2012. Information on endogenous estrogens (age at menarche and menopause, number of pregnancies, and months of breastfeeding) was obtained from interviews in 1968-1992. Dementia was diagnosed according to established criteria based on information from neuropsychiatric examinations and close informant interviews. RESULTS We found that longer reproductive period was associated with increased risk of dementia (hazard ratio [HR] per year 1.06, 95% confidence interval [CI] 1.03-1.20) and Alzheimer's disease (AD) (1.06, 1.02-1.11), particularly for those with dementia (1.10, 1.04-1.17) and AD (1.15, 1.06-1.26) onset after age 85. DISCUSSION These results may explain why women have higher dementia incidence compared to men after age 85, the age with the highest number of dementia cases.
Collapse
Affiliation(s)
- Jenna Najar
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Mölndal, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry Cognition and Old Age Psychiatry Clinic, Mölndal, Sweden
| | - Svante Östling
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Mölndal, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry Cognition and Old Age Psychiatry Clinic, Mölndal, Sweden
| | - Margda Waern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Mölndal, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Psychosis Clinic, Gothenburg, Sweden
| | - Anna Zettergren
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Mölndal, Sweden
| | - Silke Kern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Mölndal, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry Cognition and Old Age Psychiatry Clinic, Mölndal, Sweden
| | - Hanna Wetterberg
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Mölndal, Sweden
| | - Tore Hällström
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Mölndal, Sweden
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Mölndal, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry Cognition and Old Age Psychiatry Clinic, Mölndal, Sweden
| |
Collapse
|
32
|
Abstract
Metabolic disorders, such as diabetes mellitus (DM), are increasingly becoming significant risk factors for the health of the global population and consume substantial portions of the gross domestic product of all nations. Although conventional therapies that include early diagnosis, nutritional modification of diet, and pharmacological treatments may limit disease progression, tight serum glucose control cannot prevent the onset of future disease complications. With these concerns, novel strategies for the treatment of metabolic disorders that involve the vitamin nicotinamide, the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and the cellular pathways of autophagy and apoptosis offer exceptional promise to provide new avenues of treatment. Oversight of these pathways can promote cellular energy homeostasis, maintain mitochondrial function, improve glucose utilization, and preserve pancreatic beta-cell function. Yet, the interplay among mTOR, AMPK, and autophagy pathways can be complex and affect desired clinical outcomes, necessitating further investigations to provide efficacious treatment strategies for metabolic dysfunction and DM.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022,
| |
Collapse
|
33
|
Liu R, Fu Z, Zhang F, Mao Q, Luan C, Han X, Xue J, Wang D, Qin S, Hao F. Effect of yellow rice wine on anti-aging ability in aged mice induced by d-galactose. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
34
|
Janjuha R, Bunn D, Hayhoe R, Hooper L, Abdelhamid A, Mahmood S, Hayden-Case J, Appleyard W, Morris S, Welch A. Effects of Dietary or Supplementary Micronutrients on Sex Hormones and IGF-1 in Middle and Older Age: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:E1457. [PMID: 32443563 PMCID: PMC7284480 DOI: 10.3390/nu12051457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Observational research suggests that micronutrients may be protective for sarcopenia, a key health issue during ageing, potentially via effects on hormone synthesis and metabolism. We aimed to carry out a systematic review of RCTs investigating effects of increasing dietary or supplemental micronutrient intake on sex hormones and IGF-1 in individuals aged 45 years or older. We searched MEDLINE, EMBASE and Cochrane databases for RCTs reporting the effects of different micronutrients (vitamins A, C, D, or E; carotenoids; iron; copper; zinc; magnesium; selenium; and potassium) on sex hormones or IGF-1. Of the 26 RCTs identified, nine examined effects of vitamin D, nine of multi-nutrients, four of carotenoids, two of selenium, one of zinc, and one of vitamin E. For IGF-1 increasing vitamin D (MD: -0.53 nmol/L, 95% CI: -1.58, 0.52), multi-nutrients (MD: 0.60 nmol/L, 95% CI -1.12 to 2.33) and carotenoids (MD -1.32 nmol/L; 95% CI -2.76 to 0.11) had no significant effect on circulating concentrations. No significant effects on sex hormones of other micronutrients were found, but data were very limited. All trials had significant methodological limitations making effects of micronutrient supplementation on sex hormones unclear. Further high quality RCTs with physiological doses of micronutrients in people with low baseline intakes or circulating concentrations, using robust methodology, are required to assess effects of supplementation adequately.
Collapse
Affiliation(s)
- Ryan Janjuha
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Diane Bunn
- School of Health Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK;
| | - Richard Hayhoe
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Asmaa Abdelhamid
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Shaan Mahmood
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Joseph Hayden-Case
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Will Appleyard
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Sophie Morris
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Ailsa Welch
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| |
Collapse
|
35
|
Khaltourina D, Matveyev Y, Alekseev A, Cortese F, Ioviţă A. Aging Fits the Disease Criteria of the International Classification of Diseases. Mech Ageing Dev 2020; 189:111230. [PMID: 32251691 DOI: 10.1016/j.mad.2020.111230] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
The disease criteria used by the World Health Organization (WHO) were applied to human biological aging in order to assess whether aging can be classified as a disease. These criteria were developed for the 11th revision of the International Classification of Diseases (ICD) and included disease diagnostics, mechanisms, course and outcomes, known interventions, and linkage to genetic and environmental factors. RESULTS: Biological aging can be diagnosed with frailty indices, functional, blood-based biomarkers. A number of major causal mechanisms of human aging involved in various organs have been described, such as inflammation, replicative cellular senescence, immune senescence, proteostasis failures, mitochondrial dysfunctions, fibrotic propensity, hormonal aging, body composition changes, etc. We identified a number of clinically proven interventions, as well as genetic and environmental factors of aging. Therefore, aging fits the ICD-11 criteria and can be considered a disease. Our proposal was submitted to the ICD-11 Joint Task force, and this led to the inclusion of the extension code for "Ageing-related" (XT9T) into the "Causality" section of the ICD-11. This might lead to greater focus on biological aging in global health policy and might provide for more opportunities for the new therapy developers.
Collapse
Affiliation(s)
- Daria Khaltourina
- Department of Risk Factor Prevention, Federal Research Institute for Health Organization and Informatics of Ministry of Health of the Russian Federation, Dobrolyubova St. 11, Moscow, 127254, Russia; International Longevity Alliance, 19 avenue Jean Jaurès, Sceaux, 92330, France.
| | - Yuri Matveyev
- Research Lab, Moscow Regional Research and Clinical Institute, Schepkina St. 61/2 k.1, Moscow, 129110, Russia
| | - Aleksey Alekseev
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow, 119991, Russia
| | - Franco Cortese
- Biogerontology Research Foundation, Apt 2354 Chynoweth House, Trevissome Park, Truro, London, TR4 8UN, UK
| | - Anca Ioviţă
- International Longevity Alliance, 19 avenue Jean Jaurès, Sceaux, 92330, France
| |
Collapse
|
36
|
Rao A, Grant R. The effect of Trigonella foenum-graecum extract on prostate-specific antigen, and prostate function in otherwise healthy men with benign prostate hyperplasia. Phytother Res 2019; 34:634-639. [PMID: 31828857 DOI: 10.1002/ptr.6554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/17/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022]
Abstract
The aim of this trial was to evaluate the effect of a standardised Trigonella foenum-graecum (Fenugreek) extract on the symptoms of benign prostate hyperplasia (BPH) using a double-blind randomised placebo controlled design. The study recruited 100 healthy males aged between 45 and 80 years with symptoms of BPH who recorded a minimum score of eight on the International Prostate Symptom Score. Participants were randomised to an oral dose of either 600mg Trigonella foenum-graceum per day or placebo for 12 weeks. The primary outcome measure was the International Prostate Symptom Score total and subdomain scores. The secondary outcomes were serum levels of the hormones (testosterone, free testosterone, and sex hormone binding globulin) prostate-specific antigen, and safety markers. The results indicated that Trigonella foenum-graceum did not have an effect on improving the symptoms of BPH. Hormone levels, safety markers, and prostate-specific antigen remained unchanged and within normal limits after 12 weeks, which adds to the safety profile of this specialised extract.
Collapse
Affiliation(s)
- Amanda Rao
- School of Medicine, The University of Sydney, Sydney, Australia
| | - Ross Grant
- Department of Pharmacology, University of New South Wales, Sydney, Australia
| |
Collapse
|
37
|
Fragala MS, Cadore EL, Dorgo S, Izquierdo M, Kraemer WJ, Peterson MD, Ryan ED. Resistance Training for Older Adults: Position Statement From the National Strength and Conditioning Association. J Strength Cond Res 2019; 33:2019-2052. [PMID: 31343601 DOI: 10.1519/jsc.0000000000003230] [Citation(s) in RCA: 551] [Impact Index Per Article: 110.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fragala, MS, Cadore, EL, Dorgo, S, Izquierdo, M, Kraemer, WJ, Peterson, MD, and Ryan, ED. Resistance training for older adults: position statement from the national strength and conditioning association. J Strength Cond Res 33(8): 2019-2052, 2019-Aging, even in the absence of chronic disease, is associated with a variety of biological changes that can contribute to decreases in skeletal muscle mass, strength, and function. Such losses decrease physiologic resilience and increase vulnerability to catastrophic events. As such, strategies for both prevention and treatment are necessary for the health and well-being of older adults. The purpose of this Position Statement is to provide an overview of the current and relevant literature and provide evidence-based recommendations for resistance training for older adults. As presented in this Position Statement, current research has demonstrated that countering muscle disuse through resistance training is a powerful intervention to combat the loss of muscle strength and muscle mass, physiological vulnerability, and their debilitating consequences on physical functioning, mobility, independence, chronic disease management, psychological well-being, quality of life, and healthy life expectancy. This Position Statement provides evidence to support recommendations for successful resistance training in older adults related to 4 parts: (a) program design variables, (b) physiological adaptations, (c) functional benefits, and (d) considerations for frailty, sarcopenia, and other chronic conditions. The goal of this Position Statement is to a) help foster a more unified and holistic approach to resistance training for older adults, b) promote the health and functional benefits of resistance training for older adults, and c) prevent or minimize fears and other barriers to implementation of resistance training programs for older adults.
Collapse
Affiliation(s)
| | - Eduardo L Cadore
- School of Physical Education, Physiotherapy and Dance, Exercise Research Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sandor Dorgo
- Department of Kinesiology, University of Texas at El Paso, El Paso, Texas
| | - Mikel Izquierdo
- Department of Health Sciences, Public University of Navarre, CIBER of Frailty and Healthy Aging (CIBERFES), Navarrabiomed, Pamplona, Navarre, Spain
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Mark D Peterson
- Department of Physical Medicine and Rehabilitation, University of Michigan-Medicine, Ann Arbor, Michigan
| | - Eric D Ryan
- Department of Exercise and Sport Science, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
38
|
Miyamura K, Fhon JRS, Bueno ADA, Fuentes-Neira WL, Silveira RCDCP, Rodrigues RAP. Frailty syndrome and cognitive impairment in older adults: systematic review of the literature. Rev Lat Am Enfermagem 2019; 27:e3202. [PMID: 31664410 PMCID: PMC6818658 DOI: 10.1590/1518-8345.3189.3202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 06/29/2019] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE to synthesize the knowledge about the association of frailty syndrome and cognitive impairment in older adults. METHOD the Joanna Briggs Institute's systematic review of etiology and risk factors was adopted. The search for the studies was conducted by two independent reviewers in the databases MEDLINE, Embase, CINAHL and LILACS and by manual search was performed by tow reviewers independently. The measures of association Odds Ratio and Relative Risk were used in the meta-analysis. The software R version 3.4.3 and the meta-analysis package Metafor 2.0 were used for figure analysis. RESULTS three studies identified the association of frailty syndrome and cognitive impairment through Odds Ratio values show that frail older adults are 1.4 times more likely to present cognitive impairment than non-frail older adults. Four studies analyzed the association through the measure of Relative Risk and found no statistical significance, and four studies used mean values. CONCLUSION despite of the methodological differences of the studies and the lack of definition of an exact proportion in the cause and effect relationship, most studies indicate Frailty Syndrome as a trigger for Cognitive decline.
Collapse
Affiliation(s)
- Karen Miyamura
- Universidade de São Paulo, Escola de Enfermagem de Ribeirão Preto, PAHO/WHO Collaborating Center for Nursing Research Development, Ribeirão Preto, SP, Brazil.,Scholarship holder at the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil
| | - Jack Roberto Silva Fhon
- Universidade de São Paulo, Escola de Enfermagem de Ribeirão Preto, PAHO/WHO Collaborating Center for Nursing Research Development, Ribeirão Preto, SP, Brazil.,Scholarship holder at the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil
| | - Alexandre de Assis Bueno
- Universidade de São Paulo, Escola de Enfermagem de Ribeirão Preto, PAHO/WHO Collaborating Center for Nursing Research Development, Ribeirão Preto, SP, Brazil.,Scholarship holder at the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil
| | | | | | - Rosalina Aparecida Partezani Rodrigues
- Universidade de São Paulo, Escola de Enfermagem de Ribeirão Preto, PAHO/WHO Collaborating Center for Nursing Research Development, Ribeirão Preto, SP, Brazil
| |
Collapse
|
39
|
Du L, Chen E, Wu T, Ruan Y, Wu S. Resveratrol attenuates hydrogen peroxide-induced aging through upregulation of autophagy in human umbilical vein endothelial cells. Drug Des Devel Ther 2019; 13:747-755. [PMID: 30863014 PMCID: PMC6391141 DOI: 10.2147/dddt.s179894] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Resveratrol (RESV; trans-3,5,4'-trihydroxystilbene) has emerged as a potential new therapeutic for age-related atherosclerotic diseases. However, the effect of RESV on cellular aging and its underlying mechanisms remain unknown. Therefore, the aim of this study was to examine whether RESV can delay cellular aging through upregulation of autophagy. MATERIALS AND METHODS Human umbilical endothelial vein cells (HUVECs) were divided into four groups: the control group, and the hydrogen peroxide (H2O2) alone, H2O2 + RESV pretreatment, and H2O2 + 3-methyladenine (3-MA) + RESV pretreatment intervention groups. The cell viability was evaluated by a cell counting kit-8 assay. Superoxide dismutase (SOD) activity and intracellular reactive oxygen species (ROS) levels were tested using commercial kits. Senescence-related β-galactosidase activities were detected by immunohistochemical staining. The expression levels of aging-related and autophagy-related markers, including phosphorylated Rb (p-Rb), LC3, and p62, with or without RESV were measured by Western blotting. RESULTS Pretreatment with 10 µM RESV increased the cell viability and SOD levels. The remarkably higher positive rate of senescence-associated β-galactosidase and increased intracellular ROS levels in the H2O2 treatment group were reversed by treatment with 10 µM RESV. As compared to the H2O2 treatment group, 10 µM RESV could upregulate autophagy through the regulation of p-Rb, LC3, and p62 levels. The anti-aging effect of RESV via an autophagy regulation mechanism was further confirmed by the suppression of these effects with 3-MA treatment. CONCLUSION RESV may reverse and delay the aging process of HUVECs via upregulation of autophagy and could be a candidate therapeutic for age-related atherosclerotic diseases.
Collapse
Affiliation(s)
- Ligen Du
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China, ;
- Department of Cardiology, The Second People's Hospital of Longgang District, Shenzhen, Guangdong, China
- Department of Cardiology, Longgang District People's Hospital of Shenzhen, Guangdong, China
| | - Enping Chen
- Department of Cardiology, The Second People's Hospital of Longgang District, Shenzhen, Guangdong, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Ruan
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China, ;
| | - Saizhu Wu
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China, ;
| |
Collapse
|
40
|
Kim BJ, Kwak MK, Lee SH, Koh JM. Lack of Association Between Vitamin D and Hand Grip Strength in Asians: A Nationwide Population-Based Study. Calcif Tissue Int 2019; 104:152-159. [PMID: 30283988 DOI: 10.1007/s00223-018-0480-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023]
Abstract
Despite the beneficial role and plausible mechanism of vitamin D on skeletal muscle in animal studies, its association in humans remains a controversial issue due to inconsistent clinical results, especially in older Asians. This was a population-based, cross-sectional study from the Korea National Health and Nutrition Examination Surveys, which enrolled 354 men aged ≥ 50 years and 328 postmenopausal women. Hand grip strength (HGS) was measured using a digital grip strength dynamometer. Low muscle strength was defined based on Korean-specific cut-off point of HGS. Serum 25-hydroxyvitamin D [25(OH)D] levels were 19.4 ± 6.7 and 17.1 ± 7.2 ng/mL in men and women, respectively. Among covariates including age, body mass index, lifestyle factors, and protein intake, age was inversely associated with HGS in both men and women, and protein intake (g/day) was positively associated with HGS only in men. However, the independent correlation between serum 25(OH)D and HGS was not observed, regardless of gender. When subjects were divided into three groups [deficient (25(OH)D < 20 ng/mL; 63.8%), insufficient (20 ≤ 25(OH)D < 30 ng/mL; 30.0%), or sufficient (25(OH)D ≥ 30 ng/mL; 6.2%)], there was no significant difference in HGS among these groups in both men and women. Consistently, serum 25(OH)D was not significantly different between subjects with and without low muscle strength, and there was no independent association of serum 25(OH)D with the risk of low muscle strength in both genders. These findings provide clinical evidence that protective role of vitamin D on human muscle metabolism may not be evident at least in older Asians.
Collapse
Affiliation(s)
- Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Mi Kyung Kwak
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| |
Collapse
|
41
|
Karayiannis D, Kontogianni MD, Mendorou C, Mastrominas M, Yiannakouris N. Adherence to the Mediterranean diet and IVF success rate among non-obese women attempting fertility. Hum Reprod 2019; 33:494-502. [PMID: 29390148 DOI: 10.1093/humrep/dey003] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/05/2018] [Indexed: 01/04/2023] Open
Abstract
STUDY QUESTION Is adherence to the Mediterranean diet (MedDiet) associated with better IVF performance in women attempting fertility? SUMMARY ANSWER Greater adherence to the MedDiet, defined using the validated Mediterranean diet score (MedDietScore), was associated with a higher likelihood of achieving clinical pregnancy and live birth among non-obese women <35 years of age. WHAT IS KNOWN ALREADY Diet impacts fertility and certain nutrients and food groups appear to have a greater effect on reproductive health, but there are relatively few published data on the role of dietary patterns, and the MedDiet in particular, on assisted reproductive performance. STUDY DESIGN, SIZE, DURATION This prospective cohort study included 244 non-obese women (22-41 years of age; BMI < 30 kg/m2) who underwent a first IVF treatment in an Assisted Conception Unit in Athens, Greece, between November 2013 and September 2016. The study was designed to evaluate the influence of habitual dietary intake and lifestyle on fertility outcomes. PARTICIPANTS/MATERIALS, SETTING, METHODS Diet was assessed before the IVF treatment via a validated food-frequency questionnaire. Adherence to the MedDiet was assessed through the MedDietScore (range: 0-55), with higher scores indicating greater adherence. Intermediate outcomes (oocyte yield, fertilization rate and embryo quality measures) and clinical endpoints (implantation, clinical pregnancy and live birth) were abstracted from electronic medical records. Associations between MedDietScore and IVF outcomes were analysed using generalized linear models adjusting for age, ovarian stimulation protocol, BMI, physical activity, anxiety levels, infertility diagnosis, caloric intake and supplements use. MAIN RESULTS AND THE ROLE OF CHANCE No association of MedDietScore with any of the intermediate outcomes or with implantation was found. However, compared with women in the highest tertile of the MedDietScore (≥36, n = 86), women in the lowest tertile (≤30, n = 79) had significantly lower rates of clinical pregnancy (29.1 vs 50.0%, P = 0.01) and live birth (26.6 vs 48.8%, P = 0.01). The multivariable-adjusted relative risk (95% CI) for clinical pregnancy comparing women in the lowest with women in the highest tertile of the MedDietScore was 0.35 (0.16-0.78; P-trend=0.01), and for live birth it was 0.32 (0.14-0.71; P-trend = 0.01). These associations were significantly modified by women's age (P-interaction <0.01 for both outcomes). MedDietScore was positively related to clinical pregnancy and live birth among women <35 years old (P ≤ 0.01) but not among women ≥35 years. Among women <35 years, a beneficial 5-point increase in the MedDietScore was associated with ~2.7 times higher likelihood of achieving clinical pregnancy and live birth. LIMITATIONS, REASONS FOR CAUTION Our finding cannot be generalized to the whole reproductive population nor to obese women nor to women attending infertility clinics around the world. In addition, due to the observational study design, causal inference is limited. WIDER IMPLICATIONS OF THE FINDINGS The results suggest that diet modifications and greater compliance to the Mediterranean diet may help increase the chances of a successful pregnancy and delivering a live baby for women undergoing IVF treatment. STUDY FUNDING/COMPETING INTEREST(S) This work was partially supported by a grand from Harokopio University (KE321). All authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER NCT03050944.
Collapse
Affiliation(s)
- Dimitrios Karayiannis
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, ?leftheriou Venizelou 70 Street, Athens, Greece
| | - Meropi D Kontogianni
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, ?leftheriou Venizelou 70 Street, Athens, Greece
| | | | | | - Nikos Yiannakouris
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, ?leftheriou Venizelou 70 Street, Athens, Greece
| |
Collapse
|
42
|
Thomas N, Gurvich C, Kulkarni J. Sex Differences in Aging and Associated Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:57-76. [PMID: 31493222 DOI: 10.1007/978-3-030-25650-0_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aging is a natural process defined by the gradual, time-dependent decline of biological and behavioural functions, for which individuals of the same chronological age show variability. The capacity of biological systems to continuously adjust for optimal functioning despite ever changing environments is essential for healthy aging, and variability in these adaptive homeostatic mechanisms may reflect such heterogeneity in the aging process. With an ever-increasing aging population, interest in biomarkers of aging is growing. Although no universally accepted definition of biomarkers of healthy aging exists, mediators of homeostasis are consistently used as measures of the aging process. As important sex differences are known to underlie many of these systems, it is imperative to consider that this may reflect, to some extent, the sex differences observed in aging and age-related disease states. This chapter aims to outline sex differences in key homeostatic domains thought to be associated with the pathophysiology of aging, often proposed as biomarkers of aging and age-related disease states. This includes considering sex-based differences and hormonal status with regards to the gonadal and adrenal endocrine systems and immune function.
Collapse
Affiliation(s)
- Natalie Thomas
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia
| | - Caroline Gurvich
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia
| | - Jayashri Kulkarni
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
43
|
Akimoto K, Yamaguchi T, Naraoka Y, Hu A, Kobayashi H. Depigmentory Effects of Keishibukuryogankayokuinin in Human Epidermal Melanocytes. Health (London) 2019. [DOI: 10.4236/health.2019.117070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Grammatikopoulou MG, Gkiouras K, Theodoridis X, Tsisimiri M, Markaki AG, Chourdakis M, Goulis DG. Food insecurity increases the risk of malnutrition among community-dwelling older adults. Maturitas 2019; 119:8-13. [DOI: 10.1016/j.maturitas.2018.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022]
|
45
|
Zhao H, Li J, Zhao J, Chen Y, Ren C, Chen Y. Antioxidant effects of compound walnut oil capsule in mice aging model induced by D-galactose. Food Nutr Res 2018; 62:1371. [PMID: 29720929 PMCID: PMC5917419 DOI: 10.29219/fnr.v62.1371] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 02/03/2023] Open
Abstract
Background Many plant original foods have been shown beneficial effects in humans. In the previous work, we have developed a compound capsule which contains major constituents of walnut oil and grape seed extract. Objective To investigate the antioxidant effects of the Compound Walnut Oil Capsule (WOC) in aging model induced by D-gal. Design 70 C57BL/6J mice were randomly divided into seven groups. Mice in normal group received daily subcutaneous injection of saline while the control group, WOC groups, Vitamin C (VC) group and pure walnut oil group received daily subcutaneous injection of D-galactose (D-gal) for 8 weeks. Total antioxidant capacity (T-AOC), super dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) in serum, liver and brain were determined. The expression of Heme Oxygenase (HO-1), iNOS and Klotho in liver and brain were obtained. Results WOC could improve the pathologic lesions caused by oxidative stress and significantly enhance the T-AOC, increase the activities of SOD, GSH-Px and decrease the contents of MDA in serum, liver and brain. Also, the WOC could obviously up-regulate the expression of HO-1 and Klotho and down-regulate the expression of iNOS. Conclusion WOC can be used as an anti-aging food for its effectively eliminating free radicals, enhancing the antioxidant capacity and alleviating the damages of oxidative stress.
Collapse
Affiliation(s)
- Huandong Zhao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jian Li
- Institute of Biomedical Engineering, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Zhao
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Chen
- Institute of Biomedical Engineering, Xiangya Hospital, Central South University, Changsha, China
| | - Caiping Ren
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Yuxiang Chen
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
46
|
Lin CY, Huang T, Zhao L, Zhong LLD, Lam WC, Fan BM, Bian ZX. Circulating Spexin Levels Negatively Correlate With Age, BMI, Fasting Glucose, and Triglycerides in Healthy Adult Women. J Endocr Soc 2018; 2:409-419. [PMID: 29687092 PMCID: PMC5905385 DOI: 10.1210/js.2018-00020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/29/2018] [Indexed: 12/15/2022] Open
Abstract
Context Spexin is a newly identified neuropeptide that is involved in satiety control, glucose, and lipids metabolism. It has also been related to human diseases, such as obesity and type 2 diabetes. However, whether spexin changes with age or not is still unclear. Objective The aim of this study is to investigate the relationship between circulating spexin levels and age and to study their interaction effects on body mass index (BMI), fasting glucose, and -lipids. Design and Participants This is a cross-sectional study, including 68 healthy adult women whose ages are in a wide range (minimum: 23; median: 38.5; maximum: 64). Outcome Measures The serum spexin levels were measured by an enzyme-linked immunosorbent assay. Fasting glucose, total cholesterol, triglycerides (TG), alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine were measured by routine biochemical test. Shapiro-Wilk’s test, Spearman and Pearson correlation analyses, χ2 test, and two-way analysis of variance were used to interpret the data. Results Serum spexin levels are significantly correlated with age (Spearman r = −0.277, P = 0.022), BMI (Spearman r = −0.445, P < 0.001), fasting glucose (Spearman r = −0.302, P = 0.014), and TG (Spearman r = −0.324, P = 0.008). Spexin levels independently predict the risk of high BMI and high fasting glucose. No interaction effects of spexin and age on BMI and fasting glucose were found. Conclusions Circulating spexin levels decrease with age, suggesting a possible role of this peptide in aging-related functions and disorders. Further investigations are needed to expand the clinical significance of this finding.
Collapse
Affiliation(s)
- Cheng-Yuan Lin
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.,Hong Kong Chinese Medicine Clinical Study Centre, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.,Yunnan Minzu University-Hong Kong Baptist University Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, China
| | - Tao Huang
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.,Hong Kong Chinese Medicine Clinical Study Centre, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Ling Zhao
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.,Hong Kong Chinese Medicine Clinical Study Centre, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Linda L D Zhong
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.,Hong Kong Chinese Medicine Clinical Study Centre, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Wai Ching Lam
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.,Hong Kong Chinese Medicine Clinical Study Centre, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Bao-Min Fan
- Yunnan Minzu University-Hong Kong Baptist University Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, China
| | - Zhao-Xiang Bian
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.,Hong Kong Chinese Medicine Clinical Study Centre, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| |
Collapse
|
47
|
Abstract
In humans, dehydroepiandrosterone (DHEA), secreted mainly from the adrenal cortex, and its sulfate ester, DHEAS, are the most abundant circulating steroids. DHEA/DHEAS possess pleiotropic effects in human aging, bone, metabolic diseases, neurologic function/neurodegenerative diseases, cancer, immune system and disorders, cardiovascular diseases, diabetes, muscle function, sexual dysfunction, and other health conditions. The age-related reduced levels of DHEA and DHEAS are associated with bone mineral density measures of osteopenia and osteoporosis. Clinical, epidemiological, and experimental studies indicate that DHEA replacement therapy may be beneficial for bone health through its inhibition of skeletal catabolic IL-6 and stimulation of osteoanabolic IGF-I-mediated mechanisms. Studies with primary cultures of human bone marrow-derived mesenchymal stem cells (hMSCs) were used to show that DHEA stimulates osteoblastogenesis. The in vitro stimulation of both osteoblastogenesis and IGF-I gene expression by DHEA in hMSCs requires IGF-I receptor, PI3K, p38 MAPK, or p42/44 MAPK signaling pathways. The in vitro inhibition of IL-6 secretion in hMSCs by DHEA was more consistent and extensive than by estradiol or dihydrotestosterone. In summary, evidence from us and others indicates that DHEA may be useful for treating bone diseases through its inhibition of skeletal catabolic IL-6 and stimulation of anabolic IGF-I-mediated mechanisms.
Collapse
|
48
|
Moraga‐Amaro R, van Waarde A, Doorduin J, de Vries EFJ. Sex steroid hormones and brain function: PET imaging as a tool for research. J Neuroendocrinol 2018; 30:e12565. [PMID: 29237239 PMCID: PMC5838537 DOI: 10.1111/jne.12565] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/26/2017] [Accepted: 12/06/2017] [Indexed: 12/15/2022]
Abstract
Sex steroid hormones are major regulators of sexual characteristic among species. These hormones, however, are also produced in the brain. Steroidal hormone-mediated signalling via the corresponding hormone receptors can influence brain function at the cellular level and thus affect behaviour and higher brain functions. Altered steroid hormone signalling has been associated with psychiatric disorders, such as anxiety and depression. Neurosteroids are also considered to have a neuroprotective effect in neurodegenerative diseases. So far, the role of steroid hormone receptors in physiological and pathological conditions has mainly been investigated post mortem on animal or human brain tissues. To study the dynamic interplay between sex steroids, their receptors, brain function and behaviour in psychiatric and neurological disorders in a longitudinal manner, however, non-invasive techniques are needed. Positron emission tomography (PET) is a non-invasive imaging tool that is used to quantitatively investigate a variety of physiological and biochemical parameters in vivo. PET uses radiotracers aimed at a specific target (eg, receptor, enzyme, transporter) to visualise the processes of interest. In this review, we discuss the current status of the use of PET imaging for studying sex steroid hormones in the brain. So far, PET has mainly been investigated as a tool to measure (changes in) sex hormone receptor expression in the brain, to measure a key enzyme in the steroid synthesis pathway (aromatase) and to evaluate the effects of hormonal treatment by imaging specific downstream processes in the brain. Although validated radiotracers for a number of targets are still warranted, PET can already be a useful technique for steroid hormone research and facilitate the translation of interesting findings in animal studies to clinical trials in patients.
Collapse
Affiliation(s)
- R. Moraga‐Amaro
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - A. van Waarde
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - J. Doorduin
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - E. F. J. de Vries
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
49
|
Maiese K. Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors. Curr Neurovasc Res 2018; 15:81-91. [PMID: 29557749 PMCID: PMC6021214 DOI: 10.2174/1567202615666180319151244] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND With the global increase in lifespan expectancy, neurodegenerative disorders continue to affect an ever-increasing number of individuals throughout the world. New treatment strategies for neurodegenerative diseases are desperately required given the lack of current treatment modalities. METHODS Here, we examine novel strategies for neurodegenerative disorders that include circadian clock genes, non-coding Ribonucleic Acids (RNAs), and the mammalian forkhead transcription factors of the O class (FoxOs). RESULTS Circadian clock genes, non-coding RNAs, and FoxOs offer exciting prospects to potentially limit or remove the significant disability and death associated with neurodegenerative disorders. Each of these pathways has an intimate relationship with the programmed death pathways of autophagy and apoptosis and share a common link to the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) and the mechanistic target of rapamycin (mTOR). Circadian clock genes are necessary to modulate autophagy, limit cognitive loss, and prevent neuronal injury. Non-coding RNAs can control neuronal stem cell development and neuronal differentiation and offer protection against vascular disease such as atherosclerosis. FoxOs provide exciting prospects to block neuronal apoptotic death and to activate pathways of autophagy to remove toxic accumulations in neurons that can lead to neurodegenerative disorders. CONCLUSION Continued work with circadian clock genes, non-coding RNAs, and FoxOs can offer new prospects and hope for the development of vital strategies for the treatment of neurodegenerative diseases. These innovative investigative avenues have the potential to significantly limit disability and death from these devastating disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
50
|
Antioxidative Categorization of Twenty Amino Acids Based on Experimental Evaluation. Molecules 2017; 22:molecules22122066. [PMID: 29186888 PMCID: PMC6149856 DOI: 10.3390/molecules22122066] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/16/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022] Open
Abstract
In view of the great importance bestowed on amino acids as antioxidants in oxidation resistance, we attempted two common redox titration methods in this report, including micro-potassium permanganate titration and iodometric titration, to measure the antioxidative capacity of 20 amino acids, which are the construction units of proteins in living organisms. Based on the relative intensities of the antioxidative capacity, we further conducted a quantitative comparison and found out that the product of experimental values obtained from the two methods was proven to be a better indicator for evaluating the relative antioxidative capacity of amino acids. The experimental results were largely in accordance with structural analysis made on amino acids. On the whole, the 20 amino acids concerned could be divided into two categories according to their antioxidative capacity. Seven amino acids, including tryptophan, methionine, histidine, lysine, cysteine, arginine and tyrosine, were greater in total antioxidative capacity compared with the other 13 amino acids.
Collapse
|