1
|
Chen L, Xu T, Wang J, Wang Z, Pan Y, Kong L. Siwu tablet attenuates high fructose-induced glomerular podocyte senescence in rats through increasing Nup155 to promote INO80 mRNA nuclear export. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118878. [PMID: 39362331 DOI: 10.1016/j.jep.2024.118878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/23/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Siwu tablet (SWT), derived from a traditional Chinese medicinal formula named Siwu decoction, is widely used for blood deficiency syndrome. Siwu decoction and its derived formulas have been proven to improve renal anemia and prevent senescence. Whether SWT prevents glomerular podocyte senescence and the underlying molecular mechanism remains unknow. AIM OF THE STUDY To elucidate the protective effect and possible mechanism of SWT on glomerular podocyte senescence. MATERIAL AND METHODS Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed to characterize components of SWT. Male Sprague-Dawley rats were given 10% fructose drinking water for 16 weeks. SWT (810 and 1620 mg/kg) was administered orally for the last 8 weeks. The assays of senescence-associated beta-galactosidase (SA-β-gal) staining, immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot as well as enzyme linked immunosorbent assay were performed to evaluate rat glomerular podocyte senescence. The mRNA and protein levels of nucleoporin 155 (Nup155) and inositol requiring mutant 80 (INO80) in rat glomeruli were detected by qRT-PCR, Western blot and immunofluorescence. Foot processes and nuclear pore complexes (NPCs) of rat glomerular podocytes were visualized by transmission electron microscopy. RESULTS One hundred and fifty-nine components were preliminarily identified in SWT. The results of animal experiments showed that SWT decreased the activity of SA-β-gal, protein levels of p16, p21, p53 and phosphorylated histone H2AX (γ-H2AX), and mRNA levels of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) in glomeruli of high fructose-fed rats. As expected, SWT increased renal cortex erythropoietin mRNA expression and serum erythropoietin concentration in this animal model. SWT reduced urine albumin-to-creatinine ratio and serum levels of uric acid, creatinine and blood urea nitrogen, and recovered glomerular structure injury in high fructose-fed rats. It up-regulated mRNA and protein levels of Nup155 and the number of podocyte NPCs, and subsequently reinforced mRNA nuclear export and protein expression of INO80 in rat glomeruli under high fructose stimulation. CONCLUSIONS SWT ameliorates glomerular podocyte senescence in high fructose-fed rats possibly by increasing Nup155 to promote INO80 mRNA nuclear export.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China.
| | - Tangdi Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China.
| | - Jiahao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China.
| | - Zixuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China.
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China.
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China.
| |
Collapse
|
2
|
Ranjbar N, Ebrahimi Behnam B, Mesgari Abbasi M, Esmaeili M, Jolfaei F, Mohammadian J, Rashtchizadeh N, Ghorbanihaghjo A, Raeisi S. The possible antioxidative effects of ketogenic diet by modifying brain klotho expression: a rat model study. Nutr Neurosci 2024:1-7. [PMID: 39674922 DOI: 10.1080/1028415x.2024.2436817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Objectives: The ketogenic diet (KD) has long been used as an alternative nonpharmacological therapy to manage pharmacoresistant epilepsy. The anticonvulsant mechanisms of KD have yet to be fully elucidated. The present study explored whether a KD could exert antioxidative effects by altering brain Klotho (Kl) gene expression.Methods: Thirty male rats were divided into three groups: the normal diet (ND) group received standard rat chow; the calorie-restricted diet (CRD) group was maintained at 90% of the calculated energy need; and the KD group received a diet composed of 8% protein, 2% carbohydrates, and 90% fat (per calorie macronutrient). The levels of β-hydroxybutyrate (BHB) in the serum, Kl gene expression in the brain, and Kl protein, malondialdehyde (MDA), and protein carbonyl (PC) levels in the serum and brain were evaluated by standard methods.Results: The serum BHB levels in the KD group were significantly greater than those in the ND and CRD groups (p < 0.001). The Kl expression in the brain was significantly greater in the KD group than in the ND group (p = 0.028). The brain MDA levels in the KD group were significantly lower than those in the ND group (p = 0.006). Elevated BHB was positively correlated with brain Kl expression (r = 0.668, p < 0.001). The brain MDA levels were negatively correlated with brain Kl expression (r = -0.531, p = 0.003) and serum BHB levels (r = 0.472, p = 0.020).Discussion: KD might exert antioxidative effects by increasing BHB and upregulating Kl in the brain. This could be considered a possible anticonvulsant mechanism of KD.
Collapse
Affiliation(s)
- Nasrin Ranjbar
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahador Ebrahimi Behnam
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mahsa Esmaeili
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashidi, Tabriz, Iran
| | - Fatemeh Jolfaei
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashidi, Tabriz, Iran
| | - Jamal Mohammadian
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amir Ghorbanihaghjo
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Raeisi
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Li YS, Gong XJ, Du WJ, Li Y, He DY, Yao J, Bai C. Inverted U-shaped relationship between serum vitamin B12 and α-Klotho levels in US adults: a cross-sectional study. Front Nutr 2024; 11:1473196. [PMID: 39507897 PMCID: PMC11539862 DOI: 10.3389/fnut.2024.1473196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Background Serum vitamin B12 and α-Klotho are important markers associated with aging. Limited studies have been conducted on the relationship between vitamin B12 and α-Klotho. Objectives This study investigated the relationship between circulating α-Klotho and vitamin B12. Methods A total of 4,502 American adults with circulating vitamin B12 levels and α-Klotho levels from the National Health and Nutrition Examination Survey (2011-2014) were included. A weighted multiple linear regression model was used to evaluate the correlation between vitamin B12 and α-Klotho levels. To clarify potential non-linearities, smoothed curve fitting and threshold effects analysis were employed. Results A statistically significant non-linear relationship was found between vitamin B12 levels and circulating α-Klotho levels after adjusting for potential confounders. We observed an inverted U-shaped relationship between serum vitamin B12 levels and circulating α-Klotho levels. Notably, serum vitamin B12 levels below the threshold (1,020 pg/mL) exhibited a positive correlation with circulating α-Klotho levels (β = 0.14, 95% confidence interval (CI): 0.09-0.18, p < 0.0001). Conversely, serum vitamin B12 levels above the threshold (1,020 pg/mL) exhibited a negative correlation with circulating α-Klotho levels (β = -0.12,95% CI: -0.17--0.06, p < 0.0001). Sensitivity analyses were performed and consistent results were obtained. Conclusion This study demonstrated an inverted U-shaped relationship between circulating vitamin B12 and α-Klotho in American adults. The optimal concentration of serum vitamin B12 in American adults was found.
Collapse
Affiliation(s)
- Yu-shan Li
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xing-ji Gong
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wen-jie Du
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yang Li
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dong-yong He
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jian Yao
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cui Bai
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Park J, Nam KH, Nam BY, Kim G, Kim H, Lee KU, Song SC, Nam TW, Kim WK, Park JT, Yoo TH, Kang SW, Ko G, Han SH. Lactobacillus acidophilus KBL409 protects against kidney injury via improving mitochondrial function with chronic kidney disease. Eur J Nutr 2024; 63:2121-2135. [PMID: 38705901 DOI: 10.1007/s00394-024-03408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE Recent advances have led to greater recognition of the role of mitochondrial dysfunction in the pathogenesis of chronic kidney disease (CKD). There has been evidence that CKD is also associated with dysbiosis. Here, we aimed to evaluate whether probiotic supplements can have protective effects against kidney injury via improving mitochondrial function. METHODS An animal model of CKD was induced by feeding C57BL/6 mice a diet containing 0.2% adenine. KBL409, a strain of Lactobacillus acidophilus, was administered via oral gavage at a dose of 1 × 109 CFU daily. To clarify the underlying mechanisms by which probiotics exert protective effects on mitochondria in CKD, primary mouse tubular epithelial cells stimulated with TGF-β and p-cresyl sulfate were administered with butyrate. RESULTS In CKD mice, PGC-1α and AMPK, key mitochondrial energy metabolism regulators, were down-regulated. In addition, mitochondrial dynamics shifted toward fission, the number of fragmented cristae increased, and mitochondrial mass decreased. These alterations were restored by KBL409 administration. KBL409 supplementation also improved defects in fatty acid oxidation and glycolysis and restored the suppressed enzyme levels involved in TCA cycle. Accordingly, there was a concomitant improvement in mitochondrial respiration and ATP production assessed by mitochondrial function assay. These favorable effects of KBL409 on mitochondria ultimately decreased kidney fibrosis in CKD mice. In vitro analyses with butyrate recapitulated the findings of animal study. CONCLUSIONS This study demonstrates that administration of the probiotic Lactobacillus acidophilus KBL409 protects against kidney injury via improving mitochondrial function.
Collapse
Affiliation(s)
- Jimin Park
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ki Heon Nam
- Division of Integrated Medicine, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Bo Young Nam
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Gyuri Kim
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Hyoungnae Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | | | | | | | - Woon-Ki Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - GwangPyo Ko
- KoBiolabs, Inc., Seoul, Korea
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea.
| |
Collapse
|
5
|
Chen L, Xu T, Wang Z, Wang C, Fang L, Kong L. Loss of Nup155 promotes high fructose-driven podocyte senescence by inhibiting INO80 mRNA nuclear export. J Adv Res 2024:S2090-1232(24)00329-1. [PMID: 39111625 DOI: 10.1016/j.jare.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/11/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024] Open
Abstract
INTRODUCTION Podocyte senescence causes podocyte loss and glomerulopathy. Excessive fructose intake is a risk factor for podocyte injury. However, whether high fructose promotes podocyte senescence remains unknown. OBJECTIVES To explore the pathological mechanism by which high fructose drives podocyte senescence and find natural compounds to alleviate podocyte senescence. METHODS Podocyte senescence was characterized with senescence-associated beta-galactosidase (SA-β-gal) staining, Western blot, real-time quantitative polymerase chain reaction (qRT-PCR), comet assay and immunofluorescence. Proteomics analysis was performed to identify differentially expressed proteins in high fructose-exposed podocytes. Podocyte nuclear pore complexes (NPCs) and foot processes were observed by transmission electron microscopy. The mRNA and protein levels of nucleoporin 155 (Nup155) and inositol requiring mutant 80 (INO80) were detected by qRT-PCR, Western blot and immunofluorescence. Virtual screening was conducted to find natural compounds that target Nup155. RESULTS High fructose increased SA-β-gal activity, protein level of p53, p21, p16 and phosphorylated histone H2AX (γ-H2AX), as well as mRNA expression of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor α (TNF-α) in rat glomeruli and podocytes. Proteomic analysis unraveled a crucial molecule Nup155, which was decreased in high fructose-induced podocyte senescence. Meanwhile, the number of podocyte NPCs was also decreased in vivo and in vitro. Consistently, high fructose suppressed nuclear export of INO80 mRNA, thereby down-regulated INO80 protein expression in podocyte senescence. Deletion of Nup155 inhibited INO80 mRNA nuclear export to induce podocyte senescence, whereas overexpression of Nup155 or INO80 alleviated high fructose-induced podocyte senescence. Ferulic acid was found to up-regulate Nup155 by both direct binding to stabilize Nup155 protein and enhancing its transcription, to promote INO80 mRNA nuclear export in the mitigation of high fructose-caused podocyte senescence. CONCLUSION High fructose induces podocyte senescence by decreasing Nup155 to inhibit INO80 mRNA nuclear export. Ferulic acid targeting Nup155 may be a potential strategy to prevent high fructose-induced podocyte senescence.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tangdi Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zixuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chengzhi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China.
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
6
|
Wan R, Srikaram P, Xie S, Chen Q, Hu C, Wan M, Li Y, Gao P. PPARγ attenuates cellular senescence of alveolar macrophages in asthma-COPD overlap. Respir Res 2024; 25:174. [PMID: 38643159 PMCID: PMC11032609 DOI: 10.1186/s12931-024-02790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) represents a complex condition characterized by shared clinical and pathophysiological features of asthma and COPD in older individuals. However, the pathophysiology of ACO remains unexplored. We aimed to identify the major inflammatory cells in ACO, examine senescence within these cells, and elucidate the genes responsible for regulating senescence. METHODS Bioinformatic analyses were performed to investigate major cell types and cellular senescence signatures in a public single-cell RNA sequencing (scRNA-Seq) dataset derived from the lung tissues of patients with ACO. Similar analyses were carried out in an independent cohort study Immune Mechanisms Severe Asthma (IMSA), which included bulk RNA-Seq and CyTOF data from bronchoalveolar lavage fluid (BALF) samples. RESULTS The analysis of the scRNA-Seq data revealed that monocytes/ macrophages were the predominant cell type in the lung tissues of ACO patients, constituting more than 50% of the cells analyzed. Lung monocytes/macrophages from patients with ACO exhibited a lower prevalence of senescence as defined by lower enrichment scores of SenMayo and expression levels of cellular senescence markers. Intriguingly, analysis of the IMSA dataset showed similar results in patients with severe asthma. They also exhibited a lower prevalence of senescence, particularly in airway CD206 + macrophages, along with increased cytokine expression (e.g., IL-4, IL-13, and IL-22). Further exploration identified alveolar macrophages as a major subtype of monocytes/macrophages driving cellular senescence in ACO. Differentially expressed genes related to oxidation-reduction, cytokines, and growth factors were implicated in regulating senescence in alveolar macrophages. PPARγ (Peroxisome Proliferator-Activated Receptor Gamma) emerged as one of the predominant regulators modulating the senescent signature of alveolar macrophages in ACO. CONCLUSION The findings suggest that senescence in macrophages, particularly alveolar macrophages, plays a crucial role in the pathophysiology of ACO. Furthermore, PPARγ may represent a potential therapeutic target for interventions aimed at modulating senescence-associated processes in ACO.Key words ACO, Asthma, COPD, Macrophages, Senescence, PPARγ.
Collapse
Affiliation(s)
- Rongjun Wan
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Prakhyath Srikaram
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Shaobing Xie
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Qiong Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chengping Hu
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuanyuan Li
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA.
- The Johns Hopkins Asthma & Allergy Center, 5501 Hopkins Bayview Circle, Room 3B.71, Baltimore, MD, 21224, USA.
| |
Collapse
|
7
|
Yin X, Gao Q, Li C, Yang Q, HongliangDong, Li Z. Leonurine alleviates vancomycin nephrotoxicity via activating PPARγ and inhibiting the TLR4/NF-κB/TNF-α pathway. Int Immunopharmacol 2024; 131:111898. [PMID: 38513573 DOI: 10.1016/j.intimp.2024.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/10/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Vancomycin (VCM) is the first-line antibiotic for severe infections, but nephrotoxicity limits its use. Leonurine (Leo) has shown protective effects against kidney damage. However, the effect and mechanism of Leo on VCM nephrotoxicity remain unclear. In this study, mice and HK-2 cells exposed to VCM were treated with Leo. Biochemical and pathological analysis and fluorescence probe methods were performed to examine the role of Leo in VCM nephrotoxicity. Immunohistochemistry, q-PCR, western blot, FACS, and Autodock software were used to verify the mechanism. The present results indicate that Leo significantly alleviates VCM-induced renal injury, morphological damage, and oxidative stress. Increased intracellular and mitochondrial ROS in HK-2 cells and decreased mitochondrial numbers in mouse renal tubular epithelial cells were reversed in Leo-administrated groups. In addition, molecular docking analysis using Autodock software revealed that Leo binds to the PPARγ protein with high affinity. Mechanistic exploration indicated that Leo inhibited VCM nephrotoxicity via activating PPARγ and inhibiting the TLR4/NF-κB/TNF-α inflammation pathway. Taken together, our results indicate that the PPARγ inhibition and inflammation reactions were implicated in the VCM nephrotoxicity and provide a promising therapeutic strategy for renal injury.
Collapse
Affiliation(s)
- Xuedong Yin
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; School of Medicine, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Qian Gao
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; School of Medicine, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Chensuizi Li
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; School of Medicine, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Qiaoling Yang
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - HongliangDong
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200120, China.
| | - Zhiling Li
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
8
|
Wan R, Srikaram P, Xie S, Chen Q, Hu C, Wan M, Li Y, Gao P. PPARγ Attenuates Cellular Senescence of Alveolar Macrophages in Asthma- COPD Overlap. RESEARCH SQUARE 2024:rs.3.rs-4009724. [PMID: 38496493 PMCID: PMC10942556 DOI: 10.21203/rs.3.rs-4009724/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) represents a complex condition characterized by shared clinical and pathophysiological features of asthma and COPD in older individuals. However, the pathophysiology of ACO remains unexplored. We aimed to identify the major inflammatory cells in ACO, examine senescence within these cells, and elucidate the genes responsible for regulating senescence. Bioinformatic analyses were performed to investigate major cell types and cellular senescence signatures in a public single-cell RNA sequencing (scRNA-Seq) dataset derived from the lung tissues of patients with ACO. Similar analyses were carried out in an independent cohort study Immune Mechanisms Severe Asthma (IMSA), which included bulk RNA-Seq and CyTOF data from bronchoalveolar lavage fluid (BALF) samples. The analysis of the scRNA-Seq data revealed that monocytes/ macrophages were the predominant cell type in the lung tissues of ACO patients, constituting more than 50% of the cells analyzed. Lung monocytes/macrophages from patients with ACO exhibited a lower prevalence of senescence as defined by lower enrichment scores of SenMayo and expression levels of cellular senescence markers. Intriguingly, analysis of the IMSA dataset showed similar results in patients with severe asthma. They also exhibited a lower prevalence of senescence, particularly in airway CD206 + macrophages, along with increased cytokine expression (e.g., IL-4, IL-13, and IL-22). Further exploration identified alveolar macrophages as a major subtype of monocytes/macrophages driving cellular senescence in ACO. Differentially expressed genes related to oxidation-reduction, cytokines, and growth factors were implicated in regulating senescence in alveolar macrophages. PPARγ (Peroxisome Proliferator-Activated Receptor Gamma) emerged as one of the predominant regulators modulating the senescent signature of alveolar macrophages in ACO. Collectively, the findings suggest that senescence in macrophages, particularly alveolar macrophages, plays a crucial role in the pathophysiology of ACO. Furthermore, PPARγ may represent a potential therapeutic target for interventions aimed at modulating senescence-associated processes in ACO.
Collapse
Affiliation(s)
| | | | | | | | | | - Mei Wan
- Johns Hopkins University School of Medicine
| | | | | |
Collapse
|
9
|
Martín-Vírgala J, Martín-Carro B, Fernández-Villabrille S, Ruiz-Torres MP, Gómez-Alonso C, Rodríguez-García M, Fernández-Martín JL, Alonso-Montes C, Panizo S, Cannata-Andía JB, Naves-Díaz M, Carrillo-López N. Soluble Klotho, a Potential Biomarker of Chronic Kidney Disease-Mineral Bone Disorders Involved in Healthy Ageing: Lights and Shadows. Int J Mol Sci 2024; 25:1843. [PMID: 38339121 PMCID: PMC10855561 DOI: 10.3390/ijms25031843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Shortly after the discovery of Klotho, interest grew in its potential role in chronic kidney disease (CKD). There are three isoforms of the Klotho protein: αKlotho, βKlotho and γKlotho. This review will focus on αKlotho due to its relevance as a biomarker in CKD. αKlotho is synthesized mainly in the kidneys, but it can be released into the bloodstream and urine as soluble Klotho (sKlotho), which undertakes systemic actions, independently or in combination with FGF23. It is usually accepted that sKlotho levels are reduced early in CKD and that lower levels of sKlotho might be associated with the main chronic kidney disease-mineral bone disorders (CKD-MBDs): cardiovascular and bone disease. However, as results are inconsistent, the applicability of sKlotho as a CKD-MBD biomarker is still a matter of controversy. Much of the inconsistency can be explained due to low sample numbers, the low quality of clinical studies, the lack of standardized assays to assess sKlotho and a lack of consensus on sample processing, especially in urine. In recent decades, because of our longer life expectancies, the prevalence of accelerated-ageing diseases, such as CKD, has increased. Exercise, social interaction and caloric restriction are considered key factors for healthy ageing. While exercise and social interaction seem to be related to higher serum sKlotho levels, it is not clear whether serum sKlotho might be influenced by caloric restriction. This review focuses on the possible role of sKlotho as a biomarker in CKD-MBD, highlighting the difference between solid knowledge and areas requiring further research, including the role of sKlotho in healthy ageing.
Collapse
Affiliation(s)
- Julia Martín-Vírgala
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Beatriz Martín-Carro
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Sara Fernández-Villabrille
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - María Piedad Ruiz-Torres
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Área 5—Fisiología y Fisiopatología Renal y Vascular del Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Physiology Unit, Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Carlos Gómez-Alonso
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Minerva Rodríguez-García
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Nephrology Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - José Luis Fernández-Martín
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Cristina Alonso-Montes
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Sara Panizo
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Jorge B. Cannata-Andía
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Department of Medicine, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Manuel Naves-Díaz
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Natalia Carrillo-López
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| |
Collapse
|
10
|
Poursistany H, Azar ST, Azar MT, Raeisi S. The current and emerging Klotho-enhancement strategies. Biochem Biophys Res Commun 2024; 693:149357. [PMID: 38091839 DOI: 10.1016/j.bbrc.2023.149357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Klotho is well known as a gene with antiaging properties. It has membrane and soluble forms, providing a unique system that controls various metabolic processes essential to health and disease. Klotho deficiency has been revealed to be associated with various aging-related disorders. Based on its various known and unknown protective properties, upregulating the Klotho gene may be a possible therapeutic and/or preventive approach in aging-related complications. Some agents, such as hormonal compounds, renin-angiotensin system inhibitors, antioxidants, peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists, statins, vitamin D receptor agonists, antioxidants, anti-inflammatory agents, mammalian target of rapamycin (mTOR) signaling inhibitors, and receptor-interacting serine/threonine-protein kinase 1 (RIPK1) inhibitors, can possibly lead to the upregulation and elevation of Klotho levels. Demethylation and deacetylation of the Klotho gene can also be considered other possible Klotho-enhancement methods. Some emerging techniques, such as RNA modifications, gene therapy, gene editing, and exosome therapy, probably have the potential to be applied for increasing Klotho. In the present study, these current and emerging Klotho-enhancement strategies and their underlying mechanisms were comprehensively reviewed, which could highlight some potential avenues for future research.
Collapse
Affiliation(s)
- Haniyeh Poursistany
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Tabibi Azar
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahsan Tabibi Azar
- Student Research Committee, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Sina Raeisi
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Zeng L, Chen L, Gao F, Li J, Song Y, Wei L, Qu N, Li Y, Jiang H. The Comparation of Renal Anti-Senescence Effects and Blood Metabolites between Dapagliflozin and Metformin in Non-Diabetes Environment. Adv Biol (Weinh) 2023; 7:e2300199. [PMID: 37688360 DOI: 10.1002/adbi.202300199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Indexed: 09/10/2023]
Abstract
Delaying kidney senescence process will benefit renal physiologic conditions, and prompt the kidney recovering from different pathological states. The renal anti-senescence effects of sodium-glucose cotransporter-2 inhibitors (SGLT2i) and metformin have been proven in diabetic settings, but the roles of each one and combination of two drugs in natural kidney aging process remain undefined and deserve further research. Senescence-accelerated mouse prone 8 (SAMP8) were orally administered dapagliflozin, metformin, and a combination of them for 16 weeks. Dapagliflozin exhibits better effects than metformin in lowering senescence related markers, and the combination therapy shows the best results. In vitro experiments demonstrate the same results that the combination of dapagliflozin and metformin can exert a better anti-senescence effect. Blood metabolites detection in vivo shows dapagliflozin mainly leads to the change of blood metabolites enriched in choline metabolism, and metformin tends to induce change of blood metabolites enriched in purine metabolism. In conclusion, the results suggest dapagliflozin may have a better renal anti-senescence effect than metformin in non-diabetes environment, and the combination of the two drugs can strengthen the effect. The two drugs can lead to different blood metabolites alteration, which may lead to different systemic effects.
Collapse
Affiliation(s)
- Lu Zeng
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Lei Chen
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Fanfan Gao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Jie Li
- Department of Nephrology, Henan Provincial people's hospital, Henan, 450003, China
| | - Yangyang Song
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Limin Wei
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Ning Qu
- Department of Medical Examination, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Yan Li
- Department of Nephrology, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| | - Hongli Jiang
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, China
| |
Collapse
|
12
|
Matsubayashi S, Ito S, Araya J, Kuwano K. Drugs against metabolic diseases as potential senotherapeutics for aging-related respiratory diseases. Front Endocrinol (Lausanne) 2023; 14:1079626. [PMID: 37077349 PMCID: PMC10106576 DOI: 10.3389/fendo.2023.1079626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Recent advances in aging research have provided novel insights for the development of senotherapy, which utilizes cellular senescence as a therapeutic target. Cellular senescence is involved in the pathogenesis of various chronic diseases, including metabolic and respiratory diseases. Senotherapy is a potential therapeutic strategy for aging-related pathologies. Senotherapy can be classified into senolytics (induce cell death in senescent cells) and senomorphics (ameliorate the adverse effects of senescent cells represented by the senescence-associated secretory phenotype). Although the precise mechanism has not been elucidated, various drugs against metabolic diseases may function as senotherapeutics, which has piqued the interest of the scientific community. Cellular senescence is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), which are aging-related respiratory diseases. Large-scale observational studies have reported that several drugs, such as metformin and statins, may ameliorate the progression of COPD and IPF. Recent studies have reported that drugs against metabolic diseases may exert a pharmacological effect on aging-related respiratory diseases that can be different from their original effect on metabolic diseases. However, high non-physiological concentrations are needed to determine the efficacy of these drugs under experimental conditions. Inhalation therapy may increase the local concentration of drugs in the lungs without exerting systemic adverse effects. Thus, the clinical application of drugs against metabolic diseases, especially through an inhalation treatment modality, can be a novel therapeutic approach for aging-related respiratory diseases. This review summarizes and discusses accumulating evidence on the mechanisms of aging, as well as on cellular senescence and senotherapeutics, including drugs against metabolic diseases. We propose a developmental strategy for a senotherapeutic approach for aging-related respiratory diseases with a special focus on COPD and IPF.
Collapse
|
13
|
Zhang LY, Liu XY, Su AC, Hu YY, Zhang JG, Xian XH, Li WB, Zhang M. Klotho Upregulation via PPARγ Contributes to the Induction of Brain Ischemic Tolerance by Cerebral Ischemic Preconditioning in Rats. Cell Mol Neurobiol 2023; 43:1355-1367. [PMID: 35900650 DOI: 10.1007/s10571-022-01255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022]
Abstract
Cerebral ischemic preconditioning (CIP)-induced brain ischemic tolerance protects neurons from subsequent lethal ischemic insult. However, the specific mechanisms underlying CIP remain unclear. In the present study, we explored the hypothesis that peroxisome proliferator-activated receptor gamma (PPARγ) participates in the upregulation of Klotho during the induction of brain ischemic tolerance by CIP. First we investigated the expression of Klotho during the brain ischemic tolerance induced by CIP. Lethal ischemia significantly decreased Klotho expression from 6 h to 7 days, while CIP significantly increased Klotho expression from 12 h to 7 days in the hippocampal CA1 region. Inhibition of Klotho expression by its shRNA blocked the neuroprotection induced by CIP. These results indicate that Klotho participates in brain ischemic tolerance by CIP. Furthermore, we tested the role of PPARγ in regulating Klotho expression after CIP. CIP caused PPARγ protein translocation to the nucleus in neurons in the CA1 region of the hippocampus. Pretreatment with GW9962, a PPARγ inhibitor, significantly attenuated the upregulation of Klotho protein and blocked the brain ischemic tolerance induced by CIP. Taken together, it can be concluded that Klotho upregulation via PPARγ contributes to the induction of brain ischemic tolerance by CIP.
Collapse
Affiliation(s)
- Ling-Yan Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
| | - Xi-Yun Liu
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - A-Chou Su
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yu-Yan Hu
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
| | - Jing-Ge Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
| | - Xiao-Hui Xian
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, People's Republic of China.
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China.
| |
Collapse
|
14
|
Peroxisome proliferator-activated receptor ɣ agonist mediated inhibition of heparanase expression reduces proteinuria. EBioMedicine 2023; 90:104506. [PMID: 36889064 PMCID: PMC10043778 DOI: 10.1016/j.ebiom.2023.104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Proteinuria is associated with many glomerular diseases and a risk factor for the progression to renal failure. We previously showed that heparanase (HPSE) is essential for the development of proteinuria, whereas peroxisome proliferator-activated receptor ɣ (PPARɣ) agonists can ameliorate proteinuria. Since a recent study showed that PPARɣ regulates HPSE expression in liver cancer cells, we hypothesized that PPARɣ agonists exert their reno-protective effect by inhibiting glomerular HPSE expression. METHODS Regulation of HPSE by PPARɣ was assessed in the adriamycin nephropathy rat model, and cultured glomerular endothelial cells and podocytes. Analyses included immunofluorescence staining, real-time PCR, heparanase activity assay and transendothelial albumin passage assay. Direct binding of PPARɣ to the HPSE promoter was evaluated by the luciferase reporter assay and chromatin immunoprecipitation assay. Furthermore, HPSE activity was assessed in 38 type 2 diabetes mellitus (T2DM) patients before and after 16/24 weeks treatment with the PPARɣ agonist pioglitazone. FINDINGS Adriamycin-exposed rats developed proteinuria, an increased cortical HPSE and decreased heparan sulfate (HS) expression, which was ameliorated by treatment with pioglitazone. In line, the PPARɣ antagonist GW9662 increased cortical HPSE and decreased HS expression, accompanied with proteinuria in healthy rats, as previously shown. In vitro, GW9662 induced HPSE expression in both endothelial cells and podocytes, and increased transendothelial albumin passage in a HPSE-dependent manner. Pioglitazone normalized HPSE expression in adriamycin-injured human endothelial cells and mouse podocytes, and adriamycin-induced transendothelial albumin passage was reduced as well. Importantly, we demonstrated a regulatory effect of PPARɣ on HPSE promoter activity and direct PPARy binding to the HPSE promoter region. Plasma HPSE activity of T2DM patients treated with pioglitazone for 16/24 weeks was related to their hemoglobin A1c and showed a moderate, near significant correlation with plasma creatinine levels. INTERPRETATION PPARɣ-mediated regulation of HPSE expression appears an additional mechanism explaining the anti-proteinuric and renoprotective effects of thiazolidinediones in clinical practice. FUNDING This study was financially supported by the Dutch Kidney Foundation, by grants 15OI36, 13OKS023 and 15OP13. Consortium grant LSHM16058-SGF (GLYCOTREAT; a collaboration project financed by the PPP allowance made available by Top Sector Life Sciences & Health to the Dutch Kidney Foundation to stimulate public-private partnerships).
Collapse
|
15
|
Liu HJ, Miao H, Yang JZ, Liu F, Cao G, Zhao YY. Deciphering the role of lipoproteins and lipid metabolic alterations in ageing and ageing-associated renal fibrosis. Ageing Res Rev 2023; 85:101861. [PMID: 36693450 DOI: 10.1016/j.arr.2023.101861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Fibrosis is the ultimate pathological feature of many chronic diseases, and ageing a major risk factor for fibrotic diseases. Current therapies are limited to those that reduce the rate of functional decline in patients with mild to moderate disease, but few interventions are available to specifically target the pathogenesis of fibrosis. In this context, new treatments that can significantly improve survival time and quality of life for these patients are urgently needed. In this review, we outline both the synthesis and metabolism of lipids and lipoproteins associated with ageing-associated renal fibrosis and the prominent contribution of lipids and lipidomics in the discovery of biomarkers that can be used for the prevention, diagnosis, and treatment of renal ageing and fibrosis. Next, we describe the effect of dyslipidaemia on ageing-related renal fibrosis and the pathophysiological changes in the kidney caused by dyslipidaemia. We then summarize the enzymes, transporters, transcription factors, and RNAs that contribute to dysregulated lipid metabolism in renal fibrosis and discuss their role in renal fibrosis in detail. We conclude by discussing the progress in research on small molecule therapeutic agents that prevent and treat ageing and ageing-associated renal fibrosis by modulating lipid metabolism. A growing number of studies suggest that restoring aberrant lipid metabolism may be a novel and promising therapeutic strategy to combat ageing and ageing-associated renal fibrosis.
Collapse
Affiliation(s)
- Hong-Jiao Liu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Jun-Zheng Yang
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, No. 71 Dongpeng Avenue, Guangzhou, Guangdong 510530, China
| | - Fei Liu
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 South of Panjiayuan, Beijing 100021, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
16
|
Donate-Correa J, Martín-Carro B, Cannata-Andía JB, Mora-Fernández C, Navarro-González JF. Klotho, Oxidative Stress, and Mitochondrial Damage in Kidney Disease. Antioxidants (Basel) 2023; 12:239. [PMID: 36829798 PMCID: PMC9952437 DOI: 10.3390/antiox12020239] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Reducing oxidative stress stands at the center of a prevention and control strategy for mitigating cellular senescence and aging. Kidney disease is characterized by a premature aging syndrome, and to find a modulator targeting against oxidative stress, mitochondrial dysfunction, and cellular senescence in kidney cells could be of great significance to prevent and control the progression of this disease. This review focuses on the pathogenic mechanisms related to the appearance of oxidative stress damage and mitochondrial dysfunction in kidney disease. In this scenario, the anti-aging Klotho protein plays a crucial role by modulating signaling pathways involving the manganese-containing superoxide dismutase (Mn-SOD) and the transcription factors FoxO and Nrf2, known antioxidant systems, and other known mitochondrial function regulators, such as mitochondrial uncoupling protein 1 (UCP1), B-cell lymphoma-2 (BCL-2), Wnt/β-catenin, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 alpha), transcription factor EB, (TFEB), and peroxisome proliferator-activated receptor gamma (PPAR-gamma). Therefore, Klotho is postulated as a very promising new target for future therapeutic strategies against oxidative stress, mitochondria abnormalities, and cellular senescence in kidney disease patients.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Beatriz Martín-Carro
- RICORS2040 (RD21/0005/0019), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jorge B. Cannata-Andía
- RICORS2040 (RD21/0005/0019), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| |
Collapse
|
17
|
Bryant C, Webb A, Banks AS, Chandler D, Govindarajan R, Agrawal S. Alternatively Spliced Landscape of PPARγ mRNA in Podocytes Is Distinct from Adipose Tissue. Cells 2022; 11:cells11213455. [PMID: 36359851 PMCID: PMC9653906 DOI: 10.3390/cells11213455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Podocytes are highly differentiated epithelial cells, and their structural and functional integrity is compromised in a majority of glomerular and renal diseases, leading to proteinuria, chronic kidney disease, and kidney failure. Traditional agonists (e.g., pioglitazone) and selective modulators (e.g., GQ-16) of peroxisome-proliferator-activated-receptor-γ (PPARγ) reduce proteinuria in animal models of glomerular disease and protect podocytes from injury via PPARγ activation. This indicates a pivotal role for PPARγ in maintaining glomerular function through preservation of podocytes distinct from its well-understood role in driving insulin sensitivity and adipogenesis. While its transcriptional role in activating adipokines and adipogenic genes is well-established in adipose tissue, liver and muscle, understanding of podocyte PPARγ signaling remains limited. We performed a comprehensive analysis of PPARγ mRNA variants due to alternative splicing, in human podocytes and compared with adipose tissue. We found that podocytes express the ubiquitous PPARγ Var 1 (encoding γ1) and not Var2 (encoding γ2), which is mostly restricted to adipose tissue and liver. Additionally, we detected expression at very low level of Var4, and barely detectable levels of other variants, Var3, Var11, VartORF4 and Var9, in podocytes. Furthermore, a distinct podocyte vs. adipocyte PPAR-promoter-response-element containing gene expression, enrichment and pathway signature was observed, suggesting differential regulation by podocyte specific PPARγ1 variant, distinct from the adipocyte-specific γ2 variant. In summary, podocytes and glomeruli express several PPARγ variants, including Var1 (γ1) and excluding adipocyte-specific Var2 (γ2), which may have implications in podocyte specific signaling and pathophysiology. This suggests that that new selective PPARγ modulators can be potentially developed that will be able to distinguish between the two forms, γ1 and γ2, thus forming a basis of novel targeted therapeutic avenues.
Collapse
Affiliation(s)
- Claire Bryant
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Amy Webb
- Department of Bioinformatics, The Ohio State University, Columbus, OH 43210, USA
| | - Alexander S. Banks
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dawn Chandler
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Translational Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Shipra Agrawal
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Division of Nephrology and Hypertension, Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Correspondence:
| |
Collapse
|
18
|
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther 2022; 7:182. [PMID: 35680856 PMCID: PMC9184651 DOI: 10.1038/s41392-022-01036-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a chronic renal dysfunction syndrome that is characterized by nephron loss, inflammation, myofibroblasts activation, and extracellular matrix (ECM) deposition. Lipotoxicity and oxidative stress are the driving force for the loss of nephron including tubules, glomerulus, and endothelium. NLRP3 inflammasome signaling, MAPK signaling, PI3K/Akt signaling, and RAAS signaling involves in lipotoxicity. The upregulated Nox expression and the decreased Nrf2 expression result in oxidative stress directly. The injured renal resident cells release proinflammatory cytokines and chemokines to recruit immune cells such as macrophages from bone marrow. NF-κB signaling, NLRP3 inflammasome signaling, JAK-STAT signaling, Toll-like receptor signaling, and cGAS-STING signaling are major signaling pathways that mediate inflammation in inflammatory cells including immune cells and injured renal resident cells. The inflammatory cells produce and secret a great number of profibrotic cytokines such as TGF-β1, Wnt ligands, and angiotensin II. TGF-β signaling, Wnt signaling, RAAS signaling, and Notch signaling evoke the activation of myofibroblasts and promote the generation of ECM. The potential therapies targeted to these signaling pathways are also introduced here. In this review, we update the key signaling pathways of lipotoxicity, oxidative stress, inflammation, and myofibroblasts activation in kidneys with chronic injury, and the targeted drugs based on the latest studies. Unifying these pathways and the targeted therapies will be instrumental to advance further basic and clinical investigation in CKD.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ben Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
19
|
Yang CE, Wang YN, Hua MR, Miao H, Zhao YY, Cao G. Aryl hydrocarbon receptor: From pathogenesis to therapeutic targets in aging-related tissue fibrosis. Ageing Res Rev 2022; 79:101662. [PMID: 35688331 DOI: 10.1016/j.arr.2022.101662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/22/2022] [Accepted: 06/02/2022] [Indexed: 11/27/2022]
Abstract
Aging promotes chronic inflammation, which contributes to fibrosis and decreases organ function. Fibrosis, the excessive synthesis and deposition of extracellular matrix components, is the main cause of most chronic diseases including aging-related organ failure. Organ fibrosis in the heart, liver, and kidneys is the final manifestation of many chronic diseases. The aryl hydrocarbon receptor (AHR) is a cytoplasmic receptor and highly conserved transcription factor that is activated by a variety of small-molecule ligands to affect a wide array of tissue homeostasis functions. In recent years, mounting evidence has revealed that AHR plays an important role in multi-organ fibrosis initiation, progression, and therapy. In this review, we summarise the relationship between AHR and the pathogenesis of aging-related tissue fibrosis, and further discuss how AHR modulates tissue fibrosis by regulating transforming growth factor-β signalling, immune response, and mitochondrial function, which may offer novel targets for the prevention and treatment of this condition.
Collapse
Affiliation(s)
- Chang-E Yang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Meng-Ru Hua
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Hua Miao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
20
|
Bryant C, Rask G, Waller AP, Webb A, Galdino-Pitta MR, Amato AA, Cianciolo R, Govindarajan R, Becknell B, Kerlin BA, Neves FA, Fornoni A, Agrawal S. Selective modulator of nuclear receptor PPARγ with reduced adipogenic potential ameliorates experimental nephrotic syndrome. iScience 2022; 25:104001. [PMID: 35310946 PMCID: PMC8927998 DOI: 10.1016/j.isci.2022.104001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/02/2022] [Accepted: 02/23/2022] [Indexed: 12/22/2022] Open
Abstract
Glomerular disease manifests as nephrotic syndrome (NS) with high proteinuria and comorbidities, and is frequently refractory to standard treatments. We hypothesized that a selective modulator of PPARγ, GQ-16, will provide therapeutic advantage over traditional PPARγ agonists for NS treatment. We demonstrate in a pre-clinical NS model that proteinuria is reduced with pioglitazone to 64%, and robustly with GQ-16 to 81% of nephrosis, comparable to controls. Although both GQ-16 and pioglitazone restore glomerular-Nphs1, hepatic-Pcsk9 and serum-cholesterol, only GQ-16 restores glomerular-Nrf2, and reduces hypoalbuminemia and hypercoagulopathy. GQ-16 and pioglitazone restore common and distinct glomerular gene expression analyzed by RNA-seq and induce insulin sensitizing adipokines to various degrees. Pioglitazone but not GQ-16 induces more lipid accumulation and aP2 in adipocytes and white adipose tissue. We conclude that selective modulation of PPARγ by a partial agonist, GQ-16, is more advantageous than pioglitazone in reducing proteinuria, NS associated comorbidities, and adipogenic side effects of full PPARγ agonists.
Collapse
Affiliation(s)
- Claire Bryant
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Galen Rask
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Amanda P. Waller
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Amy Webb
- The Ohio State University, Department of Biomedical Informatics, Columbus, OH, USA
| | - Marina R. Galdino-Pitta
- Laboratory of Design and Drug Synthesis, Bioscience Center, Federal University of Pernambuco, Recife, Brazil
| | - Angelica A. Amato
- Laboratório de Farmacologia Molecular, Departamento de Ciências Farmacêuticas, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasilia, Brazil
| | - Rachel Cianciolo
- Deptartment of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Brian Becknell
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Bryce A. Kerlin
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Francisco A.R. Neves
- Laboratório de Farmacologia Molecular, Departamento de Ciências Farmacêuticas, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasilia, Brazil
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shipra Agrawal
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
21
|
Afzal S, Sattar MA, Eseyin OA, Attiq A, Johns EJ. Crosstalk relationship between adiponectin receptors, PPAR-γ and α-adrenoceptors in renal vasculature of diabetic WKYs. Eur J Pharmacol 2022; 917:174703. [PMID: 34973951 DOI: 10.1016/j.ejphar.2021.174703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022]
Abstract
Hypoadiponectinemia is associated with renal dysfunctions. Irbesartan and pioglitazone activate Peroxisome proliferator-activated gamma receptor (PPAR-γ) as partial and full agonists. We investigated a crosstalk interaction and synergistic action between adiponectin receptors, PPAR-γ agonists in attenuating renal hemodynamics to adrenergic agonists in diabetic Wistar Kyoto rats (WKY). Streptozotocin (40 mg/kg) was used to induce diabetes, whereas, pioglitazone (10 mg/kg/day), irbesartan (30 mg/kg/day) administered orally for 28 days and adiponectin intraperitoneally (2.5 μg/kg/day) for last 7 days. Metabolic and plasma samples were analyzed on days 0, 8, 21, and 28. During the acute study (day 29), renal vasoconstrictor actions to adrenergic agonists and angiotensin-II were determined. Diabetic WKYs had lower plasma adiponectin, higher creatinine clearance, urinary and fractional sodium excretion but were normalized to a greater extent in pioglitazone and adiponectin combined treatment. Responses to intra-renal administration of adrenergic agonists including noradrenaline (NA), phenylephrine (PE), methoxamine (ME), and angiotensin-II (ANG-II) were larger in diabetic WKY, but significantly blunted with adiponectin treatment in diabetic WKYs to 35-40%, and further reduced by 65-70% in combination with pioglitazone. Attenuation to ANG-II responses in adiponectin and combination with irbesartan was 30-35% and 75-80%, respectively (P < 0.05). Pharmacodynamically, a crosstalk interaction exists between PPAR-γ, adiponectin receptors (adipo R1 & R2), alpha adrenoceptors, and angiotensin-I (ATI) receptors in the renal vasculature of diabetic WKYs. Exogenously administered adiponectin with full PPAR-γ agonist substantially attenuated renal hemodynamics and improved excretory functions, signifying their renoprotective action. Additionally, a degree of synergism exists between adiponectin and pioglitazone to a large extent compared to combination therapy with irbesartan (partial PPAR-γ agonist) in attenuating the renal vascular receptiveness to adrenergic agonists.
Collapse
Affiliation(s)
- Sheryar Afzal
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, MAHSA University, Selangor, Malaysia.
| | | | | | - Ali Attiq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, MAHSA University, Selangor, Malaysia.
| | | |
Collapse
|
22
|
Sharma M, Singh V, Sharma R, Koul A, McCarthy ET, Savin VJ, Joshi T, Srivastava T. Glomerular Biomechanical Stress and Lipid Mediators during Cellular Changes Leading to Chronic Kidney Disease. Biomedicines 2022; 10:407. [PMID: 35203616 PMCID: PMC8962328 DOI: 10.3390/biomedicines10020407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperfiltration is an important underlying cause of glomerular dysfunction associated with several systemic and intrinsic glomerular conditions leading to chronic kidney disease (CKD). These include obesity, diabetes, hypertension, focal segmental glomerulosclerosis (FSGS), congenital abnormalities and reduced renal mass (low nephron number). Hyperfiltration-associated biomechanical forces directly impact the cell membrane, generating tensile and fluid flow shear stresses in multiple segments of the nephron. Ongoing research suggests these biomechanical forces as the initial mediators of hyperfiltration-induced deterioration of podocyte structure and function leading to their detachment and irreplaceable loss from the glomerular filtration barrier. Membrane lipid-derived polyunsaturated fatty acids (PUFA) and their metabolites are potent transducers of biomechanical stress from the cell surface to intracellular compartments. Omega-6 and ω-3 long-chain PUFA from membrane phospholipids generate many versatile and autacoid oxylipins that modulate pro-inflammatory as well as anti-inflammatory autocrine and paracrine signaling. We advance the idea that lipid signaling molecules, related enzymes, metabolites and receptors are not just mediators of cellular stress but also potential targets for developing novel interventions. With the growing emphasis on lifestyle changes for wellness, dietary fatty acids are potential adjunct-therapeutics to minimize/treat hyperfiltration-induced progressive glomerular damage and CKD.
Collapse
Affiliation(s)
- Mukut Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Vikas Singh
- Neurology, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Ram Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Arnav Koul
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Ellen T. McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Virginia J. Savin
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65201, USA;
| | - Tarak Srivastava
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri, Kansas City, MO 64108, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| |
Collapse
|
23
|
Ebert T, Neytchev O, Witasp A, Kublickiene K, Stenvinkel P, Shiels PG. Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxid Redox Signal 2021; 35:1426-1448. [PMID: 34006115 DOI: 10.1089/ars.2020.8184] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Chronic kidney disease (CKD) can be regarded as a burden of lifestyle disease that shares common underpinning features and risk factors with the aging process; it is a complex constituted by several adverse components, including chronic inflammation, oxidative stress, early vascular aging, and cellular senescence. Recent Advances: A systemic approach to tackle CKD, based on mitigating the associated inflammatory, cell stress, and damage processes, has the potential to attenuate the effects of CKD, but it also preempts the development and progression of associated morbidities. In effect, this will enhance health span and compress the period of morbidity. Pharmacological, nutritional, and potentially lifestyle-based interventions are promising therapeutic avenues to achieve such a goal. Critical Issues: In the present review, currents concepts of inflammation and oxidative damage as key patho-mechanisms in CKD are addressed. In particular, potential beneficial but also adverse effects of different systemic interventions in patients with CKD are discussed. Future Directions: Senotherapeutics, the nuclear factor erythroid 2-related factor 2-kelch-like ECH-associated protein 1 (NRF2-KEAP1) signaling pathway, the endocrine klotho axis, inhibitors of the sodium-glucose cotransporter 2 (SGLT2), and live bio-therapeutics have the potential to reduce the burden of CKD and improve quality of life, as well as morbidity and mortality, in this fragile high-risk patient group. Antioxid. Redox Signal. 35, 1426-1448.
Collapse
Affiliation(s)
- Thomas Ebert
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ognian Neytchev
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
24
|
Cellular Senescence in Adrenocortical Biology and Its Disorders. Cells 2021; 10:cells10123474. [PMID: 34943980 PMCID: PMC8699888 DOI: 10.3390/cells10123474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is considered a physiological process along with aging and has recently been reported to be involved in the pathogenesis of many age-related disorders. Cellular senescence was first found in human fibroblasts and gradually explored in many other organs, including endocrine organs. The adrenal cortex is essential for the maintenance of blood volume, carbohydrate metabolism, reaction to stress and the development of sexual characteristics. Recently, the adrenal cortex was reported to harbor some obvious age-dependent features. For instance, the circulating levels of aldosterone and adrenal androgen gradually descend, whereas those of cortisol increase with aging. The detailed mechanisms have remained unknown, but cellular senescence was considered to play an essential role in age-related changes of the adrenal cortex. Recent studies have demonstrated that the senescent phenotype of zona glomerulosa (ZG) acts in association with reduced aldosterone production in both physiological and pathological aldosterone-producing cells, whereas senescent cortical-producing cells seemed not to have a suppressed cortisol-producing ability. In addition, accumulated lipofuscin formation, telomere shortening and cellular atrophy in zona reticularis cells during aging may account for the age-dependent decline in adrenal androgen levels. In adrenocortical disorders, including both aldosterone-producing adenoma (APA) and cortisol-producing adenoma (CPA), different cellular subtypes of tumor cells presented divergent senescent phenotypes, whereby compact cells in both APA and CPA harbored more senescent phenotypes than clear cells. Autonomous cortisol production from CPA reinforced a local cellular senescence that was more severe than that in APA. Adrenocortical carcinoma (ACC) was also reported to harbor oncogene-induced senescence, which compensatorily follows carcinogenesis and tumor progress. Adrenocortical steroids can induce not only a local senescence but also a periphery senescence in many other tissues. Therefore, herein, we systemically review the recent advances related to cellular senescence in adrenocortical biology and its associated disorders.
Collapse
|
25
|
PPARγ and TGFβ-Major Regulators of Metabolism, Inflammation, and Fibrosis in the Lungs and Kidneys. Int J Mol Sci 2021; 22:ijms221910431. [PMID: 34638771 PMCID: PMC8508998 DOI: 10.3390/ijms221910431] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a type II nuclear receptor, initially recognized in adipose tissue for its role in fatty acid storage and glucose metabolism. It promotes lipid uptake and adipogenesis by increasing insulin sensitivity and adiponectin release. Later, PPARγ was implicated in cardiac development and in critical conditions such as pulmonary arterial hypertension (PAH) and kidney failure. Recently, a cluster of different papers linked PPARγ signaling with another superfamily, the transforming growth factor beta (TGFβ), and its receptors, all of which play a major role in PAH and kidney failure. TGFβ is a multifunctional cytokine that drives inflammation, fibrosis, and cell differentiation while PPARγ activation reverses these adverse events in many models. Such opposite biological effects emphasize the delicate balance and complex crosstalk between PPARγ and TGFβ. Based on solid experimental and clinical evidence, the present review summarizes connections and their implications for PAH and kidney failure, highlighting the similarities and differences between lung and kidney mechanisms as well as discussing the therapeutic potential of PPARγ agonist pioglitazone.
Collapse
|
26
|
Li Z, Lu S, Li X. The role of metabolic reprogramming in tubular epithelial cells during the progression of acute kidney injury. Cell Mol Life Sci 2021; 78:5731-5741. [PMID: 34185125 PMCID: PMC11073237 DOI: 10.1007/s00018-021-03892-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) is one of the most common clinical syndromes. AKI is associated with significant morbidity and subsequent chronic kidney disease (CKD) development. Thus, it is urgent to develop a strategy to hinder AKI progression. Renal tubules are responsible for the reabsorption and secretion of various solutes and the damage to this part of the nephron is a key mediator of AKI. As we know, many common renal insults primarily target the highly metabolically active proximal tubular cells (PTCs). PTCs are the most energy-demanding cells in the kidney. The ATP that they use is mostly produced in their mitochondria by fatty acid β-oxidation (FAO). But, when PTCs face various biological stresses, FAO will shut down for a time that outlives injury. Recent studies have suggested that surviving PTCs can adapt to FAO disruption by increasing glycolysis when facing metabolic constraints, although PTCs do not perform glycolysis in a normal physiological state. Enhanced glycolysis in a short period compensates for impaired energy production and exerts partial renal-protective effects, but its long-term effect on renal function and AKI progression is not promising. Deranged FAO and enhanced glycolysis may contribute to the AKI to CKD transition through different molecular biological mechanisms. In this review, we concentrate on the recent pathological findings of AKI with regards to the metabolic reprogramming in PTCs, confirming that targeting metabolic reprogramming represents a potentially effective therapeutic strategy for the progression of AKI.
Collapse
Affiliation(s)
- Zhenzhen Li
- Medicial Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Shan Lu
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaobing Li
- College of Basic Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| |
Collapse
|
27
|
Wang X, Zu Q, Lu J, Zhang L, Zhu Q, Sun X, Dong J. Effects of Donor-Recipient Age Difference in Renal Transplantation, an Investigation on Renal Function and Fluid Proteome. Clin Interv Aging 2021; 16:1457-1470. [PMID: 34349505 PMCID: PMC8326938 DOI: 10.2147/cia.s314587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction Our previous study revealed that a young internal environment ameliorated kidney aging by virtue of an animal model of heterochronic parabiosis and a model of heterochronic renal transplantation. In this research, we used proteome to investigate the effects of donor-recipient age difference in clinical renal transplantation. Methods This study included 10 pairs of renal transplantation donors and recipients with an age difference of greater than 20 years to their corresponding recipients/donors. All recipients have received transplantation more than 3 years ago. Renal function and the serum/urine proteomes of the donors and recipients were analyzed. Results The renal function was similar between the young recipients and the old donors. In contrast, the renal function of the young donors was significantly superior to that of the old recipients. Furthermore, 497 and 975 proteins were identified in the serum and urine proteomes, respectively. The content of SLC3A2 in the blood was found to be related to aging, while the contents of SERPINA1 and SERPINA3 in the urine were related to immune functions after renal transplantation. Conclusion This study demonstrated that, in the human body, a younger internal environment could ameliorate kidney aging and provided not only clinical evidence for increasing the age limit of kidney transplant donors but also new information for kidney aging research.
Collapse
Affiliation(s)
- Xinning Wang
- Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qiang Zu
- Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jinshan Lu
- Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lei Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qiang Zhu
- Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xuefeng Sun
- Department of Nephrology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jun Dong
- Department of Urology, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
28
|
SOD2 Alleviates Hearing Loss Induced by Noise and Kanamycin in Mitochondrial DNA4834-deficient Rats by Regulating PI3K/MAPK Signaling. Curr Med Sci 2021; 41:587-596. [PMID: 34169429 DOI: 10.1007/s11596-021-2376-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
Superoxide dismutase 2 (SOD2)-mediated gene therapy has significant protective effects against kanamycin-induced hearing loss and hair cell loss in the inner ear, but the underlying mechanisms are still unclear. Herein, an in vivo aging model of mitochondrial DNA (mtDNA)4834 deletion mutation was established using D-galactose, and the effects of noise or kanamycin on inner ear injury was investigated. Rats subjected to mtDNA4834 mutation via D-galactose administration showed hearing loss characterized by the disruption of inner ear structure (abnormal cell morphology, hair cell lysis, and the absence of the organ of Corti), increased SOD2 promoter methylation, and an increase in the degree of apoptosis. Exposure to noise or kanamycin further contributed to the effects of D-galactose. SOD2 overexpression induced by viral injection accordingly counteracted the effects of noise and kanamycin and ameliorated the symptoms of hearing loss, suggesting the critical involvement of SOD2 in preventing deafness and hearing-related conditions. The PI3K and MAPK signaling pathways were also regulated by noise/kanamycin exposure and/or SOD2 overexpression, indicating that they may be involved in the therapeutic effect of SOD2 against age-related hearing loss.
Collapse
|
29
|
Neyra JA, Hu MC, Moe OW. Klotho in Clinical Nephrology: Diagnostic and Therapeutic Implications. Clin J Am Soc Nephrol 2020; 16:162-176. [PMID: 32699047 PMCID: PMC7792642 DOI: 10.2215/cjn.02840320] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
αKlotho (called Klotho here) is a membrane protein that serves as the coreceptor for the circulating hormone fibroblast growth factor 23 (FGF23). Klotho is also cleaved and released as a circulating substance originating primarily from the kidney and exerts a myriad of housekeeping functions in just about every organ. The vital role of Klotho is shown by the multiorgan failure with genetic deletion in rodents, with certain features reminiscent of human disease. The most common causes of systemic Klotho deficiency are AKI and CKD. Preclinical data on Klotho biology have advanced considerably and demonstrated its potential diagnostic and therapeutic value; however, multiple knowledge gaps exist in the regulation of Klotho expression, release, and metabolism; its target organs; and mechanisms of action. In the translational and clinical fronts, progress has been more modest. Nonetheless, Klotho has potential clinical applications in the diagnosis of AKI and CKD, in prognosis of progression and extrarenal complications, and finally, as replacement therapy for systemic Klotho deficiency. The overall effect of Klotho in clinical nephrology requires further technical advances and additional large prospective human studies.
Collapse
Affiliation(s)
- Javier A. Neyra
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Orson W. Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
30
|
Libby AE, Jones B, Lopez-Santiago I, Rowland E, Levi M. Nuclear receptors in the kidney during health and disease. Mol Aspects Med 2020; 78:100935. [PMID: 33272705 DOI: 10.1016/j.mam.2020.100935] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/24/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Over the last 30 years, nuclear receptors (NRs) have been increasingly recognized as key modulators of systemic homeostasis and as contributing factors in many diseases. In the kidney, NRs play numerous important roles in maintaining homeostasis-many of which continue to be unraveled. As "master regulators", these important transcription factors integrate and coordinate many renal processes such as circadian responses, lipid metabolism, fatty acid oxidation, glucose handling, and inflammatory responses. The use of recently-developed genetic tools and small molecule modulators have allowed for detailed studies of how renal NRs contribute to kidney homeostasis. Importantly, while NRs are intimately involved in proper kidney function, they are also implicated in a variety of renal diseases such as diabetes, acute kidney injury, and other conditions such as aging. In the last 10 years, our understanding of renal disease etiology and progression has been greatly shaped by knowledge regarding how NRs are dysregulated in these conditions. Importantly, NRs have also become attractive therapeutic targets for attenuation of renal diseases, and their modulation for this purpose has been the subject of intense investigation. Here, we review the role in health and disease of six key renal NRs including the peroxisome proliferator-activated receptors (PPAR), estrogen-related receptors (ERR), the farnesoid X receptors (FXR), estrogen receptors (ER), liver X receptors (LXR), and vitamin D receptors (VDR) with an emphasis on recent findings over the last decade. These NRs have generated a wealth of data over the last 10 years that demonstrate their crucial role in maintaining normal renal homeostasis as well as their capacity to modulate disease progression.
Collapse
Affiliation(s)
- Andrew E Libby
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Bryce Jones
- Department of Pharmacology and Physiology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Isabel Lopez-Santiago
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Emma Rowland
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3900 Reservoir Rd, Washington, DC, 20007, USA.
| |
Collapse
|
31
|
Paricalcitol Attenuates Contrast-Induced Acute Kidney Injury by Regulating Mitophagy and Senescence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7627934. [PMID: 33299530 PMCID: PMC7704155 DOI: 10.1155/2020/7627934] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/16/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022]
Abstract
Contrast-induced acute kidney injury (CI-AKI) is the third most common cause of hospital-acquired renal failure, with an incidence of 11%. However, the disease mechanism remains unclear, and no effective treatment is available. Paricalcitol has been reported to be effective in animal models of kidney injury. We hypothesized that paricalcitol could play a renoprotective role against CI-AKI. Rats were divided into control, paricalcitol, contrast, and paricalcitol-plus-contrast groups. We used a previously published protocol to produce CI-AKI. Paricalcitol (0.3 μg/kg) was administered intraperitoneally before 24 h and 30 min before indomethacin. We used HK-2 cells to evaluate the effects of paricalcitol on mitophagy and senescence. Ioversol triggered renal dysfunction, increasing blood urea nitrogen and serum creatinine. Significant tubular damage, increased 8-OHdG expression, and apoptosis were apparent. Ioversol injection induced high expression levels of the mitophagy markers Pink1, Parkin, and LC3 and the senescence markers β-galactosidase and p16INK4A. Paricalcitol pretreatment prevented renal dysfunction and reduced tissue damage by reducing both mitophagy and senescence. Cellular morphological changes were found, and expression of LC3B and HMGB1 was increased by ioversol in HK-2 cells. Paricalcitol countered these effects. This study showed that mitochondria might drive injury phenotypes in CI-AKI, and that paricalcitol protects against CI-AKI by decreasing mitochondrial damage.
Collapse
|
32
|
Liu B, Tan P. PPAR γ/TLR4/TGF-β1 axis mediates the protection effect of erythropoietin on cyclosporin A-induced chronic nephropathy in rat. Ren Fail 2020; 42:216-224. [PMID: 32090669 PMCID: PMC7054967 DOI: 10.1080/0886022x.2020.1729188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/18/2019] [Accepted: 02/04/2020] [Indexed: 01/12/2023] Open
Abstract
Objective: Nephrotoxicity is the main side effect of cyclosporine A and finding an effective combating method is urgent. The present study investigates the improving effect of erythropoietin (EPO) on cyclosporine A induce renal injury in rats and further explores its possible mechanism.Methods: Recombinant adenovirus for expression of EPO was constructed and injected into kidney with multipoint. Levels of blood urea nitrogen (BUN) and serum creatinine (SCr) were detected by kits. HE staining and Masson's trichrome staining were used to evaluate pathological changes. ELISA was performed to detect the levels of transforming growth factor (TGF)-β1, interleukin (IL)-1β, and IL-6 in serum. Levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in kidney were detected according to manufacturer's instruction. Western blotting was performed to observe the protein expression levels of peroxisome proliferator-activated receptor γ (PPAR γ), Toll-like receptor (TLR) 4, and TGF-β1.Results: Results showed that EPO overexpression in rat kidney could significantly improve renal injury and fibrosis, suppress the release of inflammatory factors and reduce oxidative stress induced by cyclosporine A. Western blotting results showed that EPO overexpression could up-regulate the expression of PPARγ and down-regulate the expression of TLR4 and TGF-β1. Interestingly, when PPARγ activity was inhibited by T0070907, an effective and specific PPARγ inhibitor, the therapeutic effect of EPO was significantly attenuated.Conclusion: Taken together, above results shown the protective effect of EPO on cyclosporine A-induced renal injury and confirmed that EPO's anti-inflammation and antioxidative stress involving the PPAR γ/TLR4/TGFβ1 axis.
Collapse
Affiliation(s)
- Bin Liu
- Department of Nephrology and Rheumatology, Chinese Medicine Hospital of Hainan Province, Haikou, China
| | - Ping Tan
- Department of Nephrology and Rheumatology, Chinese Medicine Hospital of Hainan Province, Haikou, China
| |
Collapse
|
33
|
Fang Y, Gong AY, Haller ST, Dworkin LD, Liu Z, Gong R. The ageing kidney: Molecular mechanisms and clinical implications. Ageing Res Rev 2020; 63:101151. [PMID: 32835891 PMCID: PMC7595250 DOI: 10.1016/j.arr.2020.101151] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
As human life expectancy keeps increasing, ageing populations present a growing challenge for clinical practices. Human ageing is associated with molecular, structural, and functional changes in a variety of organ systems, including the kidney. During the ageing process, the kidney experiences progressive functional decline as well as macroscopic and microscopic histological alterations, which are accentuated by systemic comorbidities like hypertension and diabetes mellitus, or by preexisting or underlying kidney diseases. Although ageing per se does not cause kidney injury, physiologic changes associated with normal ageing processes are likely to impair the reparative capacity of the kidney and thus predispose older people to acute kidney disease, chronic kidney disease and other renal diseases. Mechanistically, cell senescence plays a key role in renal ageing, involving a number of cellular signaling mechanisms, many of which may be harnessed as international targets for slowing or even reversing kidney ageing. This review summarizes the clinical characteristics of renal ageing, highlights the latest progresses in deciphering the role of cell senescence in renal ageing, and envisages potential interventional strategies and novel therapeutic targets for preventing or improving renal ageing in the hope of maintaining long-term kidney health and function across the life course.
Collapse
Affiliation(s)
- Yudong Fang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Athena Y Gong
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Steven T Haller
- Division of Cardiology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Lance D Dworkin
- Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Rujun Gong
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio, USA; Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, USA.
| |
Collapse
|
34
|
Yamamoto S, Yamamoto M, Nakamura J, Mii A, Yamamoto S, Takahashi M, Kaneko K, Uchino E, Sato Y, Fukuma S, Imamura H, Matsuda M, Yanagita M. Spatiotemporal ATP Dynamics during AKI Predict Renal Prognosis. J Am Soc Nephrol 2020; 31:2855-2869. [PMID: 33046532 DOI: 10.1681/asn.2020050580] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Depletion of ATP in renal tubular cells plays the central role in the pathogenesis of kidney diseases. Nevertheless, inability to visualize spatiotemporal in vivo ATP distribution and dynamics has hindered further analysis. METHODS A novel mouse line systemically expressing an ATP biosensor (an ATP synthase subunit and two fluorophores) revealed spatiotemporal ATP dynamics at single-cell resolution during warm and cold ischemic reperfusion (IR) with two-photon microscopy. This experimental system enabled quantification of fibrosis 2 weeks after IR and assessment of the relationship between the ATP recovery in acute phase and fibrosis in chronic phase. RESULTS Upon ischemia induction, the ATP levels of proximal tubule (PT) cells decreased to the nadir within a few minutes, whereas those of distal tubule (DT) cells decreased gradually up to 1 hour. Upon reperfusion, the recovery rate of ATP in PTs was slower with longer ischemia. In stark contrast, ATP in DTs was quickly rebounded irrespective of ischemia duration. Morphologic changes of mitochondria in the acute phase support the observation of different ATP dynamics in the two segments. Furthermore, slow and incomplete ATP recovery of PTs in the acute phase inversely correlated with fibrosis in the chronic phase. Ischemia under conditions of hypothermia resulted in more rapid and complete ATP recovery with less fibrosis, providing a proof of concept for use of hypothermia to protect kidney tissues. CONCLUSIONS Visualizing spatiotemporal ATP dynamics during IR injury revealed higher sensitivity of PT cells to ischemia compared with DT cells in terms of energy metabolism. The ATP dynamics of PTs in AKI might provide prognostic information.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masamichi Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Advanced Scientific Research Leaders Development Unit, Gunma University Graduate School of Medicine, Maebashi, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Jin Nakamura
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akiko Mii
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigenori Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Takahashi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiichi Kaneko
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Uchino
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Sato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Medical Innovation Center TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shingo Fukuma
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan .,Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| |
Collapse
|
35
|
Mitochondrial biogenesis in organismal senescence and neurodegeneration. Mech Ageing Dev 2020; 191:111345. [DOI: 10.1016/j.mad.2020.111345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
|
36
|
Bhatia D, Capili A, Choi ME. Mitochondrial dysfunction in kidney injury, inflammation, and disease: Potential therapeutic approaches. Kidney Res Clin Pract 2020; 39:244-258. [PMID: 32868492 PMCID: PMC7530368 DOI: 10.23876/j.krcp.20.082] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are energy-producing organelles that not only satisfy the high metabolic demands of the kidney but sense and respond to kidney injury-induced oxidative stress and inflammation. Kidneys are rich in mitochondria. Mitochondrial dysfunction plays a critical role in the progression of acute kidney injury and chronic kidney disease. Mitochondrial responses to specific stimuli are highly regulated and synergistically modulated by tightly interconnected processes, including mitochondrial dynamics (fission, fusion) and mitophagy. The counterbalance between these processes is essential in maintaining a healthy network of mitochondria. Recent literature suggests that alterations in mitochondrial dynamics are implicated in kidney injury and the progression of kidney diseases. A decrease in mitochondrial fusion promotes fission-induced mitochondrial fragmentation, but a reduction in mitochondrial fission produces excessive mitochondrial elongation. The removal of dysfunctional mitochondria by mitophagy is crucial for their quality control. Defective mitochondrial function disrupts cellular redox potential and can cause cell death. Mitochondrial DNA derived from damaged cells also act as damage-associated molecular patterns to recruit immune cells and the inflammatory response can further exaggerate kidney injury. This review provides a comprehensive overview of the role of mitochondrial dysfunction in acute kidney injury and chronic kidney disease. We discuss the processes that control mitochondrial stress responses to kidney injury and review recent advances in understanding the role of mitochondrial dysfunction in inflammation and tissue damage through the use of different experimental models of kidney disease. We also describe potential mitochondria-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - Allyson Capili
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - Mary E. Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
- Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
37
|
Abstract
Nuclear receptors have a broad spectrum of biological functions in normal physiology and in the pathology of various diseases, including glomerular disease. The primary therapies for many glomerular diseases are glucocorticoids, which exert their immunosuppressive and direct podocyte protective effects via the glucocorticoid receptor (GR). As glucocorticoids are associated with important adverse effects and a substantial proportion of patients show resistance to these therapies, the beneficial effects of selective GR modulators are now being explored. Peroxisome proliferator-activated receptor-γ (PPARγ) agonism using thiazolidinediones has potent podocyte cytoprotective and nephroprotective effects. Repurposing of thiazolidinediones or identification of novel PPARγ modulators are potential strategies to treat non-diabetic glomerular disease. Retinoic acid receptor-α is the key mediator of the renal protective effects of retinoic acid, and repair of the endogenous retinoic acid pathway offers another potential therapeutic strategy for glomerular disease. Vitamin D receptor, oestrogen receptor and mineralocorticoid receptor modulators regulate podocyte injury in experimental models. Further studies are needed to better understand the mechanisms of these nuclear receptors, evaluate their synergistic pathways and identify their novel modulators. Here, we focus on the role of nuclear receptors in podocyte biology and non-diabetic glomerular disease.
Collapse
|
38
|
Guo J, Zheng HJ, Zhang W, Lou W, Xia C, Han XT, Huang WJ, Zhang F, Wang Y, Liu WJ. Accelerated Kidney Aging in Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1234059. [PMID: 32774664 PMCID: PMC7407029 DOI: 10.1155/2020/1234059] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
With aging, the kidney undergoes inexorable and progressive changes in structural and functional performance. These aging-related alterations are more obvious and serious in diabetes mellitus (DM). Renal accelerated aging under DM conditions is associated with multiple stresses such as accumulation of advanced glycation end products (AGEs), hypertension, oxidative stress, and inflammation. The main hallmarks of cellular senescence in diabetic kidneys include cyclin-dependent kinase inhibitors, telomere shortening, and diabetic nephropathy-associated secretory phenotype. Lysosome-dependent autophagy and antiaging proteins Klotho and Sirt1 play a fundamental role in the accelerated aging of kidneys in DM, among which the autophagy-lysosome system is the convergent mechanism of the multiple antiaging pathways involved in renal aging under DM conditions. Metformin and the inhibitor of sodium-glucose cotransporter 2 are recommended due to their antiaging effects independent of antihyperglycemia, besides angiotensin-converting enzyme inhibitors/angiotensin receptor blockers. Additionally, diet intervention including low protein and low AGEs with antioxidants are suggested for patients with diabetic nephropathy (DN). However, their long-term benefits still need further study. Exploring the interactive relationships among antiaging protein Klotho, Sirt1, and autophagy-lysosome system may provide insight into better satisfying the urgent medical needs of elderly patients with aging-related DN.
Collapse
Affiliation(s)
- Jing Guo
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hui Juan Zheng
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wenting Zhang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wenjiao Lou
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chenhui Xia
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xue Ting Han
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wei Jun Huang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Fan Zhang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yaoxian Wang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wei Jing Liu
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, No. 57th South Renmin Road, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
39
|
Law JP, Price AM, Pickup L, Radhakrishnan A, Weston C, Jones AM, McGettrick HM, Chua W, Steeds RP, Fabritz L, Kirchhof P, Pavlovic D, Townend JN, Ferro CJ. Clinical Potential of Targeting Fibroblast Growth Factor-23 and αKlotho in the Treatment of Uremic Cardiomyopathy. J Am Heart Assoc 2020; 9:e016041. [PMID: 32212912 PMCID: PMC7428638 DOI: 10.1161/jaha.120.016041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease is highly prevalent, affecting 10% to 15% of the adult population worldwide and is associated with increased cardiovascular morbidity and mortality. As chronic kidney disease worsens, a unique cardiovascular phenotype develops characterized by heart muscle disease, increased arterial stiffness, atherosclerosis, and hypertension. Cardiovascular risk is multifaceted, but most cardiovascular deaths in patients with advanced chronic kidney disease are caused by heart failure and sudden cardiac death. While the exact drivers of these deaths are unknown, they are believed to be caused by uremic cardiomyopathy: a specific pattern of myocardial hypertrophy, fibrosis, with both diastolic and systolic dysfunction. Although the pathogenesis of uremic cardiomyopathy is likely to be multifactorial, accumulating evidence suggests increased production of fibroblast growth factor-23 and αKlotho deficiency as potential major drivers of cardiac remodeling in patients with uremic cardiomyopathy. In this article we review the increasing understanding of the physiology and clinical aspects of uremic cardiomyopathy and the rapidly increasing knowledge of the biology of both fibroblast growth factor-23 and αKlotho. Finally, we discuss how dissection of these pathological processes is aiding the development of therapeutic options, including small molecules and antibodies, directly aimed at improving the cardiovascular outcomes of patients with chronic kidney disease and end-stage renal disease.
Collapse
Affiliation(s)
- Jonathan P. Law
- Birmingham Cardio‐Renal GroupUniversity Hospitals BirminghamUniversity of BirminghamUnited Kingdom
- Institute of Cardiovascular SciencesUniversity of BirminghamUnited Kingdom
- Department of NephrologyUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUnited Kingdom
| | - Anna M. Price
- Birmingham Cardio‐Renal GroupUniversity Hospitals BirminghamUniversity of BirminghamUnited Kingdom
- Institute of Cardiovascular SciencesUniversity of BirminghamUnited Kingdom
- Department of NephrologyUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUnited Kingdom
| | - Luke Pickup
- Birmingham Cardio‐Renal GroupUniversity Hospitals BirminghamUniversity of BirminghamUnited Kingdom
- Institute of Cardiovascular SciencesUniversity of BirminghamUnited Kingdom
| | - Ashwin Radhakrishnan
- Birmingham Cardio‐Renal GroupUniversity Hospitals BirminghamUniversity of BirminghamUnited Kingdom
| | - Chris Weston
- Institute of Immunology and ImmunotherapyUniversity of BirminghamUnited Kingdom
- NIHR Birmingham Biomedical Research CentreUniversity Hospitals Birmingham NHS Foundation Trust and University of BirminghamUnited Kingdom
| | - Alan M. Jones
- School of PharmacyUniversity of BirminghamUnited Kingdom
| | | | - Winnie Chua
- Birmingham Cardio‐Renal GroupUniversity Hospitals BirminghamUniversity of BirminghamUnited Kingdom
- Institute of Cardiovascular SciencesUniversity of BirminghamUnited Kingdom
| | - Richard P. Steeds
- Birmingham Cardio‐Renal GroupUniversity Hospitals BirminghamUniversity of BirminghamUnited Kingdom
- Institute of Cardiovascular SciencesUniversity of BirminghamUnited Kingdom
- Department of CardiologyUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUnited Kingdom
| | - Larissa Fabritz
- Birmingham Cardio‐Renal GroupUniversity Hospitals BirminghamUniversity of BirminghamUnited Kingdom
- Institute of Cardiovascular SciencesUniversity of BirminghamUnited Kingdom
- Department of CardiologyUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUnited Kingdom
| | - Paulus Kirchhof
- Birmingham Cardio‐Renal GroupUniversity Hospitals BirminghamUniversity of BirminghamUnited Kingdom
- Institute of Cardiovascular SciencesUniversity of BirminghamUnited Kingdom
| | - Davor Pavlovic
- Birmingham Cardio‐Renal GroupUniversity Hospitals BirminghamUniversity of BirminghamUnited Kingdom
- Institute of Cardiovascular SciencesUniversity of BirminghamUnited Kingdom
| | - Jonathan N. Townend
- Birmingham Cardio‐Renal GroupUniversity Hospitals BirminghamUniversity of BirminghamUnited Kingdom
- Institute of Cardiovascular SciencesUniversity of BirminghamUnited Kingdom
- Department of CardiologyUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUnited Kingdom
| | - Charles J. Ferro
- Birmingham Cardio‐Renal GroupUniversity Hospitals BirminghamUniversity of BirminghamUnited Kingdom
- Institute of Cardiovascular SciencesUniversity of BirminghamUnited Kingdom
- Department of NephrologyUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUnited Kingdom
| |
Collapse
|
40
|
Yabuki A, Uehara Y, Ichii O, Yoshida C, Yamato O. Expression of Peroxisome Proliferator-activated Receptor-γ in the Kidneys of Cats with Chronic Kidney Disease. J Comp Pathol 2020; 176:81-85. [PMID: 32359640 DOI: 10.1016/j.jcpa.2020.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 11/26/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-γ plays an important role in various cellular functions and its activation exerts protective effects in kidney diseases. In the present study, chronic kidney disease in cats was examined, and changes in renal expression of PPARγ were observed by use of immunohistochemistry. In normal kidneys, nuclei of the superficial cortical tubules, medullary tubules and glomerular cells expressed PPARγ. The vascular walls (tunica media) also showed positive expression. In diseased kidneys, the expression of PPARγ varied between the cases. Some cases showed strong expression, while others had weak expression. PPARγ expression in the nuclei of infiltrating mononuclear cells was also detected in over half of the cases. Although there was no significant relationship between the expression of renal PPARγ and the severity of kidney disease, the fact that there were many cases where the expression of renal PPARγ was reduced was an important finding, and might be one of the possible mechanisms underlying feline chronic kidney diseases.
Collapse
Affiliation(s)
- A Yabuki
- Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, Japan.
| | - Y Uehara
- Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, Japan
| | - O Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo, Japan
| | - C Yoshida
- Boehringer Ingelheim Animal Health Japan, Osaki, 2-1-1, Shinagawa-ku, Tokyo, Japan
| | - O Yamato
- Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, Japan
| |
Collapse
|
41
|
PPAR γ and Its Agonists in Chronic Kidney Disease. Int J Nephrol 2020; 2020:2917474. [PMID: 32158560 PMCID: PMC7060840 DOI: 10.1155/2020/2917474] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/11/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) has become a global healthcare issue. CKD can progress to irreversible end-stage renal diseases (ESRD) or renal failure. The major risk factors for CKD include obesity, diabetes, and cardiovascular diseases. Understanding the key process involved in the disease development may lead to novel interventive strategies, which is currently lagging behind. Peroxisome proliferator-activated receptor γ (PPARγ) is one of the ligand-activated transcription factor superfamily members and is globally expressed in human tissues. Its agonists such as thiazolidinediones (TZDs) have been applied as effective antidiabetic drugs as they control insulin sensitivity in multiple metabolic tissues. Besides, TZDs exert protective effects in multiple other CKD risk disease contexts. As PPARγ is abundantly expressed in major kidney cells, its physiological roles in those cells have been studied in both cell and animal models. The function of PPARγ in the kidney ranges from energy metabolism, cell proliferation to inflammatory suppression, although major renal side effects of existing agonists (including TZDs) have been reported, which limited their application in treating CKD. In the current review, we systemically assess the function of PPARγ in CKDs and the benefits and current limitations of its agonists in the clinical applications.
Collapse
|
42
|
Anti-aging Effects of Calorie Restriction (CR) and CR Mimetics based on the Senoinflammation Concept. Nutrients 2020; 12:nu12020422. [PMID: 32041168 PMCID: PMC7071238 DOI: 10.3390/nu12020422] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation, a pervasive feature of the aging process, is defined by a continuous, multifarious, low-grade inflammatory response. It is a sustained and systemic phenomenon that aggravates aging and can lead to age-related chronic diseases. In recent years, our understanding of age-related chronic inflammation has advanced through a large number of investigations on aging and calorie restriction (CR). A broader view of age-related inflammation is the concept of senoinflammation, which has an outlook beyond the traditional view, as proposed in our previous work. In this review, we discuss the effects of CR on multiple phases of proinflammatory networks and inflammatory signaling pathways to elucidate the basic mechanism underlying aging. Based on studies on senoinflammation and CR, we recognized that senescence-associated secretory phenotype (SASP), which mainly comprises cytokines and chemokines, was significantly increased during aging, whereas it was suppressed during CR. Further, we recognized that cellular metabolic pathways were also dysregulated in aging; however, CR mimetics reversed these effects. These results further support and enhance our understanding of the novel concept of senoinflammation, which is related to the metabolic changes that occur in the aging process. Furthermore, a thorough elucidation of the effect of CR on senoinflammation will reveal key insights and allow possible interventions in aging mechanisms, thus contributing to the development of new therapies focused on improving health and longevity.
Collapse
|
43
|
Pioglitazone attenuates kidney injury in an experimental model of gentamicin-induced nephrotoxicity in rats. Sci Rep 2019; 9:13689. [PMID: 31548602 PMCID: PMC6757036 DOI: 10.1038/s41598-019-49835-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
Gentamicin, belonging to the aminoglycosides, possesses the greatest nephrotoxic effect of all other antibiotics from this group. On the other hand, pioglitazone, which represents peroxisome proliferator-activated receptor γ (PPARγ) agonist recently showed antiinflamatory, antioxidative effects, amelioration of endothelial dysfunction etc. Therefore, the goal of our study was to investigate the effects of pioglitazone on kidney injury in an experimental model of gentamicin-induced nephrotoxicity in rats. These effects were observed by following values of biochemical (serum urea and creatinine) parametars, total histological kidney score, urine level of kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) as well as parametars of oxidative stress (malondialdehyde, superoxide dismutase, catalase, total oxidant status, total antioxidant status, oxidative stress index and advanced oxidation protein products). It seems that pioglitazone protects the injured rat kidney in a U-shaped manner. Medium dose of pioglitazone (1 mg/kg, i.p.) was protective regarding biochemical (serum urea and creatinine), total histological score and the values of kidney injury molecule-1 (KIM-1) (P < 0.05 vs. control group, i.e. rats injected with gentamicin only). This finding could be of great importance for the wider use of aminoglycosides, with therapy that would reduce the occurrence of serious adverse effects, such as nephrotoxicity and acute renal failure.
Collapse
|
44
|
Jeong SG, Lee SE, Kim WJ, Park YG, Yoon JW, Park CO, Park HJ, Kim EY, Park SP. Pioglitazone improves porcine oocyte maturation and subsequent parthenogenetic embryo development in vitro by increasing lipid metabolism. Mol Reprod Dev 2019; 86:1245-1254. [PMID: 31429176 DOI: 10.1002/mrd.23252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 06/30/2019] [Indexed: 12/17/2022]
Abstract
Optimization of culture conditions is important to improve oocyte maturation and subsequent embryo development. In particular, this study analyzed the effects of increasing concentrations of PIO in the maturation medium on spindle formation and chromosome alignment, glutathione, and intracellular ROS levels and expression of selected genes related to maternal markers, apoptosis, and lipid metabolism. The percentage of oocytes displaying normal spindle formation and chromosome alignment was higher in the 1 µM PIO (1 PIO)-treated group than in the control group. The glutathione level was significantly higher in the 1 PIO-treated group than in the control group, while the reactive oxygen species level did not differ. Expression of maternal marker (MOS and GDF9), antiapoptotic (BIRC5), and lipid metabolism-related (ACADS, CPT2, SREBF1, and PPARG) genes was higher in the 1 PIO-treated group than in the control group, while expression of a proapoptotic gene (CASP3) was lower. The blastocyst formation rate and the percentage of blastocysts that reached at least the hatching stage on Days 6 and 7, and the percentage of blastocysts containing more than 128 cells were significantly higher in the 1 PIO-treated group than in the control group. These results indicate that PIO treatment during in vitro maturation improves porcine oocyte maturation and subsequent parthenogenetic embryo development mainly by enhancing lipid metabolism and antioxidant defense in oocytes.
Collapse
Affiliation(s)
- Sang-Gi Jeong
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Seung-Eun Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Won-Jae Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Yun-Gwi Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Jae-Wook Yoon
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Chan-Oh Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Hyo-Jin Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Eun-Young Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea.,Mirae Cell Bio, Seoul, Korea
| | - Se-Pill Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea.,Mirae Cell Bio, Seoul, Korea
| |
Collapse
|
45
|
Mitochondrial dysfunction in diabetic kidney disease. Clin Chim Acta 2019; 496:108-116. [PMID: 31276635 DOI: 10.1016/j.cca.2019.07.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/26/2022]
Abstract
Although diabetic kidney disease (DKD) is the most common cause of end-stage kidney disease worldwide, the pathogenic mechanisms are poorly understood. There is increasing evidence that mitochondrial dysfunction contributes to the development and progression of DKD. Because the kidney is the organ with the second highest oxygen consumption in our body, it is distinctly sensitive to mitochondrial dysfunction. Mitochondrial dysfunction contributes to the progression of chronic kidney disease irrespective of underlying cause. More importantly, high plasma glucose directly damages renal tubular cells, resulting in a wide range of metabolic and cellular dysfunction. Overproduction of reactive oxygen species (ROS), activation of apoptotic pathway, and defective mitophagy are interlinked mechanisms that play pivotal roles in the progression of DKD. Although renal tubular cells have the highest mitochondrial content, podocytes, mesangial cells, and glomerular endothelial cells may all be affected by diabetes-induced mitochondrial injury. Urinary mitochondrial DNA (mtDNA) is readily detectable and may serve as a marker of mitochondrial damage in DKD. Unfortunately, pharmacologic modulation of mitochondrial dysfunction for the treatment of DKD is still in its infancy. Nonetheless, understanding the pathobiology of mitochondrial dysfunction in DKD would facilitate the development of novel therapeutic strategies.
Collapse
|
46
|
Abstract
Acute kidney injury (AKI) is associated with many of the same mineral metabolite abnormalities that are observed in chronic kidney disease. These include increased circulating levels of the osteocyte-derived, vitamin D-regulating hormone, fibroblast growth factor 23 (FGF23), and decreased renal expression of klotho, the co-receptor for FGF23. Recent data have indicated that increased FGF23 and decreased klotho levels in the blood and urine could serve as novel predictive biomarkers of incident AKI, or as novel prognostic biomarkers of adverse outcomes in patients with established AKI. In addition, because FGF23 and klotho exert numerous classic as well as off-target effects on a variety of organ systems, targeting their dysregulation in AKI may represent a unique opportunity for therapeutic intervention. We review the pathophysiology, kinetics, and regulation of FGF23 and klotho in animal and human studies of AKI, and we discuss the challenges and opportunities involved in targeting FGF23 and klotho therapeutically.
Collapse
Affiliation(s)
- Marta Christov
- Department of Medicine, New York Medical College, Valhalla, NY.
| | - Javier A Neyra
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, KY; Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX
| | - Sanjeev Gupta
- Department of Medicine, New York Medical College, Valhalla, NY
| | - David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
47
|
Zhang J, Wang N, Xu A. Cmah deficiency may lead to age-related hearing loss by influencing miRNA-PPAR mediated signaling pathway. PeerJ 2019; 7:e6856. [PMID: 31149396 PMCID: PMC6526899 DOI: 10.7717/peerj.6856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022] Open
Abstract
Background Previous evidence has indicated CMP-Neu5Ac hydroxylase (Cmah) disruption inducesaging-related hearing loss (AHL). However, its function mechanisms remain unclear. This study was to explore the mechanisms of AHL by using microarray analysis in the Cmah deficiency animal model. Methods Microarray dataset GSE70659 was available from the Gene Expression Omnibus database, including cochlear tissues from wild-type and Cmah-null C57BL/6J mice with old age (12 months, n = 3). Differentially expressed genes (DEGs) were identified using the Linear Models for Microarray data method and a protein–protein interaction (PPI) network was constructed using data from the Search Tool for the Retrieval of Interacting Genes database followed by module analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed using the Database for Annotation, Visualization and Integrated Discovery. The upstream miRNAs and potential small-molecule drugs were predicted by miRwalk2.0 and Connectivity Map, respectively. Results A total of 799 DEGs (449 upregulated and 350 downregulated) were identified. Upregulated DEGs were involved in Cell adhesion molecules (ICAM1, intercellular adhesion molecule 1) and tumor necrosis factor (TNF) signaling pathway (FOS, FBJ osteosarcoma oncogene; ICAM1), while downregulated DEGs participated in PPAR signaling pathway (PPARG, peroxisome proliferator-activated receptor gamma). A PPI network was constructed, in which FOS, ICAM1 and PPARG were ranked as hub genes and PPARG was a transcription factor to regulate other target genes (ICAM1, FOS). Function analysis of two significant modules further demonstrated PPAR signaling pathway was especially important. Furthermore, mmu-miR-130b-3p, mmu-miR-27a-3p, mmu-miR-27b-3p and mmu-miR-721 were predicted to regulate PPARG. Topiramate were speculated to be a potential small-molecule drug to reverse DEGs in AHL. Conclusions PPAR mediated signaling pathway may be an important mechanism for AHL. Downregulation of the above miRNAs and use of topiramate may be potential treatment strategies for ALH by upregulating PPARG.
Collapse
Affiliation(s)
- Juhong Zhang
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Na Wang
- Department of Otolaryngology/Head and Neck Surgery, the Second Hospital of Shandong University, Jinan, China
| | - Anting Xu
- Department of Otolaryngology/Head and Neck Surgery, the Second Hospital of Shandong University, Jinan, China.,NHC. Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| |
Collapse
|
48
|
Klotho recovery by genistein via promoter histone acetylation and DNA demethylation mitigates renal fibrosis in mice. J Mol Med (Berl) 2019; 97:541-552. [PMID: 30806715 DOI: 10.1007/s00109-019-01759-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/16/2018] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
Abstract
Renal fibrosis is a common histomorphological feature of renal aging and chronic kidney diseases of all etiologies, and its initiation and progression are substantially influenced by aberrant epigenetic modifications of fibrosis-susceptible genes, yet without effective therapy. "Epigenetic diets" exhibit tissue-protective and epigenetic-modulating properties; however, their anti-renal fibrosis functions and the underlying mechanisms are less understood. In this study, we show that genistein, a phytoestrogenic isoflavone enriched in dietary soy products, exhibits impressive anti-renal fibrosis activities by recovering epigenetic loss of Klotho, a kidney-enriched anti-aging and fibrosis-suppressing protein. Mouse fibrotic kidneys induced by UUO (unilateral ureteral occlusion) displayed severer Klotho suppression and adverse expression of renal fibrosis-associated proteins, but genistein administration markedly recovered the Klotho loss and attenuated renal fibrosis and the protein expression abnormalities. The examination of possible causes of the Klotho recovery revealed that genistein simultaneously inhibited histone 3 deacetylation of Klotho promoter and normalized the promoter DNA hypermethylation by suppressing elevated DNA methyltransferase DNMT1 and DNMT3a. More importantly, genistein's anti-renal fibrosis effects on the renal fibrotic lesions and the abnormal expressions of fibrosis-associated proteins were abrogated when Klotho is knockdown by RNA interferences in UUO mice. Thus, our results identify Klotho restoration via epigenetic histone acetylation and DNA demethylation as a critical mechanism of genistein's anti-fibrosis function and shed new lights on the potentials of epigenetic diets in preventing or treating aging or renal fibrosis-associated kidney diseases. KEY MESSAGES: Genistein prevents renal fibrosis and the associated Klotho suppression in UUO mice. Genistein upregulates Klotho in part by reversing the promoter histone 3 hypoacetylation. Genistein also preserves Klotho via relieving Klotho promoter hypermethylation. Genistein demethylates Klotho promoter by inhibiting aberrant DNMT1/3a expression. Genistein restoration of Klotho is essential for its anti-renal fibrosis function.
Collapse
|
49
|
Zhang C, Zhang Y, Zhang C, Liu Y, Liu Y, Xu G. Pioglitazone increases VEGFR3 expression and promotes activation of M2 macrophages via the peroxisome proliferator‑activated receptor γ. Mol Med Rep 2019; 19:2740-2748. [PMID: 30816473 PMCID: PMC6423577 DOI: 10.3892/mmr.2019.9945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 01/25/2019] [Indexed: 12/14/2022] Open
Abstract
The peroxisome proliferator-activated receptor γ (PPARγ) agonist pioglitazone has been widely used in previous studies to ameliorate diabetes mellitus and regulate inflammation. However, the present study aimed to investigate the effect of pioglitazone on macrophages and determine its impact on renal fibrosis in vivo. Firstly, bone marrow-derived macrophages (BMDM) were used to detect the effects of pioglitazone on macrophages in vitro. It was demonstrated that pioglitazone promoted M2 macrophage activation and induced vascular endothelial growth factor receptor 3 (VEGFR3) upregulation in a PPARγ-dependent manner. Furthermore, pioglitazone increased macrophage proliferation and macrophage VEGFR3 expression in a murine unilateral ureteral obstruction (UUO) model; however, it had no therapeutic effect on renal fibrosis in vivo. Therefore, the results in the present study implied that presence of M2 macrophages may inhibit pioglitazone's ability to attenuate UUO-induced renal fibrosis. In addition, the results demonstrated that macrophage-associated VEGFR3 could be induced by pioglitazone, although it is still unclear what role VEGFR3+ M2 macrophages have in renal fibrosis.
Collapse
Affiliation(s)
- Conghui Zhang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ying Zhang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Chunxiu Zhang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yang Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300070, P.R. China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
50
|
Adema AY, de Roij van Zuijdewijn CLM, Hoenderop JG, de Borst MH, Ter Wee PM, Heijboer AC, Vervloet MG. Influence of exogenous growth hormone administration on circulating concentrations of α-klotho in healthy and chronic kidney disease subjects: a prospective, single-center open case-control pilot study. BMC Nephrol 2018; 19:327. [PMID: 30442108 PMCID: PMC6238285 DOI: 10.1186/s12882-018-1114-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 10/22/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The CKD-associated decline in soluble α-Klotho (α-Klotho) levels is considered detrimental. Some studies suggest a direct induction of α-Klotho concentrations by growth hormone (GH). In the present study, the effect of exogenous GH administration on α-Klotho concentrations in a clinical cohort with mild chronic kidney disease (CKD) and healthy subjects was studied. METHODS A prospective, single-center open case-control pilot study was performed involving 8 patients with mild CKD and 8 healthy controls matched for age and sex. All participants received subcutaneous GH injections (Genotropin®, 20 mcg/kg/day) for 7 consecutive days. α-Klotho concentrations were measured at baseline, after 7 days of therapy and 1 week after the intervention was stopped. RESULTS α-Klotho concentrations were not different between CKD-patients and healthy controls at baseline (554 (388-659) vs. 547 (421-711) pg/mL, P = 0.38). Overall, GH therapy increased α-Klotho concentrations from 554 (405-659) to 645 (516-754) pg/mL, P < 0.05). This was accompanied by an increase of IGF-1 concentrations from 26.8 ± 5.0 nmol/L to 61.7 ± 17.7 nmol/L (P < 0.05). GH therapy induced a trend toward increased α-Klotho concentrations both in the CKD group (554 (388-659) to 591 (358-742) pg/mL (P = 0.19)) and the healthy controls (547 (421-711) pg/mL to 654 (538-754) pg/mL (P = 0.13)). The change in α-Klotho concentration was not different for both groups (P for interaction = 0.71). α-Klotho concentrations returned to baseline levels within one week after the treatment (P < 0.05). CONCLUSIONS GH therapy increases α-Klotho concentrations in subjects with normal renal function or stage 3 CKD. A larger follow-up study is needed to determine whether the effect size is different between both groups or in patients with more severe CKD. TRIAL REGISTRATION This trial is registered in EudraCT ( 2013-003354-24 ).
Collapse
Affiliation(s)
- Aaltje Y Adema
- Department of Nephrology, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | | | - Joost G Hoenderop
- Department of Physiology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Piet M Ter Wee
- Department of Nephrology, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Annemieke C Heijboer
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Marc G Vervloet
- Department of Nephrology, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands. .,Amsterdam Cardiovascular Sciences (ACS), Amsterdam, The Netherlands.
| | | |
Collapse
|