1
|
Zhou B, Zhou N, Jiang J, Zhang X, Zhao X, Duan Y, Zhang Y. Exosomal miR-25 from Mesenchymal stem cells inhibits T cells migration and Alleviates Type 1 diabetes mellitus by Targeting CXCR3 models. Gene 2025; 936:149098. [PMID: 39547359 DOI: 10.1016/j.gene.2024.149098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Mesenchymal stem cells (MSCs) have demonstrated promising therapeutic potential in the treatment of type 1 diabetes mellitus (T1DM); however, the underlying mechanism remains unclear. The primary pathological mechanism of T1DM involves activated T cells infiltrating the pancreas, leading to islet inflammation and the destruction of β-cells. However, the question of whether exosomes derived from MSCs can suppress the migration of T cells to the pancreas in the context of T1DM remains unresolved. In this study, we observed that miR-25 was highly expressed in MSCs exosomes and associated with signaling pathways related to cell migration. In vitro assay, we synthesized a miR-25 mimic and transiently transfected it into activated T cells, which revealed that miR-25 can effectively reduce the expression of CXCR3. Additionally, according to the in vivo T1DM mouse model, we found that there was a significant increase in miR-25 levels in T1DM mice treated with MSCs and the number of T cells decreased. Overall, our findings suggest that MSCs exosomes containing miR-25 can impede the infiltration of activated T cells into the pancreas in T1DM by repressing CXCR3 expression in these cells.
Collapse
MESH Headings
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Animals
- Mesenchymal Stem Cells/metabolism
- Exosomes/metabolism
- Exosomes/genetics
- Diabetes Mellitus, Type 1/therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Receptors, CXCR3/metabolism
- Receptors, CXCR3/genetics
- Mice
- Cell Movement
- T-Lymphocytes/metabolism
- T-Lymphocytes/immunology
- Humans
- Mice, Inbred C57BL
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Male
- Disease Models, Animal
- Pancreas/metabolism
- Pancreas/pathology
Collapse
Affiliation(s)
- Bin Zhou
- Department of Neonatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China; Department of Stem Cell and Regenerative Medicine, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Na Zhou
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiaxi Jiang
- Department of dermatology, People's Liberation Army 95829 Military Hospital, Wuhan 430014, China
| | - Xiaru Zhang
- Department of Stem Cell and Regenerative Medicine, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xinfeng Zhao
- Department of Stem Cell and Regenerative Medicine, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yang Duan
- Department of Neonatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Yi Zhang
- Department of Stem Cell and Regenerative Medicine, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
2
|
Chaudhary JK, Danga AK, Kumari A, Bhardwaj A, Rath PC. Role of chemokines in aging and age-related diseases. Mech Ageing Dev 2024; 223:112009. [PMID: 39631472 DOI: 10.1016/j.mad.2024.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Chemokines (chemotactic cytokines) play essential roles in developmental process, immune cell trafficking, inflammation, immunity, angiogenesis, cellular homeostasis, aging, neurodegeneration, and tumorigenesis. Chemokines also modulate response to immunotherapy, and consequently influence the therapeutic outcome. The mechanisms underlying these processes are accomplished by interaction of chemokines with their cognate cell surface G protein-coupled receptors (GPCRs) and subsequent cellular signaling pathways. Chemokines play crucial role in influencing aging process and age-related diseases across various tissues and organs, primarily through inflammatory responses (inflammaging), recruitment of macrophages, and orchestrated trafficking of other immune cells. Chemokines are categorized in four distinct groups based on the position and number of the N-terminal cysteine residues; namely, the CC, CXC, CX3C, and (X)C. They mediate inflammatory responses, and thereby considerably impact aging process across multiple organ-systems. Therefore, understanding the underlying mechanisms mediated by chemokines may be of crucial importance in delaying and/or modulating the aging process and preventing age-related diseases. In this review, we highlight recent progress accomplished towards understanding the role of chemokines and their cellular signaling pathways involved in aging and age-relaed diseases of various organs. Moreover, we explore potential therapeutic strategies involving anti-chemokines and chemokine receptor antagonists aimed at reducing aging and mitigating age-related diseases. One of the modern methods in this direction involves use of chemokine receptor antagonists and anti-chemokines, which suppress the pro-inflammatory response, thereby helping in resolution of inflammation. Considering the wide-spectrum of functional involvements of chemokines in aging and associated diseases, several clinical trials are being conducted to develop therapeutic approaches using anti-chemokine and chemokine receptor antagonists to improve life span and promote healthy aging.
Collapse
Affiliation(s)
- Jitendra Kumar Chaudhary
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Zoology, Shivaji College, University of Delhi, New Delhi 110027, India.
| | - Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Anita Kumari
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Akshay Bhardwaj
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad Road, Faridabad, Haryana 121001, India.
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
Gluth A, Li X, Gritsenko MA, Gaffrey MJ, Kim DN, Lalli PM, Chu RK, Day NJ, Sagendorf TJ, Monroe ME, Feng S, Liu T, Yang B, Qian WJ, Zhang T. Integrative Multi-PTM Proteomics Reveals Dynamic Global, Redox, Phosphorylation, and Acetylation Regulation in Cytokine-Treated Pancreatic Beta Cells. Mol Cell Proteomics 2024; 23:100881. [PMID: 39550035 DOI: 10.1016/j.mcpro.2024.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024] Open
Abstract
Studying regulation of protein function at a systems level necessitates an understanding of the interplay among diverse posttranslational modifications (PTMs). A variety of proteomics sample processing workflows are currently used to study specific PTMs but rarely characterize multiple types of PTMs from the same sample inputs. Method incompatibilities and laborious sample preparation steps complicate large-scale physiological investigations and can lead to variations in results. The single-pot, solid-phase-enhanced sample preparation (SP3) method for sample cleanup is compatible with different lysis buffers and amenable to automation, making it attractive for high-throughput multi-PTM profiling. Herein, we describe an integrative SP3 workflow for multiplexed quantification of protein abundance, cysteine thiol oxidation, phosphorylation, and acetylation. The broad applicability of this approach is demonstrated using cell and tissue samples, and its utility for studying interacting regulatory networks is highlighted in a time-course experiment of cytokine-treated β-cells. We observed a swift response in the global regulation of protein abundances consistent with rapid activation of JAK-STAT and NF-κB signaling pathways. Regulators of these pathways as well as proteins involved in their target processes displayed multi-PTM dynamics indicative of complex cellular response stages: acute, adaptation, and chronic (prolonged stress). PARP14, a negative regulator of JAK-STAT, had multiple colocalized PTMs that may be involved in intraprotein regulatory crosstalk. Our workflow provides a high-throughput platform that can profile multi-PTMomes from the same sample set, which is valuable in unraveling the functional roles of PTMs and their co-regulation.
Collapse
Affiliation(s)
- Austin Gluth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA; Department of Biological Systems Engineering, Washington State University, Richland, Washington, USA
| | - Xiaolu Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Doo Nam Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Priscila M Lalli
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Rosalie K Chu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Nicholas J Day
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tyler J Sagendorf
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Bin Yang
- Department of Biological Systems Engineering, Washington State University, Richland, Washington, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA.
| |
Collapse
|
4
|
Jørgensen KS, Pedersen SS, Hjorth SA, Billestrup N, Prause M. Protection of beta cells against cytokine-induced apoptosis by the gut microbial metabolite butyrate. FEBS J 2024. [PMID: 39569473 DOI: 10.1111/febs.17334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Type 1 diabetes (T1D) is characterized by immune cell infiltration in the islets of Langerhans, leading to the destruction of insulin-producing beta cells. This destruction is driven by secreted cytokines and cytotoxic T cells inducing apoptosis in beta cells. Butyrate, a metabolite produced by the gut microbiota, has been shown to have various health benefits, including anti-inflammatory and anti-diabetic effects. In this study, we investigated the potential protective effects of butyrate on cytokine-induced apoptosis in beta cells and explored the underlying mechanisms. Insulin-secreting INS-1E cells and isolated mouse islets were treated with interleukin-1beta (IL-1β) or a combination of IL-1β and interferon-gamma (IFN-γ) in the presence or absence of butyrate. We analyzed apoptosis, nitric oxide (NO) levels, expression of stress-related genes, and immune cell migration. Our results demonstrated that butyrate significantly attenuated cytokine-induced apoptosis in both INS-1E cells and mouse islets, accompanied by a reduction in NO levels. Butyrate also decreased the expression of endoplasmic reticulum (ER) stress markers such as Chop, phosphorylated eIF2α and Atf4, as well as some pro-apoptotic genes including Dp5 and Puma. Butyrate reduced the cytokine-induced expression of the chemokine genes Cxcl1 and Cxcl10 in mouse islets, as well as the chemotactic activity of THP-1 monocytes toward conditioned media from IL-1β-exposed islets. In conclusion, these findings indicate that butyrate protects beta cells from cytokine-induced apoptosis and ER stress, suggesting its potential as a therapeutic agent to prevent beta cell destruction in T1D.
Collapse
Affiliation(s)
- Kasper Suhr Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Signe Schultz Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Siv Annegrethe Hjorth
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nils Billestrup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Michala Prause
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
5
|
Sokolowski EK, Kursawe R, Selvam V, Bhuiyan RM, Thibodeau A, Zhao C, Spracklen CN, Ucar D, Stitzel ML. Multi-omic human pancreatic islet endoplasmic reticulum and cytokine stress response mapping provides type 2 diabetes genetic insights. Cell Metab 2024; 36:2468-2488.e7. [PMID: 39383866 DOI: 10.1016/j.cmet.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024]
Abstract
Endoplasmic reticulum (ER) and inflammatory stress responses contribute to islet dysfunction in type 2 diabetes (T2D). Comprehensive genomic understanding of these human islet stress responses and whether T2D-associated genetic variants modulate them is lacking. Here, comparative transcriptome and epigenome analyses of human islets exposed ex vivo to these stressors revealed 30% of expressed genes and 14% of islet cis-regulatory elements (CREs) as stress responsive, modulated largely in an ER- or cytokine-specific fashion. T2D variants overlapped 86 stress-responsive CREs, including 21 induced by ER stress. We linked the rs6917676-T T2D risk allele to increased islet ER-stress-responsive CRE accessibility and allele-specific β cell nuclear factor binding. MAP3K5, the ER-stress-responsive putative rs6917676 T2D effector gene, promoted stress-induced β cell apoptosis. Supporting its pro-diabetogenic role, MAP3K5 expression correlated inversely with human islet β cell abundance and was elevated in T2D β cells. This study provides genome-wide insights into human islet stress responses and context-specific T2D variant effects.
Collapse
Affiliation(s)
- Eishani K Sokolowski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Vijay Selvam
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Redwan M Bhuiyan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Asa Thibodeau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Chi Zhao
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Cassandra N Spracklen
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA; Institute of Systems Genomics, University of Connecticut, Farmington, CT 06032, USA.
| | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA; Institute of Systems Genomics, University of Connecticut, Farmington, CT 06032, USA.
| |
Collapse
|
6
|
Wensveen FM, Šestan M, Polić B. The immunology of sickness metabolism. Cell Mol Immunol 2024; 21:1051-1065. [PMID: 39107476 PMCID: PMC11364700 DOI: 10.1038/s41423-024-01192-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 09/01/2024] Open
Abstract
Everyone knows that an infection can make you feel sick. Although we perceive infection-induced changes in metabolism as a pathology, they are a part of a carefully regulated process that depends on tissue-specific interactions between the immune system and organs involved in the regulation of systemic homeostasis. Immune-mediated changes in homeostatic parameters lead to altered production and uptake of nutrients in circulation, which modifies the metabolic rate of key organs. This is what we experience as being sick. The purpose of sickness metabolism is to generate a metabolic environment in which the body is optimally able to fight infection while denying vital nutrients for the replication of pathogens. Sickness metabolism depends on tissue-specific immune cells, which mediate responses tailored to the nature and magnitude of the threat. As an infection increases in severity, so do the number and type of immune cells involved and the level to which organs are affected, which dictates the degree to which we feel sick. Interestingly, many alterations associated with metabolic disease appear to overlap with immune-mediated changes observed following infection. Targeting processes involving tissue-specific interactions between activated immune cells and metabolic organs therefore holds great potential for treating both people with severe infection and those with metabolic disease. In this review, we will discuss how the immune system communicates in situ with organs involved in the regulation of homeostasis and how this communication is impacted by infection.
Collapse
Affiliation(s)
| | - Marko Šestan
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
7
|
Collier JJ, Hsia DS, Burke SJ. From pre-clinical efficacy to promising clinical trials that delay Type 1 diabetes. Pharmacol Res 2024; 208:107342. [PMID: 39142538 DOI: 10.1016/j.phrs.2024.107342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Recent advancements in immunology and islet biology have unveiled remarkable prospects for the postponement of Type 1 diabetes (T1D) through the strategic modulation of the immune system. In this Perspective, we discuss the pharmaceutical strides achieved, traversing from pre-clinical validation to the execution of impactful clinical trials. We begin with the initial investigations involving cyclosporine and glucocorticoids in rodent models, such as the non-obese diabetic (NOD) mouse, which guided early clinical trials. We then discuss the pre-clinical studies using suitable mouse models that eventually led to contemporary clinical trials targeting immune cell functionality and cytokine signaling pathways. Collectively, these discoveries promote the exciting paradigm of immune system modulation to mitigate autoimmunity, which continues to broaden. Notably, the use of baricitinib, a potent JAK1/2 inhibitor, and teplizumab, an anti-CD3 monoclonal antibody, represent discrete methodologies converging upon a singular outcome: the preservation of islet beta-cell functionality. The latter interventional strategies build on the original idea that tempering specific facets of the immune system will generate therapeutic benefit. Enthusiasm from these discoveries stems from efficacy with reduced side effects when compared with past approaches. The success of therapeutic intervention(s) in pre-clinical studies, combined with knowledge about stages of progression to clinical T1D, have ultimately encouraged the design of more successful clinical trials targeting highly specific populations at risk. Collectively, these findings instill a profound sense of optimism, suggesting that the prevention and even reversal of T1D may soon be within reach.
Collapse
Affiliation(s)
- J Jason Collier
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | - Daniel S Hsia
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; Division of Endocrinology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Gastroenterology, Endocrinology, & Nutrition, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Susan J Burke
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
8
|
Annicchiarico A, Barile B, Buccoliero C, Nicchia GP, Brunetti G. Alternative therapeutic strategies in diabetes management. World J Diabetes 2024; 15:1142-1161. [PMID: 38983831 PMCID: PMC11229975 DOI: 10.4239/wjd.v15.i6.1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/17/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetes is a heterogeneous metabolic disease characterized by elevated blood glucose levels resulting from the destruction or malfunction of pancreatic β cells, insulin resistance in peripheral tissues, or both, and results in a non-sufficient production of insulin. To adjust blood glucose levels, diabetic patients need exogenous insulin administration together with medical nutrition therapy and physical activity. With the aim of improving insulin availability in diabetic patients as well as ameliorating diabetes comorbidities, different strategies have been investigated. The first approaches included enhancing endogenous β cell activity or transplanting new islets. The protocol for this kind of intervention has recently been optimized, leading to standardized procedures. It is indicated for diabetic patients with severe hypoglycemia, complicated by impaired hypoglycemia awareness or exacerbated glycemic lability. Transplantation has been associated with improvement in all comorbidities associated with diabetes, quality of life, and survival. However, different trials are ongoing to further improve the beneficial effects of transplantation. Furthermore, to overcome some limitations associated with the availability of islets/pancreas, alternative therapeutic strategies are under evaluation, such as the use of mesenchymal stem cells (MSCs) or induced pluripotent stem cells for transplantation. The cotransplantation of MSCs with islets has been successful, thus providing protection against proinflammatory cytokines and hypoxia through different mechanisms, including exosome release. The use of induced pluripotent stem cells is recent and requires further investigation. The advantages of MSC implantation have also included the improvement of diabetes-related comorbidities, such as wound healing. Despite the number of advantages of the direct injection of MSCs, new strategies involving biomaterials and scaffolds have been developed to improve the efficacy of mesenchymal cell delivery with promising results. In conclusion, this paper offered an overview of new alternative strategies for diabetes management while highlighting some limitations that will need to be overcome by future approaches.
Collapse
Affiliation(s)
- Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| |
Collapse
|
9
|
Batdorf HM, de Luna Lawes L, Cassagne GA, Fontenot MS, Harvey IC, Richardson JT, Burk DH, Dupuy SD, Karlstad MD, Salbaum JM, Staszkiewicz J, Beyl R, Ghosh S, Burke SJ, Collier JJ. Accelerated onset of diabetes in non-obese diabetic mice fed a refined high-fat diet. Diabetes Obes Metab 2024; 26:2158-2166. [PMID: 38433703 PMCID: PMC11078605 DOI: 10.1111/dom.15522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 03/05/2024]
Abstract
AIM Type 1 diabetes results from autoimmune events influenced by environmental variables, including changes in diet. This study investigated how feeding refined versus unrefined (aka 'chow') diets affects the onset and progression of hyperglycaemia in non-obese diabetic (NOD) mice. METHODS Female NOD mice were fed either unrefined diets or matched refined low- and high-fat diets. The onset of hyperglycaemia, glucose tolerance, food intake, energy expenditure, circulating insulin, liver gene expression and microbiome changes were measured for each dietary group. RESULTS NOD mice consuming unrefined (chow) diets developed hyperglycaemia at similar frequencies. By contrast, mice consuming the defined high-fat diet had an accelerated onset of hyperglycaemia compared to the matched low-fat diet. There was no change in food intake, energy expenditure, or physical activity within each respective dietary group. Microbiome changes were driven by diet type, with chow diets clustering similarly, while refined low- and high-fat bacterial diversity also grouped closely. In the defined dietary cohort, liver gene expression changes in high-fat-fed mice were consistent with a greater frequency of hyperglycaemia and impaired glucose tolerance. CONCLUSION Glucose intolerance is associated with an enhanced frequency of hyperglycaemia in female NOD mice fed a defined high-fat diet. Using an appropriate matched control diet is an essential experimental variable when studying changes in microbiome composition and diet as a modifier of disease risk.
Collapse
Affiliation(s)
- Heidi M. Batdorf
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | | | | | | | | | | | - David H. Burk
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Samuel D. Dupuy
- Department of Surgery, University of Tennessee Health Science Center, Graduate School of Medicine, Knoxville, TN 37920
| | - Michael D. Karlstad
- Department of Surgery, University of Tennessee Health Science Center, Graduate School of Medicine, Knoxville, TN 37920
| | | | | | - Robbie Beyl
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Sujoy Ghosh
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Susan J. Burke
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - J. Jason Collier
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
10
|
Di Piazza E, Todi L, Di Giuseppe G, Soldovieri L, Ciccarelli G, Brunetti M, Quero G, Alfieri S, Tondolo V, Pontecorvi A, Gasbarrini A, Nista EC, Giaccari A, Pani G, Mezza T. Advancing Diabetes Research: A Novel Islet Isolation Method from Living Donors. Int J Mol Sci 2024; 25:5936. [PMID: 38892122 PMCID: PMC11172646 DOI: 10.3390/ijms25115936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Pancreatic islet isolation is critical for type 2 diabetes research. Although -omics approaches have shed light on islet molecular profiles, inconsistencies persist; on the other hand, functional studies are essential, but they require reliable and standardized isolation methods. Here, we propose a simplified protocol applied to very small-sized samples collected from partially pancreatectomized living donors. Islet isolation was performed by digesting tissue specimens collected during surgery within a collagenase P solution, followed by a Lympholyte density gradient separation; finally, functional assays and staining with dithizone were carried out. Isolated pancreatic islets exhibited functional responses to glucose and arginine stimulation mirroring donors' metabolic profiles, with insulin secretion significantly decreasing in diabetic islets compared to non-diabetic islets; conversely, proinsulin secretion showed an increasing trend from non-diabetic to diabetic islets. This novel islet isolation method from living patients undergoing partial pancreatectomy offers a valuable opportunity for targeted study of islet physiology, with the primary advantage of being time-effective and successfully preserving islet viability and functionality. It enables the generation of islet preparations that closely reflect donors' clinical profiles, simplifying the isolation process and eliminating the need for a Ricordi chamber. Thus, this method holds promises for advancing our understanding of diabetes and for new personalized pharmacological approaches.
Collapse
Affiliation(s)
- Eleonora Di Piazza
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
| | - Laura Todi
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
| | - Gianfranco Di Giuseppe
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Laura Soldovieri
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Gea Ciccarelli
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Michela Brunetti
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Giuseppe Quero
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Digestive Surgery Unit, Ospedale Isola Tiberina—Gemelli Isola, 00186 Roma, Italy
| | - Sergio Alfieri
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Digestive Surgery Unit, Ospedale Isola Tiberina—Gemelli Isola, 00186 Roma, Italy
| | - Vincenzo Tondolo
- Digestive Surgery Unit, Ospedale Isola Tiberina—Gemelli Isola, 00186 Roma, Italy
| | - Alfredo Pontecorvi
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Antonio Gasbarrini
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Pancreas Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
| | - Enrico Celestino Nista
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Pancreas Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
| | - Andrea Giaccari
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Giovambattista Pani
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Teresa Mezza
- Department of Medicine and Translational Surgery, General Pathology Section, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Pancreas Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Roma, Italy
| |
Collapse
|
11
|
Muñoz García A, Juksar J, Groen N, Zaldumbide A, de Koning E, Carlotti F. Single-cell transcriptomics reveals a role for pancreatic duct cells as potential mediators of inflammation in diabetes mellitus. Front Immunol 2024; 15:1381319. [PMID: 38742118 PMCID: PMC11089191 DOI: 10.3389/fimmu.2024.1381319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/25/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Inflammation of the pancreas contributes to the development of diabetes mellitus. Although it is well-accepted that local inflammation leads to a progressive loss of functional beta cell mass that eventually causes the onset of the disease, the development of islet inflammation remains unclear. Methods Here, we used single-cell RNA sequencing to explore the cell type-specific molecular response of primary human pancreatic cells exposed to an inflammatory environment. Results We identified a duct subpopulation presenting a unique proinflammatory signature among all pancreatic cell types. Discussion Overall, the findings of this study point towards a role for duct cells in the propagation of islet inflammation, and in immune cell recruitment and activation, which are key steps in the pathophysiology of diabetes mellitus.
Collapse
Affiliation(s)
- Amadeo Muñoz García
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Juri Juksar
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Nathalie Groen
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Eelco de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
12
|
Holendová B, Benáková Š, Křivonosková M, Pavluch V, Tauber J, Gabrielová E, Ježek P, Plecitá-Hlavatá L. NADPH oxidase 4 in mouse β cells participates in inflammation on chronic nutrient overload. Obesity (Silver Spring) 2024; 32:339-351. [PMID: 38086768 DOI: 10.1002/oby.23956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/13/2023] [Accepted: 10/06/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVE By exposing mice carrying a deletion of NADPH oxidase isoform 4, NOX4, specifically in pancreatic β cells (βNOX4-/-) to nutrient excess stimulated by a high-fat diet (HFD), this study aimed to elucidate the role of β-cell redox status in the development of meta-inflammation within the diabetic phenotype. METHODS The authors performed basic phenotyping of βNOX4-/- mice on HFD involving insulin and glycemic analyses, histochemistry of adipocytes, indirect calorimetry, and cytokine analyses. To characterize local inflammation, the study used caspase-1 activity assay, interleukin-1β immunochemistry, and real-time polymerase chain reaction during coculturing of β cells with macrophages. RESULTS The phenotype of βNOX4-/- mice on HFD was not associated with hyperinsulinemia and hyperglycemia but showed accumulation of excessive lipids in epididymal fat and β cells. Surprisingly, mice showed significantly reduced systemic inflammation. Decreased interleukin-1β protein levels and downregulated NLRP3-inflammasome activity were observed on chronic glucose overload in βNOX4-/- isolated islets and NOX4-silenced INS1-E cells resulting in attenuated proinflammatory polarization of macrophages/monocytes in vitro and in situ and reduced local islet inflammation. CONCLUSIONS Experimental evidence suggests that NOX4 pro-oxidant activity in β cells is involved in NLRP3-inflammasome activation during chronic nutrient overload and participates in local inflammatory signaling and perhaps toward peripheral tissues, contributing to a diabetic inflammatory phenotype.
Collapse
Affiliation(s)
- Blanka Holendová
- Laboratory of Pancreatic Islet Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Štěpánka Benáková
- Laboratory of Pancreatic Islet Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Křivonosková
- Laboratory of Pancreatic Islet Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Vojtěch Pavluch
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Tauber
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eva Gabrielová
- Department of Medical Chemistry and Biochemistry, Palacký University, Olomouc, Czech Republic
| | - Petr Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Laboratory of Pancreatic Islet Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
13
|
Sun R, Sun Y, Wu C, Liu Y, Zhou M, Dong Y, Du G, Luo H, Shi B, Jiang H, Li Z. CXCR4-modified CAR-T cells suppresses MDSCs recruitment via STAT3/NF-κB/SDF-1α axis to enhance efficacy against pancreatic cancer. Mol Ther 2023; 31:3193-3209. [PMID: 37735875 PMCID: PMC10638076 DOI: 10.1016/j.ymthe.2023.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/02/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Claudin18.2 (CLDN18.2)-specific chimeric antigen receptor (CAR-T) cells displayed limited efficacy in CLDN18.2-positive pancreatic ductal adenocarcinoma (PDAC). Strategies are needed to improve the trafficking capacity of CLDN18.2-specific CAR-T cells. PDAC has a unique microenvironment that consists of abundant cancer-associated fibroblasts (CAFs), which could secrete stromal cell-derived factor 1α (SDF-1α), the ligand of CXCR4. Then, we constructed and explored CLDN18.2-targeted CAR-T cells with CXCR4 co-expression in treating immunocompetent mouse models of PDAC. The results indicated that CXCR4 could promote the infiltration of CAR-T cells and enhance their efficacy in vivo. Mechanistically, the activation of signal transducer and activator of transcription 3 (STAT3) signaling was impaired in CXCR4 CAR-T cells, which reduced the release of inflammatory factors, such as tumor necrosis factor-α, IL-6, and IL-17A. Then, the lower release of inflammatory factors suppressed SDF-1α secretion in CAFs via the nuclear factor κB (NF-κB) pathway. Therefore, the decreased secretion of SDF-1α in feedback decreased the migration of myeloid-derived suppressor cells (MDSCs) in tumor sites. Overall, our study demonstrated that CXCR4 CAR-T cells could traffic more into tumor sites and also suppress MDSC migration via the STAT3/NF-κB/SDF-1α axis to obtain better efficacy in treating CLDN18.2-positive pancreatic cancer. Our findings provide a theoretical rationale for CXCR4 CAR-T cell therapy in PDAC.
Collapse
Affiliation(s)
- Ruixin Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yansha Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Chuanlong Wu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yifan Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Min Zhou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Yiwei Dong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Guoxiu Du
- CARsgen Therapeutics, Shanghai 200032, China
| | - Hong Luo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Bizhi Shi
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; CARsgen Therapeutics, Shanghai 200032, China
| | - Hua Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; CARsgen Therapeutics, Shanghai 200032, China.
| | - Zonghai Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; CARsgen Therapeutics, Shanghai 200032, China.
| |
Collapse
|
14
|
Martin TM, Burke SJ, Wasserfall CH, Collier JJ. Islet beta-cells and intercellular adhesion molecule-1 (ICAM-1): Integrating immune responses that influence autoimmunity and graft rejection. Autoimmun Rev 2023; 22:103414. [PMID: 37619906 PMCID: PMC10543623 DOI: 10.1016/j.autrev.2023.103414] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Type 1 diabetes (T1D) develops due to autoimmune targeting of the pancreatic islet β-cells. Clinical symptoms arise from reduced insulin in circulation. The molecular events and interactions between discrete immune cell populations, infiltration of such leukocytes into pancreatic and islet tissue, and selective targeting of the islet β-cells during autoimmunity and graft rejection are not entirely understood. One protein central to antigen presentation, priming of immune cells, trafficking of leukocytes, and vital for leukocyte effector function is the intercellular adhesion molecule-1 (ICAM-1). The gene encoding ICAM-1 is transcriptionally regulated and rapidly responsive (i.e., within hours) to pro-inflammatory cytokines. ICAM-1 is a transmembrane protein that can be glycosylated; its presence on the cell surface provides co-stimulatory functions for immune cell activation and stabilization of cell-cell contacts. ICAM-1 interacts with the β2-integrins, CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1), which are present on discrete immune cell populations. A whole-body ICAM-1 deletion protects NOD mice from diabetes onset, strongly implicating this protein in autoimmune responses. Since several different cell types express ICAM-1, its biology is fundamentally essential for various physiological and pathological outcomes. Herein, we review the role of ICAM-1 during both autoimmunity and islet graft rejection to understand the mechanism(s) leading to islet β-cell death and dysfunction that results in insufficient circulating quantities of insulin to control glucose homeostasis.
Collapse
Affiliation(s)
- Thomas M Martin
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, United States of America
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States of America.
| |
Collapse
|
15
|
Batdorf HM, Lawes LDL, Richardson JT, Burk DH, Dupuy SD, Karlstad MD, Noland RC, Burke SJ, Collier JJ. NOD mice have distinct metabolic and immunologic profiles when compared with genetically similar MHC-matched ICR mice. Am J Physiol Endocrinol Metab 2023; 325:E336-E345. [PMID: 37610410 PMCID: PMC10642984 DOI: 10.1152/ajpendo.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Nonobese diabetic (NOD) mice are the most commonly used rodent model to study mechanisms relevant to the autoimmunity and immunology of type 1 diabetes. Although many different strains of mice have been used as controls for studies comparing nondiabetic lines to the NOD strain, we hypothesized that the parental strain that gave rise to the NOD line might be one of the best options. Therefore, we compared female ICR and NOD mice, which are matched at key major histocompatibility complex (MHC) loci, to understand their metabolic and immunologic similarities and differences. Several novel observations emerged: 1) NOD mice have greater circulating proinsulin when compared with ICR mice. 2) NOD mice display CD3+ and IBA1+ cell infiltration into and near pancreatic islets before hyperglycemia. 3) NOD mice show increased expression of the Il1b and Cxcl11 genes in islets when compared with islets from age-matched ICR mice. 4) NOD mice have a greater abundance of STAT1 and ICAM-1 protein in islets when compared with ICR mice. These data show that ICR mice, which are genetically similar to NOD mice, do not retain the same immunologic outcomes. Thus, ICR mice are an excellent choice as a genetically similar and MHC-matched control for NOD mice in studies designed to understand mechanisms relevant to autoimmune-mediated diabetes onset as well as novel therapeutic interventions.NEW & NOTEWORTHY Nonobese diabetic (NOD) mice have more proinsulin in circulation and STAT1 protein in islets compared with the major histocompatibility complex (MHC)-matched ICR line. NOD mice also display greater expression of cytokines and chemokines in pancreatic islets consistent with immune cell infiltration before hyperglycemia when compared with age-matched ICR mice. Thus, ICR mice represent an excellent control for autoimmunity and inflammation studies using the NOD line of mice.
Collapse
Affiliation(s)
- Heidi M Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Luz de Luna Lawes
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Jeremy T Richardson
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - David H Burk
- Cell Biology and Bioimaging Core Facility, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Samuel D Dupuy
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, United States
| | - Michael D Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, United States
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
16
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
17
|
Yu Y, Li M, Zhao Y, Fan F, Wu W, Gao Y, Bai C. Immune cell-derived extracellular vesicular microRNAs induce pancreatic beta cell apoptosis. Heliyon 2022; 8:e11995. [PMID: 36561684 PMCID: PMC9763775 DOI: 10.1016/j.heliyon.2022.e11995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/01/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by an autoimmune response against pancreatic islet β cells. Increasing evidence indicates that specific microRNAs (miRNAs) from immune cells extracellular vesicles are involved in islet β cells apoptosis. Methods In this study, the microarray datasets GSE27997 and GSE137637 were downloaded from the Gene Expression Omnibus (GEO) database. miRNAs that promote islet β cells apoptosis in T1DM were searched in PubMed. We used the FunRich tool to determine the miRNA expression in extracellular vesicles derived from immune cells associated with islet β cell apoptosis, of which we selected candidate miRNAs based on fold change expression. Potential upstream transcription factors and downstream target genes of candidate miRNAs were predicted using TransmiR V2.0 and starBase database, respectively. Results Candidate miRNAs expressed in extracellular vesicles derived from T cells, pro-inflammatory macrophages, B cells, and dendritic cells were analyzed to identify the miRNAs involved in β cells apoptosis. Based on these candidate miRNAs, 25 downstream candidate genes, which positively regulate β cell functions, were predicted and screened; 17 transcription factors that positively regulate the candidate miRNAs were also identified. Conclusions Our study demonstrated that immune cell-derived extracellular vesicular miRNAs could promote islet β cell dysfunction and apoptosis. Based on these findings, we have constructed a transcription factor-miRNA-gene regulatory network, which provides a theoretical basis for clinical management of T1DM. This study provides novel insights into the mechanism underlying immune cell-derived extracellular vesicle-mediated islet β cell apoptosis.
Collapse
Affiliation(s)
- Yueyang Yu
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Mengyin Li
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272067, PR China
| | - Yuxuan Zhao
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Fangzhou Fan
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Wenxiang Wu
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Yuhua Gao
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
- Corresponding author.
| | - Chunyu Bai
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
- Corresponding author.
| |
Collapse
|
18
|
Martin TM, Burke SJ, Batdorf HM, Burk DH, Ghosh S, Dupuy SD, Karlstad MD, Collier JJ. ICAM-1 Abundance Is Increased in Pancreatic Islets of Hyperglycemic Female NOD Mice and Is Rapidly Upregulated by NF-κB in Pancreatic β-Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:569-581. [PMID: 35851539 PMCID: PMC9845432 DOI: 10.4049/jimmunol.2200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
Abstract
Type 1 diabetes (T1D) is classified as an autoimmune disease where pancreatic β-cells are specifically targeted by cells of the immune system. The molecular mechanisms underlying this process are not completely understood. Herein, we identified that the Icam1 gene and ICAM-1 protein were selectively elevated in female NOD mice relative to male mice, fitting with the sexual dimorphism of diabetes onset in this key mouse model of T1D. In addition, ICAM-1 abundance was greater in hyperglycemic female NOD mice than in age-matched normoglycemic female NOD mice. Moreover, we discovered that the Icam1 gene was rapidly upregulated in response to IL-1β in mouse, rat, and human islets and in 832/13 rat insulinoma cells. This early temporal genetic regulation requires key components of the NF-κB pathway and was associated with rapid recruitment of the p65 transcriptional subunit of NF-κB to corresponding κB elements within the Icam1 gene promoter. In addition, RNA polymerase II recruitment to the Icam1 gene promoter in response to IL-1β was consistent with p65 occupancy at κB elements, histone chemical modifications, and increased mRNA abundance. Thus, we conclude that β-cells undergo rapid genetic reprogramming by IL-1β to enhance expression of the Icam1 gene and that elevations in ICAM-1 are associated with hyperglycemia in NOD mice. These findings are highly relevant to, and highlight the importance of, pancreatic β-cell communication with the immune system. Collectively, these observations reveal a portion of the complex molecular events associated with onset and progression of T1D.
Collapse
Affiliation(s)
- Thomas M. Martin
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| | - Susan J. Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| | - Heidi M. Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| | - David H. Burk
- Cell Biology and Bioimaging Core, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke NUS Medical School, Singapore
| | - Samuel D. Dupuy
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, TN, 37920, USA
| | - Michael D. Karlstad
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, TN, 37920, USA
| | - J. Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center Baton Rouge LA 70808 USA
| |
Collapse
|
19
|
Pedersen SS, Prause M, Williams K, Barrès R, Billestrup N. Butyrate inhibits IL-1β-induced inflammatory gene expression by suppression of NF-κB activity in pancreatic beta cells. J Biol Chem 2022; 298:102312. [PMID: 35921894 PMCID: PMC9428856 DOI: 10.1016/j.jbc.2022.102312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022] Open
Abstract
Cytokine-induced beta cell dysfunction is a hallmark of type 2 diabetes (T2D). Chronic exposure of beta cells to inflammatory cytokines affects gene expression and impairs insulin secretion. Thus, identification of anti-inflammatory factors that preserve beta cell function represents an opportunity to prevent or treat T2D. Butyrate is a gut microbial metabolite with anti-inflammatory properties for which we recently showed a role in preventing interleukin-1β (IL-1β)-induced beta cell dysfunction, but how prevention is accomplished is unclear. Here, we investigated the mechanisms by which butyrate exerts anti-inflammatory activity in beta cells. We exposed mouse islets and INS-1E cells to a low dose of IL-1β and/or butyrate and measured expression of inflammatory genes and nitric oxide (NO) production. Additionally, we explored the molecular mechanisms underlying butyrate activity by dissecting the activation of the nuclear factor-κB (NF-κB) pathway. We found that butyrate suppressed IL-1β-induced expression of inflammatory genes, such as Nos2, Cxcl1, and Ptgs2, and reduced NO production. Butyrate did not inhibit IκBα degradation nor NF-κB p65 nuclear translocation. Furthermore, butyrate did not affect binding of NF-κB p65 to target sequences in synthetic DNA but inhibited NF-κB p65 binding and RNA polymerase II recruitment to inflammatory gene promoters in the context of native DNA. We found this was concurrent with increased acetylation of NF-κB p65 and histone H4, suggesting butyrate affects NF-κB activity via inhibition of histone deacetylases. Together, our results show butyrate inhibits IL-1β-induced inflammatory gene expression and NO production through suppression of NF-κB activation and thereby possibly preserves beta cell function.
Collapse
|
20
|
Piñeros AR, Kulkarni A, Gao H, Orr KS, Glenn L, Huang F, Liu Y, Gannon M, Syed F, Wu W, Anderson CM, Evans-Molina C, McDuffie M, Nadler JL, Morris MA, Mirmira RG, Tersey SA. Proinflammatory signaling in islet β cells propagates invasion of pathogenic immune cells in autoimmune diabetes. Cell Rep 2022; 39:111011. [PMID: 35767947 PMCID: PMC9297711 DOI: 10.1016/j.celrep.2022.111011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/10/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes is a disorder of immune tolerance that leads to death of insulin-producing islet β cells. We hypothesize that inflammatory signaling within β cells promotes progression of autoimmunity within the islet microenvironment. To test this hypothesis, we deleted the proinflammatory gene encoding 12/15-lipoxygenase (Alox15) in β cells of non-obese diabetic mice at a pre-diabetic time point when islet inflammation is a feature. Deletion of Alox15 leads to preservation of β cell mass, reduces populations of infiltrating T cells, and protects against spontaneous autoimmune diabetes in both sexes. Mice lacking Alox15 in β cells exhibit an increase in a population of β cells expressing the gene encoding the protein programmed death ligand 1 (PD-L1), which engages receptors on immune cells to suppress autoimmunity. Delivery of a monoclonal antibody against PD-L1 recovers the diabetes phenotype in knockout animals. Our results support the contention that inflammatory signaling in β cells promotes autoimmunity during type 1 diabetes progression.
Collapse
Affiliation(s)
- Annie R Piñeros
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abhishek Kulkarni
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kara S Orr
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lindsey Glenn
- Department of Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Fei Huang
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maureen Gannon
- Department of Medicine, Vanderbilt University and Department of Veterans Affairs, Tennessee Valley Authority, Nashville, TN, USA
| | - Farooq Syed
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenting Wu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cara M Anderson
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Carmella Evans-Molina
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Marcia McDuffie
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Jerry L Nadler
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Margaret A Morris
- Department of Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Raghavendra G Mirmira
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA.
| | - Sarah A Tersey
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
21
|
Smoak P, Burke SJ, Martin TM, Batdorf HM, Floyd ZE, Collier JJ. Artemisia dracunculus L. Ethanolic Extract and an Isolated Component, DMC2, Ameliorate Inflammatory Signaling in Pancreatic β-Cells via Inhibition of p38 MAPK. Biomolecules 2022; 12:biom12050708. [PMID: 35625635 PMCID: PMC9139089 DOI: 10.3390/biom12050708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Non-resolving pancreatic islet inflammation is widely viewed as a contributor to decreases in β-cell mass and function that occur in both Type 1 and Type 2 diabetes. Therefore, strategies aimed at reducing or eliminating pathological inflammation would be useful to protect islet β-cells. Herein, we described the use of 2′,4′-dihydroxy-4-methoxydihydrochalcone (DMC2), a bioactive molecule isolated from an ethanolic extract of Artemisia dracunculus L., as a novel anti-inflammatory agent. The ethanolic extract, termed PMI 5011, reduced IL-1β-mediated NF-κB activity. DMC2 retained this ability, indicating this compound as the likely source of anti-inflammatory activity within the overall PMI 5011 extract. We further examined NF-κB activity using promoter-luciferase reporter constructs, Western blots, mRNA abundance, and protein secretion. Specifically, we found that PMI 5011 and DMC2 each reduced the ability of IL-1β to promote increases in the expression of the Ccl2 and Ccl20 genes. These genes encode proteins that promote immune cell recruitment and are secreted by β-cells in response to IL-1β. Phosphorylation of IκBα and the p65 subunit of NF-κB were not reduced by either PMI 5011 or DMC2; however, phosphorylation of p38 MAPK was blunted in the presence of DMC2. Finally, we observed that while PMI 5011 impaired glucose-stimulated insulin secretion, insulin output was preserved in the presence of DMC2. In conclusion, PMI 5011 and DMC2 reduced inflammation, but only DMC2 did so with the preservation of glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Peter Smoak
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (P.S.); (T.M.M.); (H.M.B.)
| | - Susan J. Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
| | - Thomas M. Martin
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (P.S.); (T.M.M.); (H.M.B.)
| | - Heidi M. Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (P.S.); (T.M.M.); (H.M.B.)
| | - Z. Elizabeth Floyd
- Laboratory of Ubitquitin Biology, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
| | - J. Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (P.S.); (T.M.M.); (H.M.B.)
- Correspondence:
| |
Collapse
|
22
|
Acute T-Cell-Driven Inflammation Requires the Endoglycosidase Heparanase-1 from Multiple Cell Types. Int J Mol Sci 2022; 23:ijms23094625. [PMID: 35563015 PMCID: PMC9105945 DOI: 10.3390/ijms23094625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
It has been accepted for decades that T lymphocytes and metastasising tumour cells traverse basement membranes (BM) by deploying a battery of degradative enzymes, particularly proteases. However, since many redundant proteases can solubilise BM it has been difficult to prove that proteases aid cell migration, particularly in vivo. Recent studies also suggest that other mechanisms allow BM passage of cells. To resolve this issue we exploited heparanase-1 (HPSE-1), the only endoglycosidase in mammals that digests heparan sulfate (HS), a major constituent of BM. Initially we examined the effect of HPSE-1 deficiency on a well-characterised adoptive transfer model of T-cell-mediated inflammation. We found that total elimination of HPSE-1 from this system resulted in a drastic reduction in tissue injury and loss of target HS. Subsequent studies showed that the source of HPSE-1 in the transferred T cells was predominantly activated CD4+ T cells. Based on bone marrow chimeras, two cellular sources of HPSE-1 were identified in T cell recipients, one being haematopoiesis dependent and the other radiation resistant. Collectively our findings unequivocally demonstrate that an acute T-cell-initiated inflammatory response is HPSE-1 dependent and is reliant on HPSE-1 from at least three different cell types.
Collapse
|
23
|
Al-Selwi Y, Shaw JA, Kattner N. Understanding the Pancreatic Islet Microenvironment in Cystic Fibrosis and the Extrinsic Pathways Leading to Cystic Fibrosis Related Diabetes. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2021; 14:11795514211048813. [PMID: 34675737 PMCID: PMC8524685 DOI: 10.1177/11795514211048813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive chronic condition
effecting approximately 70 000 to 100 000 people globally and is
caused by a loss-of-function mutation in the CF transmembrane
conductance regulator. Through improvements in clinical care, life
expectancy in CF has increased considerably associated with rising
incidence of secondary complications including CF-related diabetes
(CFRD). CFRD is believed to result from β-cell loss as well as
insufficient insulin secretion due to β-cell dysfunction, but the
underlying pathophysiology is not yet fully understood. Here we review
the morphological and cellular changes in addition to the
architectural remodelling of the pancreatic exocrine and endocrine
compartments in CF and CFRD pancreas. We consider also potential
underlying proinflammatory signalling pathways impacting on endocrine
and specifically β-cell function, concluding that further research
focused on these mechanisms may uncover novel therapeutic targets
enabling restoration of normal insulin secretion.
Collapse
Affiliation(s)
- Yara Al-Selwi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - James Am Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Nicole Kattner
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
24
|
Butyrate Protects Pancreatic Beta Cells from Cytokine-Induced Dysfunction. Int J Mol Sci 2021; 22:ijms221910427. [PMID: 34638768 PMCID: PMC8508700 DOI: 10.3390/ijms221910427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic beta cell dysfunction caused by metabolic and inflammatory stress contributes to the development of type 2 diabetes (T2D). Butyrate, produced by the gut microbiota, has shown beneficial effects on glucose metabolism in animals and humans and may directly affect beta cell function, but the mechanisms are poorly described. The aim of this study was to investigate the effect of butyrate on cytokine-induced beta cell dysfunction in vitro. Mouse islets, rat INS-1E, and human EndoC-βH1 beta cells were exposed long-term to non-cytotoxic concentrations of cytokines and/or butyrate to resemble the slow onset of inflammation in T2D. Beta cell function was assessed by glucose-stimulated insulin secretion (GSIS), gene expression by qPCR and RNA-sequencing, and proliferation by incorporation of EdU into newly synthesized DNA. Butyrate protected beta cells from cytokine-induced impairment of GSIS and insulin content in the three beta cell models. Beta cell proliferation was reduced by both cytokines and butyrate. Expressions of the beta cell specific genes Ins, MafA, and Ucn3 reduced by the cytokine IL-1β were not affected by butyrate. In contrast, butyrate upregulated the expression of secretion/transport-related genes and downregulated inflammatory genes induced by IL-1β in mouse islets. In summary, butyrate prevents pro-inflammatory cytokine-induced beta cell dysfunction.
Collapse
|
25
|
Barra JM, Kozlovskaya V, Kepple JD, Seeberger KL, Kuppan P, Hunter CS, Korbutt GS, Kharlampieva E, Tse HM. Xenotransplantation of tannic acid-encapsulated neonatal porcine islets decreases proinflammatory innate immune responses. Xenotransplantation 2021; 28:e12706. [PMID: 34245064 DOI: 10.1111/xen.12706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/10/2021] [Accepted: 06/27/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Islet transplantation with neonatal porcine islets (NPIs) is a promising treatment for type 1 diabetes (T1D), but immune rejection poses a major hurdle for clinical use. Innate immune-derived reactive oxygen species (ROS) synthesis can facilitate islet xenograft destruction and enhance adaptive immune responses. METHODS To suppress ROS-mediated xenograft destruction, we utilized nanothin encapsulation materials composed of multilayers of tannic acid (TA), an antioxidant, and a neutral polymer, poly(N-vinylpyrrolidone) (PVPON). We hypothesized that (PVPON/TA)-encapsulated NPIs will maintain euglycemia and dampen proinflammatory innate immune responses following xenotransplantation. RESULTS (PVPON/TA)-encapsulated NPIs were viable and glucose-responsive similar to non-encapsulated NPIs. Transplantation of (PVPON/TA)-encapsulated NPIs into hyperglycemic C57BL/6.Rag or NOD.Rag mice restored euglycemia, exhibited glucose tolerance, and maintained islet-specific transcription factor levels similar to non-encapsulated NPIs. Gene expression analysis of (PVPON/TA)-encapsulated grafts post-transplantation displayed reduced proinflammatory Ccl5, Cxcl10, Tnf, and Stat1 while enhancing alternatively activated macrophage Retnla, Arg1, and Stat6 mRNA accumulation compared with controls. Flow cytometry analysis demonstrated significantly reduced innate immune infiltration, MHC-II, co-stimulatory molecule, and TNF expression with concomitant increases in arginase-1+ macrophages and dendritic cells. Similar alterations in immune responses were observed following xenotransplantation into immunocompetent NOD mice. CONCLUSION Our data suggest that (PVPON/TA) encapsulation of NPIs is an effective strategy to decrease inflammatory innate immune signals involved in NPI xenograft responses through STAT1/6 modulation without compromising islet function.
Collapse
Affiliation(s)
- Jessie M Barra
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica D Kepple
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Medicine, Division of Endocrinology Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karen L Seeberger
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Purushothaman Kuppan
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Chad S Hunter
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Medicine, Division of Endocrinology Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory S Korbutt
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Eugenia Kharlampieva
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
26
|
Mule SN, Gomes VDM, Wailemann RAM, Macedo-da-Silva J, Rosa-Fernandes L, Larsen MR, Labriola L, Palmisano G. HSPB1 influences mitochondrial respiration in ER-stressed beta cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140680. [PMID: 34051341 DOI: 10.1016/j.bbapap.2021.140680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 01/02/2023]
Abstract
Beta-cell death and dysfunction are involved in the development of type 1 and 2 diabetes. ER-stress impairs beta-cells function resulting in pro-apoptotic stimuli that promote cell death. Hence, the identification of protective mechanisms in response to ER-stress could lead to novel therapeutic targets and insight in the pathology of these diseases. Here, we report the identification of proteins involved in dysregulated pathways upon thapsigargin treatment of MIN6 cells. Utilizing quantitative proteomics we identified upregulation of proteins involved in protein folding, unfolded protein response, redox homeostasis, proteasome processes associated with endoplasmic reticulum and downregulation of TCA cycle, cellular respiration, lipid metabolism and ribosome assembly processes associated to mitochondria and eukaryotic initiation translation factor components. Subsequently, pro-inflammatory cytokine treatment was performed to mimic pathological changes observed in beta-cells during diabetes. Cytokines induced ER stress and impaired mitochondrial function in beta-cells corroborating the results obtained with the proteomic approach. HSPB1 levels are increased by prolactin on pancreatic beta-cells and this protein is a key factor for cytoprotection although its role has not been fully elucidated. Here we show that while up-regulation of HSPB1 was able to restore the mitochondrial dysfunction induced by beta-cells' exposure to inflammatory cytokines, silencing of this chaperone abrogated the beneficial effects promoted by PRL. Taken together, our results outline the importance of HSPB1 to mitigate beta-cell dysfunction. Further studies are needed to elucidate its role in diabetes.
Collapse
Affiliation(s)
- Simon Ngao Mule
- GlycoProteomics laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vinícius De Morais Gomes
- GlycoProteomics laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Rosangela A M Wailemann
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Janaina Macedo-da-Silva
- GlycoProteomics laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark
| | - Letícia Labriola
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil.
| | - Giuseppe Palmisano
- GlycoProteomics laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
27
|
Collier JJ, Batdorf HM, Martin TM, Rohli KE, Burk DH, Lu D, Cooley CR, Karlstad MD, Jackson JW, Sparer TE, Zhang J, Mynatt RL, Burke SJ. Pancreatic, but not myeloid-cell, expression of interleukin-1alpha is required for maintenance of insulin secretion and whole body glucose homeostasis. Mol Metab 2021; 44:101140. [PMID: 33285301 PMCID: PMC7772372 DOI: 10.1016/j.molmet.2020.101140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/03/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The expression of the interleukin-1 receptor type I (IL-1R) is enriched in pancreatic islet β-cells, signifying that ligands activating this pathway are important for the health and function of the insulin-secreting cell. Using isolated mouse, rat, and human islets, we identified the cytokine IL-1α as a highly inducible gene in response to IL-1R activation. In addition, IL-1α is elevated in mouse and rat models of obesity and Type 2 diabetes. Since less is known about the biology of IL-1α relative to IL-1β in pancreatic tissue, our objective was to investigate the contribution of IL-1α to pancreatic β-cell function and overall glucose homeostasis in vivo. METHODS We generated a novel mouse line with conditional IL-1α alleles and subsequently produced mice with either pancreatic- or myeloid lineage-specific deletion of IL-1α. RESULTS Using this in vivo approach, we discovered that pancreatic (IL-1αPdx1-/-), but not myeloid-cell, expression of IL-1α (IL-1αLysM-/-) was required for the maintenance of whole body glucose homeostasis in both male and female mice. Moreover, pancreatic deletion of IL-1α led to impaired glucose tolerance with no change in insulin sensitivity. This observation was consistent with our finding that glucose-stimulated insulin secretion was reduced in islets isolated from IL-1αPdx1-/- mice. Alternatively, IL-1αLysM-/- mice (male and female) did not have any detectable changes in glucose tolerance, respiratory quotient, physical activity, or food intake when compared with littermate controls. CONCLUSIONS Taken together, we conclude that there is an important physiological role for pancreatic IL-1α to promote glucose homeostasis by supporting glucose-stimulated insulin secretion and islet β-cell mass in vivo.
Collapse
Affiliation(s)
- J Jason Collier
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Heidi M Batdorf
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Thomas M Martin
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kristen E Rohli
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - David H Burk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Danhong Lu
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27704, USA
| | - Chris R Cooley
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, TN, 37920, USA
| | - Michael D Karlstad
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, TN, 37920, USA
| | - Joseph W Jackson
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tim E Sparer
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jingying Zhang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Randall L Mynatt
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Susan J Burke
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
28
|
Chen Y, Chen Y, Wang N, Gu S, Wang M, Fu Y, Wei C, Xu W. Doxycycline in Extremely Low Dose Improves Glycemic Control and Islet Morphology in Mice Fed a High-Fat Diet. Diabetes Metab Syndr Obes 2021; 14:637-646. [PMID: 33603428 PMCID: PMC7884939 DOI: 10.2147/dmso.s292264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/15/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Chronic low-grade inflammation is detected in obese and diabetic individuals. Tetracyclines, used as antibiotics for years, have been demonstrated to have diverse non-bactericidal effects, including anti-tumor and anti-inflammatory activities. This study aimed to investigate whether doxycycline at sub-antimicrobial concentrations could improve glycemic control in mice fed a high-fat diet, through its anti-inflammatory activities. METHODS C57BL/6J mice were fed with a high-fat diet to induce diabetic and obese conditions. Three sub-antimicrobial dosages of doxycycline (200, 20, and 2 μg/mL) were added to drinking water for 23 weeks during the housing phase. RESULTS Doxycycline at 200 μg/mL tended to increase body weight, islet mass, and the percentage of large islets (diameter >350 μm). At 20 μg/mL, doxycycline significantly improved glucose tolerance and decreased fasting blood glucose. At 2 μg/mL, doxycycline increased the percentage of small islets (diameter <80 μm). Serum C-reactive protein and lipopolysaccharide levels significantly decreased while the beta-cell ratio increased in all doxycycline-administered mice. CONCLUSION Our results suggest that doxycycline, even at an extremely low dose, could improve glycemic control and islet morphology via its anti-inflammatory activities.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Yu Chen
- Laboratory of Molecular Biology, Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, People’s Republic of China
| | - Na Wang
- Laboratory of Molecular Biology, Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, People’s Republic of China
| | - Shanhong Gu
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Meilin Wang
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Yucai Fu
- Laboratory of Cell Senescence, Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Chiju Wei
- Laboratory of Molecular Biology, Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, People’s Republic of China
- Correspondence: Chiju Wei Shantou University, 243 Daxue Road, Shantou, Guangdong, 515063, People’s Republic of China Email
| | - Wencan Xu
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
- Wencan Xu Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong, 515041, People’s Republic of China Email
| |
Collapse
|
29
|
Ding Y, Zhong J, Wang Y, Xie W. Proteomic and microRNA-omic profiles and potential mechanisms of dysfunction in pancreatic islet cells primed by inflammation. Exp Ther Med 2020; 21:122. [PMID: 33335585 PMCID: PMC7739849 DOI: 10.3892/etm.2020.9554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes is an inflammatory disease that induces pancreatic islet dysfunction. However, to the best of our knowledge, the potential underlying molecular mechanisms of this inflammatory process remains unknown. The present study investigated microRNA (miRNA/miR) and protein expression profiles through proteomics and miRNA-omics. Lipopolysaccharide-induced macrophage cell medium (LRM) was used to stimulate inflammation in mouse Beta-TC-6 islet cells. Protein analysis revealed that 87 proteins were upregulated and 42 proteins were downregulated in LRM-treated Beta-TC-6 cells compared with control cells. Additionally, miRNA analysis revealed that 11 miRNAs were upregulated, while 28 miRNAs were downregulated in LRM-treated Beta-TC-6 cells compared with control cells. Islet cells exposed to inflammation exhibited markedly downregulated protein levels of transcription factor MafA, pancreatic and duodenal homeobox 1, paired box 6, homeobox protein Nkx-2.2, synaptosomal-associated protein 25, glucagon and insulin-2, while the expression of miR-146a-5p and miR-21a-5p were upregulated. It was also determined that upregulated miR-146a-5p and miR-21a-5p levels may be mediated by NF-κB activation. The downregulation of islet functional factor mRNA was partially reversed by treating islet cells with an inhibitor of miR-21a-5p. However, treatment with an miR-146a-5p inhibitor did not exert the same effect. Overall, the present study determined the molecular profiles of islet cell inflammation based on proteomics and miRNA-omics, and indicated that the proteins and miRNAs with altered expressions may form a large network that serves a role in islet dysfunction. Particularly, miR-21a-5p upregulation in response to inflammation may contribute to islet cell dysfunction. However, how these miRNAs regulated the expression of certain mRNAs and proteins in islet cell inflammation requires further investigation.
Collapse
Affiliation(s)
- Yipei Ding
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Jin Zhong
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| | - Yangyang Wang
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| | - Weidong Xie
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
30
|
Good Cop, Bad Cop: The Opposing Effects of Macrophage Activation State on Maintaining or Damaging Functional β-Cell Mass. Metabolites 2020; 10:metabo10120485. [PMID: 33256225 PMCID: PMC7761161 DOI: 10.3390/metabo10120485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Loss of functional β-cell mass is a hallmark of Type 1 and Type 2 Diabetes. Macrophages play an integral role in the maintenance or destruction of pancreatic β-cells. The effect of the macrophage β-cell interaction is dependent on the activation state of the macrophage. Macrophages can be activated across a spectrum, from pro-inflammatory to anti-inflammatory and tissue remodeling. The factors secreted by these differentially activated macrophages and their effect on β-cells define the effect on functional β-cell mass. In this review, the spectrum of macrophage activation is discussed, as are the positive and negative effects on β-cell survival, expansion, and function as well as the defined factors released from macrophages that impinge on functional β-cell mass.
Collapse
|
31
|
Buzzetti R, Zampetti S, Pozzilli P. Impact of obesity on the increasing incidence of type 1 diabetes. Diabetes Obes Metab 2020; 22:1009-1013. [PMID: 32157790 DOI: 10.1111/dom.14022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
Published estimates of the incidence of type 1 diabetes (T1D) in children in the last decade varies between 2% and 4% per annum. If this trend continued, the disease incidence would double in the next 20 years. The risk of developing T1D is determined by a complex interaction between multiple genes (mainly human leukocyte antigens) and environmental factors. Notwithstanding that genetic susceptibility represents a relevant element in T1D risk, genetics alone cannot explain the increase in incidence. Various environmental factors have been suggested as potential triggers for T1D, including several viruses and the hygiene hypothesis; however, none of these seems to explain the large increase in T1D incidence observed over the last decades. Several studies have demonstrated that the prevalence of childhood/adolescence overweight and obesity has risen during the past 30 years in T1D. Currently, at diagnosis, the majority of patients with T1D have normal or elevated body weight and ~50% of patients with longstanding T1D are either overweight or obese. The growing prevalence of obesity in childhood and adolescence offers a plausible explanation for the increase in T1D incidence observed in recent decades. Possible mechanisms of the enhancement of β-cell autoimmunity by obesity include: a) insulin resistance-induced β-cell secretory demand triggering autoimmunity through cytokine release, neo-epitope antigen formation and increase in β-cell apoptosis, and b) obesity-induced low-grade inflammation with pro-inflammatory cytokines secreted by locally infiltrating macrophages, which contribute to the presentation by islet cells of autoantigens generally not accessible to T cells. Further studies are needed to clarify whether the control of body weight can prevent or delay the current and continuing rise in T1D incidence.
Collapse
Affiliation(s)
| | - Simona Zampetti
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Paolo Pozzilli
- Department of Medicine, Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
- Centre of Immunobiology, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
32
|
Nigi L, Maccora C, Dotta F, Sebastiani G. From immunohistological to anatomical alterations of human pancreas in type 1 diabetes: New concepts on the stage. Diabetes Metab Res Rev 2020; 36:e3264. [PMID: 31850667 DOI: 10.1002/dmrr.3264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022]
Abstract
The histological analysis of human pancreatic samples in type 1 diabetes (T1D) has been proven essential to move forward in the evaluation of in situ events characterizing T1D. Increasing availability of pancreatic tissues collected from diabetic multiorgan donors by centralized biorepositories, which have shared tissues among researchers in the field, has allowed a deeper understanding of T1D pathophysiology, using novel immunohistological and high-throughput methods. In this review, we provide a comprehensive update of the main recent advancements in the characterization of cellular and molecular events involving endocrine and exocrine pancreas as well as the immune system in the onset and progression of T1D. Additionally, we underline novel elements, which provide evidence that T1D pathological changes affect not only islet β-cells but also the entire pancreas.
Collapse
Affiliation(s)
- Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Carla Maccora
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
33
|
The T1D-associated lncRNA Lnc13 modulates human pancreatic β cell inflammation by allele-specific stabilization of STAT1 mRNA. Proc Natl Acad Sci U S A 2020; 117:9022-9031. [PMID: 32284404 DOI: 10.1073/pnas.1914353117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The vast majority of type 1 diabetes (T1D) genetic association signals lie in noncoding regions of the human genome. Many have been predicted to affect the expression and secondary structure of long noncoding RNAs (lncRNAs), but the contribution of these lncRNAs to the pathogenesis of T1D remains to be clarified. Here, we performed a complete functional characterization of a lncRNA that harbors a single nucleotide polymorphism (SNP) associated with T1D, namely, Lnc13 Human pancreatic islets harboring the T1D-associated SNP risk genotype in Lnc13 (rs917997*CC) showed higher STAT1 expression than islets harboring the heterozygous genotype (rs917997*CT). Up-regulation of Lnc13 in pancreatic β-cells increased activation of the proinflammatory STAT1 pathway, which correlated with increased production of chemokines in an allele-specific manner. In a mirror image, Lnc13 gene disruption in β-cells partially counteracts polyinosinic-polycytidylic acid (PIC)-induced STAT1 and proinflammatory chemokine expression. Furthermore, we observed that PIC, a viral mimetic, induces Lnc13 translocation from the nucleus to the cytoplasm promoting the interaction of STAT1 mRNA with (poly[rC] binding protein 2) (PCBP2). Interestingly, Lnc13-PCBP2 interaction regulates the stability of the STAT1 mRNA, sustaining inflammation in β-cells in an allele-specific manner. Our results show that the T1D-associated Lnc13 may contribute to the pathogenesis of T1D by increasing pancreatic β-cell inflammation. These findings provide information on the molecular mechanisms by which disease-associated SNPs in lncRNAs influence disease pathogenesis and open the door to the development of diagnostic and therapeutic approaches based on lncRNA targeting.
Collapse
|
34
|
The cytokine alterations/abnormalities and oxidative damage in the pancreas during hypertension development. Pflugers Arch 2019; 471:1331-1340. [PMID: 31624954 PMCID: PMC6814849 DOI: 10.1007/s00424-019-02312-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/30/2019] [Accepted: 09/20/2019] [Indexed: 02/04/2023]
Abstract
The aim of the present study was to compare the content of cytokines, chemokines, and oxidative stress markers in the pancreas of spontaneously hypertensive rats (SHRs) and Wistar Kyoto Rats (WKYs) serving as controls. Enzyme-like immunosorbent assay (ELISA) and biochemical methods were used to measure pancreatic levels of interleukin-1ß, interleukin-6, tumor necrosis factor α, transforming growth factor β, RANES, monocyte chemoattractant protein 1, interferon gamma-induced protein 10, malondialdehyde, and sulfhydryl groups. The results showed that the pancreatic concentrations of all studied cytokines and chemokines did not differ between 5-week-old SHRs and WKYs, except RANTES which was significantly reduced in juvenile SHRs. In 10-week-old animals, except interleukin-1ß, the levels of all these proteins were significantly reduced in SHRs. The pancreatic levels of malondialdehyde were significantly reduced in 5-week-old SHRs and significantly elevated in 10-week-old SHRs while the contents of sulfhydryl groups were similar in both rat strains at any age studied. In conclusion, these data provide evidence that in maturating SHRs, the pancreatic levels of cytokines and chemokines are significantly reduced, while malondialdehyde significantly elevated. This suggests that in the pancreas of mature SHRs, the inflammation process is suppressed but there is ongoing oxidative damage.
Collapse
|
35
|
Ježek P, Jabůrek M, Plecitá-Hlavatá L. Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes. Antioxid Redox Signal 2019; 31:722-751. [PMID: 30450940 PMCID: PMC6708273 DOI: 10.1089/ars.2018.7656] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
Significance: Type 2 diabetes development involves multiple changes in β-cells, related to the oxidative stress and impaired redox signaling, beginning frequently by sustained overfeeding due to the resulting lipotoxicity and glucotoxicity. Uncovering relationships among the dysregulated metabolism, impaired β-cell "well-being," biogenesis, or cross talk with peripheral insulin resistance is required for elucidation of type 2 diabetes etiology. Recent Advances: It has been recognized that the oxidative stress, lipotoxicity, and glucotoxicity cannot be separated from numerous other cell pathology events, such as the attempted compensation of β-cell for the increased insulin demand and dynamics of β-cell biogenesis and its "reversal" at dedifferentiation, that is, from the concomitantly decreasing islet β-cell mass (also due to transdifferentiation) and low-grade islet or systemic inflammation. Critical Issues: At prediabetes, the compensation responses of β-cells, attempting to delay the pathology progression-when exaggerated-set a new state, in which a self-checking redox signaling related to the expression of Ins gene expression is impaired. The resulting altered redox signaling, diminished insulin secretion responses to various secretagogues including glucose, may lead to excretion of cytokines or chemokines by β-cells or excretion of endosomes. They could substantiate putative stress signals to the periphery. Subsequent changes and lasting glucolipotoxicity promote islet inflammatory responses and further pathology spiral. Future Directions: Should bring an understanding of the β-cell self-checking and related redox signaling, including the putative stress signal to periphery. Strategies to cure or prevent type 2 diabetes could be based on the substitution of the "wrong" signal by the "correct" self-checking signal.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
36
|
Mishra V, Yadav N, Saraogi GK, Tambuwala MM, Giri N. Dendrimer Based Nanoarchitectures in Diabetes Management: An Overview. Curr Pharm Des 2019; 25:2569-2583. [PMID: 31333099 DOI: 10.2174/1381612825666190716125332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 01/13/2023]
Abstract
Diabetes has turned out to be one of the biggest worldwide health and economic burdens, with its expanded predominance and high complexity proportion. The quantity of diabetic patients is expanding enormously around the world. Several reports have demonstrated the sharp increment in the sufferers. Stable and acceptable blood glucose control is fundamental to diminish diabetes-related complications. Consequently, ceaseless endeavors have been made in antidiabetic drugs, treatment strategies, and nanotechnology based products to accomplish better diabetes control. The nanocarriers pertaining hypoglycaemics provide improved diabetes management with minimum risk of associated side effects. Dendrimers have caught an incredible attention in the field of drug delivery and personalized medicines. Dendrimers are three-dimensional well-defined homogenous nanosized structures consisting tree-like branches. The present review highlights the different aspects of dendrimers including fabrication, surface engineering, toxicological profile as well as delivery of antidiabetic drugs for the effective cure of diabetes.
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nishika Yadav
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav K Saraogi
- School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, India
| | - Murtaza M Tambuwala
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, United Kingdom
| | - Namita Giri
- School of Pharmacy, Ferris State University, Big Rapids, Michigan MI4930, MA, United States
| |
Collapse
|
37
|
Fattore D, Pistone G, Bongiorno MR. Pyoderma gangrenosum, acne, hidradenitis suppurativa syndrome associated with type 1 diabetes mellitus treated with adalimumab. GIORN ITAL DERMAT V 2019; 154:218-220. [DOI: 10.23736/s0392-0488.18.05716-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Al-Amily IM, Dunér P, Groop L, Salehi A. The functional impact of G protein-coupled receptor 142 (Gpr142) on pancreatic β-cell in rodent. Pflugers Arch 2019; 471:633-645. [PMID: 30767071 PMCID: PMC6435787 DOI: 10.1007/s00424-019-02262-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
We have recently shown that the G protein-coupled receptor 142 (GPR142) is expressed in both rodent and human pancreatic β-cells. Herein, we investigated the cellular distribution of GPR142 within islets and the effects of selective agonists of GPR142 on glucose-stimulated insulin secretion (GSIS) in the mouse islets and INS-1832/13 cells. Double-immunostaining revealed that GPR142 immunoreactivity in islets mainly occurs in insulin-positive cells. Potentiation of GSIS by GPR142 activation was accompanied by increased cAMP content in INS-1832/13 cells. PKA/Epac inhibition markedly suppressed the effect of GPR142 activation on insulin release. Gpr142 knockdown (Gpr142-KD) in islets was accompanied by elevated release of MCP-1, IFNγ, and TNFα during culture period and abolished the modulatory effect of GPR142 activation on the GSIS. Gpr142-KD had no effect on Ffar1, Ffar2, or Ffar3 mRNA while reducing Gpr56 and increasing Tlr5 and Tlr7 mRNA expression. Gpr142-KD was associated with an increased expression of Chrebp, Txnip, RhoA, and mitochondrial Vdac1 concomitant with a reduced Pdx1, Pax6, and mitochondrial Vdac2 mRNA levels. Long-term exposure of INS-1832/13 cells to hyperglycemia reduced Gpr142 and Vdac2 while increased Chrebp, Txnip, and Vdac1 mRNA expression. GPR142 agonists or Bt2-cAMP counteracted this effect. Glucotoxicity-induced decrease of cell viability in Gpr142-KD INS-1 cells was not affected by GPR142-agonists while Bt2-cAMP prevented it. The results show the importance of Gpr142 in the maintenance of pancreatic β-cell function in rodents and that GPR142 agonists potentiate GSIS by an action, which most likely is due to increased cellular generation of second messenger molecule cAMP.
Collapse
Affiliation(s)
- Israa Mohammad Al-Amily
- Department of Clinical Science, SUS, Division of Islet Cell Physiology, University of Lund, Jan Waldenströmsgata 35, Building 91, Floor 11, SE-205 02, Malmö, Sweden
| | - Pontus Dunér
- Experimental cardiovascular research, University of Lund, Lund, Sweden
| | - Leif Groop
- Department of Clinical Science, SUS, Division of Islet Cell Physiology, University of Lund, Jan Waldenströmsgata 35, Building 91, Floor 11, SE-205 02, Malmö, Sweden.,Department of Neuroscience and Physiology, Metabolic Research Unit, University of Gothenburg, Gothenburg, Sweden
| | - Albert Salehi
- Department of Clinical Science, SUS, Division of Islet Cell Physiology, University of Lund, Jan Waldenströmsgata 35, Building 91, Floor 11, SE-205 02, Malmö, Sweden. .,Department of Neuroscience and Physiology, Metabolic Research Unit, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
39
|
Tan SY, Mei Wong JL, Sim YJ, Wong SS, Mohamed Elhassan SA, Tan SH, Ling Lim GP, Rong Tay NW, Annan NC, Bhattamisra SK, Candasamy M. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr 2019; 13:364-372. [PMID: 30641727 DOI: 10.1016/j.dsx.2018.10.008] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022]
Abstract
Type 1 and type 2 diabetes mellitus is a serious and lifelong condition commonly characterised by abnormally elevated blood glucose levels due to a failure in insulin production or a decrease in insulin sensitivity and function. Over the years, prevalence of diabetes has increased globally and it is classified as one of the leading cause of high mortality and morbidity rate. Furthermore, diabetes confers a huge economic burden due to its management costs as well as its complications are skyrocketing. The conventional medications in diabetes treatment focusing on insulin secretion and insulin sensitisation cause unwanted side effects to patients and lead to incompliance as well as treatment failure. Besides insulin and oral hypoglycaemic agents, other treatments such as gene therapy and induced β-cells regeneration have not been widely introduced to manage diabetes. Therefore, this review aims to deliver an overview of the current conventional medications in diabetes, discovery of newer pharmacological drugs and gene therapy as a potential intervention of diabetes in the future.
Collapse
Affiliation(s)
- Sin Yee Tan
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Joyce Ling Mei Wong
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Yan Jinn Sim
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Su Sie Wong
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Safa Abdelgadir Mohamed Elhassan
- School of Postgraduate Studies, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Sean Hong Tan
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Grace Pei Ling Lim
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Nicole Wuen Rong Tay
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Naveenya Chetty Annan
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
40
|
Gonzalez LL, Garrie K, Turner MD. Type 2 diabetes - An autoinflammatory disease driven by metabolic stress. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3805-3823. [PMID: 30251697 DOI: 10.1016/j.bbadis.2018.08.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes has traditionally been viewed as a metabolic disorder characterised by chronic high glucose levels, insulin resistance, and declining insulin secretion from the pancreas. Modern lifestyle, with abundant nutrient supply and reduced physical activity, has resulted in dramatic increases in the rates of obesity-associated disease conditions, including diabetes. The associated excess of nutrients induces a state of systemic low-grade chronic inflammation that results from production and secretion of inflammatory mediators from the expanded pool of activated adipocytes. Here, we review the mechanisms by which obesity induces adipose tissue dysregulation, detailing the roles of adipose tissue secreted factors and their action upon other cells and tissues central to glucose homeostasis and type 2 diabetes. Furthermore, given the emerging importance of adipokines, cytokines and chemokines in disease progression, we suggest that type 2 diabetes should now be viewed as an autoinflammatory disease, albeit one that is driven by metabolic dysregulation.
Collapse
Affiliation(s)
- Laura L Gonzalez
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Karin Garrie
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Mark D Turner
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
41
|
Sargsyan E, Cen J, Roomp K, Schneider R, Bergsten P. Identification of early biological changes in palmitate-treated isolated human islets. BMC Genomics 2018; 19:629. [PMID: 30134843 PMCID: PMC6106933 DOI: 10.1186/s12864-018-5008-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022] Open
Abstract
Background Long-term exposure to elevated levels of free fatty acids (FFAs) is deleterious for beta-cell function and may contribute to development of type 2 diabetes mellitus (T2DM). Whereas mechanisms of impaired glucose-stimulated insulin secretion (GSIS) in FFA-treated beta-cells have been intensively studied, biological events preceding the secretory failure, when GSIS is accentuated, are poorly investigated. To identify these early events, we performed genome-wide analysis of gene expression in isolated human islets exposed to fatty acid palmitate for different time periods. Results Palmitate-treated human islets showed decline in beta-cell function starting from day two. Affymetrix Human Transcriptome Array 2.0 identified 903 differentially expressed genes (DEGs). Mapping of the genes onto pathways using KEGG pathway enrichment analysis predicted four islet biology-related pathways enriched prior but not after the decline of islet function and three pathways enriched both prior and after the decline of islet function. DEGs from these pathways were analyzed at the transcript level. The results propose that in palmitate-treated human islets, at early time points, protective events, including up-regulation of metallothioneins, tRNA synthetases and fatty acid-metabolising proteins, dominate over deleterious events, including inhibition of fatty acid detoxification enzymes, which contributes to the enhanced GSIS. After prolonged exposure of islets to palmitate, the protective events are outweighed by the deleterious events, which leads to impaired GSIS. Conclusions The study identifies temporal order between different cellular events, which either promote or protect from beta-cell failure. The sequence of these events should be considered when developing strategies for prevention and treatment of the disease. Electronic supplementary material The online version of this article (10.1186/s12864-018-5008-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ernest Sargsyan
- Department of Medical Cell Biology, Uppsala University, Box 571, 75123, Uppsala, Sweden. .,Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences, 0014, Yerevan, Armenia.
| | - Jing Cen
- Department of Medical Cell Biology, Uppsala University, Box 571, 75123, Uppsala, Sweden
| | - Kirsten Roomp
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, 7 avenue des Hauts fourneaux, 4362 Esch-Belval, Luxembourg City, Luxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, 7 avenue des Hauts fourneaux, 4362 Esch-Belval, Luxembourg City, Luxembourg
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Box 571, 75123, Uppsala, Sweden
| |
Collapse
|
42
|
Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity. Molecules 2018; 23:molecules23061483. [PMID: 29921789 PMCID: PMC6100479 DOI: 10.3390/molecules23061483] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Fatty acid (FA)-stimulated insulin secretion (FASIS) is reviewed here in contrast to type 2 diabetes etiology, resulting from FA overload, oxidative stress, intermediate hyperinsulinemia, and inflammation, all converging into insulin resistance. Focusing on pancreatic islet β-cells, we compare the physiological FA roles with the pathological ones. Considering FAs not as mere amplifiers of glucose-stimulated insulin secretion (GSIS), but as parallel insulin granule exocytosis inductors, partly independent of the KATP channel closure, we describe the FA initiating roles in the prediabetic state that is induced by retardations in the glycerol-3-phosphate (glucose)-promoted glycerol/FA cycle and by the impaired GPR40/FFA1 (free FA1) receptor pathway, specifically in its amplification by the redox-activated mitochondrial phospholipase, iPLA2γ. Also, excessive dietary FAs stimulate intestine enterocyte incretin secretion, further elevating GSIS, even at low glucose levels, thus contributing to diabetic hyperinsulinemia. With overnutrition and obesity, the FA overload causes impaired GSIS by metabolic dysbalance, paralleled by oxidative and metabolic stress, endoplasmic reticulum stress and numerous pro-apoptotic signaling, all leading to decreased β-cell survival. Lipotoxicity is exerted by saturated FAs, whereas ω-3 polyunsaturated FAs frequently exert antilipotoxic effects. FA-facilitated inflammation upon the recruitment of excess M1 macrophages into islets (over resolving M2 type), amplified by cytokine and chemokine secretion by β-cells, leads to an inevitable failure of pancreatic β-cells.
Collapse
|
43
|
Burke SJ, Batdorf HM, Burk DH, Martin TM, Mendoza T, Stadler K, Alami W, Karlstad MD, Robson MJ, Blakely RD, Mynatt RL, Collier JJ. Pancreatic deletion of the interleukin-1 receptor disrupts whole body glucose homeostasis and promotes islet β-cell de-differentiation. Mol Metab 2018; 14:95-107. [PMID: 29914854 PMCID: PMC6034063 DOI: 10.1016/j.molmet.2018.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/30/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023] Open
Abstract
Objective Pancreatic tissue, and islets in particular, are enriched in expression of the interleukin-1 receptor type I (IL-1R). Because of this enrichment, islet β-cells are exquisitely sensitive to the IL-1R ligands IL-1α and IL-1β, suggesting that signaling through this pathway regulates health and function of islet β-cells. Methods Herein, we report a targeted deletion of IL-1R in pancreatic tissue (IL-1RPdx1−/−) in C57BL/6J mice and in db/db mice on the C57 genetic background. Islet morphology, β-cell transcription factor abundance, and expression of the de-differentiation marker Aldh1a3 were analyzed by immunofluorescent staining. Glucose and insulin tolerance tests were used to examine metabolic status of these genetic manipulations. Glucose-stimulated insulin secretion was evaluated in vivo and in isolated islets ex vivo by perifusion. Results Pancreatic deletion of IL-1R leads to impaired glucose tolerance, a phenotype that is exacerbated by age. Crossing the IL-1RPdx1−/− with db/db mice worsened glucose tolerance without altering body weight. There were no detectable alterations in insulin tolerance between IL-1RPdx1−/− mice and littermate controls. However, glucose-stimulated insulin secretion was reduced in islets isolated from IL-1RPdx1−/− relative to control islets. Insulin output in vivo after a glucose challenge was also markedly reduced in IL-1RPdx1−/− mice when compared with littermate controls. Pancreatic islets from IL-1RPdx1−/− mice displayed elevations in Aldh1a3, a marker of de-differentiation, and reduction in nuclear abundance of the β-cell transcription factor MafA. Nkx6.1 abundance was unaltered. Conclusions There is an important physiological role for pancreatic IL-1R to promote glucose homeostasis by suppressing expression of Aldh1a3, sustaining MafA abundance, and supporting glucose-stimulated insulin secretion in vivo. Pancreatic deletion of IL-1R impairs glucose tolerance in young and old male mice. Pancreatic deletion of IL-1R worsens glucose tolerance in obese db/db mice. Deletion of IL-1R triggers expression of the de-differentiation marker Aldh1a3. IL-1 signaling in pancreatic tissue influences islet health and function.
Collapse
Affiliation(s)
- Susan J Burke
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Heidi M Batdorf
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - David H Burk
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Thomas M Martin
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Tamra Mendoza
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | - Wateen Alami
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, TN, 37920, USA
| | - Michael D Karlstad
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, TN, 37920, USA
| | - Matthew J Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter FL, 33458, USA
| | - Randall L Mynatt
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - J Jason Collier
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
44
|
Thompson S, Martínez-Burgo B, Sepuru KM, Rajarathnam K, Kirby JA, Sheerin NS, Ali S. Regulation of Chemokine Function: The Roles of GAG-Binding and Post-Translational Nitration. Int J Mol Sci 2017; 18:ijms18081692. [PMID: 28771176 PMCID: PMC5578082 DOI: 10.3390/ijms18081692] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 12/12/2022] Open
Abstract
The primary function of chemokines is to direct the migration of leukocytes to the site of injury during inflammation. The effects of chemokines are modulated by several means, including binding to G-protein coupled receptors (GPCRs), binding to glycosaminoglycans (GAGs), and through post-translational modifications (PTMs). GAGs, present on cell surfaces, bind chemokines released in response to injury. Chemokines bind leukocytes via their GPCRs, which directs migration and contributes to local inflammation. Studies have shown that GAGs or GAG-binding peptides can be used to interfere with chemokine binding and reduce leukocyte recruitment. Post-translational modifications of chemokines, such as nitration, which occurs due to the production of reactive species during oxidative stress, can also alter their biological activity. This review describes the regulation of chemokine function by GAG-binding ability and by post-translational nitration. These are both aspects of chemokine biology that could be targeted if the therapeutic potential of chemokines, like CXCL8, to modulate inflammation is to be realised.
Collapse
Affiliation(s)
- Sarah Thompson
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | - Beatriz Martínez-Burgo
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | - Krishna Mohan Sepuru
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| | - John A Kirby
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | - Neil S Sheerin
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | - Simi Ali
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|