1
|
Utility of preclinical models of altered maternal nutrition to support the developmental origins of health and disease hypothesis. Clin Sci (Lond) 2022; 136:711-714. [PMID: 35575180 PMCID: PMC9112759 DOI: 10.1042/cs20211175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022]
Abstract
A clear link has been established between alterations in the early life environment and the risk for developing a range of cardiometabolic diseases in later life, a process preferentially termed developmental programming. In particular, alterations in the maternal nutritional environment have been associated with a range of adverse health outcomes in offspring across the lifecourse; effects that can be passed on to future generations. Following from the early epidemiological observations that provided the basis for the developmental origins of health and disease (DOHaD) hypothesis, a range of animal models were developed to examine the impact of early life programming and provide empirical data to support the emerging framework. These models became key tools to aid in our understanding of developmental programming as allowed investigation of potential mechanisms, strategies for intervention and transgenerational effects. The study published by Langley and Evans (Clin. Sci. 1994;86(2):217–222; DOI:10.1042/CS0860217), using a rat model of maternal low protein exposure, was one of the first to highlight the impact of an altered maternal nutritional environment on programming of elevated blood pressure in offspring. This work became a hallmark study in the DOHaD field by demonstrating key proof of principle to support the early epidemiological associations and characterizing a key preclinical model that has contributed greatly to our understanding of mechanisms underpinning developmental programming—particularly in the area of cardiovascular and renal function.
Collapse
|
2
|
Ito T, Saeki H, Guo X, Sysa-Shah P, Tamashiro KL, Lee RS, Ishiyama S, Orita H, Sato K, Brock MV, Gabrielson KL. Prenatal stress enhances atherosclerosis and telomere shortening in ApoE knockout mouse offspring. Am J Physiol Regul Integr Comp Physiol 2022; 323:R68-R80. [PMID: 35411811 DOI: 10.1152/ajpregu.00201.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Children born to women who experience stress during pregnancy have an increased risk of atherosclerosis in later life, but few animal models have explored mechanisms. To study this phenomena, timed-bred ApoE knockout mice were determined pregnant with ultrasound and randomly assigned on gestation day 8.5 to either a control (no stress) or prenatal stress (PS) group using two hours of restraint for five consecutive days. PS significantly increased plasma corticosterone levels in pregnant mice. The litters from PS mice showed increased neonatal mortality within the first week of life. Body weights (at euthanasia) of adult offspring at 25 weeks from the PS group were significantly increased compared to weights of controls. Adult offspring from these pregnancies were serially imaged with ultrasound to measure plaque thickness and were compared with plaque macro- and microscopic pathology. PS groups had increased plaques thickness by ultrasound, gross, histological evaluation and increased aortic root and valve macrophage infiltration at 25 weeks. Five-week old mice from PS group had significant decrease in mean arterial pressure, yet blood pressure normalized by 10 weeks. Since prenatal stress induced increased atherosclerosis, and telomeres are susceptible to stress, aortas from 10 week old mice were compared for telomere lengths and were found to be significantly shorter in PS mice compared to control mice. These studies support future investigation of how stress impacts telomere shortening in animal models and human aortas. This model could be further utilized to investigate the role of prenatal stress, telomere biology and atherosclerosis pathogenesis in adults.
Collapse
Affiliation(s)
- Tomoaki Ito
- Sidney Kimmel Cancer Center. Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Shizuoka, Japan, United States
| | - Harumi Saeki
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan, United States
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Polina Sysa-Shah
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kellie L Tamashiro
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Richard S Lee
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Shun Ishiyama
- Sidney Kimmel Cancer Center. Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Coloproctological Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Hajime Orita
- Department of Gastroenterology and Minimally Invasive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Koichi Sato
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Shizuoka, Japan, United States
| | - Malcolm V Brock
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Sidney Kimmel Cancer Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Sidney Kimmel Cancer Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
3
|
Madhavpeddi L, Hammond B, Carbone DL, Kang P, Handa RJ, Hale TM. Impact of Angiotensin II Antagonism on the Sex-Selective Dysregulation of Cardiovascular Function Induced by In Utero Dexamethasone Exposure. Am J Physiol Heart Circ Physiol 2022; 322:H597-H606. [PMID: 35179975 PMCID: PMC8934675 DOI: 10.1152/ajpheart.00587.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In utero exposure to glucocorticoids in late gestation programs changes in cardiovascular function. The objective of this study was to determine the degree to which angiotensin II mediates sex-biased changes in autonomic function as well as basal and stress-responsive cardiovascular function following in utero glucocorticoid exposure. Pregnant rats were administered the synthetic glucocorticoid dexamethasone (DEX 0.4mg/kg per day, s.c.) or vehicle on gestation days 18-21. Mean arterial pressure, heart rate, and heart rate variability (HRV) were measured via radiotelemetry in freely moving, conscious adult rats. To evaluate the impact of stress, rats were placed in a restraint tube for 20 minutes. In a separate cohort of rats, restraint stress was performed before and after chronic treatment with the angiotensin type 1 receptor antagonist, losartan (30mg/kg per day, i.p). Frequency domain analysis of HRV was evaluated, and data integrated into low frequency (LF: 0.20-0.75Hz) and high frequency (HF: 0.75-2.00Hz) bands. Prenatal DEX resulted in an exaggerated pressor and heart rate response to restraint in female offspring that was attenuated by prior losartan treatment. HF power was higher in vehicle-exposed female rats, compared to DEX females. Following losartan, HF power was equivalent between female vehicle and DEX-exposed rats. In utero exposure to DEX produced female-biased alterations in stress-responsive cardiovascular function which may be indicative of a reduction in parasympathetic activity. Moreover, these findings suggest this autonomic dysregulation may be mediated in part by long-term changes in renin-angiotensin signaling.
Collapse
Affiliation(s)
- Lakshmi Madhavpeddi
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| | - Bradley Hammond
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| | - David L Carbone
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| | - Paul Kang
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| | - Robert J Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States.,Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| |
Collapse
|
4
|
Bhunu B, Riccio I, Intapad S. Insights into the Mechanisms of Fetal Growth Restriction-Induced Programming of Hypertension. Integr Blood Press Control 2021; 14:141-152. [PMID: 34675650 PMCID: PMC8517636 DOI: 10.2147/ibpc.s312868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022] Open
Abstract
In recent decades, both clinical and animal studies have shown that fetal growth restriction (FGR), caused by exposure to adverse uterine environments, is a risk factor for hypertension as well as for a variety of adult diseases. This observation has shaped and informed the now widely accepted theory of developmental origins of health and disease (DOHaD). There is a plethora of evidence supporting the association of FGR with increased risk of adult hypertension; however, the underlying mechanisms responsible for this correlation remain unclear. This review aims to explain the current advances in the field of fetal programming of hypertension and a brief narration of the underlying mechanisms that may link FGR to increased risk of adult hypertension. We explain the theory of DOHaD and then provide evidence from both clinical and basic science research which support the theory of fetal programming of adult hypertension. In addition, we have explored the underlying mechanisms that may link FGR to an increased risk of adult hypertension. These mechanisms include epigenetic changes, metabolic disorders, vascular dysfunction, neurohormonal impairment, and alterations in renal physiology and function. We further describe sex differences seen in the developmental origins of hypertension and provide insights into the opportunities and challenges present in this field.
Collapse
Affiliation(s)
- Benjamin Bhunu
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Isabel Riccio
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Suttira Intapad
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
5
|
Alhamoud I, Legan SK, Gattineni J, Baum M. Sex differences in prenatal programming of hypertension by dexamethasone. Exp Biol Med (Maywood) 2021; 246:1554-1562. [PMID: 33794700 DOI: 10.1177/15353702211003294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Prenatal dexamethasone has been shown to increase blood pressure in male offspring but the mechanism for the increase in blood pressure is unclear. The present study examined if prenatal programming by maternal injection of dexamethasone on days 15 and 16 of gestation affected the blood pressure comparably in female and male offspring. Our hypothesis was that males would be affected by prenatal dexamethasone to a greater extent than females and that either an increase in renal tubular transporter abundance or an increase in renin or aldosterone system would be associated with hypertension with prenatal programming. Prenatal dexamethasone increased blood pressure at two months and six months of age and resulted in proteinuria and albuminuria at six months in male but not female rat offspring. There was no effect of prenatal dexamethasone on blood pressure and proteinuria at one month in male and in female offspring. While prenatal dexamethasone increased male renal thick ascending limb sodium potassium two chloride cotransporter protein abundance at two months, prenatal dexamethasone on days 15 and 16 of gestation did not affect transporter abundance in males at other ages, nor did it affect proximal tubule sodium/hydrogen exchanger or distal convoluted tubule sodium chloride cotransporter protein abundance at any age. There was no difference in systemic renin or aldosterone in the prenatal dexamethasone group compared to same sex controls. In conclusion, male but not female offspring have an increase in blood pressure and urinary protein excretion with prenatal dexamethasone. The increase in blood pressure with prenatal programming was not associated with a consistent increase in renal tubular transporter protein abundance, nor plasma renin activity and serum aldosterone.
Collapse
Affiliation(s)
- Issa Alhamoud
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9063, USA
| | - Susan K Legan
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9063, USA
| | - Jyothsna Gattineni
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9063, USA
| | - Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9063, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9063, USA
| |
Collapse
|
6
|
Sheng JA, Bales NJ, Myers SA, Bautista AI, Roueinfar M, Hale TM, Handa RJ. The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions. Front Behav Neurosci 2021; 14:601939. [PMID: 33519393 PMCID: PMC7838595 DOI: 10.3389/fnbeh.2020.601939] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
The hypothalamic-pituitary-adrenal axis is a complex system of neuroendocrine pathways and feedback loops that function to maintain physiological homeostasis. Abnormal development of the hypothalamic-pituitary-adrenal (HPA) axis can further result in long-term alterations in neuropeptide and neurotransmitter synthesis in the central nervous system, as well as glucocorticoid hormone synthesis in the periphery. Together, these changes can potentially lead to a disruption in neuroendocrine, behavioral, autonomic, and metabolic functions in adulthood. In this review, we will discuss the regulation of the HPA axis and its development. We will also examine the maternal-fetal hypothalamic-pituitary-adrenal axis and disruption of the normal fetal environment which becomes a major risk factor for many neurodevelopmental pathologies in adulthood, such as major depressive disorder, anxiety, schizophrenia, and others.
Collapse
Affiliation(s)
- Julietta A. Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Natalie J. Bales
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sage A. Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Anna I. Bautista
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Mina Roueinfar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Taben M. Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Robert J. Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| |
Collapse
|
7
|
Zuloaga DG, Heck AL, De Guzman RM, Handa RJ. Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biol Sex Differ 2020; 11:44. [PMID: 32727567 PMCID: PMC7388454 DOI: 10.1186/s13293-020-00319-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Estradiol and testosterone are powerful steroid hormones that impact brain function in numerous ways. During development, these hormones can act to program the adult brain in a male or female direction. During adulthood, gonadal steroid hormones can activate or inhibit brain regions to modulate adult functions. Sex differences in behavioral and neuroendocrine (i.e., hypothalamic pituitary adrenal (HPA) axis) responses to stress arise as a result of these organizational and activational actions. The sex differences that are present in the HPA and behavioral responses to stress are particularly important considering their role in maintaining homeostasis. Furthermore, dysregulation of these systems can underlie the sex biases in risk for complex, stress-related diseases that are found in humans. Although many studies have explored the role of estrogen and estrogen receptors in mediating sex differences in stress-related behaviors and HPA function, much less consideration has been given to the role of androgens. While circulating androgens can act by binding and activating androgen receptors, they can also act by metabolism to estrogenic molecules to impact estrogen signaling in the brain and periphery. This review focuses on androgens as an important hormone for modulating the HPA axis and behaviors throughout life and for setting up sex differences in key stress regulatory systems that could impact risk for disease in adulthood. In particular, impacts of androgens on neuropeptide systems known to play key roles in HPA and behavioral responses to stress (corticotropin-releasing factor, vasopressin, and oxytocin) are discussed. A greater knowledge of androgen action in the brain is key to understanding the neurobiology of stress in both sexes.
Collapse
Affiliation(s)
| | - Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
8
|
Goldstein JM, Hale T, Foster SL, Tobet SA, Handa RJ. Sex differences in major depression and comorbidity of cardiometabolic disorders: impact of prenatal stress and immune exposures. Neuropsychopharmacology 2019; 44:59-70. [PMID: 30030541 PMCID: PMC6235859 DOI: 10.1038/s41386-018-0146-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
Major depressive disorder topped ischemic heart disease as the number one cause of disability worldwide in 2012, and women have twice the risk of men. Further, the comorbidity of depression and cardiometabolic disorders will be one of the primary causes of disability worldwide by 2020, with women at twice the risk. Thus, understanding the sex-dependent comorbidities has public health consequences worldwide. We propose here that sex differences in MDD-cardiometabolic comorbidity originate, in part, from pathogenic processes initiated in fetal development that involve sex differences in shared pathophysiology between the brain, the vascular system, the CNS control of the heart and associated hormonal, immune, and metabolic physiology. Pathways implicate neurotrophic and angiogenic growth factors, gonadal hormone receptors, and neurotransmitters such as gamma amino butyric acid (GABA) on neuronal and vascular development of HPA axis regions, such as the paraventricular nucleus (PVN), in addition to blood pressure, in part through the renin-angiotensin system, and insulin and glucose metabolism. We show that the same prenatal exposures have consequences for sex differences across multiple organ systems that, in part, share common pathophysiology. Thus, we believe that applying a sex differences lens to understanding shared biologic substrates underlying these comorbidities will provide novel insights into the development of sex-dependent therapeutics. Further, taking a lifespan perspective beginning in fetal development provides the opportunity to target abnormalities early in the natural history of these disorders in a sex-dependent way.
Collapse
Affiliation(s)
- Jill M Goldstein
- Departments of Psychiatry and Obstetrics and Gynecology, Massachusetts General Hospital (MGH), Boston, MA, 02120, USA.
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA.
| | - Taben Hale
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - Simmie L Foster
- Department of Psychiatry, Harvard Medical School, at Massachusetts General Hospital, Boston, MA, USA
| | - Stuart A Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Robert J Handa
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
9
|
Ristić N, Nestorović N, Manojlović-Stojanoski M, Trifunović S, Ajdžanović V, Filipović B, Pendovski L, Milošević V. Adverse effect of dexamethasone on development of the fetal rat ovary. Fundam Clin Pharmacol 2018; 33:199-207. [PMID: 30216532 DOI: 10.1111/fcp.12415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/06/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022]
Abstract
Dexamethasone (Dx) is often used in obstetric practice to promote fetal lung maturation and to prevent respiratory distress syndrome when the risk of preterm delivery persists. This therapy enables survival of the newborn, but also is associated with deleterious effects on the offspring, such as reproductive disorders. The aim of this study was to determine specifically whether prenatal exposure to Dx disturbs the physiological balance between proliferation and apoptosis of germinative cells (GC) in the ovary of 19- and 21-day-old fetuses and thus induces developmental programming of the female reproductive system. Pregnant Wistar rats (n = 10/group), separated into control (vehicle) and Dx-treated (0.5 mg/kg body mass) groups, received injections on gestational days 16, 17, and 18. Exposure to Dx lowered the volume of the fetal ovary by 30% (P < 0.05) in 21-day-old fetuses, as well as the total number of GC in the ovary by 21% (P < 0.05). When compared to the controls, in Dx-exposed fetuses, the total number of PCNA-positive GC was 27% lower at 19 days and 71% lower at 21 days old (P < 0.05), while total numbers of caspase-3-positive GC were 2.3-fold and 34% higher, respectively (P < 0.05). Our results demonstrate that prenatal exposure to Dx diminished proliferation but increased the rate of germinative cell apoptosis, with consequently reduced total germinative cell number and ovary volume. Impairment of fetal oogenesis and fewer GC in the fetal ovary compromise the oogonial stock and thus may constitute a risk of female fertility.
Collapse
Affiliation(s)
- Nataša Ristić
- Department of Cytology, Institute for Biological Research"Siniša Stanković", University of Belgrade, 11060, Belgrade, Serbia
| | - Nataša Nestorović
- Department of Cytology, Institute for Biological Research"Siniša Stanković", University of Belgrade, 11060, Belgrade, Serbia
| | - Milica Manojlović-Stojanoski
- Department of Cytology, Institute for Biological Research"Siniša Stanković", University of Belgrade, 11060, Belgrade, Serbia
| | - Svetlana Trifunović
- Department of Cytology, Institute for Biological Research"Siniša Stanković", University of Belgrade, 11060, Belgrade, Serbia
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research"Siniša Stanković", University of Belgrade, 11060, Belgrade, Serbia
| | - Branko Filipović
- Department of Cytology, Institute for Biological Research"Siniša Stanković", University of Belgrade, 11060, Belgrade, Serbia
| | | | - Verica Milošević
- Department of Cytology, Institute for Biological Research"Siniša Stanković", University of Belgrade, 11060, Belgrade, Serbia
| |
Collapse
|
10
|
Wen Y, Shangguan Y, Pan Z, Hu H, Magdalou J, Chen L, Wang H. Activation of local bone RAS by maternal excessive glucocorticoid participated in the fetal programing of adult osteopenia induced by prenatal caffeine exposure. Toxicol Appl Pharmacol 2018; 363:1-10. [PMID: 30423288 DOI: 10.1016/j.taap.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 11/15/2022]
Abstract
This study was aimed to investigate whether and how prenatal caffeine exposure (PCE) could induce osteopenia in the adult offspring. Pregnant rats were treated with prenatal caffeine 12 mg/100 g body weight per day from pregnant day 9 to 20, while rat bone marrow mesenchymal stem cells (BMSCs) were treated with exogenous corticosterone during osteogenic induction. Shorter femur and primary ossification center was observed in the PCE offspring, as well as less bone trabecular and poor biomechanical intensity. Local gene expression of glucocorticoid receptor (GR) and angiotensin converting enzyme (ACE), as well as angiotensin 2 content, was found to be stimulated, while the expression of bone gamma-carboxyglutamate protein (BGLAP), alkaline phosphatase (ALP) and bone sialoprotein (BSP) was found to be suppressed, with hypomethylation of ACE promoter. Corticosterone (1250 nM) suppressed osteogenic differentiation of BMSCs and gene expression of BGLAP, ALP and BSP, which was attenuated by enalapril, while it stimulated ACE mRNA expression and induced hypomethylation of ACE promoter, which was attenuated by mifepristone. It indicated that PCE caused bone growth retardation and adult osteopenia in offspring, which might be triggered by the activation of local RAS induced by excessive maternal glucocorticoid, while the hypomethylation of ACE gene might be the key point of the sustained activation of the local RAS.
Collapse
Affiliation(s)
- Yinxian Wen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yangfan Shangguan
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Zhengqi Pan
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hang Hu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | | | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
11
|
Ni L, Pan Y, Tang C, Xiong W, Wu X, Zou C. Antenatal exposure to betamethasone induces placental 11β-hydroxysteroid dehydrogenase type 2 expression and the adult metabolic disorders in mice. PLoS One 2018; 13:e0203802. [PMID: 30212527 PMCID: PMC6136781 DOI: 10.1371/journal.pone.0203802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 08/07/2018] [Indexed: 12/23/2022] Open
Abstract
Antenatal overexposure to glucocorticoids causes fetal intrauterine growth restriction (IUGR) and adult metabolic disorders. 11β-hydroxysteroid dehydrogenase (11β-HSD) 1 and 2 are key enzymes for glucocorticoid metabolism, however, the detailed effects of antenatal overexposure to glucocorticoids on placental 11β-HSD1 and 2 expression and adult metabolic disorders remain obscure. Here, we report that, in placenta 11β-HSD1 is diffusely localized, whereas 11β-HSD2 is specifically expressed in labyrinthine layer. Exposure of pregnant dams to betamethasone significantly increases the expression of placental 11β-HSD2 but not 11β-HSD1, and decreases the weights of fetuses but not placentas. Antenatal exposure to betamethasone leads to either significant weight loss in the offspring younger than 10-week-old, or weight gain in those older than 14-week-old. Furthermore, antenatal exposure to betamethasone results in coexistence of various metabolic disorders in adult offspring, including hyperglycemia, glucose intolerance, low insulin secretory capacity and hyperlipidemia. The present study demonstrates that exposure of pregnant dams to betamethasone induces the expression of placental 11β-HSD2 but not 11β-HSD1, leads to fetal IUGR and causes adult metabolic disorders, providing evidence for fetal origins of adult diseases and the potential role of placental 11β-HSD2 in them.
Collapse
Affiliation(s)
- Li Ni
- Department of Endocrinology, the Children Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, China
| | - Yibin Pan
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Tang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenyi Xiong
- Department of Endocrinology, the Children Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ximei Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (XW); (CZ)
| | - Chaochun Zou
- Department of Endocrinology, the Children Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (XW); (CZ)
| |
Collapse
|
12
|
Baum M. Role of renal sympathetic nerve activity in prenatal programming of hypertension. Pediatr Nephrol 2018; 33:409-419. [PMID: 27001053 DOI: 10.1007/s00467-016-3359-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 12/30/2022]
Abstract
Prenatal insults, such as maternal dietary protein deprivation and uteroplacental insufficiency, lead to small for gestational age (SGA) neonates. Epidemiological studies from many different parts of the world have shown that SGA neonates are at increased risk for hypertension and early death from cardiovascular disease as adults. Animal models, including prenatal administration of dexamethasone, uterine artery ligation and maternal dietary protein restriction, result in SGA neonates with fewer nephrons than controls. These models are discussed in this educational review, which provides evidence that prenatal insults lead to altered sodium transport in multiple nephron segments. The factors that could result in increased sodium transport are discussed, focusing on new information that there is increased renal sympathetic nerve activity that may be responsible for augmented renal tubular sodium transport. Renal denervation abrogates the hypertension in programmed rats but has no effect on control rats. Other potential factors that could cause hypertension in programmed rats, such as the renin-angiotensin system, are also discussed.
Collapse
Affiliation(s)
- Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Building, Dallas, TX, 75390-9063, USA. .,Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
13
|
Prestipino L, Polson JW, Brolin E, Ritchie HE. Long-term programming effects on blood pressure following gestational exposure to the I Kr blocker Dofetilide. Physiol Rep 2018; 6:e13621. [PMID: 29504284 PMCID: PMC5835481 DOI: 10.14814/phy2.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 11/24/2022] Open
Abstract
A slow embryonic heart rate in early-mid gestation is associated with increased risk of embryonic death and malformation, however, the long-term consequences remain unknown. We administered Dofetilide (Dof, 2.5 mg/kg), a drug that produces embryo-specific bradycardia, to pregnant rats from gestational days 11-14. Embryonic heart rate and rhythm were determined using embryo culture. Cardiovascular function was assessed in surviving adult offspring at rest, during acute psychological stress (air jet stress, AJS), and after 7 days of repeated AJS. Dof reduced embryonic HR by 40% for ~8 h on each of the treatment days. On postnatal day 3, Dof offspring were ~10% smaller. Blood pressure was elevated in adult Dof rats (systolic blood pressure, night: 103.8 ± 3.9 vs. 111.2 ± 3.0 mmHg, P = 0.01). While the pressor response to AJS was similar in both groups (control 17.7 ± 3.4; Dof 18.9 ± 0.9 mmHg, P = 0.74), after 7 days repeated AJS, clear habituation was present in control (P = 0.0001) but not Dof offspring (P = 0.48). Only Dof offspring showed a small increase in resting blood pressure after 7 days repeated stress (+3.9 ± 1.7 mmHg, P = 0.05). The results indicate that embryonic bradycardia programs hypertension and impaired stress adaptation, and have implications for the maternal use of cardioactive drugs during pregnancy.
Collapse
Affiliation(s)
- Louise Prestipino
- School of Medical Sciences and Bosch InstituteSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Jaimie W. Polson
- School of Medical Sciences and Bosch InstituteSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Elisabeth Brolin
- School of Medical Sciences and Bosch InstituteSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Helen E. Ritchie
- School of Medical Sciences and Bosch InstituteSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| |
Collapse
|
14
|
Mansuri A, Legan SK, Jain J, Alhamoud I, Gattineni J, Baum M. Effect of renal denervation on urine angiotensinogen excretion in prenatally programmed rats. Physiol Rep 2017; 5:5/20/e13482. [PMID: 29051307 PMCID: PMC5661239 DOI: 10.14814/phy2.13482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 01/01/2023] Open
Abstract
Prenatal programming results in an increase in blood pressure in adult offspring. We have shown that compared to control adult offspring whose mothers were fed a 20% protein diet, programmed adults whose mothers were fed a 6% protein diet during the last half of pregnancy have an increase in renal sympathetic nerve activity and urinary angiotensinogen/creatinine levels. We hypothesized that the increase in urinary angiotensinogen was mediated by renal sympathetic nerve activity in programmed rats. In this study performed in 3 month old rats, renal denervation resulted in normalization of blood pressure in the 6% programmed group (150 ± 3 Hg in 6% sham vs. 121 ± 4 Hg in 6% denervated, P < 0.001), and a reduction in blood pressure in the 20% group (126 ± 2 Hg 20% sham vs. 113 ± 4 Hg 20% denervated (P < 0.05). We confirm that the intrarenal renin–angiotensin system assessed by urinary angiotensinogen/creatinine is upregulated in offspring of rats fed a 6% protein diet rats compared to 20% controls. To determine if sympathetic nerve activity was mediating the increase in urinary angiotensinogen in programmed rats, we compared denervated to sham‐operated control and programmed rats. Renal denervation had no effect on urinary angiotensinogen/creatinine ratio in the 20% group and no effect on the increased urinary angiotensinogen/creatinine ratio found in programmed rats. This study demonstrates that the increase in urinary angiotensinogen in programmed rats is not mediated by renal sympathetic nerve activity.
Collapse
Affiliation(s)
- Asifhusen Mansuri
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Susan K Legan
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Jyoti Jain
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Issa Alhamoud
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Jyothsna Gattineni
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas .,Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
15
|
Goldstein JM, Holsen L, Huang G, Hammond BD, James-Todd T, Cherkerzian S, Hale TM, Handa RJ. Prenatal stress-immune programming of sex differences in comorbidity of depression and obesity/metabolic syndrome. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 28179814 PMCID: PMC5286728 DOI: 10.31887/dcns.2016.18.4/jgoldstein] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Major depressive disorder (MDD) is the number one cause of disability worldwide and is comorbid with many chronic diseases, including obesity/metabolic syndrome (MetS). Women have twice as much risk for MDD and comorbidity with obesity/MetS as men, although pathways for understanding this association remain unclear. On the basis of clinical and preclinical studies, we argue that prenatal maternal stress (ie, excess glucocorticoid expression and associated immune responses) that occurs during the sexual differentiation of the fetal brain has sex-dependent effects on brain development within highly sexually dimorphic regions that regulate mood, stress, metabolic function, the autonomic nervous system, and the vasculature. Furthermore, these effects have lifelong consequences for shared sex-dependent risk of MDD and obesity/MetS. Thus, we propose that there are shared biologic substrates at the anatomical, molecular, and/or genetic levels that produce the comorbid risk for MDD-MetS through sex-dependent fetal origins.
Collapse
Affiliation(s)
- Jill M Goldstein
- Connors Center for Women's Health and Gender Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Holsen
- Connors Center for Women's Health and Gender Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Grace Huang
- Division of Endocrinology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Bradley D Hammond
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Tamarra James-Todd
- Connors Center for Women's Health and Gender Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sara Cherkerzian
- Connors Center for Women's Health and Gender Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
| | - Robert J Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
16
|
Kiguti LRA, Borges CS, Mueller A, Silva KP, Polo CM, Rosa JL, Silva PV, Missassi G, Valencise L, Kempinas WG, Pupo AS. Gender-specific impairment of in vitro sinoatrial node chronotropic responses and of myocardial ischemia tolerance in rats exposed prenatally to betamethasone. Toxicol Appl Pharmacol 2017; 334:66-74. [PMID: 28887130 DOI: 10.1016/j.taap.2017.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/01/2017] [Accepted: 09/04/2017] [Indexed: 01/28/2023]
Abstract
Excessive fetal glucocorticoid exposure has been linked to increased susceptibility to hypertension and cardiac diseases in the adult life, a process called fetal programming. The cardiac contribution to the hypertensive phenotype of glucocorticoid-programmed progeny is less known, therefore, we investigated in vitro cardiac functional parameters from rats exposed in utero to betamethasone. Pregnant Wistar rats received vehicle (VEH) or betamethasone (BET, 0.1mg/kg, i.m.) at gestational days 12, 13, 18 and 19. Male and female offspring were killed at post-natal day 30 and the right atrium (RA) was isolated to in vitro evaluation of drug-induced chronotropic responses. Additionally, whole hearts were retrograde-perfused in a Langendorff apparatus and infarct size in response to in vitro ischemia/reperfusion (I/R) protocol was evaluated. Male and female progeny from BET-exposed pregnant rats had reduced birth weight, a hallmark of fetal programming. Male BET-progeny had increased basal RA rate, impaired chronotropic responses to noradrenaline and adenosine, and increased myocardial damage to I/R. Though a 12-fold reduction in the negative chronotropic responses to adenosine, the effects of non-metabolisable adenosine receptor agonists 5'-(N-ethylcarboxamido)adenosine or 2-Chloro-adenosine were not different between VEH- and BET-exposed male rats. BET-exposed female offspring presented no cardiac dysfunction. Prenatal BET exposure engenders male-specific impairment of sinoatrial node function and on myocardial ischemia tolerance resulting, at least in part, from an increased adenosine metabolism in the heart. In light of the importance of adenosine in the cardiac physiology our results suggest a link between reduced adenosinergic signaling and the cardiac dysfunctions observed in glucocorticoid-induced fetal programming.
Collapse
Affiliation(s)
- L R A Kiguti
- Department of Pharmacology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil.
| | - C S Borges
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - A Mueller
- Department of Pharmacology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil; Instituto de Ciências da Saúde, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - K P Silva
- Department of Pharmacology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - C M Polo
- Department of Physiology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - J L Rosa
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - P V Silva
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - G Missassi
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - L Valencise
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - W G Kempinas
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - A S Pupo
- Department of Pharmacology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| |
Collapse
|
17
|
Goldstein JM. Prenatal stress-immune programming of sex differences in comorbidity of depression and obesity/metabolic syndrome. DIALOGUES IN CLINICAL NEUROSCIENCE 2016; 18:425-436. [PMID: 28179814 PMCID: PMC5286728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
Major depressive disorder (MDD) is the number one cause of disability worldwide and is comorbid with many chronic diseases, including obesity/metabolic syndrome (MetS). Women have twice as much risk for MDD and comorbidity with obesity/MetS as men, although pathways for understanding this association remain unclear. On the basis of clinical and preclinical studies, we argue that prenatal maternal stress (ie, excess glucocorticoid expression and associated immune responses) that occurs during the sexual differentiation of the fetal brain has sex-dependent effects on brain development within highly sexually dimorphic regions that regulate mood, stress, metabolic function, the autonomic nervous system, and the vasculature. Furthermore, these effects have lifelong consequences for shared sex-dependent risk of MDD and obesity/MetS. Thus, we propose that there are shared biologic substrates at the anatomical, molecular, and/or genetic levels that produce the comorbid risk for MDD-MetS through sex-dependent fetal origins.
Collapse
Affiliation(s)
- Jill M. Goldstein
- Connors Center for Women's Health and Gender Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Boubred F, Daniel L, Buffat C, Tsimaratos M, Oliver C, Lelièvre-Pégorier M, Simeoni U. The magnitude of nephron number reduction mediates intrauterine growth-restriction-induced long term chronic renal disease in the rat. A comparative study in two experimental models. J Transl Med 2016; 14:331. [PMID: 27899104 PMCID: PMC5129242 DOI: 10.1186/s12967-016-1086-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is a risk factor for hypertension (HT) and chronic renal disease (CRD). A reduction in the nephron number is proposed to be the underlying mechanism; however, the mechanism is debated. The aim of this study was to demonstrate that IUGR-induced HT and CRD are linked to the magnitude of nephron number reduction, independently on its cause. METHODS Systolic blood pressure (SBP), glomerular filtration rate (GFR), proteinuria, nephron number, and glomerular sclerosis were compared between IUGR offspring prenatally exposed to a maternal low-protein diet (9% casein; LPD offspring) or maternal administration of betamethasone (from E17 to E19; BET offspring) and offspring with a normal birth weight (NBW offspring). RESULTS Both prenatal interventions led to IUGR and a similar reduction in birth weight. In comparison to NBW offspring, BET offspring had a severe nephron deficit (-50% in males and -40% in females, p < 0.01), an impaired GFR (-33%, p < 0.05), and HT (SBP+ 17 mmHg, p < 0.05). Glomerular sclerosis was more than twofold higher in BET offspring than in NBW offspring (p < 0.05). Long-term SBP, GFR, and glomerular sclerosis were unchanged in LPD offspring while the nephron number was moderately reduced only in males (-28% vs. NBW offspring, p < 0.05). CONCLUSION In this study, the magnitude of nephron number reduction influences long term renal disease in IUGR offspring: a moderate nephron number is an insufficient factor. Extremely long-term follow-up of adults prenatally exposed to glucocorticoids are required.
Collapse
Affiliation(s)
- Farid Boubred
- NORT, Aix-Marseille Université, INRA, INSERM, 13005, Marseille, France. .,Department of Neonatology, Hôpital la Conception, AP-HM, 147 Boulevard Baille, 13385, Marseille Cedex, France.
| | - Laurent Daniel
- UPRES EA3281, Aix-Marseille Université, 13005, Marseille, France
| | | | - Michel Tsimaratos
- Pédiatrie Multidisciplinaire-Hôpital de la Timone, Marseille, France
| | - Charles Oliver
- NORT, Aix-Marseille Université, INRA, INSERM, 13005, Marseille, France
| | | | - Umberto Simeoni
- DOHaD Laboratory, CHUV University Hospital and UNIL, Lausanne, Switzerland
| |
Collapse
|
19
|
A review of fundamental principles for animal models of DOHaD research: an Australian perspective. J Dev Orig Health Dis 2016; 7:449-472. [DOI: 10.1017/s2040174416000477] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidemiology formed the basis of ‘the Barker hypothesis’, the concept of ‘developmental programming’ and today’s discipline of the Developmental Origins of Health and Disease (DOHaD). Animal experimentation provided proof of the underlying concepts, and continues to generate knowledge of underlying mechanisms. Interventions in humans, based on DOHaD principles, will be informed by experiments in animals. As knowledge in this discipline has accumulated, from studies of humans and other animals, the complexity of interactions between genome, environment and epigenetics, has been revealed. The vast nature of programming stimuli and breadth of effects is becoming known. As a result of our accumulating knowledge we now appreciate the impact of many variables that contribute to programmed outcomes. To guide further animal research in this field, the Australia and New Zealand DOHaD society (ANZ DOHaD) Animals Models of DOHaD Research Working Group convened at the 2nd Annual ANZ DOHaD Congress in Melbourne, Australia in April 2015. This review summarizes the contributions of animal research to the understanding of DOHaD, and makes recommendations for the design and conduct of animal experiments to maximize relevance, reproducibility and translation of knowledge into improving health and well-being.
Collapse
|
20
|
Contrasting effects of prenatal life stress on blood pressure and body mass index in young adults. J Hypertens 2016; 33:711-9; discussion 719. [PMID: 25915875 DOI: 10.1097/hjh.0000000000000476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Various environmental stressors in pregnancy have been reported to affect high blood pressure (BP) in adult offspring. However, few studies have examined the effect of prenatal maternal psychological stress on offspring BP and BMI in early adulthood. METHOD In 957 Raine cohort participants, regression analyses were used to examine the association between the count of maternal life stress events experienced during pregnancy and offspring BP and BMI at age 20. RESULTS Prenatal life stress associated positively with offspring BMI but inversely with SBP. After adjustment for confounders each additional prenatal life stress event reduced offspring SBP by 0.66 mmHg (P = 0.013) in those with an average BMI and lowered the odds of systolic (pre)hypertension by 17% (odds ratio = 0.83; P = 0.008). The inverse relationship between prenatal life stress and adult SBP was stronger in offspring with higher BMI. On the contrary, each unit increase in prenatal life stress score predicted a BMI increase of 0.37 kg/m (P = 0.022). Longitudinal analysis showed similar effects of prenatal life stress for offspring BMI from age 8 and SBP from age 14. CONCLUSION This study has shown that maternal stress in pregnancy significantly associated with BMI from early childhood, but contrary to our hypothesis predicted lower resting SBP and lower odds of systolic (pre)hypertension in young adult offspring. The effect of prenatal life stress on BP was accentuated by a higher BMI. Fetal programming events as a result of prenatal stress may underpin some of these relationships.
Collapse
|
21
|
Morton JS, Cooke CL, Davidge ST. In Utero Origins of Hypertension: Mechanisms and Targets for Therapy. Physiol Rev 2016; 96:549-603. [DOI: 10.1152/physrev.00015.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The developmental origins of health and disease theory is based on evidence that a suboptimal environment during fetal and neonatal development can significantly impact the evolution of adult-onset disease. Abundant evidence exists that a compromised prenatal (and early postnatal) environment leads to an increased risk of hypertension later in life. Hypertension is a silent, chronic, and progressive disease defined by elevated blood pressure (>140/90 mmHg) and is strongly correlated with cardiovascular morbidity/mortality. The pathophysiological mechanisms, however, are complex and poorly understood, and hypertension continues to be one of the most resilient health problems in modern society. Research into the programming of hypertension has proposed pharmacological treatment strategies to reverse and/or prevent disease. In addition, modifications to the lifestyle of pregnant women might impart far-reaching benefits to the health of their children. As more information is discovered, more successful management of hypertension can be expected to follow; however, while pregnancy complications such as fetal growth restriction, preeclampsia, preterm birth, etc., continue to occur, their offspring will be at increased risk for hypertension. This article reviews the current knowledge surrounding the developmental origins of hypertension, with a focus on mechanistic pathways and targets for therapeutic and pharmacologic interventions.
Collapse
Affiliation(s)
- Jude S. Morton
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Christy-Lynn Cooke
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Sandra T. Davidge
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| |
Collapse
|
22
|
Ristić N, Severs W, Nestorović N, Jarić I, Manojlović-Stojanoski M, Trifunović S, Pendovski L, Milosević V. Effects of Prenatal Dexamethasone on the Rat Pituitary Gland and Gonadotropic Cells in Female Offspring. Cells Tissues Organs 2016; 201:148-58. [DOI: 10.1159/000443987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2016] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids have a strong influence on growth and maturation of fetal organ systems, but overexposure to exogenous glucocorticoids may retard fetal growth and alter developmental processes in sensitive tissues. The aim of this study was to specifically determine whether prenatal exposure to dexamethasone (Dx) altered normal development and function of pituitary gonadotropic cells in neonatal, infant and peripubertal female offspring. On day 16 of pregnancy, rat dams received 1.0 mg Dx/kg body weight (BW) s.c., followed by 0.5 mg Dx/kg BW on days 17 and 18 of gestation. Control gravid females received the same volume of saline. Female offspring were sacrificed on days 5, 16 and 38 after delivery. The volume of the pituitary gland estimated using Cavalieri's principle was significantly reduced (p < 0.05). Using a fractionator-physical disector method, we found reduced total numbers of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) cells (p < 0.05), accompanied by a decrease (p < 0.05) in serum concentrations of FSH and LH, while the relative intensity of FSH and LH immunofluorescence remained unchanged in neonatal, infant and peripubertal female offspring prenatally exposed to Dx. The data document that overexposure to Dx during fetal development evokes developmental programming of the female reproductive system at the pituitary cellular level, which may be associated with impaired reproductive function.
Collapse
|
23
|
Nguyen P, Khurana S, Peltsch H, Grandbois J, Eibl J, Crispo J, Ansell D, Tai TC. Prenatal glucocorticoid exposure programs adrenal PNMT expression and adult hypertension. J Endocrinol 2015; 227:117-27. [PMID: 26475702 DOI: 10.1530/joe-15-0244] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prenatal exposure to glucocorticoids (GCs) programs for hypertension later in life. The aim of the current study was to examine the impact of prenatal GC exposure on the postnatal regulation of the gene encoding for phenylethanolamine N-methyltransferase (PNMT), the enzyme involved in the biosynthesis of the catecholamine, epinephrine. PNMT has been linked to hypertension and is elevated in animal models of hypertension. Male offspring of Wistar-Kyoto dams treated with dexamethasone (DEX) developed elevated systolic, diastolic and mean arterial blood pressure compared to saline-treated controls. Plasma epinephrine levels were also elevated in adult rats exposed to DEX in utero. RT-PCR analysis revealed adrenal PNMT mRNA was higher in DEX exposed adult rats. This was associated with increased mRNA levels of transcriptional regulators of the PNMT gene: Egr-1, AP-2, and GR. Western blot analyses showed increased expression of PNMT protein, along with increased Egr-1 and GR in adult rats exposed to DEX in utero. Furthermore, gel mobility shift assays showed increased binding of Egr-1 and GR to DNA. These results suggest that increased PNMT gene expression via altered transcriptional activity is a possible mechanism by which prenatal exposure to elevated levels of GCs may program for hypertension later in life.
Collapse
Affiliation(s)
- P Nguyen
- Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada
| | - S Khurana
- Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada
| | - H Peltsch
- Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada
| | - J Grandbois
- Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada
| | - J Eibl
- Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada
| | - J Crispo
- Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada
| | - D Ansell
- Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada
| | - T C Tai
- Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
24
|
Gasc JM, Clemessy M, Corvol P, Kempf H. A chicken model of pharmacologically-induced Hirschsprung disease reveals an unexpected role of glucocorticoids in enteric aganglionosis. Biol Open 2015; 4:666-71. [PMID: 25836673 PMCID: PMC4434818 DOI: 10.1242/bio.201410454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The enteric nervous system originates from neural crest cells that migrate in chains as they colonize the embryonic gut, eventually forming the myenteric and submucosal plexus. Failure of the neural crest cells to colonize the gut leads to aganglionosis in the terminal gut, a pathological condition called Hirschsprung disease (HSCR) in humans, also known as congenital megacolon or intestinal aganglionosis. One of the characteristics of the human HSCR is its variable penetrance, which may be attributable to the interaction between genetic factors, such as the endothelin-3/endothelin receptor B pathway, and non-genetic modulators, although the role of the latter has not well been established. We have created a novel HSCR model in the chick embryo allowing to test the ability of non-genetic modifiers to alter the HSCR phenotype. Chick embryos treated by phosphoramidon, which blocks the generation of endothelin-3, failed to develop enteric ganglia in the very distal bowel, characteristic of an HSCR-like phenotype. Administration of dexamethasone influenced the phenotype, suggesting that glucocorticoids may be environmental modulators of the penetrance of the aganglionosis in HSCR disease.
Collapse
Affiliation(s)
- Jean-Marie Gasc
- Centre Interdisciplinaire de Recherche Biomédicale (CIRB), Collège de France, 75005 Paris, France Chaire de Médecine Expérimentale, Collège de France, 75005 Paris, France
| | - Maud Clemessy
- Centre Interdisciplinaire de Recherche Biomédicale (CIRB), Collège de France, 75005 Paris, France Chaire de Médecine Expérimentale, Collège de France, 75005 Paris, France Centre de Recherche St-Antoine UMRS-938, INSERM-Université Pierre et Marie Curie, Paris 6, 75012 Paris, France
| | - Pierre Corvol
- Centre Interdisciplinaire de Recherche Biomédicale (CIRB), Collège de France, 75005 Paris, France Chaire de Médecine Expérimentale, Collège de France, 75005 Paris, France
| | - Hervé Kempf
- Centre Interdisciplinaire de Recherche Biomédicale (CIRB), Collège de France, 75005 Paris, France Chaire de Médecine Expérimentale, Collège de France, 75005 Paris, France UMR 7365 CNRS-Université de Lorraine, IMoPA, Faculté de Médecine, 54500 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
25
|
O'Sullivan L, Cuffe JSM, Koning A, Singh RR, Paravicini TM, Moritz KM. Excess prenatal corticosterone exposure results in albuminuria, sex-specific hypotension, and altered heart rate responses to restraint stress in aged adult mice. Am J Physiol Renal Physiol 2015; 308:F1065-73. [PMID: 25715988 DOI: 10.1152/ajprenal.00676.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/24/2015] [Indexed: 11/22/2022] Open
Abstract
Exposure to excess glucocorticoids programs susceptibility to cardiovascular and renal dysfunction in later life although the mechanisms have not been clearly elucidated. We administered corticosterone (CORT; 33 μg·kg(-1)·h(-1)) to pregnant mice for 60 h from embryonic day (E) 12.5. Prenatal CORT resulted in postnatal growth restriction and reduced nephron endowment at postnatal day 30 in both male and female offspring. The reduction in nephron number was associated with increased expression of apoptotic markers in the kidney at E14.5. In offspring of both sexes at 12 mo of age, there were no differences in kidney weights, urine output, or urinary sodium excretion; however, prenatal CORT exposure increased the urinary albumin/creatinine ratio and 24-h urinary albumin excretion. Surprisingly, at 12 mo male but not female offspring exposed to prenatal CORT were hypotensive, with mean arterial blood pressures ∼10 mmHg lower than untreated controls (P < 0.001). Finally, we examined how offspring responded to a renal or cardiovascular challenge (saline load or restraint stress). When given 0.9% NaCl as drinking water for 7 days, there were no differences in blood pressures or urinary parameters between groups. Restraint stress (15 min) caused a tachycardic response in all animals; however the increase in heart rate was not sustained in male offspring exposed to CORT (P < 0.01), suggesting that autonomic control of cardiovascular function may be altered. These data demonstrate that excess prenatal CORT impairs kidney development and increases the risk of cardiovascular dysfunction especially in males.
Collapse
Affiliation(s)
- Lee O'Sullivan
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - James S M Cuffe
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Anselm Koning
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Reetu R Singh
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Tamara M Paravicini
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia
| |
Collapse
|
26
|
Zohdi V, Lim K, Pearson JT, Black MJ. Developmental programming of cardiovascular disease following intrauterine growth restriction: findings utilising a rat model of maternal protein restriction. Nutrients 2014; 7:119-52. [PMID: 25551250 PMCID: PMC4303830 DOI: 10.3390/nu7010119] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/08/2014] [Indexed: 12/11/2022] Open
Abstract
Over recent years, studies have demonstrated links between risk of cardiovascular disease in adulthood and adverse events that occurred very early in life during fetal development. The concept that there are embryonic and fetal adaptive responses to a sub-optimal intrauterine environment often brought about by poor maternal diet that result in permanent adverse consequences to life-long health is consistent with the definition of "programming". The purpose of this review is to provide an overview of the current knowledge of the effects of intrauterine growth restriction (IUGR) on long-term cardiac structure and function, with particular emphasis on the effects of maternal protein restriction. Much of our recent knowledge has been derived from animal models. We review the current literature of one of the most commonly used models of IUGR (maternal protein restriction in rats), in relation to birth weight and postnatal growth, blood pressure and cardiac structure and function. In doing so, we highlight the complexity of developmental programming, with regards to timing, degree of severity of the insult, genotype and the subsequent postnatal phenotype.
Collapse
Affiliation(s)
- Vladislava Zohdi
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia.
| | - Kyungjoon Lim
- Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Institute, P.O. Box 6492 St Kilda Rd Central, Melbourne 8008, Australia.
| | - James T Pearson
- Department of Physiology, Monash University, Melbourne, VIC 3800, Australia.
| | - M Jane Black
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
27
|
Prenatal corticosterone and adolescent URB597 administration modulate emotionality and CB1 receptor expression in mice. Psychopharmacology (Berl) 2014; 231:2131-44. [PMID: 24311359 DOI: 10.1007/s00213-013-3367-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 11/14/2013] [Indexed: 12/21/2022]
Abstract
RATIONALE The central endocannabinoid system (eCB system) sustains the activity of the hypothalamus-pituitary-adrenal (HPA) axis in mediating individual emotional responses. Deviation in maturational trajectories of these two physiological systems, may persistently adjust individual behavioral phenotype. OBJECTIVE We investigated, in outbred CD1 male mice, whether exposure to prenatal stress may influence short- and long-term emotional and neurochemical responses to a pharmacological stimulation of the eCB system during adolescence. METHODS To mimic prenatal stress, pregnant mice were supplemented with corticosterone in the drinking water (33.3 mg/l); their adolescent male offspring received daily injections of the fatty acid amide hydrolase inhibitor, URB597 (0.4 mg/kg), in order to enhance eCB signaling. Mice were then tested for: locomotor activity during adolescence and locomotor activity, anxiogenic, and anhedonic profiles in adulthood. We analyzed the expression of CB1 receptors (CB1Rs) in prefrontal cortex, hippocampus, striatum, and cerebellum in adulthood. RESULTS Corticosterone administration (PC group) resulted, in adolescence, in a reduction in body weight and locomotion, while in adulthood, in increased anxiety-related behavior and reduced CB1Rs expression in cerebellum. URB597 exposure reduced locomotor activity and increased anhedonia in adulthood. CB1Rs were up-regulated in striatum and hippocampus and down-regulated in the cerebellum. PC-URB597 mice failed to show reductions in locomotion; exhibited increased risk assessment behavior; and showed reduced CB1Rs expression within the prefrontal cortex. CONCLUSIONS Present results provide support to the hypothesis that precocious manipulations mapping onto the HPA axis and eCB system may persistently adjust individual emotional responses and eCB system plasticity.
Collapse
|
28
|
Chronic high-fat diet increases acute neuroendocrine stress response independently of prenatal dexamethasone treatment in male rats. Acta Neuropsychiatr 2014; 26:8-18. [PMID: 25142095 DOI: 10.1017/neu.2013.28] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Intrauterine growth restriction (IUGR) has been associated with metabolic disorders later in life such as obesity and diabetes as well as psychiatric disorders such as depression and schizophrenia. Therefore, we wanted to investigate whether behavioural, metabolic or neuroendocrine abnormalities could be provoked or exacerbated by a high-fat diet (HFD) in an experimental model of IUGR. METHODS Pregnant dams were exposed to dexamethasone (DEX) in the third gestational week to induce IUGR. Late adolescent male offspring of DEX- and vehicle-treated dams were then fed a HFD or standard chow for 8 weeks and subjected to a variety of assessments. RESULTS Only diet affected the hypothalamus-pituitary-adrenal (HPA) axis stress response, as HFD doubled the observed corticosterone levels following acute restraint. HFD and prenatal DEX exposure concomitantly exacerbated depressive-like behaviour in the forced swim test, even though no interaction was seen. Prenatal DEX treatment tended to increase the basal acoustic startle response (ASR), while an interaction between HFD and DEX was present in the ASR pre-pulse inhibition suggestive of fundamental changes in neuronal gating mechanisms. Metabolic parameters were only affected by diet, as HFD increased fasting glucose and insulin levels. CONCLUSION We conclude that chronic HFD may be more important in programming of the HPA axis stress responsiveness than an adverse foetal environment and therefore potentially implies an increased risk for developing psychiatric and metabolic disease.
Collapse
|
29
|
Goldstein JM, Handa RJ, Tobet SA. Disruption of fetal hormonal programming (prenatal stress) implicates shared risk for sex differences in depression and cardiovascular disease. Front Neuroendocrinol 2014; 35:140-58. [PMID: 24355523 PMCID: PMC3917309 DOI: 10.1016/j.yfrne.2013.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 10/31/2013] [Accepted: 12/04/2013] [Indexed: 12/19/2022]
Abstract
Comorbidity of major depressive disorder (MDD) and cardiovascular disease (CVD) represents the fourth leading cause of morbidity and mortality worldwide, and women have a two times greater risk than men. Thus understanding the pathophysiology has widespread implications for attenuation and prevention of disease burden. We suggest that sex-dependent MDD-CVD comorbidity may result from alterations in fetal programming consequent to the prenatal maternal environments that produce excess glucocorticoids, which then drive sex-dependent developmental alterations of the fetal hypothalamic-pituitary-adrenal (HPA) axis circuitry impacting mood, stress regulation, autonomic nervous system (ANS), and the vasculature in adulthood. Evidence is consistent with the hypothesis that disruptions of pathways associated with gamma aminobutyric acid (GABA) in neuronal and vascular development and growth factors have critical roles in key developmental periods and adult responses to injury in heart and brain. Understanding the potential fetal origins of these sex differences will contribute to development of novel sex-dependent therapeutics.
Collapse
Affiliation(s)
- J M Goldstein
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA; Brigham and Women's Hospital (BWH), Connors Center for Women's Health & Gender Biology, 1620 Tremont St. BC-3-34, Boston, MA 02120, USA; BWH, Departments of Psychiatry and Medicine, 1620 Tremont St. BC-3-34, Boston, MA 02120, USA.
| | - R J Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N. Fifth Street, Phoenix, AZ 85004, USA
| | - S A Tobet
- Department of Biomedical Sciences and School of Biomedical Engineering, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
30
|
Rogers JM, Ellis-Hutchings RG, Grey BE, Zucker RM, Norwood J, Grace CE, Gordon CJ, Lau C. Elevated Blood Pressure in Offspring of Rats Exposed to Diverse Chemicals During Pregnancy. Toxicol Sci 2013; 137:436-46. [DOI: 10.1093/toxsci/kft248] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
31
|
O'Sullivan L, Cuffe JSM, Paravicini TM, Campbell S, Dickinson H, Singh RR, Gezmish O, Black MJ, Moritz KM. Prenatal exposure to dexamethasone in the mouse alters cardiac growth patterns and increases pulse pressure in aged male offspring. PLoS One 2013; 8:e69149. [PMID: 23935943 PMCID: PMC3723833 DOI: 10.1371/journal.pone.0069149] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 06/12/2013] [Indexed: 01/17/2023] Open
Abstract
Exposure to synthetic glucocorticoids during development can result in later cardiovascular and renal disease in sheep and rats. Although prenatal glucocorticoid exposure is associated with impaired renal development, less is known about effects on the developing heart. This study aimed to examine the effects of a short-term exposure to dexamethasone (60 hours from embryonic day 12.5) on the developing mouse heart, and cardiovascular function in adult male offspring. Dexamethasone (DEX) exposed fetuses were growth restricted compared to saline treated controls (SAL) at E14.5, but there was no difference between groups at E17.5. Heart weights of the DEX fetuses also tended to be smaller at E14.5, but not different at E17.5. Cardiac AT1aR, Bax, and IGF-1 mRNA expression was significantly increased by DEX compared to SAL at E17.5. In 12-month-old offspring DEX exposure caused an increase in basal blood pressure of ∼3 mmHg. In addition, DEX exposed mice had a widened pulse pressure compared to SAL. DEX exposed males at 12 months had an approximate 25% reduction in nephron number compared to SAL, but no difference in cardiomyocyte number. Exposure to DEX in utero appears to adversely impact on nephrogenesis and heart growth but is not associated with a cardiomyocyte deficit in male mice in adulthood, possibly due to compensatory growth of the myocardium following the initial insult. However, the widened pulse pressure may be indicative of altered vascular compliance.
Collapse
Affiliation(s)
- Lee O'Sullivan
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - James S. M. Cuffe
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Tamara M. Paravicini
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Sally Campbell
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Hayley Dickinson
- The Ritchie Centre, Monash Institute of Medical Research, Clayton, Victoria, Australia
| | - Reetu R. Singh
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Oksan Gezmish
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - M. Jane Black
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Karen M. Moritz
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- * E-mail:
| |
Collapse
|
32
|
Johnstone AFM, Gilbert ME, Aydin C, Grace CE, Hasegawa M, Gordon CJ. Thermoregulatory deficits in adult Long Evans rat exposed perinatally to the antithyroidal drug, propylthiouracil. Neurotoxicol Teratol 2013; 39:1-8. [PMID: 23732561 DOI: 10.1016/j.ntt.2013.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 11/16/2022]
Abstract
Developmental exposure to endocrine disrupting drugs and environmental toxicants has been shown to alter a variety of physiological processes in mature offspring. Body (core) temperature (T(c)) is a tightly regulated homeostatic system but is susceptible to disruptors of the hypothalamic pituitary thyroid (HPT) axis. We hypothesized that thermoregulation would be disrupted in adult offspring exposed perinatally to an HPT disruptor. Propylythiouracil (PTU) was used as a prototypical compound because of its well known antithyroidal properties. PTU was added to the drinking water of pregnant rats in concentrations of 0, 1, 2, 3, and 10 ppm from gestational day (GD) 6 through postnatal day (PND) 21. Adult male offspring were implanted with radiotransmitters to monitor Tc and motor activity (MA) and were observed undisturbed at an ambient temperature of 22 °C for 12 consecutive days. Data were averaged into a single 24 hour period to minimize impact of ultradian changes in T(c) and MA. All treatment groups showed a distinct circadian temperature rhythm. Rats exposed to 10 ppm PTU exhibited a marked deviation in their regulated T(c) with a reduction of approximately 0.4 °C below that of controls throughout the daytime period and a smaller reduction at night. Rats exposed to 1 or 2 ppm also had smaller but significant reductions in T(c). MA was unaffected by PTU. Overall, developmental exposure to moderate doses of an antithyroidal drug led to an apparent permanent reduction in T(c) of adult offspring that was independent of changes in MA.
Collapse
Affiliation(s)
- Andrew F M Johnstone
- Toxicology Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Saugstad OD, Kwinta P, Wollen EJ, Bik - Multanowski M, Madetko - Talowska A, Jagła M, Tomasik T, Pietrzyk JJ. Impact of antenatal glucocorticosteroids on whole-genome expression in preterm babies. Acta Paediatr 2013; 102:349-55. [PMID: 23347050 DOI: 10.1111/apa.12166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 11/20/2012] [Accepted: 01/11/2013] [Indexed: 12/19/2022]
Abstract
AIM To study the impact that using antenatal steroid to treat threatened preterm delivery has on whole-genome expression. METHODS A prospective whole-genome expression study was carried out on 50 newborn infants, delivered before 32 weeks gestation, who had been exposed to antenatal steroids, including 40 who had received a full antenatal steroid course. Seventy infants not exposed to antenatal steroids formed the control group. Microarray analyses were performed five and 28 days after delivery, and the results were validated by real-time PCR. The study was conducted between September 2008 and November 2010. RESULTS Twenty thousand six hundred and ninety-three genes were studied in the infants' leucocytes. Thirteen were differentially expressed 5 days after delivery, but there were no differences at day 28. Four genes related to cancer or inflammation were up-regulated. Nine genes were down-regulated: six were Y-linked and associated with malignancies, graft-versus-host disease, male infertility and cell differentiation and three were associated with pre-eclampsia, oxidative stress and chloride/bicarbonate exchange. Seven gene pathways were up-regulated at day five and only one at day 28. These were associated with cell growth, cell cycle regulation, metabolism and apoptosis. CONCLUSION Antenatal steroid therapy affects a limited number of genes and gene pathways in leucocytes in preterm babies at day five of life. The effect is short-lived, but long-term effects cannot be ruled out.
Collapse
Affiliation(s)
- Ola Didrik Saugstad
- Department of Pediatric Research; Clinic of Women and Child Health; Oslo University Hospital; University of Oslo; Norway
| | - Przemko Kwinta
- Department of Pediatrics; Jagiellonian University; Medical College; Krakow Poland
| | - Embjørg Julianne Wollen
- Department of Pediatric Research; Clinic of Women and Child Health; Oslo University Hospital; University of Oslo; Norway
| | | | | | - Mateusz Jagła
- Department of Pediatrics; Jagiellonian University; Medical College; Krakow Poland
| | - Tomasz Tomasik
- Department of Pediatrics; Jagiellonian University; Medical College; Krakow Poland
| | - Jacek Józef Pietrzyk
- Department of Pediatrics; Jagiellonian University; Medical College; Krakow Poland
- Department of Clinical Genetics; Jagiellonian University; Medical College; Krakow Poland
| |
Collapse
|
34
|
Sex and stress hormone influences on the expression and activity of brain-derived neurotrophic factor. Neuroscience 2012; 239:295-303. [PMID: 23211562 DOI: 10.1016/j.neuroscience.2012.10.073] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 01/02/2023]
Abstract
The neurotrophin, brain-derived neurotrophic factor (BDNF), is recognized as a key component in the regulation of CNS ontogeny, homeostasis and adult neuroplasticity. The importance of BDNF in CNS development and function is well documented by numerous reports from animal studies linking abnormal BDNF signaling to metabolic disturbances and anxiety or depressive-like behavior. Despite the diverse roles for BDNF in nearly all aspects of CNS physiology, the regulation of BDNF expression, as well as our understanding of the signaling mechanisms associated with this neurotrophin, remains incomplete. However, links between sex hormones such as estradiol and testosterone, as well as endogenous and synthetic glucocorticoids (GCs), have emerged as important mediators of BDNF expression and function. Examples of such regulation include brain region-specific induction of Bdnf mRNA in response to estradiol. Additional studies have also documented regulation of the expression of the high-affinity BDNF receptor Tropomyosin-Related Kinase B by estradiol, thus implicating sex steroids not only in the regulation of BDNF expression, but also in mechanisms of signaling associated with it. In addition to gonadal steroids, further evidence also suggests functional interaction between BDNF and GCs, such as in the regulation of corticotrophin-releasing hormone and other important neuropeptides. In this review, we provide an overview of the roles played by selected sex or stress hormones in the regulation of BDNF expression and signaling in the CNS.
Collapse
|
35
|
|
36
|
Boisvert MR, Koski KG, Burns DH, Skinner CD. Prediction of gestational diabetes mellitus based on an analysis of amniotic fluid by capillary electrophoresis. Biomark Med 2012; 6:645-53. [DOI: 10.2217/bmm.12.53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To detect gestational diabetes mellitus biomarkers in human amniotic fluid collected for age-related genetic testing using capillary electrophoresis and a sophisticated data analysis methodology. Materials & methods: Amniotic fluid samples were separated by capillary electrophoresis. Samples were classified using a genetic algorithm with Bayesian benefit function. The best model maximized the sensitivity and specificity and employed a leave-one-out cross-validation strategy. Results: Gestational diabetes mellitus (GDM; n = 14) was distinguished from non-GDM (n = 95) with 86% sensitivity and 99% specificity using two wavelets. These wavelets were located in the unresolved protein region and on the edge of the maternally derived albumin peak. Conclusion: GDM is a maternal pathology; however, it was shown that it alters the biochemical profile of amniotic fluid. Testing for GDM is normally carried out at 24–28 weeks, but changes can be detected at 15 weeks gestation, suggesting that GDM onset occurs early in gestation.
Collapse
Affiliation(s)
- Michel R Boisvert
- Department of Chemistry & Biochemistry, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Kristine G Koski
- School of Dietetics & Human Nutrition, McGill University (Macdonald Campus), Montreal, QC, H9X 3V9, Canada
| | - David H Burns
- Department of Chemistry, McGill University, Montreal, QC, H3A 2K6, Canada
| | - Cameron D Skinner
- Department of Chemistry & Biochemistry, Concordia University, Montreal, QC, H4B 1R6, Canada
| |
Collapse
|
37
|
Boekelheide K, Blumberg B, Chapin RE, Cote I, Graziano JH, Janesick A, Lane R, Lillycrop K, Myatt L, States JC, Thayer KA, Waalkes MP, Rogers JM. Predicting later-life outcomes of early-life exposures. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1353-61. [PMID: 22672778 PMCID: PMC3491941 DOI: 10.1289/ehp.1204934] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 06/06/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND In utero exposure of the fetus to a stressor can lead to disease in later life. Epigenetic mechanisms are likely mediators of later-life expression of early-life events. OBJECTIVES We examined the current state of understanding of later-life diseases resulting from early-life exposures in order to identify in utero and postnatal indicators of later-life diseases, develop an agenda for future research, and consider the risk assessment implications of this emerging knowledge. METHODS This review was developed based on our participation in a National Research Council workshop titled "Use of in Utero and Postnatal Indicators to Predict Health Outcomes Later in Life: State of the Science and Research Recommendations." We used a case study approach to highlight the later-life consequences of early-life malnutrition and arsenic exposure. DISCUSSION The environmental sensitivity of the epigenome is viewed as an adaptive mechanism by which the developing organism adjusts its metabolic and homeostatic systems to suit the anticipated extrauterine environment. Inappropriate adaptation may produce a mismatch resulting in subsequent increased susceptibility to disease. A nutritional mismatch between the prenatal and postnatal environments, or early-life obesogen exposure, may explain at least some of the recent rapid increases in the rates of obesity, type 2 diabetes, and cardiovascular diseases. Early-life arsenic exposure is also associated with later-life diseases, including cardiovascular disease and cancer. CONCLUSIONS With mounting evidence connecting early-life exposures and later-life disease, new strategies are needed to incorporate this emerging knowledge into health protective practices.
Collapse
Affiliation(s)
- Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Carbone DL, Zuloaga DG, Lacagnina AF, McGivern RF, Handa RJ. Exposure to dexamethasone during late gestation causes female-specific decreases in core body temperature and prepro-thyrotropin-releasing hormone expression in the paraventricular nucleus of the hypothalamus in rats. Physiol Behav 2012; 108:6-12. [PMID: 22884559 DOI: 10.1016/j.physbeh.2012.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/13/2012] [Accepted: 07/26/2012] [Indexed: 12/20/2022]
Abstract
Synthetic glucocorticoids (GC) have been used to promote lung development in preterm infants, thereby decreasing respiratory distress syndrome and mortality, yet, concern has arisen from reports that such treatment predisposes individuals to disease in adulthood. Given the variety of preclinical studies that show metabolic and behavioral abnormalities in adulthood following fetal exposure to synthetic GC, we examined the effect of in utero exposure to the synthetic GC, dexamethasone (DEX), on hypothalamic expression of thyrotropin-releasing hormone (TRH) a central neuropeptide involved in mediating behavior and metabolic balance. Pregnant Sprague-Dawley rats were administered 0.4mg/kg DEX on gestational days 18-21. As adults (postnatal day (PD) 60), the offspring were fitted with temperature sensing transmitters allowing real-time monitoring of core body temperature (CBT) across the 24h light dark period. This revealed a significant decrease in CBT throughout the day in prenatal DEX-treated females on estrus and diestrus, but not in male offspring. The reduction in CBT by prenatal DEX exposure was accompanied by a significant decrease in the expression of Trh transcript in the paraventricular nucleus of the hypothalamus (PVN) of female rats at PD 60 and this effect was also present on PD7. There was also a female-specific reduction in the number of preproTRH-immunoreactive (ir) neurons in the PVN, with ppTRH-ir nerve fibers decreases that were present in both male and female offspring. No changes in thyroid hormone (triiodothyronine, T3; thyroxine, T4) were observed in adult offspring, but during development, both males and females (PD14) had lower T3 and T4 levels. These data indicate abnormal expression of TRH results from fetal DEX exposure during late gestation, possibly explaining the decreased CBT observed in the female offspring.
Collapse
Affiliation(s)
- David L Carbone
- University of Arizona College of Medicine-Phoenix, Department of Basic Medical Sciences, Phoenix, AZ 85004-2157, United States.
| | | | | | | | | |
Collapse
|
39
|
Macrì S, Ceci C, Canese R, Laviola G. Prenatal stress and peripubertal stimulation of the endocannabinoid system differentially regulate emotional responses and brain metabolism in mice. PLoS One 2012; 7:e41821. [PMID: 22848620 PMCID: PMC3405010 DOI: 10.1371/journal.pone.0041821] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/26/2012] [Indexed: 12/22/2022] Open
Abstract
The central endocannabinoid system (ECS) and the hypothalamic-pituitary-adrenal-axis mediate individual responses to emotionally salient stimuli. Their altered developmental adjustment may relate to the emergence of emotional disturbances. Although environmental influences regulate the individual phenotype throughout the entire lifespan, their effects may result particularly persistent during plastic developmental stages (e.g. prenatal life and adolescence). Here, we investigated whether prenatal stress – in the form of gestational exposure to corticosterone supplemented in the maternal drinking water (100 mg/l) during the last week of pregnancy – combined with a pharmacological stimulation of the ECS during adolescence (daily fatty acid amide hydrolase URB597 i.p. administration - 0.4 mg/kg - between postnatal days 29–38), influenced adult mouse emotional behaviour and brain metabolism measured through in vivo quantitative magnetic resonance spectroscopy. Compared to control mice, URB597-treated subjects showed, in the short-term, reduced locomotion and, in the long term, reduced motivation to execute operant responses to obtain palatable rewards paralleled by reduced levels of inositol and taurine in the prefrontal cortex. Adult mice exposed to prenatal corticosterone showed increased behavioural anxiety and reduced locomotion in the elevated zero maze, and altered brain metabolism (increased glutamate and reduced taurine in the hippocampus; reduced inositol and N-Acetyl-Aspartate in the hypothalamus). Present data further corroborate the view that prenatal stress and pharmacological ECS stimulation during adolescence persistently regulate emotional responses in adulthood. Yet, whilst we hypothesized these factors to be interactive in nature, we observed that the consequences of prenatal corticosterone administration were independent from those of ECS drug-induced stimulation during adolescence.
Collapse
Affiliation(s)
- Simone Macrì
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Roma, Italy.
| | | | | | | |
Collapse
|
40
|
Martinez-Aguayo A, Aglony M, Bancalari R, Avalos C, Bolte L, Garcia H, Loureiro C, Carvajal C, Campino C, Inostroza A, Fardella C. Birth weight is inversely associated with blood pressure and serum aldosterone and cortisol levels in children. Clin Endocrinol (Oxf) 2012; 76:713-8. [PMID: 22145676 DOI: 10.1111/j.1365-2265.2011.04308.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CONTEXT Low birth weight has been independently associated with adult hypertension, and renin-angiotensin system (RAS) plays a role in this connection. OBJECTIVE To characterize the associations between birth weight (BW) and serum aldosterone (SA), serum cortisol, plasma renin activity (PRA) and blood pressure (BP). DESIGN Cross-sectional study. SUBJECTS Children from the community born at a gestational age >32 weeks. METHODS Systolic and diastolic BP indices (SBPi and DBPi) were calculated using the observed BP/50th percentile BP for gender, age and stature. BW was transformed to a standard deviation score (SDS) for gestational age, whereas SA, serum cortisol and PRA were transformed using the natural log. RESULTS We selected 288 subjects between the ages of 4·9 and 15·5 years (Females, 50%). After adjusting for body mass index (BMI) SDS and Tanner, multiple regression analysis revealed that BW (SDS) was both independently and inversely associated with the natural log of SA (β = -0·065; P = 0·039), the natural log of serum cortisol (β = -0·064; P = 0·009), SBPi (β = -0·012; P = 0·020) and DBPi (β = -0·023; P = 0·002). An association was not observed with PRA (P = 0·178) and aldosterone renin ratio (ARR) (P = 0·452). Serum cortisol levels were positively associated with SA (r = 0·125; P = 0·034), while an association with PRA (P = 0·251) and ARR (P = 0·052) was not observed. CONCLUSIONS The results of this study demonstrate an inverse association between birth weight and blood pressure and serum aldosterone and cortisol levels. This association is independent of BMI and Tanner, suggesting foetal programming of the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Alejandro Martinez-Aguayo
- Endocrinology Unit, Division of Paediatrics, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Carbone DL, Zuloaga DG, Hiroi R, Foradori CD, Legare ME, Handa RJ. Prenatal dexamethasone exposure potentiates diet-induced hepatosteatosis and decreases plasma IGF-I in a sex-specific fashion. Endocrinology 2012; 153:295-306. [PMID: 22067322 PMCID: PMC3249671 DOI: 10.1210/en.2011-1601] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/06/2011] [Indexed: 11/19/2022]
Abstract
The clinical use of synthetic glucocorticoids in preterm infants to promote lung development has received considerable attention due to the potential for increased risk of developing metabolic disease in adulthood after such treatment. In this study, we examined the hypothesis that exposure to the synthetic glucocorticoid, dexamethasone (DEX), during late gestation in the rat results in the development of nonalcoholic fatty liver disease in adult offspring. Pregnant Sprague Dawley dams were treated with 0.4 mg/kg DEX beginning on gestational d 18 until parturition (gestational d 23). At postnatal d 21, offspring were weaned onto either a standard chow or high-fat (60% fat-derived calories) diet. In adulthood (postnatal d 60-65), hepatic tissue was harvested and examined for pathology. Liver steatosis, or fat accumulation, was found to be more severe in the DEX-exposed female offspring that were weaned onto the high-fat diet. This finding corresponded with decreased plasma IGF-I concentrations, as well as decreased hypothalamic expression of GHRH mRNA. Morphological measurements on body and long bone length further implicate a GH signaling deficit after fetal DEX exposure. Collectively, these data indicate suppression of GH axis function in the female DEX/high-fat cohort but not in the male offspring. Because deficits in the GH signaling can be linked to the development of nonalcoholic fatty liver disease, our results suggest that the prominent liver injury noted in female offspring exposed to DEX during late gestation may stem from abnormal development of the GH axis at the hypothalamic level.
Collapse
Affiliation(s)
- David L Carbone
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, 425 North 5th Street, Phoenix, Arizona 85004, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Cheng CJ, Lozano G, Baum M. Prenatal programming of rat cortical collecting tubule sodium transport. Am J Physiol Renal Physiol 2011; 302:F674-8. [PMID: 22189946 DOI: 10.1152/ajprenal.00633.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prenatal insults have been shown to lead to elevated blood pressure in offspring when they are studied as adults. Prenatal administration of dexamethasone and dietary protein deprivation have demonstrated that there is an increase in transporter abundance for a number of nephron segments but not the subunits of the epithelial sodium channel (ENaC) in the cortical collecting duct. Recent studies have shown that aldosterone is elevated in offspring of protein-deprived mothers when studied as adults, but the physiological importance of the increase in serum aldosterone is unknown. As an indirect measure of ENaC activity, we compared the natriuretic response to benzamil in offspring of mothers who ate a low-protein diet (6%) with those who ate a normal diet (20%) for the last half of pregnancy. The natriuretic response to benzamil was greater in the 6% group (821.1 ± 161.0 μmol/24 h) compared with the 20% group (279.1 ± 137.0 μmol/24 h), consistent with greater ENaC activity in vivo (P < 0.05). In this study, we also directly studied cortical collecting tubule function from adult rats using in vitro microperfusion. There was no difference in basal or vasopressin-stimulated osmotic water permeability. However, while cortical collecting ducts of adult offspring whose mothers ate a 20% protein diet had no sodium transport (-1.9 ± 3.1 pmol·mm(-1)·min(-1)), the offspring of rats that ate a 6% protein diet during the last half of pregnancy had a net sodium flux of 10.7 ± 2.6 pmol·mm(-1)·min(-1) (P = 0.01) in tubules perfused in vitro. Sodium transport was measured using ion-selective electrodes, a novel technique allowing measurement of sodium in nanoliter quantities of fluid. Thus we directly demonstrate that there is prenatal programming of cortical collecting duct sodium transport.
Collapse
Affiliation(s)
- Chih-Jen Cheng
- Dept. of Pediatrics, U.T. Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA
| | | | | |
Collapse
|
43
|
Maternal antioxidant blocks programmed cardiovascular and behavioural stress responses in adult mice. Clin Sci (Lond) 2011; 121:427-36. [PMID: 21615331 DOI: 10.1042/cs20110153] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intra-uterine growth restriction is an independent risk factor for adult psychiatric and cardiovascular diseases. In humans, intra-uterine growth restriction is associated with increased placental and fetal oxidative stress, as well as down-regulation of placental 11β-HSD (11β-hydroxysteroid dehydrogenase). Decreased placental 11β-HSD activity increases fetal exposure to maternal glucocorticoids, further increasing fetal oxidative stress. To explore the developmental origins of co-morbid hypertension and anxiety disorders, we increased fetal glucocorticoid exposure by administering the 11β-HSD inhibitor CBX (carbenoxolone; 12 mg·kg-1 of body weight·day-1) during the final week of murine gestation. We hypothesized that maternal antioxidant (tempol throughout pregnancy) would block glucocorticoid-programmed anxiety, vascular dysfunction and hypertension. Anxiety-related behaviour (conditioned fear) and the haemodynamic response to stress were measured in adult mice. Maternal CBX administration significantly increased conditioned fear responses of adult females. Among the offspring of CBX-injected dams, maternal tempol markedly attenuated the behavioural and cardiovascular responses to psychological stress. Compared with offspring of undisturbed dams, male offspring of dams that received daily third trimester saline injections had increased stress-evoked pressure responses that were blocked by maternal tempol. In contrast, tempol did not block CBX-induced aortic dysfunction in female mice (measured by myography and lucigenin-enhanced chemiluminescence). We conclude that maternal stress and exaggerated fetal glucocorticoid exposure enhance sex-specific stress responses, as well as alterations in aortic reactivity. Because concurrent tempol attenuated conditioned fear and stress reactivity even among the offspring of saline-injected dams, we speculate that antenatal stressors programme offspring stress reactivity in a cycle that may be broken by antenatal antioxidant therapy.
Collapse
|
44
|
Increased cardiovascular reactivity to acute stress and salt-loading in adult male offspring of fat fed non-obese rats. PLoS One 2011; 6:e25250. [PMID: 22043281 PMCID: PMC3197190 DOI: 10.1371/journal.pone.0025250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/30/2011] [Indexed: 11/19/2022] Open
Abstract
Diet-induced obesity in rat pregnancy has been shown previously to be associated with consistently raised blood pressure in the offspring, attributed to sympathetic over-activation, but the relative contributions to this phenotype of maternal obesity versus raised dietary fat is unknown. Sprague-Dawley female rats were fed either a control (4.3% fat, n = 11) or lard-enriched (23.6% fat, n = 16) chow 10 days prior to mating, throughout pregnancy and lactation. In conscious adult (9-month-old) offspring cardiovascular parameters were measured (radiotelemetry). The short period of fat-feeding did not increase maternal weight versus controls and the baseline blood pressure was similar in offspring of fat fed dams (OF) and controls (OC). However, adult male OF showed heightened cardiovascular reactivity to acute restraint stress (p<0.01; Δ systolic blood pressure (SBP) and Δheart rate (HR)) with a prolonged recovery time compared to male OC. α1/β-adrenergic receptor blockade normalised the response. Also, after dietary salt-loading (8%-NaCl ad libitum for 1 week) male OF demonstrated higher SBP (p<0.05) in the awake phase (night-time) and increased low/high frequency ratio of power spectral density of HR variability versus OC. Baroreflex gain and basal power spectral density components of the heart rate or blood pressure were similar in male OF and OC. Minor abnormalities were evident in female OF. Fat feeding in the absence of maternal obesity in pregnant rats leads to altered sympathetic control of cardiovascular function in adult male offspring, and hypertension in response to stressor stimuli.
Collapse
|
45
|
Cuffe JSM, Dickinson H, Simmons DG, Moritz KM. Sex specific changes in placental growth and MAPK following short term maternal dexamethasone exposure in the mouse. Placenta 2011; 32:981-9. [PMID: 21974799 DOI: 10.1016/j.placenta.2011.09.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/29/2011] [Accepted: 09/14/2011] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Maternal glucocorticoid (GC) exposure during pregnancy can alter fetal development and program the onset of disease in adult offspring. The placenta helps protect the fetus from excess GC exposure but is itself susceptible to maternal insults and may be involved in sex dependant regulation of fetal programming. This study aimed to investigate the effects of maternal GC exposure on the developing placenta. STUDY DESIGN AND MAIN OUTCOME MEASURES Pregnant mice were treated with dexamethasone (DEX-1 μg/kg/h) or saline (SAL) for 60 h via minipump beginning at E12.5. Placentas were collected at E14.5 and E17.5 and the expression of growth factors and placental transporters examined by real-time PCR and/or Western blot. Histological analysis was performed to assess for morphological changes. RESULTS At E14.5, DEX exposed male and female fetuses had a lower weight compared to SAL animals but placental weight was lower in females only. Hsd11b2 and Vegfa gene expression was increased and MAPK1 protein expression decreased in the placentas of females only. At E17.5 placental and fetal body weights were similar and differences in MAPK were no longer present although HSD11B2 protein was elevated in placentas of DEX females. Levels of glucose or amino acid transporters were unaffected. CONCLUSIONS Results suggest sex specific responses to maternal GCs within the placenta. Decreased levels of MAPK protein in placentas of female fetuses suggest alterations in the MAPK pathway may contribute to the lower placental weights in this sex. This may contribute towards sex specific fetal programming of adult disease.
Collapse
Affiliation(s)
- J S M Cuffe
- School of Biomedical Sciences, The University of Queensland, St Lucia, 4072, Australia
| | | | | | | |
Collapse
|
46
|
Ahmadzadeh R, Saboory E, Roshan-Milani S, Pilehvarian AA. Predator and restraint stress during gestation facilitates pilocarpine-induced seizures in prepubertal rats. Dev Psychobiol 2011; 53:806-12. [PMID: 21547901 DOI: 10.1002/dev.20555] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 04/11/2011] [Indexed: 01/12/2023]
Abstract
Stress during gestation can result in early and long-term developmental aberrations. This study aimed to assess the impact of prenatal restraint or predator stress on pilocarpine-induced epileptic behavior. Pregnant rats were exposed to stressors on gestational days 15, 16, and 17. Restraint stress consisted of daily restraint of the dam. During predator stress, caged rats were exposed to a cat in a cage. On postnatal day 25, male pups were injected with pilocarpine and the behavior of each rat was observed. Prenatal stress led to low birth weight and increased blood corticosterone levels. Both stressors significantly potentiated pilocarpine-induced seizures. Predator-stressed pups exhibited significantly severe tonic-clonic seizures compared with restraint-stressed animals. These data emphasize the impact of prenatal stress on fetal growth, and neural and endocrine function. The results also suggest that psychosocial stressors have a greater impact on neural and endocrine function than physical stressors do.
Collapse
Affiliation(s)
- Ramin Ahmadzadeh
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Iran
| | | | | | | |
Collapse
|
47
|
Prenatal overexposure to glucocorticoids programs renal 11β-hydroxysteroid dehydrogenase type 2 expression and salt-sensitive hypertension in the rat. J Hypertens 2011; 29:282-9. [PMID: 21045727 DOI: 10.1097/hjh.0b013e328340aa18] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Prenatal glucocorticoid excess programs hypertension in adulthood. The underlying mechanisms are unknown. Here, we tested whether hypertension in this model is due to increased renal mineralocorticoid activity. METHODS Pregnant rats were injected daily with the synthetic glucocorticoid dexamethasone (DEX) or vehicle during the last week of pregnancy. Blood pressure, electrolytes and target gene expression were measured in the offspring. RESULTS Adult DEX-treated offspring were hypertensive (SBP, 140.1 ± 2.4 vs. 128.6 ± 3.2 mmHg; P = 0.009), hypokalemic (4.5 ± 0.2 vs. 5.1 ± 0.2 mmol/l; P = 0.03) and had suppressed plasma renin concentration (23.6 ± 4.8 vs. 43.8 ± 5.9 ng/ml; P = 0.017). DEX programming had similar effects in younger rats (age 2 months), but only when fed a high-salt diet. Although these data are consistent with excess mineralocorticoid activity, plasma aldosterone levels were unaffected and daily urinary aldosterone values were decreased (136.1 ± 27.0 vs. 303.6 ± 47.0 ng/kg; P = 0.008). Accordingly, we assessed renal factors that might influence mineralocorticoid responsiveness. Renal expression of mineralocorticoid receptor and glucocorticoid receptor mRNAs was unaltered, as was 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) which regenerates active glucocorticoids. However, renal mRNA for 11β-HSD2, which catalyses inactivation of glucocorticoids in the distal nephron and thus protects mineralocorticoids from glucocorticoids, was decreased by 45% in both new born and adult rats (P < 0.01). The functional significance of this reduction was confirmed by measurements of renal 11β-HSD activity and by demonstrating that the mineralocorticoid properties of cortisol were enhanced in DEX-programmed rats. Additionally, the difference in blood pressure between DEX and control groups was abolished upon administration of spironolactone, a mineralocorticoid receptor antagonist. CONCLUSION The blood pressure phenotype of DEX-programmed rats may in part be explained by a life-long reduction in renal 11β-HSD2 activity. Salt-sensitive hypertension could be programmed by prenatal stress.
Collapse
|
48
|
Lim K, Lombardo P, Schneider-Kolsky M, Hilliard L, Denton KM, Black MJ. Induction of hyperglycemia in adult intrauterine growth-restricted rats: effects on renal function. Am J Physiol Renal Physiol 2011; 301:F288-94. [PMID: 21511698 DOI: 10.1152/ajprenal.00564.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Intrauterine growth restriction (IUGR) leads to a reduction in nephron endowment at birth and is linked to renal dysfunction in adulthood. The aim of the present study was to determine whether kidneys of IUGR rat offspring are more vulnerable to a secondary insult of hyperglycemia. IUGR was induced in Wistar-Kyoto rats by maternal protein restriction. At 24 wk of age, diabetes was induced in male IUGR and non-IUGR offspring by streptozotocin injection; insulin was injected daily to maintain blood glucose levels at either a mild (7-10 mmol/l; n=8/group) or a moderate (10-15 mmol/l; n=8/group) level. At 32 wk of age, renal function was assessed using ultrasound and [(3)H]inulin and [(14)C]para-aminohippurate clearance techniques. Conscious mean arterial blood pressure and heart rate were unchanged in IUGR offspring. Relative kidney length was increased significantly in IUGR offspring, and renal function was altered significantly; of importance, there was a significant increase in filtration fraction, indicative of glomerular hyperfiltration. Induction of hyperglycemia led to marked impairment of renal function. However, the response to hyperglycemia was not different between IUGR and non-IUGR offspring. Maintaining blood glucose levels at a mild hyperglycemic level led to marked improvement in all measures of renal function in IUGR and non-IUGR offspring. In conclusion, while the IUGR offspring showed evidence of hyperfiltration, the response to hyperglycemia was similar in IUGR and non-IUGR kidneys in adulthood. Importantly, maintaining blood glucose levels at a mild hyperglycemic level markedly attenuated the renal dysfunction associated with diabetes, even in IUGR offspring.
Collapse
Affiliation(s)
- Kyungjoon Lim
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Harris A, Seckl J. Glucocorticoids, prenatal stress and the programming of disease. Horm Behav 2011; 59:279-89. [PMID: 20591431 DOI: 10.1016/j.yhbeh.2010.06.007] [Citation(s) in RCA: 569] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/26/2010] [Accepted: 06/08/2010] [Indexed: 11/23/2022]
Abstract
An adverse foetal environment is associated with increased risk of cardiovascular, metabolic, neuroendocrine and psychological disorders in adulthood. Exposure to stress and its glucocorticoid hormone mediators may underpin this association. In humans and in animal models, prenatal stress, excess exogenous glucocorticoids or inhibition of 11β-hydroxysteroid dehydrogenase type 2 (HSD2; the placental barrier to maternal glucocorticoids) reduces birth weight and causes hyperglycemia, hypertension, increased HPA axis reactivity, and increased anxiety-related behaviour. Molecular mechanisms that underlie the 'developmental programming' effects of excess glucocorticoids/prenatal stress include epigenetic changes in target gene promoters. In the case of the intracellular glucocorticoid receptor (GR), this alters tissue-specific GR expression levels, which has persistent and profound effects on glucocorticoid signalling in certain tissues (e.g. brain, liver, and adipose). Crucially, changes in gene expression persist long after the initial challenge, predisposing the individual to disease in later life. Intriguingly, the effects of a challenged pregnancy appear to be transmitted possibly to one or two subsequent generations, suggesting that these epigenetic effects persist.
Collapse
Affiliation(s)
- Anjanette Harris
- University of Edinburgh, Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | |
Collapse
|
50
|
Programmed 11β-hydroxysteroid dehydrogenase type 2 reduction: a possible cause of adult-onset disease? J Hypertens 2010; 29:201-3. [PMID: 21191279 DOI: 10.1097/hjh.0b013e328342d4c1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|