1
|
Mebane CA. Bioavailability and Toxicity Models of Copper to Freshwater Life: The State of Regulatory Science. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2529-2563. [PMID: 37818880 DOI: 10.1002/etc.5736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023]
Abstract
Efforts to incorporate bioavailability adjustments into regulatory water quality criteria in the United States have included four major procedures: hardness-based single-linear regression equations, water-effect ratios (WERs), biotic ligand models (BLMs), and multiple-linear regression models (MLRs) that use dissolved organic carbon, hardness, and pH. The performance of each with copper (Cu) is evaluated, emphasizing the relative performance of hardness-based versus MLR-based criteria equations. The WER approach was shown to be inherently highly biased. The hardness-based model is in widest use, and the MLR approach is the US Environmental Protection Agency's (USEPA's) present recommended approach for developing aquatic life criteria for metals. The performance of criteria versions was evaluated with numerous toxicity datasets that were independent of those used to develop the MLR models, including olfactory and behavioral toxicity, and field and ecosystem studies. Within the range of water conditions used to develop the Cu MLR criteria equations, the MLR performed well in terms of predicting toxicity and protecting sensitive species and ecosystems. In soft waters, the MLR outperformed both the BLM and hardness models. In atypical waters with pH <5.5 or >9, neither the MLR nor BLM predictions were reliable, suggesting that site-specific testing would be needed to determine reliable Cu criteria for such settings. The hardness-based criteria performed poorly with all toxicity datasets, showing no or weak ability to predict observed toxicity. In natural waters, MLR and BLM criteria versions were strongly correlated. In contrast, the hardness-criteria version was often out of phase with the MLR and, depending on waterbody and season, could be either strongly overprotective or underprotective. The MLR-based USEPA-style chronic criterion appears to be more generally protective of ecosystems than other models. Environ Toxicol Chem 2023;42:2529-2563. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
2
|
Páez-Osuna F, Valencia-Castañeda G, Rodríguez Valenzuela O, Frías-Espericueta MG. Microplastics and heavy metals in shrimp Litopenaeus vannamei from the SAMARE lagoon, Gulf of California: Is it a case of combined MPs-Zn pollution in gills? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122479. [PMID: 37652226 DOI: 10.1016/j.envpol.2023.122479] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023]
Abstract
Microplastic (MPs) pollution studies in the coastal environment are increasing, as observed in the growing number of documents published yearly. However, studies regarding the combined effect of MPs and heavy metal (HMs) pollution are scarce, particularly in marine biota. Microplastics and HMs were investigated in the exoskeleton (EX), gills (GI), gastrointestinal tract (GT), and muscle (MU) of the shrimp Litopenaeus vannamei from the Santa María-La Reforma (SAMARE) lagoon, Mexico. Results showed that shrimp ingest mainly MPs of the fiber type (74.7%) and fragments (22.7%). The most frequent MP colors in the four tissues were transparent (61.4%-72.2%) and blue (3.2-36.4%) fibers. Microplastic abundance in the four tissues was 5.5 ± 0.5 MPs per individual. The predominant polymers found in most tissues were cotton and synthetic polyethylene-terephthalate (PET). Heavy metals exhibited wide variability depending on the tissue and metal; the highest Cu concentration in the GI was 138 ± 16 μg/g, while the highest Cd value was 0.40 ± 0.11 μg/g, Ni was 17.0 ± 8.3 μg/g, and Zn was 120 ± 18 μg/g in the GT. The relationship between MPs and HMs was significant and positive (p < 0.05) between MPs and Zn in the GI. This reveals a possible MPs-Zn interaction due to cotton and PET reactivity or is related to polymer manufacture. This study implies that an essential part of the world fisheries is a potential route for MPs and HMs. The problem is exacerbated due to the consumption of whole shrimp tissues consumed by humans. Considering Mexican shrimp consumption, and MPs in this study, the estimated intake was 594 MPs/capita/year. Future research requires MP monitoring in coastal lagoons that support wildlife and important fisheries and assess their effects combined with HMs.
Collapse
Affiliation(s)
- Federico Páez-Osuna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Mexico; Miembro de El Colegio de Sinaloa, Sinaloa, Mexico.
| | - Gladys Valencia-Castañeda
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Mexico
| | - Osvaldo Rodríguez Valenzuela
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, Mazatlán, 82000, Sinaloa, Mexico
| | - Martín G Frías-Espericueta
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, Mazatlán, 82000, Sinaloa, Mexico
| |
Collapse
|
3
|
Rondeau EB, Christensen KA, Johnson HA, Sakhrani D, Biagi CA, Wetklo M, Despins CA, Leggatt RA, Minkley DR, Withler RE, Beacham TD, Koop BF, Devlin RH. Insights from a chum salmon (Oncorhynchus keta) genome assembly regarding whole-genome duplication and nucleotide variation influencing gene function. G3 (BETHESDA, MD.) 2023; 13:jkad127. [PMID: 37293843 PMCID: PMC10411575 DOI: 10.1093/g3journal/jkad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
Chum salmon are ecologically important to Pacific Ocean ecosystems and commercially important to fisheries. To improve the genetic resources available for this species, we sequenced and assembled the genome of a male chum salmon using Oxford Nanopore read technology and the Flye genome assembly software (contig N50: ∼2 Mbp, complete BUSCOs: ∼98.1%). We also resequenced the genomes of 59 chum salmon from hatchery sources to better characterize the genome assembly and the diversity of nucleotide variants impacting phenotype variation. With genomic sequences from a doubled haploid individual, we were able to identify regions of the genome assembly that have been collapsed due to high sequence similarity between homeologous (duplicated) chromosomes. The homeologous chromosomes are relics of an ancient salmonid-specific genome duplication. These regions were enriched with genes whose functions are related to the immune system and responses to toxins. From analyzing nucleotide variant annotations of the resequenced genomes, we were also able to identify genes that have increased levels of variants thought to moderately impact gene function. Genes related to the immune system and the detection of chemical stimuli (olfaction) had increased levels of these variants based on a gene ontology enrichment analysis. The tandem organization of many of the enriched genes raises the question of why they have this organization.
Collapse
Affiliation(s)
- Eric B Rondeau
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Kris A Christensen
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Hollie A Johnson
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Dionne Sakhrani
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| | - Carlo A Biagi
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| | - Mike Wetklo
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Cody A Despins
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Rosalind A Leggatt
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| | - David R Minkley
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Ruth E Withler
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Terry D Beacham
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Ben F Koop
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| |
Collapse
|
4
|
Sigmund G, Ågerstrand M, Antonelli A, Backhaus T, Brodin T, Diamond ML, Erdelen WR, Evers DC, Hofmann T, Hueffer T, Lai A, Torres JPM, Mueller L, Perrigo AL, Rillig MC, Schaeffer A, Scheringer M, Schirmer K, Tlili A, Soehl A, Triebskorn R, Vlahos P, Vom Berg C, Wang Z, Groh KJ. Addressing chemical pollution in biodiversity research. GLOBAL CHANGE BIOLOGY 2023; 29:3240-3255. [PMID: 36943240 DOI: 10.1111/gcb.16689] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/12/2023] [Indexed: 05/16/2023]
Abstract
Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these "triple crises" are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology, and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection.
Collapse
Affiliation(s)
- Gabriel Sigmund
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
| | - Marlene Ågerstrand
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
- Department of Biology, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
- Gothenburg Global Biodiversity Centre, 40530, Gothenburg, Sweden
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 90187, Umeå, Sweden
| | - Miriam L Diamond
- Department of Earth Sciences and School of the Environment, University of Toronto, Toronto, Ontario, M5S 3B1, Canada
| | | | - David C Evers
- Biodiversity Research Institute, Portland, Maine, 04103, USA
| | - Thilo Hofmann
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
| | - Thorsten Hueffer
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
| | - Adelene Lai
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 avenue du Swing, 4367, Belvaux, Luxembourg
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Lessing Strasse 8, 07743, Jena, Germany
| | - Joao P M Torres
- Laboratório de Micropoluentes Jan Japenga, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonie Mueller
- Institute for Environmental Research, RWTH Aachen University, 52074, Aachen, Germany
| | - Allison L Perrigo
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, 40530, Gothenburg, Sweden
- Lund University Botanical Garden, Lund, Sweden
| | - Matthias C Rillig
- Freie Universität Berlin, Institut für Biologie, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, 52074, Aachen, Germany
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, 210023, Nanjing, China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, 400045, Chongqing, China
| | - Martin Scheringer
- RECETOX, Masaryk University, 62500, Brno, Czech Republic
- ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092, Zürich, Switzerland
| | - Kristin Schirmer
- ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092, Zürich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, EPF Lausanne, 1015, Lausanne, Switzerland
| | - Ahmed Tlili
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Anna Soehl
- International Panel on Chemical Pollution, 8092, Zürich, Switzerland
| | - Rita Triebskorn
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076, Tübingen, Germany
- Transfer Center Ecotoxicology and Ecophysiology, Blumenstr. 13, D-72108, Rottenburg, Germany
| | - Penny Vlahos
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Colette Vom Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Zhanyun Wang
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, CH-9014, St. Gallen, Switzerland
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| |
Collapse
|
5
|
Amer NR, Lawler SP, Zohdy NM, Younes A, ElSayed WM, Wos G, Abdelrazek S, Omer H, Connon RE. Copper Exposure Affects Anti-Predatory Behaviour and Acetylcholinesterase Levels in Culex pipiens (Diptera, Culicidae). INSECTS 2022; 13:1151. [PMID: 36555061 PMCID: PMC9782022 DOI: 10.3390/insects13121151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Copper is an essential metal that occurs chronically in the environment and affects the development and physiology of aquatic insects. In excess amounts, it can impair their nervous system and behaviour. We tested the anti-predatory behaviour of Cx. pipiens larvae after seven days exposure with several concentrations of copper up to 500 mg L-1. We measured responses to non- consumptive (predation cues) and consumptive predation (dragonfly larvae) across two generations. We also tested the accumulated effect of copper on AChE enzyme activity. We exposed half of treated and control larvae to predation cues (water with predator odour and crushed conspecifics) and the other half to water without predation cues. We evaluated total distance moved and velocity. Copper reduced the distance moved and velocity, with stronger effects in the second generation. Copper had no significant effect on larvae eaten by dragonflies. Copper inhibited the AChE enzyme across both generations at 500 µg L-1. Copper can affect the nervous system directly by inhibiting AChE activity, and possibly also by impairing the olfaction sensors of the larvae, resulting in larval inability to detect predation cues.
Collapse
Affiliation(s)
- Nermeen R. Amer
- Entomology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Krakow, Poland
| | - Sharon P. Lawler
- Entomology and Nematology Department, University of California Davis, Davis, CA 95616, USA
| | - Nawal M. Zohdy
- Entomology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Aly Younes
- Entomology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Wael M. ElSayed
- Entomology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Guillaume Wos
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Krakow, Poland
| | - Samah Abdelrazek
- Department of Anatomy, Physiology & Cell Biology, University of California Davis, Davis, CA 95616, USA
| | - Hind Omer
- Entomology and Nematology Department, University of California Davis, Davis, CA 95616, USA
| | - Richard E. Connon
- Department of Anatomy, Physiology & Cell Biology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
Brix KV, De Boeck G, Baken S, Fort DJ. Adverse Outcome Pathways for Chronic Copper Toxicity to Fish and Amphibians. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2911-2927. [PMID: 36148934 PMCID: PMC9828004 DOI: 10.1002/etc.5483] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 09/15/2022] [Indexed: 05/28/2023]
Abstract
In the present review, we synthesize information on the mechanisms of chronic copper (Cu) toxicity using an adverse outcome pathway framework and identify three primary pathways for chronic Cu toxicity: disruption of sodium homeostasis, effects on bioenergetics, and oxidative stress. Unlike acute Cu toxicity, disruption of sodium homeostasis is not a driving mechanism of chronic toxicity, but compensatory responses in this pathway contribute to effects on organism bioenergetics. Effects on bioenergetics clearly contribute to chronic Cu toxicity with impacts at multiple lower levels of biological organization. However, quantitatively translating these impacts into effects on apical endpoints such as growth, amphibian metamorphosis, and reproduction remains elusive and requires further study. Copper-induced oxidative stress occurs in most tissues of aquatic vertebrates and is clearly a significant driver of chronic Cu toxicity. Although antioxidant responses and capacities differ among tissues, there is no clear indication that specific tissues are more sensitive than others to oxidative stress. Oxidative stress leads to increased apoptosis and cellular damage in multiple tissues, including some that contribute to bioenergetic effects. This also includes oxidative damage to tissues involved in neuroendocrine axes and this damage likely alters the normal function of these tissues. Importantly, Cu-induced changes in hormone concentrations and gene expression in endocrine-mediated pathways such as reproductive steroidogenesis and amphibian metamorphosis are likely the result of oxidative stress-induced tissue damage and not endocrine disruption. Overall, we conclude that oxidative stress is likely the primary driver of chronic Cu toxicity in aquatic vertebrates, with bioenergetic effects and compensatory response to disruption of sodium homeostasis contributing to some degree to observed effects on apical endpoints. Environ Toxicol Chem 2022;41:2911-2927. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kevin V. Brix
- EcoToxMiamiFloridaUSA
- Rosenstiel School of Marine, Atmospheric, and Earth Sciences, Department of Marine Biology and EcologyUniversity of MiamiMiamiFloridaUSA
| | | | | | | |
Collapse
|
7
|
Sergeant CJ, Sexton EK, Moore JW, Westwood AR, Nagorski SA, Ebersole JL, Chambers DM, O'Neal SL, Malison RL, Hauer FR, Whited DC, Weitz J, Caldwell J, Capito M, Connor M, Frissell CA, Knox G, Lowery ED, Macnair R, Marlatt V, McIntyre JK, McPhee MV, Skuce N. Risks of mining to salmonid-bearing watersheds. SCIENCE ADVANCES 2022; 8:eabn0929. [PMID: 35776798 PMCID: PMC10883362 DOI: 10.1126/sciadv.abn0929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mining provides resources for people but can pose risks to ecosystems that support cultural keystone species. Our synthesis reviews relevant aspects of mining operations, describes the ecology of salmonid-bearing watersheds in northwestern North America, and compiles the impacts of metal and coal extraction on salmonids and their habitat. We conservatively estimate that this region encompasses nearly 4000 past producing mines, with present-day operations ranging from small placer sites to massive open-pit projects that annually mine more than 118 million metric tons of earth. Despite impact assessments that are intended to evaluate risk and inform mitigation, mines continue to harm salmonid-bearing watersheds via pathways such as toxic contaminants, stream channel burial, and flow regime alteration. To better maintain watershed processes that benefit salmonids, we highlight key windows during the mining governance life cycle for science to guide policy by more accurately accounting for stressor complexity, cumulative effects, and future environmental change.
Collapse
Affiliation(s)
- Christopher J Sergeant
- Flathead Lake Biological Station, University of Montana, Polson, MT 59860, USA
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, AK 99801, USA
| | - Erin K Sexton
- Flathead Lake Biological Station, University of Montana, Polson, MT 59860, USA
| | - Jonathan W Moore
- Earth2Ocean Research Group, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Alana R Westwood
- School for Resource and Environmental Studies, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Sonia A Nagorski
- Environmental Science Program, University of Alaska Southeast, Juneau, AK 99801, USA
| | | | - David M Chambers
- Center for Science in Public Participation, Bozeman, MT 59715, USA
| | - Sarah L O'Neal
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
| | - Rachel L Malison
- Flathead Lake Biological Station, University of Montana, Polson, MT 59860, USA
| | - F Richard Hauer
- Flathead Lake Biological Station, University of Montana, Polson, MT 59860, USA
| | - Diane C Whited
- Flathead Lake Biological Station, University of Montana, Polson, MT 59860, USA
| | - Jill Weitz
- Salmon Beyond Borders, Juneau, AK 99801, USA
| | - Jackie Caldwell
- Lands, Resources, and Fisheries, Taku River Tlingit First Nation, Atlin, BC V0W 1A0, Canada
| | | | - Mark Connor
- Lands, Resources, and Fisheries, Taku River Tlingit First Nation, Atlin, BC V0W 1A0, Canada
| | - Christopher A Frissell
- Flathead Lake Biological Station, University of Montana, Polson, MT 59860, USA
- Department of Hydrology, Salish Kootenai College, Pablo, MT 59855, USA
| | - Greg Knox
- SkeenaWild Conservation Trust, Terrace, BC V8G 1M9, Canada
| | - Erin D Lowery
- Environment, Land, and Licensing Business Unit, Seattle City Light, Seattle, WA 98104, USA
| | | | - Vicki Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jenifer K McIntyre
- School of the Environment, Puyallup Research and Extension Center, Washington State University, Puyallup, WA 98371, USA
| | - Megan V McPhee
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, AK 99801, USA
| | - Nikki Skuce
- Northern Confluence Initiative, Smithers, BC V0J 2N0, Canada
| |
Collapse
|
8
|
de Almeida Rodrigues P, Ferrari RG, Kato LS, Hauser-Davis RA, Conte-Junior CA. A Systematic Review on Metal Dynamics and Marine Toxicity Risk Assessment Using Crustaceans as Bioindicators. Biol Trace Elem Res 2022; 200:881-903. [PMID: 33788164 DOI: 10.1007/s12011-021-02685-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Metals, many of which are potentially toxic, are present in the aquatic environment originated from both natural and anthropogenic sources. In these ecosystems, these elements are mostly deposited in the sediment, followed by water dissolution, potentially contaminating resident biota. Among several aquatic animals, crustaceans are considered excellent bioindicators, as they live in close contact with contaminated sediment. The accumulation of metal, whether they are classified as essential, when in excessive quantities or nonessential, not only cause damage to the health of these animals, but also to the man who consumes seafood. Among the main toxic elements to animal and human health are aluminum, arsenic, cadmium, chromium, copper, lead, mercury, nickel and silver. In this context, this systematic review aimed to investigate the dynamics of these metals in water, the main bioaccumulative tissues in crustaceans, the effects of these contaminants on animal and human health, and the regulatory limits for these metals worldwide. A total of 91 articles were selected for this review, and an additional 68 articles not found in the three assessed databases were considered essential and included, totaling 159 articles published between 2010 and 2020. Our results indicate that both chemical speciation and abiotic factors such as pH, oxygen and salinity in aquatic environments affect element bioavailability, dynamics, and toxicity. Among crustaceans, crabs are considered the main bioindicator biological system, with the hepatopancreas appearing as the main bioaccumulator organ. Studies indicate that exposure to these elements may result in nervous, respiratory, and reproductive system effects in both animals and humans. Finally, many studies indicate that the concentrations of these elements in crustaceans intended for human consumption exceed limits established by international organizations, both with regard to seafood metal contents and well as daily, weekly, or monthly intake limits set for humans, indicating consumer health risks.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, 24230-340, Brazil
| | - Rafaela Gomes Ferrari
- Chemistry Institute, Department of Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
- Agrarian Sciences Center, Department of Zootechnics, Federal University of Paraiba, Paraiba, Brazil.
| | - Lilian Seiko Kato
- Chemistry Institute, Department of Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-360, Brazil
| | - Carlos Adam Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, 24230-340, Brazil
- Chemistry Institute, Department of Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
| |
Collapse
|
9
|
Lazzari M, Bettini S, Milani L, Maurizii MG, Franceschini V. Response of Olfactory Sensory Neurons to Mercury Ions in Zebrafish: An Immunohistochemical Study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:227-242. [PMID: 35177137 DOI: 10.1017/s1431927621013763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Olfactory sensory neurons (OSNs) of fish belong to three main types: ciliated olfactory sensory neurons (cOSNs), microvillous olfactory sensory neurons (mOSNs), and crypt cells. Mercury is a toxic metal harmful for olfaction. We exposed the olfactory epithelium of zebrafish to three sublethal Hg2+ concentrations. Molecular markers specific for the different types of OSNs were immunohistochemically detected. Image analysis of treated sections enabled counting of marked cells and measurement of staining optical density indicative of the response of OSNs to Hg2+ exposure. The three types of OSNs reacted to mercury in a different way. Image analysis revealed that mOSNs are more susceptible to Hg2+ exposure than cOSNs and crypt cell density decreases. Moreover, while the ratio between sensory/nonsensory epithelium areas is unchanged, epithelium thickness drops, and dividing cells increase in the basal layer of the olfactory epithelium. Cell death but also reduction of apical processes and marker expression could account for changes in OSN immunostaining. Also, the differential results between dorsal and ventral halves of the olfactory rosette could derive from different water flows inside the olfactory chamber or different subpopulations in OSNs.
Collapse
Affiliation(s)
- Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Maria G Maurizii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| |
Collapse
|
10
|
Janssen SD, Viaene KPJ, Van Sprang P, De Schamphelaere KAC. Integrating Bioavailability of Metals in Fish Population Models. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2764-2780. [PMID: 34255898 DOI: 10.1002/etc.5155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Population models are increasingly being used to extrapolate individual-level effects of chemicals, including metals, to population-level effects. For metals, it is also important to take into account their bioavailability to correctly predict metal toxicity in natural waters. However, to our knowledge, no models exist that integrate metal bioavailability into population modeling. Therefore, our main aims were to 1) incorporate the bioavailability of copper (Cu) and zinc (Zn) into an individual-based model (IBM) of rainbow trout (Oncorhynchus mykiss), and 2) predict how survival-time concentration data translate to population-level effects. For each test water, reduced versions of the general unified threshold model of survival (GUTS-RED) were calibrated using the complete survival-time concentration data. The GUTS-RED individual tolerance (IT) showed the best fit in the different test waters. Little variation between the different test waters was found for 2 GUTS-RED-IT parameters. The GUTS-RED-IT parameter "median of distribution of thresholds" (mw ) showed a strong positive relation with the Ca2+ , Mg2+ , Na+ , and H+ ion activities. Therefore, mw formed the base of the calibrated GUTS bioavailability model (GUTS-BLM), which predicted 30-d x% lethal concentration (LCx) values within a 2-fold error. The GUTS-BLM was combined with an IBM, inSTREAM-Gen, into a GUTS-BLM-IBM. Assuming that juvenile survival was the only effect of Cu and Zn exposure, population-level effect concentrations were predicted to be 1.3 to 6.2 times higher than 30-d laboratory LCx values, with the larger differences being associated with higher interindividual variation of metal sensitivity. The proposed GUTS-BLM-IBM model can provide insight into metal bioavailability and effects at the population level and could be further improved by incorporating sublethal effects of Cu and Zn. Environ Toxicol Chem 2021;40:2764-2780. © 2021 SETAC.
Collapse
Affiliation(s)
- Sharon D Janssen
- Environmental Toxicology Unit, Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Karel P J Viaene
- ARCHE (Assessing Risks of Chemicals) Consulting, Ghent (Wondelgem), Belgium
| | - Patrick Van Sprang
- ARCHE (Assessing Risks of Chemicals) Consulting, Ghent (Wondelgem), Belgium
| | - Karel A C De Schamphelaere
- Environmental Toxicology Unit, Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Adamson SXF, Zheng W, Agim ZS, Du S, Fleming S, Shannahan J, Cannon J. Systemic Copper Disorders Influence the Olfactory Function in Adult Rats: Roles of Altered Adult Neurogenesis and Neurochemical Imbalance. Biomolecules 2021; 11:1315. [PMID: 34572528 PMCID: PMC8471899 DOI: 10.3390/biom11091315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Disrupted systemic copper (Cu) homeostasis underlies neurodegenerative diseases with early symptoms including olfactory dysfunction. This study investigated the impact of Cu dyshomeostasis on olfactory function, adult neurogenesis, and neurochemical balance. Models of Cu deficiency (CuD) and Cu overload (CuO) were established by feeding adult rats with Cu-restricted diets plus ip. injection of a Cu chelator (ammonium tetrathiomolybdate) and excess Cu, respectively. CuD reduced Cu levels in the olfactory bulb (OB), subventricular zone (SVZ), rostral migratory stream (RMS), and striatum, while CuO increased Cu levels in these areas. The buried pellet test revealed both CuD and CuO prolonged the latency to uncover food. CuD increased neural proliferation and stem cells in the SVZ and newly differentiated neurons in the OB, whereas CuO caused opposite alterations, suggesting a "switch"-type function of Cu in regulating adult neurogenesis. CuO increased GABA in the OB, while both CuD and CuO reduced DOPAC, HVA, 5-HT and the DA turnover rate in olfactory-associated brain regions. Altered mRNA expression of Cu transport and storage proteins in tested brain areas were observed under both conditions. Together, results support an association between systemic Cu dyshomeostasis and olfactory dysfunction. Specifically, altered adult neurogenesis along the SVZ-RMS-OB pathway and neurochemical imbalance could be the factors that may contribute to olfactory dysfunction.
Collapse
Affiliation(s)
- Sherleen Xue-Fu Adamson
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zeynep Sena Agim
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Sarah Du
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Sheila Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Jason Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
The Urban River Syndrome: Achieving Sustainability Against a Backdrop of Accelerating Change. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126406. [PMID: 34199215 PMCID: PMC8296234 DOI: 10.3390/ijerph18126406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023]
Abstract
Human activities have been affecting rivers and other natural systems for millennia. Anthropogenic changes to rivers over the last few centuries led to the accelerating state of decline of coastal and estuarine regions globally. Urban rivers are parts of larger catchment ecosystems, which in turn form parts of wider nested, interconnected systems. Accurate modelling of urban rivers may not be possible because of the complex multisystem interactions operating concurrently and over different spatial and temporal scales. This paper overviews urban river syndrome, the accelerating deterioration of urban river ecology, and outlines growing conservation challenges of river restoration projects. This paper also reviews the river Thames, which is a typical urban river that suffers from growing anthropogenic effects and thus represents all urban rivers of similar type. A particular emphasis is made on ecosystem adaptation, widespread extinctions and the proliferation of non-native species in the urban Thames. This research emphasizes the need for a holistic systems approach to urban river restoration.
Collapse
|
13
|
Estrela FN, Batista Guimarães AT, Silva FG, Marinho da Luz T, Silva AM, Pereira PS, Malafaia G. Effects of polystyrene nanoplastics on Ctenopharyngodon idella (grass carp) after individual and combined exposure with zinc oxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123879. [PMID: 33264950 DOI: 10.1016/j.jhazmat.2020.123879] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
The toxicity of polystyrene nanoparticles (PS NPs) and ZnO nanoparticles (ZnO NPs), in combination is poorly known. Thus, the aim of the current study was to evaluate the effects of PS NPs (760 μg/L) on Ctenopharyngodon idella exposed to it, both in separate and in combination with ZnO NPs (760 μg/L), based on behavioral, biochemical and genotoxic biomarkers. Current data have indicated that PS NPs, for a short exposure period (3 days), both in separate and in combination with nanoparticles, have affected animals' response to the mirror test. On the other hand, all treatments have equally induced C. idella inactivity towards alarm substances and DNA damage. There was increased oxidative stress, mainly in groups exposed to PS NPs (in combination, or not, with nanoparticles); although increased, the evaluated antioxidant levels did not appear to be enough to inhibit the effects of treatment-induced production of free radicals. Together, these results are likely co-responsible for the observed changes. The current study did not observe antagonistic, synergistic or additive effect on animals exposed to the combination between PS NPs and ZnO NPs; however, this outcome should not discourage the performance of similar studies focused on assessing the (eco)toxicity of pollutant mixtures comprising nanomaterials.
Collapse
Affiliation(s)
- Fernanda Neves Estrela
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | - Abraão Tiago Batista Guimarães
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | - Fabiano Guimarães Silva
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | - Thiarlen Marinho da Luz
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Urutaí, Brazil
| | - Abner Marcelino Silva
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Urutaí, Brazil
| | - Paulo Sergio Pereira
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | - Guilherme Malafaia
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil; Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Urutaí, Brazil; Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano - Campus Urutaí, Urutaí, Brazil.
| |
Collapse
|
14
|
Evaluating Coexistence of Fish Species with Coastal Cutthroat Trout in Low Order Streams of Western Oregon and Washington, USA. FISHES 2021. [DOI: 10.3390/fishes6010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When multiple species of fish coexist there are a host of potential ways through which they may interact, yet there is often a strong focus on studies of single species without considering these interactions. For example, many studies of forestry–stream interactions in the Pacific Northwest have focused solely on the most prevalent species: Coastal cutthroat trout. To examine the potential for interactions of other fishes with coastal cutthroat trout, we conducted an analysis of 281 sites in low order streams located on Washington’s Olympic Peninsula and along the central Oregon coast. Coastal cutthroat trout and juvenile coho salmon were the most commonly found salmonid species within these streams and exhibited positive associations with each other for both presence and density. Steelhead were negatively associated with the presence of coastal cutthroat trout as well as with coho salmon and sculpins (Cottidae). Coastal cutthroat trout most frequently shared streams with juvenile coho salmon. For densities of these co-occurring species, associations between these two species were relatively weak compared to the strong influences of physical stream conditions (size and gradient), suggesting that physical conditions may have more of an influence on density than species interactions. Collectively, our analysis, along with a review of findings from prior field and laboratory studies, suggests that the net effect of interactions between coastal cutthroat trout and coho salmon do not appear to inhibit their presence or densities in small streams along the Pacific Northwest.
Collapse
|
15
|
Pham HT, Dinh KV, Nguyen CC, Quoc LB. Changes in the Magnitude of the Individual and Combined Effects of Contaminants, Warming, and Predators on Tropical Cladocerans across 11 Generations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15287-15295. [PMID: 33200939 DOI: 10.1021/acs.est.0c05366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A massive challenge in ecotoxicology is assessing how the interaction of contaminants, climate change, and biotic stressors shapes the structure and functions of natural populations. Furthermore, it is not known whether contemporary evolutionary responses to multiple stressors across multigenerations may alter the interaction of these stressors. To address these issues, we exposed Moina dubia to lead (Pb, 50 μg/L) under two temperatures (25 and 28 °C) with/without predator cues from climbing perch (Anabas testudineus) for 11 generations (F1-F11). We assessed changes in M. dubia fitness, including development time, adult size, lifespan, fecundity, and neonate production. We found strong negative effects of Pb, elevated temperature, and predator cues on the fitness of M. dubia. Strikingly, Pb-induced reduction in the performance of M. dubia was stronger at 25 °C and in the absence of predator cues. The individual and interactive effects of Pb, temperature, and predator cues on M. dubia were stronger across F1-F9 and generally leveled off in F10-F11. Our results highlight the high vulnerability of M. dubia to multiple stressors, thus weakening top-down control on algal blooms in eutrophic lakes. Our study underscores the importance of integrating evolutionary responses in realistic ecotoxicological risk assessments of contaminants interacting with climatic and biotic stressors.
Collapse
Affiliation(s)
- Hong T Pham
- Department of Environmental Engineering, Thuyloi University, 175 Tay Son, Dong Da, Hanoi 116705, Vietnam
| | - Khuong V Dinh
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang 650000, Vietnam
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Cuong C Nguyen
- Department of Environmental Engineering, Thuyloi University, 175 Tay Son, Dong Da, Hanoi 116705, Vietnam
| | - Lap B Quoc
- Department of Environmental Engineering, Thuyloi University, 175 Tay Son, Dong Da, Hanoi 116705, Vietnam
| |
Collapse
|
16
|
Harding LB, Tagal M, Ylitalo GM, Incardona JP, Davis JW, Scholz NL, McIntyre JK. Urban stormwater and crude oil injury pathways converge on the developing heart of a shore-spawning marine forage fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105654. [PMID: 33161306 DOI: 10.1016/j.aquatox.2020.105654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Understanding how aquatic organisms respond to complex chemical mixtures remains one of the foremost challenges in modern ecotoxicology. Although oil spills are typically high-profile disasters that release hundreds or thousands of chemicals into the environment, there is growing evidence for a common adverse outcome pathway (AOP) for the vulnerable embryos and larvae of fish species that spawn in oiled habitats. Molecular initiating events involve the disruption of excitation-contraction coupling in individual cardiomyocytes, which then dysregulate the form and function of the embryonic heart. Phenanthrenes and other three-ring (tricyclic) polycyclic aromatic hydrocarbons (PAHs) are key drivers for this developmental cardiotoxicity and are also relatively enriched in land-based urban runoff. Similar to oil spills, stormwater discharged from roadways and other high-traffic impervious surfaces contains myriad contaminants, many of which are uncharacterized in terms of their chemical identity and toxicity to aquatic organisms. Nevertheless, given the exceptional sensitivity of the developing heart to tricyclic PAHs and the ubiquitous presence of these compounds in road runoff, cardiotoxicity may also be a dominant aspect of the stormwater-induced injury phenotype in fish early life stages. Here we assessed the effects of traffic-related runoff on the embryos and early larvae of Pacific herring (Clupea pallasii), a marine forage fish that spawns along the coastline of western North America. We used the well-characterized central features of the oil toxicity AOP for herring embryos as benchmarks for a detailed analysis of embryolarval cardiotoxicity across a dilution gradient ranging from 12 to 50% stormwater diluted in clean seawater. These injury indicators included measures of circulatory function, ventricular area, heart chamber looping, and the contractility of both the atrium and the ventricle. We also determined tissue concentrations of phenanthrenes and other PAHs in herring embryos. We find that tricyclic PAHs are readily bioavailable during cardiogenesis, and that stormwater-induced toxicity is in many respects indistinguishable from canonical crude oil toxicity. Given the chemical complexity of urban runoff, non-tricyclic PAH-mediated mechanisms of developmental toxicity in fish remain likely. However, from the standpoint of managing wild herring populations, our results suggest that stormwater-driven threats to individual survival (both near-term and delayed mortality) can be understood from decades of past research on crude oil toxicity. Moreover, Pacific herring embryos are promising sentinels for water quality monitoring in nearshore marine habitats, as in situand sensitive indicators of both toxic runoff and the effectiveness of pollution reduction efforts such as green stormwater infrastructure.
Collapse
Affiliation(s)
- Louisa B Harding
- Washington State University, School of the Environment, Puyallup Research and Extension Center, 2606 W. Pioneer Ave., Puyallup, WA, 98371, USA.
| | - Mark Tagal
- Lynker Technologies, Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA, 98112, USA
| | - Gina M Ylitalo
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - John P Incardona
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Jay W Davis
- U.S. Fish and Wildlife Service, Washington Fish and Wildlife Office, 510 Desmond Dr. S.E., Lacey, WA 98503, USA
| | - Nathaniel L Scholz
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Jenifer K McIntyre
- Washington State University, School of the Environment, Puyallup Research and Extension Center, 2606 W. Pioneer Ave., Puyallup, WA, 98371, USA.
| |
Collapse
|
17
|
Volz SN, Hausen J, Nachev M, Ottermanns R, Schiwy S, Hollert H. Short exposure to cadmium disrupts the olfactory system of zebrafish (Danio rerio) - Relating altered gene expression in the olfactory organ to behavioral deficits. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105555. [PMID: 32645607 DOI: 10.1016/j.aquatox.2020.105555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Fish strongly rely on olfaction as a variety of essential behaviors such as foraging and predator avoidance are mediated by the olfactory system. Cadmium (Cd) is known to impair olfaction and accumulate in the olfactory epithelium (OE) and bulb (OB) of fishes. In the present study, the acute toxicity of Cd on olfaction in zebrafish (Danio rerio) was characterized on the molecular and behavioral level. To this end, quantitative real-time PCR was performed in order to analyze the expression of selected genes in both the OE and OB. Moreover, the response of zebrafish to an alarm cue was investigated. Following 24 h of exposure to Cd, the expression of genes associated with olfactory sensory neurons was reduced in the OE. Furthermore, the antioxidant genes peroxiredoxin 1 (prdx1) and heme oxygenase 1 (hmox1), as well as the metallothionein 2 gene (mt2) were upregulated in the OE, whereas hmox1 and the stress-inducible heat shock protein 70 gene (hsp70) were upregulated in the OB upon exposure to Cd. Following stimulation with a conspecific skin extract, zebrafish displayed a considerable disruption of the antipredator behavior with increasing Cd concentration. Taken together, Cd impaired olfaction in zebrafish, thereby disrupting the antipredator response, which is crucial for the survival of individuals. Cellular stress followed by disruption of olfactory sensory neurons may have contributed to the observed behavioral deficits.
Collapse
Affiliation(s)
- Sina N Volz
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Jonas Hausen
- Core Unit for Bioinformatics Data Analysis, University of Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Milen Nachev
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany.
| | - Richard Ottermanns
- Chair of Environmental Biology and Chemodynamics, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Sabrina Schiwy
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
18
|
Gosavi SM, Tapkir SD, Kumkar P, Verma CR, Kharat SS. Act now before its too late: Copper exposure drives chemo-ecology of predator-prey dynamics of freshwater common spiny loach, Lepidocephalichthys thermalis (Valenciennes, 1846). ENVIRONMENTAL RESEARCH 2020; 186:109509. [PMID: 32311527 DOI: 10.1016/j.envres.2020.109509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Due to the extensive use of copper (Cu) in various commercial products, its existence in aquatic bodies (freshwater and marine) is not unusual. Cu is well known for its effect on the olfactory physiology of fish. However, there are limited studies on the effect of Cu on important ecological functions in fish (predator-prey dynamics) that are primarily influenced by olfaction. In a series of experiments, we studied the effect of Cu exposure on the chemoreceptive behavior of the prey fish, Lepidocephalichthys thermalis. Prey fishes were exposed to an environmentally relevant concentration (5 μg/L) of Cu for 3 h and the anti-predator responses against native (Channa gachua) and alien predatory fish (tilapia) were quantified using an ethological assay. Cu exposed prey fishes did not recognize the native predator and had a lower survival rate than control (unexposed) fishes in predation trials. Cu exposed prey fishes have failed to learn associatively to detect a non-native predator resulting in higher mortality in prey population in direct encounters with tilapia. However, such a lack of predator recognition was found to be short-term and the treated prey fishes recovered anti-predator responses within 72 h. In addition, Cu inactivated the alarm cue which acts as a signal for the presence of predators and ensures associative learning and therefore it was considered to be an 'info-disruptor' in the present study. These outcomes together demonstrate that even at low concentration, Cu influences ecological decisions and survival against predators. Owing to the ubiquitous occurrence of Cu in water bodies, the present investigation will contribute to the knowledge of how environmental stressors alter the crucial ecological decisions of prey individuals in aquatic ecosystems. In addition, we suggest that freshwater reservoirs containing high levels of Cu could be unsuitable for the long-term survival of prey fishes and freshwater biodiversity.
Collapse
Affiliation(s)
- Sachin M Gosavi
- Department of Zoology, Maharashtra College of Arts, Science and Commerce, 246-A, J.B.B. Road, Mumbai, Maharashtra, 400 008, India.
| | - Sandip D Tapkir
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411 007, India; Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budêjovice, Czech Republic
| | - Pradeep Kumkar
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Science Prague, Czech Republic; Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, Maharashtra, 411 016, India
| | - Chandani R Verma
- Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, Maharashtra, 411 016, India
| | - Sanjay S Kharat
- Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, Maharashtra, 411 016, India
| |
Collapse
|
19
|
Puglis HJ, Farag AM, Mebane CA. Copper Concentrations in the Upper Columbia River as a Limiting Factor in White Sturgeon Recruitment and Recovery. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:378-391. [PMID: 31912635 DOI: 10.1002/ieam.4240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/08/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Currently there is little natural recruitment of white sturgeon (Acipenser transmontanus) in the Upper Columbia River located in British Columbia, Canada and Washington, USA. This review of life history, physiology, and behavior of white sturgeon, along with data from recent toxicological studies, suggest that trace metals, especially Cu, affect survival and behavior of early life stage fish. Sturgeon free embryos, first feeding embryos, and mixed feeding embryos utilize interstitial spaces between gravel. Although concentrations of Cu in the water column of the Upper Columbia River are typically less than US water quality criteria defined to protect aquatic life, samples at the sediment-water interface were as large as 24 µg/L and exceed the criteria. Toxicological studies reviewed here demonstrate mortality, loss of equilibrium, and immobility at Cu concentrations of 1.5 to <16 µg/L and reduced swimming activity was documented at 0.88 to 7 μg/L. Contaminated invertebrates and slag particles provide other routes of exposure. These additional routes of exposure can cause indirect effects from starvation due to potential lack of prey items and ingestion of contaminated prey or slag particles. The lack of food in stomachs during these critical early life stages may coincide with a threshold "point of no return" at which sturgeon will be unable to survive even if food becomes available following that early time frame. These findings become especially important as work progresses to enhance white sturgeon recruitment in the Upper Columbia River. To date, decisions against including trace metals as a factor in sturgeon recovery have focused on surface-water concentrations and measurements of lethality (LC50) to establish threshold concentrations for sturgeon sensitivity. However, information provided here suggests that measurements from the sediment-water interface and effect concentrations (EC50) be considered with white sturgeon life history characteristics. These data support minimizing Cu exposure risk to enhance a successful white sturgeon recovery effort. Integr Environ Assess Manag 2020;16:378-391. Published 2020. This article is a US Government work and is in the public domain inthe USA.
Collapse
Affiliation(s)
- Holly J Puglis
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| | - Aïda M Farag
- US Geological Survey, CERC, Jackson Field Research Station, Jackson, Wyoming
| | | |
Collapse
|
20
|
Ward JL, Korn V, Auxier AN, Schoenfuss HL. Temperature and Estrogen Alter Predator-Prey Interactions between Fish Species. Integr Org Biol 2020; 2:obaa008. [PMID: 33791552 PMCID: PMC7671136 DOI: 10.1093/iob/obaa008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A variety of environmental estrogens are commonly detected in human-impacted waterways. Although much is known about the effects of these environmental estrogens on the reproductive physiology and behavior of individuals within species, comparatively less is known about how these compounds alter the outcomes of interactions between species. Furthermore, few studies have considered how the effects of contaminants are modulated by natural variation in abiotic factors, such as temperature. To help fill this knowledge gap, we conducted a factorial experiment to examine the independent and combined effects of estrone (E1) and temperature on the outcome of predator-prey interactions between two common North American freshwater fishes, fathead minnows (Pimephales promelas) and bluegill sunfish (Lepomis macrochirus). Larval fathead minnows and adult sunfish were exposed to either a low (mean±standard deviation, 90.1 ± 18 ng/L; n = 16) or high (414 ± 147 ng/L; n = 15) concentration of E1 or to a solvent control for 30 days at one of four natural seasonal temperatures (15°C, 18°C, 21°C, and 24°C) before predation trials were performed. Exposure to E1 was associated with a significant increase in larval predation mortality that was independent of temperature. Across all temperature treatments, approximately 74% of control minnows survived; this survivorship significantly exceeded that of minnows exposed to either concentration of E1 (49% and 53% for minnows exposed to the low and high concentrations, respectively). However, exposure to E1 also impaired the prey-capture success of sunfish, partially mitigating predation pressure on exposed minnows. Overall prey-capture success by sunfish showed an inverted U-shaped distribution with temperature, with maximal prey consumption occurring at 21°C. This study illustrates the vulnerability of organismal interactions to estrogenic pollutants and highlights the need to include food web interactions in assessments of risk.
Collapse
Affiliation(s)
- J L Ward
- Department of Biology, Ball State University, 2111 W Riverside Ave, Muncie, IN 47306, USA
| | - V Korn
- Aquatic Toxicology Laboratory, Department of Biology, St. Cloud State University, 720 4th Avenue South, St Cloud, MN 56301, USA
| | - A N Auxier
- Department of Biology, Ball State University, 2111 W Riverside Ave, Muncie, IN 47306, USA
| | - H L Schoenfuss
- Aquatic Toxicology Laboratory, Department of Biology, St. Cloud State University, 720 4th Avenue South, St Cloud, MN 56301, USA
| |
Collapse
|
21
|
Volz SN, Hausen J, Smith K, Ottermanns R, Schaeffer A, Schiwy S, Hollert H. Do you smell the danger? Effects of three commonly used pesticides on the olfactory-mediated antipredator response of zebrafish (Danio rerio). CHEMOSPHERE 2020; 241:124963. [PMID: 31604193 DOI: 10.1016/j.chemosphere.2019.124963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Fish are warned about the presence of predators via an alarm cue released from the skin of injured conspecifics. The detection of this odor inherently initiates an antipredator response, which increases the chance of survival for the individual. In the present study, we assessed the effect of three commonly used pesticides on the antipredator response of zebrafish (Danio rerio). For this, we analyzed the behavioral response of zebrafish to a conspecific skin extract following 24 h of exposure to the respective contaminants. Results demonstrate that fish exposed to 20 μg/L of the organophosphate insecticide chlorpyrifos significantly reduced bottom-dwelling and freezing behavior, suggesting an impairment of the antipredator response. For the urea-herbicide linuron and the pyrethroid insecticide permethrin, no statistically significant effects could be detected. However, linuron-exposed fish appeared to respond in an altered manner to the skin extract; some individuals failed to perform the inherent behaviors such as erratic movements and instead merely increased their velocity. Furthermore, we determined whether zebrafish would avoid the pesticides in a choice maze. While fish avoided permethrin, they behaved indifferently to chlorpyrifos and linuron. The study demonstrates that pesticides may alter the olfactory-mediated antipredator response of zebrafish in distinct ways, revealing that particularly fish exposed to chlorpyrifos may be more prone to predation.
Collapse
Affiliation(s)
- Sina N Volz
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Jonas Hausen
- Core Unit for Bioinformatics Data Analysis, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Kilian Smith
- Chair of Environmental Biology and Chemodynamics, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Richard Ottermanns
- Chair of Environmental Biology and Chemodynamics, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Andreas Schaeffer
- Chair of Environmental Biology and Chemodynamics, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Sabrina Schiwy
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Greer JB, Magnuson JT, Hester K, Giroux M, Pope C, Anderson T, Liu J, Dang V, Denslow ND, Schlenk D. Effects of Chlorpyrifos on Cholinesterase and Serine Lipase Activities and Lipid Metabolism in Brains of Rainbow Trout (Oncorhynchus mykiss). Toxicol Sci 2019; 172:146-154. [PMID: 31359069 PMCID: PMC6813751 DOI: 10.1093/toxsci/kfz167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/08/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022] Open
Abstract
Chlorpyrifos is an organophosphorus insecticide that elicits acute toxicity through inhibition of acetylcholinesterase (AChE), leading to acetylcholine accumulation and prolonged stimulation of cholinergic receptors throughout the central and peripheral nervous systems. Previous studies have indicated that neurodevelopment may also be impaired through alternative pathways, including reduction of cAMP catalyzed downstream events. The upstream initiating events that underlie non-cholinergic neurological actions of chlorpyrifos and other organophosphorus compounds remain unclear. To investigate the potential role of disruption of fatty acid signaling as a mechanism of toxicity, lipid metabolism and fatty acid profiles were examined to identify alterations that may play a critical role in upstream signaling in the CNS. Juvenile rainbow trout were treated for 7 days with nominal chlorpyrifos concentrations previously reported to diminish olfactory responses (10, 20, and 40 μg/L). While lethality was noted higher doses, measured chlorpyrifos concentrations of 1.38 μg/L (nominal concentration 10 μg/L) significantly reduced the activity of AChE and two serine lipases, monoacylglycerol lipase and fatty acid amide hydrolase in the brain. Reductions in lysophosphatidylethanolamines (16:0; 18:0, 18:1, and 22:6) derived from the phosphatidylethanolamines and free fatty acids (Palmitic acid16:0; Linolenic acid18:3; Eicosadienoic acid 20:2; Arachidonic acid 20:4; and Docosahexaenoic acid 22:6) were also noted, suggesting that chlorpyrifos inhibited the metabolism of selected phospholipid signaling precursors at sublethal concentrations. These results indicate that in addition to AChE inhibition, environmentally relevant chlorpyrifos exposure alters serine lipase activity and lipid metabolites in the trout brain, which may compromise neuronal signaling and impact neurobehavioral responses in aquatic animals.
Collapse
Affiliation(s)
- J B Greer
- Department of Environmental Sciences, University of California Riverside, 2460A Geology, Riverside, CA, United States
| | - J T Magnuson
- Department of Environmental Sciences, University of California Riverside, 2460A Geology, Riverside, CA, United States
| | - K Hester
- Center for Veterinary Health Sciences and Interdisciplinary Toxicology Program, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, United States
| | - M Giroux
- Department of Environmental Sciences, University of California Riverside, 2460A Geology, Riverside, CA, United States
| | - C Pope
- Center for Veterinary Health Sciences and Interdisciplinary Toxicology Program, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, United States
| | - T Anderson
- Center for Veterinary Health Sciences and Interdisciplinary Toxicology Program, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, United States
| | - J Liu
- Center for Veterinary Health Sciences and Interdisciplinary Toxicology Program, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, United States
| | - V Dang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, PO Box 110885, 2187 Mowry Rd., Gainesville, FL, United States
| | - N D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, PO Box 110885, 2187 Mowry Rd., Gainesville, FL, United States
| | - D Schlenk
- Department of Environmental Sciences, University of California Riverside, 2460A Geology, Riverside, CA, United States.,Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Potential Impacts to Wetlands and Water Bodies Due to Mineral Exploration, Pebble Copper-Gold Prospect, Southwest Alaska. ENVIRONMENTS 2019. [DOI: 10.3390/environments6070084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is little information in the literature about the impacts of mineral exploration drilling on natural waters. A copper-gold-molybdenum mining deposit in Alaska was heavily explored until 2012 and partially reclaimed; however, full reclamation of drill sites remained incomplete in 2016. Copper is sub-lethally toxic to salmon, a highly-valued resource in this area. Of 109 sites inspected, 9 sites had confirmed impacts due to un-reclaimed drill-holes or drill waste disposal practices. At seven sites artesian waters at the drill stem resulted in surface water or sediment elevated in aluminum, iron, copper, or zinc with neutral pH. Copper concentrations at artesian sites were <0.4, 0.7, 2, 7, 15, 76, and 215 µg/L; the latter four exceed water quality criteria. Drilling waste is known to have been disposed of in ponds and unlined sumps. At one of five ponds sampled, copper declined from 51 to 8 µg/L over nine years. At the one sump area with historical data, copper increased from 0.3 to 1.8 µg/L at a downgradient wetland spring over five years. This research identifies contaminant types and sources and can be used to guide future ecotoxicity studies and improve regulatory oversight.
Collapse
|
24
|
Jones J, Wellband K, Zielinski B, Heath DD. Transcriptional Basis of Copper-Induced Olfactory Impairment in the Sea Lamprey, a Primitive Invasive Fish. G3 (BETHESDA, MD.) 2019; 9:933-941. [PMID: 30670609 PMCID: PMC6404594 DOI: 10.1534/g3.118.200920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/19/2019] [Indexed: 11/18/2022]
Abstract
Olfaction mediates behaviors necessary for survival and reproduction in fishes. Anthropogenic inputs of contaminants into aquatic environments, specifically copper, are known to disrupt a broad range of olfactory-mediated behaviors and can cause long-lasting damage even at low concentrations that have profound impacts on the biology of aquatic organisms. The sea lamprey (Petromyzon marinus) is a primitive fish species invasive to the North American Great Lakes that relies on olfaction to navigate during natal homing and in mate choice during reproduction. To investigate effects of copper on sea lamprey olfaction and the potential for maintenance of olfactory function during copper exposure, we exposed juvenile sea lamprey to environmentally ecologically relevant copper concentrations (0, 5, 10 and 30 µg/L) for 24 hr and characterized gene transcription response in olfactory tissue (i.e., peripheral olfactory organ and olfactory bulb) and forebrain using whole transcriptome sequencing. Copper exposure induced a pattern of positive dose-dependent transcriptional response. Expression changes primarily reflected up-regulation of genes involved in apoptosis and wound healing. Unlike higher vertebrates, genes specifically related to the olfactory senses of the sea lamprey, e.g., olfactory receptors, exhibited little transcriptional response to copper exposure, suggesting the mechanism of copper-induced olfactory impairment is through necrosis of the olfactory bulb and not copper-selective inhibition of olfactory receptors. Fully two-thirds of the differentially expressed genes at higher doses of copper have no known function and thus represent important candidates for further study of the responses to copper-induced olfactory injury. Our results shed light on the evolution of vertebrate olfactory repair mechanisms and have important implications for the conservation and management of both invasive and native populations of lamprey.
Collapse
Affiliation(s)
- Jenna Jones
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Kyle Wellband
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Barbara Zielinski
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 3P4
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Daniel D Heath
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 3P4
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| |
Collapse
|
25
|
Tapkir SD, Kharat SS, Kumkar P, Gosavi SM. Impact, recovery and carryover effect of Roundup® on predator recognition in common spiny loach, Lepidocephalichthys thermalis. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:189-200. [PMID: 30632094 DOI: 10.1007/s10646-018-02011-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Understanding the negative impact of a variety of environmental contaminants on aquatic animals is essential to curb biodiversity loss and stop degradation of ecological functions. Excessive and unrestricted use of pesticides is the most serious threat to aquatic animals including amphibians and fishes. Among the known pesticides, glyphosate based formulations have been shown to have lethal effects on many aquatic organisms. However, negative effects of pesticides on crucial ecological interactions such as prey-predator interactions are relatively unknown from tropics. In many aquatic organisms, recognition of predators is based on odor signatures; and therefore any anthropogenic alteration in water chemistry has the potential to impair recognition and learning of predators. Through a series of behavioral experiments we evaluated the effect of glyphosate based herbicide (Roundup®) on the antipredator behavior of common spiny loach, Lepidocephalichthys thermalis to understand the effects of pesticide-exposure on recognition of conspecific alarm cues, and associative learning to avoid predation. We exposed common spiny loach (for 3 h or 15 days) to sub-lethal concentration (0.5 mg a.e./L) of Roundup® and subsequently with conspecific alarm cues, signaling the proximity of a predator. Unexposed prey fish showed a significant reduction in activity level in response to conspecific alarm cues. Whereas such alarm response was not observed in prey fish that were exposed to Roundup® either for 3 h or 15 days. Such lack of response could be associated with alteration of olfactory function in prey individuals. However, this inability to detect the conspecific alarm cues was found to be transient and exposed fish recovered within 2 days. In subsequent experiments, we showed that Roundup® deactivates the conspecific alarm cues thus making them unavailable for prey to evoke the response. Furthermore, Roundup® mediated degradation of conspecific alarm cues and diminished the associative learning necessary for detection of the invasive/unknown/novel predators. Overall, due to the worldwide occurrence of glyphosate in water bodies, glyphosate mediated behavioral suppression exposes the prey animals to a considerable risk of predation, both by native and non-native predators.
Collapse
Affiliation(s)
- Sandip D Tapkir
- Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, Maharashtra, 411 016, India
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 400 007, India
| | - Sanjay S Kharat
- Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, Maharashtra, 411 016, India
| | - Pradeep Kumkar
- Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, Maharashtra, 411 016, India
| | - Sachin M Gosavi
- Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, Maharashtra, 411 016, India.
- Department of Zoology, Post Graduate Research Centre, Modern College of Arts, Science and Commerce, Shivajinagar, Pune, Maharashtra, 411 005, India.
- Department of Zoology, Maharashtra College of Arts, Science and Commerce, 246-A, Jahangir Boman Behram Marg, Nagpada, Mumbai, Maharashtra, 400 008, India.
| |
Collapse
|
26
|
Williams CR, Dittman AH, McElhany P, Busch DS, Maher M, Bammler TK, MacDonald JW, Gallagher EP. Elevated CO 2 impairs olfactory-mediated neural and behavioral responses and gene expression in ocean-phase coho salmon (Oncorhynchus kisutch). GLOBAL CHANGE BIOLOGY 2019; 25:963-977. [PMID: 30561876 PMCID: PMC7065673 DOI: 10.1111/gcb.14532] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/06/2018] [Indexed: 05/16/2023]
Abstract
Elevated concentrations of CO2 in seawater can disrupt numerous sensory systems in marine fish. This is of particular concern for Pacific salmon because they rely on olfaction during all aspects of their life including during their homing migrations from the ocean back to their natal streams. We investigated the effects of elevated seawater CO2 on coho salmon (Oncorhynchus kisutch) olfactory-mediated behavior, neural signaling, and gene expression within the peripheral and central olfactory system. Ocean-phase coho salmon were exposed to three levels of CO2 , ranging from those currently found in ambient marine water to projected future levels. Juvenile coho salmon exposed to elevated CO2 levels for 2 weeks no longer avoided a skin extract odor that elicited avoidance responses in coho salmon maintained in ambient CO2 seawater. Exposure to these elevated CO2 levels did not alter odor signaling in the olfactory epithelium, but did induce significant changes in signaling within the olfactory bulb. RNA-Seq analysis of olfactory tissues revealed extensive disruption in expression of genes involved in neuronal signaling within the olfactory bulb of salmon exposed to elevated CO2 , with lesser impacts on gene expression in the olfactory rosettes. The disruption in olfactory bulb gene pathways included genes associated with GABA signaling and maintenance of ion balance within bulbar neurons. Our results indicate that ocean-phase coho salmon exposed to elevated CO2 can experience significant behavioral impairments likely driven by alteration in higher-order neural signal processing within the olfactory bulb. Our study demonstrates that anadromous fish such as salmon may share a sensitivity to rising CO2 levels with obligate marine species suggesting a more wide-scale ecological impact of ocean acidification.
Collapse
Affiliation(s)
- Chase R. Williams
- Department of Environmental and Occupational Health Sciences. University of Washington. Seattle, WA 98105
| | - Andrew H. Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E Seattle WA 98112, USA
- Corresponding author at NOAA fisheries, Andrew H. Dittman, Ph.D., Tel: 206-860-3392,
| | - Paul McElhany
- Conservation Biology Division, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 802 Front Street, Mukilteo, WA 98275, USA
| | - D. Shallin Busch
- Conservation Biology Division, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 802 Front Street, Mukilteo, WA 98275, USA
- Ocean Acidification Program, Office of Oceanic and Atmospheric Research, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle WA 98112, USA
| | - Michael Maher
- Conservation Biology Division, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 802 Front Street, Mukilteo, WA 98275, USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences. University of Washington. Seattle, WA 98105
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences. University of Washington. Seattle, WA 98105
| | - Evan P. Gallagher
- Department of Environmental and Occupational Health Sciences. University of Washington. Seattle, WA 98105
- Corresponding author at the University of Washington, Evan P. Gallagher, Ph.D., Tel: 1-206-616-4739,
| |
Collapse
|
27
|
Morris JM, Brinkman SF, Takeshita R, McFadden AK, Carney MW, Lipton J. Copper toxicity in Bristol Bay headwaters: Part 2-Olfactory inhibition in low-hardness water. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:198-209. [PMID: 30298944 DOI: 10.1002/etc.4295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/20/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
We investigated the olfactory toxicity of copper (Cu) to rainbow trout in low-hardness (27 mg/L as CaCO3 ) water formulated in the laboratory over a 120-h period using a flow-through design. The fish's response to an alarm cue (e.g., reduction in activity) was recorded to determine the exposure concentrations and durations that inhibited olfactory detection of the cue after 3, 24, 48, and 96 h of Cu exposure and after 24 h of clean water recovery following the 96-h exposure period. Exposures were conducted with a range of Cu concentrations from 0.13 (control) to 7.14 μg Cu/L (dissolved Cu). We observed a dose-dependent response in olfactory inhibition with a 20% reduction in the probability of responding to the alarm cue, relative to controls, at 2.7 and 2.4 μg Cu/L after 24 or 96 h of exposure, respectively. Olfactory inhibition manifested between 3 and 24 h of exposure. Our 24- and 96-h 20% olfactory inhibition estimates fell between the criteria derived using the biotic ligand model (BLM; criterion maximum concentration [CMC] and criterion continuous concentration [CCC] values were 0.63 and 0.39 μg Cu/L, respectively) and water hardness-based criteria (CMC and CCC values were 3.9 and 2.9 μg Cu/L, respectively). Therefore, the hardness-based criteria do not appear to be protective and the BLM-derived criteria do appear to be protective against Cu-induced olfactory inhibition given our test water chemistry. Neither the hardness-based criteria nor the BLM-derived criteria appear to be protective against our estimated Cu behavioral avoidance response concentrations at 24- and 96-h exposures (0.54 and 0.50 μg Cu/L, respectively). Environ Toxicol Chem 2019;38:198-209. © 2018 SETAC.
Collapse
|
28
|
Puglis HJ, Calfee RD, Little EE. Behavioral effects of copper on larval white sturgeon. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:132-144. [PMID: 30298941 DOI: 10.1002/etc.4293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/19/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Early-life stage white sturgeon are sensitive to copper (Cu), with adverse behavioral responses observed during previous studies. The objectives of the present study were to quantify the effects of Cu exposure on white sturgeon swimming and feeding behaviors and determine their time to response. Larval sturgeon (1-2, 28, or 35 d posthatch [dph]) were exposed to Cu (0.5-8 μg/L) for 4 to 14 d. Abnormal behavioral changes were observed within the first few days of exposure including loss of equilibrium and immobilization. Digital video tracking software revealed decreased swimming activity with increasing Cu concentration. Significant changes in behavior and mortality occurred at concentrations of Cu between 1 and 8 μg/L. Juvenile white sturgeon, 58 dph, exposed to 12 μg/L Cu consumed 37 to 60% less food than controls after 3 d of exposure. The present results indicate that behavioral endpoints were more sensitive than some standard toxicity test endpoints and can effectively expand the sensitivity of standard toxicity tests for white sturgeon. Swimming behavior was impaired to the extent that survival in the field would likely be jeopardized. Such data would provide managers a useful metric for characterizing the risks of Cu contamination to white sturgeon. Environ Toxicol Chem 2019;38:132-144. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Holly J Puglis
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Robin D Calfee
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| | - Edward E Little
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| |
Collapse
|
29
|
Morris JM, Brinkman SF, Carney MW, Lipton J. Copper toxicity in Bristol Bay headwaters: Part 1-Acute mortality and ambient water quality criteria in low-hardness water. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:190-197. [PMID: 30125979 DOI: 10.1002/etc.4252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/02/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
The world-class Alaskan Bristol Bay salmon fishery and vast deposits of copper (Cu) and other metals in the watershed warrant further investigation into the potential toxicity of Cu to salmonids under the low water-hardness conditions that occur in the watershed. Therefore we investigated the acute toxicity of Cu to rainbow trout (Oncorhynchus mykiss) and fathead minnows (Pimephales promelas) in low-hardness water (∼ 30 mg/L as CaCO3 ) formulated in the laboratory and collected from the Bristol Bay watershed. The median lethal concentration (LC50) for rainbow trout exposed to Cu in low-hardness laboratory water was 16 μg Cu/L (95% confidence intervals [CIs]: 12, 21; dissolved Cu, filtered to 0.45 μm). The LC50 values for fathead minnows exposed to Cu in low-hardness laboratory water or site water were 29 and 79 μg Cu/L (95% CIs: 23, 35 and 58, 125; dissolved Cu), respectively. The biotic ligand model (BLM) LC50 estimates for these bioassays were 1.3 to 2.3 times higher than the actual LC50 values. We also calculated and analyzed acute Cu water quality criteria, also known as criterion maximum concentration (CMC), using hardness-based methods and the BLM for water samples collected throughout the Bristol Bay watershed in 2007. Biotic ligand model CMCs ranged from 0.05 to 17.5 μg Cu/L and hardness-based CMCs ranged from 2.3 to 6.1 μg Cu/L for the 65 samples analyzed. Our results show the need for site-specific research and subsequent water quality guidelines in low-hardness aquatic habitats. Environ Toxicol Chem 2019;38:190-197. © 2018 SETAC.
Collapse
|
30
|
Ma EY, Heffern K, Cheresh J, Gallagher EP. Differential copper-induced death and regeneration of olfactory sensory neuron populations and neurobehavioral function in larval zebrafish. Neurotoxicology 2018; 69:141-151. [PMID: 30292653 DOI: 10.1016/j.neuro.2018.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/06/2018] [Accepted: 10/02/2018] [Indexed: 12/28/2022]
Abstract
Fish rely heavily on their sense of smell to maintain behaviors essential for survival, such as predator detection and avoidance, prey selection, social behavior, imprinting, and homing to natal streams and spawning sites. Due to its direct contact with the outside environment, the peripheral olfactory system of fish is particularly susceptible to dissolved contaminants. In particular, environmental exposures to copper (Cu) can cause a rapid loss of olfactory function. In this study, confocal imaging of double-transgenic zebrafish larvae with differentially labeled ciliated and microvillous olfactory sensory neurons (OSNs) were used to examine cell death and regeneration following Cu exposure. Changes in cell morphologies were observed at varying degrees within both ciliated and microvillous OSNs, including the presence of round dense cell bodies, cell loss and fragmentation, retraction or loss of axons, disorganized cell arrangements, and loss of cells and fluorescence signal intensity, which are all indicators of cell death after Cu exposure. A marked loss of ciliated OSNs relative to microvillous OSNs occurred after exposure to low Cu concentrations for 3 h, with some regeneration observed after 72 h. At higher Cu concentrations and 24-h exposures, ciliated and microvillous OSNs were damaged with increased severity of injury with longer Cu exposures. Interestingly, microvillous, but not ciliated OSNs, regenerated rapidly within the 72-h time period of recovery after death from Cu exposure, suggesting that microvillous OSNs may be replaced in lieu of ciliated OSNs. An increase in bromodeoxyuridine labeling was observed 24 h after Cu-induced OSN death, suggesting that increased proliferation of the olfactory stem cells replaced the damaged OSNs. Olfactory behavioral analyses supported our imaging studies and revealed both initial loss and restoration of olfactory function after Cu exposures. In summary, our studies indicate that following zebrafish OSN damage by Cu, regeneration of microvillous OSNs may occur exceeding ciliated OSNs, likely via increased proliferation of the cellular reservoir of neuronal OSC precursors. Transgenic zebrafish are a valuable tool to study metal olfactory injury and recovery and to characterize sensitive olfactory neuron populations in fish exposed to environmental pollutants.
Collapse
Affiliation(s)
- Eva Y Ma
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105-6099, USA
| | - Kevin Heffern
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105-6099, USA
| | - Julia Cheresh
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105-6099, USA
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105-6099, USA.
| |
Collapse
|
31
|
Panikkar B, Tollefson J. Land as material, knowledge and relationships: Resource extraction and subsistence imaginaries in Bristol Bay, Alaska. SOCIAL STUDIES OF SCIENCE 2018; 48:715-739. [PMID: 30322373 DOI: 10.1177/0306312718803453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This article examines the social, historical and political constitution of land and resource imaginaries in Bristol Bay, Alaska. We compare the dynamics of these different imaginaries in the region within the early permitting debates concerning the proposed Pebble Mine to understand the contemporary politics of defining and constructing ideologies of extractive resource use. We show that the civic epistemologies and ontologies embedded in different social, scientific and political practices help explain environmental actions and outcomes. We demonstrate that the contested fields of social imagination allow for resource exploitation - commodification, extraction and profit - that endangers nature, but also allow for building alternative imaginaries and constructions of land and value as key components of environmental justice and land sovereignty initiatives. Contestations can also highlight problematic and unjust resource practices that disenfranchise and destabilize subordinate industries, poor communities, indigenous lands and subsistence or renewable resource use. These divergent discourses, and the deliberative valuations of alternative futures that they contribute to, are not effectively considered in Alaska's large mine permitting process.
Collapse
Affiliation(s)
- Bindu Panikkar
- Environmental Studies Program, Rubenstein School of Environment and Natural Resources, The University of Vermont, Burlington, VT, USA
| | - Jonathan Tollefson
- Environmental Studies Program, Rubenstein School of Environment and Natural Resources, The University of Vermont, Burlington, VT, USA
| |
Collapse
|
32
|
Heffern K, Tierney K, Gallagher EP. Comparative effects of cadmium, zinc, arsenic and chromium on olfactory-mediated neurobehavior and gene expression in larval zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:83-90. [PMID: 29890505 PMCID: PMC6062444 DOI: 10.1016/j.aquatox.2018.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 05/04/2023]
Abstract
Studies have shown that olfactory-mediated behaviors that are critical to survival can be disrupted by exposure to certain metals. Polluted waterways often contain elevated levels of metals, yet only a subset have been characterized for their potential to cause olfactory toxicity. A larval zebrafish behavioral assay was developed to characterize concentration-response curves for zinc (Zn), hexavalent chromium (Cr), and arsenate (As) olfaction inhibition. Cadmium (Cd), an established olfactory toxicant, was used as a positive control. As expected, following a 24-hour exposure to Cd, we observed a reduced response to taurocholic acid (TCA), a substrate for ciliated olfactory sensory neurons (OSNs), thus validating the behavioral assay. Zn exposure similarly decreased the olfactory response toward TCA, (IC50: 36 μg/L and 76 μg/L, for Cd and Zn, respectively). The response towards a secondary odorant L-cysteine (Cys), a substrate for ciliated and microvillous OSNs, was significantly altered by both Cd and Zn exposure, although the response to Cys was not completely removed in Zn treated larvae, suggesting preferential toxicity towards ciliated OSNs. No significant changes in olfactory responses were observed following Cr and As exposures. Exposures to binary mixtures of Cd and Zn indicated that Zn had a protective effect against Cd toxicity at low Zn concentrations. QuantiGene (QDP) RNA analysis revealed Cd to be a potent inducer of metallothionein 2 (mt2) mRNA in zebrafish larvae, and Zn to be a weak mt2 inducer, suggesting a protective role of mt2 in Cd and Zn olfactory injury. By contrast, QDP analysis of eight other genes important in mitigating the effects of oxidative stress suggested an antioxidant response to Cd, but not Zn, As, and Cr suggesting that oxidative stress was not a primary mechanism of Zn-induced olfactory dysfunction. In summary, our study indicates that Zn inhibits zebrafish olfaction at environmental concentrations and may potentially mitigate Cd induced olfactory dysfunction when present in mixtures. The zebrafish behavioral trough assay incorporating the odorants L-cysteine and TCA is an effective assay to assess the effects of metals on olfactory function.
Collapse
Affiliation(s)
- Kevin Heffern
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105-6099, United States
| | - Keith Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105-6099, United States.
| |
Collapse
|
33
|
Van Ginneken M, Blust R, Bervoets L. Combined effects of metal mixtures and predator stress on the freshwater isopod Asellus aquaticus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:148-157. [PMID: 29753203 DOI: 10.1016/j.aquatox.2018.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Biotic stressors have been demonstrated to change the toxicity of pollutants. While the combined effects of predator cues and pesticides are well documented, the interaction of predator stress with metals is a topic that has remained largely unexplored. In this laboratory experiment, the freshwater isopod Asellus aquaticus is exposed to predator cues and metal mixtures of Cd, Cu and Pb. We examined the effects on growth, respiration and, as behavioral parameters, feeding rate and activity. These were linked to the free ion activities (FIAs) in the water and the metal body concentrations. The findings reveal that Cu accumulation significantly influenced the growth rate, the feeding rate and the activity of isopods exposed to predator stress. Furthermore, we found a concentration-dependent interaction of the Cd + Pb mixtures on the feeding rate and a lower feeding rate for Cd and Pb predator exposed asellids. As several interactions were found between metals and predator stress, it demonstrates the importance of investigating how organisms and whole ecosystems respond to multiple stressors. A better understanding of these interactions will undoubtedly improve risk assessment and management.
Collapse
Affiliation(s)
- M Van Ginneken
- Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - R Blust
- Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - L Bervoets
- Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
34
|
Meyer JS, DeForest DK. Protectiveness of Cu water quality criteria against impairment of behavior and chemo/mechanosensory responses: An update. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1260-1279. [PMID: 29341250 DOI: 10.1002/etc.4096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/07/2017] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
A meta-analysis was conducted of studies that reported behavior and chemo/mechanosensory responses by fish, amphibians, and aquatic invertebrates in Cu-containing waters and also reported sufficient water chemistry for calculation of hardness-based and biotic ligand model (BLM)-based water quality criteria (WQC) for Cu. The calculated WQC concentrations were then compared with the corresponding 20% impairment concentrations (IC20) of Cu for those behavior and chemo/mechanosensory responses. The hardness-based acute and chronic WQC for Cu would not have been protective (i.e., the IC20 would have been lower than the WQC) in 33.6 and 26.2%, respectively, of the 107 combined behavior- and chemo/mechanosensory-response cases that also had adequate water chemistry data for BLM-based WQC calculations (32.7% inconclusive). In comparison, the BLM-based acute and chronic WQC for Cu would not have been protective in only 10.3 and 4.7%, respectively, of the same 107 cases (29.9% inconclusive). To improve evaluations of regulatory effectiveness, researchers conducting aquatic Cu toxicity tests should measure and report complete BLM-input water chemistry and bracket the hardness-based and BLM-based WQC concentrations for Cu that would be applicable in their exposure waters. This meta-analysis demonstrates that, overall, the BLM-based WQC for Cu were considerably more protective than the hardness-based WQC for Cu against impairment of behavior and chemo/mechanosensory responses. Environ Toxicol Chem 2018;37:1260-1279. © 2018 SETAC.
Collapse
Affiliation(s)
- Joseph S Meyer
- Applied Limnology Professionals LLC, Golden, Colorado, USA
| | | |
Collapse
|
35
|
Morán P, Cal L, Cobelo-García A, Almécija C, Caballero P, Garcia de Leaniz C. Historical legacies of river pollution reconstructed from fish scales. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:253-259. [PMID: 29179128 DOI: 10.1016/j.envpol.2017.11.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Many rivers have been impacted by heavy metal pollution in the past but the long-term legacies on biodiversity are difficult to estimate. The River Ulla (NW Spain) was impacted by tailings from a copper mine during the 1970-1980s but absence of baseline values and lack of subsequent monitoring have prevented a full impact assessment. We used archived fish scales of Atlantic salmon to reconstruct levels of historical copper pollution and its effects on salmon fitness. Copper bioaccumulation significantly increased over baseline values during the operation of the mine, reaching sublethal levels for salmon survival. Juvenile growth and relative population abundance decreased during mining, but no such effects were observed in a neighbouring river unaffected by mining. Our results indicate that historical copper exposure has probably compromised the fitness of this Atlantic salmon population to the present day, and that fish scales are suitable biomarkers of past river pollution.
Collapse
Affiliation(s)
- Paloma Morán
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidade de Vigo, Spain
| | - Laura Cal
- Instituto de Investigaciones Mariñas de Vigo (IIM-CSIC), Spain
| | | | - Clara Almécija
- Instituto de Investigaciones Mariñas de Vigo (IIM-CSIC), Spain
| | - Pablo Caballero
- Servicio de Conservación de la Naturaleza de Pontevedra, Xunta de Galicia, Spain
| | | |
Collapse
|
36
|
Liess M, Gerner NV, Kefford BJ. Metal toxicity affects predatory stream invertebrates less than other functional feeding groups. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:505-512. [PMID: 28499260 DOI: 10.1016/j.envpol.2017.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/29/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
Ecosystem effects of heavy metals need to be identified for a retrospective risk assessment, and potential impacts need to be predicted for a prospective risk assessment. In this study, we established a strong correlation between the toxic pressure of dissolved metals and invertebrate species. We compiled available data from a wide geographical range of Australian streams that were contaminated with heavy metals [mainly copper (Cu) and zinc (Zn)] and the corresponding invertebrate communities. Heavy metal toxicity is positively related to the proportion of predators within the invertebrate community, represented by the predatorratio, with an effect threshold range of 2.6 μg/L - 26 μg/L for Cu and 62 μg/L - 617 μg/L for Zn. These effect concentrations are in the ranges of the concentrations identified in model ecosystems and other field investigations and are just above the existing guideline limits. Heavy metals also affects the taxa richness negatively. Other community measures, such as the evenness, number of EPT (Ephemeroptera, Plecoptera, and Trichoptera) taxa, SPEcies At Risk (SPEAR)pesticides or SPEARsalinity were relatively poorly correlated with heavy metal toxicity in the streams. Therefore, we suggest applying the predatorratio within the community as a starting point for an indicator of the dissolved metal toxicity, the SPEARmetals.
Collapse
Affiliation(s)
- Matthias Liess
- UFZ, Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstraße15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringer Weg 1, 52074 Aachen, Germany.
| | - Nadine V Gerner
- UFZ, Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstraße15, 04318 Leipzig, Germany; Emschergenossenschaft, Kronprinzenstraße 24, 45128 Essen, Germany; Quantitative Landscape Ecology, Institute for Environmental Science, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Ben J Kefford
- University of Canberra, ACT 2601, Institute for Applied Ecology, Australia
| |
Collapse
|
37
|
Abreu MS, Giacomini AC, Rodriguez R, Kalueff AV, Barcellos LJ. Effects of ZnSO 4 -induced peripheral anosmia on zebrafish behavior and physiology. Behav Brain Res 2017; 320:275-281. [DOI: 10.1016/j.bbr.2016.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022]
|
38
|
Madzokere TC, Karthigeyan A. Heavy Metal Ion Effluent Discharge Containment Using Magnesium Oxide (MgO) Nanoparticles. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.matpr.2017.01.187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Belgrad BA, Griffen BD. Predator-prey interactions mediated by prey personality and predator hunting mode. Proc Biol Sci 2016; 283:rspb.2016.0408. [PMID: 27075257 DOI: 10.1098/rspb.2016.0408] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/21/2016] [Indexed: 11/12/2022] Open
Abstract
Predator-prey interactions are important drivers in structuring ecological communities. However, despite widespread acknowledgement that individual behaviours and predator species regulate ecological processes, studies have yet to incorporate individual behavioural variations in a multipredator system. We quantified a prevalent predator avoidance behaviour to examine the simultaneous roles of prey personality and predator hunting mode in governing predator-prey interactions. Mud crabs, Panopeus herbstii, reduce their activity levels and increase their refuge use in the presence of predator cues. We measured mud crab mortality and consistent individual variations in the strength of this predator avoidance behaviour in the presence of predatory blue crabs, Callinectes sapidus, and toadfish, Opsanus tau We found that prey personality and predator species significantly interacted to affect mortality with blue crabs primarily consuming bold mud crabs and toadfish preferentially selecting shy crabs. Additionally, the strength of the predator avoidance behaviour depended upon the predation risk from the predator species. Consequently, the personality composition of populations and predator hunting mode may be valuable predictors of both direct and indirect predator-prey interaction strength. These findings support theories postulating mechanisms for maintaining intraspecies diversity and have broad implications for community dynamics.
Collapse
Affiliation(s)
- Benjamin A Belgrad
- Marine Science Program, at the School of Earth, Ocean and Environment, University of South Carolina, Columbia, SC 29208, USA
| | - Blaine D Griffen
- Marine Science Program, at the School of Earth, Ocean and Environment, University of South Carolina, Columbia, SC 29208, USA Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
40
|
Behavioural responses of Pacific salmon to chemical disturbance cues during the spawning migration. Behav Processes 2016; 132:76-84. [PMID: 27720756 DOI: 10.1016/j.beproc.2016.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 11/20/2022]
Abstract
Many fish that are exposed to a threat release disturbance cues, which are chemicals that alert conspecifics to the presence of the threat. The release of disturbance cues has been well demonstrated in various species of laboratory-reared fish. Migratory fish species often exhibit increased cortisol levels and are exposed to numerous stressors during their migrations, which could trigger the release of disturbance cues. We tested the responses of wild migrating sockeye salmon (Oncorhynchus nerka) and pink salmon (O. gorbuscha) to the odours of disturbed and undisturbed conspecifics to determine whether these fish release disturbance cues following exposure to a simulated stressor. Furthermore, we tested the responses of sockeye salmon to water-borne cortisol, following evidence from past studies that this chemical is excreted through the gills of stressed fish, and speculation that endogenous correlates of stress might function as disturbance cues. We found that sockeye salmon avoid the odour of disturbed conspecifics, whereas pink salmon do not. Avoidance occurred in both female and male sockeye salmon, and was associated with an increase in plasma cortisol levels in females, but not in males. We also found no behavioural response to water-borne cortisol, which suggests this chemical does not act as an exogenous disturbance cue in sockeye salmon. Avoidance of disturbed conspecifics could limit exposure to risks during the sockeye salmon spawning migration, but could also delay the rate of migration and thereby accrue reproductive costs.
Collapse
|
41
|
Williams CR, MacDonald JW, Bammler TK, Paulsen MH, Simpson CD, Gallagher EP. From the Cover: Cadmium Exposure Differentially Alters Odorant-Driven Behaviors and Expression of Olfactory Receptors in Juvenile Coho Salmon (Oncorhynchus kisutch). Toxicol Sci 2016; 154:267-277. [PMID: 27621283 DOI: 10.1093/toxsci/kfw172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Salmon exposed to waterborne metals can experience olfactory impairment leading to disrupted chemosensation. In the current study, we investigated the effects of cadmium (Cd) on salmon olfactory function by modeling an exposure scenario where juvenile salmon transiently migrate through a polluted waterway. Coho were exposed to environmentally relevant concentrations of waterborne Cd (2 and 30 µg/L) for 48 h and (0.3 and 2 μg/L) for 16 days, followed by a 16-day depuration associated with outmigration. Cadmium exposures inhibited behavioral responses towards L-cysteine and conspecific odorants, with effects persisting following the depuration. Behavioral alterations following the 30 µg/L exposure were associated with increased olfactory epithelial gene expression of metallothionein (mt1a) and heme oxygenase (hmox1); reduced expression of olfactory signal transduction (OST) molecules; and reduced expression of mRNAs encoding major coho odorant receptors (ORs). Salmon OR array analysis indicated that Cd preferentially impacted expression of OST and OR markers for ciliated olfactory sensory neurons (OSNs) relative to microvillus OSNs, suggesting a differential sensitivity of these two major OSN populations. Behavioral alterations on exposure to 0.3 and 2 µg/L Cd were associated with increased mt1a, but not with major histological or OR molecular changes, likely indicating disrupted OST as a major mechanism underlying the behavioral dysfunction at the low-level Cd exposures. Laser-ablation mass spectrometry analysis revealed that the OSN injury and behavioral dysfunction was associated with significant Cd bioaccumulation within the olfactory sensory epithelium. In summary, low-level Cd exposures associated with polluted waterways can induce differential and persistent olfactory dysfunction in juvenile coho salmon.
Collapse
Affiliation(s)
- Chase R Williams
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Michael H Paulsen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Christopher D Simpson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| |
Collapse
|
42
|
Thomas ORB, Barbee NC, Hassell KL, Swearer SE. Smell no evil: Copper disrupts the alarm chemical response in a diadromous fish, Galaxias maculatus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2209-2214. [PMID: 27552396 DOI: 10.1002/etc.3371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/29/2015] [Accepted: 01/11/2016] [Indexed: 06/06/2023]
Abstract
Fish, at all life stages, utilize olfactory information in the decision-making processes essential to survival. Olfaction is a sensitive sensory process, and toxicants within urban aquatic environments can have destructive or depreciating effects. In the present study, the authors exposed Galaxias maculatus, a native fish commonly found in urban waterways throughout southeastern Australia, to 1 of 5 ecologically relevant copper (II) chloride concentrations (<1 μg/L, 1 μg/L, 6 μg/L, 8 μg/L, 18 μg/L) for 16 h. After exposure, the authors tested the response of individual fish to 1 of 3 stimuli: a conspecific skin extract containing a stress-inducing alarm chemical odor, a conspecific odor, and distilled water as a control. Stress responses were quantified through behavioral assays. The authors found evidence for distinct changes in behavioral response with increasing copper concentration and a marked difference in response between control fish and fish exposed to the alarm chemical odor. Copper, even at relatively low concentrations, can have a significant effect on the stress response behavior shown by G. maculatus. Environ Toxicol Chem 2016;35:2209-2214. © 2016 SETAC.
Collapse
Affiliation(s)
- Oliver R B Thomas
- Centre for Aquatic Pollution Identification and Management (CAPIM), School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicole C Barbee
- Centre for Aquatic Pollution Identification and Management (CAPIM), School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Kathryn L Hassell
- Centre for Aquatic Pollution Identification and Management (CAPIM), School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen E Swearer
- Centre for Aquatic Pollution Identification and Management (CAPIM), School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
43
|
Rumrill CT, Scott DE, Lance SL. Effects of metal and predator stressors in larval southern toads (Anaxyrus terrestris). ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1278-1286. [PMID: 27272662 DOI: 10.1007/s10646-016-1681-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 06/06/2023]
Abstract
Natural and anthropogenic stressors typically do not occur in isolation; therefore, understanding ecological risk of contaminant exposure should account for potential interactions of multiple stressors. Realistically, common contaminants can also occur chronically in the environment. Because parental exposure to stressors may cause transgenerational effects on offspring, affecting their ability to cope with the same or novel environmental stressors, the exposure histories of generations preceding that being tested should be considered. To examine multiple stressor and parental exposure effects we employed a 2 × 2 × 2 factorial design in outdoor 1000-L mesocosms (n = 24). Larval southern toads (Anaxyrus terrestris), bred from parents collected from reference and metal-contaminated sites, were exposed to two levels of both an anthropogenic (copper-0, 30 µg/L Cu) and natural (predator cue - present/absent) stressor and reared to metamorphosis. Toads from the metal-contaminated parental source population were smaller at metamorphosis and had delayed development; i.e., a prolonged larval period. Similarly, larval Cu exposure also reduced size at metamorphosis and prolonged the larval period. We, additionally, observed a significant interaction between larval Cu and predator-cue exposure on larval period, wherein delayed emergence was only present in the 30-µg/L Cu treatments in the absence of predator cues. The presence of parental effects as well as an interaction between aquatic stressors on commonly measured endpoints highlight the importance of conducting multistressor studies across generations to obtain data that are more relevant to field conditions in order to determine population-level effects of contaminant exposure.
Collapse
Affiliation(s)
- Caitlin T Rumrill
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA
| | - David E Scott
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA
| | - Stacey L Lance
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA.
| |
Collapse
|
44
|
Acosta DDS, Danielle NM, Altenhofen S, Luzardo MD, Costa PG, Bianchini A, Bonan CD, da Silva RS, Dafre AL. Copper at low levels impairs memory of adult zebrafish (Danio rerio) and affects swimming performance of larvae. Comp Biochem Physiol C Toxicol Pharmacol 2016; 185-186:122-130. [PMID: 27012768 DOI: 10.1016/j.cbpc.2016.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 11/20/2022]
Abstract
Metal contamination at low levels is an important issue because it usually produces health and environmental effects, either positive or deleterious. Contamination of surface waters with copper (Cu) is a worldwide event, usually originated by mining, agricultural, industrial, commercial, and residential activities. Water quality criteria for Cu are variable among countries but allowed limits are generally in the μg/L range, which can disrupt several functions in the early life-stages of fish species. Behavioral and biochemical alterations after Cu exposure have also been described at concentrations close to the allowed limits. Aiming to search for the effects of Cu in the range of the allowed limits, larvae and adult zebrafish (Danio rerio) were exposed to different concentrations of dissolved Cu (nominally: 0, 5, 9, 20 and 60μg/L; measured: 0.4, 5.7, 7.2 16.6 and 42.3μg/L, respectively) for 96h. Larvae swimming and body length, and adult behavior and biochemical biomarkers (activity of glutathione-related enzymes in gills, muscle, and brain) were assessed after Cu exposure. Several effects were observed in fish exposed to 9μg/L nominal Cu, including increased larvae swimming distance and velocity, abolishment of adult inhibitory avoidance memory, and decreased glutathione S-transferase (GST) activity in gills of adult fish. At the highest Cu concentration tested (nominally: 60μg/L), body length of larvae, spatial memory of adults, and gill GST activity were decreased. Social behavior (aggressiveness and conspecific interaction), and glutathione reductase (GR) activity were not affected in adult zebrafish. Exposure to Cu, at concentrations close to the water quality criteria for this metal in fresh water, was able to alter larvae swimming performance and to induce detrimental effects on the behavior of adult zebrafish, thus indicating the need for further studies to reevaluate the currently allowed limits for Cu in fresh water.
Collapse
Affiliation(s)
- Daiane da Silva Acosta
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, 88040-900, Florianopolis, SC, Brazil
| | - Naissa Maria Danielle
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, 88040-900, Florianopolis, SC, Brazil
| | - Stefani Altenhofen
- Department of Molecular and Cellular Biology, Pontifical Catholic University of Rio Grande do Sul, 90610-900 Porto Alegre, RS, Brazil
| | - Milene Dornelles Luzardo
- Department of Molecular and Cellular Biology, Pontifical Catholic University of Rio Grande do Sul, 90610-900 Porto Alegre, RS, Brazil
| | - Patrícia Gomes Costa
- Institute of Biological Sciences, Federal University of Rio Grande, 96203-900 Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Institute of Biological Sciences, Federal University of Rio Grande, 96203-900 Rio Grande, RS, Brazil
| | - Carla Denise Bonan
- Department of Molecular and Cellular Biology, Pontifical Catholic University of Rio Grande do Sul, 90610-900 Porto Alegre, RS, Brazil
| | - Rosane Souza da Silva
- Department of Molecular and Cellular Biology, Pontifical Catholic University of Rio Grande do Sul, 90610-900 Porto Alegre, RS, Brazil
| | - Alcir Luiz Dafre
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, 88040-900, Florianopolis, SC, Brazil.
| |
Collapse
|
45
|
Van Genderen EL, Dishman DL, Ray Arnold W, Gorsuch JW, Call DJ. Sub-Lethal Effects of Copper on Salmonids: An Avoidance Evaluation Using a Direct Test Method. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:11-17. [PMID: 27025764 DOI: 10.1007/s00128-016-1789-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
Avoidance of copper (Cu) by rainbow trout (Oncorhynchus mykiss) was evaluated using a Y-maze exposure system, with data collected over a 1-h exposure period using a digital camcorder. In exposures to five measured concentrations of dissolved copper (<0.3, 1.2, 9.8, 48.3, and 98.6 µg Cu/L), plus control, significant avoidance behavior (p < 0.05) relative to the control was observed at ≥9.8 µg Cu/L, but not at 1.2 µg Cu/L. The chronic value (i.e., geometric mean of these concentrations) was 3.43 µg Cu/L. Estimates of EC50 values for avoidance of Cu ranged from 4.81 to 9.15 µg Cu/L over four 15-min time intervals of exposure to the metal. Based on water quality characterization of the control/diluent water, the U.S. Environmental Protection Agency (USEPA) water hardness- and biotic ligand model (BLM)-based chronic criteria for dissolved Cu were 8.03 and 2.26 µg Cu/L, respectively. This study suggested that enforcement of the BLM-based criterion would provide a higher level of protection of trout for this sensitive response than the hardness-based criterion.
Collapse
Affiliation(s)
| | | | - W Ray Arnold
- Chevron Energy Technology Company, Houston, TX, 77002, USA
| | - Joseph W Gorsuch
- Gorsuch Environmental Management Services, Inc., Webster, NY, 14580, USA
| | - Daniel J Call
- Environmental Research and Information Analysts, LLC, Dubuque, IA, 52001, USA.
| |
Collapse
|
46
|
Sommers F, Mudrock E, Labenia J, Baldwin D. Effects of salinity on olfactory toxicity and behavioral responses of juvenile salmonids from copper. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:260-8. [PMID: 27082980 DOI: 10.1016/j.aquatox.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/01/2016] [Accepted: 04/02/2016] [Indexed: 05/28/2023]
Abstract
Dissolved copper is one of the more pervasive and toxic constituents of stormwater runoff and is commonly found in stream, estuary, and coastal marine habitats of juvenile salmon. While stormwater runoff does not usually carry copper concentrations high enough to result in acute lethality, they are of concern because sublethal concentrations of copper exposure have been shown to both impair olfactory function and alter behavior in various species in freshwater. To compare these results to other environments that salmon are likely to encounter, experiments were conducted to evaluate the effects of salinity on the impairment of olfactory function and avoidance of copper. Copper concentrations well within the range of those found in urban watersheds, have been shown to diminish or eliminate the olfactory response to the amino acid, l-serine in freshwater using electro-olfactogram (EOG) techniques. The olfactory responses of both freshwater-phase and seawater-phase coho and seawater-phase Chinook salmon, were tested in freshwater or seawater, depending on phase, and freshwater-phase coho at an intermediate salinity of 10‰. Both 10‰ salinity and full strength seawater protected against the effects of 50μg copper/L. In addition to impairing olfactory response, copper has also been shown to alter salmon behavior by causing an avoidance response. To determine whether copper will cause avoidance behavior at different salinities, experiments were conducted using a multi-chambered experimental tank. The circular tank was divided into six segments by water currents so that copper could be contained within one segment yet fish could move freely between them. The presence of individual fish in each of the segments was counted before and after introduction of dissolved copper (<20μg/L) to one of the segments in both freshwater and seawater. To address whether use of preferred habitat is altered by the presence of copper, experiments were also conducted with a submerged structural element. The presence of sub-lethal levels of dissolved copper altered the behavior of juvenile Chinook salmon by inducing an avoidance response in both freshwater and seawater. While increased salinity is protective against loss of olfactory function from dissolved copper, avoidance could potentially affect behaviors beneficial to growth, survival and reproductive success.
Collapse
Affiliation(s)
- Frank Sommers
- National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Blvd, E., Seattle, WA 98112, United States.
| | - Emma Mudrock
- Washington State University, Puyallup Research and Extension Center, 2606 W. Pioneer Ave., Puyallup, WA 98371, United States.
| | - Jana Labenia
- National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Blvd, E., Seattle, WA 98112, United States.
| | - David Baldwin
- National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Blvd, E., Seattle, WA 98112, United States.
| |
Collapse
|
47
|
Morina A, Morina F, Djikanović V, Spasić S, Krpo-Ćetković J, Kostić B, Lenhardt M. Common barbel (Barbus barbus) as a bioindicator of surface river sediment pollution with Cu and Zn in three rivers of the Danube River Basin in Serbia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6723-6734. [PMID: 26662100 DOI: 10.1007/s11356-015-5901-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
River sediments are a major source of metal contamination in aquatic food webs. Due to the ability of metals to move up the food chain, fishes, occupying higher trophic levels, are considered to be good environmental indicators of metal pollution. The aim of this study was to analyze the metal content in tissues of the common barbel (Barbus barbus), a rheophilous cyprinid fish widely distributed in the Danube Basin, in order to find out if it can be used as a bioindicator of the metal content in the river sediment. We analyzed bioavailable concentrations of 15 elements (Al, As, B, Ba, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Se, Sr, and Zn) in sediments of the Danube (D), the Zapadna Morava (ZM), and the Južna Morava (JM) using the inductively coupled plasma spectroscopy (ICP-OES). The barbel specimens were collected in the proximity of sediment sampling sites for the analysis of metals in four tissues, gills, muscle, intestine, and liver. The sediment analysis indicated that the ZM is the most polluted with Cu, Ni, and Zn compared to other two rivers. The JM had the lowest concentrations of almost all observed elements, while the Danube sediments were mainly characterized by higher concentrations of Pb. The fish from the ZM had the highest concentration of Cu and Ni in the liver and intestine, and of Zn in the muscle tissue, which was in accordance with the concentrations of these metals in the sediment. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDS) was used for further analyses of metal interactions with fish tissues. The results suggest that the barbel can potentially be used as a bioindicator of sediment quality with respect to metal contamination.
Collapse
Affiliation(s)
- Arian Morina
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia.
| | - Filis Morina
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000, Belgrade, Serbia
| | - Vesna Djikanović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despota Stefana 142, 11000, Belgrade, Serbia
| | - Sladjana Spasić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000, Belgrade, Serbia
| | - Jasmina Krpo-Ćetković
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Bojan Kostić
- Faculty of Mining and Geology, University of Belgrade, Djušina 7, 11000, Belgrade, Serbia
| | - Mirjana Lenhardt
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despota Stefana 142, 11000, Belgrade, Serbia
| |
Collapse
|
48
|
Calfee RD, Puglis HJ, Little EE, Brumbaugh WG, Mebane CA. Quantifying Fish Swimming Behavior in Response to Acute Exposure of Aqueous Copper Using Computer Assisted Video and Digital Image Analysis. J Vis Exp 2016:53477. [PMID: 26967350 PMCID: PMC4828188 DOI: 10.3791/53477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Behavioral responses of aquatic organisms to environmental contaminants can be precursors of other effects such as survival, growth, or reproduction. However, these responses may be subtle, and measurement can be challenging. Using juvenile white sturgeon (Acipenser transmontanus) with copper exposures, this paper illustrates techniques used for quantifying behavioral responses using computer assisted video and digital image analysis. In previous studies severe impairments in swimming behavior were observed among early life stage white sturgeon during acute and chronic exposures to copper. Sturgeon behavior was rapidly impaired and to the extent that survival in the field would be jeopardized, as fish would be swept downstream, or readily captured by predators. The objectives of this investigation were to illustrate protocols to quantify swimming activity during a series of acute copper exposures to determine time to effect during early lifestage development, and to understand the significance of these responses relative to survival of these vulnerable early lifestage fish. With mortality being on a time continuum, determining when copper first affects swimming ability helps us to understand the implications for population level effects. The techniques used are readily adaptable to experimental designs with other organisms and stressors.
Collapse
Affiliation(s)
- Robin D Calfee
- Columbia Environmental Research Center, US Geological Survey;
| | - Holly J Puglis
- Columbia Environmental Research Center, US Geological Survey
| | - Edward E Little
- Columbia Environmental Research Center, US Geological Survey
| | | | | |
Collapse
|
49
|
Kimball BE, Foster AL, Seal RR, Piatak NM, Webb SM, Hammarstrom JM. Copper Speciation in Variably Toxic Sediments at the Ely Copper Mine, Vermont, United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1126-1136. [PMID: 26734712 DOI: 10.1021/acs.est.5b04081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
At the Ely Copper Mine Superfund site, Cu concentrations exceed background values in both streamwater (160-1200 times) and sediments (15-79 times). Previously, these sediment samples were incubated with laboratory test organisms, and they exhibited variable toxicity for different stream sites. In this study we combined bulk- and microscale techniques to determine Cu speciation and distribution in these contaminated sediments on the basis of evidence from previous work that Cu was the most important stressor in this environment and that variable observed toxicity could have resulted from differences in Cu speciation. Copper speciation results were similar at microscopic and bulk scales. The major Cu species in the more toxic samples were sorbed or coprecipitated with secondary Mn (birnessite) and Fe minerals (jarosite and goethite), which together accounted for nearly 80% of the total Cu. The major Cu species in the less toxic samples were Cu sulfides (chalcopyrite and a covellite-like phase), making up about 80-95% of the total Cu, with minor amounts of Cu associated with jarosite or goethite. These Cu speciation results are consistent with the toxicity results, considering that Cu sorbed or coprecipitated with secondary phases at near-neutral pH is relatively less stable than Cu bound to sulfide at lower pH. The more toxic stream sediment sites were those that contained fewer detrital sulfides and were upstream of the major mine waste pile, suggesting that removal and consolidation of sulfide-bearing waste piles on site may not eliminate all sources of bioaccessible Cu.
Collapse
Affiliation(s)
- Bryn E Kimball
- U.S. Geological Survey , Reston, Virginia, 20192 United States
| | - Andrea L Foster
- U.S. Geological Survey , Menlo Park, California, 94025 United States
| | - Robert R Seal
- U.S. Geological Survey , Reston, Virginia, 20192 United States
| | - Nadine M Piatak
- U.S. Geological Survey , Reston, Virginia, 20192 United States
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource , Menlo Park, California, 94025 United States
| | | |
Collapse
|
50
|
McIntyre JK, Edmunds RC, Redig MG, Mudrock EM, Davis JW, Incardona JP, Stark JD, Scholz NL. Confirmation of Stormwater Bioretention Treatment Effectiveness Using Molecular Indicators of Cardiovascular Toxicity in Developing Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1561-1569. [PMID: 26727247 DOI: 10.1021/acs.est.5b04786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Urban stormwater runoff is a globally significant threat to the ecological integrity of aquatic habitats. Green stormwater infrastructure methods such as bioretention are increasingly used to improve water quality by filtering chemical contaminants that may be harmful to fish and other species. Ubiquitous examples of toxics in runoff from highways and other impervious surfaces include polycyclic aromatic hydrocarbons (PAHs). Certain PAHs are known to cause functional and structural defects in developing fish hearts. Therefore, abnormal heart development in fish can be a sensitive measure of clean water technology effectiveness. Here we use the zebrafish experimental model to assess the effects of untreated runoff on the expression of genes that are classically responsive to contaminant exposures, as well as heart-related genes that may underpin the familiar cardiotoxicity phenotype. Further, we assess the effectiveness of soil bioretention for treating runoff, as measured by prevention of both visible cardiac toxicity and corresponding gene regulation. We find that contaminants in the dissolved phase of runoff (e.g., PAHs) are cardiotoxic and that soil bioretention protects against these harmful effects. Molecular markers were more sensitive than visible toxicity indicators, and several cardiac-related genes show promise as novel tools for evaluating the effectiveness of evolving stormwater mitigation strategies.
Collapse
Affiliation(s)
- Jenifer K McIntyre
- Puyallup Research and Extension Center, Washington State University , 2606 West Pioneer Avenue, Puyallup, Washington 98371, United States
| | | | - Maria G Redig
- Evergreen State College, 2700 Parkway NW, Olympia, Washington 98505, United States
| | - Emma M Mudrock
- Puyallup Research and Extension Center, Washington State University , 2606 West Pioneer Avenue, Puyallup, Washington 98371, United States
| | - Jay W Davis
- U.S. Fish and Wildlife Service, Washington Fish and Wildlife Office, 510 Desmond Drive S.E., Lacey, Washington 98503, United States
| | | | - John D Stark
- Puyallup Research and Extension Center, Washington State University , 2606 West Pioneer Avenue, Puyallup, Washington 98371, United States
| | | |
Collapse
|