1
|
Butler SE, Ackerman ME. Challenges and future perspectives for high-throughput chimeric antigen receptor T cell discovery. Curr Opin Biotechnol 2024; 90:103216. [PMID: 39437676 PMCID: PMC11627592 DOI: 10.1016/j.copbio.2024.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Novel chimeric antigen receptor (CAR) T cell designs are being developed to overcome challenges with tumor recognition, trafficking, on-target but off-tumor binding, cytotoxicity, persistence, and immune suppression within the tumor microenvironment. Whereas traditional CAR engineering is an iterative, hypothesis-driven process in which novel designs are rationally constructed and tested for in vivo efficacy, drawing from the fields of small-molecule and protein-based therapeutic discovery, we consider how high-throughput, functional screening technologies are beginning to be applied for the development of promising CAR candidates. We review how the development of high-throughput screening methods has the potential to streamline the CAR discovery process, ultimately improving efficiency and clinical efficacy.
Collapse
Affiliation(s)
- Savannah E Butler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
2
|
Afeyan AB, Wu CJ, Oliveira G. Rapid parallel reconstruction and specificity screening of hundreds of T cell receptors. Nat Protoc 2024:10.1038/s41596-024-01061-4. [PMID: 39516267 DOI: 10.1038/s41596-024-01061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/06/2024] [Indexed: 11/16/2024]
Abstract
The ability to screen the reactivity of T cell receptors (TCRs) is essential to understanding how antigen-specific T cells drive productive or dysfunctional immune responses during infections, cancer and autoimmune diseases. Methods to profile large numbers of TCRs are critical for characterizing immune responses sustained by diverse T cell clones. Here we provide a medium-throughput approach to reconstruct dozens to hundreds of TCRs in parallel, which can be simultaneously screened against primary human tissues and broad curated panels of antigenic targets. Using Gibson assembly and miniaturized lentiviral transduction, individual TCRs are rapidly cloned and expressed in T cells; before screening, TCR cell lines undergo combinatorial labeling with dilutions of three fluorescent dyes, which allows retrieval of the identity of individual T cell effectors when they are organized and tested in pools using flow cytometry. Upon incubation with target cells, we measure the upregulation of CD137 on T cells as a readout of TCR activation. This approach is scalable and simultaneously captures the reactivity of pooled TCR cell lines, whose activation can be deconvoluted in real time, thus providing a path for screening the reactivity of dozens of TCRs against broad panels of synthetic antigens or against cellular targets, such as human tumor cells. We applied this pipeline to systematically deconvolute the antitumoral and antiviral reactivity and antigenic specificity of TCRs from human tumor-infiltrating lymphocytes. This protocol takes ~2 months, from experimental design to data analysis, and requires standard expertise in cloning, cell culture and flow cytometry.
Collapse
Affiliation(s)
- Alexander B Afeyan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Hagelstein I, Wessling L, Rochwarger A, Zekri L, Klimovich B, Tegeler CM, Jung G, Schürch CM, Salih HR, Lutz MS. Targeting CD276 for T cell-based immunotherapy of breast cancer. J Transl Med 2024; 22:902. [PMID: 39367484 PMCID: PMC11452943 DOI: 10.1186/s12967-024-05689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignancy in women. Immunotherapy has revolutionized treatment options in many malignancies, and the introduction of immune checkpoint inhibition yielded beneficial results also in BC. However, many BC patients are ineligible for this T cell-based therapy, others do not respond or only briefly. Thus, there remains a high medical need for new therapies, particularly for triple-negative BC. CD276 (B7-H3) is overexpressed in several tumors on both tumor cells and tumor vessels, constituting a promising target for immunotherapy. METHODS We analyzed tumor samples of 25 patients using immunohistochemistry to assess CD276 levels. The potential of CC-3, a novel bispecific CD276xCD3 antibody, for BC treatment was evaluated using various functional in vitro assays. RESULTS Pronounced expression of CD276 was observed in all analyzed tumor samples including triple negative BC. In analyses with BC cells, CC-3 induced profound T cell activation, proliferation, and T cell memory subset formation. Moreover, treatment with CC-3 induced cytokine secretion and potent tumor cell lysis. CONCLUSION Our findings characterize CD276 as promising target and preclinically document the therapeutic potential of CC-3 for BC treatment, providing a strong rationale for evaluation of CC-3 in BC patients in a clinical trial for which the recruitment has recently started.
Collapse
Affiliation(s)
- Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Laura Wessling
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Alexander Rochwarger
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Latifa Zekri
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tübingen, Germany
| | - Boris Klimovich
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Christian M Tegeler
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Department of Obstetrics and Gynecology, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-Based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
| | - Gundram Jung
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tübingen, Germany
| | - Christian M Schürch
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| | - Martina S Lutz
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Sedloev D, Chen Q, Unglaub JM, Schanda N, Hao Y, Besiridou E, Neuber B, Schmitt A, Raffel S, Liu Y, Janssen M, Müller-Tidow C, Schmitt M, Sauer T. Proteasome inhibition enhances the anti-leukemic efficacy of chimeric antigen receptor (CAR) expressing NK cells against acute myeloid leukemia. J Hematol Oncol 2024; 17:85. [PMID: 39285441 PMCID: PMC11406742 DOI: 10.1186/s13045-024-01604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Relapsed and refractory acute myeloid leukemia (AML) carries a dismal prognosis. CAR T cells have shown limited efficacy in AML, partially due to dysfunctional autologous T cells and the extended time for generation of patient specific CAR T cells. Allogeneic NK cell therapy is a promising alternative, but strategies to enhance efficacy and persistence may be necessary. Proteasome inhibitors (PI) induce changes in the surface proteome which may render malignant cells more vulnerable to NK mediated cytotoxicity. Here, we investigated the potential benefit of combining PIs with CAR-expressing allogeneic NK cells against AML. METHODS We established the IC50 concentrations for Bortezomib and Carfilzomib against several AML cell lines. Surface expression of class-I HLA molecules and stress-associated proteins upon treatment with proteasome inhibitors was determined by multiparameter flow cytometry. Using functional in vitro assays, we explored the therapeutic synergy between pre-treatment with PIs and the anti-leukemic efficacy of NK cells with or without expression of AML-specific CAR constructs against AML cell lines and primary patient samples. Also, we investigated the tolerability and efficacy of a single PI application strategy followed by (CAR-) NK cell infusion in two different murine xenograft models of AML. RESULTS AML cell lines and primary AML patient samples were susceptible to Bortezomib and Carfilzomib mediated cytotoxicity. Conditioned resistance to Azacitidine/Venetoclax did not confer primary resistance to PIs. Treating AML cells with PIs reduced the surface expression of class-I HLA molecules on AML cells in a time-and-dose dependent manner. Stress-associated proteins were upregulated on the transcriptional level and on the cell surface. NK cell mediated killing of AML cells was enhanced in a synergistic manner. PI pre-treatment increased effector-target cell conjugate formation and Interferon-γ secretion, resulting in enhanced NK cell activity against AML cell lines and primary samples in vitro. Expression of CD33- and CD70-specific CARs further improved the antileukemic efficacy. In vivo, Bortezomib pre-treatment followed by CAR-NK cell infusion reduced AML growth, leading to prolonged overall survival. CONCLUSIONS PIs enhance the anti-leukemic efficacy of CAR-expressing allogeneic NK cells against AML in vitro and in vivo, warranting further exploration of this combinatorial treatment within early phase clinical trials.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/drug therapy
- Proteasome Inhibitors/pharmacology
- Proteasome Inhibitors/therapeutic use
- Receptors, Chimeric Antigen/immunology
- Animals
- Mice
- Cell Line, Tumor
- Bortezomib/pharmacology
- Bortezomib/therapeutic use
- Oligopeptides/pharmacology
- Oligopeptides/therapeutic use
- Immunotherapy, Adoptive/methods
- Xenograft Model Antitumor Assays
- Mice, Inbred NOD
- Mice, SCID
- Female
Collapse
Affiliation(s)
- David Sedloev
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Qian Chen
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Julia M Unglaub
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Nicola Schanda
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Yao Hao
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Eleni Besiridou
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Brigitte Neuber
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Anita Schmitt
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Simon Raffel
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Yi Liu
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Maike Janssen
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Michael Schmitt
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Tim Sauer
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Zhang M, Wang X, Wu J, Wang Q, Cui H, Chen X, Zhao Z, Liu S, Ye S. Preparation empty peptide-receptive MHC class I complex for large-scale detection through photolabile peptide ligands. Int J Biol Macromol 2024; 276:133781. [PMID: 38992528 DOI: 10.1016/j.ijbiomac.2024.133781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Peptide-major histocompatibility complex (pMHC) multimers are wide recognized as the premier technique for detecting, characterizing, and isolating antigen-specific CD8+ T-cell subsets. These multimers are specifically useful in studying infections, autoimmune conditions, and cancer through single-cell analysis techniques such as flow cytometry and fluorescence microscopy. However, the development of high-throughput assays with commercially available pMHC tetramers can be expensive, while in-house production may pose challenges for most biology research laboratories. In this context, we introduce a cost-friendly and uncomplicated protocol to prepare empty MHC class I tetramers using disulfide-stabilized molecules and photolabile peptide ligands. Our method relies on disulfide bond-stabilized MHC-I molecules, which demonstrated stability when folded into stable monomers in the presence of a photolabile epitope. These monomers, upon ultraviolet irradiation and streptavidin binding, efficiently assemble into tetramers devoid of any peptide. Following a short incubation with the peptide of interest under gentle conditions, the resulting pMHC tetramer effectively detects patient-sourced, neoantigen-specific T cells. Our unique approach streamlines large-scale pMHC generation, thus paving the way for advancements in T cell-based diagnostics and personalized therapies.
Collapse
Affiliation(s)
- Mengyu Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xiangyao Wang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Junjie Wu
- Jinzhou Medical University, Jinzhou, China
| | - Qiwei Wang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Haozhe Cui
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaofeng Chen
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Zhiming Zhao
- The Faculty of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Si Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
6
|
Serdyuk YV, Zornikova KV, Dianov DV, Ivanova NO, Davydova VD, Fefelova EI, Nenasheva TA, Sheetikov SA, Bogolyubova AV. T-Cell Receptors Cross-Reactive to Coronaviral Epitopes Homologous to the SPR Peptide. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1631-1642. [PMID: 39418521 DOI: 10.1134/s0006297924090098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 10/19/2024]
Abstract
The COVID-19 pandemic caused by the rapid spread of the novel coronavirus SARS-CoV-2, has promoted an interest in studying the T-cell immune response. It was found that the polyclonal and cross-reactive T-cell response against seasonal coronaviruses and other SARS-CoV-2 strains reduced disease severity. We investigated the immunodominant T-cell epitope SPRWYFYYYL from the nucleocapsid protein of SARS-CoV-2. The immune response to this epitope is characterized by the formation of highly homologous (convergent) receptors that have been found in the T-cell receptor (TCR) repertoires of different individuals. This epitope belongs to a group of highly conserved peptides that are rarely mutated in novel SARS-CoV-2 strains and are homologous to the epitopes of seasonal coronaviruses. It has been suggested that the cross-reactive response to homologous peptides contributes to the reduction of COVID-19 severity. However, some investigators have questioned this hypothesis, suggesting that the low affinity of the cross-reactive receptors reduces the strength of the immune response. The aim of this study was to evaluate the effect of amino acid substitutions in the SPR epitope on its binding affinity to specific TCRs. For this, we performed antigen-dependent cellular expansions were performed using samples from four COVID-19-transfected donors and sequenced their TCR repertoires. The resulting SPR-specific repertoire of β-chains in TCRs had a greater sequence diversity than the repertoire of α-chains. However, the TCR repertoires of all four donors contained public receptors, three of which were cloned and used to generate the Jurkat E6-1 TPR cell line. Only one of these receptors was activated by the SPR peptide and recognized with the same affinity by its mutant homologue LPRWYFYYY from seasonal coronaviruses. This indicates that the presence of the mutation did not affect the strength of the immune response, which may explain why the cross-reactive response to the SPR epitope is so frequent and contributes positively to COVID-19 infection.
Collapse
Affiliation(s)
- Yana V Serdyuk
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Ksenia V Zornikova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Dmitry V Dianov
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Nataliia O Ivanova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Vassa D Davydova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Ekaterina I Fefelova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Tatiana A Nenasheva
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Saveliy A Sheetikov
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Apollinariya V Bogolyubova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia.
| |
Collapse
|
7
|
Carr A, Mateyka LM, Scheu SJC, Bici A, Paijmans J, Reijmers RM, Dieminger N, Dildebekova S, Hamed N, Wagner K, Busch DH, D'Ippolito E. Advances in preclinical TCR characterization: leveraging cell avidity to identify functional TCRs. Biol Chem 2024; 405:517-529. [PMID: 38666334 DOI: 10.1515/hsz-2023-0341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/28/2024] [Indexed: 07/14/2024]
Abstract
T-cell therapy has emerged as an effective approach for treating viral infections and cancers. However, a significant challenge is the selection of T-cell receptors (TCRs) that exhibit the desired functionality. Conventionally in vitro techniques, such as peptide sensitivity measurements and cytotoxicity assays, provide valuable insights into TCR potency but are labor-intensive. In contrast, measuring ligand binding properties (z-Movi technology) could provide an accelerated processing while showing robust correlations with T-cell functions. In this study, we assessed whether cell avidity can predict functionality also in the context of TCR-engineered T cells. To this end, we developed a flexible system for TCR re-expression by generating a Jurkat-derived T cell clone lacking TCR and CD3 expression through CRISPR-Cas9-mediated TRBC knockout. The knockin of a transgenic TCR into the TRAC locus restored TCR/CD3 expression, allowing for CD3-based purification of TCR-engineered T cells. Subsequently, we characterized these engineered cell lines by functional readouts, and assessment of binding properties through the z-Movi technology. Our findings revealed a strong correlation between the cell avidities and functional sensitivities of Jurkat TCR-T cells. Altogether, by integrating cell avidity measurements with our versatile T cell engineering platform, we established an accelerated system for enhancing the in vitro selection of clinically relevant TCRs.
Collapse
Affiliation(s)
- Andreas Carr
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
| | - Laura M Mateyka
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
| | - Sebastian J C Scheu
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
| | - Ana Bici
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
| | - Joris Paijmans
- LUMICKS, Paalbergweg 3, NL-1105 AG, Amsterdam, The Netherlands
| | | | - Nina Dieminger
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
| | - Shirin Dildebekova
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
| | - Noomen Hamed
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
| | - Karolin Wagner
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
- CellPoint, a Galapagos Company, Oegstgeest, The Netherlands
| | - Dirk H Busch
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Elvira D'Ippolito
- 9184 Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich , Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
8
|
Ishina IA, Zakharova MY, Kurbatskaia IN, Mamedov AE, Belogurov AA, Rubtsov YP, Gabibov AG. Antigenic Peptide-Thioredoxin Fusion Chimeras for In Vitro Stimulus of CD4 + TCR + Jurkat T Cells. DOKL BIOCHEM BIOPHYS 2024; 516:53-57. [PMID: 38700816 DOI: 10.1134/s1607672924600210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 05/26/2024]
Abstract
Study of CD4+ T cell response and T cell receptor (TCR) specificity is crucial for understanding etiology of immune-mediated diseases and developing targeted therapies. However, solubility, accessibility, and stability of synthetic antigenic peptides used in T cell assays may be a critical point in such studies. Here we present a T cell activation reporter system using recombinant proteins containing antigenic epitopes fused with bacterial thioredoxin (trx-peptides) and obtained by bacterial expression. We report that co-incubation of CD4+ HA1.7 TCR+ reporter Jurkat 76 TRP cells with CD80+ HLA-DRB1*01:01+ HeLa cells or CD4+ Ob.1A12 TCR+ Jurkat 76 TRP with CD80+ HLA-DRB1*15:01+ HeLa cells resulted in activation of reporter Jurkat 76 TPR after addition of recombinant trx-peptide fusion proteins, containing TCR-specific epitopes. Trx-peptides were comparable with corresponding synthetic peptides in their capacity to activate Jurkat 76 TPR. These data demonstrate that thioredoxin as a carrier protein (trx) for antigenic peptides exhibits minimal interference with recognition of MHC-specific peptides by TCRs and consequent T cell activation. Our findings highlight potential feasibility of trx-peptides as a reagent for assessing the immunogenicity of antigenic fragments.
Collapse
Affiliation(s)
- I A Ishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - M Y Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - I N Kurbatskaia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A E Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Yu P Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A G Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Life Sciences, Higher School of Economics, Moscow, Russia
- Department of Chemistry, Moscow State University, Moscow, Russia
| |
Collapse
|
9
|
Brunnberg J, Barends M, Frühschulz S, Winter C, Battin C, de Wet B, Cole DK, Steinberger P, Tampé R. Dual role of the peptide-loading complex as proofreader and limiter of MHC-I presentation. Proc Natl Acad Sci U S A 2024; 121:e2321600121. [PMID: 38771881 PMCID: PMC11145271 DOI: 10.1073/pnas.2321600121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/17/2024] [Indexed: 05/23/2024] Open
Abstract
Antigen presentation via major histocompatibility complex class I (MHC-I) molecules is essential for surveillance by the adaptive immune system. Central to this process is the peptide-loading complex (PLC), which translocates peptides from the cytosol to the endoplasmic reticulum and catalyzes peptide loading and proofreading of peptide-MHC-I (pMHC-I) complexes. Despite its importance, the impact of individual PLC components on the presented pMHC-I complexes is still insufficiently understood. Here, we used stoichiometrically defined antibody-nanobody complexes and engineered soluble T cell receptors (sTCRs) to quantify different MHC-I allomorphs and defined pMHC-I complexes, respectively. Thereby, we uncovered distinct effects of individual PLC components on the pMHC-I surface pool. Knockouts of components of the PLC editing modules, namely tapasin, ERp57, or calreticulin, changed the MHC-I surface composition to a reduced proportion of HLA-A*02:01 presentation compensated by a higher ratio of HLA-B*40:01 molecules. Intriguingly, these knockouts not only increased the presentation of suboptimally loaded HLA-A*02:01 complexes but also elevated the presentation of high-affinity peptides overexpressed in the cytosol. Our findings suggest that the components of the PLC editing module serve a dual role, acting not only as peptide proofreaders but also as limiters for abundant peptides. This dual function ensures the presentation of a broad spectrum of antigenic peptides.
Collapse
Affiliation(s)
- Jamina Brunnberg
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Martina Barends
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Stefan Frühschulz
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Christian Winter
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Claire Battin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna1090, Austria
| | - Ben de Wet
- Immunocore Ltd., AbingdonOX14 4RY, United Kingdom
| | | | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna1090, Austria
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| |
Collapse
|
10
|
Quiros-Fernandez I, Libório-Ramos S, Leifert L, Schönfelder B, Vlodavsky I, Cid-Arregui A. Dual T cell receptor/chimeric antigen receptor engineered NK-92 cells targeting the HPV16 E6 oncoprotein and the tumor-associated antigen L1CAM exhibit enhanced cytotoxicity and specificity against tumor cells. J Med Virol 2024; 96:e29630. [PMID: 38659368 DOI: 10.1002/jmv.29630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
The human papillomavirus type 16 (HPV16) causes a large fraction of genital and oropharyngeal carcinomas. To maintain the transformed state, the tumor cells must continuously synthesize the E6 and E7 viral oncoproteins, which makes them tumor-specific antigens. Indeed, specific T cell responses against them have been well documented and CD8+ T cells engineered to express T cell receptors (TCRs) that recognize epitopes of E6 or E7 have been tested in clinical studies with promising results, yet with limited clinical success. Using CD8+ T cells from peripheral blood of healthy donors, we have identified two novel TCRs reactive to an unexplored E618-26 epitope. These TCRs showed limited standalone cytotoxicity against E618-26-HLA-A*02:01-presenting tumor cells. However, a single-signaling domain chimeric antigen receptor (ssdCAR) targeting L1CAM, a cell adhesion protein frequently overexpressed in HPV16-induced cancer, prompted a synergistic effect that significantly enhanced the cytotoxic capacity of NK-92/CD3/CD8 cells armored with both TCR and ssdCAR when both receptors simultaneously engaged their respective targets, as shown by live microscopy of 2-D and 3-D co-cultures. Thus, virus-specific TCRs from the CD8+ T cell repertoire of healthy donors can be combined with a suitable ssdCAR to enhance the cytotoxic capacity of the effector cells and, indirectly, their specificity.
Collapse
MESH Headings
- Humans
- Oncogene Proteins, Viral/immunology
- Oncogene Proteins, Viral/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Repressor Proteins/immunology
- Repressor Proteins/genetics
- CD8-Positive T-Lymphocytes/immunology
- Killer Cells, Natural/immunology
- Human papillomavirus 16/immunology
- Human papillomavirus 16/genetics
- Cytotoxicity, Immunologic
- Cell Line, Tumor
Collapse
Affiliation(s)
- Isaac Quiros-Fernandez
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Research Center on Tropical Diseases (CIET)/Research Center on Surgery and Cancer (CICICA), Faculty of Microbiology, Universidad de Costa Rica, San Jose, Costa Rica
| | - Sofia Libório-Ramos
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Leifert
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bruno Schönfelder
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Angel Cid-Arregui
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Simon S, Bugos G, Prins R, Rajan A, Palani A, Heyer K, Stevens A, Zeng L, Thompson K, Price JP, Kluesner MK, Jaeger-Ruckstuhl C, Shabaneh TB, Olson JM, Su X, Riddell SR. Sensitive bispecific chimeric T cell receptors for cancer therapy. RESEARCH SQUARE 2024:rs.3.rs-4253777. [PMID: 38746248 PMCID: PMC11092799 DOI: 10.21203/rs.3.rs-4253777/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The expression of a synthetic chimeric antigen receptor (CAR) to redirect antigen specificity of T cells is transforming the treatment of hematological malignancies and autoimmune diseases [1-7]. In cancer, durable efficacy is frequently limited by the escape of tumors that express low levels or lack the target antigen [8-12]. These clinical results emphasize the need for immune receptors that combine high sensitivity and multispecificity to improve outcomes. Current mono- and bispecific CARs do not faithfully recapitulate T cell receptor (TCR) function and require high antigen levels on tumor cells for recognition [13-17]. Here, we describe a novel synthetic chimeric TCR (ChTCR) that exhibits superior antigen sensitivity and is readily adapted for bispecific targeting. Bispecific ChTCRs mimic TCR structure, form classical immune synapses, and exhibit TCR-like proximal signaling. T cells expressing Bi-ChTCRs more effectively eliminated tumors with heterogeneous antigen expression in vivo compared to T cells expressing optimized bispecific CARs. The Bi-ChTCR architecture is resilient and can be designed to target multiple B cell lineage and multiple myeloma antigens. Our findings identify a broadly applicable approach for engineering T cells to target hematologic malignancies with heterogeneous antigen expression, thereby overcoming the most frequent mechanism of relapse after current CAR T therapies.
Collapse
Affiliation(s)
- Sylvain Simon
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Grace Bugos
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Rachel Prins
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Anusha Rajan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Arulmozhi Palani
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kersten Heyer
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew Stevens
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Longhui Zeng
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, New Haven, CT 06520, USA
| | - Kirsten Thompson
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jason P Price
- Seattle Children's Research Institute, Ben Towne Center For Childhood Cancer Research, Seattle, WA 98105, USA
| | - Mitchell K Kluesner
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Carla Jaeger-Ruckstuhl
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tamer B Shabaneh
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James M Olson
- Seattle Children's Research Institute, Ben Towne Center For Childhood Cancer Research, Seattle, WA 98105, USA
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, New Haven, CT 06520, USA
| | - Stanley R Riddell
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Voogd L, Drittij AM, Dingenouts CK, Franken KL, Unen VV, van Meijgaarden KE, Ruibal P, Hagedoorn RS, Leitner JA, Steinberger P, Heemskerk MH, Davis MM, Scriba TJ, Ottenhoff TH, Joosten SA. Mtb HLA-E-tetramer-sorted CD8 + T cells have a diverse TCR repertoire. iScience 2024; 27:109233. [PMID: 38439958 PMCID: PMC10909886 DOI: 10.1016/j.isci.2024.109233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
HLA-E molecules can present self- and pathogen-derived peptides to both natural killer (NK) cells and T cells. T cells that recognize HLA-E peptides via their T cell receptor (TCR) are termed donor-unrestricted T cells due to restricted allelic variation of HLA-E. The composition and repertoire of HLA-E TCRs is not known so far. We performed TCR sequencing on CD8+ T cells from 21 individuals recognizing HLA-E tetramers (TMs) folded with two Mtb-HLA-E-restricted peptides. We sorted HLA-E Mtb TM+ and TM- CD8+ T cells directly ex vivo and performed bulk RNA-sequencing and single-cell TCR sequencing. The identified TCR repertoire was diverse and showed no conservation between and within individuals. TCRs selected from our single-cell TCR sequencing data could be activated upon HLA-E/peptide stimulation, although not robust, reflecting potentially weak interactions between HLA-E peptide complexes and TCRs. Thus, HLA-E-Mtb-specific T cells have a highly diverse TCR repertoire.
Collapse
Affiliation(s)
- Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne M.H.F. Drittij
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Calinda K.E. Dingenouts
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Kees L.M.C. Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Vincent van Unen
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Renate S. Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Judith A. Leitner
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Mark M. Davis
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Palo Alto, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Tom H.M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
13
|
Cetin M, Pinamonti V, Schmid T, Boschert T, Mellado Fuentes A, Kromer K, Lerner T, Zhang J, Herzig Y, Ehlert C, Hernandez-Hernandez M, Samaras G, Torres CM, Fisch L, Dragan V, Kouwenhoven A, Van Schoubroeck B, Wils H, Van Hove C, Platten M, Green EW, Stevenaert F, Felix NJ, Lindner JM. T-FINDER: A highly sensitive, pan-HLA platform for functional T cell receptor and ligand discovery. SCIENCE ADVANCES 2024; 10:eadk3060. [PMID: 38306432 PMCID: PMC10836725 DOI: 10.1126/sciadv.adk3060] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Effective, unbiased, high-throughput methods to functionally identify both class II and class I HLA-presented T cell epitopes and their cognate T cell receptors (TCRs) are essential for and prerequisite to diagnostic and therapeutic applications, yet remain underdeveloped. Here, we present T-FINDER [T cell Functional Identification and (Neo)-antigen Discovery of Epitopes and Receptors], a system to rapidly deconvolute CD4 and CD8 TCRs and targets physiologically processed and presented by an individual's unmanipulated, complete human leukocyte antigen (HLA) haplotype. Combining a highly sensitive TCR signaling reporter with an antigen processing system to overcome previously undescribed limitations to target expression, T-FINDER both robustly identifies unknown peptide:HLA ligands from antigen libraries and rapidly screens and functionally validates the specificity of large TCR libraries against known or predicted targets. To demonstrate its capabilities, we apply the platform to multiple TCR-based applications, including diffuse midline glioma, celiac disease, and rheumatoid arthritis, providing unique biological insights and showcasing T-FINDER's potency and versatility.
Collapse
Affiliation(s)
- Miray Cetin
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Veronica Pinamonti
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Theresa Schmid
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Tamara Boschert
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmoltz Institute for Translational Oncology (HI-TRON), Heidelberg, Germany
| | | | - Kristina Kromer
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Taga Lerner
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Jing Zhang
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Yonatan Herzig
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Christopher Ehlert
- Heidelberg Institute for Theoretical Studies (HITS gGmbH), 69118 Heidelberg, Germany
| | | | - Georgios Samaras
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | | | - Laura Fisch
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Valeriia Dragan
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | | | | | - Hans Wils
- Janssen Research and Development, Beerse, Belgium
| | | | - Michael Platten
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmoltz Institute for Translational Oncology (HI-TRON), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN Heidelberg University, Mannheim, Germany
| | - Edward W. Green
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN Heidelberg University, Mannheim, Germany
| | | | | | - John M. Lindner
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Ishina IA, Kurbatskaia IN, Mamedov AE, Shramova EI, Deyev SM, Nurbaeva KS, Rubtsov YP, Belogurov AA, Gabibov AG, Zakharova MY. Genetically engineered CD80-pMHC-harboring extracellular vesicles for antigen-specific CD4 + T-cell engagement. Front Bioeng Biotechnol 2024; 11:1341685. [PMID: 38304104 PMCID: PMC10833362 DOI: 10.3389/fbioe.2023.1341685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
The identification of low-frequency antigen-specific CD4+ T cells is crucial for effective immunomonitoring across various diseases. However, this task still encounters experimental challenges necessitating the implementation of enrichment procedures. While existing antigen-specific expansion technologies predominantly concentrate on the enrichment of CD8+ T cells, advancements in methods targeting CD4+ T cells have been limited. In this study, we report a technique that harnesses antigen-presenting extracellular vesicles (EVs) for stimulation and expansion of antigen-specific CD4+ T cells. EVs are derived from a genetically modified HeLa cell line designed to emulate professional antigen-presenting cells (APCs) by expressing key costimulatory molecules CD80 and specific peptide-MHC-II complexes (pMHCs). Our results demonstrate the beneficial potent stimulatory capacity of EVs in activating both immortalized and isolated human CD4+ T cells from peripheral blood mononuclear cells (PBMCs). Our technique successfully expands low-frequency influenza-specific CD4+ T cells from healthy individuals. In summary, the elaborated methodology represents a streamlined and efficient approach for the detection and expansion of antigen-specific CD4+ T cells, presenting a valuable alternative to existing antigen-specific T-cell expansion protocols.
Collapse
Affiliation(s)
- Irina A. Ishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Inna N. Kurbatskaia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Azad E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Elena I. Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | | | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation (NN Blokhin NMRCO), Moscow, Russia
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Department of Life Sciences, Higher School of Economics, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
15
|
Meyer M, Parpoulas C, Barthélémy T, Becker JP, Charoentong P, Lyu Y, Börsig S, Bulbuc N, Tessmer C, Weinacht L, Ibberson D, Schmidt P, Pipkorn R, Eichmüller SB, Steinberger P, Lindner K, Poschke I, Platten M, Fröhling S, Riemer AB, Hassel JC, Roberti MP, Jäger D, Zörnig I, Momburg F. MediMer: a versatile do-it-yourself peptide-receptive MHC class I multimer platform for tumor neoantigen-specific T cell detection. Front Immunol 2024; 14:1294565. [PMID: 38239352 PMCID: PMC10794645 DOI: 10.3389/fimmu.2023.1294565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024] Open
Abstract
Peptide-loaded MHC class I (pMHC-I) multimers have revolutionized our capabilities to monitor disease-associated T cell responses with high sensitivity and specificity. To improve the discovery of T cell receptors (TCR) targeting neoantigens of individual tumor patients with recombinant MHC molecules, we developed a peptide-loadable MHC class I platform termed MediMer. MediMers are based on soluble disulfide-stabilized β2-microglobulin/heavy chain ectodomain single-chain dimers (dsSCD) that can be easily produced in large quantities in eukaryotic cells and tailored to individual patients' HLA allotypes with only little hands-on time. Upon transient expression in CHO-S cells together with ER-targeted BirA biotin ligase, biotinylated dsSCD are purified from the cell supernatant and are ready to use. We show that CHO-produced dsSCD are free of endogenous peptide ligands. Empty dsSCD from more than 30 different HLA-A,B,C allotypes, that were produced and validated so far, can be loaded with synthetic peptides matching the known binding criteria of the respective allotypes, and stored at low temperature without loss of binding activity. We demonstrate the usability of peptide-loaded dsSCD multimers for the detection of human antigen-specific T cells with comparable sensitivities as multimers generated with peptide-tethered β2m-HLA heavy chain single-chain trimers (SCT) and wild-type peptide-MHC-I complexes prior formed in small-scale refolding reactions. Using allotype-specific, fluorophore-labeled competitor peptides, we present a novel dsSCD-based peptide binding assay capable of interrogating large libraries of in silico predicted neoepitope peptides by flow cytometry in a high-throughput and rapid format. We discovered rare T cell populations with specificity for tumor neoepitopes and epitopes from shared tumor-associated antigens in peripheral blood of a melanoma patient including a so far unreported HLA-C*08:02-restricted NY-ESO-1-specific CD8+ T cell population. Two representative TCR of this T cell population, which could be of potential value for a broader spectrum of patients, were identified by dsSCD-guided single-cell sequencing and were validated by cognate pMHC-I multimer staining and functional responses to autologous peptide-pulsed antigen presenting cells. By deploying the technically accessible dsSCD MHC-I MediMer platform, we hope to significantly improve success rates for the discovery of personalized neoepitope-specific TCR in the future by being able to also cover rare HLA allotypes.
Collapse
Affiliation(s)
- Marten Meyer
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Christina Parpoulas
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Titouan Barthélémy
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas P. Becker
- Division of Immunotherapy and Immunoprevention, DKFZ, Heidelberg, Germany
- German Center for Infection Research (DZIF) Partner Site Heidelberg, Heidelberg, Germany
| | - Pornpimol Charoentong
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Heidelberg, Germany
| | - Yanhong Lyu
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
| | - Selina Börsig
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Nadja Bulbuc
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Tessmer
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
| | - Lisa Weinacht
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, Heidelberg University, Heidelberg, Germany
| | - Patrick Schmidt
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- GMP and T Cell Therapy, DKFZ, Heidelberg, Germany
| | | | | | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology, Medical University of Vienna, Vienna, Austria
| | - Katharina Lindner
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
- Immune Monitoring Unit, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Isabel Poschke
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
- Immune Monitoring Unit, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
- Immune Monitoring Unit, NCT Heidelberg and DKFZ, Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at the University Medical Center, Mannheim, Germany
- Helmholtz Institute for Translational Oncology, Mainz (HI-TRON Mainz), Mainz, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), DKFZ, Core Center, Heidelberg, Germany
- Division of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Angelika B. Riemer
- Division of Immunotherapy and Immunoprevention, DKFZ, Heidelberg, Germany
- German Center for Infection Research (DZIF) Partner Site Heidelberg, Heidelberg, Germany
| | - Jessica C. Hassel
- Section of DermatoOncology, Department of Dermatology and NCT, Heidelberg University Hospital, Heidelberg, Germany
| | - Maria Paula Roberti
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk Jäger
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Inka Zörnig
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
16
|
Qi J, Zhu H, Li Y, Guan X, He Y, Ren G, Guo Q, Liu L, Gu Y, Dong X, Liu Y. Creation of a High-Throughput Microfluidic Platform for Single-Cell Transcriptome Sequencing of Cell-Cell Interactions. SMALL METHODS 2023; 7:e2300730. [PMID: 37712212 DOI: 10.1002/smtd.202300730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Cell-cell interaction is one of the major modalities for transmitting information between cells and activating the effects of functional cells. However, the construction of high-throughput analysis technologies from cell omics focusing on the impact of interactions of functional cells on targets has been relatively unexplored. Here, they propose a droplet-based microfluidic platform for cell-cell interaction sequencing (c-c-seq) and screening in vitro to address this challenge. A class of interacting cells is pre-labeled using cell molecular tags, and additional single-cell sequencing reagents are introduced to quickly form functional droplet mixes. Lastly, gene expression analysis is used to deduce the impact of the interaction, while molecular sequence tracing identifies the type of interaction. Research into the active effect between antigen-presenting cells and T cells, one of the most common cell-to-cell interactions, is crucial for the advancement of cancer therapy, particularly T cell receptor-engineered T cell therapy. As it allows for high throughput, this platform is superior to well plates as a research platform for cell-to-cell interactions. When combined with the next generation of sequencing, the platform may be able to more accurately evaluate interactions between epitopes and receptors and verify their functional relevance.
Collapse
Affiliation(s)
- Jingyu Qi
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Yijian Li
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyu Guan
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying He
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Guanhua Ren
- China National Institute of Standardization, Beijing, 100191, China
| | - Qiang Guo
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Ying Gu
- BGI Research, Shenzhen, 518083, China
| | - Xuan Dong
- BGI Research, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, 518083, China
| | - Ya Liu
- BGI Research, Shenzhen, 518083, China
| |
Collapse
|
17
|
Kwok DW, Stevers NO, Nejo T, Chen LH, Etxeberria I, Jung J, Okada K, Cove MC, Lakshmanachetty S, Gallus M, Barpanda A, Hong C, Chan GKL, Wu SH, Ramos E, Yamamichi A, Liu J, Watchmaker P, Ogino H, Saijo A, Du A, Grishanina N, Woo J, Diaz A, Chang SM, Phillips JJ, Wiita AP, Klebanoff CA, Costello JF, Okada H. Tumor-wide RNA splicing aberrations generate immunogenic public neoantigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563178. [PMID: 37904942 PMCID: PMC10614978 DOI: 10.1101/2023.10.19.563178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
T-cell-mediated immunotherapies are limited by the extent to which cancer-specific antigens are homogenously expressed throughout a tumor. We reasoned that recurrent splicing aberrations in cancer represent a potential source of tumor-wide and public neoantigens, and to test this possibility, we developed a novel pipeline for identifying neojunctions expressed uniformly within a tumor across diverse cancer types. Our analyses revealed multiple neojunctions that recur across patients and either exhibited intratumor heterogeneity or, in some cases, were tumor-wide. We identified CD8+ T-cell clones specific for neoantigens derived from tumor-wide and conserved neojunctions in GNAS and RPL22 , respectively. TCR-engineered CD8 + T-cells targeting these mutations conferred neoantigen-specific tumor cell eradication. Furthermore, we revealed that cancer-specific dysregulation in splicing factor expression leads to recurrent neojunction expression. Together, these data reveal that a subset of neojunctions are both intratumorally conserved and public, providing the molecular basis for novel T-cell-based immunotherapies that address intratumoral heterogeneity.
Collapse
|
18
|
Aigner-Radakovics K, De Sousa Linhares A, Salzer B, Lehner M, Izadi S, Castilho A, Pickl WF, Leitner J, Steinberger P. The ligand-dependent suppression of TCR signaling by the immune checkpoint receptor LAG3 depends on the cytoplasmic RRFSALE motif. Sci Signal 2023; 16:eadg2610. [PMID: 37788323 DOI: 10.1126/scisignal.adg2610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/30/2023] [Indexed: 10/05/2023]
Abstract
Lymphocyte activation gene 3 (LAG3) is an inhibitory immune checkpoint receptor that restrains autoimmune and antitumor responses, but its evolutionarily conserved cytoplasmic tail lacks classical inhibitory motifs. Major histocompatibility complex class II (MHC class II) is an established LAG3 ligand, and fibrinogen-like protein 1 (FGL1), lymph node sinusoidal endothelial cell C-type lectin (LSECtin), and Galectin-3 have been proposed as alternative binding partners that play important roles in LAG3 function. Here, we used a fluorescent human T cell reporter system to study the function of LAG3. We found that LAG3 reduced the response to T cell receptor stimulation in the presence of MHC class II molecules to a lesser extent compared with the receptor programmed cell death protein 1. Analysis of deletion mutants demonstrated that the RRFSALE motif in the cytoplasmic tail of LAG3 was necessary and sufficient for LAG3-mediated inhibition. In this system, FGL1, but not LSECtin or Galectin-3, acted as a LAG3 ligand that weakly induced inhibition. LAG3-blocking antibodies attenuated LAG3-mediated inhibition in our reporter cells and enhanced reporter cell activation even in the absence of LAG3 ligands, indicating that they could potentially enhance T cell responses independently of their blocking effect.
Collapse
Affiliation(s)
- Katharina Aigner-Radakovics
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Annika De Sousa Linhares
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Benjamin Salzer
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Manfred Lehner
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Shiva Izadi
- Institute of Plant Biotechnology and Cell Biology (IPBT), Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Alexandra Castilho
- Institute of Plant Biotechnology and Cell Biology (IPBT), Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Winfried F Pickl
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
- Karl Landsteiner University, Krems, Austria
| | - Judith Leitner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Peter Steinberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| |
Collapse
|
19
|
Gille I, Hagedoorn RS, van der Meer-Prins EMW, Heemskerk MHM, Heidt S. Chimeric HLA antibody receptor T cells to target HLA-specific B cells in solid organ transplantation. HLA 2023; 102:436-448. [PMID: 37370222 DOI: 10.1111/tan.15146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
HLA-sensitized patients on the transplant waiting list harbor antibodies and memory B cells directed against allogeneic HLA molecules, which decreases the chance to receive a compatible donor organ. Current desensitization strategies non-specifically target circulating antibodies and B cells, warranting the development of therapies that specifically affect HLA-directed humoral immune responses. We developed Chimeric HLA Antibody Receptor (CHAR) constructs comprising the extracellular part of HLA-A2 or HLA-A3 coupled to CD28-CD3ζ domains. CHAR-transduced cells expressing reporter constructs encoding T-cell activation markers, and CHAR-transduced CD8+ T cells from healthy donors were stimulated with HLA-specific monoclonal antibody-coated microbeads, and HLA-specific B cell hybridomas. CHAR T cell activation was measured by upregulation of T cell activation markers and IFNγ secretion, whereas CHAR T cell killing of B cell hybridomas was assessed in chromium release assays and by IgG ELISpot. HLA-A2- and HLA-A3-CHAR expressing cells were specifically activated by HLA-A2- and HLA-A3-specific monoclonal antibodies, either soluble or coated on microbeads, as shown by CHAR-induced transcription factors. HLA-A2 and HLA-A3 CHAR T cells efficiently produced IFNγ with exquisite specificity and were capable of specifically lysing hybridoma cells expressing HLA-A2- or HLA-A3-specific B-cell receptors, respectively. Finally, we mutated the α3 domain of the CHAR molecules to minimize any alloreactive T-cell reactivity against CHAR T cells, while retaining CHAR activity. These data show proof of principle for CHAR T cells to serve as precision immunotherapy to specifically desensitize (highly) sensitized solid organ transplant candidates and to treat antibody-mediated rejection after solid organ transplantation.
Collapse
Affiliation(s)
- Ilse Gille
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
20
|
Calviño C, Ceballos C, Alfonso A, Jauregui P, Calleja-Cervantes ME, San Martin-Uriz P, Rodriguez-Marquez P, Martin-Mallo A, Iglesias E, Abizanda G, Rodriguez-Diaz S, Martinez-Turrillas R, Illarramendi J, Viguria MC, Redondo M, Rifon J, Villar S, Lasarte JJ, Inoges S, Lopez-Diaz de Cerio A, Hernaez M, Prosper F, Rodriguez-Madoz JR. Optimization of universal allogeneic CAR-T cells combining CRISPR and transposon-based technologies for treatment of acute myeloid leukemia. Front Immunol 2023; 14:1270843. [PMID: 37795087 PMCID: PMC10546312 DOI: 10.3389/fimmu.2023.1270843] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Despite the potential of CAR-T therapies for hematological malignancies, their efficacy in patients with relapse and refractory Acute Myeloid Leukemia has been limited. The aim of our study has been to develop and manufacture a CAR-T cell product that addresses some of the current limitations. We initially compared the phenotype of T cells from AML patients and healthy young and elderly controls. This analysis showed that T cells from AML patients displayed a predominantly effector phenotype, with increased expression of activation (CD69 and HLA-DR) and exhaustion markers (PD1 and LAG3), in contrast to the enriched memory phenotype observed in healthy donors. This differentiated and more exhausted phenotype was also observed, and corroborated by transcriptomic analyses, in CAR-T cells from AML patients engineered with an optimized CAR construct targeting CD33, resulting in a decreased in vivo antitumoral efficacy evaluated in xenograft AML models. To overcome some of these limitations we have combined CRISPR-based genome editing technologies with virus-free gene-transfer strategies using Sleeping Beauty transposons, to generate CAR-T cells depleted of HLA-I and TCR complexes (HLA-IKO/TCRKO CAR-T cells) for allogeneic approaches. Our optimized protocol allows one-step generation of edited CAR-T cells that show a similar phenotypic profile to non-edited CAR-T cells, with equivalent in vitro and in vivo antitumoral efficacy. Moreover, genomic analysis of edited CAR-T cells revealed a safe integration profile of the vector, with no preferences for specific genomic regions, with highly specific editing of the HLA-I and TCR, without significant off-target sites. Finally, the production of edited CAR-T cells at a larger scale allowed the generation and selection of enough HLA-IKO/TCRKO CAR-T cells that would be compatible with clinical applications. In summary, our results demonstrate that CAR-T cells from AML patients, although functional, present phenotypic and functional features that could compromise their antitumoral efficacy, compared to CAR-T cells from healthy donors. The combination of CRISPR technologies with transposon-based delivery strategies allows the generation of HLA-IKO/TCRKO CAR-T cells, compatible with allogeneic approaches, that would represent a promising option for AML treatment.
Collapse
MESH Headings
- Animals
- Humans
- Aged
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/metabolism
- Immunotherapy, Adoptive/methods
- Disease Models, Animal
- Hematopoietic Stem Cell Transplantation
Collapse
Affiliation(s)
- Cristina Calviño
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Candela Ceballos
- Hematology Department, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Ana Alfonso
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Patricia Jauregui
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Maria E. Calleja-Cervantes
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | | | - Paula Rodriguez-Marquez
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Angel Martin-Mallo
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Elena Iglesias
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Gloria Abizanda
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | | | - Rebeca Martinez-Turrillas
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Jorge Illarramendi
- Hematology Department, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Maria C. Viguria
- Hematology Department, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Margarita Redondo
- Hematology Department, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Jose Rifon
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Sara Villar
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Juan J. Lasarte
- Immunology and Immunotherapy Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Susana Inoges
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Immunology and Immunotherapy Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Ascension Lopez-Diaz de Cerio
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Immunology and Immunotherapy Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Mikel Hernaez
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Data Science and Artificial Intelligence Institute (DATAI), Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Juan R. Rodriguez-Madoz
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| |
Collapse
|
21
|
Knezevic L, Wachsmann TLA, Francis O, Dockree T, Bridgeman JS, Wouters A, de Wet B, Cole DK, Clement M, McLaren JE, Gostick E, Ladell K, Llewellyn-Lacey S, Price DA, van den Berg HA, Tabi Z, Sessions RB, Heemskerk MHM, Wooldridge L. High-affinity CD8 variants enhance the sensitivity of pMHCI antigen recognition via low-affinity TCRs. J Biol Chem 2023; 299:104981. [PMID: 37390984 PMCID: PMC10432799 DOI: 10.1016/j.jbc.2023.104981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023] Open
Abstract
CD8+ T cell-mediated recognition of peptide-major histocompatibility complex class I (pMHCI) molecules involves cooperative binding of the T cell receptor (TCR), which confers antigen specificity, and the CD8 coreceptor, which stabilizes the TCR/pMHCI complex. Earlier work has shown that the sensitivity of antigen recognition can be regulated in vitro by altering the strength of the pMHCI/CD8 interaction. Here, we characterized two CD8 variants with moderately enhanced affinities for pMHCI, aiming to boost antigen sensitivity without inducing non-specific activation. Expression of these CD8 variants in model systems preferentially enhanced pMHCI antigen recognition in the context of low-affinity TCRs. A similar effect was observed using primary CD4+ T cells transduced with cancer-targeting TCRs. The introduction of high-affinity CD8 variants also enhanced the functional sensitivity of primary CD8+ T cells expressing cancer-targeting TCRs, but comparable results were obtained using exogenous wild-type CD8. Specificity was retained in every case, with no evidence of reactivity in the absence of cognate antigen. Collectively, these findings highlight a generically applicable mechanism to enhance the sensitivity of low-affinity pMHCI antigen recognition, which could augment the therapeutic efficacy of clinically relevant TCRs.
Collapse
Affiliation(s)
- Lea Knezevic
- Faculty of Health Sciences, University of Bristol, Bristol, UK; Department of Haematology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Tassilo L A Wachsmann
- Department of Haematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ore Francis
- Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Tamsin Dockree
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | | | - Anne Wouters
- Department of Haematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - David K Cole
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK; Immunocore, Abingdon, UK
| | - Mathew Clement
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | | | - Zsuzsanna Tabi
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | | | - Mirjam H M Heemskerk
- Department of Haematology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
22
|
Álvarez Freile J, Qi Y, Jacob L, Lobo MF, Lourens HJ, Huls G, Bremer E. A luminescence-based method to assess antigen presentation and antigen-specific T cell responses for in vitro screening of immunomodulatory checkpoints and therapeutics. Front Immunol 2023; 14:1233113. [PMID: 37559730 PMCID: PMC10407562 DOI: 10.3389/fimmu.2023.1233113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Investigations into the strength of antigen-specific responses in vitro is becoming increasingly relevant for decision making in early-phase research of novel immunotherapeutic approaches, including adoptive cell but also immune checkpoint inhibitor (ICI)-based therapies. In the latter, antigen-specific rapid and high throughput tools to investigate MHC/antigen-specific T cell receptor (TCR) activation haven't been implemented yet. Here, we present a simple and rapid luminescence-based approach using the human papillomavirus 16 (HPV16) E711-20 peptide as model antigen and E7-TCR transgenic Jurkat.NFAT-luciferase reporter cells. Upon E7 peptide pulsing of HLA-A2+ cell lines and macrophages, an effector to target ratio dependent increase in luminescence compared to non-pulsed cells was observed after co-incubation with E7-TCR expressing Jurkat, but not with parental cells. Analogous experiments with cells expressing full-length HPV16 identified that E7-specific activation of Jurkat cells enabled detection of endogenous antigen processing and MHC-I presentation. As proof of concept, overexpression of established checkpoints/inhibitory molecules (e.g., PD-L1 or HLA-G) significantly reduced the E7-specific TCR-induced luminescence, an effect that could be restored after treatment with corresponding targeting antagonistic antibodies. Altogether, the luminescence-based method described here represents an alternative approach for the rapid evaluation of MHC-dependent antigen-specific T cell responses in vitro. It can be used as a rapid tool to evaluate the impact of the immunosuppressive tumor microenvironment or novel ICI in triggering effective T cell responses, as well as speeding up the development of novel therapeutics within the immune-oncology field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Edwin Bremer
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
23
|
Li Y, Qi J, Liu Y, Zheng Y, Zhu H, Zang Y, Guan X, Xie S, Zhao H, Fu Y, Xiang H, Zhang W, Chen H, Liu H, Zhao Y, Feng Y, Bu F, Liang Y, Li Y, Xu Q, He Y, Sun L, Liu L, Gu Y, Xu X, Hou Y, Dong X, Liu Y. High-Throughput Screening of Functional Neo-Antigens and Their Specific T-Cell Receptors via the Jurkat Reporter System Combined with Droplet Microfluidics. Anal Chem 2023. [PMID: 37300490 DOI: 10.1021/acs.analchem.3c01754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
T-cell receptor (TCR)-engineered T cells can precisely recognize a broad repertoire of targets derived from both intracellular and surface proteins of tumor cells. TCR-T adoptive cell therapy has shown safety and promising efficacy in solid tumor immunotherapy. However, antigen-specific functional TCR screening is time-consuming and expensive, which limits its application clinically. Here, we developed a novel integrated antigen-TCR screening platform based on droplet microfluidic technology, enabling high-throughput peptide-major histocompatibility complex (pMHC)-to-TCR paired screening with a high sensitivity and low background signal. We introduced DNA barcoding technology to label peptide antigen candidate-loaded antigen-presenting cells and Jurkat reporter cells to check the specificity of pMHC-TCR candidates. Coupled with the next-generation sequencing pipeline, interpretation of the DNA barcodes and the gene expression level of the Jurkat T-cell activation pathway provided a clear peptide-MHC-TCR recognition relationship. Our proof-of-principle study demonstrates that the platform could achieve pMHC-TCR paired high-throughput screening, which is expected to be used in the cross-reactivity and off-target high-throughput paired testing of candidate pMHC-TCRs in clinical applications.
Collapse
Affiliation(s)
- Yijian Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen 518083, China
| | - Jingyu Qi
- BGI-Shenzhen, Shenzhen 518083, China
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yang Liu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518116, China
| | | | | | - Yupeng Zang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiangyu Guan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Yunyun Fu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Haitao Xiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Weicong Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Huan Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Yu Feng
- BGI-Shenzhen, Shenzhen 518083, China
| | - Fanyu Bu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yanling Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yang Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Qumiao Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Ying He
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518060, China
| | - Li Sun
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518060, China
| | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
| | - Yong Hou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen 518083, China
| | - Ya Liu
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518100, China
| |
Collapse
|
24
|
Butler SE, Hartman CJ, Huang YH, Ackerman ME. Toward high-throughput engineering techniques for improving CAR intracellular signaling domains. Front Bioeng Biotechnol 2023; 11:1101122. [PMID: 37051270 PMCID: PMC10083361 DOI: 10.3389/fbioe.2023.1101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Chimeric antigen receptors (CAR) are generated by linking extracellular antigen recognition domains with one or more intracellular signaling domains derived from the T-cell receptor complex or various co-stimulatory receptors. The choice and relative positioning of signaling domains help to determine chimeric antigen receptors T-cell activity and fate in vivo. While prior studies have focused on optimizing signaling power through combinatorial investigation of native intracellular signaling domains in modular fashion, few have investigated the prospect of sequence engineering within domains. Here, we sought to develop a novel in situ screening method that could permit deployment of directed evolution approaches to identify intracellular domain variants that drive selective induction of transcription factors. To accomplish this goal, we evaluated a screening approach based on the activation of a human NF-κB and NFAT reporter T-cell line for the isolation of mutations that directly impact T cell activation in vitro. As a proof-of-concept, a model library of chimeric antigen receptors signaling domain variants was constructed and used to demonstrate the ability to discern amongst chimeric antigen receptors containing different co-stimulatory domains. A rare, higher-signaling variant with frequency as low as 1 in 1000 could be identified in a high throughput setting. Collectively, this work highlights both prospects and limitations of novel mammalian display methods for chimeric antigen receptors signaling domain discovery and points to potential strategies for future chimeric antigen receptors development.
Collapse
Affiliation(s)
- Savannah E. Butler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Colin J. Hartman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Yina H. Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- *Correspondence: Margaret E. Ackerman,
| |
Collapse
|
25
|
Transgenic HA-1-Specific CD8 + T-Lymphocytes Selectively Target Leukemic Cells. Cancers (Basel) 2023; 15:cancers15051592. [PMID: 36900382 PMCID: PMC10000933 DOI: 10.3390/cancers15051592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
A significant share of allogeneic hematopoietic stem cell transplantations (allo-HSCT) results in the relapse of malignant disease. The T cell immune response to minor histocompatibility antigens (MiHAs) promotes a favorable graft-versus-leukemia response. The immunogenic MiHA HA-1 is a promising target for leukemia immunotherapy, as it is predominantly expressed in hematopoietic tissues and presented by the common HLA A*02:01 allele. Adoptive transfer of HA-1-specific modified CD8+ T cells could complement allo-HSCT from HA-1- donors to HA-1+ recipients. Using bioinformatic analysis and a reporter T cell line, we discovered 13 T cell receptors (TCRs) specific for HA-1. Their affinities were measured by the response of the TCR-transduced reporter cell lines to HA-1+ cells. The studied TCRs showed no cross-reactivity to the panel of donor peripheral mononuclear blood cells with 28 common HLA alleles. CD8+ T cells after endogenous TCR knock out and introduction of transgenic HA-1-specific TCR were able to lyse hematopoietic cells from HA-1+ patients with acute myeloid, T-, and B-cell lymphocytic leukemia (n = 15). No cytotoxic effect was observed on cells from HA-1- or HLA-A*02-negative donors (n = 10). The results support the use of HA-1 as a target for post-transplant T cell therapy.
Collapse
|
26
|
Jahan F, Koski J, Schenkwein D, Ylä-Herttuala S, Göös H, Huuskonen S, Varjosalo M, Maliniemi P, Leitner J, Steinberger P, Bühring HJ, Vettenranta K, Korhonen M. Using the Jurkat reporter T cell line for evaluating the functionality of novel chimeric antigen receptors. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1070384. [PMID: 39086686 PMCID: PMC11285682 DOI: 10.3389/fmmed.2023.1070384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/17/2023] [Indexed: 08/02/2024]
Abstract
Background: T cells that are genetically modified with chimeric antigen receptor (CAR) hold promise for immunotherapy of cancer. Currently, there are intense efforts to improve the safety and efficacy of CAR T cell therapies against liquid and solid tumors. Earlier we designed a novel CAR backbone (FiCAR) where the spacer is derived from immunoglobulin (Ig) -like domains of the signal-regulatory protein alpha (SIRPα). However, the analysis of novel CAR using primary T cells is slow and laborious. Methods: To explore the versatility of the CAR backbone, we designed a set of variant FiCARs with different spacer lengths and targeting antigens. To expedite the analysis of the novel CARs, we transduced the FiCAR genes using lentiviruses into Jurkat reporter T cells carrying fluorescent reporter genes. The expression of fluorescent markers in response to FiCAR engagement with targets was analyzed by flow cytometry, and cytotoxicity was evaluated using killing assays. Furthermore, the killing mechanisms that are employed by FiCAR-equipped Jurkat T cells were investigated by flow cytometry, and the intracellular pathways involved in signaling by FiCAR were analyzed by phosphoproteomic analysis using mass spectrometry. Results: Seven different CARs were designed and transduced into Jurkat reporter cells. We show that the SIRPα derived FiCARs can be detected by flow cytometry using the SE12B6A4 antibody recognizing SIRPα. Furthermore, FiCAR engagement leads to robust activation of NFκβ and NFAT signaling, as demonstrated by the expression of the fluorescent reporter genes. Interestingly, the Jurkat reporter system also revealed tonic signaling by a HER-2 targeting FiCAR. FiCAR-equipped Jurkat T cells were cytotoxic in cocultures with target cells and target cell engagement lead to an upregulation of CD107a on the Jurkat reporter T cell surface. Phosphoproteomic analyses confirmed signal transduction via the intracellular CD28/CD3ζ sequences upon the interaction of the FiCAR1 with its antigen. In addition, downstream signaling of CD3ζ/ZAP70- SLP-76-PLCγ, PI3K-AKT-NFκB pathways and activation of NFAT and AP-1 were observed. Conclusion: We conclude that the FiCAR backbone can be shortened and lengthened at will by engineering it with one to three SIRPα derived Ig-like domains, and the FiCARs are functional when equipped with different single chain variable fragment target binding domains. The Jurkat reporter system expedites the analysis of novel CARs as to their expression, signaling function, evaluation of tonic signaling issues and cytotoxic activity.
Collapse
Affiliation(s)
- Farhana Jahan
- R&D, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Jan Koski
- R&D, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Diana Schenkwein
- A.I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Helka Göös
- R&D, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Sini Huuskonen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hans-Jörg Bühring
- Department of Internal Medicine II, University Clinic of Tübingen, Tübingen, Germany
| | - Kim Vettenranta
- R&D, Finnish Red Cross Blood Service, Helsinki, Finland
- University of Helsinki and the Children’s Hospital, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
27
|
Merlotti A, Sadacca B, Arribas YA, Ngoma M, Burbage M, Goudot C, Houy A, Rocañín-Arjó A, Lalanne A, Seguin-Givelet A, Lefevre M, Heurtebise-Chrétien S, Baudon B, Oliveira G, Loew D, Carrascal M, Wu CJ, Lantz O, Stern MH, Girard N, Waterfall JJ, Amigorena S. Noncanonical splicing junctions between exons and transposable elements represent a source of immunogenic recurrent neo-antigens in patients with lung cancer. Sci Immunol 2023; 8:eabm6359. [PMID: 36735774 DOI: 10.1126/sciimmunol.abm6359] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Although most characterized tumor antigens are encoded by canonical transcripts (such as differentiation or tumor-testis antigens) or mutations (both driver and passenger mutations), recent results have shown that noncanonical transcripts including long noncoding RNAs and transposable elements (TEs) can also encode tumor-specific neo-antigens. Here, we investigate the presentation and immunogenicity of tumor antigens derived from noncanonical mRNA splicing events between coding exons and TEs. Comparing human non-small cell lung cancer (NSCLC) and diverse healthy tissues, we identified a subset of splicing junctions that is both tumor specific and shared across patients. We used HLA-I peptidomics to identify peptides encoded by tumor-specific junctions in primary NSCLC samples and lung tumor cell lines. Recurrent junction-encoded peptides were immunogenic in vitro, and CD8+ T cells specific for junction-encoded epitopes were present in tumors and tumor-draining lymph nodes from patients with NSCLC. We conclude that noncanonical splicing junctions between exons and TEs represent a source of recurrent, immunogenic tumor-specific antigens in patients with NSCLC.
Collapse
Affiliation(s)
- Antonela Merlotti
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
| | - Benjamin Sadacca
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
- INSERM U830, PSL Research University, Institute Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Yago A Arribas
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
| | - Mercia Ngoma
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
| | - Marianne Burbage
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
| | - Christel Goudot
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
| | - Alexandre Houy
- INSERM U830, PSL Research University, Institute Curie Research Center, Paris, France
| | - Ares Rocañín-Arjó
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
| | - Ana Lalanne
- Institut Curie, Laboratory of Clinical immunology, 75005 Paris, France
- Institut Curie, CIC-BT1428, 75005 Paris, France
| | - Agathe Seguin-Givelet
- Thoracic Surgery Department, Curie-Montsouris Thorax Institute - Institut Mutualiste Montsouris, Paris, France
- Paris 13 University, Sorbonne Paris Cité, Faculty of Medicine SMBH, Bobigny, France
| | - Marine Lefevre
- Department of Pathology, Institute Mutualiste Montsouris, Paris, France
| | | | - Blandine Baudon
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
| | - Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Damarys Loew
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, Paris cedex 05, France
| | - Montserrat Carrascal
- Biological and Environmental Proteomics, Institut d'Investigacions Biomèdiques de Barcelona-CSIC, IDIBAPS, Roselló 161, 6a planta, 08036 Barcelona, Spain
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Olivier Lantz
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
- Institut Curie, Laboratory of Clinical immunology, 75005 Paris, France
- Institut Curie, CIC-BT1428, 75005 Paris, France
| | - Marc-Henri Stern
- INSERM U830, PSL Research University, Institute Curie Research Center, Paris, France
| | - Nicolas Girard
- Thoracic Surgery Department, Curie-Montsouris Thorax Institute - Institut Mutualiste Montsouris, Paris, France
| | - Joshua J Waterfall
- INSERM U830, PSL Research University, Institute Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Sebastian Amigorena
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
| |
Collapse
|
28
|
Barden M, Holzinger A, Velas L, Mezősi-Csaplár M, Szöőr Á, Vereb G, Schütz GJ, Hombach AA, Abken H. CAR and TCR form individual signaling synapses and do not cross-activate, however, can co-operate in T cell activation. Front Immunol 2023; 14:1110482. [PMID: 36817444 PMCID: PMC9929185 DOI: 10.3389/fimmu.2023.1110482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
In engineered T cells the CAR is co-expressed along with the physiological TCR/CD3 complex, both utilizing the same downstream signaling machinery for T cell activation. It is unresolved whether CAR-mediated T cell activation depends on the presence of the TCR and whether CAR and TCR mutually cross-activate upon engaging their respective antigen. Here we demonstrate that the CD3ζ CAR level was independent of the TCR associated CD3ζ and could not replace CD3ζ to rescue the TCR complex in CD3ζ KO T cells. Upon activation, the CAR did not induce phosphorylation of TCR associated CD3ζ and, vice versa, TCR activation did not induce CAR CD3ζ phosphorylation. Consequently, CAR and TCR did not cross-signal to trigger T cell effector functions. On the membrane level, TCR and CAR formed separate synapses upon antigen engagement as revealed by total internal reflection fluorescence (TIRF) and fast AiryScan microscopy. Upon engaging their respective antigen, however, CAR and TCR could co-operate in triggering effector functions through combinatorial signaling allowing logic "AND" gating in target recognition. Data also imply that tonic TCR signaling can support CAR-mediated T cell activation emphasizing the potential relevance of the endogenous TCR for maintaining T cell capacities in the long-term.
Collapse
Affiliation(s)
- Markus Barden
- Leibniz Institute for Immunotherapy (LIT), Division of Genetic Immunotherapy, University Regensburg, Regensburg, Germany
| | - Astrid Holzinger
- Leibniz Institute for Immunotherapy (LIT), Division of Genetic Immunotherapy, University Regensburg, Regensburg, Germany
| | - Lukas Velas
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | - Marianna Mezősi-Csaplár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Árpád Szöőr
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary,ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Andreas A. Hombach
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,Department I Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy (LIT), Division of Genetic Immunotherapy, University Regensburg, Regensburg, Germany,*Correspondence: Hinrich Abken,
| |
Collapse
|
29
|
Yoshida R, Saigi M, Tani T, Springer BF, Shibata H, Kitajima S, Mahadevan NR, Campisi M, Kim W, Kobayashi Y, Thai TC, Haratani K, Yamamoto Y, Sundararaman SK, Knelson EH, Vajdi A, Canadas I, Uppaluri R, Paweletz CP, Miret JJ, Lizotte PH, Gokhale PC, Jänne PA, Barbie DA. MET-Induced CD73 Restrains STING-Mediated Immunogenicity of EGFR-Mutant Lung Cancer. Cancer Res 2022; 82:4079-4092. [PMID: 36066413 PMCID: PMC9627131 DOI: 10.1158/0008-5472.can-22-0770] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Immunotherapy has shown limited efficacy in patients with EGFR-mutated lung cancer. Efforts to enhance the immunogenicity of EGFR-mutated lung cancer have been unsuccessful to date. Here, we discover that MET amplification, the most common mechanism of resistance to third-generation EGFR tyrosine kinase inhibitors (TKI), activates tumor cell STING, an emerging determinant of cancer immunogenicity (1). However, STING activation was restrained by ectonucleosidase CD73, which is induced in MET-amplified, EGFR-TKI-resistant cells. Systematic genomic analyses and cell line studies confirmed upregulation of CD73 in MET-amplified and MET-activated lung cancer contexts, which depends on coinduction of FOSL1. Pemetrexed (PEM), which is commonly used following EGFR-TKI treatment failure, was identified as an effective potentiator of STING-dependent TBK1-IRF3-STAT1 signaling in MET-amplified, EGFR-TKI-resistant cells. However, PEM treatment also induced adenosine production, which inhibited T-cell responsiveness. In an allogenic humanized mouse model, CD73 deletion enhanced immunogenicity of MET-amplified, EGFR-TKI-resistant cells, and PEM treatment promoted robust responses regardless of CD73 status. Using a physiologic antigen recognition model, inactivation of CD73 significantly increased antigen-specific CD8+ T-cell immunogenicity following PEM treatment. These data reveal that combined PEM and CD73 inhibition can co-opt tumor cell STING induction in TKI-resistant EGFR-mutated lung cancers and promote immunogenicity. SIGNIFICANCE MET amplification upregulates CD73 to suppress tumor cell STING induction and T-cell responsiveness in TKI-resistant, EGFR-mutated lung cancer, identifying a strategy to enhance immunogenicity and improve treatment.
Collapse
Affiliation(s)
- Ryohei Yoshida
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Respiratory Center, Asahikawa Medical University, Hokkaido, Japan.,Corresponding authors: David A. Barbie, M.D., Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, LC4115, Boston, Massachusetts, 02215, USA, , Tel: 617-632-6036; Pasi A Jänne, M.D. Ph.D., Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, LC4114, Boston, Massachusetts, 02215, USA, , Tel: 617-632-6036; Ryohei Yoshida, M.D. Ph.D., Respiratory Center, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan, , Tel: 81-166-69-3290
| | - Maria Saigi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medical Oncology, Catalan Institute of Oncology (ICO), Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Tetsuo Tani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Benjamin F Springer
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Hirofumi Shibata
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Navin R Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - William Kim
- Jong Wook Kim Ph.D., University of California San Diego, School of Medicine, Moores Cancer Center
| | - Yoshihisa Kobayashi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Tran C Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Koji Haratani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Yurie Yamamoto
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shriram K Sundararaman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Erik H Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Amir Vajdi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Israel Canadas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ravindra Uppaluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Cloud P Paweletz
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Juan J Miret
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Patrick H Lizotte
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Prafulla C Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Corresponding authors: David A. Barbie, M.D., Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, LC4115, Boston, Massachusetts, 02215, USA, , Tel: 617-632-6036; Pasi A Jänne, M.D. Ph.D., Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, LC4114, Boston, Massachusetts, 02215, USA, , Tel: 617-632-6036; Ryohei Yoshida, M.D. Ph.D., Respiratory Center, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan, , Tel: 81-166-69-3290
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Corresponding authors: David A. Barbie, M.D., Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, LC4115, Boston, Massachusetts, 02215, USA, , Tel: 617-632-6036; Pasi A Jänne, M.D. Ph.D., Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, LC4114, Boston, Massachusetts, 02215, USA, , Tel: 617-632-6036; Ryohei Yoshida, M.D. Ph.D., Respiratory Center, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan, , Tel: 81-166-69-3290
| |
Collapse
|
30
|
Axelrod ML, Meijers WC, Screever EM, Qin J, Carroll MG, Sun X, Tannous E, Zhang Y, Sugiura A, Taylor BC, Hanna A, Zhang S, Amancherla K, Tai W, Wright JJ, Wei SC, Opalenik SR, Toren AL, Rathmell JC, Ferrell PB, Phillips EJ, Mallal S, Johnson DB, Allison JP, Moslehi JJ, Balko JM. T cells specific for α-myosin drive immunotherapy-related myocarditis. Nature 2022; 611:818-826. [PMID: 36385524 PMCID: PMC9930174 DOI: 10.1038/s41586-022-05432-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022]
Abstract
Immune-related adverse events, particularly severe toxicities such as myocarditis, are major challenges to the utility of immune checkpoint inhibitors (ICIs) in anticancer therapy1. The pathogenesis of ICI-associated myocarditis (ICI-MC) is poorly understood. Pdcd1-/-Ctla4+/- mice recapitulate clinicopathological features of ICI-MC, including myocardial T cell infiltration2. Here, using single-cell RNA and T cell receptor (TCR) sequencing of cardiac immune infiltrates from Pdcd1-/-Ctla4+/- mice, we identify clonal effector CD8+ T cells as the dominant cell population. Treatment with anti-CD8-depleting, but not anti-CD4-depleting, antibodies improved the survival of Pdcd1-/-Ctla4+/- mice. Adoptive transfer of immune cells from mice with myocarditis induced fatal myocarditis in recipients, which required CD8+ T cells. The cardiac-specific protein α-myosin, which is absent from the thymus3,4, was identified as the cognate antigen source for three major histocompatibility complex class I-restricted TCRs derived from mice with fulminant myocarditis. Peripheral blood T cells from three patients with ICI-MC were expanded by α-myosin peptides. Moreover, these α-myosin-expanded T cells shared TCR clonotypes with diseased heart and skeletal muscle, which indicates that α-myosin may be a clinically important autoantigen in ICI-MC. These studies underscore the crucial role for cytotoxic CD8+ T cells, identify a candidate autoantigen in ICI-MC and yield new insights into the pathogenesis of ICI toxicity.
Collapse
Affiliation(s)
- Margaret L Axelrod
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wouter C Meijers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Elles M Screever
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Juan Qin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Mary Grace Carroll
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaopeng Sun
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elie Tannous
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yueli Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ayaka Sugiura
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brandie C Taylor
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ann Hanna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shaoyi Zhang
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Kaushik Amancherla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Warren Tai
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Jordan J Wright
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Spencer C Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan R Opalenik
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Abigail L Toren
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Brent Ferrell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon Mallal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James P Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Javid J Moslehi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
31
|
Rodriguez-Marquez P, Calleja-Cervantes ME, Serrano G, Oliver-Caldes A, Palacios-Berraquero ML, Martin-Mallo A, Calviño C, Español-Rego M, Ceballos C, Lozano T, San Martin-Uriz P, Vilas-Zornoza A, Rodriguez-Diaz S, Martinez-Turrillas R, Jauregui P, Alignani D, Viguria MC, Redondo M, Pascal M, Martin-Antonio B, Juan M, Urbano-Ispizua A, Rodriguez-Otero P, Alfonso-Pierola A, Paiva B, Lasarte JJ, Inoges S, Lopez-Diaz de Cerio A, San-Miguel J, Fernandez de Larrea C, Hernaez M, Rodriguez-Madoz JR, Prosper F. CAR density influences antitumoral efficacy of BCMA CAR T cells and correlates with clinical outcome. SCIENCE ADVANCES 2022; 8:eabo0514. [PMID: 36179026 PMCID: PMC9524842 DOI: 10.1126/sciadv.abo0514] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/17/2022] [Indexed: 05/23/2023]
Abstract
Identification of new markers associated with long-term efficacy in patients treated with CAR T cells is a current medical need, particularly in diseases such as multiple myeloma. In this study, we address the impact of CAR density on the functionality of BCMA CAR T cells. Functional and transcriptional studies demonstrate that CAR T cells with high expression of the CAR construct show an increased tonic signaling with up-regulation of exhaustion markers and increased in vitro cytotoxicity but a decrease in in vivo BM infiltration. Characterization of gene regulatory networks using scRNA-seq identified regulons associated to activation and exhaustion up-regulated in CARHigh T cells, providing mechanistic insights behind differential functionality of these cells. Last, we demonstrate that patients treated with CAR T cell products enriched in CARHigh T cells show a significantly worse clinical response in several hematological malignancies. In summary, our work demonstrates that CAR density plays an important role in CAR T activity with notable impact on clinical response.
Collapse
Affiliation(s)
| | - Maria E. Calleja-Cervantes
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Guillermo Serrano
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Aina Oliver-Caldes
- Department of Hematology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | | | - Angel Martin-Mallo
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Cristina Calviño
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
| | - Marta Español-Rego
- Department of Immunology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Candela Ceballos
- Hematology Service, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Teresa Lozano
- Immunology and Immunotherapy Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | | | - Amaia Vilas-Zornoza
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Rebeca Martinez-Turrillas
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Patricia Jauregui
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
| | - Diego Alignani
- Flow Cytometry Core, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Maria C. Viguria
- Hematology Service, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Margarita Redondo
- Hematology Service, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Mariona Pascal
- Department of Immunology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Beatriz Martin-Antonio
- Department of Hematology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Manel Juan
- Department of Immunology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
- Immunotherapy platform Hospital Sant Joan de Déu, Barcelona, Spain
| | - Alvaro Urbano-Ispizua
- Department of Hematology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Paula Rodriguez-Otero
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
| | - Ana Alfonso-Pierola
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Bruno Paiva
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Flow Cytometry Core, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Juan J. Lasarte
- Immunology and Immunotherapy Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Susana Inoges
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Immunology and Immunotherapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
| | - Ascension Lopez-Diaz de Cerio
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Immunology and Immunotherapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
| | - Jesus San-Miguel
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
| | - Carlos Fernandez de Larrea
- Department of Hematology, Hospital Clinic de Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Mikel Hernaez
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Data Science and Artificial Intelligence Institute (DATAI), Universidad de Navarra, Pamplona, Spain
| | - Juan R. Rodriguez-Madoz
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Felipe Prosper
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
| |
Collapse
|
32
|
Dobson CS, Reich AN, Gaglione S, Smith BE, Kim EJ, Dong J, Ronsard L, Okonkwo V, Lingwood D, Dougan M, Dougan SK, Birnbaum ME. Antigen identification and high-throughput interaction mapping by reprogramming viral entry. Nat Methods 2022; 19:449-460. [PMID: 35396484 PMCID: PMC9012700 DOI: 10.1038/s41592-022-01436-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/01/2022] [Indexed: 01/11/2023]
Abstract
Deciphering immune recognition is critical for understanding a broad range of diseases and for the development of effective vaccines and immunotherapies. Efforts to do so are limited by a lack of technologies capable of simultaneously capturing the complexity of adaptive immunoreceptor repertoires and the landscape of potential antigens. To address this, we present receptor-antigen pairing by targeted retroviruses, which combines viral pseudotyping and molecular engineering approaches to enable one-pot library-on-library interaction screens by displaying antigens on the surface of lentiviruses and encoding their identity in the viral genome. Antigen-specific viral infection of cell lines expressing human T or B cell receptors allows readout of both antigen and receptor identities via single-cell sequencing. The resulting system is modular, scalable and compatible with any cell type. These techniques provide a suite of tools for targeted viral entry, molecular engineering and interaction screens with broad potential applications.
Collapse
Affiliation(s)
- Connor S Dobson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Anna N Reich
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Stephanie Gaglione
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Blake E Smith
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Ellen J Kim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Jiayi Dong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | | | - Vintus Okonkwo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Michael Dougan
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephanie K Dougan
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael E Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore.
| |
Collapse
|
33
|
Radakovics K, Battin C, Leitner J, Geiselhart S, Paster W, Stöckl J, Hoffmann-Sommergruber K, Steinberger P. A Highly Sensitive Cell-Based TLR Reporter Platform for the Specific Detection of Bacterial TLR Ligands. Front Immunol 2022; 12:817604. [PMID: 35087538 PMCID: PMC8786796 DOI: 10.3389/fimmu.2021.817604] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
Toll-like receptors (TLRs) are primary pattern recognition receptors (PRRs), which recognize conserved microbial components. They play important roles in innate immunity but also in the initiation of adaptive immune responses. Impurities containing TLR ligands are a frequent problem in research but also for the production of therapeutics since TLR ligands can exert strong immunomodulatory properties even in minute amounts. Consequently, there is a need for sensitive tools to detect TLR ligands with high sensitivity and specificity. Here we describe the development of a platform based on a highly sensitive NF-κB::eGFP reporter Jurkat JE6-1 T cell line for the detection of TLR ligands. Ectopic expression of TLRs and their coreceptors and CRISPR/Cas9-mediated deletion of endogenously expressed TLRs was deployed to generate reporter cell lines selectively expressing functional human TLR2/1, TLR2/6, TLR4 or TLR5 complexes. Using well-defined agonists for the respective TLR complexes we could demonstrate high specificity and sensitivity of the individual reporter lines. The limit of detection for LPS was below 1 pg/mL and ligands for TLR2/1 (Pam3CSK4), TLR2/6 (Fsl-1) and TLR5 (flagellin) were detected at concentrations as low as 1.0 ng/mL, 0.2 ng/mL and 10 pg/mL, respectively. We showed that the JE6-1 TLR reporter cells have the utility to characterize different commercially available TLR ligands as well as more complex samples like bacterially expressed proteins or allergen extracts. Impurities in preparations of microbial compounds as well as the lack of specificity of detection systems can lead to erroneous results and currently there is no consensus regarding the involvement of TLRs in the recognition of several molecules with proposed immunostimulatory functions. This reporter system represents a highly suitable tool for the definition of structural requirements for agonists of distinct TLR complexes.
Collapse
Affiliation(s)
- Katharina Radakovics
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Claire Battin
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sabine Geiselhart
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Paster
- Clinical Cell Biology and FACS Core Unit, St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Johannes Stöckl
- Division Regulation of the Immune System, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Karin Hoffmann-Sommergruber
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Wu D, Kolesnikov A, Yin R, Guest JD, Gowthaman R, Shmelev A, Serdyuk Y, Dianov DV, Efimov GA, Pierce BG, Mariuzza RA. Structural assessment of HLA-A2-restricted SARS-CoV-2 spike epitopes recognized by public and private T-cell receptors. Nat Commun 2022; 13:19. [PMID: 35013235 PMCID: PMC8748687 DOI: 10.1038/s41467-021-27669-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
T cells play a vital role in combatting SARS-CoV-2 and forming long-term memory responses. Whereas extensive structural information is available on neutralizing antibodies against SARS-CoV-2, such information on SARS-CoV-2-specific T-cell receptors (TCRs) bound to their peptide-MHC targets is lacking. Here we determine the structures of a public and a private TCR from COVID-19 convalescent patients in complex with HLA-A2 and two SARS-CoV-2 spike protein epitopes (YLQ and RLQ). The structures reveal the basis for selection of particular TRAV and TRBV germline genes by the public but not the private TCR, and for the ability of the TCRs to recognize natural variants of RLQ but not YLQ. Neither TCR recognizes homologous epitopes from human seasonal coronaviruses. By elucidating the mechanism for TCR recognition of an immunodominant yet variable epitope (YLQ) and a conserved but less commonly targeted epitope (RLQ), this study can inform prospective efforts to design vaccines to elicit pan-coronavirus immunity.
Collapse
MESH Headings
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/virology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- COVID-19/immunology
- COVID-19/virology
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Immunodominant Epitopes/immunology
- Immunodominant Epitopes/metabolism
- Jurkat Cells
- K562 Cells
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
- Protein Binding
- Protein Conformation
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- SARS-CoV-2/immunology
- SARS-CoV-2/metabolism
- SARS-CoV-2/physiology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Surface Plasmon Resonance/methods
Collapse
Affiliation(s)
- Daichao Wu
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Alexander Kolesnikov
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Rui Yin
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Johnathan D Guest
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Ragul Gowthaman
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Anton Shmelev
- National Research Center for Hematology, Moscow, Russia
| | - Yana Serdyuk
- National Research Center for Hematology, Moscow, Russia
| | | | | | - Brian G Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
35
|
Xia Q, Huang H, Davis MM. A High-Throughput Strategy for T-Cell Receptor Cloning and Expression. Methods Mol Biol 2022; 2574:251-264. [PMID: 36087206 PMCID: PMC10035758 DOI: 10.1007/978-1-0716-2712-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Expression of T-cell receptor (TCR) genes is a critical step for TCR characterization and epitope identification. The recent interest in using specific TCRs for cancer immunotherapy has further increased the demand for practical and robust methods to rapidly clone and express TCRs. We show that a recombination-based cloning protocol facilitates simple and rapid transfer of the TCR transgene into different expression systems. In this protocol, we first constructed all the human TRAV and TRBV genes into individual plasmid. To clone any TCR, we only need to ligate a short CDR3 fragment to its corresponding V gene plasmid using Golden Gate cloning. This strategy significantly improves the efficiency of individual TCR cloning and mutagenesis, providing a flexible high-throughput method for TCR analysis and TCR-mediated therapeutics.
Collapse
Affiliation(s)
- Qiong Xia
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Huang Huang
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M Davis
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
36
|
Le Q, Castro S, Tang T, Loeb AM, Hylkema T, McKay CN, Perkins L, Srivastava S, Call L, Smith J, Leonti A, Ries R, Pardo L, Loken MR, Correnti C, Fiorenza S, Turtle CJ, Riddell S, Tarlock K, Meshinchi S. Therapeutic Targeting of Mesothelin with Chimeric Antigen Receptor T Cells in Acute Myeloid Leukemia. Clin Cancer Res 2021; 27:5718-5730. [PMID: 34380639 PMCID: PMC9401532 DOI: 10.1158/1078-0432.ccr-21-1546] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/26/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE We previously identified mesothelin (MSLN) as highly expressed in a significant fraction of acute myeloid leukemia (AML) but entirely silent in normal hematopoiesis, providing a promising antigen for immunotherapeutic targeting that avoids hematopoietic toxicity. Given that T cells genetically modified to express chimeric antigen receptors (CAR) are effective at eradicating relapsed/refractory acute lymphocytic leukemia, we developed MSLN-directed CAR T cells for preclinical evaluation in AML. EXPERIMENTAL DESIGN The variable light (VL) and heavy (VH) sequences from the MSLN-targeting SS1P immunotoxin were used to construct the single-chain variable fragment of the standard CAR containing 41-BB costimulatory and CD3Zeta stimulatory domains. The preclinical efficacy of MSLN CAR T cells was evaluated against AML cell lines and patient samples expressing various levels of MSLN in vitro and in vivo. RESULTS We demonstrate that MSLN is expressed on the cell surface of AML blasts and leukemic stem cell-enriched CD34+CD38- subset, but not on normal hematopoietic stem and progenitor cells (HSPC). We further establish that MSLN CAR T cells are highly effective in eliminating MSLN-positive AML cells in cell line- and patient-derived xenograft models. Importantly, MSLN CAR T cells can target and eradicate CD34+CD38- cells without impacting the viability of normal HSPCs. Finally, we show that CAR T-cell functionality can be improved by inhibition of the ADAM17 metalloprotease that promotes shedding of MSLN. CONCLUSIONS These findings demonstrate that MSLN is a viable target for CAR T-cell therapy in AML and that inhibiting MSLN shedding is a promising approach to improve CAR T-cell efficacy.
Collapse
MESH Headings
- Adolescent
- Cell Line, Tumor
- Child
- Child, Preschool
- Female
- Humans
- Immunotherapy, Adoptive/methods
- Infant
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Male
- Mesothelin/antagonists & inhibitors
- Receptors, Antigen, T-Cell
- Receptors, Chimeric Antigen/therapeutic use
Collapse
Affiliation(s)
- Quy Le
- Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Sommer Castro
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Thao Tang
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anisha M Loeb
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | | | | | - Lindsey Call
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jenny Smith
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Amanda Leonti
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Rhonda Ries
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Laura Pardo
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- Hematologics, Inc, Seattle, Washington
| | | | - Colin Correnti
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Cameron J Turtle
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | | | - Katherine Tarlock
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Soheil Meshinchi
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Children's Oncology Group, Monrovia, California
| |
Collapse
|
37
|
Li Y, Gao Q, Liu H, Lin S, Chen H, Ding R, Gu Y, Chao CC, Dong X. The Targeting Effect of Cetuximab Combined with PD-L1 Blockade against EGFR-Expressing Tumors in a Tailored CD16-CAR T-Cell Reporter System. Cancer Invest 2021; 39:285-296. [PMID: 33646061 DOI: 10.1080/07357907.2021.1894570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The switchable chimeric antigen receptors (CARs) have shown many advantages in CAR T-cell therapy. However, human primary T-cells are required to evaluate antigen-specific adaptors by IFN-γ assay or FACS analysis, which limits the throughput of adaptor screening. A sensitive and robust CD16-CAR Jurkat NFAT-eGFP reporter system has been developed to assess the therapeutic efficacy of antibody-targeted CAR-T-cell by effectively evaluating the T-cell activation by various tumor cells and the impact of immune checkpoint inhibitor antibodies. This reporter system facilitates the screening of targeted antibodies in a high throughput manner for the development of improved T-cell immunotherapy.
Collapse
Affiliation(s)
- Yijian Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | | | | | | | | | | | - Ying Gu
- BGI-Shenzhen, Shenzhen, China
| | | | - Xuan Dong
- BGI-Shenzhen, Shenzhen, China.,Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| |
Collapse
|
38
|
van Leeuwen T, Araman C, Pieper Pournara L, Kampstra ASB, Bakkum T, Marqvorsen MHS, Nascimento CR, Groenewold GJM, van der Wulp W, Camps MGM, Janssen GMC, van Veelen PA, van Westen GJP, Janssen APA, Florea BI, Overkleeft HS, Ossendorp FA, Toes REM, van Kasteren SI. Bioorthogonal protein labelling enables the study of antigen processing of citrullinated and carbamylated auto-antigens. RSC Chem Biol 2021; 2:855-862. [PMID: 34212151 PMCID: PMC8190914 DOI: 10.1039/d1cb00009h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
Proteolysis is fundamental to many biological processes. In the immune system, it underpins the activation of the adaptive immune response: degradation of antigenic material into short peptides and presentation thereof on major histocompatibility complexes, leads to activation of T-cells. This initiates the adaptive immune response against many pathogens. Studying proteolysis is difficult, as the oft-used polypeptide reporters are susceptible to proteolytic sequestration themselves. Here we present a new approach that allows the imaging of antigen proteolysis throughout the processing pathway in an unbiased manner. By incorporating bioorthogonal functionalities into the protein in place of methionines, antigens can be followed during degradation, whilst leaving reactive sidechains open to templated and non-templated post-translational modifications, such as citrullination and carbamylation. Using this approach, we followed and imaged the post-uptake fate of the commonly used antigen ovalbumin, as well as the post-translationally citrullinated and/or carbamylated auto-antigen vinculin in rheumatoid arthritis, revealing differences in antigen processing and presentation.
Collapse
Affiliation(s)
- Tyrza van Leeuwen
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Can Araman
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Linda Pieper Pournara
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Arieke S B Kampstra
- Department of Rheumatology, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - Thomas Bakkum
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Mikkel H S Marqvorsen
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Clarissa R Nascimento
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - G J Mirjam Groenewold
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Willemijn van der Wulp
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Marcel G M Camps
- Department of Immunology, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - Gerard J P van Westen
- Computational Drug Discovery, Drug Discovery and Safety, LACDR, Leiden University Leiden The Netherlands
| | - Antonius P A Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry and the Oncode Institute, Leiden University Leiden The Netherlands
| | - Bogdan I Florea
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Herman S Overkleeft
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Ferry A Ossendorp
- Department of Immunology, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - Sander I van Kasteren
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| |
Collapse
|
39
|
Hallfors N, Shanti A, Sapudom J, Teo J, Petroianu G, Lee S, Planelles L, Stefanini C. Multi-Compartment Lymph-Node-on-a-Chip Enables Measurement of Immune Cell Motility in Response to Drugs. Bioengineering (Basel) 2021; 8:bioengineering8020019. [PMID: 33572571 PMCID: PMC7912616 DOI: 10.3390/bioengineering8020019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Organs On-a-Chip represent novel platforms for modelling human physiology and disease. The lymph node (LN) is a relevant immune organ in which B and T lymphocytes are spatially organized in a complex architecture, and it is the place where the immune response initiates. The present study addresses the utility of a recently designed LN-on-a-chip to dissect and understand the effect of drugs delivered to cells in a fluidic multicellular 3D setting that mimics the human LN. To do so, we analyzed the motility and viability of human B and T cells exposed to hydroxychloroquine (HCQ). We show that the innovative LN platform, which operates at a microscale level, allows real-time monitoring of co-cultured B and T cells by imaging, and supports cellular random movement. HCQ delivered to cells through a constant and continuous flow induces a reduction in T cell velocity while promotes persistent rotational motion. We also find that HCQ increases the production of reactive oxygen species in T cells. Taken together, these results highlight the potential of the LN-on-a-chip to be applied in drug screening and development, and in cellular dynamics studies.
Collapse
Affiliation(s)
- Nicholas Hallfors
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (N.H.); (A.S.); (S.L.)
| | - Aya Shanti
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (N.H.); (A.S.); (S.L.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (J.S.); (J.T.)
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (J.S.); (J.T.)
- Department of Mechanical Engineering, New York University, P.O. Box 903, New York, NY 10276-0903, USA
| | - Georg Petroianu
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - SungMun Lee
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (N.H.); (A.S.); (S.L.)
- Khalifa University’s Center for Biotechnology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Lourdes Planelles
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (N.H.); (A.S.); (S.L.)
- Correspondence: (C.S.); (L.P.); Tel.: +971-2-501-8472 (C.S. & L.P.)
| | - Cesare Stefanini
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (N.H.); (A.S.); (S.L.)
- Correspondence: (C.S.); (L.P.); Tel.: +971-2-501-8472 (C.S. & L.P.)
| |
Collapse
|
40
|
Tasker C, Patel J, Jawa V, Maamary J. Competition-Based Cell Assay Employing Soluble T Cell Receptors to Assess MHC Class II Antigen Processing and Presentation. AAPS JOURNAL 2021; 23:26. [PMID: 33459871 PMCID: PMC7812987 DOI: 10.1208/s12248-020-00553-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
Accurate assessment of antigen-specific immune responses is critical in the development of safe and efficacious biotherapeutics and vaccines. Endosomal processing of a protein antigen followed by presentation on major histocompatibility complex (MHC) class II constitute necessary steps in the induction of CD4+ T cell immune responses. Current preclinical methods for assessing immunogenicity risk consist of in vitro cell-based assays and computational prediction tools. Cell-based assays are time and labor-intensive while in silico methodologies have limitations. Here, we propose a novel cell-based assay capable of investigating an antigen's endosomal processing and MHC class II presentation capabilities. This novel assay relies on competition between epitopes for MHC class II binding and employs labeled soluble T cell receptors (sTCRs) as detectors of epitope presentation.
Collapse
Affiliation(s)
- Carley Tasker
- Predictive and Clinical Immunogenicity, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jenny Patel
- Predictive and Clinical Immunogenicity, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Vibha Jawa
- Predictive and Clinical Immunogenicity, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jad Maamary
- Predictive and Clinical Immunogenicity, Merck & Co., Inc., Kenilworth, New Jersey, USA.
| |
Collapse
|
41
|
Reithofer M, Rosskopf S, Leitner J, Battin C, Bohle B, Steinberger P, Jahn-Schmid B. 4-1BB costimulation promotes bystander activation of human CD8 T cells. Eur J Immunol 2020; 51:721-733. [PMID: 33180337 PMCID: PMC7986150 DOI: 10.1002/eji.202048762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 01/06/2023]
Abstract
Costimulatory signals potently promote T‐cell proliferation and effector function. Agonistic antibodies targeting costimulatory receptors of the TNFR family, such as 4‐1BB and CD27, have entered clinical trials in cancer patients. Currently there is limited information how costimulatory signals regulate antigen‐specific but also bystander activation of human CD8 T cells. Engineered antigen presenting cells (eAPC) efficiently presenting several common viral epitopes on HLA‐A2 in combination with MHC class I tetramer staining were used to investigate the impact of costimulatory signals on human CD8 T‐cell responses. CD28 costimulation potently augmented the percentage and number of antigen‐reactive CD8 T cells, whereas eAPC expressing 4‐1BB‐ligand induced bystander proliferation of CD8 T cells and massive expansion of NK cells. Moreover, the 4‐1BB agonist urelumab similarly induced bystander proliferation of CD8 T cells and NK cells in a dose‐dependent manner. However, the promotion of bystander CD8 T‐cell responses is not a general attribute of costimulatory TNF receptor superfamily (TNFRSF) members, since CD27 signals enhanced antigen‐specific CD8 T cells responses without promoting significant bystander activation. Thus, the differential effects of costimulatory signals on the activation of human bystander CD8 T cells should be taken into account when costimulatory pathways are harnessed for cancer immunotherapy.
Collapse
Affiliation(s)
- Manuel Reithofer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sandra Rosskopf
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Claire Battin
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Beatrice Jahn-Schmid
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Müller TR, Schuler C, Hammel M, Köhler A, Jutz S, Leitner J, Schober K, Busch DH, Steinberger P. A T-cell reporter platform for high-throughput and reliable investigation of TCR function and biology. Clin Transl Immunology 2020; 9:e1216. [PMID: 33251011 PMCID: PMC7681835 DOI: 10.1002/cti2.1216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Transgenic re-expression enables unbiased investigation of T-cell receptor (TCR)-intrinsic characteristics detached from its original cellular context. Recent advancements in TCR repertoire sequencing and development of protocols for direct cloning of full TCRαβ constructs now facilitate large-scale transgenic TCR re-expression. Together, this offers unprecedented opportunities for the screening of TCRs for basic research as well as clinical use. However, the functional characterisation of re-expressed TCRs is still a complicated and laborious matter. Here, we propose a Jurkat-based triple parameter TCR signalling reporter endogenous TCR knockout cellular platform (TPRKO) that offers an unbiased, easy read-out of TCR functionality and facilitates high-throughput screening approaches. METHODS As a proof-of-concept, we transgenically re-expressed 59 human cytomegalovirus-specific TCRs and systematically investigated and compared TCR function in TPRKO cells versus primary human T cells. RESULTS We demonstrate that the TPRKO cell line facilitates antigen-HLA specificity screening via sensitive peptide-MHC-multimer staining, which was highly comparable to primary T cells. Also, TCR functional avidity in TPRKO cells was strongly correlating to primary T cells, especially in the absence of CD8αβ co-receptor. CONCLUSION Overall, our data show that the TPRKO cell lines can serve as a surrogate of primary human T cells for standardised and high-throughput investigation of TCR biology.
Collapse
Affiliation(s)
- Thomas R Müller
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
- German Center for Infection Research (DZIF)MunichGermany
| | - Corinna Schuler
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
| | - Monika Hammel
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
| | - Amelie Köhler
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
| | - Sabrina Jutz
- Division of Immune Receptors and T Cell ActivationCenter for Pathophysiology, Infectiology, and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| | - Judith Leitner
- Division of Immune Receptors and T Cell ActivationCenter for Pathophysiology, Infectiology, and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
- German Center for Infection Research (DZIF)MunichGermany
- Focus Group ‘Clinical Cell Processing and Purification’Institute for Advanced StudyTUMMunichGermany
| | - Peter Steinberger
- Division of Immune Receptors and T Cell ActivationCenter for Pathophysiology, Infectiology, and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
43
|
D’Ippolito E, Wagner KI, Busch DH. Needle in a Haystack: The Naïve Repertoire as a Source of T Cell Receptors for Adoptive Therapy with Engineered T Cells. Int J Mol Sci 2020; 21:E8324. [PMID: 33171940 PMCID: PMC7664211 DOI: 10.3390/ijms21218324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
T cell engineering with antigen-specific T cell receptors (TCRs) has allowed the generation of increasingly specific, reliable, and versatile T cell products with near-physiological features. However, a broad applicability of TCR-based therapies in cancer is still limited by the restricted number of TCRs, often also of suboptimal potency, available for clinical use. In addition, targeting of tumor neoantigens with TCR-engineered T cell therapy moves the field towards a highly personalized treatment, as tumor neoantigens derive from somatic mutations and are extremely patient-specific. Therefore, relevant TCRs have to be de novo identified for each patient and within a narrow time window. The naïve repertoire of healthy donors would represent a reliable source due to its huge diverse TCR repertoire, which theoretically entails T cells for any antigen specificity, including tumor neoantigens. As a challenge, antigen-specific naïve T cells are of extremely low frequency and mostly of low functionality, making the identification of highly functional TCRs finding a "needle in a haystack." In this review, we present the technological advancements achieved in high-throughput mapping of patient-specific neoantigens and corresponding cognate TCRs and how these platforms can be used to interrogate the naïve repertoire for a fast and efficient identification of rare but therapeutically valuable TCRs for personalized adoptive T cell therapy.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Neoplasms/genetics
- Precision Medicine/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
Collapse
Affiliation(s)
- Elvira D’Ippolito
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (E.D.); (K.I.W.)
| | - Karolin I. Wagner
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (E.D.); (K.I.W.)
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (E.D.); (K.I.W.)
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
- Focus Group ‘‘Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München (TUM), 81675 Munich, Germany
| |
Collapse
|
44
|
Abstract
Advances in reading, writing, and editing DNA are providing unprecedented insights into the complexity of immunological systems. This combination of systems and synthetic biology methods is enabling the quantitative and precise understanding of molecular recognition in adaptive immunity, thus providing a framework for reprogramming immune responses for translational medicine. In this review, we will highlight state-of-the-art methods such as immune repertoire sequencing, immunoinformatics, and immunogenomic engineering and their application toward adaptive immunity. We showcase novel and interdisciplinary approaches that have the promise of transforming the design and breadth of molecular and cellular immunotherapies.
Collapse
Affiliation(s)
- Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Roy A. Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| |
Collapse
|
45
|
The Quest for the Best: How TCR Affinity, Avidity, and Functional Avidity Affect TCR-Engineered T-Cell Antitumor Responses. Cells 2020; 9:cells9071720. [PMID: 32708366 PMCID: PMC7408146 DOI: 10.3390/cells9071720] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Over the past decades, adoptive transfer of T cells has revolutionized cancer immunotherapy. In particular, T-cell receptor (TCR) engineering of T cells has marked important milestones in developing more precise and personalized cancer immunotherapies. However, to get the most benefit out of this approach, understanding the role that TCR affinity, avidity, and functional avidity play on how TCRs and T cells function in the context of tumor-associated antigen (TAA) recognition is vital to keep generating improved adoptive T-cell therapies. Aside from TCR-related parameters, other critical factors that govern T-cell activation are the effect of TCR co-receptors on TCR–peptide-major histocompatibility complex (pMHC) stabilization and TCR signaling, tumor epitope density, and TCR expression levels in TCR-engineered T cells. In this review, we describe the key aspects governing TCR specificity, T-cell activation, and how these concepts can be applied to cancer-specific TCR redirection of T cells.
Collapse
|
46
|
Mann SE, Zhou Z, Landry LG, Anderson AM, Alkanani AK, Fischer J, Peakman M, Mallone R, Campbell K, Michels AW, Nakayama M. Multiplex T Cell Stimulation Assay Utilizing a T Cell Activation Reporter-Based Detection System. Front Immunol 2020; 11:633. [PMID: 32328071 PMCID: PMC7160884 DOI: 10.3389/fimmu.2020.00633] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Recent advancements in single cell sequencing technologies allow for identification of numerous immune-receptors expressed by T cells such as tumor-specific and autoimmune T cells. Determining antigen specificity of those cells holds immense therapeutic promise. Therefore, the purpose of this study was to develop a method that can efficiently test antigen reactivity of multiple T cell receptors (TCRs) with limited cost, time, and labor. Nuclear factor of activated T cells (NFAT) is a transcription factor involved in producing cytokines and is often utilized as a reporter system for T cell activation. Using a NFAT-based fluorescent reporter system, we generated T-hybridoma cell lines that express intensely fluorescent proteins in response to antigen stimulation and constitutively express additional fluorescent proteins, which serve as identifiers of each T-hybridoma expressing a unique TCR. This allows for the combination of multiple T-hybridoma lines within a single reaction. Sensitivity to stimulation is not decreased by adding fluorescent proteins or multiplexing T cells. In multiplexed reactions, response by one cell line does not induce response in others, thus preserving specificity. This multiplex assay system will be a useful tool for antigen discovery research in a variety of contexts, including using combinatorial peptide libraries to determine T cell epitopes.
Collapse
Affiliation(s)
- Sarah E. Mann
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Zhicheng Zhou
- CNRS, INSERM, Institut Cochin, Université de Paris, Paris, France
| | - Laurie G. Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Amanda M. Anderson
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aimon K. Alkanani
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jeremy Fischer
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Mark Peakman
- Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roberto Mallone
- CNRS, INSERM, Institut Cochin, Université de Paris, Paris, France
- Assistance Publique - Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - Kristen Campbell
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aaron W. Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
47
|
Bloemberg D, Nguyen T, MacLean S, Zafer A, Gadoury C, Gurnani K, Chattopadhyay A, Ash J, Lippens J, Harcus D, Pagé M, Fortin A, Pon RA, Gilbert R, Marcil A, Weeratna RD, McComb S. A High-Throughput Method for Characterizing Novel Chimeric Antigen Receptors in Jurkat Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 16:238-254. [PMID: 32083149 PMCID: PMC7021643 DOI: 10.1016/j.omtm.2020.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/27/2020] [Indexed: 01/18/2023]
Abstract
Chimeric antigen receptor (CAR) development involves extensive empirical characterization of antigen-binding domain (ABD)/CAR constructs for clinical suitability. Here, we present a cost-efficient and rapid method for evaluating CARs in human Jurkat T cells. Using a modular CAR plasmid, a highly efficient ABD cloning strategy, plasmid electroporation, short-term co-culture, and flow-cytometric detection of CD69, this assay (referred to as CAR-J) evaluates sensitivity and specificity for ABDs. Assessing 16 novel anti-CD22 single-chain variable fragments derived from mouse monoclonal antibodies, CAR-J stratified constructs by response magnitude to CD22-expressing target cells. We also characterized 5 novel anti-EGFRvIII CARs for preclinical development, identifying candidates with varying tonic and target-specific activation characteristics. When evaluated in primary human T cells, tonic/auto-activating (without target cells) EGFRvIII-CARs induced target-independent proliferation, differentiation toward an effector phenotype, elevated activity against EGFRvIII-negative cells, and progressive loss of target-specific response upon in vitro re-challenge. These EGFRvIII CAR-T cells also showed anti-tumor activity in xenografted mice. In summary, CAR-J represents a straightforward method for high-throughput assessment of CAR constructs as genuine cell-associated antigen receptors that is particularly useful for generating large specificity datasets as well as potential downstream CAR optimization.
Collapse
Affiliation(s)
- Darin Bloemberg
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Tina Nguyen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Susanne MacLean
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Ahmed Zafer
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Christine Gadoury
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Komal Gurnani
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Anindita Chattopadhyay
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Josée Ash
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Julie Lippens
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Doreen Harcus
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Martine Pagé
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Annie Fortin
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Robert A Pon
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Rénald Gilbert
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC H4P 2R2, Canada.,Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada
| | - Anne Marcil
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Risini D Weeratna
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Scott McComb
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
48
|
Rapid Assessment of Functional Avidity of Tumor-Specific T Cell Receptors Using an Antigen-Presenting Tumor Cell Line Electroporated with Full-Length Tumor Antigen mRNA. Cancers (Basel) 2020; 12:cancers12020256. [PMID: 31972992 PMCID: PMC7072428 DOI: 10.3390/cancers12020256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
The functional avidity of T-cell receptor (TCR)-engineered T cells towards their cognate epitope plays a crucial role in successfully targeting and killing tumor cells expressing the tumor-associated antigen (TAA). When evaluating in vitro functional T-cell avidity, an important aspect that is often neglected is the antigen-presenting cell (APC) used in the assay. Cell-based models for antigen-presentation, such as tumor cell lines, represent a valid alternative to autologous APCs due to their availability, off-the-shelf capabilities, and the broad range of possibilities for modification via DNA or messenger RNA (mRNA) transfection. To find a valuable model APC for in vitro validation of TAA Wilms’ tumor 1 (WT1)-specific TCRs, we tested four different WT1 peptide-pulsed HLA-A2+ tumor cell lines commonly used in T-cell stimulation assays. We found the multiple myeloma cell line U266 to be a suitable model APC to evaluate differences in mean functional avidity (EC50) values of transgenic TCRs following transfection in 2D3 Jurkat T cells. Next, to assess the dose-dependent antigen-specific responsiveness of WT1 TCR-engineered 2D3 T cells to endogenously processed epitopes, we electroporated U266 cells with different amounts of full-length antigen WT1 mRNA. Finally, we analyzed the functional avidity of WT1 TCR-transfected primary CD8 T cells towards WT1 mRNA-electroporated U266 cells. In this study, we demonstrate that both the APC and the antigen loading method (peptide pulsing versus full-length mRNA transfection) to analyze T-cell functional avidity have a significant impact on the EC50 values of a given TCR. For rapid assessment of the functional avidity of a cloned TCR towards its endogenously processed MHC I-restricted epitope, we showcase that the TAA mRNA-transfected U266 cell line is a suitable and versatile model APC.
Collapse
|
49
|
Jost C, Darowski D, Challier J, Pulko V, Hanisch LJ, Xu W, Mössner E, Bujotzek A, Klostermann S, Umana P, Kontermann RE, Klein C. CAR-J cells for antibody discovery and lead optimization of TCR-like immunoglobulins. MAbs 2020; 12:1840709. [PMID: 33136521 PMCID: PMC7646475 DOI: 10.1080/19420862.2020.1840709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
T-cell bispecific antibodies (TCBs) are a novel class of engineered immunoglobulins that unite monovalent binding to the T-cell receptor (TCR) CD3e chain and bivalent binding to tumor-associated antigens in order to recruit and activate T-cells for tumor cell killing. In vivo, T-cell activation is usually initiated via the interaction of the TCR with the peptide-HLA complex formed by the human leukocyte antigen (HLA) and peptides derived from intracellular proteins. TCR-like antibodies (TCRLs) that recognize pHLA-epitopes extend the target space of TCBs to peptides derived from intracellular proteins, such as those overexpressed during oncogenesis or created via mutations found in cancer. One challenge during lead identification of TCRL-TCBs is to identify TCRLs that specifically, and ideally exclusively, recognize the desired pHLA, but not unrelated pHLAs. In order to identify TCRLs suitable for TCRL-TCBs, large numbers of TCRLs have to be tested in the TCB format. Here, we propose a novel approach using chimeric antigen receptors (CARs) to facilitate the identification of highly selective TCRLs. In this new so-called TCRL-CAR-J approach, TCRL-candidates are transduced as CARs into Jurkat reporter-cells, and subsequently assessed for their specificity profile. This work demonstrates that the CAR-J reporter-cell assay can be applied to predict the profile of TCRL-TCBs without the need to produce each candidate in the final TCB format. It is therefore useful in streamlining the identification of TCRL-TCBs.
Collapse
Affiliation(s)
- Christian Jost
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
- Athebio AG, Zurich, Switzerland
| | - Diana Darowski
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - John Challier
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Vesna Pulko
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Lydia J Hanisch
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Wei Xu
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Ekkehard Mössner
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Alexander Bujotzek
- Roche Innovation Center Munich, Roche Pharma Research & Early Development, Penzberg, Germany
| | - Stefan Klostermann
- Roche Innovation Center Munich, Roche Pharma Research & Early Development, Penzberg, Germany
| | - Pablo Umana
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | | | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| |
Collapse
|
50
|
Abdelaziz MO, Ossmann S, Kaufmann AM, Leitner J, Steinberger P, Willimsky G, Raftery MJ, Schönrich G. Development of a Human Cytomegalovirus (HCMV)-Based Therapeutic Cancer Vaccine Uncovers a Previously Unsuspected Viral Block of MHC Class I Antigen Presentation. Front Immunol 2019; 10:1776. [PMID: 31417555 PMCID: PMC6682651 DOI: 10.3389/fimmu.2019.01776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) induces a uniquely high frequency of virus-specific effector/memory CD8+ T-cells, a phenomenon termed “memory inflation”. Thus, HCMV-based vaccines are particularly interesting in order to stimulate a sustained and strong cellular immune response against cancer. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with high lethality and inevitable relapse. The current standard treatment does not significantly improve the desperate situation underlining the urgent need to develop novel approaches. Although HCMV is highly fastidious with regard to species and cell type, GBM cell lines are susceptible to HCMV. In order to generate HCMV-based therapeutic vaccine candidates, we deleted all HCMV-encoded proteins (immunoevasins) that interfere with MHC class I presentation. The aim being to use the viral vector as an adjuvant for presentation of endogenous tumor antigens, the presentation of high levels of vector-encoded neoantigens and finally the repurposing of bystander HCMV-specific CD8+ T cells to fight the tumor. As neoantigen, we exemplarily used the E6 and E7 proteins of human papillomavirus type 16 (HPV-16) as a non-transforming fusion protein (E6/E7) that covers all relevant antigenic peptides. Surprisingly, GBM cells infected with E6/E7-expressing HCMV-vectors failed to stimulate E6-specific T cells despite high level expression of E6/E7 protein. Further experiments revealed that MHC class I presentation of E6/E7 is impaired by the HCMV-vector although it lacks all known immunoevasins. We also generated HCMV-based vectors that express E6-derived peptide fused to HCMV proteins. GBM cells infected with these vectors efficiently stimulated E6-specific T cells. Thus, fusion of antigenic sequences to HCMV proteins is required for efficient presentation via MHC class I molecules during infection. Taken together, these results provide the preclinical basis for development of HCMV-based vaccines and also reveal a novel HCMV-encoded block of MHC class I presentation.
Collapse
Affiliation(s)
- Mohammed O Abdelaziz
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sophia Ossmann
- Clinic for Gynecology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Andreas M Kaufmann
- Clinic for Gynecology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerald Willimsky
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Partner Site Berlin, Berlin, Germany
| | - Martin J Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|