1
|
Zhang B, Wang Y, Zhu Y, Pan T, Yan H, Wang X, Jing R, Wu H, Wang F, Zhang Y, Bao X, Wang Y, Zhang P, Chen Y, Duan E, Han X, Wan G, Yan M, Sun X, Lei C, Cheng Z, Zhao Z, Jiang L, Bao Y, Ren Y, Wan J. The MON1-CCZ1 complex plays dual roles in autophagic degradation and vacuolar protein transport in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:35-54. [PMID: 39474758 PMCID: PMC11734111 DOI: 10.1111/jipb.13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 01/16/2025]
Abstract
Autophagy is a highly conserved cellular program in eukaryotic cells which mediates the degradation of cytoplasmic components through the lysosome, also named the vacuole in plants. However, the molecular mechanisms underlying the fusion of autophagosomes with the vacuole remain unclear. Here, we report the functional characterization of a rice (Oryza sativa) mutant with defects in storage protein transport in endosperm cells and accumulation of numerous autophagosomes in root cells. Cytological and immunocytochemical experiments showed that this mutant exhibits a defect in the fusion between autophagosomes and vacuoles. The mutant harbors a loss-of-function mutation in the rice homolog of Arabidopsis thaliana MONENSIN SENSITIVITY1 (MON1). Biochemical and genetic evidence revealed a synergistic interaction between rice MON1 and AUTOPHAGY-RELATED 8a in maintaining normal growth and development. In addition, the rice mon1 mutant disrupted storage protein sorting to protein storage vacuoles. Furthermore, quantitative proteomics verified that the loss of MON1 function influenced diverse biological pathways including autophagy and vacuolar transport, thus decreasing the transport of autophagic and vacuolar cargoes to vacuoles. Together, our findings establish a molecular link between autophagy and vacuolar protein transport, and offer insights into the dual functions of the MON1-CCZ1 (CAFFEINE ZINC SENSITIVITY1) complex in plants.
Collapse
Affiliation(s)
- Binglei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
- College of Life SciencesNanjing Agricultural UniversityNanjing210095China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Zhongshan Biological Breeding LaboratoryNanjing210095China
| | - Yun Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Tian Pan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
| | - Haigang Yan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
| | - Xin Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Ruonan Jing
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Hongming Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
| | - Fan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Yu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
| | - Xiuhao Bao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
| | - Yongfei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
| | - Pengcheng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
| | - Yu Chen
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Erchao Duan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Zhongshan Biological Breeding LaboratoryNanjing210095China
| | - Xiaohang Han
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Gexing Wan
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Mengyuan Yan
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Xiejun Sun
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Zhichao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Zhongshan Biological Breeding LaboratoryNanjing210095China
| | - Yiqun Bao
- College of Life SciencesNanjing Agricultural UniversityNanjing210095China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Jianmin Wan
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Zhongshan Biological Breeding LaboratoryNanjing210095China
| |
Collapse
|
2
|
Marmagne A, Chardon F, Masclaux-Daubresse C. A tissue-specific rescue strategy reveals the local roles of autophagy in leaves and seeds for resource allocation. PLANT PHYSIOLOGY 2024; 197:kiae647. [PMID: 39661375 DOI: 10.1093/plphys/kiae647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Autophagy is a vesicular mechanism that plays a fundamental role in nitrogen remobilization from senescing leaves to seeds. The Arabidopsis (Arabidopsis thaliana) autophagy (atg) mutants exhibit early senescence, reduced biomass, and low seed yield. The atg seeds also exhibit major changes in N and C concentrations. During plant development, autophagy genes are expressed in the source leaves and in the sink seeds during maturation. We thus addressed the question of whether the seed composition defects in atg mutants are caused by defective N remobilization from source leaves or whether they are due to the absence of autophagy in seeds during maturation. To answer this question, we restored autophagy activity in the atg5 mutant by expressing the wild-type (WT) ATG5 allele specifically in source leaves using the senescence-associated gene 12 (SAG12) promoter or specifically in seeds using the Glycinin-1 promoter, or in both organs using both constructs. In atg5, N remobilization from the rosettes to seeds was almost completely reestablished when transformed with the pSAG12::ATG5 construct. However, transformation with the pSAG12::ATG5 construct only partially restored seed composition. In contrast, seed N and C composition was largely restored by transformation with the pGly::ATG5 construct, even though the early leaf senescence phenotype was maintained in the atg5 background. Cotransformation with pSAG12::ATG5 and pGly::ATG5 completely restored the WT remobilization and seed composition phenotypes. Our results highlight the essential role of autophagy in leaves for nitrogen supply and in seeds for the establishment of carbon and nitrogen reserves.
Collapse
Affiliation(s)
- Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| |
Collapse
|
3
|
Liu T, Zheng Y, Zhou S, Wang Y, Lei X, Xie L, Lin Q, Chang C, Xiao S, Qiu R, Qi H. 14-3-3 proteins inhibit autophagy by regulating SINAT-mediated proteolysis of ATG6 in Arabidopsis. BMC PLANT BIOLOGY 2024; 24:1148. [PMID: 39609744 PMCID: PMC11605875 DOI: 10.1186/s12870-024-05854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Autophagy is a conserved cellular process crucial for recycling cytoplasmic components and maintaining cellular homeostasis in eukaryotes. During autophagy, the formation of a protein complex involving AUTOPHAGY-RELATED PROTEIN 6 (ATG6) and phosphatidylinositol 3-kinase is pivotal for recruiting proteins involved in phagophore expansion. However, the intricate molecular mechanism regulating this protein complex in plants remains elusive. RESULTS Here, we aimed to unravel the molecular regulation of autophagy dynamics in Arabidopsis thaliana by investigating the involvement of the scaffold proteins 14-3-3λ and 14-3-3κ in regulating the proteolysis of ATG6. Phenotypic analyses revealed that 14-3-3λ and 14-3-3κ overexpression lines exhibited increased sensitivity to nutrient starvation, premature leaf senescence, and a decrease in starvation-induced autophagic vesicles, resembling the phenotypes of autophagy-defective mutants, suggesting the potential roles of 14-3-3 proteins in regulating autophagy in plants. Furthermore, our investigation unveiled the involvement of 14-3-3λ and 14-3-3κ in the RING finger E3 ligase SINAT1-mediated ubiquitination and destabilization of ATG6 in vivo. We also observed repressed turnover of ATG6 and translocation of GFP-ATG6 to mCherry-ATG8a-labelled punctate structures in the autophagy-defective mutant, which suggesting that ATG6 is probably a target of autophagy. Additionally, 14-3-3λ and 14-3-3κ interacted with Tumor necrosis factor Receptor Associated Factor 1a (TRAF1a) to promote the stability of TRAF1a in vivo under nutrient-rich conditions, suggesting a feedback regulation of autophagy. These findings demonstrate that 14-3-3λ and 14-3-3κ serve as scaffold proteins to regulate autophagy by facilitating the SINAT1-mediated proteolysis of ATG6, involving both direct and indirect mechanisms, in plants. CONCLUSIONS 14-3-3 proteins regulate autophagy by directly or indirectly binding to ATG6 and SINAT1 to promote ubiquitination and degradation of ATG6. 14-3-3 proteins are involved in modulating autophagy dynamics by facilitating SINAT1-mediated ubiquitination and degradation of ATG6.
Collapse
Affiliation(s)
- Ting Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yuping Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shunkang Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yao Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xue Lei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lijuan Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Changqing Chang
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Yan H, Lu Z, Du X, You Z, Yang M, Li N, Li X, Ni Z, Wu H, Wang X, Zhao L, Wang H. Autophagy modulates Arabidopsis male gametophyte fertility and controls actin organization. Nat Commun 2024; 15:10071. [PMID: 39567510 PMCID: PMC11579482 DOI: 10.1038/s41467-024-54468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/12/2024] [Indexed: 11/22/2024] Open
Abstract
Autophagy, a crucial mechanism for cellular degradation, is regulated by conserved autophagy-related (ATG) core proteins across species. Impairments in autophagy result in significant developmental and reproductive aberrations in mammals. However, autophagy is thought to be functionally dispensable in Arabidopsis thaliana since most of the ATG mutants lack severe growth and reproductive defects. Here, we challenge this perception by unveiling a role for autophagy in male gametophyte development and fertility in Arabidopsis. A detailed re-assessment of atg5 and atg7 mutants found that reduced autophagy activity in germinated pollen accompanied by partial aberrations in sperm cell biogenesis and pollen tube growth, leading to compromised seed formation. Furthermore, we revealed autophagy modulates the spatial organization of actin filaments via targeted degradation of actin depolymerization factors ADF7 and Profilin2 in pollen grains and tubes through a key receptor, Neighbor of BRCA1 (NBR1). Our findings advance the understanding of the evolutionary conservation and diversification of autophagy in modulating male fertility in plants contrasting to mammals.
Collapse
Affiliation(s)
- He Yan
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Zhen Lu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaojuan Du
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zhengtao You
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Mingkang Yang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Nianle Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xuequan Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zailue Ni
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Hong Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lifeng Zhao
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Hao Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Laboratory for the Developmental Biology and Environmental Adaption of Agricultural Organisms, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
5
|
Laude J, Scarsini M, Nef C, Bowler C. Evolutionary conservation and metabolic significance of autophagy in algae. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230368. [PMID: 39343016 PMCID: PMC11449223 DOI: 10.1098/rstb.2023.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Autophagy is a highly conserved 'self-digesting' mechanism used in eukaryotes to degrade and recycle cellular components by enclosing them in a double membrane compartment and delivering them to lytic organelles (lysosomes or vacuoles). Extensive studies in plants have revealed how autophagy is intricately linked to essential aspects of metabolism and growth, in both normal and stress conditions, including cellular and organelle homeostasis, nutrient recycling, development, responses to biotic and abiotic stresses, senescence and cell death. However, knowledge regarding autophagic processes in other photosynthetic organisms remains limited. In this review, we attempt to summarize the current understanding of autophagy in algae from a metabolic, molecular and evolutionary perspective. We focus on the composition and conservation of the autophagy molecular machinery in eukaryotes and discuss the role of autophagy in metabolic regulation, cellular homeostasis and stress adaptation in algae. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Juliette Laude
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
- Université Paris Saclay , Gif-sur-Yvette 91190, France
| | - Matteo Scarsini
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
| |
Collapse
|
6
|
Izumi M, Nakamura S, Otomo K, Ishida H, Hidema J, Nemoto T, Hagihara S. Autophagosome development and chloroplast segmentation occur synchronously for piecemeal degradation of chloroplasts. eLife 2024; 12:RP93232. [PMID: 39509463 PMCID: PMC11542923 DOI: 10.7554/elife.93232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Plants distribute many nutrients to chloroplasts during leaf development and maturation. When leaves senesce or experience sugar starvation, the autophagy machinery degrades chloroplast proteins to facilitate efficient nutrient reuse. Here, we report on the intracellular dynamics of an autophagy pathway responsible for piecemeal degradation of chloroplast components. Through live-cell monitoring of chloroplast morphology, we observed the formation of chloroplast budding structures in sugar-starved leaves. These buds were then released and incorporated into the vacuolar lumen as an autophagic cargo termed a Rubisco-containing body. The budding structures did not accumulate in mutants of core autophagy machinery, suggesting that autophagosome creation is required for forming chloroplast buds. Simultaneous tracking of chloroplast morphology and autophagosome development revealed that the isolation membranes of autophagosomes interact closely with part of the chloroplast surface before forming chloroplast buds. Chloroplasts then protrude at the site associated with the isolation membranes, which divide synchronously with autophagosome maturation. This autophagy-related division does not require DYNAMIN-RELATED PROTEIN 5B, which constitutes the division ring for chloroplast proliferation in growing leaves. An unidentified division machinery may thus fragment chloroplasts for degradation in coordination with the development of the chloroplast-associated isolation membrane.
Collapse
Affiliation(s)
- Masanori Izumi
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku UniversitySendaiJapan
- Center for Sustainable Resource Science (CSRS), RIKENWakoJapan
| | - Sakuya Nakamura
- Center for Sustainable Resource Science (CSRS), RIKENWakoJapan
| | - Kohei Otomo
- Exploratory Research Center on Life and Living Systems (ExCELLs), National Institutes of Natural SciencesOkazakiJapan
- National Institute for Physiological Sciences, National Institutes of Natural SciencesOkazakiJapan
- The Graduate University for Advanced Studies, SOKENDAIOkazakiJapan
- Research Institute for Electronic Science, Hokkaido UniversitySapporoJapan
- Graduate School of Medicine, Juntendo UniversityTokyoJapan
| | - Hiroyuki Ishida
- Graduate School of Agricultural Science, Tohoku UniversitySendaiJapan
| | - Jun Hidema
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Tomomi Nemoto
- Exploratory Research Center on Life and Living Systems (ExCELLs), National Institutes of Natural SciencesOkazakiJapan
- National Institute for Physiological Sciences, National Institutes of Natural SciencesOkazakiJapan
- The Graduate University for Advanced Studies, SOKENDAIOkazakiJapan
- Research Institute for Electronic Science, Hokkaido UniversitySapporoJapan
| | - Shinya Hagihara
- Center for Sustainable Resource Science (CSRS), RIKENWakoJapan
| |
Collapse
|
7
|
Daněk M, Kocourková D, Korec Podmanická T, Eliášová K, Nesvadbová K, Krupař P, Martinec J. A novel workflow for unbiased 3D quantification of autophagosomes in Arabidopsis thaliana roots. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5412-5427. [PMID: 38430548 DOI: 10.1093/jxb/erae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 03/04/2024]
Abstract
Macroautophagy is often quantified by live imaging of autophagosomes labeled with fluorescently tagged ATG8 protein (FP-ATG8) in Arabidopsis thaliana. The labeled particles are then counted in single focal planes. This approach may lead to inaccurate results as the actual 3D distribution of autophagosomes is not taken into account and appropriate sampling in the Z-direction is not performed. To overcome this issue, we developed a workflow consisting of immunolabeling of autophagosomes with an anti-ATG8 antibody followed by stereological image analysis using the optical disector and the Cavalieri principle. Our protocol specifically recognized autophagosomes in epidermal cells of Arabidopsis root. Since the anti-ATG8 antibody recognizes multiple AtATG8 isoforms, we were able to detect a higher number of immunolabeled autophagosomes than with the FP-AtATG8e marker, that most probably does not recognize all autophagosomes in a cell. The number of autophagosomes per tissue volume positively correlated with the intensity of autophagy induction. Compared with the quantification of autophagosomes in maximum intensity projections, stereological methods were able to detect the autophagosomes present in a given volume with higher accuracy. Our novel workflow provides a powerful toolkit for unbiased and reproducible quantification of autophagosomes and offers a convenient alternative to the standard of live imaging with FP-ATG8 markers.
Collapse
Affiliation(s)
- Michal Daněk
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 00 Prague, Czech Republic
| | - Daniela Kocourková
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 00 Prague, Czech Republic
| | - Tereza Korec Podmanická
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 00 Prague, Czech Republic
| | - Kateřina Eliášová
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 00 Prague, Czech Republic
| | - Kristýna Nesvadbová
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 00 Prague, Czech Republic
| | - Pavel Krupař
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 00 Prague, Czech Republic
| | - Jan Martinec
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 00 Prague, Czech Republic
| |
Collapse
|
8
|
Zhuang X, Li B, Jiang L. Autophagosome biogenesis and organelle homeostasis in plant cells. THE PLANT CELL 2024; 36:3009-3024. [PMID: 38536783 PMCID: PMC11371174 DOI: 10.1093/plcell/koae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 09/05/2024]
Abstract
Autophagy is one of the major highly inducible degradation processes in response to plant developmental and environmental signals. In response to different stimuli, cellular materials, including proteins and organelles, can be sequestered into a double membrane autophagosome structure either selectively or nonselectively. The formation of an autophagosome as well as its delivery into the vacuole involves complex and dynamic membrane processes. The identification and characterization of the conserved autophagy-related (ATG) proteins and their related regulators have greatly advanced our understanding of the molecular mechanism underlying autophagosome biogenesis and function in plant cells. Autophagosome biogenesis is tightly regulated by the coordination of multiple ATG and non-ATG proteins and by selective cargo recruitment. This review updates our current knowledge of autophagosome biogenesis, with special emphasis on the core molecular machinery that drives autophagosome formation and autophagosome-organelle interactions under abiotic stress conditions.
Collapse
Affiliation(s)
- Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
9
|
Otegui MS, Steelheart C, Ma W, Ma J, Kang BH, De Medina Hernandez VS, Dagdas Y, Gao C, Goto-Yamada S, Oikawa K, Nishimura M. Vacuolar degradation of plant organelles. THE PLANT CELL 2024; 36:3036-3056. [PMID: 38657116 PMCID: PMC11371181 DOI: 10.1093/plcell/koae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Plants continuously remodel and degrade their organelles due to damage from their metabolic activities and environmental stressors, as well as an integral part of their cell differentiation programs. Whereas certain organelles use local hydrolytic enzymes for limited remodeling, most of the pathways that control the partial or complete dismantling of organelles rely on vacuolar degradation. Specifically, selective autophagic pathways play a crucial role in recognizing and sorting plant organelle cargo for vacuolar clearance, especially under cellular stress conditions induced by factors like heat, drought, and damaging light. In these short reviews, we discuss the mechanisms that control the vacuolar degradation of chloroplasts, mitochondria, endoplasmic reticulum, Golgi, and peroxisomes, with an emphasis on autophagy, recently discovered selective autophagy receptors for plant organelles, and crosstalk with other catabolic pathways.
Collapse
Affiliation(s)
- Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Charlotte Steelheart
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wenlong Ma
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Juncai Ma
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shino Goto-Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow 30-348, Poland
| | - Kazusato Oikawa
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Mikio Nishimura
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
10
|
Sato A, Inayoshi S, Kitawaki K, Mihara R, Yoneda K, Ito-Inaba Y, Inaba T. Autophagy is suppressed by low temperatures and is dispensable for cold acclimation in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14409. [PMID: 38973450 DOI: 10.1111/ppl.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Plants have evolved various mechanisms to adapt to the ever-changing external environment. Autophagy is one such mechanism and has been suggested to play a key role in responding to and adapting to abiotic stresses in plants. However, the role of autophagy in adaptation to cold and freezing stresses remains to be characterized in detail. Here, we investigated the role of autophagy in the low-temperature response of Arabidopsis using atg mutants. Both the atg5-1 and atg10-1 mutants exhibited normal freezing tolerance, regardless of cold acclimation. A comparison of fresh weights indicated that the difference in growth between the wild-type and atg plants under cold conditions was rather small compared with that under normal conditions. Analysis of COLD-REGULATED gene expression showed no significant differences between the atg mutants and wild type. Treatment with 3-methyladenine, an inhibitor of autophagy, did not impair the induction of COR15Apro::LUC expression upon exposure to low temperature. Evaluation of autophagic activity using transgenic plants expressing RBCS-mRFP demonstrated that autophagy was rarely induced by cold exposure, even in the dark. Taken together, these data suggest that autophagy is suppressed by low temperatures and is dispensable for cold acclimation and freezing tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Akito Sato
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Sena Inayoshi
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kohei Kitawaki
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ryota Mihara
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kosei Yoneda
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yasuko Ito-Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
11
|
Mosesso N, Lerner NS, Bläske T, Groh F, Maguire S, Niedermeier ML, Landwehr E, Vogel K, Meergans K, Nagel MK, Drescher M, Stengel F, Hauser K, Isono E. Arabidopsis CaLB1 undergoes phase separation with the ESCRT protein ALIX and modulates autophagosome maturation. Nat Commun 2024; 15:5188. [PMID: 38898014 PMCID: PMC11187125 DOI: 10.1038/s41467-024-49485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Autophagy is relevant for diverse processes in eukaryotic cells, making its regulation of fundamental importance. The formation and maturation of autophagosomes require a complex choreography of numerous factors. The endosomal sorting complex required for transport (ESCRT) is implicated in the final step of autophagosomal maturation by sealing of the phagophore membrane. ESCRT-III components were shown to mediate membrane scission by forming filaments that interact with cellular membranes. However, the molecular mechanisms underlying the recruitment of ESCRTs to non-endosomal membranes remain largely unknown. Here we focus on the ESCRT-associated protein ALG2-interacting protein X (ALIX) and identify Ca2+-dependent lipid binding protein 1 (CaLB1) as its interactor. Our findings demonstrate that CaLB1 interacts with AUTOPHAGY8 (ATG8) and PI(3)P, a phospholipid found in autophagosomal membranes. Moreover, CaLB1 and ALIX localize with ATG8 on autophagosomes upon salt treatment and assemble together into condensates. The depletion of CaLB1 impacts the maturation of salt-induced autophagosomes and leads to reduced delivery of autophagosomes to the vacuole. Here, we propose a crucial role of CaLB1 in augmenting phase separation of ALIX, facilitating the recruitment of ESCRT-III to the site of phagophore closure thereby ensuring efficient maturation of autophagosomes.
Collapse
Affiliation(s)
- Niccolò Mosesso
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Niharika Savant Lerner
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Tobias Bläske
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Felix Groh
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Shane Maguire
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Biophysical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Marie Laura Niedermeier
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Eliane Landwehr
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Spectroscopy of Complex Systems, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Karin Vogel
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Konstanze Meergans
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Marie-Kristin Nagel
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Malte Drescher
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Spectroscopy of Complex Systems, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Florian Stengel
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Karin Hauser
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Biophysical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Erika Isono
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany.
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany.
- Division of Molecular Cell Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan.
| |
Collapse
|
12
|
Yuen ELH, Leary AY, Clavel M, Tumtas Y, Mohseni A, Zhao J, Picchianti L, Jamshidiha M, Pandey P, Duggan C, Cota E, Dagdas Y, Bozkurt TO. A RabGAP negatively regulates plant autophagy and immune trafficking. Curr Biol 2024; 34:2049-2065.e6. [PMID: 38677281 DOI: 10.1016/j.cub.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
Plants rely on autophagy and membrane trafficking to tolerate stress, combat infections, and maintain cellular homeostasis. However, the molecular interplay between autophagy and membrane trafficking is poorly understood. Using an AI-assisted approach, we identified Rab3GAP-like (Rab3GAPL) as a key membrane trafficking node that controls plant autophagy negatively. Rab3GAPL suppresses autophagy by binding to ATG8, the core autophagy adaptor, and deactivating Rab8a, a small GTPase essential for autophagosome formation and defense-related secretion. Rab3GAPL reduces autophagic flux in three model plant species, suggesting that its negative regulatory role in autophagy is conserved in land plants. Beyond autophagy regulation, Rab3GAPL modulates focal immunity against the oomycete pathogen Phytophthora infestans by preventing defense-related secretion. Altogether, our results suggest that Rab3GAPL acts as a molecular rheostat to coordinate autophagic flux and defense-related secretion by restraining Rab8a-mediated trafficking. This unprecedented interplay between a RabGAP-Rab pair and ATG8 sheds new light on the intricate membrane transport mechanisms underlying plant autophagy and immunity.
Collapse
Affiliation(s)
- Enoch Lok Him Yuen
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alexandre Y Leary
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Marion Clavel
- Gregor Mendel Institute of Molecular Plant Biology, Vienna BioCenter, Dr. Bohr-Gasse, 1030 Vienna, Austria; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Yasin Tumtas
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Azadeh Mohseni
- Gregor Mendel Institute of Molecular Plant Biology, Vienna BioCenter, Dr. Bohr-Gasse, 1030 Vienna, Austria
| | - Jierui Zhao
- Gregor Mendel Institute of Molecular Plant Biology, Vienna BioCenter, Dr. Bohr-Gasse, 1030 Vienna, Austria
| | - Lorenzo Picchianti
- Gregor Mendel Institute of Molecular Plant Biology, Vienna BioCenter, Dr. Bohr-Gasse, 1030 Vienna, Austria
| | - Mostafa Jamshidiha
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Pooja Pandey
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Cian Duggan
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Ernesto Cota
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Yasin Dagdas
- Gregor Mendel Institute of Molecular Plant Biology, Vienna BioCenter, Dr. Bohr-Gasse, 1030 Vienna, Austria.
| | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
13
|
Yagyu M, Yoshimoto K. New insights into plant autophagy: molecular mechanisms and roles in development and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1234-1251. [PMID: 37978884 DOI: 10.1093/jxb/erad459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023]
Abstract
Autophagy is an evolutionarily conserved eukaryotic intracellular degradation process. Although the molecular mechanisms of plant autophagy share similarities with those in yeast and mammals, certain unique mechanisms have been identified. Recent studies have highlighted the importance of autophagy during vegetative growth stages as well as in plant-specific developmental processes, such as seed development, germination, flowering, and somatic reprogramming. Autophagy enables plants to adapt to and manage severe environmental conditions, such as nutrient starvation, high-intensity light stress, and heat stress, leading to intracellular remodeling and physiological changes in response to stress. In the past, plant autophagy research lagged behind similar studies in yeast and mammals; however, recent advances have greatly expanded our understanding of plant-specific autophagy mechanisms and functions. This review summarizes current knowledge and latest research findings on the mechanisms and roles of plant autophagy with the objective of improving our understanding of this vital process in plants.
Collapse
Affiliation(s)
- Mako Yagyu
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
- Life Sciences Program, Graduate School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kohki Yoshimoto
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
- Life Sciences Program, Graduate School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
14
|
Bali JS, Sambyal V, Mehrotra S, Gupta P, Guleria K, Uppal MS, Sudan M. Association of ATG10 rs1864183, ATG16L1 rs2241880 and miR-126 with esophageal cancer. Mol Biol Rep 2024; 51:231. [PMID: 38281293 DOI: 10.1007/s11033-023-09012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND In India, esophageal cancer (EC) is among the major cause of cancer-related deaths in both sexes. In recent past, autophagy has emerged as one of the crucial process associated with cancer. In the development of EC, the role of autophagy and the precise molecular mechanism involved has yet to be fully understood. Recently, a small number of studies have proposed how variations in autophagy genes affect the growth and development of EC. Micro-RNA's are also known to play a critical role in the development of EC. Here, we examined the relationship between the risk of EC and two single-nucleotide polymorphisms (SNPs) in the key autophagy genes, ATG10 rs1864183 and ATG16L1 rs2241880. We also analyzed the association of miR-107 and miR-126 with EC as these miRNA's are associated with autophagy. METHODS AND RESULTS A total of 230 EC patients and 230 healthy controls from North-west Indian population were enrolled. ATG10 rs1864183 and ATG16L1 rs2241880 polymorphism were analyzed using TaqMan genotyping assay. Expression levels of miR-107 and miR-126 were analyzed through quantitative PCR using SYBR green chemistry. We found significant association of CT + CC genotype (OR 0.64, p = 0.022) in recessive model for ATG10 rs1864183 polymorphism with decreased EC risk. For ATG16L1 rs2241880 polymorphism significant association for AG genotype (OR 1.48, p = 0.05) and G allele (OR 1.43, p = 0.025) was observed for increased EC risk. Expression levels of miR-126 were also found to be significantly up regulated (p = 0.008). CONCLUSION Our results suggest that ATG10 rs1864183, ATG16L1 rs2241880 and miR-126 may be associated with esophageal carcinogenesis and warrant further investigation.
Collapse
Affiliation(s)
- Jagmohan Singh Bali
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vasudha Sambyal
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Sanjana Mehrotra
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Priyanka Gupta
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kamlesh Guleria
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Manjit Singh Uppal
- Department of Surgery, Sri Guru Ram Das Institute of Medical Sciences and Research, Vallah, Amritsar, Punjab, India
| | - Meena Sudan
- Department of Radiotherapy, Sri Guru Ram Das Institute of Medical Sciences and Research, Vallah, Amritsar, Punjab, India
| |
Collapse
|
15
|
Yen CC, Hsu CM, Jiang PL, Jauh GY. Dynamic organelle changes and autophagic processes in lily pollen germination. BOTANICAL STUDIES 2024; 65:5. [PMID: 38273136 PMCID: PMC10811312 DOI: 10.1186/s40529-024-00410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Pollen germination is a crucial process in the life cycle of flowering plants, signifying the transition of quiescent pollen grains into active growth. This study delves into the dynamic changes within organelles and the pivotal role of autophagy during lily pollen germination. Initially, mature pollen grains harbor undifferentiated organelles, including amyloplasts, mitochondria, and the Golgi apparatus. However, germination unveils remarkable transformations, such as the redifferentiation of amyloplasts accompanied by starch granule accumulation. We investigate the self-sustained nature of amylogenesis during germination, shedding light on its association with osmotic pressure. Employing BODIPY 493/503 staining, we tracked lipid body distribution throughout pollen germination, both with or without autophagy inhibitors (3-MA, NEM). Typically, lipid bodies undergo polarized movement from pollen grains into elongating pollen tubes, a process crucial for directional growth. Inhibiting autophagy disrupted this essential lipid body redistribution, underscoring the interaction between autophagy and lipid body dynamics. Notably, the presence of tubular endoplasmic reticulum (ER)-like structures associated with developing amyloplasts and lipid bodies implies their participation in autophagy. Starch granules, lipid bodies, and membrane remnants observed within vacuoles further reinforce the involvement of autophagic processes. Among the autophagy inhibitors, particularly BFA, significantly impede germination and growth, thereby affecting Golgi morphology. Immunogold labeling substantiates the pivotal role of the ER in forming autophagosome-like compartments and protein localization. Our proposed speculative model of pollen germination encompasses proplastid differentiation and autophagosome formation. This study advances our understanding of organelle dynamics and autophagy during pollen germination, providing valuable insights into the realm of plant reproductive physiology.
Collapse
Affiliation(s)
- Chih-Chung Yen
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taipei, Taiwan, ROC
| | - Chia-Mei Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taipei, Taiwan, ROC
| | - Pei-Luen Jiang
- Department of Biotechnology, National Formosa University, Huwei Township, Yulin County, Taiwan.
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taipei, Taiwan, ROC.
- Molecular and Biological Agricultural Sciences, International Graduate Program, National Chung-Hsing University, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan.
| |
Collapse
|
16
|
Feng Y, Chen Y, Wu X, Chen J, Zhou Q, Liu B, Zhang L, Yi C. Interplay of energy metabolism and autophagy. Autophagy 2024; 20:4-14. [PMID: 37594406 PMCID: PMC10761056 DOI: 10.1080/15548627.2023.2247300] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Macroautophagy/autophagy, is widely recognized for its crucial role in enabling cell survival and maintaining cellular energy homeostasis during starvation or energy stress. Its regulation is intricately linked to cellular energy status. In this review, covering yeast, mammals, and plants, we aim to provide a comprehensive overview of the understanding of the roles and mechanisms of carbon- or glucose-deprivation related autophagy, showing how cells effectively respond to such challenges for survival. Further investigation is needed to determine the specific degraded substrates by autophagy during glucose or energy deprivation and the diverse roles and mechanisms during varying durations of energy starvation.Abbreviations: ADP: adenosine diphosphate; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATP: adenosine triphosphate; ER: endoplasmic reticulum; ESCRT: endosomal sorting complex required for transport; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GD: glucose deprivation; GFP: green fluorescent protein; GTPases: guanosine triphosphatases; HK2: hexokinase 2; K phaffii: Komagataella phaffii; LD: lipid droplet; MAP1LC3/LC3: microtubule-associated protein1 light chain 3; MAPK: mitogen-activated protein kinase; Mec1: mitosis entry checkpoint 1; MTOR: mechanistic target of rapamycin kinase; NAD (+): nicotinamide adenine dinucleotide; OGD: oxygen and glucose deprivation; PAS: phagophore assembly site; PCD: programmed cell death; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; ROS: reactive oxygen species; S. cerevisiae: Saccharomyces cerevisiae; SIRT1: sirtuin 1; Snf1: sucrose non-fermenting 1; STK11/LKB1: serine/threonine kinase 11; TFEB: transcription factor EB; TORC1: target of rapamycin complex 1; ULK1: unc-51 like kinase 1; Vps27: vacuolar protein sorting 27; Vps4: vacuolar protein sorting 4.
Collapse
Affiliation(s)
- Yuyao Feng
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Ying Chen
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyong Wu
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junye Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Qingyan Zhou
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bao Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
| | - Cong Yi
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Huang L, Wen X, Jin L, Han H, Guo H. HOOKLESS1 acetylates AUTOPHAGY-RELATED PROTEIN18a to promote autophagy during nutrient starvation in Arabidopsis. THE PLANT CELL 2023; 36:136-157. [PMID: 37823521 PMCID: PMC10734606 DOI: 10.1093/plcell/koad252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Acetylation is an important posttranslational modification (PTM) that regulates almost all core processes of autophagy in yeast and mammals. However, the role of protein acetylation in plant autophagy and the underlying regulatory mechanisms remain unclear. Here, we show the essential role of the putative acetyltransferase HOOKLESS1 (HLS1) in acetylation of the autophagy-related protein ATG18a, a key autophagy component that regulates autophagosome formation in Arabidopsis (Arabidopsis thaliana). Loss of HLS1 function suppressed starvation-induced autophagy and increased plant susceptibility to nutrient deprivation. We discovered that HLS1 physically interacts with and directly acetylates ATG18a both in vitro and in vivo. In contrast, mutating putative active sites in HLS1 inhibited ATG18a acetylation and suppressed autophagy upon nutrient deprivation. Accordingly, overexpression of ATG18a mutant variants with lower acetylation levels inhibited the binding activity of ATG18a to PtdIns(3)P and autophagosome formation under starvation conditions. Moreover, HLS1-modulated autophagy was uncoupled from its function in hook development. Taken together, these findings shed light on a key regulator of autophagy and further elucidate the importance of PTMs in modulating autophagy in plants.
Collapse
Affiliation(s)
- Li Huang
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xing Wen
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Lian Jin
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Huihui Han
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Hongwei Guo
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| |
Collapse
|
18
|
Barros JAS, Cavalcanti JHF, Pimentel KG, Magen S, Soroka Y, Weiss S, Medeiros DB, Nunes-Nesi A, Fernie AR, Avin-Wittenberg T, Araújo WL. The interplay between autophagy and chloroplast vesiculation pathways under dark-induced senescence. PLANT, CELL & ENVIRONMENT 2023; 46:3721-3736. [PMID: 37615309 DOI: 10.1111/pce.14701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
In cellular circumstances where carbohydrates are scarce, plants can use alternative substrates for cellular energetic maintenance. In plants, the main protein reserve is present in the chloroplast, which contains most of the total leaf proteins and represents a rich source of nitrogen and amino acids. Autophagy plays a key role in chloroplast breakdown, a well-recognised symptom of both natural and stress-induced plant senescence. Remarkably, an autophagic-independent route of chloroplast degradation associated with chloroplast vesiculation (CV) gene was previously demonstrated. During extended darkness, CV is highly induced in the absence of autophagy, contributing to the early senescence phenotype of atg mutants. To further investigate the role of CV under dark-induced senescence conditions, mutants with low expression of CV (amircv) and double mutants amircv1xatg5 were characterised. Following darkness treatment, no aberrant phenotypes were observed in amircv single mutants; however, amircv1xatg5 double mutants displayed early senescence and altered dismantling of chloroplast and membrane structures under these conditions. Metabolic characterisation revealed that the functional lack of both CV and autophagy leads to higher impairment of amino acid release and differential organic acid accumulation during starvation conditions. The data obtained are discussed in the context of the role of CV and autophagy, both in terms of cellular metabolism and the regulation of chloroplast degradation.
Collapse
Affiliation(s)
- Jessica A S Barros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - João Henrique F Cavalcanti
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá, Amazonas, Brazil
| | - Karla G Pimentel
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Sahar Magen
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Yoram Soroka
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Shahar Weiss
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - David B Medeiros
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
19
|
Asad MAU, Guan X, Zhou L, Qian Z, Yan Z, Cheng F. Involvement of plant signaling network and cell metabolic homeostasis in nitrogen deficiency-induced early leaf senescence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111855. [PMID: 37678563 DOI: 10.1016/j.plantsci.2023.111855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Nitrogen (N) is a basic building block that plays an essential role in the maintenance of normal plant growth and its metabolic functions through complex regulatory networks. Such the N metabolic network comprises a series of transcription factors (TFs), with the coordinated actions of phytohormone and sugar signaling to sustain cell homeostasis. The fluctuating N concentration in plant tissues alters the sensitivity of several signaling pathways to stressful environments and regulates the senescent-associated changes in cellular structure and metabolic process. Here, we review recent advances in the interaction between N assimilation and carbon metabolism in response to N deficiency and its regulation to the nutrient remobilization from source to sink during leaf senescence. The regulatory networks of N and sugar signaling for N deficiency-induced leaf senescence is further discussed to explain the effects of N deficiency on chloroplast disassembly, reactive oxygen species (ROS) burst, asparagine metabolism, sugar transport, autophagy process, Ca2+ signaling, circadian clock response, brassinazole-resistant 1 (BZRI), and other stress cell signaling. A comprehensive understanding for the metabolic mechanism and regulatory network underlying N deficiency-induced leaf senescence may provide a theoretical guide to optimize the source-sink relationship during grain filling for the achievement of high yield by a selection of crop cultivars with the properly prolonged lifespan of functional leaves and/or by appropriate agronomic managements.
Collapse
Affiliation(s)
- Muhammad Asad Ullah Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xianyue Guan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhao Qian
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Zhang Yan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing, China.
| |
Collapse
|
20
|
Qi H, Wang Y, Bao Y, Bassham DC, Chen L, Chen QF, Hou S, Hwang I, Huang L, Lai Z, Li F, Liu Y, Qiu R, Wang H, Wang P, Xie Q, Zeng Y, Zhuang X, Gao C, Jiang L, Xiao S. Studying plant autophagy: challenges and recommended methodologies. ADVANCED BIOTECHNOLOGY 2023; 1:2. [PMID: 39883189 PMCID: PMC11727600 DOI: 10.1007/s44307-023-00002-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 01/31/2025]
Abstract
In plants, autophagy is a conserved process by which intracellular materials, including damaged proteins, aggregates, and entire organelles, are trafficked to the vacuole for degradation, thus maintaining cellular homeostasis. The past few decades have seen extensive research into the core components of the central autophagy machinery and their physiological roles in plant growth and development as well as responses to biotic and abiotic stresses. Moreover, several methods have been established for monitoring autophagic activities in plants, and these have greatly facilitated plant autophagy research. However, some of the methodologies are prone to misuse or misinterpretation, sometimes casting doubt on the reliability of the conclusions being drawn about plant autophagy. Here, we summarize the methods that are widely used for monitoring plant autophagy at the physiological, microscopic, and biochemical levels, including discussions of their advantages and limitations, to provide a guide for studying this important process.
Collapse
Affiliation(s)
- Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yao Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yan Bao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Liang Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Suiwen Hou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology and Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Li Huang
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Faqiang Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Pengwei Wang
- MOE Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Shatin Hong Kong, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Shatin Hong Kong, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Shatin Hong Kong, China.
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
21
|
Fleitas AL, Castro A, Blumwald E, Vidal S. Functional specialization of chloroplast vesiculation ( CV) duplicated genes from soybean shows partial overlapping roles during stress-induced or natural senescence. FRONTIERS IN PLANT SCIENCE 2023; 14:1184020. [PMID: 37346131 PMCID: PMC10280078 DOI: 10.3389/fpls.2023.1184020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
Soybean is a globally important legume crop which is highly sensitive to drought. The identification of genes of particular relevance for drought responses provides an important basis to improve tolerance to environmental stress. Chloroplast Vesiculation (CV) genes have been characterized in Arabidopsis and rice as proteins participating in a specific chloroplast-degradation vesicular pathway (CVV) during natural or stress-induced leaf senescence. Soybean genome contains two paralogous genes encoding highly similar CV proteins, CV1 and CV2. In this study, we found that expression of CV1 was differentially upregulated by drought stress in soybean contrasting genotypes exhibiting slow-wilting (tolerant) or fast-wilting (sensitive) phenotypes. CV1 reached higher induction levels in fast-wilting plants, suggesting a negative correlation between CV1 gene expression and drought tolerance. In contrast, autophagy (ATG8) and ATI-PS (ATI1) genes were induced to higher levels in slow-wilting plants, supporting a pro-survival role for these genes in soybean drought tolerance responses. The biological function of soybean CVs in chloroplast degradation was confirmed by analyzing the effect of conditional overexpression of CV2-FLAG fusions on the accumulation of specific chloroplast proteins. Functional specificity of CV1 and CV2 genes was assessed by analyzing their specific promoter activities in transgenic Arabidopsis expressing GUS reporter gene driven by CV1 or CV2 promoters. CV1 promoter responded primarily to abiotic stimuli (hyperosmolarity, salinity and oxidative stress), while the promoter of CV2 was predominantly active during natural senescence. Both promoters were highly responsive to auxin but only CV1 responded to other stress-related hormones, such as ABA, salicylic acid and methyl jasmonate. Moreover, the dark-induced expression of CV2, but not of CV1, was strongly inhibited by cytokinin, indicating similarities in the regulation of CV2 to the reported expression of Arabidopsis and rice CV genes. Finally, we report the expression of both CV1 and CV2 genes in roots of soybean and transgenic Arabidopsis, suggesting a role for the encoded proteins in root plastids. Together, the results indicate differential roles for CV1 and CV2 in development and in responses to environmental stress, and point to CV1 as a potential target for gene editing to improve crop performance under stress without compromising natural development.
Collapse
Affiliation(s)
- Andrea Luciana Fleitas
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alexandra Castro
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
22
|
Chiu CY, Lung HF, Chou WC, Lin LY, Chow HX, Kuo YH, Chien PS, Chiou TJ, Liu TY. Autophagy-Mediated Phosphate Homeostasis in Arabidopsis Involves Modulation of Phosphate Transporters. PLANT & CELL PHYSIOLOGY 2023; 64:519-535. [PMID: 36943363 DOI: 10.1093/pcp/pcad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 05/17/2023]
Abstract
Autophagy in plants is regulated by diverse signaling cascades in response to environmental changes. Fine-tuning of its activity is critical for the maintenance of cellular homeostasis under basal and stressed conditions. In this study, we compared the Arabidopsis autophagy-related (ATG) system transcriptionally under inorganic phosphate (Pi) deficiency versus nitrogen deficiency and showed that most ATG genes are only moderately upregulated by Pi starvation, with relatively stronger induction of AtATG8f and AtATG8h among the AtATG8 family. We found that Pi shortage increased the formation of GFP-ATG8f-labeled autophagic structures and the autophagic flux in the differential zone of the Arabidopsis root. However, the proteolytic cleavage of GFP-ATG8f and the vacuolar degradation of endogenous ATG8 proteins indicated that Pi limitation does not drastically alter the autophagic flux in the whole roots, implying a cell type-dependent regulation of autophagic activities. At the organismal level, the Arabidopsis atg mutants exhibited decreased shoot Pi concentrations and smaller meristem sizes under Pi sufficiency. Under Pi limitation, these mutants showed enhanced Pi uptake and impaired root cell division and expansion. Despite a reduced steady-state level of several PHOSPHATE TRANSPORTER 1s (PHT1s) in the atg root, cycloheximide treatment analysis suggested that the protein stability of PHT1;1/2/3 is comparable in the Pi-replete wild type and atg5-1. By contrast, the degradation of PHT1;1/2/3 is enhanced in the Pi-deplete atg5-1. Our findings reveal that both basal autophagy and Pi starvation-induced autophagy are required for the maintenance of Pi homeostasis and may modulate the expression of PHT1s through different mechanisms.
Collapse
Affiliation(s)
- Chang-Yi Chiu
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu 30013, Taiwan
| | - Hui-Fang Lung
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu 30013, Taiwan
| | - Wen-Chun Chou
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu 30013, Taiwan
| | - Li-Yen Lin
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu 30013, Taiwan
| | - Hong-Xuan Chow
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu 30013, Taiwan
| | - Yu-Hao Kuo
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu 30013, Taiwan
| | - Pei-Shan Chien
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Yin Liu
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu 30013, Taiwan
- Department of Life Science, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu 30013, Taiwan
| |
Collapse
|
23
|
He Y, Gao J, Luo M, Gao C, Lin Y, Wong HY, Cui Y, Zhuang X, Jiang L. VAMP724 and VAMP726 are involved in autophagosome formation in Arabidopsis thaliana. Autophagy 2023; 19:1406-1423. [PMID: 36130166 PMCID: PMC10240985 DOI: 10.1080/15548627.2022.2127240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/02/2022] Open
Abstract
Macroautophagy/autophagy, an evolutionarily conserved degradative process essential for cell homeostasis and development in eukaryotes, involves autophagosome formation and fusion with a lysosome/vacuole. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play important roles in regulating autophagy in mammals and yeast, but relatively little is known about SNARE function in plant autophagy. Here we identified and characterized two Arabidopsis SNAREs, AT4G15780/VAMP724 and AT1G04760/VAMP726, involved in plant autophagy. Phenotypic analysis showed that mutants of VAMP724 and VAMP726 are sensitive to nutrient-starved conditions. Live-cell imaging on mutants of VAMP724 and VAMP726 expressing YFP-ATG8e showed the formation of abnormal autophagic structures outside the vacuoles and compromised autophagic flux. Further immunogold transmission electron microscopy and electron tomography (ET) analysis demonstrated a direct connection between the tubular autophagic structures and the endoplasmic reticulum (ER) in vamp724-1 vamp726-1 double mutants. Further transient co-expression, co-immunoprecipitation and double immunogold TEM analysis showed that ATG9 (autophagy related 9) interacts and colocalizes with VAMP724 and VAMP726 in ATG9-positive vesicles during autophagosome formation. Taken together, VAMP724 and VAMP726 regulate autophagosome formation likely working together with ATG9 in Arabidopsis.Abbreviations: ATG, autophagy related; BTH, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester; Conc A, concanamycin A; EM, electron microscopy; ER, endoplasmic reticulum; FRET, Förster/fluorescence resonance energy transfer; MS, Murashige and Skoog; MVB, multivesicular body; PAS, phagophore assembly site; PM, plasma membrane; PVC, prevacuolar compartment; SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor; TEM, transmission electron microscopy; TGN, trans-Golgi network; WT, wild-type.
Collapse
Affiliation(s)
- Yilin He
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiayang Gao
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Mengqian Luo
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Youshun Lin
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hiu Yan Wong
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
24
|
Wu M, Zhang Q, Wu G, Zhang L, Xu X, Hu X, Gong Z, Chen Y, Li Z, Li H, Deng W. SlMYB72 affects pollen development by regulating autophagy in tomato. HORTICULTURE RESEARCH 2023; 10:uhac286. [PMID: 36938568 PMCID: PMC10015339 DOI: 10.1093/hr/uhac286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
The formation and development of pollen are among the most critical processes for reproduction and genetic diversity in the life cycle of flowering plants. The present study found that SlMYB72 was highly expressed in the pollen and tapetum of tomato flowers. Downregulation of SlMYB72 led to a decrease in the amounts of seeds due to abnormal pollen development compared with wild-type plants. Downregulation of SlMYB72 delayed tapetum degradation and inhibited autophagy in tomato anther. Overexpression of SlMYB72 led to abnormal pollen development and delayed tapetum degradation. Expression levels of some autophagy-related genes (ATGs) were decreased in SlMYB72 downregulated plants and increased in overexpression plants. SlMYB72 was directly bound to ACCAAC/ACCAAA motif of the SlATG7 promoter and activated its expression. Downregulation of SlATG7 inhibited the autophagy process and tapetum degradation, resulting in abnormal pollen development in tomatoes. These results indicated SlMYB72 affects the tapetum degradation and pollen development by transcriptional activation of SlATG7 and autophagy in tomato anther. The study expands the understanding of the regulation of autophagy by SlMYB72, uncovers the critical role that autophagy plays in pollen development, and provides potential candidate genes for the production of male-sterility in plants.
Collapse
Affiliation(s)
| | | | - Guanle Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Lu Zhang
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Xiaowei Hu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Zehao Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Yulin Chen
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | | | - Wei Deng
- Corresponding authors. E-mails: ;
| |
Collapse
|
25
|
Autophagy/Mitophagy Regulated by Ubiquitination: A Promising Pathway in Cancer Therapeutics. Cancers (Basel) 2023; 15:cancers15041112. [PMID: 36831455 PMCID: PMC9954143 DOI: 10.3390/cancers15041112] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Autophagy is essential for organismal development, maintenance of energy homeostasis, and quality control of organelles and proteins. As a selective form of autophagy, mitophagy is necessary for effectively eliminating dysfunctional mitochondria. Both autophagy and mitophagy are linked with tumor progression and inhibition. The regulation of mitophagy and autophagy depend upon tumor type and stage. In tumors, mitophagy has dual roles: it removes damaged mitochondria to maintain healthy mitochondria and energy production, which are necessary for tumor growth. In contrast, mitophagy has been shown to inhibit tumor growth by mitigating excessive ROS production, thus preventing mutation and chromosomal instability. Ubiquitination and deubiquitination are important modifications that regulate autophagy. Multiple E3 ubiquitin ligases and DUBs modulate the activity of the autophagy and mitophagy machinery, thereby influencing cancer progression. In this review, we summarize the mechanistic association between cancer development and autophagy/mitophagy activities regulated by the ubiquitin modification of autophagic proteins. In addition, we discuss the function of multiple proteins involved in autophagy/mitophagy in tumors that may represent potential therapeutic targets.
Collapse
|
26
|
Lemke MD, Woodson JD. Targeted for destruction: degradation of singlet oxygen-damaged chloroplasts. PLANT SIGNALING & BEHAVIOR 2022; 17:2084955. [PMID: 35676885 PMCID: PMC9196835 DOI: 10.1080/15592324.2022.2084955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Photosynthesis is an essential process that plants must regulate to survive in dynamic environments. Thus, chloroplasts (the sites of photosynthesis in plant and algae cells) use multiple signaling mechanisms to report their health to the cell. Such signals are poorly understood but often involve reactive oxygen species (ROS) produced from the photosynthetic light reactions. One ROS, singlet oxygen (1O2), can signal to initiate chloroplast degradation, but the cellular machinery involved in identifying and degrading damaged chloroplasts (i.e., chloroplast quality control pathways) is unknown. To provide mechanistic insight into these pathways, two recent studies have investigated degrading chloroplasts in the Arabidopsis thaliana1O2 over-producing plastid ferrochelatase two (fc2) mutant. First, a structural analysis of degrading chloroplasts was performed with electron microscopy, which demonstrated that damaged chloroplasts can protrude into the central vacuole compartment with structures reminiscent of fission-type microautophagy. 1O2-stressed chloroplasts swelled before these interactions, which may be a mechanism for their selective degradation. Second, the roles of autophagosomes and canonical autophagy (macroautophagy) were shown to be dispensable for 1O2-initiated chloroplast degradation. Instead, putative fission-type microautophagy genes were induced by chloroplast 1O2. Here, we discuss how these studies implicate this poorly understood cellular degradation pathway in the dismantling of 1O2-damaged chloroplasts.
Collapse
Affiliation(s)
- Matthew D. Lemke
- The School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Jesse D. Woodson
- The School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
27
|
Li X, Liao J, Bai H, Bei J, Li K, Luo M, Shen W, Yang C, Gao C. Arabidopsis flowering integrator SOC1 transcriptionally regulates autophagy in response to long-term carbon starvation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6589-6599. [PMID: 35852462 DOI: 10.1093/jxb/erac298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Autophagy is a highly conserved, self-digestion process that is essential for plant adaptations to various environmental stresses. Although the core components of autophagy in plants have been well established, the molecular basis for its transcriptional regulation remains to be fully characterized. In this study, we demonstrate that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), a MADS-box family transcription factor that determines flowering transition in Arabidopsis, functions as a transcriptional repressor of autophagy. EMSAs, ChIP-qPCR assays, and dual-luciferase receptor assays showed that SOC1 can bind to the promoters of ATG4b, ATG7, and ATG18c via the conserved CArG box. qRT-PCR analysis showed that the three ATG genes ATG4b, ATG7, and ATG18c were up-regulated in the soc1-2 mutant. In line with this, the mutant also displayed enhanced autophagy activity, as revealed by increased autophagosome formation and elevated autophagic flux compared with the wild type. More importantly, SOC1 negatively affected the tolerance of plants to long-term carbon starvation, and this process requires a functional autophagy pathway. Finally, we found that SOC1 was repressed upon carbon starvation at both the transcriptional and protein levels. Overall, our study not only uncovers an important transcriptional mechanism that contributes to the regulation of plant autophagy in response to nutrient starvation, but also highlights novel cellular functions of the flowering integrator SOC1.
Collapse
Affiliation(s)
- Xibao Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jun Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Haiyan Bai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jieying Bei
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kailin Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ming Luo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
28
|
Wang Q, Qin Q, Su M, Li N, Zhang J, Liu Y, Yan L, Hou S. Type one protein phosphatase regulates fixed-carbon starvation-induced autophagy in Arabidopsis. THE PLANT CELL 2022; 34:4531-4553. [PMID: 35961047 PMCID: PMC9614501 DOI: 10.1093/plcell/koac251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/04/2022] [Indexed: 05/23/2023]
Abstract
Autophagy, a conserved pathway that carries out the bulk degradation of cytoplasmic material in eukaryotic cells, is critical for plant physiology and development. This process is tightly regulated by ATG13, a core component of the ATG1 kinase complex, which initiates autophagy. Although ATG13 is known to be dephosphorylated immediately after nutrient starvation, the phosphatase regulating this process is poorly understood. Here, we determined that the Arabidopsis (Arabidopsis thaliana) septuple mutant (topp-7m) and octuple mutant (topp-8m) of TYPE ONE PROTEIN PHOSPHATASE (TOPP) exhibited significantly reduced tolerance to fixed-carbon (C) starvation due to compromised autophagy activity. Genetic analysis placed TOPP upstream of autophagy. Interestingly, ATG13a was found to be an interactor of TOPP. TOPP directly dephosphorylated ATG13a in vitro and in vivo. We identified 18 phosphorylation sites in ATG13a by LC-MS. Phospho-dead ATG13a at these 18 sites significantly promoted autophagy and increased the tolerance of the atg13ab mutant to fixed-C starvation. The dephosphorylation of ATG13a facilitated ATG1a-ATG13a complex formation. Consistently, the recruitment of ATG13a for ATG1a was markedly inhibited in topp-7m-1. Finally, TOPP-controlled dephosphorylation of ATG13a boosted ATG1a phosphorylation. Taken together, our study reveals the crucial role of TOPP in regulating autophagy by stimulating the formation of the ATG1a-ATG13a complex by dephosphorylating ATG13a in Arabidopsis.
Collapse
Affiliation(s)
- Qiuling Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Qianqian Qin
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Meifei Su
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Na Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Jing Zhang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Yang Liu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Longfeng Yan
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Suiwen Hou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
29
|
Zhao J, Bui MT, Ma J, Künzl F, Picchianti L, De La Concepcion JC, Chen Y, Petsangouraki S, Mohseni A, García-Leon M, Gomez MS, Giannini C, Gwennogan D, Kobylinska R, Clavel M, Schellmann S, Jaillais Y, Friml J, Kang BH, Dagdas Y. Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole. J Cell Biol 2022; 221:213556. [PMID: 36260289 PMCID: PMC9584626 DOI: 10.1083/jcb.202203139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/12/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022] Open
Abstract
Autophagosomes are double-membraned vesicles that traffic harmful or unwanted cellular macromolecules to the vacuole for recycling. Although autophagosome biogenesis has been extensively studied, autophagosome maturation, i.e., delivery and fusion with the vacuole, remains largely unknown in plants. Here, we have identified an autophagy adaptor, CFS1, that directly interacts with the autophagosome marker ATG8 and localizes on both membranes of the autophagosome. Autophagosomes form normally in Arabidopsis thaliana cfs1 mutants, but their delivery to the vacuole is disrupted. CFS1's function is evolutionarily conserved in plants, as it also localizes to the autophagosomes and plays a role in autophagic flux in the liverwort Marchantia polymorpha. CFS1 regulates autophagic flux by bridging autophagosomes with the multivesicular body-localized ESCRT-I component VPS23A, leading to the formation of amphisomes. Similar to CFS1-ATG8 interaction, disrupting the CFS1-VPS23A interaction blocks autophagic flux and renders plants sensitive to nitrogen starvation. Altogether, our results reveal a conserved vacuolar sorting hub that regulates autophagic flux in plants.
Collapse
Affiliation(s)
- Jierui Zhao
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria,Vienna BioCenter PhD Program, Doctoral School of the University at Vienna and Medical University of Vienna, Vienna, Austria
| | - Mai Thu Bui
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Juncai Ma
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Fabian Künzl
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Lorenzo Picchianti
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria,Vienna BioCenter PhD Program, Doctoral School of the University at Vienna and Medical University of Vienna, Vienna, Austria
| | | | - Yixuan Chen
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Sofia Petsangouraki
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Azadeh Mohseni
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Marta García-Leon
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Marta Salas Gomez
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Caterina Giannini
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Dubois Gwennogan
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École normale supérieure de Lyon, Centre national de la recherche scientifique (CNRS), Institut National de la Recherche Agronomique (INRAE), Lyon, France
| | - Roksolana Kobylinska
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Marion Clavel
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Swen Schellmann
- Botanik III, Biocenter, University of Cologne, Cologne, Germany
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École normale supérieure de Lyon, Centre national de la recherche scientifique (CNRS), Institut National de la Recherche Agronomique (INRAE), Lyon, France
| | - Jiri Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China,Correspondence to Byung-Ho Kang:
| | - Yasin Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria,Yasin Dagdas:
| |
Collapse
|
30
|
Popov VN, Syromyatnikov MY, Franceschi C, Moskalev AA, Krutovsky KV, Krutovsky KV. Genetic mechanisms of aging in plants: What can we learn from them? Ageing Res Rev 2022; 77:101601. [PMID: 35278719 DOI: 10.1016/j.arr.2022.101601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 12/18/2022]
Abstract
Plants hold all records in longevity. Their aging is a complex process. In the presented review, we analyzed published data on various aspects of plant aging with focus on any inferences that could shed a light on aging in animals and help to fight it in human. Plant aging can be caused by many factors, such as telomere depletion, genomic instability, loss of proteostasis, changes in intercellular interaction, desynchronosis, autophagy misregulation, epigenetic changes and others. Plants have developed a number of mechanisms to increase lifespan. Among these mechanisms are gene duplication ("genetic backup"), the active work of telomerases, abundance of meristematic cells, capacity of maintaining the meristems permanently active and continuous activity of phytohormones. Plant aging usually occurs throughout the whole perennial life, but could be also seasonal senescence. Study of causes for seasonal aging can also help to uncover the mechanisms of plant longevity. The influence of different factors such as microbiome communities, glycation, alternative oxidase activity, mitochondrial dysfunction on plant longevity was also reviewed. Adaptive mechanisms of long-lived plants are considered. Further comparative study of the mechanisms underlying longevity of plants is necessary. This will allow us to reach a potentially new level of understanding of the aging process of plants.
Collapse
|
31
|
Wang J, Miao S, Liu Y, Wang Y. Linking Autophagy to Potential Agronomic Trait Improvement in Crops. Int J Mol Sci 2022; 23:ijms23094793. [PMID: 35563184 PMCID: PMC9103229 DOI: 10.3390/ijms23094793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process in eukaryotic cells, by which the superfluous or damaged cytoplasmic components can be delivered into vacuoles or lysosomes for degradation and recycling. Two decades of autophagy research in plants uncovers the important roles of autophagy during diverse biological processes, including development, metabolism, and various stress responses. Additionally, molecular machineries contributing to plant autophagy onset and regulation have also gradually come into people’s sights. With the advancement of our knowledge of autophagy from model plants, autophagy research has expanded to include crops in recent years, for a better understanding of autophagy engagement in crop biology and its potentials in improving agricultural performance. In this review, we summarize the current research progress of autophagy in crops and discuss the autophagy-related approaches for potential agronomic trait improvement in crop plants.
Collapse
|
32
|
Magen S, Seybold H, Laloum D, Avin-Wittenberg T. Metabolism and autophagy in plants - A perfect match. FEBS Lett 2022; 596:2133-2151. [PMID: 35470431 DOI: 10.1002/1873-3468.14359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 01/18/2023]
Abstract
Autophagy is a eukaryotic cellular transport mechanism that delivers intracellular macromolecules, proteins, and even organelles to a lytic organelle (vacuole in yeast and plants/lysosome in animals) for degradation and nutrient recycling. The process is mediated by highly conserved Autophagy-Related (ATG) proteins. In plants, autophagy maintains cellular homeostasis under favorable conditions, guaranteeing normal plant growth and fitness. Severe stress such as nutrient starvation and plant senescence further induce it, thus ensuring plant survival under unfavorable conditions by providing nutrients through the removal of damaged or aged proteins, or organelles. In this article, we examine the interplay between metabolism and autophagy, focusing on the different aspects of this reciprocal relationship. We show that autophagy has a strong influence on a range of metabolic processes, whereas, at the same time, even single metabolites can activate autophagy. We highlight the involvement of ATG genes in metabolism, examine the role of the macronutrients carbon and nitrogen, as well as various micronutrients, and take a closer look at how the interaction between autophagy and metabolism impacts on plant phenotypes and yield.
Collapse
Affiliation(s)
- Sahar Magen
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| | - Heike Seybold
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| | - Daniel Laloum
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| |
Collapse
|
33
|
Chloroplast Protein Tic55 Involved in Dark-Induced Senescence through AtbHLH/AtWRKY-ANAC003 Controlling Pathway of Arabidopsis thaliana. Genes (Basel) 2022; 13:genes13020308. [PMID: 35205352 PMCID: PMC8872272 DOI: 10.3390/genes13020308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
The chloroplast comprises the outer and inner membranes that are composed of the translocon protein complexes Toc and Tic (translocon at the outer/inner envelope membrane of chloroplasts), respectively. Tic55, a chloroplast Tic protein member, was shown to be not vital for functional protein import in Arabidopsis from previous studies. Instead, Tic55 was revealed to be a dark-induced senescence-related protein in our earlier study. To explore whether Tic55 elicits other biological functions, a tic55-II knockout mutant (SALK_086048) was characterized under different stress treatments. Abiotic stress conditions, such as cold, heat, and high osmotic pressure, did not cause visible effects on tic55-II mutant plant, when compared to the wild type (WT). In contrast, senescence was induced in the individually darkened leaves (IDLs), resulting in the differential expression of the senescence-related genes PEROXISOME DEFECTIVE 1 (PED1), BLUE COPPER-BINDING PROTEIN (BCB), SENESCENCE 1 (SEN1), and RUBISCO SMALL SUBUNIT GENE 2B (RBCS2B). The absence of Tic55 in tic55-II knockout mutant inhibited expression of the senescence-related genes PED1, BCB, and SEN1 at different stages of dark adaptation, while causing stimulation of RBCS2B gene expression at an early stage of dark response. Finally, yeast one-hybrid assays located the ANAC003 promoter region with cis-acting elements are responsible for binding to the different AtbHLH proteins, thereby causing the transactivation of an HIS3 reporter gene. ANAC003 was shown previously as a senescence-related protein and its activation would lead to expression of senescence-associated genes (SAGs), resulting in plant senescence. Thus, we propose a hypothetical model in which three signaling pathways may be involved in controlling the expression of ANAC003, followed by expression of SAGs that in turn leads to leaf senescence in Arabidopsis by this study and previous data.
Collapse
|
34
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
35
|
Aniento F, Sánchez de Medina Hernández V, Dagdas Y, Rojas-Pierce M, Russinova E. Molecular mechanisms of endomembrane trafficking in plants. THE PLANT CELL 2022; 34:146-173. [PMID: 34550393 PMCID: PMC8773984 DOI: 10.1093/plcell/koab235] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/12/2021] [Indexed: 05/10/2023]
Abstract
Endomembrane trafficking is essential for all eukaryotic cells. The best-characterized membrane trafficking organelles include the endoplasmic reticulum (ER), Golgi apparatus, early and recycling endosomes, multivesicular body, or late endosome, lysosome/vacuole, and plasma membrane. Although historically plants have given rise to cell biology, our understanding of membrane trafficking has mainly been shaped by the much more studied mammalian and yeast models. Whereas organelles and major protein families that regulate endomembrane trafficking are largely conserved across all eukaryotes, exciting variations are emerging from advances in plant cell biology research. In this review, we summarize the current state of knowledge on plant endomembrane trafficking, with a focus on four distinct trafficking pathways: ER-to-Golgi transport, endocytosis, trans-Golgi network-to-vacuole transport, and autophagy. We acknowledge the conservation and commonalities in the trafficking machinery across species, with emphasis on diversity and plant-specific features. Understanding the function of organelles and the trafficking machinery currently nonexistent in well-known model organisms will provide great opportunities to acquire new insights into the fundamental cellular process of membrane trafficking.
Collapse
Affiliation(s)
| | - Víctor Sánchez de Medina Hernández
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | | | | | | |
Collapse
|
36
|
Tang J, Bassham DC. Autophagy during drought: function, regulation, and potential application. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:390-401. [PMID: 34469611 DOI: 10.1111/tpj.15481] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Drought is a major challenge for agricultural production since it causes substantial yield reduction and economic loss. Autophagy is a subcellular degradation and recycling pathway that functions in plant development and responses to many stresses, including drought. In this review, we summarize the current understanding of the function of autophagy and how autophagy is upregulated during drought stress. Autophagy helps plants to survive drought stress, and the mechanistic basis for this is beginning to be elucidated. Autophagy can selectively degrade aquaporins to adjust water permeability, and also degrades excess heme and damaged proteins to reduce their toxicity. In addition, autophagy can degrade regulators or components of hormone signaling pathways to promote stress responses. During drought recovery, autophagy degrades drought-induced proteins to reset the cell status. Autophagy is activated by multiple mechanisms during drought stress. Several transcription factors are induced by drought to upregulate autophagy-related gene expression, and autophagy is also regulated post-translationally through protein modification and stability. Based on these observations, manipulation of autophagy activity may be a promising approach for conferring drought tolerance in plants.
Collapse
Affiliation(s)
- Jie Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
37
|
Zhou S, Wang X, Ding J, Yang H, Xie Y. Increased ATG5 Expression Predicts Poor Prognosis and Promotes EMT in Cervical Carcinoma. Front Cell Dev Biol 2021; 9:757184. [PMID: 34901004 PMCID: PMC8655861 DOI: 10.3389/fcell.2021.757184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/22/2021] [Indexed: 01/06/2023] Open
Abstract
Cervical cancer has the second-highest incidence and mortality of female malignancy. The major causes of mortality in patients with cervical cancer are invasion and metastasis. The epithelial–mesenchymal transition (EMT) process plays a major role in the acquisition of metastatic potential and motility. Autophagy-related genes (ARGs) are implicated in the EMT process, and autophagy exerts a dual function in EMT management at different phases of tumor progression. However, the role of specific ARGs during the EMT process has not yet been reported in cervical cancer. Based on the data from the Cancer Genome Atlas (TCGA) cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) sequencing database, we performed the prognosis analysis for those ARGs obtained from the Human Autophagy database. ATG5 was identified as the only important harmful marker influencing survival of cervical cancer patients by univariate Cox regression (HR 1.7; 95% CI: 1.0–2.8, p = 0.047), and the 5-years survival rate for the high- and low-ATG5 expression groups was 0.486 (0.375–0.631) and 0.782 (0.708–0.863), respectively. TCGA CESC methylation data showed that eight methylation sites of ATG5 could also be significantly associated with the overall survival (OS) of cervical cancer patients. Single-sample gene-set enrichment and gene functional enrichment results showed that ATG5 was correlated with some cancer-related pathways, such as phagocytosis-related genes, endocytosis-related genes, immune-related genes, EMT score, and some EMT signature-related genes. Next, cell migration and invasion assay and Western blot were applied to detect the function of ATG5 in EMT of cervical cancer. In cervical cancer cells, ATG5 knockdown resulted in attenuation of migration and invasion. The functional study showed that knockdown of ATG5 could reverse EMT process by P-ERK, P-NFκBp65, P-mTOR pathways, and so on. In conclusion, the present study implies that ATG5 was a major contributor to EMT regulation and poor prognosis in cervical cancer.
Collapse
Affiliation(s)
- Suna Zhou
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China
| | - Xuequan Wang
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China
| | - Jiapei Ding
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China
| | - Haihua Yang
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China
| | - Youyou Xie
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China
| |
Collapse
|
38
|
Yang Y, Xiang Y, Niu Y. An Overview of the Molecular Mechanisms and Functions of Autophagic Pathways in Plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1977527. [PMID: 34617497 PMCID: PMC9208794 DOI: 10.1080/15592324.2021.1977527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is an evolutionarily conserved pathway for the degradation of damaged or toxic components. Under normal conditions, autophagy maintains cellular homeostasis. It can be triggered by senescence and various stresses. In the process of autophagy, autophagy-related (ATG) proteins not only function as central signal regulators but also participate in the development of complex survival mechanisms when plants suffer from adverse environments. Therefore, ATGs play significant roles in metabolism, development and stress tolerance. In the past decade, both the molecular mechanisms of autophagy and a large number of components involved in the assembly of autophagic vesicles have been identified. In recent studies, an increasing number of components, mechanisms, and receptors have appeared in the autophagy pathway. In this paper, we mainly review the recent progress of research on the molecular mechanisms of plant autophagy, as well as its function under biotic stress and abiotic stress.
Collapse
Affiliation(s)
- Yang Yang
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| | - Yun Xiang
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| | - Yue Niu
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| |
Collapse
|
39
|
Quezada-Rodríguez EH, Gómez-Velasco H, Arthikala MK, Lara M, Hernández-López A, Nanjareddy K. Exploration of Autophagy Families in Legumes and Dissection of the ATG18 Family with a Special Focus on Phaseolus vulgaris. PLANTS 2021; 10:plants10122619. [PMID: 34961093 PMCID: PMC8703869 DOI: 10.3390/plants10122619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Macroautophagy/autophagy is a fundamental catabolic pathway that maintains cellular homeostasis in eukaryotic cells by forming double-membrane-bound vesicles named autophagosomes. The autophagy family genes remain largely unexplored except in some model organisms. Legumes are a large family of economically important crops, and knowledge of their important cellular processes is essential. Here, to first address the knowledge gaps, we identified 17 ATG families in Phaseolus vulgaris, Medicago truncatula and Glycine max based on Arabidopsis sequences and elucidated their phylogenetic relationships. Second, we dissected ATG18 in subfamilies from early plant lineages, chlorophytes to higher plants, legumes, which included a total of 27 photosynthetic organisms. Third, we focused on the ATG18 family in P. vulgaris to understand the protein structure and developed a 3D model for PvATG18b. Our results identified ATG homologs in the chosen legumes and differential expression data revealed the nitrate-responsive nature of ATG genes. A multidimensional scaling analysis of 280 protein sequences from 27 photosynthetic organisms classified ATG18 homologs into three subfamilies that were not based on the BCAS3 domain alone. The domain structure, protein motifs (FRRG) and the stable folding conformation structure of PvATG18b revealing the possible lipid-binding sites and transmembrane helices led us to propose PvATG18b as the functional homolog of AtATG18b. The findings of this study contribute to an in-depth understanding of the autophagy process in legumes and improve our knowledge of ATG18 subfamilies.
Collapse
Affiliation(s)
- Elsa-Herminia Quezada-Rodríguez
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), León C.P. 37684, Mexico; (E.-H.Q.-R.); (M.-K.A.); (A.H.-L.)
| | - Homero Gómez-Velasco
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Cuidad Universitaria, Cuidad de Mexico C.P. 04510, Mexico;
| | - Manoj-Kumar Arthikala
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), León C.P. 37684, Mexico; (E.-H.Q.-R.); (M.-K.A.); (A.H.-L.)
| | - Miguel Lara
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca C.P. 62271, Mexico;
| | - Antonio Hernández-López
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), León C.P. 37684, Mexico; (E.-H.Q.-R.); (M.-K.A.); (A.H.-L.)
| | - Kalpana Nanjareddy
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), León C.P. 37684, Mexico; (E.-H.Q.-R.); (M.-K.A.); (A.H.-L.)
- Correspondence: ; Tel.: +52-477-1940800 (ext. 43462)
| |
Collapse
|
40
|
Autophagy Is Involved in the Viability of Overexpressing Thioredoxin o1 Tobacco BY-2 Cells under Oxidative Conditions. Antioxidants (Basel) 2021; 10:antiox10121884. [PMID: 34942987 PMCID: PMC8698322 DOI: 10.3390/antiox10121884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 01/06/2023] Open
Abstract
Autophagy is an essential process for the degradation of non-useful components, although the mechanism involved in its regulation is less known in plants than in animal systems. Redox regulation of autophagy components is emerging as a possible key mechanism with thioredoxins (TRXs) proposed as involved candidates. In this work, using overexpressing PsTRXo1 tobacco cells (OEX), which present higher viability than non-overexpressing cells after H2O2 treatment, we examine the functional interaction of autophagy and PsTRXo1 in a collaborative response. OEX cells present higher gene expression of the ATG (Autophagy related) marker ATG4 and higher protein content of ATG4, ATG8, and lipidated ATG8 as well as higher ATG4 activity than control cells, supporting the involvement of autophagy in their response to H2O2. In this oxidative situation, autophagy occurs in OEX cells as is evident from an accumulation of autolysosomes and ATG8 immunolocalization when the E-64d autophagy inhibitor is used. Interestingly, cell viability decreases in the presence of the inhibitor, pointing to autophagy as being involved in cell survival. The in vitro interaction of ATG4 and PsTRXo1 proteins is confirmed by dot-blot and co-immunoprecipitation assays as well as the redox regulation of ATG4 activity by PsTRXo1. These findings extend the role of TRXs in mediating the redox regulation of the autophagy process in plant cells.
Collapse
|
41
|
Wang P, Nolan TM, Clark NM, Jiang H, Montes-Serey C, Guo H, Bassham DC, Walley JW, Yin Y. The F-box E3 ubiquitin ligase BAF1 mediates the degradation of the brassinosteroid-activated transcription factor BES1 through selective autophagy in Arabidopsis. THE PLANT CELL 2021; 33:3532-3554. [PMID: 34436598 PMCID: PMC8566207 DOI: 10.1093/plcell/koab210] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/14/2021] [Indexed: 05/02/2023]
Abstract
Brassinosteroids (BRs) regulate plant growth, development, and stress responses by activating the core transcription factor BRI1-EMS-SUPPRESSOR1 (BES1), whose degradation occurs through the proteasome and autophagy pathways. The E3 ubiquitin ligase(s) that modify BES1 for autophagy-mediated degradation remain to be fully defined. Here, we identified an F-box family E3 ubiquitin ligase named BES1-ASSOCIATED F-BOX1 (BAF1) in Arabidopsis thaliana. BAF1 interacts with BES1 and mediates its ubiquitination and degradation. Our genetic data demonstrated that BAF1 inhibits BR signaling in a BES1-dependent manner. Moreover, BAF1 targets BES1 for autophagic degradation in a selective manner. BAF1-triggered selective autophagy of BES1 depends on the ubiquitin binding receptor DOMINANT SUPPRESSOR OF KAR2 (DSK2). Sucrose starvation-induced selective autophagy of BES1, but not bulk autophagy, was significantly compromised in baf1 mutant and BAF1-ΔF (BAF1 F-box decoy) overexpression plants, but clearly increased by BAF1 overexpression. The baf1 and BAF1-ΔF overexpression plants had increased BR-regulated growth but were sensitive to long-term sucrose starvation, while BAF1 overexpression plants had decreased BR-regulated growth but were highly tolerant of sucrose starvation. Our results not only established BAF1 as an E3 ubiquitin ligase that targets BES1 for degradation through selective autophagy pathway, but also revealed a mechanism for plants to reduce growth during sucrose starvation.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Natalie M Clark
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Hao Jiang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | | | - Hongqing Guo
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
- Plant Sciences Institutes, Iowa State University, Ames, Iowa 50011
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
- Plant Sciences Institutes, Iowa State University, Ames, Iowa 50011
- Author for correspondence:
| |
Collapse
|
42
|
Hashimi SM, Wu NN, Ran J, Liu JZ. Silencing Autophagy-Related Gene 2 ( ATG2) Results in Accelerated Senescence and Enhanced Immunity in Soybean. Int J Mol Sci 2021; 22:11749. [PMID: 34769178 PMCID: PMC8584260 DOI: 10.3390/ijms222111749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Autophagy plays a critical role in nutrient recycling and stress adaptations. However, the role of autophagy has not been extensively investigated in crop plants. In this study, soybean autophagy-related gene 2 (GmATG2) was silenced, using virus-induced silencing (VIGS) mediated by Bean pod mottle virus (BPMV). An accelerated senescence phenotype was exclusively observed for the GmATG2-silenced plants under dark conditions. In addition, significantly increased accumulation of both ROS and SA as well as a significantly induced expression of the pathogenesis-related gene 1 (PR1) were also observed on the leaves of the GmATG2-silenced plants, indicating an activated immune response. Consistent with this, GmATG2-silenced plants exhibited a significantly enhanced resistance to Pseudomonas syringae pv. glycinea (Psg) relative to empty vector control plants (BPMV-0). Notably, the activated immunity of the GmATG2-silenced plants was independent of the MAPK signaling pathway. The fact that the accumulation levels of ATG8 protein and poly-ubiquitinated proteins were significantly increased in the dark-treated GmATG2-silenced plants relative to the BPMV-0 plants indicated that the autophagic degradation is compromised in the GmATG2-silenced plants. Together, our results indicated that silencing GmATG2 compromises the autophagy pathway, and the autophagy pathway is conserved in different plant species.
Collapse
Affiliation(s)
- Said M. Hashimi
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (S.M.H.); (N.-N.W.); (J.R.)
| | - Ni-Ni Wu
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (S.M.H.); (N.-N.W.); (J.R.)
| | - Jie Ran
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (S.M.H.); (N.-N.W.); (J.R.)
| | - Jian-Zhong Liu
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (S.M.H.); (N.-N.W.); (J.R.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
43
|
Rehman NU, Zeng P, Mo Z, Guo S, Liu Y, Huang Y, Xie Q. Conserved and Diversified Mechanism of Autophagy between Plants and Animals upon Various Stresses. Antioxidants (Basel) 2021; 10:1736. [PMID: 34829607 PMCID: PMC8615172 DOI: 10.3390/antiox10111736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a highly conserved degradation mechanism in eukaryotes, executing the breakdown of unwanted cell components and subsequent recycling of cellular material for stress relief through vacuole-dependence in plants and yeast while it is lysosome-dependent in animal manner. Upon stress, different types of autophagy are stimulated to operate certain biological processes by employing specific selective autophagy receptors (SARs), which hijack the cargo proteins or organelles to the autophagy machinery for subsequent destruction in the vacuole/lysosome. Despite recent advances in autophagy, the conserved and diversified mechanism of autophagy in response to various stresses between plants and animals still remain a mystery. In this review, we intend to summarize and discuss the characterization of the SARs and their corresponding processes, expectantly advancing the scope and perspective of the evolutionary fate of autophagy between plants and animals.
Collapse
Affiliation(s)
- Naveed Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Peichun Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Zulong Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Shaoying Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences and Technology, Guangxi University, Nanning 530004, China;
| | - Yifeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310001, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| |
Collapse
|
44
|
Liu W, Feke A, Leung CC, Tarté DA, Yuan W, Vanderwall M, Sager G, Wu X, Schear A, Clark DA, Thines BC, Gendron JM. A metabolic daylength measurement system mediates winter photoperiodism in plants. Dev Cell 2021; 56:2501-2515.e5. [PMID: 34407427 DOI: 10.1016/j.devcel.2021.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/30/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022]
Abstract
Plants have served as a preeminent study system for photoperiodism due to their propensity to flower in concordance with the seasons. A nearly singular focus on understanding photoperiodic flowering has prevented the discovery of other photoperiod measuring systems necessary for vegetative health. Here, we use bioinformatics to identify photoperiod-induced genes in Arabidopsis. We show that one, PP2-A13, is expressed exclusively in, and required for, plant fitness in short, winter-like photoperiods. We create a real-time photoperiod reporter, using the PP2-A13 promoter driving luciferase, and show that photoperiodic regulation is independent of the canonical CO/FT mechanism for photoperiodic flowering. We then reveal that photosynthesis combines with circadian-clock-controlled starch production to regulate cellular sucrose levels to control photoperiodic expression of PP2-A13. This work demonstrates the existence of a photoperiod measuring system housed in the metabolic network of plants that functions to control seasonal cellular health.
Collapse
Affiliation(s)
- Wei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ann Feke
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Chun Chung Leung
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Daniel A Tarté
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Wenxin Yuan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Morgan Vanderwall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Garrett Sager
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Xing Wu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ariela Schear
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Bryan C Thines
- Biology Department, University of Puget Sound, Tacoma, WA 98416, USA
| | - Joshua M Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
45
|
Sánchez-Sevilla JF, Botella MA, Valpuesta V, Sanchez-Vera V. Autophagy Is Required for Strawberry Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2021; 12:688481. [PMID: 34512686 PMCID: PMC8429490 DOI: 10.3389/fpls.2021.688481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is a catabolic and recycling pathway that maintains cellular homeostasis under normal growth and stress conditions. Two major types of autophagy, microautophagy and macroautophagy, have been described in plants. During macroautophagy, cellular content is engulfed by a double-membrane vesicle called autophagosome. This vesicle fuses its outer membrane with the tonoplast and releases the content into the vacuole for degradation. During certain developmental processes, autophagy is enhanced by induction of several autophagy-related genes (ATG genes). Autophagy in crop development has been studied in relation to leaf senescence, seed and reproductive development, and vascular formation. However, its role in fruit ripening has only been partially addressed. Strawberry is an important berry crop, representative of non-climacteric fruit. We have analyzed the occurrence of autophagy in developing and ripening fruits of the cultivated strawberry. Our data show that most ATG genes are conserved in the genome of the cultivated strawberry Fragaria x ananassa and they are differentially expressed along the ripening of the fruit receptacle. ATG8-lipidation analysis proves the presence of two autophagic waves during ripening. In addition, we have confirmed the presence of autophagy at the cellular level by the identification of autophagy-related structures at different stages of the strawberry ripening. Finally, we show that blocking autophagy either biochemically or genetically dramatically affects strawberry growth and ripening. Our data support that autophagy is an active and essential process with different implications during strawberry fruit ripening.
Collapse
Affiliation(s)
- José F Sánchez-Sevilla
- Unidad Asociada al CSIC de I+D+i Biotecnología y Mejora en Fresa, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Centro IFAPA Málaga, Junta de Andalucía, Málaga, Spain
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Victoria Sanchez-Vera
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| |
Collapse
|
46
|
Huo L, Guo Z, Wang Q, Cheng L, Jia X, Wang P, Gong X, Li C, Ma F. Enhanced Autophagic Activity Improved the Root Growth and Nitrogen Utilization Ability of Apple Plants under Nitrogen Starvation. Int J Mol Sci 2021; 22:ijms22158085. [PMID: 34360850 PMCID: PMC8348665 DOI: 10.3390/ijms22158085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/26/2022] Open
Abstract
Autophagy is a conserved degradation pathway for recycling damaged organelles and aberrant proteins, and its important roles in plant adaptation to nutrient starvation have been generally reported. Previous studies found that overexpression of autophagy-related (ATG) gene MdATG10 enhanced the autophagic activity in apple roots and promoted their salt tolerance. The MdATG10 expression was induced by nitrogen depletion condition in both leaves and roots of apple plants. This study aimed to investigate the differences in the growth and physiological status between wild type and MdATG10-overexpressing apple plants in response to nitrogen starvation. A hydroponic system containing different nitrogen levels was used. The study found that the reduction in growth and nitrogen concentrations in different tissues caused by nitrogen starvation was relieved by MdATG10 overexpression. Further studies demonstrated the increased root growth and the higher nitrogen absorption and assimilation ability of transgenic plants. These characteristics contributed to the increased uptake of limited nitrogen nutrients by transgenic plants, which also reduced the starvation damage to the chloroplasts. Therefore, the MdATG10-overexpressing apple plants could maintain higher photosynthetic ability and possess better growth under nitrogen starvation stress.
Collapse
Affiliation(s)
- Liuqing Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (L.H.); (Z.G.); (Q.W.); (L.C.); (X.J.); (P.W.); (X.G.)
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Zijian Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (L.H.); (Z.G.); (Q.W.); (L.C.); (X.J.); (P.W.); (X.G.)
| | - Qi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (L.H.); (Z.G.); (Q.W.); (L.C.); (X.J.); (P.W.); (X.G.)
| | - Li Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (L.H.); (Z.G.); (Q.W.); (L.C.); (X.J.); (P.W.); (X.G.)
| | - Xin Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (L.H.); (Z.G.); (Q.W.); (L.C.); (X.J.); (P.W.); (X.G.)
| | - Ping Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (L.H.); (Z.G.); (Q.W.); (L.C.); (X.J.); (P.W.); (X.G.)
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (L.H.); (Z.G.); (Q.W.); (L.C.); (X.J.); (P.W.); (X.G.)
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (L.H.); (Z.G.); (Q.W.); (L.C.); (X.J.); (P.W.); (X.G.)
- Correspondence: (C.L.); (F.M.)
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (L.H.); (Z.G.); (Q.W.); (L.C.); (X.J.); (P.W.); (X.G.)
- Correspondence: (C.L.); (F.M.)
| |
Collapse
|
47
|
Lemke MD, Fisher KE, Kozlowska MA, Tano DW, Woodson JD. The core autophagy machinery is not required for chloroplast singlet oxygen-mediated cell death in the Arabidopsis thaliana plastid ferrochelatase two mutant. BMC PLANT BIOLOGY 2021; 21:342. [PMID: 34281507 PMCID: PMC8290626 DOI: 10.1186/s12870-021-03119-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Chloroplasts respond to stress and changes in the environment by producing reactive oxygen species (ROS) that have specific signaling abilities. The ROS singlet oxygen (1O2) is unique in that it can signal to initiate cellular degradation including the selective degradation of damaged chloroplasts. This chloroplast quality control pathway can be monitored in the Arabidopsis thaliana mutant plastid ferrochelatase two (fc2) that conditionally accumulates chloroplast 1O2 under diurnal light cycling conditions leading to rapid chloroplast degradation and eventual cell death. The cellular machinery involved in such degradation, however, remains unknown. Recently, it was demonstrated that whole damaged chloroplasts can be transported to the central vacuole via a process requiring autophagosomes and core components of the autophagy machinery. The relationship between this process, referred to as chlorophagy, and the degradation of 1O2-stressed chloroplasts and cells has remained unexplored. RESULTS To further understand 1O2-induced cellular degradation and determine what role autophagy may play, the expression of autophagy-related genes was monitored in 1O2-stressed fc2 seedlings and found to be induced. Although autophagosomes were present in fc2 cells, they did not associate with chloroplasts during 1O2 stress. Mutations affecting the core autophagy machinery (atg5, atg7, and atg10) were unable to suppress 1O2-induced cell death or chloroplast protrusion into the central vacuole, suggesting autophagosome formation is dispensable for such 1O2-mediated cellular degradation. However, both atg5 and atg7 led to specific defects in chloroplast ultrastructure and photosynthetic efficiencies, suggesting core autophagy machinery is involved in protecting chloroplasts from photo-oxidative damage. Finally, genes predicted to be involved in microautophagy were shown to be induced in stressed fc2 seedlings, indicating a possible role for an alternate form of autophagy in the dismantling of 1O2-damaged chloroplasts. CONCLUSIONS Our results support the hypothesis that 1O2-dependent cell death is independent from autophagosome formation, canonical autophagy, and chlorophagy. Furthermore, autophagosome-independent microautophagy may be involved in degrading 1O2-damaged chloroplasts. At the same time, canonical autophagy may still play a role in protecting chloroplasts from 1O2-induced photo-oxidative stress. Together, this suggests chloroplast function and degradation is a complex process utilizing multiple autophagy and degradation machineries, possibly depending on the type of stress or damage incurred.
Collapse
Affiliation(s)
- Matthew D. Lemke
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| | - Karen E. Fisher
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| | - Marta A. Kozlowska
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| | - David W. Tano
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| | - Jesse D. Woodson
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| |
Collapse
|
48
|
Wojciechowska N, Michalak KM, Bagniewska-Zadworna A. Autophagy-an underestimated coordinator of construction and destruction during plant root ontogeny. PLANTA 2021; 254:15. [PMID: 34184131 PMCID: PMC8238727 DOI: 10.1007/s00425-021-03668-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/20/2021] [Indexed: 05/13/2023]
Abstract
MAIN CONCLUSION Autophagy is a key but undervalued process in root ontogeny, ensuring both the proper development of root tissues as well as the senescence of the entire organ. Autophagy is a process which occurs during plant adaptation to changing environmental conditions as well as during plant ontogeny. Autophagy is also engaged in plant root development, however, the limitations of belowground studies make it challenging to understand the entirety of the developmental processes. We summarize and discuss the current data pertaining to autophagy in the roots of higher plants during their formation and degradation, from the beginning of root tissue differentiation and maturation; all the way to the aging of the entire organ. During root growth, autophagy participates in the processes of central vacuole formation in cortical tissue development, as well as vascular tissue differentiation and root senescence. At present, several key issues are still not entirely understood and remain to be addressed in future studies. The major challenge lies in the portrayal of the mechanisms of autophagy on subcellular events in belowground plant organs during the programmed control of cellular degradation pathways in roots. Given the wide range of technical areas of inquiry where root-related research can be applied, including cutting-edge cell biological methods to track, sort and screen cells from different root tissues and zones of growth, the identification of several lines of evidence pertaining to autophagy during root developmental processes is the most urgent challenge. Consequently, a substantial effort must be made to ensure whether the analyzed process is autophagy-dependent or not.
Collapse
Affiliation(s)
- Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Kornel M Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
49
|
Gomez RE, Lupette J, Chambaud C, Castets J, Ducloy A, Cacas JL, Masclaux-Daubresse C, Bernard A. How Lipids Contribute to Autophagosome Biogenesis, a Critical Process in Plant Responses to Stresses. Cells 2021; 10:1272. [PMID: 34063958 PMCID: PMC8224036 DOI: 10.3390/cells10061272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 01/18/2023] Open
Abstract
Throughout their life cycle, plants face a tremendous number of environmental and developmental stresses. To respond to these different constraints, they have developed a set of refined intracellular systems including autophagy. This pathway, highly conserved among eukaryotes, is induced by a wide range of biotic and abiotic stresses upon which it mediates the degradation and recycling of cytoplasmic material. Central to autophagy is the formation of highly specialized double membrane vesicles called autophagosomes which select, engulf, and traffic cargo to the lytic vacuole for degradation. The biogenesis of these structures requires a series of membrane remodeling events during which both the quantity and quality of lipids are critical to sustain autophagy activity. This review highlights our knowledge, and raises current questions, regarding the mechanism of autophagy, and its induction and regulation upon environmental stresses with a particular focus on the fundamental contribution of lipids. How autophagy regulates metabolism and the recycling of resources, including lipids, to promote plant acclimation and resistance to stresses is further discussed.
Collapse
Affiliation(s)
- Rodrigo Enrique Gomez
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Josselin Lupette
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Clément Chambaud
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Julie Castets
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Amélie Ducloy
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Jean-Luc Cacas
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Amélie Bernard
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| |
Collapse
|
50
|
Nakamura S, Hagihara S, Otomo K, Ishida H, Hidema J, Nemoto T, Izumi M. Autophagy Contributes to the Quality Control of Leaf Mitochondria. PLANT & CELL PHYSIOLOGY 2021; 62:229-247. [PMID: 33355344 PMCID: PMC8112837 DOI: 10.1093/pcp/pcaa162] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/05/2020] [Indexed: 05/11/2023]
Abstract
In autophagy, cytoplasmic components of eukaryotic cells are transported to lysosomes or the vacuole for degradation. Autophagy is involved in plant tolerance to the photooxidative stress caused by ultraviolet B (UVB) radiation, but its roles in plant adaptation to UVB damage have not been fully elucidated. Here, we characterized organellar behavior in UVB-damaged Arabidopsis (Arabidopsis thaliana) leaves and observed the occurrence of autophagic elimination of dysfunctional mitochondria, a process termed mitophagy. Notably, Arabidopsis plants blocked in autophagy displayed increased leaf chlorosis after a 1-h UVB exposure compared to wild-type plants. We visualized autophagosomes by labeling with a fluorescent protein-tagged autophagosome marker, AUTOPHAGY8 (ATG8), and found that a 1-h UVB treatment led to increased formation of autophagosomes and the active transport of mitochondria into the central vacuole. In atg mutant plants, the mitochondrial population increased in UVB-damaged leaves due to the cytoplasmic accumulation of fragmented, depolarized mitochondria. Furthermore, we observed that autophagy was involved in the removal of depolarized mitochondria when mitochondrial function was disrupted by mutation of the FRIENDLY gene, which is required for proper mitochondrial distribution. Therefore, autophagy of mitochondria functions in response to mitochondrion-specific dysfunction as well as UVB damage. Together, these results indicate that autophagy is centrally involved in mitochondrial quality control in Arabidopsis leaves.
Collapse
Affiliation(s)
- Sakuya Nakamura
- Center for Sustainable Resource Science (CSRS), RIKEN, Wako, 351-0198 Japan
| | - Shinya Hagihara
- Center for Sustainable Resource Science (CSRS), RIKEN, Wako, 351-0198 Japan
| | - Kohei Otomo
- Exploratory Research Center on Life and Living Systems (ExCELLs), National Institute of Natural Sciences, Okazaki, 444-8787 Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
- Department of Physiological Sciences, The Graduate University for Advanced Study (SOKENDAI), Hayama, 240-0193 Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020 Japan
| | - Hiroyuki Ishida
- Department of Applied Plant Science, Graduate School of Agricultural Sciences, Tohoku University, Sendai, 980-0845, Japan
| | - Jun Hidema
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Tomomi Nemoto
- Exploratory Research Center on Life and Living Systems (ExCELLs), National Institute of Natural Sciences, Okazaki, 444-8787 Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
- Department of Physiological Sciences, The Graduate University for Advanced Study (SOKENDAI), Hayama, 240-0193 Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020 Japan
| | - Masanori Izumi
- Center for Sustainable Resource Science (CSRS), RIKEN, Wako, 351-0198 Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, 322-0012 Japan
| |
Collapse
|