1
|
Fitch AK, Malhotra S, Conroy R. Differentiating monogenic and syndromic obesities from polygenic obesity: Assessment, diagnosis, and management. OBESITY PILLARS 2024; 11:100110. [PMID: 38766314 PMCID: PMC11101890 DOI: 10.1016/j.obpill.2024.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Background Obesity is a multifactorial neurohormonal disease that results from dysfunction within energy regulation pathways and is associated with increased morbidity, mortality, and reduced quality of life. The most common form is polygenic obesity, which results from interactions between multiple gene variants and environmental factors. Highly penetrant monogenic and syndromic obesities result from rare genetic variants with minimal environmental influence and can be differentiated from polygenic obesity depending on key symptoms, including hyperphagia; early-onset, severe obesity; and suboptimal responses to nontargeted therapies. Timely diagnosis of monogenic or syndromic obesity is critical to inform management strategies and reduce disease burden. We outline the physiology of weight regulation, role of genetics in obesity, and differentiating characteristics between polygenic and rare genetic obesity to facilitate diagnosis and transition toward targeted therapies. Methods In this narrative review, we focused on case reports, case studies, and natural history studies of patients with monogenic and syndromic obesities and clinical trials examining the efficacy, safety, and quality of life impact of nontargeted and targeted therapies in these populations. We also provide comprehensive algorithms for diagnosis of patients with suspected rare genetic causes of obesity. Results Patients with monogenic and syndromic obesities commonly present with hyperphagia (ie, pathologic, insatiable hunger) and early-onset, severe obesity, and the presence of hallmark characteristics can inform genetic testing and diagnostic approach. Following diagnosis, specialized care teams can address complex symptoms, and hyperphagia is managed behaviorally. Various pharmacotherapies show promise in these patient populations, including setmelanotide and glucagon-like peptide-1 receptor agonists. Conclusion Understanding the pathophysiology and differentiating characteristics of monogenic and syndromic obesities can facilitate diagnosis and management and has led to development of targeted pharmacotherapies with demonstrated efficacy for reducing body weight and hunger in the affected populations.
Collapse
Affiliation(s)
| | - Sonali Malhotra
- Harvard Medical School, Boston, MA, USA
- Rhythm Pharmaceuticals, Inc., Boston, MA, USA
- Massachussetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
2
|
Baird HJM, Shun-Shion AS, Mendes de Oliveira E, Stalder D, Liang L, Eden J, Chambers JE, Farooqi IS, Gershlick DC, Fazakerley DJ. A quantitative pipeline to assess secretion of human leptin coding variants reveals mechanisms underlying leptin deficiencies. J Biol Chem 2024; 300:107562. [PMID: 39002670 PMCID: PMC11366920 DOI: 10.1016/j.jbc.2024.107562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
The hormone leptin, primarily secreted by adipocytes, plays a crucial role in regulating whole-body energy homeostasis. Homozygous loss-of-function mutations in the leptin gene (LEP) cause hyperphagia and severe obesity, primarily through alterations in leptin's affinity for its receptor or changes in serum leptin concentrations. Although serum concentrations are influenced by various factors (e.g., gene expression, protein synthesis, stability in the serum), proper delivery of leptin from its site of synthesis in the endoplasmic reticulum via the secretory pathway to the extracellular serum is a critical step. However, the regulatory mechanisms and specific machinery involved in this trafficking route, particularly in the context of human LEP mutations, remain largely unexplored. We have employed the Retention Using Selective Hooks system to elucidate the secretory pathway of leptin. We have refined this system into a medium-throughput assay for examining the pathophysiology of a range of obesity-associated LEP variants. Our results reveal that leptin follows the default secretory pathway, with no additional regulatory steps identified prior to secretion. Through screening of leptin variants, we identified three mutations that lead to proteasomal degradation of leptin and one variant that significantly decreased leptin secretion, likely through aberrant disulfide bond formation. These observations have identified novel pathogenic effects of leptin variants, which can be informative for therapeutics and diagnostics. Finally, our novel quantitative screening platform can be adapted for other secreted proteins.
Collapse
Affiliation(s)
- Harry J M Baird
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Amber S Shun-Shion
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Edson Mendes de Oliveira
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Lu Liang
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Jessica Eden
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Joseph E Chambers
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - I Sadaf Farooqi
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Sundbom M, Järvholm K, Sjögren L, Nowicka P, Lagerros YT. Obesity treatment in adolescents and adults in the era of personalized medicine. J Intern Med 2024; 296:139-155. [PMID: 39007440 DOI: 10.1111/joim.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In this multi-professional review, we will provide the in-depth knowledge required to work in the expanding field of obesity treatment. The prevalence of obesity has doubled in adults and quadrupled in children over the last three decades. The most common treatment offered has been lifestyle treatment, which has a modest or little long-term effect. Recently, several new treatment options-leading to improved weight loss-have become available. However, long-term care is not only about weight loss but also aims to improve health and wellbeing overall. In the era of personalized medicine, we have an obligation to tailor the treatment in close dialogue with our patients. The main focus of this review is new pharmacological treatments and modern metabolic surgery, with practical guidance on what to consider when selecting and guiding the patients and what to include in the follow-up care. Furthermore, we discuss common clinical challenges, such as patients with concurrent eating disorder or mental health problems, and treatment in the older adults. We also provide recommendations on how to deal with obesity in a non-stigmatizing way to diminish weight stigma during treatment. Finally, we present six microcases-obesity treatment for persons with neuropsychiatric disorders and/or intellectual disability; obesity treatment in the nonresponsive patient who has "tried everything"; and hypoglycemia, abdominal pain, and weight regain after metabolic surgery-to highlight common problems in weight-loss treatment and provide personalized treatment suggestions.
Collapse
Affiliation(s)
- Magnus Sundbom
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Surgery, University Hospital, Uppsala, Sweden
| | - Kajsa Järvholm
- Department of Psychology, Lund University, Lund, Sweden
- Childhood Obesity Unit, Skåne University Hospital, Malmö, Sweden
| | - Lovisa Sjögren
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Paulina Nowicka
- Department of Food Studies, Nutrition and Dietetics, Uppsala University, Uppsala, Sweden
| | - Ylva Trolle Lagerros
- Department of Medicine (Solna), Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
- Center for Obesity, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| |
Collapse
|
4
|
Pasupuleti SK, Kapur R. The impact of obesity-induced inflammation on clonal hematopoiesis. Curr Opin Hematol 2024; 31:193-198. [PMID: 38640133 PMCID: PMC11197996 DOI: 10.1097/moh.0000000000000819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
PURPOSE OF REVIEW This review meticulously delves into existing literature and recent findings to elucidate the intricate link between obesity and clonal hematopoiesis of indeterminate potential (CHIP) associated clonal hematopoiesis. It aims to enhance our comprehension of this multifaceted association, offering insights into potential avenues for future research and therapeutic interventions. RECENT FINDINGS Recent insights reveal that mutations in CHIP-associated genes are not limited to symptomatic patients but are also present in asymptomatic individuals. This section focuses on the impact of obesity-induced inflammation and fatty bone marrow (FBM) on the development of CHIP-associated diseases. Common comorbidities such as obesity, diabetes, and infection, fostering pro-inflammatory environments, play a pivotal role in the acceleration of these pathologies. Our research underscores a notable association between CHIP and an increased waist-to-hip ratio (WHR), emphasizing the link between obesity and myeloid leukemia. Recent studies highlight a strong correlation between obesity and myeloid leukemias in both children and adults, with increased risks and poorer survival outcomes in overweight individuals. SUMMARY We discuss recent insights into how CHIP-associated pathologies respond to obesity-induced inflammation, offering implications for future studies in the intricate field of clonal hematopoiesis.
Collapse
Affiliation(s)
| | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indianapolis, Indiana, USA
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Ichimura-Shimizu M, Kurrey K, Miyata M, Dezawa T, Tsuneyama K, Kojima M. Emerging Insights into the Role of BDNF on Health and Disease in Periphery. Biomolecules 2024; 14:444. [PMID: 38672461 PMCID: PMC11048455 DOI: 10.3390/biom14040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a growth factor that promotes the survival and growth of developing neurons. It also enhances circuit formation to synaptic transmission for mature neurons in the brain. However, reduced BDNF expression and single nucleotide polymorphisms (SNP) are reported to be associated with functional deficit and disease development in the brain, suggesting that BDNF is a crucial molecule for brain health. Interestingly, BDNF is also expressed in the hypothalamus in appetite and energy metabolism. Previous reports demonstrated that BDNF knockout mice exhibited overeating and obesity phenotypes remarkably. Therefore, we could raise a hypothesis that the loss of function of BDNF may be associated with metabolic syndrome and peripheral diseases. In this review, we describe our recent finding that BDNF knockout mice develop metabolic dysfunction-associated steatohepatitis and recent reports demonstrating the role of one of the BDNF receptors, TrkB-T1, in some peripheral organ functions and diseases, and would provide an insight into the role of BDNF beyond the brain.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.I.-S.); (K.T.)
| | - Khuleshwari Kurrey
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT 06520, USA;
| | - Misaki Miyata
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| | - Takuya Dezawa
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.I.-S.); (K.T.)
| | - Masami Kojima
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| |
Collapse
|
6
|
Fansa S, Acosta A. The melanocortin-4 receptor pathway and the emergence of precision medicine in obesity management. Diabetes Obes Metab 2024; 26 Suppl 2:46-63. [PMID: 38504134 DOI: 10.1111/dom.15555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
Over the past few decades, there has been a global surge in the prevalence of obesity, rendering it a globally recognized epidemic. Contrary to simply being a medical condition, obesity is an intricate disease with a multifactorial aetiology. Understanding the precise cause of obesity remains a challenge; nevertheless, there seems to be a complex interplay among biological, psychosocial and behavioural factors. Studies on the genetic factors of obesity have revealed several pathways in the brain that play a crucial role in food intake regulation. The best characterized pathway, thus far, is the leptin-melanocortin pathway, from which disruptions are responsible for the majority of monogenic obesity disorders. The effectiveness of conservative lifestyle interventions in addressing monogenic obesity has been limited. Therefore, it is crucial to complement the management strategy with pharmacological and surgical options. Emphasis has been placed on developing drugs aimed at replacing the absent signals, with the goal of restoring the pathway. In both monogenic and polygenic forms of obesity, outcomes differ across various interventions, likely due to the multifaceted nature of the disease. This underscores the need to explore alternative therapeutic strategies that can mitigate this heterogeneity. Precision medicine can be regarded as a powerful tool that can address this concern, as it values the understanding of the underlying abnormality triggering the disease and provides a tailored treatment accordingly. This would assist in optimizing outcomes of the current therapeutic approaches and even aid in the development of novel treatments capable of more effectively managing the global obesity epidemic.
Collapse
Affiliation(s)
- Sima Fansa
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Saavedra LPJ, Piovan S, Moreira VM, Gonçalves GD, Ferreira ARO, Ribeiro MVG, Peres MNC, Almeida DL, Raposo SR, da Silva MC, Barbosa LF, de Freitas Mathias PC. Epigenetic programming for obesity and noncommunicable disease: From womb to tomb. Rev Endocr Metab Disord 2024; 25:309-324. [PMID: 38040983 DOI: 10.1007/s11154-023-09854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Several epidemiological, clinical and experimental studies in recent decades have shown the relationship between exposure to stressors during development and health outcomes later in life. The characterization of these susceptible phases, such as preconception, gestation, lactation and adolescence, and the understanding of factors that influence the risk of an adult individual for developing obesity, metabolic and cardiovascular diseases, is the focus of the DOHaD (Developmental Origins of Health and Disease) research line. In this sense, advancements in molecular biology techniques have contributed significantly to the understanding of the mechanisms underlying the observed phenotypes, their morphological and physiological alterations, having as a main driving factor the epigenetic modifications and their consequent modulation of gene expression. The present narrative review aimed to characterize the different susceptible phases of development and associated epigenetic modifications, and their implication in the development of non-communicable diseases. Additionally, we provide useful insights into interventions during development to counteract or prevent long-term programming for disease susceptibility.
Collapse
Affiliation(s)
- Lucas Paulo Jacinto Saavedra
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Silvano Piovan
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Veridiana Mota Moreira
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Gessica Dutra Gonçalves
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Anna Rebeka Oliveira Ferreira
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Maiara Vanusa Guedes Ribeiro
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Maria Natália Chimirri Peres
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Douglas Lopes Almeida
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Scarlett Rodrigues Raposo
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Mariane Carneiro da Silva
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Letícia Ferreira Barbosa
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Paulo Cezar de Freitas Mathias
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil.
| |
Collapse
|
8
|
Shoemaker A. Bardet-Biedl syndrome: A clinical overview focusing on diagnosis, outcomes and best-practice management. Diabetes Obes Metab 2024; 26 Suppl 2:25-33. [PMID: 38383825 DOI: 10.1111/dom.15494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Bardet-Biedl syndrome (BBS) is a genetic disorder characterized by early-onset obesity, polydactyly, genital and kidney anomalies, developmental delay and vision loss due to rod-cone dystrophy. BBS is an autosomal recessive disorder with >20 implicated genes. The genotype-phenotype relationship in BBS is not clear, and there may be additional modifying factors. The underlying mechanism is dysfunction of primary cilia. In BBS, receptor trafficking in and out of the cilia is compromised, affecting multiple organ systems. Along with early-onset obesity, hyperphagia is a prominent symptom and contributes significantly to clinical morbidity and caregiver burden. While there is no cure for BBS, setmelanotide is a new pharmacotherapy approved for treatment of obesity in BBS. The differential diagnosis for BBS includes other ciliopathies, such as Alstrom syndrome, and other genetic obesity syndromes, such as Prader-Willi syndrome. Careful clinical history and genetic testing can help determine the diagnosis and a multidisciplinary team is necessary to guide clinical management.
Collapse
Affiliation(s)
- Ashley Shoemaker
- Division of Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Tomlinson JW. Bardet-Biedl syndrome: A focus on genetics, mechanisms and metabolic dysfunction. Diabetes Obes Metab 2024; 26 Suppl 2:13-24. [PMID: 38302651 DOI: 10.1111/dom.15480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Bardet-Biedl syndrome (BBS) is a rare, monogenic, multisystem disorder characterized by retinal dystrophy, renal abnormalities, polydactyly, learning disabilities, as well as metabolic dysfunction, including obesity and an increased risk of type 2 diabetes. It is a primary ciliopathy, and causative mutations in more than 25 different genes have been described. Multiple cellular mechanisms contribute to the development of the metabolic phenotype associated with BBS, including hyperphagia as a consequence of altered hypothalamic appetite signalling as well as alterations in adipocyte biology promoting adipocyte proliferation and adipogenesis. Within this review, we describe in detail the metabolic phenotype associated with BBS and discuss the mechanisms that drive its evolution. In addition, we review current approaches to the metabolic management of patients with BBS, including the use of weight loss medications and bariatric surgery. Finally, we evaluate the potential of targeting hypothalamic appetite signalling to limit hyperphagia and induce clinically significant weight loss.
Collapse
Affiliation(s)
- Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
10
|
Abraham A, Yaghootkar H. Identifying obesity subtypes: A review of studies utilising clinical biomarkers and genetic data. Diabet Med 2023; 40:e15226. [PMID: 37704218 DOI: 10.1111/dme.15226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
Obesity is a complex and multifactorial condition that poses significant health risks. Recent advancements in our understanding of obesity have highlighted the heterogeneity within this disorder. Identifying distinct subtypes of obesity is crucial for personalised treatment and intervention strategies. This review paper aims to examine studies that have utilised clinical biomarkers and genetic data to identify clusters or subtypes of obesity. The findings of these studies may provide valuable insights into the underlying mechanisms and potential targeted approaches for managing obesity-related health issues such as type 2 diabetes.
Collapse
Affiliation(s)
- Angela Abraham
- Joseph Banks Laboratories, College of Health and Science, University of Lincoln, Lincoln, Lincolnshire, UK
| | - Hanieh Yaghootkar
- Joseph Banks Laboratories, College of Health and Science, University of Lincoln, Lincoln, Lincolnshire, UK
| |
Collapse
|
11
|
Fontana A, Vieira JG, Vianna JM, Bichowska M, Krzysztofik M, Wilk M, Reis VM. Reduction of leptin levels during acute exercise is dependent on fasting but not on caloric restriction during chronic exercise: A systematic review and meta-analysis. PLoS One 2023; 18:e0288730. [PMID: 38015889 PMCID: PMC10684016 DOI: 10.1371/journal.pone.0288730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND The importance of leptin in controlling body mass has recently gained more attention. Its levels are directly associated with the amount of fat mass, but not necessarily dependent on it. Exercise has great potential in reducing leptin levels, however the response of exercise to this cytokine is still not well understood. OBJECTIVE The objective of the review was to analyze the effects of physical exercise on plasma leptin concentration, either acutely (post-exercise/training session) and/or after a training period (short- or long-term), as well as to investigate the existence of possible moderating variables. METHODS The studies included in this systematic review were published between 2005 and May 2023. Only peer-reviewed studies, available in English, performed with humans that evaluated the effects of any form of exercise on leptin levels were included. The search was conducted on May 03, 2023, in Embase (Elsevier), MEDLINE via PubMed®, and Web of Science (Core collection). The risk of bias in the included trials was assessed by the Physiotherapy Evidence Database tool, considering 11 questions regarding the methodology of each study with 10 questions being scored. The data (n, mean, and standard deviation) were extracted from included studies to perform random effects meta-analyses using standardized mean difference between the pre- and post-intervention effects. RESULTS Twenty-five studies (acute effect: 262 subjects; short- and long-term effect: 377 subjects) were included in this systematic review and meta-analysis. Short- and long-term physical exercise and caloric restriction plus exercise reduce plasma leptin levels, presenting statistically significant differences (p<0.001); as well as acute effect (p = 0.035), however the latter result was influenced by the pre-exercise meal as shown in the subgroup analysis. In this meta-analysis the effect of moderating factors on leptin reduction, not addressed by past reviews, is verified, such as the relationship with caloric restriction, exercise intensity and pre-exercise meal on acute responses. CONCLUSION Both acute and chronic exercise reduce leptin levels, yet the acute effect is dependent on the pre-exercise meal. In addition to having a long-term reduction in leptin levels, the minimum amount of weekly exercise to have a significant reduction in plasma leptin is 180 minutes of moderate-intensity exercise and 120 minutes of high-intensity exercise.
Collapse
Affiliation(s)
- Alexandre Fontana
- Master in Sports Science, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - João Guilherme Vieira
- Graduate Program in Physical Education, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
- Strength Training Research Laboratory, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Jeferson Macedo Vianna
- Graduate Program in Physical Education, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
- Strength Training Research Laboratory, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Marta Bichowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Michal Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Victor Machado Reis
- Research Center in Sports Sciences, Health Sciences & Human Development (CIDESD), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
12
|
Saeed S, Khanam R, Janjua QM, Manzoor J, Ning L, Hanook S, Canouil M, Ali M, Ayesha H, Khan WI, Farooqi IS, Yeo GSH, O'Rahilly S, Bonnefond A, Butt TA, Arslan M, Froguel P. High morbidity and mortality in children with untreated congenital deficiency of leptin or its receptor. Cell Rep Med 2023; 4:101187. [PMID: 37659411 PMCID: PMC10518629 DOI: 10.1016/j.xcrm.2023.101187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/29/2023] [Accepted: 08/11/2023] [Indexed: 09/04/2023]
Abstract
The long-term clinical outcomes of severe obesity due to leptin signaling deficiency are unknown. We carry out a retrospective cross-sectional investigation of a large cohort of children with leptin (LEP), LEP receptor (LEPR), or melanocortin 4 receptor (MC4R) deficiency (n = 145) to evaluate the progression of the disease. The affected individuals undergo physical, clinical, and metabolic evaluations. We report a very high mortality in children with LEP (26%) or LEPR deficiency (9%), mainly due to severe pulmonary and gastrointestinal infections. In addition, 40% of surviving children with LEP or LEPR deficiency experience life-threatening episodes of lung or gastrointestinal infections. Although precision drugs are currently available for LEP and LEPR deficiencies, as yet, they are not accessible in Pakistan. An appreciation of the severe impact of LEP or LEPR deficiency on morbidity and early mortality, educational attainment, and the attendant stigmatization should spur efforts to deliver the available life-saving drugs to these children as a matter of urgency.
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France; University of Lille, Lille University Hospital, Lille, France.
| | - Roohia Khanam
- KAM School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Qasim M Janjua
- Department of Physiology and Biophysics, College of Medicine and Health Sciences, National University of Science and Technology, Sohar, Oman
| | - Jaida Manzoor
- Department of Paediatric Endocrinology, Children's Hospital, Lahore, Pakistan
| | - Lijiao Ning
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France; University of Lille, Lille University Hospital, Lille, France
| | - Sharoon Hanook
- Department of Statistics, Forman Christian College, Lahore, Pakistan
| | - Mickaël Canouil
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France; University of Lille, Lille University Hospital, Lille, France
| | - Muhammad Ali
- Paediatric Endocrinology, Mayo Hospital, Lahore, Pakistan
| | - Hina Ayesha
- Department of Paediatrics, Punjab Medical College, Faisalabad, Pakistan
| | - Waqas I Khan
- The Children Hospital and the Institute of Child Health, Multan, Pakistan
| | - I Sadaf Farooqi
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Giles S H Yeo
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Stephen O'Rahilly
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Amélie Bonnefond
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France; University of Lille, Lille University Hospital, Lille, France
| | - Taeed A Butt
- Department of Pediatrics, Fatima Memorial Hospital, Lahore, Pakistan
| | - Muhammad Arslan
- KAM School of Life Sciences, Forman Christian College, Lahore, Pakistan.
| | - Philippe Froguel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France; University of Lille, Lille University Hospital, Lille, France.
| |
Collapse
|
13
|
Montgomery MK, De Nardo W, Watt MJ. Exercise training induces depot-specific remodeling of protein secretion in skeletal muscle and adipose tissue of obese male mice. Am J Physiol Endocrinol Metab 2023; 325:E227-E238. [PMID: 37493472 DOI: 10.1152/ajpendo.00178.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Acute exercise induces changes in circulating proteins, which are known to alter metabolism and systemic energy balance. Skeletal muscle is a primary contributor to changes in the plasma proteome with acute exercise. An important consideration when assessing the endocrine function of muscle is the presence of different fiber types, which show distinct functional and metabolic properties and likely secrete different proteins. Similarly, adipokines are important regulators of systemic metabolism and have been shown to differ between depots. Given the health-promoting effects of exercise, we proposed that understanding depot-specific remodeling of protein secretion in muscle and adipose tissue would provide new insights into intertissue communication and uncover novel regulators of energy homeostasis. Here, we examined the effect of endurance exercise training on protein secretion from fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscle and visceral and subcutaneous adipose tissue. High-fat diet-fed mice were exercise trained for 6 wk, whereas a Control group remained sedentary. Secreted proteins from excised EDL and soleus muscle, inguinal, and epididymal adipose tissues were detected using mass spectrometry. We detected 575 and 784 secreted proteins from EDL and soleus muscle and 738 and 920 proteins from inguinal and epididymal adipose tissue, respectively. Of these, 331 proteins were secreted from all tissues, whereas secretion of many other proteins was tissue and depot specific. Exercise training led to substantial remodeling of protein secretion from EDL, whereas soleus showed only minor changes. Myokines released exclusively from EDL or soleus were associated with glycogen metabolism and cellular stress response, respectively. Adipokine secretion was completely refractory to exercise regulation in both adipose depots. This study provides an in-depth resource of protein secretion from muscle and adipose tissue, and its regulation following exercise training, and identifies distinct depot-specific secretion patterns that are related to the metabolic properties of the tissue of origin.NEW & NOTEWORTHY The present study examines the effects of exercise training on protein secretion from fast-twitch and slow-twitch muscle as well as visceral and subcutaneous adipose tissue of obese mice. Although exercise training leads to substantial remodeling of protein secretion from fast-twitch muscle, adipose tissue is completely refractory to exercise regulation.
Collapse
Affiliation(s)
- Magdalene K Montgomery
- Faculty of Medicine, Dentistry & Health Sciences, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - William De Nardo
- Faculty of Medicine, Dentistry & Health Sciences, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Faculty of Medicine, Dentistry & Health Sciences, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Besci Ö, Fırat SN, Özen S, Çetinkaya S, Akın L, Kör Y, Pekkolay Z, Özalkak Ş, Özsu E, Erdeve ŞS, Poyrazoğlu Ş, Berberoğlu M, Aydın M, Omma T, Akıncı B, Demir K, Oral EA. A National Multicenter Study of Leptin and Leptin Receptor Deficiency and Systematic Review. J Clin Endocrinol Metab 2023; 108:2371-2388. [PMID: 36825860 DOI: 10.1210/clinem/dgad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
CONTEXT Homozygous leptin (LEP) and leptin receptor (LEPR) variants lead to childhood-onset obesity. OBJECTIVE To present new cases with LEP and LEPR deficiency, report the long-term follow-up of previously described patients, and to define, based on all reported cases in literature, genotype-phenotype relationships. METHODS Our cohort included 18 patients (LEP = 11, LEPR = 7), 8 of whom had been previously reported. A systematic literature review was conducted in July 2022. Forty-two of 47 studies on LEP/LEPR were selected. RESULTS Of 10 new cases, 2 novel pathogenic variants were identified in LEP (c.16delC) and LEPR (c.40 + 5G > C). Eleven patients with LEP deficiency received metreleptin, 4 of whom had been treated for over 20 years. One patient developed loss of efficacy associated with neutralizing antibody development. Of 152 patients, including 134 cases from the literature review in addition to our cases, frameshift variants were the most common (48%) in LEP and missense variants (35%) in LEPR. Patients with LEP deficiency were diagnosed at a younger age [3 (9) vs 7 (13) years, P = .02] and had a higher median body mass index (BMI) SD score [3.1 (2) vs 2.8 (1) kg/m2, P = 0.02], which was more closely associated with frameshift variants (P = .02). Patients with LEP deficiency were more likely to have hyperinsulinemia (P = .02). CONCLUSION Frameshift variants were more common in patients with LEP deficiency whereas missense variants were more common in LEPR deficiency. Patients with LEP deficiency were identified at younger ages, had higher BMI SD scores, and had higher rates of hyperinsulinemia than patients with LEPR deficiency. Eleven patients benefitted from long-term metreleptin, with 1 losing efficacy due to neutralizing antibodies.
Collapse
Affiliation(s)
- Özge Besci
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir 35340, Turkey
| | - Sevde Nur Fırat
- Division of Endocrinology and Metabolism, University of Health Sciences Ankara Training and Research Hospital, Ankara 06230, Turkey
| | - Samim Özen
- Division of Pediatric Endocrinology, Faculty of Medicine, Ege University, İzmir 35100, Turkey
| | - Semra Çetinkaya
- Division of Pediatric Endocrinology, Health Sciences University, Dr Sami Ulus Obstetrics and Gynecology, Children's Health and Disease, Health Implementation and Research Center, Ankara 06010, Turkey
| | - Leyla Akın
- Division of Pediatric Endocrinology, Faculty of Medicine, Ondokuz Mayıs University, Samsun 55030, Turkey
| | - Yılmaz Kör
- Division of Pediatric Endocrinology, Ministry of Health, Adana Public Hospitals Association, Adana City Hospital, Adana 01040, Turkey
| | - Zafer Pekkolay
- Division of Endocrinology and Metabolism, Dicle University Faculty of Medicine, Diyarbakır 21280, Turkey
| | - Şervan Özalkak
- Division Pediatric Endocrinology, Diyarbakir Gazi Yaşargil Training and Research Hospital, Diyarbakır 21070, Turkey
| | - Elif Özsu
- Department of Pediatric Endocrinology, Ankara University Faculty of Medicine, Ankara 06100, Turkey
| | - Şenay Savaş Erdeve
- Division of Pediatric Endocrinology, Health Sciences University, Dr Sami Ulus Obstetrics and Gynecology, Children's Health and Disease, Health Implementation and Research Center, Ankara 06010, Turkey
| | - Şükran Poyrazoğlu
- Department of Pediatric Endocrinology, Istanbul University Istanbul Faculty of Medicine, İstanbul 34098, Turkey
| | - Merih Berberoğlu
- Department of Pediatric Endocrinology, Ankara University Faculty of Medicine, Ankara 06100, Turkey
| | - Murat Aydın
- Division of Pediatric Endocrinology, Faculty of Medicine, Ondokuz Mayıs University, Samsun 55030, Turkey
| | - Tülay Omma
- Division of Endocrinology and Metabolism, University of Health Sciences Ankara Training and Research Hospital, Ankara 06230, Turkey
| | - Barış Akıncı
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University, İzmir 35340, Turkey
| | - Korcan Demir
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir 35340, Turkey
| | - Elif Arioglu Oral
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
15
|
Lenart-Lipińska M, Łuniewski M, Szydełko J, Matyjaszek-Matuszek B. Clinical and Therapeutic Implications of Male Obesity. J Clin Med 2023; 12:5354. [PMID: 37629396 PMCID: PMC10455727 DOI: 10.3390/jcm12165354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The prevalence of obesity, a disorder linked to numerous comorbidities and metabolic complications, has recently increased dramatically worldwide and is highly prevalent in men, even at a young age. Compared to female patients, men with obesity more frequently have delayed diagnosis, higher severity of obesity, increased mortality rate, and only a minority of obese male patients are successfully treated, including with bariatric surgery. The aim of this review was to present the current state of knowledge about the clinical and therapeutic implications of obesity diagnosed in males.
Collapse
Affiliation(s)
- Monika Lenart-Lipińska
- Department of Endocrinology, Diabetology, and Metabolic Diseases, Medical University of Lublin, 20-954 Lublin, Poland; (M.Ł.); (J.S.); (B.M.-M.)
| | | | | | | |
Collapse
|
16
|
Pasupuleti SK, Ramdas B, Burns SS, Palam LR, Kanumuri R, Kumar R, Pandhiri TR, Dave UP, Yellapu NK, Zhou X, Zhang C, Sandusky GE, Yu Z, Honigberg MC, Bick AG, Griffin GK, Niroula A, Ebert BL, Paczesny S, Natarajan P, Kapur R. Obesity-induced inflammation exacerbates clonal hematopoiesis. J Clin Invest 2023; 133:e163968. [PMID: 37071471 PMCID: PMC10231999 DOI: 10.1172/jci163968] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
Characterized by the accumulation of somatic mutations in blood cell lineages, clonal hematopoiesis of indeterminate potential (CHIP) is frequent in aging and involves the expansion of mutated hematopoietic stem and progenitor cells (HSC/Ps) that leads to an increased risk of hematologic malignancy. However, the risk factors that contribute to CHIP-associated clonal hematopoiesis (CH) are poorly understood. Obesity induces a proinflammatory state and fatty bone marrow (FBM), which may influence CHIP-associated pathologies. We analyzed exome sequencing and clinical data for 47,466 individuals with validated CHIP in the UK Biobank. CHIP was present in 5.8% of the study population and was associated with a significant increase in the waist-to-hip ratio (WHR). Mouse models of obesity and CHIP driven by heterozygosity of Tet2, Dnmt3a, Asxl1, and Jak2 resulted in exacerbated expansion of mutant HSC/Ps due in part to excessive inflammation. Our results show that obesity is highly associated with CHIP and that a proinflammatory state could potentiate the progression of CHIP to more significant hematologic neoplasia. The calcium channel blockers nifedipine and SKF-96365, either alone or in combination with metformin, MCC950, or anakinra (IL-1 receptor antagonist), suppressed the growth of mutant CHIP cells and partially restored normal hematopoiesis. Targeting CHIP-mutant cells with these drugs could be a potential therapeutic approach to treat CH and its associated abnormalities in individuals with obesity.
Collapse
Affiliation(s)
| | - Baskar Ramdas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
| | - Sarah S. Burns
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
| | | | - Rahul Kanumuri
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
| | - Ramesh Kumar
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
| | | | - Utpal P. Dave
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nanda Kumar Yellapu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xinyu Zhou
- Department of Medical and Molecular Genetics and
| | - Chi Zhang
- Department of Medical and Molecular Genetics and
| | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhi Yu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Michael C. Honigberg
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gabriel K. Griffin
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Epigenomics Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Abhishek Niroula
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Benjamin L. Ebert
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charlestown, South Carolina, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Department of Pediatrics and
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
17
|
Schlögl H, Janssen L, Fasshauer M, Miehle K, Villringer A, Stumvoll M, Mueller K. Reward Processing During Monetary Incentive Delay Task After Leptin Substitution in Lipodystrophy-an fMRI Case Series. J Endocr Soc 2023; 7:bvad052. [PMID: 37180211 PMCID: PMC10174197 DOI: 10.1210/jendso/bvad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 05/16/2023] Open
Abstract
Context Behaviorally, the most pronounced effects of leptin substitution in leptin deficiency are the hunger-decreasing and postprandial satiety-prolonging effects of the adipokine. Previously, with functional magnetic resonance imaging (MRI), we and others showed that eating behavior-controlling effects are at least in part conveyed by the reward system. However, to date, it is unclear if leptin only modulates eating behavior specific brain reward action or if it also alters the reward function of the brain unrelated to eating behavior. Objective We investigated with functional MRI the effects of metreleptin on the reward system in a reward task unrelated to eating behavior, the monetary incentive delay task. Design Measurements in 4 patients with the very rare disease of lipodystrophy (LD), resulting in leptin deficiency, and 3 untreated healthy control persons were performed at 4 different time points: before start and over 12 weeks of metreleptin treatment. Inside the MRI scanner, participants performed the monetary incentive delay task and brain activity during the reward receipt phase of the trial was analyzed. Results We found a reward-related brain activity decrease in our 4 patients with LD over the 12 weeks of metreleptin treatment in the subgenual region, a brain area associated with the reward network, which was not observed in our 3 untreated healthy control persons. Conclusions These results suggest that leptin replacement in LD induces changes of brain activity during reward reception processing completely unrelated to eating behavior or food stimuli. This could suggest eating behavior-unrelated functions of leptin in the human reward system. Trial registration The trial is registered as trial No. 147/10-ek at the ethics committee of the University of Leipzig and at the State Directorate of Saxony (Landesdirektion Sachsen).
Collapse
Affiliation(s)
- Haiko Schlögl
- Department of Medicine, University Hospital Leipzig, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Lieneke Janssen
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Mathias Fasshauer
- Institute of Nutritional Sciences, Justus-Liebig-University, 35390 Giessen, Germany
| | - Konstanze Miehle
- Department of Medicine, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Arno Villringer
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Day Clinic of Cognitive Neurology, University of Leipzig, 04103 Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine, University Hospital Leipzig, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Karsten Mueller
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, 12000 Prague, Czech Republic
| |
Collapse
|
18
|
Micheletti C, Jolic M, Grandfield K, Shah FA, Palmquist A. Bone structure and composition in a hyperglycemic, obese, and leptin receptor-deficient rat: Microscale characterization of femur and calvarium. Bone 2023; 172:116747. [PMID: 37028238 DOI: 10.1016/j.bone.2023.116747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
Metabolic abnormalities, such as diabetes mellitus and obesity, can impact bone quantity and/or bone quality. In this work, we characterize bone material properties, in terms of structure and composition, in a novel rat model with congenic leptin receptor (LepR) deficiency, severe obesity, and hyperglycemia (type 2 diabetes-like condition). Femurs and calvaria (parietal region) from 20-week-old male rats are examined to probe bones formed both by endochondral and intramembranous ossification. Compared to the healthy controls, the LepR-deficient animals display significant alterations in femur microarchitecture and in calvarium morphology when analyzed by micro-computed X-ray tomography (micro-CT). In particular, shorter femurs with reduced bone volume, combined with thinner parietal bones and shorter sagittal suture, point towards a delay in the skeletal development of the LepR-deficient rodents. On the other hand, LepR-deficient animals and healthy controls display analogous bone matrix composition, which is assessed in terms of tissue mineral density by micro-CT, degree of mineralization by quantitative backscattered electron imaging, and various metrics extrapolated from Raman hyperspectral images. Some specific microstructural features, i.e., mineralized cartilage islands in the femurs and hyper-mineralized areas in the parietal bones, also show comparable distribution and characteristics in both groups. Overall, the altered bone microarchitecture in the LepR-deficient animals indicates compromised bone quality, despite the normal bone matrix composition. The delayed development is also consistent with observations in humans with congenic Lep/LepR deficiency, making this animal model a suitable candidate for translational research.
Collapse
Affiliation(s)
- Chiara Micheletti
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada; Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Jolic
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada
| | - Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
19
|
Perdomo CM, Cohen RV, Sumithran P, Clément K, Frühbeck G. Contemporary medical, device, and surgical therapies for obesity in adults. Lancet 2023; 401:1116-1130. [PMID: 36774932 DOI: 10.1016/s0140-6736(22)02403-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 167.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 02/11/2023]
Abstract
The goal of obesity management is to improve health. Sustained weight loss of more than 10% overall bodyweight improves many of the complications associated with obesity (eg, prevention and control of type 2 diabetes, hypertension, fatty liver disease, and obstructive sleep apnoea), as well as quality of life. Maintenance of weight loss is the major challenge of obesity management. Like all chronic diseases, managing obesity requires a long-term, multimodal approach, taking into account each individual's treatment goals, and the benefit and risk of different therapies. In conjunction with lifestyle interventions, anti-obesity medications and bariatric surgery improve the maintenance of weight loss and associated health gains. Most available anti-obesity medications act on central appetite pathways to reduce hunger and food reward. In the past 5 years, therapeutic advances have seen the development of targeted treatments for monogenic obesities and a new generation of anti-obesity medications. These highly effective anti-obesity medications are associated with weight losses of more than 10% of overall bodyweight in more than two-thirds of clinical trial participants. Long-term data on safety, efficacy, and cardiovascular outcomes are awaited. Long-term studies have shown that bariatric surgical procedures typically lead to a durable weight loss of 25% and rapid, sustained improvements in complications of obesity, although they have not yet been compared with new-generation highly effective anti-obesity medications. Further work is required to determine optimal patient-specific treatment strategies, including combinations of lifestyle interventions, anti-obesity medications, endoscopic and bariatric surgical procedures, and to ensure equitable access to effective treatments.
Collapse
Affiliation(s)
- Carolina M Perdomo
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain; Metabolic Research Laboratory, CIBEROBN, ISCIII, IdiSNA, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ricardo V Cohen
- The Center for Obesity and Diabetes, Oswaldo Cruz German Hospital, São Paulo, Brazil
| | - Priya Sumithran
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia; Department of Endocrinology, Austin Health, Melbourne, VIC, Australia
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approach research group, Nutriomics, Paris, France; Assistance Publique-Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Gema Frühbeck
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain; Metabolic Research Laboratory, CIBEROBN, ISCIII, IdiSNA, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
20
|
Clinical Study of Metabolic Parameters, Leptin and the SGLT2 Inhibitor Empagliflozin among Patients with Obesity and Type 2 Diabetes. Int J Mol Sci 2023; 24:ijms24054405. [PMID: 36901837 PMCID: PMC10002958 DOI: 10.3390/ijms24054405] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Obesity is a major public health problem worldwide, and it is associated with many diseases and abnormalities, most importantly, type 2 diabetes. The visceral adipose tissue produces an immense variety of adipokines. Leptin is the first identified adipokine which plays a crucial role in the regulation of food intake and metabolism. Sodium glucose co-transport 2 inhibitors are potent antihyperglycemic drugs with various beneficial systemic effects. We aimed to investigate the metabolic state and leptin level among patients with obesity and type 2 diabetes mellitus, and the effect of empagliflozin upon these parameters. We recruited 102 patients into our clinical study, then we performed anthropometric, laboratory, and immunoassay tests. Body mass index, body fat, visceral fat, urea nitrogen, creatinine, and leptin levels were significantly lower in the empagliflozin treated group when compared to obese and diabetic patients receiving conventional antidiabetic treatments. Interestingly, leptin was increased not only among obese patients but in type 2 diabetic patients as well. Body mass index, body fat, and visceral fat percentages were lower, and renal function was preserved in patients receiving empagliflozin treatment. In addition to the known beneficial effects of empagliflozin regarding the cardio-metabolic and renal systems, it may also influence leptin resistance.
Collapse
|
21
|
Kambey PA, Kodzo LD, Serojane F, Oluwasola BJ. The bi-directional association between bipolar disorder and obesity: Evidence from Meta and bioinformatics analysis. Int J Obes (Lond) 2023; 47:443-452. [PMID: 36806758 DOI: 10.1038/s41366-023-01277-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND The globally high prevalence of both obesity and bipolar disorder makes the bidirectional relationship between the two disorders a pivotal phenomenon; hence, a meta-analysis to synopsize their co-occurrence is indispensable. Psychotropic-induced obesity has been reported to be an important factor linking bipolar disorder and obesity. Nonetheless, the molecular signature of this connection is perplexing. METHODS Here, we leverage both meta-analysis and bioinformatics analysis to provide a conspectus and deduce the molecular signature of obesity in bipolar disease patients following psychotropic treatment. Searches were performed on a diverse collection of databases through June 25, 2020. The Newcastle-Ottawa Scale was used to rate the quality of the studies. Analysis of OR, 95% CI, and tests of homogeneity were carried out with STATA software. For the bioinformatics analysis, the LIMMA package which is incorporated into the Gene Expression Omnibus database was used. RESULTS Our search yielded 138 studies, of which 18 fitted our inclusion criteria. Individuals who are obese have an increased risk of developing bipolar disorder (pooled adjusted OR = 1.32, 95% CI = 1.01-1.62). In a manner analogous to this, the pooled adjusted odds ratio reveals that patients with bipolar disorder have an increased chance of obesity (OR = 1.68, 95% CI = 1.35-2). To deduce the molecular signature of obesity in bipolar disorder patients following psychotropic treatment, three data sets from the Gene Expression Omnibus database (GSE5392, GSE87610, and GSE35977) were integrated and the genes obtained were validated by a cohort of known single nucleotide polymorphism of obesity via direct overlap. Results indicate genes that are activated after psychotropic treatment. Some of these genes are CYBB, C3, OLR1, CX3CR1, C3AR1, CD53, AIF1, LY86, BDNF, ALOX5AP, CXCL10, and the preponderance falls under mesodermal and PI3K-Akt signaling pathway. The ROC analysis reveals a strong discriminating value between the two groups (UBAP2L AUC = 0.806, p = 1.1e-04, NOVA2 AUC = 0.73, p = 6.7e-03). CONCLUSION Our study shows unequivocal evidence of a bi-directional association between bipolar disorder and obesity, but more crucially, it provides a snapshot of the molecular signature of obesity in bipolar patients as a result of psychotropic medication.
Collapse
Affiliation(s)
- Piniel Alphayo Kambey
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O Box 25305-00100, Nairobi, Kenya.
| | - Lalit Dzifa Kodzo
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O Box 25305-00100, Nairobi, Kenya.,School of Nursing and Health, Zhengzhou University, Zhengzhou, Henan Province, China.,Nursing and Midwifery Training college, Twifo Praso, Central Region, Ghana
| | - Fattimah Serojane
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O Box 25305-00100, Nairobi, Kenya.,Southern Medical University, Guangzhou, China
| | - Bolorunduro Janet Oluwasola
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O Box 25305-00100, Nairobi, Kenya.,Departure of computer science and Technology, Harbin Institute of Technology, No 92, Xidazhi Street, Harbin, 150001, P. R. China
| |
Collapse
|
22
|
Milbank E, Dragano N, Vidal-Gómez X, Rivas-Limeres V, Garrido-Gil P, Wertheimer M, Recoquillon S, Pata MP, Labandeira-Garcia JL, Diéguez C, Nogueiras R, Martínez MC, Andriantsitohaina R, López M. Small extracellular vesicle targeting of hypothalamic AMPKα1 promotes weight loss in leptin receptor deficient mice. Metabolism 2023; 139:155350. [PMID: 36423694 DOI: 10.1016/j.metabol.2022.155350] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Leptin receptor (LEPR) deficiency promotes severe obesity and metabolic disorders. However, the current therapeutic options against this syndrome are scarce. METHODS db/db mice and their wildtypes were systemically treated with neuronal-targeted small extracellular vesicles (sEVs) harboring a plasmid encoding a dominant negative mutant of AMP-activated protein kinase alpha 1 (AMPKα1-DN) driven by steroidogenic factor 1 (SF1) promoter; this approach allowed to modulate AMPK activity, specifically in SF1 cells of the ventromedial nucleus of the hypothalamus (VMH). Animals were metabolically phenotyped. RESULTS db/db mice intravenously injected with SF1-AMPKα1-DN loaded sEVs showed a marked feeding-independent weight loss and decreased adiposity, associated with increased sympathetic tone, brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). CONCLUSION Overall, this evidence indicates that specific modulation of hypothalamic AMPK using a sEV-based technology may be a suitable strategy against genetic forms of obesity, such as LEPR deficiency.
Collapse
Affiliation(s)
- Edward Milbank
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Nathalia Dragano
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Xavi Vidal-Gómez
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France; SOPAM, U1063, INSERM, UNIV Angers, Angers, France
| | - Verónica Rivas-Limeres
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Pablo Garrido-Gil
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease (CiMUS), Department of Morphological Sciences, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | | | - María P Pata
- Biostatech Advice, Training and Innovation in Biostatistics, S.L., Santiago de Compostela 15782, Spain
| | - José Luis Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease (CiMUS), Department of Morphological Sciences, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - M Carmen Martínez
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France; SOPAM, U1063, INSERM, UNIV Angers, Angers, France
| | - Ramaroson Andriantsitohaina
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France; SOPAM, U1063, INSERM, UNIV Angers, Angers, France.
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
23
|
Lytvynenko H, Lytvynova O, Lytvynov V, Lytynenko M, Latoguz S. CHANGES IN THE SERUM LEVEL OF LEPTIN AND TRANSFORMING GROWTH FACTOR-Β1 IN PATIENTS WITH ARTERIAL HYPERTENSION ON A BACKGROUND OF ABDOMINAL OBESITY. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:1742-1747. [PMID: 37740965 DOI: 10.36740/wlek202308106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
OBJECTIVE The aim: Study of the levels of leptin and the growth modulator TGF-β1 in the blood serum of patients with hypertension, which occurs on the background of AO and without it. PATIENTS AND METHODS Materials and methods: Carbohydrate metabolism was studied by the enzymatic method, the level of insulin in the blood (by the enzyme immunoassay method), the oral glucose tolerance test and the calculation of the NOMA index. RESULTS Results: The data obtained in the work indicate a significant role of leptin in the formation of hypertension itself and the development of obesity, carbohydrate and lipid metabolism disorders. The increased level of transforming growth factor-β1 in the blood of such patients can be used as a fairly informative marker of the unfavorable prognosis of these diseases. CONCLUSION Conclusions: 1. In the control group, there was a significant increase in the initial values of heart rate, average levels of SBP and DBP, the frequency of hy-percholesterolemia and insulin resistance was established. 2. Significant disorders of lipid and carbohydrate metabolism and leptin synthesis were found in patients with hypertension, which occurs against the background of AO. 3. When analyzing the level of leptin depending on gender, a statistically significant increase in the level of blood leptin was found in the group of women with AH with AO compared to women with AH without AO and the control group. 4. A significant increase in the level of transforming growth factor-β1 in blood serum of patients with hypertension was established.
Collapse
Affiliation(s)
| | | | - Vadym Lytvynov
- V. N. KARAZIN KHARKIV NATIONAL UNIVERSITY, KHARKIV, UKRAINE
| | | | | |
Collapse
|
24
|
Xu P, Dong S, Wu L, Bai Y, Bi X, Li Y, Shu C. Maternal and Placental DNA Methylation Changes Associated with the Pathogenesis of Gestational Diabetes Mellitus. Nutrients 2022; 15:nu15010070. [PMID: 36615730 PMCID: PMC9823627 DOI: 10.3390/nu15010070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is an important metabolic complication of pregnancy, which affects the future health of both the mother and the newborn. The pathogenesis of GDM is not completely clear, but what is clear is that with the development and growth of the placenta, GDM onset and blood glucose is difficult to control, while gestational diabetes patients' blood glucose drops and reaches normal after placenta delivery. This may be associated with placental secretion of insulin-like growth factor, adipokines, tumor necrosis factor-α, cytokines and insulin resistance. Therefore, endocrine secretion of placenta plays a key role in the pathogenesis of GDM. The influence of DNA methylation of these molecules and pathway-related genes on gene expression is also closely related to the pathogenesis of GDM. Here, this review attempts to clarify the pathogenesis of GDM and the related maternal and placental DNA methylation changes and how they affect metabolic pathways.
Collapse
|
25
|
Banik S. Genetic, Epigenetic, and Molecular Biology of Obesity: From Pathology to Therapeutics the Way Forward. JOURNAL OF THE ASSOCIATION OF PHYSICIANS OF INDIA 2022; 70:11-12. [DOI: 10.5005/japi-11001-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Mierzwa M, Bik-Multanowski M, Ranke MB, Brandt S, Flehmig B, Małecka-Tendera E, Mazur A, Petriczko E, Wabitsch M, Wójcik M, Zachurzok A. Clinical, genetic, and epidemiological survey of Polish children and adolescents with severe obesity: A study protocol of the Polish-German study project on severe early-onset obesity. Front Endocrinol (Lausanne) 2022; 13:972174. [PMID: 36479220 PMCID: PMC9719973 DOI: 10.3389/fendo.2022.972174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022] Open
Abstract
Severe early-onset obesity (SEOO) in children is a common feature of monogenic obesity. Nowadays, mutations in at least 50 genes are known to be related to monogenic obesity, and many others are tested. Part of them is involved in the leptin-proopiomelanocortin pathway. The aim of the project is to establish the Polish database of severely obese children and adolescents and to evaluate the prevalence of monogenic forms of obesity in this cohort, with a special focus on leptin-proopiomelanocortin pathway abnormalities. The secondary project aim is to identify new population-specific mutations in obesity-related genes in severely obese Polish children and adolescents. This is a prospective multi-center clinical study performed in four Polish centers. The estimated sample size is 500 patients aged 1-18 years, with severe obesity, hyperphagia, and food-seeking behaviors. In each patient, the medical history regarding the obesity duration in the patient and obesity and its complication existence in the family will be taken. Next, the questionnaire regarding the symptom characteristic of specific mutations, which we are going to test, will be performed. Hyperphagia will be assessed on the basis of age-specific questionnaires. The physical examination with anthropometric measurement, basic biochemical and hormonal tests, and leptin and biologically active leptin measurements will be performed. Finally, genetic analysis will be performed using next-generation sequencing with sequencing libraries prepared to include obesity-related genes. The genotyping findings will be confirmed with the use of classic sequencing (Sanger's method). In the future, the pathogenicity of new mutations in obesity-related genes identified in our cohort is planned to be confirmed by functional testing in vitro. Nowadays, there are no data regarding the prevalence of severe obesity or monogenic obesity in Polish children. This project has the potential to improve understanding of obesity etiology and may contribute to implementing attribute mutation-specific treatment. Moreover, it may lead to a finding of new, population-specific mutations related to SEOO.
Collapse
Affiliation(s)
- Magdalena Mierzwa
- Pediatric Endocrinology Ward, Independent Public Clinical Hospital No. 1, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Mirosław Bik-Multanowski
- Department of Medical Genetics, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | | | - Stephanie Brandt
- Center for Rare Endocrine Diseases, Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm, Germany
| | | | - Ewa Małecka-Tendera
- Department of Pediatrics and Pediatric Endocrinology, Medical University of Silesia, School of Medicine in Katowice, Katowice, Poland
| | - Artur Mazur
- Department of Pediatrics, Pediatric Endocrinology and Diabetes, Medical Faculty, University of Rzeszów, Rzeszów, Poland
| | - Elżbieta Petriczko
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Disorders and Cardiology of Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - Martin Wabitsch
- Center for Rare Endocrine Diseases, Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm, Germany
| | - Małgorzata Wójcik
- Department of Pediatric and Adolescent Endocrinology, Pediatric Institute, Jagiellonian University Medical College, Cracow, Poland
| | - Agnieszka Zachurzok
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
| |
Collapse
|
27
|
Sachdeva P, Ghosh S, Ghosh S, Han S, Banerjee J, Bhaskar R, Sinha JK. Childhood Obesity: A Potential Key Factor in the Development of Glioblastoma Multiforme. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101673. [PMID: 36295107 PMCID: PMC9605119 DOI: 10.3390/life12101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 12/04/2022]
Abstract
Glioblastoma multiforme (GBM) is a malignant primary tumor type of the central nervous system (CNS). This type of brain tumor is rare and is responsible for 12-15% of all brain tumors. The typical survival rate of GBM is only 12 to 14 months. GBM has a poor and unsatisfactory prognosis despite advances in research and therapeutic interventions via neurosurgery, radiation, and chemotherapy. The molecular heterogeneity, aggressive nature, and occurrence of drug-resistant cancer stem cells in GB restricts the therapeutic efficacy. Interestingly, the CNS tumors in children are the second most usual and persistent type of solid tumor. Since numerous research studies has shown the association between obesity and cancer, childhood obesity is one of the potential reasons behind the development of CNS tumors, including GBM. Obesity in children has almost reached epidemic rates in both developed and developing countries, harming children's physical and mental health. Obese children are more likely to face obesity as adults and develop non-communicable diseases such as diabetes and cardiovascular disease as compared to adults with normal weight. However, the actual origin and cause of obesity are difficult to be pointed out, as it is assumed to be a disorder with numerous causes such as environmental factors, lifestyle, and cultural background. In this narrative review article, we discuss the various molecular and genetic drivers of obesity that can be targeted as potential contributing factors to fight the development of GBM in children.
Collapse
Affiliation(s)
- Punya Sachdeva
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
- ICMR—National Institute of Nutrition, Tarnaka, Hyderabad 500007, India
| | - Soumya Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | - Sungsoo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Juni Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar 382426, India
- Correspondence: (J.B.); (R.B.); (J.K.S.)
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (J.B.); (R.B.); (J.K.S.)
| | - Jitendra Kumar Sinha
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
- Correspondence: (J.B.); (R.B.); (J.K.S.)
| |
Collapse
|
28
|
Xie D, Stutz B, Li F, Chen F, Lv H, Sestan-Pesa M, Catarino J, Gu J, Zhao H, Stoddard CE, Carmichael GG, Shanabrough M, Taylor HS, Liu ZW, Gao XB, Horvath TL, Huang Y. TET3 epigenetically controls feeding and stress response behaviors via AGRP neurons. J Clin Invest 2022; 132:162365. [PMID: 36189793 PMCID: PMC9525119 DOI: 10.1172/jci162365] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
The TET family of dioxygenases promote DNA demethylation by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Hypothalamic agouti-related peptide-expressing (AGRP-expressing) neurons play an essential role in driving feeding, while also modulating nonfeeding behaviors. Besides AGRP, these neurons produce neuropeptide Y (NPY) and the neurotransmitter GABA, which act in concert to stimulate food intake and decrease energy expenditure. Notably, AGRP, NPY, and GABA can also elicit anxiolytic effects. Here, we report that in adult mouse AGRP neurons, CRISPR-mediated genetic ablation of Tet3, not previously known to be involved in central control of appetite and metabolism, induced hyperphagia, obesity, and diabetes, in addition to a reduction of stress-like behaviors. TET3 deficiency activated AGRP neurons, simultaneously upregulated the expression of Agrp, Npy, and the vesicular GABA transporter Slc32a1, and impeded leptin signaling. In particular, we uncovered a dynamic association of TET3 with the Agrp promoter in response to leptin signaling, which induced 5hmC modification that was associated with a chromatin-modifying complex leading to transcription inhibition, and this regulation occurred in both the mouse models and human cells. Our results unmasked TET3 as a critical central regulator of appetite and energy metabolism and revealed its unexpected dual role in the control of feeding and other complex behaviors through AGRP neurons.
Collapse
Affiliation(s)
- Di Xie
- Department of Obstetrics, Gynecology and Reproductive Sciences.,Yale Center for Molecular and Systems Metabolism, and
| | - Bernardo Stutz
- Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Feng Li
- Department of Obstetrics, Gynecology and Reproductive Sciences.,Yale Center for Molecular and Systems Metabolism, and
| | - Fan Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Haining Lv
- Department of Obstetrics, Gynecology and Reproductive Sciences.,Yale Center for Molecular and Systems Metabolism, and
| | - Matija Sestan-Pesa
- Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jonatas Catarino
- Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jianlei Gu
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Christopher E Stoddard
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Marya Shanabrough
- Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Zhong-Wu Liu
- Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xiao-Bing Gao
- Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tamas L Horvath
- Department of Obstetrics, Gynecology and Reproductive Sciences.,Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yingqun Huang
- Department of Obstetrics, Gynecology and Reproductive Sciences.,Yale Center for Molecular and Systems Metabolism, and
| |
Collapse
|
29
|
Hinney A, Körner A, Fischer-Posovszky P. The promise of new anti-obesity therapies arising from knowledge of genetic obesity traits. Nat Rev Endocrinol 2022; 18:623-637. [PMID: 35902734 PMCID: PMC9330928 DOI: 10.1038/s41574-022-00716-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 02/07/2023]
Abstract
Obesity is a multifactorial and complex disease that often manifests in early childhood with a lifelong burden. Polygenic and monogenic obesity are driven by the interaction between genetic predisposition and environmental factors. Polygenic variants are frequent and confer small effect sizes. Rare monogenic obesity syndromes are caused by defined pathogenic variants in single genes with large effect sizes. Most of these genes are involved in the central nervous regulation of body weight; for example, genes of the leptin-melanocortin pathway. Clinically, patients with monogenic obesity present with impaired satiety, hyperphagia and pronounced food-seeking behaviour in early childhood, which leads to severe early-onset obesity. With the advent of novel pharmacological treatment options emerging for monogenic obesity syndromes that target the central melanocortin pathway, genetic testing is recommended for patients with rapid weight gain in infancy and additional clinical suggestive features. Likewise, patients with obesity associated with hypothalamic damage or other forms of syndromic obesity involving energy regulatory circuits could benefit from these novel pharmacological treatment options. Early identification of patients affected by syndromic obesity will lead to appropriate treatment, thereby preventing the development of obesity sequelae, avoiding failure of conservative treatment approaches and alleviating stigmatization of patients and their families.
Collapse
Affiliation(s)
- Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy and University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Antje Körner
- Leipzig University, Medical Faculty, Hospital for Children and Adolescents, Centre of Paediatric Research (CPL), Leipzig, Germany
- LIFE Child, Leipzig Research Centre for Civilization Diseases, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | | |
Collapse
|
30
|
Amorim MR, Aung O, Mokhlesi B, Polotsky VY. Leptin-mediated neural targets in obesity hypoventilation syndrome. Sleep 2022; 45:zsac153. [PMID: 35778900 PMCID: PMC9453616 DOI: 10.1093/sleep/zsac153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/20/2022] [Indexed: 07/30/2023] Open
Abstract
Obesity hypoventilation syndrome (OHS) is defined as daytime hypercapnia in obese individuals in the absence of other underlying causes. In the United States, OHS is present in 10%-20% of obese patients with obstructive sleep apnea and is linked to hypoventilation during sleep. OHS leads to high cardiorespiratory morbidity and mortality, and there is no effective pharmacotherapy. The depressed hypercapnic ventilatory response plays a key role in OHS. The pathogenesis of OHS has been linked to resistance to an adipocyte-produced hormone, leptin, a major regulator of metabolism and control of breathing. Mechanisms by which leptin modulates the control of breathing are potential targets for novel therapeutic strategies in OHS. Recent advances shed light on the molecular pathways related to the central chemoreceptor function in health and disease. Leptin signaling in the nucleus of the solitary tract, retrotrapezoid nucleus, hypoglossal nucleus, and dorsomedial hypothalamus, and anatomical projections from these nuclei to the respiratory control centers, may contribute to OHS. In this review, we describe current views on leptin-mediated mechanisms that regulate breathing and CO2 homeostasis with a focus on potential therapeutics for the treatment of OHS.
Collapse
Affiliation(s)
- Mateus R Amorim
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - O Aung
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Babak Mokhlesi
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Vsevolod Y Polotsky
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Mayer O, Bruthans J, Seidlerová J, Gelžinský J, Kučera R, Karnosová P, Mateřánková M, Wohlfahrt P, Cífková R, Filipovský J. High leptin status indicates an increased risk of mortality and heart failure in stable coronary artery disease. Nutr Metab Cardiovasc Dis 2022; 32:2137-2146. [PMID: 35843790 DOI: 10.1016/j.numecd.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS Leptin is an adipocyte-derived peptide involved in energy homeostasis and body weight regulation. The position of leptin in cardiovascular pathophysiology remains controversial. Some studies suggest a detrimental effect of hyperleptinemia on the cardiovascular (CV) system, while others assume the role of leptin as a neutral or even protective factor. We have explored whether high leptin affects the mortality and morbidity risk in patients with stable coronary heart disease. METHODS AND RESULTS We followed 975 patients ≥6 months after myocardial infarction or coronary revascularization in a prospective study. All-cause or cardiovascular death, non-fatal cardiovascular events (recurrent myocardial infarction, stroke, or any revascularization), and hospitalizations for heart failure (HF) we used as outcomes. High serum leptin concentrations (≥18.9 ng/mL, i.e., 4th quartile) were associated with worse survival, as well as with a higher incidence of fatal vascular events or hospitalizations for HF. Even after full adjustment for potential covariates, high leptin remained to be associated with a significantly increased 5-years risk of all-cause death [Hazard risk ratio (HRR) 2.10 (95%CIs:1.29-3.42), p < 0.003], CV death [HRR 2.65 (95%CIs:1.48-4.74), p < 0.001], and HF hospitalization [HRR 1.95 (95% CIs:1.11-3.44), p < 0.020]. In contrast, the incidence risk of non-fatal CV events was only marginally and non-significantly influenced [HRR 1.27 (95%CIs:0.76-2.13), p = 0.359]. CONCLUSIONS High leptin concentration entails an increased risk of mortality, apparently driven by fatal CV events and future worsening of HF, on top of conventional CV risk factors and the baseline status of left ventricular function.
Collapse
Affiliation(s)
- Otto Mayer
- 2nd Department of Internal Medicine, Medical Faculty of Charles University and University Hospital, Pilsen, Czech Republic; Biomedical Center, Medical Faculty of Charles University, Pilsen, Czech Republic.
| | - Jan Bruthans
- 2nd Department of Internal Medicine, Medical Faculty of Charles University and University Hospital, Pilsen, Czech Republic; Centre for Cardiovascular Prevention, First Faculty of Medicine, Charles, University and Thomayer Hospital, Prague, Czech Republic
| | - Jitka Seidlerová
- 2nd Department of Internal Medicine, Medical Faculty of Charles University and University Hospital, Pilsen, Czech Republic; Biomedical Center, Medical Faculty of Charles University, Pilsen, Czech Republic
| | - Julius Gelžinský
- 2nd Department of Internal Medicine, Medical Faculty of Charles University and University Hospital, Pilsen, Czech Republic; Biomedical Center, Medical Faculty of Charles University, Pilsen, Czech Republic
| | - Radek Kučera
- Laboratory of Immunochemical Diagnostics, University Hospital, Pilsen, Czech Republic
| | - Petra Karnosová
- 2nd Department of Internal Medicine, Medical Faculty of Charles University and University Hospital, Pilsen, Czech Republic; Biomedical Center, Medical Faculty of Charles University, Pilsen, Czech Republic
| | - Markéta Mateřánková
- 2nd Department of Internal Medicine, Medical Faculty of Charles University and University Hospital, Pilsen, Czech Republic; Biomedical Center, Medical Faculty of Charles University, Pilsen, Czech Republic
| | - Peter Wohlfahrt
- Centre for Cardiovascular Prevention, First Faculty of Medicine, Charles, University and Thomayer Hospital, Prague, Czech Republic
| | - Renata Cífková
- Centre for Cardiovascular Prevention, First Faculty of Medicine, Charles, University and Thomayer Hospital, Prague, Czech Republic
| | - Jan Filipovský
- 2nd Department of Internal Medicine, Medical Faculty of Charles University and University Hospital, Pilsen, Czech Republic; Biomedical Center, Medical Faculty of Charles University, Pilsen, Czech Republic
| |
Collapse
|
32
|
Reininghaus N, Paisdzior S, Höpfner F, Jyrch S, Cetindag C, Scheerer P, Kühnen P, Biebermann H. A Setmelanotide-like Effect at MC4R Is Achieved by MC4R Dimer Separation. Biomolecules 2022; 12:biom12081119. [PMID: 36009013 PMCID: PMC9405727 DOI: 10.3390/biom12081119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 01/22/2023] Open
Abstract
Melanocortin 4 receptor (MC4R) is part of the leptin-melanocortin pathway and plays an essential role in mediating energy homeostasis. Mutations in the MC4R are the most frequent monogenic cause for obesity. Due to increasing numbers of people with excess body weight, the MC4R has become a target of interest in the search of treatment options. We have previously reported that the MC4R forms homodimers, affecting receptor Gs signaling properties. Recent studies introducing setmelanotide, a novel synthetic MC4R agonist, suggest a predominant role of the Gq/11 pathway regarding weight regulation. In this study, we analyzed effects of inhibiting homodimerization on Gq/11 signaling using previously reported MC4R/CB1R chimeras. NanoBRETTM studies to determine protein–protein interaction were conducted, confirming decreased homodimerization capacities of chimeric receptors in HEK293 cells. Gq/11 signaling of chimeric receptors was analyzed using luciferase-based reporter gene (NFAT) assays. Results demonstrate an improvement of alpha-MSH-induced NFAT signaling of chimeras, reaching the level of setmelanotide signaling at wild-type MC4R (MC4R-WT). In summary, our study shows that inhibiting homodimerization has a setmelanotide-like effect on Gq/11 signaling, with chimeric receptors presenting increased potency compared to MC4R-WT. These findings indicate the potential of inhibiting MC4R homodimerization as a therapeutic target to treat obesity.
Collapse
Affiliation(s)
- Nanina Reininghaus
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sarah Paisdzior
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Friederike Höpfner
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sabine Jyrch
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Cigdem Cetindag
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Patrick Scheerer
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13353 Berlin, Germany
| | - Peter Kühnen
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Heike Biebermann
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
- Correspondence:
| |
Collapse
|
33
|
Hebebrand J, Hildebrandt T, Schlögl H, Seitz J, Denecke S, Vieira D, Gradl-Dietsch G, Peters T, Antel J, Lau D, Fulton S. The role of hypoleptinemia in the psychological and behavioral adaptation to starvation: implications for anorexia nervosa. Neurosci Biobehav Rev 2022; 141:104807. [PMID: 35931221 DOI: 10.1016/j.neubiorev.2022.104807] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/11/2022] [Accepted: 07/31/2022] [Indexed: 12/17/2022]
Abstract
This narrative review aims to pinpoint mental and behavioral effects of starvation, which may be triggered by hypoleptinemia and as such may be amenable to treatment with leptin receptor agonists. The reduced leptin secretion results from the continuous loss of fat mass, thus initiating a graded triggering of diverse starvation related adaptive functions. In light of leptin receptors located in several peripheral tissues and many brain regions adaptations may extend beyond those of the hypothalamus-pituitary-end organ-axes. We focus on gastrointestinal tract and reward system as relevant examples of peripheral and central effects of leptin. Despite its association with extreme obesity, congenital leptin deficiency with its many parallels to a state of starvation allows the elucidation of mental symptoms amenable to treatment with exogenous leptin in both ob/ob mice and humans with this autosomal recessive disorder. For starvation induced behavioral changes with an intact leptin signaling we particularly focus on rodent models for which proof of concept has been provided for the causative role of hypoleptinemia. For humans, we highlight the major cognitive, emotional and behavioral findings of the Minnesota Starvation Experiment to contrast them with results obtained upon a lesser degree of caloric restriction. Evidence for hypoleptinemia induced mental changes also stems from findings obtained in lipodystrophies. In light of the recently reported beneficial cognitive, emotional and behavioral effects of metreleptin-administration in anorexia nervosa we discuss potential implications for the treatment of this eating disorder. We postulate that leptin has profound psychopharmacological effects in the state of starvation.
Collapse
Affiliation(s)
- Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Tom Hildebrandt
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Haiko Schlögl
- Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH University Hospital Aachen, Germany
| | - Saskia Denecke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Diana Vieira
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Gertraud Gradl-Dietsch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - David Lau
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| | - Stephanie Fulton
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| |
Collapse
|
34
|
Romano A, Del Vescovo E, Rivetti S, Triarico S, Attinà G, Mastrangelo S, Maurizi P, Ruggiero A. Biomarkers Predictive of Metabolic Syndrome and Cardiovascular Disease in Childhood Cancer Survivors. J Pers Med 2022; 12:880. [PMID: 35743665 PMCID: PMC9225298 DOI: 10.3390/jpm12060880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
The improvement in childhood cancer treatments resulted in a marked improvement in the survival of pediatric cancer patients. However, as survival increased, it was also possible to observe the long-term side effects of cancer therapies. Among these, metabolic syndrome is one of the most frequent long-term side effects, and causes high mortality and morbidity. Consequently, it is necessary to identify strategies that allow for early diagnosis. In this review, the pathogenetic mechanisms of metabolic syndrome and the potential new biomarkers that can facilitate its diagnosis in survivors of pediatric tumors are analyzed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy; (A.R.); (E.D.V.); (S.R.); (S.T.); (G.A.); (S.M.); (P.M.)
| |
Collapse
|
35
|
da Silva FA, Freire LS, da Rosa Lima T, Santos SF, de França Lemes SA, Gai BM, Colodel EM, Avila ETP, Damazo AS, Pereira MP, Kawashita NH. Introduction of the high-fat and very high-fat diets associated with fructose drink in critical development periods causes cardiovascular damage in rats in the beginning of adult life. Nutrition 2022; 101:111689. [DOI: 10.1016/j.nut.2022.111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
|
36
|
Abi N, Xu X, Yang Z, Ma T, Dong J. Association of Serum Adipokines and Resting Energy Expenditure in Patients With Chronic Kidney Disease. Front Nutr 2022; 9:828341. [PMID: 35369060 PMCID: PMC8965443 DOI: 10.3389/fnut.2022.828341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Background and Aim Metabolic disorders are prevalent in patients with chronic kidney disease (CKD) and may lead to protein energy wasting (PEW). Adipokines improve connections between PEW and energy metabolism. We aimed to determine the relationship between adipokine levels and resting energy expenditure (REE) in patients with CKD. Methods A total of 208 patients in non-dialyzed CKD stages 3–5 were enrolled in this cross-sectional study. Serum adipokines (leptin, adiponectin, and interleukin 6 (IL-6) were measured using enzyme-linked immunosorbent assay. Patient's REE was measured using indirect calorimetry. Fat mass (FM) and lean tissue mass (LTM) were measured using multiple-frequency bioimpedance analysis. Spearman correlation analyses and multivariate linear regression models were used to assess the association between serum adipokines and REE. Results The mean age was 52.7 ± 14.6 years, and 26.9, 26.4, and 46.7% of our participants had CKD stages 3, 4, and 5, respectively. The median values of serum adiponectin, leptin, and IL-6 were 470.4 (range, 291.1–802.2), 238.1 (range, 187.9–418.4), and 4.0 (range, 2.4–9.5) pg/mL, respectively. The male participants had significantly lower FM% (P = 0.001) and lower leptin levels (P < 0.001) than the female participants. After adjusting for age, diabetes, high-sensitivity C-reactive protein, intact parathyroid hormone, LTM, and FM, multiple linear regression analysis revealed that serum leptin levels were significantly positively associated with REE in men rather than in women (P < 0.05). Serum adiponectin levels were inversely associated with REE in men, but this association disappeared while FM was additionally adjusted. Adiponectin levels in women were not correlated with REE (P > 0.05). IL-6 was not significantly associated with REE in either men or women. Conclusions A sex-specific relationship between serum adipokines (leptin and adiponectin) and REE was observed in patients with CKD stages 3–5, which was partly confounded by FM.
Collapse
Affiliation(s)
- Nanzha Abi
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Xu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhikai Yang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Tiantian Ma
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Dong
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Jie Dong
| |
Collapse
|
37
|
Maffei M, Giordano A. Leptin, the brain and energy homeostasis: From an apparently simple to a highly complex neuronal system. Rev Endocr Metab Disord 2022; 23:87-101. [PMID: 33822303 DOI: 10.1007/s11154-021-09636-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Leptin, produced and secreted by white adipose tissue in tight relationship with adipose mass, informs the brain about the status of the energy stores serving as the main peripheral signal for energy balance regulation through interaction with a multitude of highly interconnected neuronal populations. Most obese patients display resistance to the anorectic effect of the hormone. The present review unravels the multiple levels of complexity that trigger hypothalamic response to leptin with the objective of highlighting those critical hubs that, mainly in the hypothalamic arcuate nucleus, may undergo obesity-induced alterations and create an obstacle to leptin action. Several mechanisms underlying leptin resistance have been proposed, possibly representing useful targets to empower leptin effects. Among these, a special focus is herein dedicated to detail how leptin gains access into the brain and how neuronal plasticity may interfere with leptin function.
Collapse
Affiliation(s)
- Margherita Maffei
- Institute of Clinical Physiology, CNR, Via Moruzzi 1, 56124, Pisa, Italy.
- Obesity and Lipodystrophy Center, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020, Ancona, Italy.
| |
Collapse
|
38
|
Cifuentes L, Acosta A. Homeostatic regulation of food intake. Clin Res Hepatol Gastroenterol 2022; 46:101794. [PMID: 34481092 PMCID: PMC9721532 DOI: 10.1016/j.clinre.2021.101794] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
Food intake and energy expenditure are key regulators of body weight. To regulate food intake, the brain must integrate physiological signals and hedonic cues. The brain plays an essential role in modulating the appropriate responses to the continuous update of the body energy-status by the peripheral signals and the neuronal pathways that generate the gut-brain axis. This regulation encompasses various steps involved in food consumption, include satiation, satiety, and hunger. It is important to have a comprehensive understanding of the mechanisms that regulate food consumption as well as to standardize the vocabulary for the steps involved. This review discusses the current knowledge of the regulation and the contribution peripheral and central signals at each step of the cycle to control appetite. We also highlight how food intake has been measured. The increasingly complex understanding of regulation and action mechanisms intervening in the gut-brain axis offers ambitious targets for new strategies to control appetite.
Collapse
|
39
|
Serum Leptin Levels, Nutritional Status, and the Risk of Healthcare-Associated Infections in Hospitalized Older Adults. Nutrients 2022; 14:nu14010226. [PMID: 35011102 PMCID: PMC8747117 DOI: 10.3390/nu14010226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
We aimed to determine whether serum leptin levels are predictive of the occurrence of healthcare-associated infections (HAIs) in hospitalized older patients. In a prospective cohort, 232 patients had available data for leptin and were monitored for HAIs for 3 months. Admission data included comorbidities, invasive procedures, the Mini Nutritional Assessment (MNA), BMI, leptin, albumin and C-reactive protein levels, and CD4 and CD8 T-cell counts. Multivariate logistic regression modelling was used to identify predictors of HAIs. Of the 232 patients (median age: 84.8; females: 72.4%), 89 (38.4%) experienced HAIs. The leptin level was associated with the BMI (p < 0.0001) and MNA (p < 0.0001) categories. Women who experienced HAIs had significantly lower leptin levels than those who did not (5.9 μg/L (2.6–17.7) and 11.8 (4.6–26.3), respectively; p = 0.01; odds ratio (OR) (95% confidence interval): 0.67 (0.49–0.90)); no such association was observed for men. In a multivariate analysis of the women, a lower leptin level was significantly associated with HAIs (OR = 0.70 (0.49–0.97)), independently of comorbidities, invasive medical procedures, and immune status. However, leptin was not significantly associated with HAIs after adjustments for malnutrition (p = 0.26) or albuminemia (p = 0.15)—suggesting that in older women, the association between serum leptin levels and subsequent HAIs is mediated by nutritional status.
Collapse
|
40
|
Trim WV, Walhin JP, Koumanov F, Bouloumié A, Lindsay MA, Travers RL, Turner JE, Thompson D. The Impact of Long-term Physical Inactivity on Adipose Tissue Immunometabolism. J Clin Endocrinol Metab 2022; 107:177-191. [PMID: 34480570 PMCID: PMC8684473 DOI: 10.1210/clinem/dgab647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 01/02/2023]
Abstract
CONTEXT Adipose tissue and physical inactivity both influence metabolic health and systemic inflammation, but how adipose tissue responds to chronic physical inactivity is unknown. OBJECTIVE This work aimed to characterize the impact of chronic physical inactivity on adipose tissue in healthy, young males. METHODS We collected subcutaneous adipose tissue from 20 healthy, young men before and after 60 days of complete bed rest with energy intake reduced to maintain energy balance and fat mass. We used RNA sequencing, flow cytometry, ex vivo tissue culture, and targeted protein analyses to examine adipose tissue phenotype. RESULTS Our results indicate that the adipose tissue transcriptome, stromal cellular compartment, and insulin signaling protein abundance are largely unaffected by bed rest when fat mass is kept stable. However, there was an increase in the circulating concentration of several adipokines, including plasma leptin, which was associated with inactivity-induced increases in plasma insulin and absent from adipose tissue cultured ex vivo under standardized culture conditions. CONCLUSION Physical inactivity-induced disturbances to adipokine concentrations such as leptin, without changes to fat mass, could have profound metabolic implications outside a clinical facility when energy intake is not tightly controlled.
Collapse
Affiliation(s)
- William V Trim
- Centre for Nutrition, Exercise and Metabolism (CNEM), Department for Health, University of Bath, Bath, UK
| | - Jean-Philippe Walhin
- Centre for Nutrition, Exercise and Metabolism (CNEM), Department for Health, University of Bath, Bath, UK
| | - Francoise Koumanov
- Centre for Nutrition, Exercise and Metabolism (CNEM), Department for Health, University of Bath, Bath, UK
| | | | - Mark A Lindsay
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Rebecca L Travers
- Centre for Nutrition, Exercise and Metabolism (CNEM), Department for Health, University of Bath, Bath, UK
| | - James E Turner
- Centre for Nutrition, Exercise and Metabolism (CNEM), Department for Health, University of Bath, Bath, UK
| | - Dylan Thompson
- Centre for Nutrition, Exercise and Metabolism (CNEM), Department for Health, University of Bath, Bath, UK
| |
Collapse
|
41
|
Abstract
The prevalence of obesity has tripled over the past four decades, imposing an enormous burden on people's health. Polygenic (or common) obesity and rare, severe, early-onset monogenic obesity are often polarized as distinct diseases. However, gene discovery studies for both forms of obesity show that they have shared genetic and biological underpinnings, pointing to a key role for the brain in the control of body weight. Genome-wide association studies (GWAS) with increasing sample sizes and advances in sequencing technology are the main drivers behind a recent flurry of new discoveries. However, it is the post-GWAS, cross-disciplinary collaborations, which combine new omics technologies and analytical approaches, that have started to facilitate translation of genetic loci into meaningful biology and new avenues for treatment.
Collapse
Affiliation(s)
- Ruth J. F. Loos
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark ,grid.59734.3c0000 0001 0670 2351Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Giles S. H. Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
42
|
Frangou S, Abbasi F, Watson K, Haas SS, Antoniades M, Modabbernia A, Myoraku A, Robakis T, Rasgon N. Hippocampal volume reduction is associated with direct measure of insulin resistance in adults. Neurosci Res 2022; 174:19-24. [PMID: 34352294 PMCID: PMC9164143 DOI: 10.1016/j.neures.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 01/03/2023]
Abstract
Hippocampal integrity is highly susceptible to metabolic dysfunction, yet its mechanisms are not well defined. We studied 126 healthy individuals aged 23-61 years. Insulin resistance (IR) was quantified by measuring steady-state plasma glucose (SSPG) concentration during the insulin suppression test. Body mass index (BMI), adiposity, fasting insulin, glucose, leptin as well as structural neuroimaing with automatic hippocampal subfield segmentation were performed. Data analysis using unsupervised machine learning (k-means clustering) identified two subgroups reflecting a pattern of more pronounced hippocampal volume reduction being concurrently associated with greater adiposity and insulin resistance; the hippocampal volume reductions were uniform across subfields. Individuals in the most deviant subgroup were predominantly women (79 versus 42 %) with higher BMI [27.9 (2.5) versus 30.5 (4.6) kg/m2], IR (SSPG concentration, [156 (61) versus 123 (70) mg/dL] and leptinemia [21.7 (17.0) versus 44.5 (30.4) μg/L]. The use of person-based modeling in healthy individuals suggests that adiposity, insulin resistance and compromised structural hippocampal integrity behave as a composite phenotype; female sex emerged as risk factor for this phenotype.
Collapse
Affiliation(s)
- Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada,Corresponding author at: Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA., (S. Frangou), (N. Rasgon)
| | - Fahim Abbasi
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Katie Watson
- Department of Psychiatry, Stanford University School of Medicine, USA
| | - Shalaila S. Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mathilde Antoniades
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Alison Myoraku
- Department of Psychiatry, Stanford University School of Medicine, USA
| | - Thalia Robakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalie Rasgon
- Department of Psychiatry, Stanford University School of Medicine, USA,Corresponding author at: 401 Quarry Road, MC 5723, Palo Alto, CA 94304, USA
| |
Collapse
|
43
|
Perrone L, Valente M. The Emerging Role of Metabolism in Brain-Heart Axis: New Challenge for the Therapy and Prevention of Alzheimer Disease. May Thioredoxin Interacting Protein (TXNIP) Play a Role? Biomolecules 2021; 11:1652. [PMID: 34827650 PMCID: PMC8616009 DOI: 10.3390/biom11111652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer disease (AD) is the most frequent cause of dementia and up to now there is not an effective therapy to cure AD. In addition, AD onset occurs decades before the diagnosis, affecting the possibility to set up appropriate therapeutic strategies. For this reason, it is necessary to investigate the effects of risk factors, such as cardiovascular diseases, in promoting AD. AD shows not only brain dysfunction, but also alterations in peripheral tissues/organs. Indeed, it exists a reciprocal connection between brain and heart, where cardiovascular alterations participate to AD as well as AD seem to promote cardiovascular dysfunction. In addition, metabolic dysfunction promotes both cardiovascular diseases and AD. In this review, we summarize the pathways involved in the regulation of the brain-heart axis and the effect of metabolism on these pathways. We also present the studies showing the role of the gut microbiota on the brain-heart axis. Herein, we propose recent evidences of the function of Thioredoxin Interacting protein (TXNIP) in mediating the role of metabolism on the brain-heart axis. TXNIP is a key regulator of metabolism at both cellular and body level and it exerts also a pathological function in several cardiovascular diseases as well as in AD.
Collapse
Affiliation(s)
- Lorena Perrone
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Mariarosaria Valente
- Department of Medicine, University of Udine, 33100 Udine, Italy;
- Clinical Neurology Unit, Department of Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale, University Hospital, 33100 Udine, Italy
| |
Collapse
|
44
|
Lv B, Xing C, He B. Effects of bariatric surgery on the menstruation- and reproductive-related hormones of women with obesity without polycystic ovary syndrome: a systematic review and meta-analysis. Surg Obes Relat Dis 2021; 18:148-160. [PMID: 34756568 DOI: 10.1016/j.soard.2021.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/11/2021] [Accepted: 09/06/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Bariatric surgery is an effective treatment for severe obesity. Several studies have been conducted on the effects of bariatric surgery on the reproductive function of women with obesity who do not have polycystic ovary syndrome (PCOS). OBJECTIVES To evaluate the effects of bariatric surgery on the menstruation and reproductive related hormones of women of childbearing age with who do not have PCOS. SETTING A systematic review and meta-analysis at a university hospital. METHODS Online databases were searched for all studies reporting the efficacy of bariatric surgery for women with obesity until March 2021. The language of publication was limited to English and Chinese. Incidence of abnormal menstruation and reproductive-related hormone levels were the primary outcomes. RESULTS Fifteen studies comprising 725 patients were enrolled in this meta-analysis. Results showed a significantly lower incidence of abnormal menstruation (relative risk: .40, 95% confidence interval [CI]: .20-.79, P = .008) after bariatric surgery. Moreover, bariatric surgery led to a decrease in serum insulin levels (mean difference [MD] = -13.12 mIU/L, 95% CI: -15.03 to -11.22, P < .00001), glucose (MD = -.91 mmol/L, 95% CI: -1.26 to -.56, P < .00001), triglyceride (MD = -.61 g/L, 95% CI: -.76 to -.46, P < .00001), total testosterone (MD = -.22 ng/mL, 95% CI: -.24 to -.20, P < .00001), dehydroepiandrosterone (DHEA) (MD = -25.34 μg/dL, 95% CI: -31.19 to -19.49, P < .00001), estradiol (MD = -25.13 pg/mL, 95% CI: -34.13 to -16.13, P < .00001), and anti-Mullerian hormone (AMH) (MD = -.40 ng/mL, 95% CI: -.67 to -.13, P = .003). Serum sex hormone binding globulin (SHBG) levels increased after bariatric surgery (MD = 43.99 nmol/L, 95% CI: 34.99-52.99, P < .00001). CONCLUSION Bariatric surgery can lower fasting insulin, glucose, and triglyceride levels, reduce the incidence of abnormal menstruation, decrease total serum testosterone, DHEA, estradiol, and AMH levels, and increase SHBG level for women with obesity of childbearing age who do not have PCOS. This meta-analysis indicated that bariatric surgery could be effective in improving reproductive function for women with severe obesity.
Collapse
Affiliation(s)
- Bo Lv
- Department of Endocrinology, The Third People's Hospital of Dalian, Dalian, China
| | - Chuan Xing
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
45
|
Koerber-Rosso I, Brandt S, von Schnurbein J, Fischer-Posovszky P, Hoegel J, Rabenstein H, Siebert R, Wabitsch M. A fresh look to the phenotype in mono-allelic likely pathogenic variants of the leptin and the leptin receptor gene. Mol Cell Pediatr 2021; 8:10. [PMID: 34448070 PMCID: PMC8390564 DOI: 10.1186/s40348-021-00119-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Leptin (LEP) and leptin receptor (LEPR) play a major role in energy homeostasis, metabolism, and reproductive function. While effects of biallelic likely pathogenic variants (-/-) on the phenotype are well characterized, effects of mono-allelic likely pathogenic variants (wt/-) in the LEP and LEPR gene on the phenotype compared to wild-type homozygosity (wt/wt) have not been systematically investigated. We identified in our systematic review 44 animal studies (15 on Lep, 29 on Lepr) and 39 studies in humans reporting on 130 mono-allelic likely pathogenic variant carriers with 20 distinct LEP variants and 108 heterozygous mono-allelic likely pathogenic variant carriers with 35 distinct LEPR variants. We found indications for a higher weight status in carriers of mono-allelic likely pathogenic variant in the leptin and in the leptin receptor gene compared to wt/wt, in both animal and human studies. In addition, animal studies showed higher body fat percentage in Lep and Lepr wt/- vs wt/wt. Animal studies provided indications for lower leptin levels in Lep wt/- vs. wt/wt and indications for higher leptin levels in Lepr wt/- vs wt/wt. Data on leptin levels in human studies was limited. Evidence for an impaired metabolism in mono-allelic likely pathogenic variants of the leptin and in leptin receptor gene was not conclusive (animal and human studies). Mono-allelic likely pathogenic variants in the leptin and in leptin receptor gene have phenotypic effects disposing to increased body weight and fat accumulation.
Collapse
Affiliation(s)
- Ingrid Koerber-Rosso
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Stephanie Brandt
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Julia von Schnurbein
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Josef Hoegel
- Institute of Human Genetics, University of Ulm, University Medical Center Ulm, Ulm, Germany
| | - Hannah Rabenstein
- Institute of Human Genetics, University of Ulm, University Medical Center Ulm, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm, University Medical Center Ulm, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
46
|
Salum KCR, Rolando JDM, Zembrzuski VM, Carneiro JRI, Mello CB, Maya-Monteiro CM, Bozza PT, Kohlrausch FB, da Fonseca ACP. When Leptin Is Not There: A Review of What Nonsyndromic Monogenic Obesity Cases Tell Us and the Benefits of Exogenous Leptin. Front Endocrinol (Lausanne) 2021; 12:722441. [PMID: 34504472 PMCID: PMC8421737 DOI: 10.3389/fendo.2021.722441] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
Obesity is a pandemic condition of complex etiology, resulting from the increasing exposition to obesogenic environmental factors combined with genetic susceptibility. In the past two decades, advances in genetic research identified variants of the leptin-melanocortin pathway coding for genes, which are related to the potentiation of satiety and hunger, immune system, and fertility. Here, we review cases of congenital leptin deficiency and the possible beneficial effects of leptin replacement therapy. In summary, the cases presented here show clinical phenotypes of disrupted bodily energy homeostasis, biochemical and hormonal disorders, and abnormal immune response. Some phenotypes can be partially reversed by exogenous administration of leptin. With this review, we aim to contribute to the understanding of leptin gene mutations as targets for obesity diagnostics and treatment strategies.
Collapse
Affiliation(s)
- Kaio Cezar Rodrigues Salum
- Human Genetic Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Niterói, Brazil
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jônatas de Mendonça Rolando
- Human Genetic Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Niterói, Brazil
| | | | - João Regis Ivar Carneiro
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cicero Brasileiro Mello
- Human Genetic Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Niterói, Brazil
| | | | - Patrícia Torres Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fabiana Barzotto Kohlrausch
- Human Genetic Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Niterói, Brazil
| | - Ana Carolina Proença da Fonseca
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Liang ZT, Guo CF, Li J, Zhang HQ. The role of endocrine hormones in the pathogenesis of adolescent idiopathic scoliosis. FASEB J 2021; 35:e21839. [PMID: 34387890 DOI: 10.1096/fj.202100759r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 11/11/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common spinal deformity characterized by changes in the three-dimensional structure of the spine. It usually initiates during puberty, the peak period of human growth when the secretion of numerous hormones is changing, and it is more common in females than in males. Accumulating evidence shows that the abnormal levels of many hormones including estrogen, melatonin, growth hormone, leptin, adiponectin and ghrelin, may be related to the occurrence and development of AIS. The purpose of this review is to provide a summary and critique of the research published on each hormone over the past 20 years, and to highlight areas for future study. It is hoped that the presentation will help provide a better understanding of the role of endocrine hormones in the pathogenesis of AIS.
Collapse
Affiliation(s)
- Zhuo-Tao Liang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chao-Feng Guo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiong Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Qi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
48
|
Berger C, Heyne HO, Heiland T, Dommel S, Höfling C, Guiu-Jurado E, Roßner S, Dannemann M, Kelso J, Kovacs P, Blüher M, Klöting N. A novel compound heterozygous leptin receptor mutation causes more severe obesity than in Lepr db/db mice. J Lipid Res 2021; 62:100105. [PMID: 34390703 PMCID: PMC8450258 DOI: 10.1016/j.jlr.2021.100105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023] Open
Abstract
The leptin receptor (Lepr) pathway is important for food intake regulation, energy expenditure, and body weight. Mutations in leptin and the Lepr have been shown to cause early-onset severe obesity in mice and humans. In studies with C57BL/6NCrl mice, we found a mouse with extreme obesity. To identify a putative spontaneous new form of monogenic obesity, we performed backcross studies with this mouse followed by a quantitative trait locus (QTL) analysis and sequencing of the selected chromosomal QTL region. We thereby identified a novel Lepr mutation (C57BL/6N-LeprL536Hfs*6-1NKB), which is located at chromosome 4, exon 11 within the CRH2-leptin-binding site. Compared with C57BL/6N mice, LeprL536Hfs*6 develop early onset obesity and their body weight exceeds that of Leprdb/db mice at an age of 30 weeks. Similar to Leprdb/db mice, the LeprL536Hfs*6 model is characterized by hyperphagia, obesity, lower energy expenditure and activity, hyperglycemia, and hyperinsulinemia compared with C57BL/6N mice. Crossing Leprdb/wt with LeprL536Hfs*6/wt mice results in compound heterozygous LeprL536Hfs*6/db mice, which develop even higher body weight and fat mass than both homozygous Leprdb/db and LeprL536Hfs*6 mice. Compound heterozygous Lepr deficiency affecting functionally different regions of the Lepr causes more severe obesity than the parental homozygous mutations.
Collapse
Affiliation(s)
- Claudia Berger
- Medical Department III, Endocrinology, Nephrology, Rheumatology, CRC1052, University of Leipzig Medical Center, Leipzig, Germany
| | - Henrike O Heyne
- Medical Department, Institute for Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Institute for Molecular Medicine Finland: FIMM, Helsinki, Finland; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Tina Heiland
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Sebastian Dommel
- Medical Department III, Endocrinology, Nephrology, Rheumatology, CRC1052, University of Leipzig Medical Center, Leipzig, Germany
| | - Corinna Höfling
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Esther Guiu-Jurado
- Medical Department III, Endocrinology, Nephrology, Rheumatology, CRC1052, University of Leipzig Medical Center, Leipzig, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, Leipzig, Germany
| | - Steffen Roßner
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Michael Dannemann
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III, Endocrinology, Nephrology, Rheumatology, CRC1052, University of Leipzig Medical Center, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III, Endocrinology, Nephrology, Rheumatology, CRC1052, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, Leipzig, Germany
| | - Nora Klöting
- Medical Department III, Endocrinology, Nephrology, Rheumatology, CRC1052, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, Leipzig, Germany.
| |
Collapse
|
49
|
Hirtz R, Zheng Y, Rajcsanyi LS, Libuda L, Antel J, Peters T, Hebebrand J, Hinney A. [Genetic Analyses of Complex Phenotypes Through the Example of Anorexia Nervosa and Bodyweight Regulation]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2021; 50:175-185. [PMID: 34328348 DOI: 10.1024/1422-4917/a000829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Genetic Analyses of Complex Phenotypes Through the Example of Anorexia Nervosa and Bodyweight Regulation Abstract. Genetics variants are important for the regulation of bodyweight and also contribute to the genetic architecture of eating disorders. For many decades, family studies, a subentity of so-called formal genetic studies, were employed to determine the genetic share of bodyweight and eating disorders and found heritability rates exceeding 50 % with both phenotypes. Because of this significant contribution of genetics, the search for those genes and their variants related to the variance in bodyweight and the etiology of eating disorders - or both - was commenced by the early 1990s. Initially, candidate genes studies were conducted targeting those genes most plausibly related to either phenotype, especially based on pathophysiological considerations. This approach, however, implicated only a few genes in the regulation of bodyweight and did not provide significant insights into the genetics of eating disorders. Driven by considerable methodological advances in genetic research, especially related to the introduction of so-called genome-wide association studies by the beginning of the 21st century, today more than 1,000 variants/loci have been detected that affect the regulation of bodyweight. Eight such loci have been identified regarding anorexia nervosa (AN). These results as well as those from cross-disorder analyses provide insights into the complex regulation of bodyweight and demonstrated unforeseen pathomechanisms for AN.
Collapse
Affiliation(s)
- Raphael Hirtz
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen, Universitätsklinikum Essen.,Abteilung für Pädiatrische Endokrinologie und Diabetologie, Kinderklinik II, Universitätsklinikum Essen
| | - Yiran Zheng
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen, Universitätsklinikum Essen
| | - Luisa S Rajcsanyi
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen, Universitätsklinikum Essen
| | - Lars Libuda
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen, Universitätsklinikum Essen.,Institut für Ernährung, Konsum und Gesundheit, Fakultät für Naturwissenschaften, Universität Paderborn
| | - Jochen Antel
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen, Universitätsklinikum Essen
| | - Triinu Peters
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen, Universitätsklinikum Essen
| | - Johannes Hebebrand
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen, Universitätsklinikum Essen
| | - Anke Hinney
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen, Universitätsklinikum Essen
| |
Collapse
|
50
|
Impaired Leptin Signalling in Obesity: Is Leptin a New Thermolipokine? Int J Mol Sci 2021; 22:ijms22126445. [PMID: 34208585 PMCID: PMC8235268 DOI: 10.3390/ijms22126445] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Leptin is a principal adipose-derived hormone mostly implicated in the regulation of energy balance through the activation of anorexigenic neuronal pathways. Comprehensive studies have established that the maintenance of certain concentrations of circulating leptin is essential to avoid an imbalance in nutrient intake. Indeed, genetic modifications of the leptin/leptin receptor axis and the obesogenic environment may induce changes in leptin levels or action in a manner that accelerates metabolic dysfunctions, resulting in a hyperphagic status and adipose tissue expansion. As a result, a vicious cycle begins wherein hyperleptinaemia and leptin resistance occur, in turn leading to increased food intake and fat enlargement, which is followed by leptin overproduction. In addition, in the context of obesity, a defective thermoregulatory response is associated with impaired leptin signalling overall within the ventromedial nucleus of the hypothalamus. These recent findings highlight the role of leptin in the regulation of adaptive thermogenesis, thus suggesting leptin to be potentially considered as a new thermolipokine. This review provides new insight into the link between obesity, hyperleptinaemia, leptin resistance and leptin deficiency, focusing on the ability to restore leptin sensitiveness by way of enhanced thermogenic responses and highlighting novel anti-obesity therapeutic strategies.
Collapse
|