1
|
Liu M, Gao W, Song D, Dong Y, Hong S, Cui C, Shi S, Wu K, Chen J, Xu J, Dong F. A deep learning-based calculation system for plaque stenosis severity on common carotid artery of ultrasound images. Vascular 2025; 33:349-356. [PMID: 38656244 DOI: 10.1177/17085381241246312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
ObjectivesAssessment of plaque stenosis severity allows better management of carotid source of stroke. Our objective is to create a deep learning (DL) model to segment carotid intima-media thickness and plaque and further automatically calculate plaque stenosis severity on common carotid artery (CCA) transverse section ultrasound images.MethodsThree hundred and ninety images from 376 individuals were used to train (235/390, 60%), validate (39/390, 10%), and test (116/390, 30%) on a newly proposed CANet model. We also evaluated the model on an external test set of 115 individuals with 122 images acquired from another hospital. Comparative studies were conducted between our CANet model with four state-of-the-art DL models and two experienced sonographers to re-evaluate the present model's performance.ResultsOn the internal test set, our CANet model outperformed the four comparative models with Dice values of 95.22% versus 90.15%, 87.48%, 90.22%, and 91.56% on lumen-intima (LI) borders and 96.27% versus 91.40%, 88.94%, 91.19%, and 92.88% on media-adventitia (MA) borders. On the external test set, our model still produced excellent results with a Dice value of 92.41%. Good consistency of stenosis severity calculation was observed between CANet model and experienced sonographers, with Intraclass Correlation Coefficient (ICC) of 0.927 and 0.702, Pearson's Correlation Coefficient of 0.928 and 0.704 on internal and external test set, respectively.ConclusionsOur CANet model achieved excellent performance in the segmentation of carotid IMT and plaques as well as automated calculation of stenosis severity.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| | - Wenjing Gao
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| | - Di Song
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| | - Yinghui Dong
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| | - Shaofu Hong
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| | - Chen Cui
- Illuminate, LLC, Shenzhen, China
- Microport Prophecy, Shanghai, China
| | - Siyuan Shi
- Illuminate, LLC, Shenzhen, China
- Microport Prophecy, Shanghai, China
| | - Kai Wu
- Illuminate, LLC, Shenzhen, China
- Microport Prophecy, Shanghai, China
| | - Jiayi Chen
- Illuminate, LLC, Shenzhen, China
- Microport Prophecy, Shanghai, China
| | - Jinfeng Xu
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| | - Fajin Dong
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, PR China
| |
Collapse
|
2
|
Biswas M, Saba L, Kalra M, Singh R, Fernandes E Fernandes J, Viswanathan V, Laird JR, Mantella LE, Johri AM, Fouda MM, Suri JS. MultiNet 2.0: A lightweight attention-based deep learning network for stenosis measurement in carotid ultrasound scans and cardiovascular risk assessment. Comput Med Imaging Graph 2024; 117:102437. [PMID: 39378691 DOI: 10.1016/j.compmedimag.2024.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Cardiovascular diseases (CVD) cause 19 million fatalities each year and cost nations billions of dollars. Surrogate biomarkers are established methods for CVD risk stratification; however, manual inspection is costly, cumbersome, and error-prone. The contemporary artificial intelligence (AI) tools for segmentation and risk prediction, including older deep learning (DL) networks employ simple merge connections which may result in semantic loss of information and hence low in accuracy. METHODOLOGY We hypothesize that DL networks enhanced with attention mechanisms can do better segmentation than older DL models. The attention mechanism can concentrate on relevant features aiding the model in better understanding and interpreting images. This study proposes MultiNet 2.0 (AtheroPoint, Roseville, CA, USA), two attention networks have been used to segment the lumen from common carotid artery (CCA) ultrasound images and predict CVD risks. RESULTS The database consisted of 407 ultrasound CCA images of both the left and right sides taken from 204 patients. Two experts were hired to delineate borders on the 407 images, generating two ground truths (GT1 and GT2). The results were far better than contemporary models. The lumen dimension (LD) error for GT1 and GT2 were 0.13±0.08 and 0.16±0.07 mm, respectively, the best in market. The AUC for low, moderate and high-risk patients' detection from stenosis data for GT1 were 0.88, 0.98, and 1.00 respectively. Similarly, for GT2, the AUC values for low, moderate, and high-risk patient detection were 0.93, 0.97, and 1.00, respectively. The system can be fully adopted for clinical practice in AtheroEdge™ model by AtheroPoint, Roseville, CA, USA.
Collapse
Affiliation(s)
- Mainak Biswas
- School of Computer Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Monserrato, Italy
| | - Mannudeep Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Rajesh Singh
- Department of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - J Fernandes E Fernandes
- Cardiovascular Institute and the Lisbon University Medical School, Hospital de SantaMaria, Lisbon 1600 190, Portugal
| | | | - John R Laird
- Cardiology Department, St. Helena Hospital, St. Helena, CA, USA
| | - Laura E Mantella
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Amer M Johri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Jasjit S Suri
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA; Department of CS, Graphics Era University, Dehradun, India; University Center for Research & Development, Chandigarh University, Mohali, India; Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune, India; Stroke Monitoring Division, AtheroPoint™ LLC, Roseville, CA, USA.
| |
Collapse
|
3
|
Martelli E, Capoccia L, Di Francesco M, Cavallo E, Pezzulla MG, Giudice G, Bauleo A, Coppola G, Panagrosso M. Current Applications and Future Perspectives of Artificial and Biomimetic Intelligence in Vascular Surgery and Peripheral Artery Disease. Biomimetics (Basel) 2024; 9:465. [PMID: 39194444 DOI: 10.3390/biomimetics9080465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Artificial Intelligence (AI) made its first appearance in 1956, and since then it has progressively introduced itself in healthcare systems and patients' information and care. AI functions can be grouped under the following headings: Machine Learning (ML), Deep Learning (DL), Artificial Neural Network (ANN), Convolutional Neural Network (CNN), Computer Vision (CV). Biomimetic intelligence (BI) applies the principles of systems of nature to create biological algorithms, such as genetic and neural network, to be used in different scenarios. Chronic limb-threatening ischemia (CLTI) represents the last stage of peripheral artery disease (PAD) and has increased over recent years, together with the rise in prevalence of diabetes and population ageing. Nowadays, AI and BI grant the possibility of developing new diagnostic and treatment solutions in the vascular field, given the possibility of accessing clinical, biological, and imaging data. By assessing the vascular anatomy in every patient, as well as the burden of atherosclerosis, and classifying the level and degree of disease, sizing and planning the best endovascular treatment, defining the perioperative complications risk, integrating experiences and resources between different specialties, identifying latent PAD, thus offering evidence-based solutions and guiding surgeons in the choice of the best surgical technique, AI and BI challenge the role of the physician's experience in PAD treatment.
Collapse
Affiliation(s)
- Eugenio Martelli
- Division of Vascular Surgery, Department of Surgery, S Maria Goretti Hospital, 81100 Latina, Italy
- Department of General and Specialist Surgery, Sapienza University of Rome, 00161 Rome, Italy
- Faculty of Medicine, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Laura Capoccia
- Division of Vascular and Endovascular Surgery, Department of Cardiovascular Sciences, S. Anna and S. Sebastiano Hospital, 81100 Caserta, Italy
| | - Marco Di Francesco
- Division of Vascular and Endovascular Surgery, Department of Cardiovascular Sciences, S. Anna and S. Sebastiano Hospital, 81100 Caserta, Italy
| | - Eduardo Cavallo
- Division of Vascular and Endovascular Surgery, Department of Cardiovascular Sciences, S. Anna and S. Sebastiano Hospital, 81100 Caserta, Italy
| | - Maria Giulia Pezzulla
- Division of Vascular and Endovascular Surgery, Department of Cardiovascular Sciences, S. Anna and S. Sebastiano Hospital, 81100 Caserta, Italy
| | - Giorgio Giudice
- Division of Vascular and Endovascular Surgery, Department of Cardiovascular Sciences, S. Anna and S. Sebastiano Hospital, 81100 Caserta, Italy
| | - Antonio Bauleo
- Division of Vascular and Endovascular Surgery, Department of Cardiovascular Sciences, S. Anna and S. Sebastiano Hospital, 81100 Caserta, Italy
| | - Giuseppe Coppola
- Division of Vascular and Endovascular Surgery, Department of Cardiovascular Sciences, S. Anna and S. Sebastiano Hospital, 81100 Caserta, Italy
| | - Marco Panagrosso
- Division of Vascular and Endovascular Surgery, Department of Cardiovascular Sciences, S. Anna and S. Sebastiano Hospital, 81100 Caserta, Italy
| |
Collapse
|
4
|
Agarwal S, Saxena S, Carriero A, Chabert GL, Ravindran G, Paul S, Laird JR, Garg D, Fatemi M, Mohanty L, Dubey AK, Singh R, Fouda MM, Singh N, Naidu S, Viskovic K, Kukuljan M, Kalra MK, Saba L, Suri JS. COVLIAS 3.0: cloud-based quantized hybrid UNet3+ deep learning for COVID-19 lesion detection in lung computed tomography. Front Artif Intell 2024; 7:1304483. [PMID: 39006802 PMCID: PMC11240867 DOI: 10.3389/frai.2024.1304483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Background and novelty When RT-PCR is ineffective in early diagnosis and understanding of COVID-19 severity, Computed Tomography (CT) scans are needed for COVID diagnosis, especially in patients having high ground-glass opacities, consolidations, and crazy paving. Radiologists find the manual method for lesion detection in CT very challenging and tedious. Previously solo deep learning (SDL) was tried but they had low to moderate-level performance. This study presents two new cloud-based quantized deep learning UNet3+ hybrid (HDL) models, which incorporated full-scale skip connections to enhance and improve the detections. Methodology Annotations from expert radiologists were used to train one SDL (UNet3+), and two HDL models, namely, VGG-UNet3+ and ResNet-UNet3+. For accuracy, 5-fold cross-validation protocols, training on 3,500 CT scans, and testing on unseen 500 CT scans were adopted in the cloud framework. Two kinds of loss functions were used: Dice Similarity (DS) and binary cross-entropy (BCE). Performance was evaluated using (i) Area error, (ii) DS, (iii) Jaccard Index, (iii) Bland-Altman, and (iv) Correlation plots. Results Among the two HDL models, ResNet-UNet3+ was superior to UNet3+ by 17 and 10% for Dice and BCE loss. The models were further compressed using quantization showing a percentage size reduction of 66.76, 36.64, and 46.23%, respectively, for UNet3+, VGG-UNet3+, and ResNet-UNet3+. Its stability and reliability were proved by statistical tests such as the Mann-Whitney, Paired t-Test, Wilcoxon test, and Friedman test all of which had a p < 0.001. Conclusion Full-scale skip connections of UNet3+ with VGG and ResNet in HDL framework proved the hypothesis showing powerful results improving the detection accuracy of COVID-19.
Collapse
Affiliation(s)
- Sushant Agarwal
- Advanced Knowledge Engineering Center, GBTI, Roseville, CA, United States
- Department of CSE, PSIT, Kanpur, India
| | | | - Alessandro Carriero
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale (UPO), Novara, Italy
| | | | - Gobinath Ravindran
- Department of Civil Engineering, SR University, Warangal, Telangana, India
| | - Sudip Paul
- Department of Biomedical Engineering, NEHU, Shillong, India
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, United States
| | - Deepak Garg
- School of CS and AI, SR University, Warangal, Telangana, India
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Lopamudra Mohanty
- Department of Computer Science, ABES Engineering College, Ghaziabad, UP, India
- Department of Computer science, Bennett University, Greater Noida, UP, India
| | - Arun K. Dubey
- Bharati Vidyapeeth’s College of Engineering, New Delhi, India
| | - Rajesh Singh
- Division of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | - Mostafa M. Fouda
- Department of ECE, Idaho State University, Pocatello, ID, United States
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, India
| | - Subbaram Naidu
- Department of EE, University of Minnesota, Duluth, MN, United States
| | | | - Melita Kukuljan
- Department of Interventional and Diagnostic Radiology, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Manudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Luca Saba
- Department of Radiology, A.O.U., Cagliari, Italy
| | - Jasjit S. Suri
- Department of ECE, Idaho State University, Pocatello, ID, United States
- Department of Computer Science, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
- Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune, India
- Stroke and Monitoring Division, AtheroPoint LLC, Roseville, CA, United States
| |
Collapse
|
5
|
Li J, Huang Y, Song S, Chen H, Shi J, Xu D, Zhang H, Chen M, Zheng R. Automatic Diagnosis of Carotid Atherosclerosis Using a Portable Freehand 3-D Ultrasound Imaging System. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:266-279. [PMID: 38127609 DOI: 10.1109/tuffc.2023.3345740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The objective of this study is to develop a deep-learning-based detection and diagnosis technique for carotid atherosclerosis (CA) using a portable freehand 3-D ultrasound (US) imaging system. A total of 127 3-D carotid artery scans were acquired using a portable 3-D US system, which consisted of a handheld US scanner and an electromagnetic (EM) tracking system. A U-Net segmentation network was first applied to extract the carotid artery on 2-D transverse frame, and then, a novel 3-D reconstruction algorithm using fast dot projection (FDP) method with position regularization was proposed to reconstruct the carotid artery volume. Furthermore, a convolutional neural network (CNN) was used to classify healthy and diseased cases qualitatively. Three-dimensional volume analysis methods, including longitudinal image acquisition and stenosis grade measurement, were developed to obtain the clinical metrics quantitatively. The proposed system achieved a sensitivity of 0.71, a specificity of 0.85, and an accuracy of 0.80 for diagnosis of CA. The automatically measured stenosis grade illustrated a good correlation ( r = 0.76) with the experienced expert measurement. The developed technique based on 3-D US imaging can be applied to the automatic diagnosis of CA. The proposed deep-learning-based technique was specially designed for a portable 3-D freehand US system, which can provide a more convenient CA examination and decrease the dependence on the clinician's experience.
Collapse
|
6
|
Wulamu A, Luo J, Chen S, Zheng H, Wang T, Yang R, Jiao L, Zhang T. CASMatching strategy for automated detection and quantification of carotid artery stenosis based on digital subtraction angiography. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107871. [PMID: 37925855 DOI: 10.1016/j.cmpb.2023.107871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/16/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Automated detection and quantification of carotid artery stenosis is a crucial task in establishing a computer-aided diagnostic system for brain diseases. Digital subtraction angiography (DSA) is known as the "gold standard" for carotid stenosis diagnosis. It is commonly used to identify carotid artery stenosis and measure morphological indices of the stenosis. However, using deep learning to detect stenosis based on DSA images and further quantitatively predicting the morphological indices remain a challenge due the absence of prior work. In this paper, we propose a quantitative method for predicting morphological indices of carotid stenosis. METHODS Our method adopts a two-stage pipeline, first locating regions suitable for predicting morphological indices by object detection model, and then using a regression model to predict indices. A novel Carotid Artery Stenosis Matching (CASMatching) strategy is introduced into the object detection to model the matching relationship between a stenosis and multiple normal vessel segments. The proposed Match-ness branch predicts a Match-ness score for each normal vessel segment to indicate the degree of matching to the stenosis. A novel Direction Distance-IoU (2DIoU) loss based on the Distance-IoU loss is proposed to make the model focused more on the bounding box regression in the direction of vessel extension. After detection, the normal vessel segment with the highest Match-ness score and the stenosis are intercepted from the original image, then fed into a regression model to predict morphological indices and calculate the degree of stenosis. RESULTS Our method is trained and evaluated on a dataset collected from three different manufacturers' monoplane X-ray systems. The results show that the proposed components in the object detector substantially improve the detection performance of normal vascular segments. For the prediction of morphological indices, our model achieves Mean Absolute Error of 0.378, 0.221, 4.9 on reference vessel diameter (RVD), minimum lumen diameter (MLD) and stenosis degree. CONCLUSIONS Our method can precisely localize the carotid stenosis and the normal vessel segment suitable for predicting RVD of the stenosis, and further achieve accurate quantification, providing a novel solution for the quantification of carotid artery stenosis.
Collapse
Affiliation(s)
- Aziguli Wulamu
- Department of Computer, School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), Beijing, China; Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing, China.
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (China-INI), Beijing, China
| | - Saian Chen
- Department of Computer, School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), Beijing, China; Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing, China
| | - Han Zheng
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of AI and Information Processing (Hechi University), Hechi, Guangxi 546300, China.
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (China-INI), Beijing, China
| | - Renjie Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (China-INI), Beijing, China; Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Taohong Zhang
- Department of Computer, School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), Beijing, China; Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing, China.
| |
Collapse
|
7
|
Dubey AK, Chabert GL, Carriero A, Pasche A, Danna PSC, Agarwal S, Mohanty L, Nillmani, Sharma N, Yadav S, Jain A, Kumar A, Kalra MK, Sobel DW, Laird JR, Singh IM, Singh N, Tsoulfas G, Fouda MM, Alizad A, Kitas GD, Khanna NN, Viskovic K, Kukuljan M, Al-Maini M, El-Baz A, Saba L, Suri JS. Ensemble Deep Learning Derived from Transfer Learning for Classification of COVID-19 Patients on Hybrid Deep-Learning-Based Lung Segmentation: A Data Augmentation and Balancing Framework. Diagnostics (Basel) 2023; 13:1954. [PMID: 37296806 PMCID: PMC10252539 DOI: 10.3390/diagnostics13111954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND AND MOTIVATION Lung computed tomography (CT) techniques are high-resolution and are well adopted in the intensive care unit (ICU) for COVID-19 disease control classification. Most artificial intelligence (AI) systems do not undergo generalization and are typically overfitted. Such trained AI systems are not practical for clinical settings and therefore do not give accurate results when executed on unseen data sets. We hypothesize that ensemble deep learning (EDL) is superior to deep transfer learning (TL) in both non-augmented and augmented frameworks. METHODOLOGY The system consists of a cascade of quality control, ResNet-UNet-based hybrid deep learning for lung segmentation, and seven models using TL-based classification followed by five types of EDL's. To prove our hypothesis, five different kinds of data combinations (DC) were designed using a combination of two multicenter cohorts-Croatia (80 COVID) and Italy (72 COVID and 30 controls)-leading to 12,000 CT slices. As part of generalization, the system was tested on unseen data and statistically tested for reliability/stability. RESULTS Using the K5 (80:20) cross-validation protocol on the balanced and augmented dataset, the five DC datasets improved TL mean accuracy by 3.32%, 6.56%, 12.96%, 47.1%, and 2.78%, respectively. The five EDL systems showed improvements in accuracy of 2.12%, 5.78%, 6.72%, 32.05%, and 2.40%, thus validating our hypothesis. All statistical tests proved positive for reliability and stability. CONCLUSION EDL showed superior performance to TL systems for both (a) unbalanced and unaugmented and (b) balanced and augmented datasets for both (i) seen and (ii) unseen paradigms, validating both our hypotheses.
Collapse
Affiliation(s)
- Arun Kumar Dubey
- Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India
| | - Gian Luca Chabert
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy
| | - Alessandro Carriero
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy
| | - Alessio Pasche
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Pietro S. C. Danna
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA
| | - Lopamudra Mohanty
- ABES Engineering College, Ghaziabad 201009, India
- Department of Computer Science Engineering, Bennett University, Greater Noida 201310, India
| | - Nillmani
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Neeraj Sharma
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sarita Yadav
- Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India
| | - Achin Jain
- Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India
| | - Ashish Kumar
- Department of Computer Science Engineering, Bennett University, Greater Noida 201310, India
| | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - David W. Sobel
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era, Deemed to be University, Dehradun 248002, India
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Azra Alizad
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - Melita Kukuljan
- Department of Interventional and Diagnostic Radiology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology & Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | - Ayman El-Baz
- Biomedical Engineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
8
|
Yuan Y, Li C, Xu L, Zhu S, Hua Y, Zhang J. CSM-Net: Automatic joint segmentation of intima-media complex and lumen in carotid artery ultrasound images. Comput Biol Med 2022; 150:106119. [PMID: 37859275 DOI: 10.1016/j.compbiomed.2022.106119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/25/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
Abstract
The intima-media thickness (IMT) is an effective biomarker for atherosclerosis, which is commonly measured by ultrasound technique. However, the intima-media complex (IMC) segmentation for the IMT is challenging due to confused IMC boundaries and various noises. In this paper, we propose a flexible method CSM-Net for the joint segmentation of IMC and Lumen in carotid ultrasound images. Firstly, the cascaded dilated convolutions combined with the squeeze-excitation module are introduced for exploiting more contextual features on the highest-level layer of the encoder. Furthermore, a triple spatial attention module is utilized for emphasizing serviceable features on each decoder layer. Besides, a multi-scale weighted hybrid loss function is employed to resolve the class-imbalance issues. The experiments are conducted on a private dataset of 100 images for IMC and Lumen segmentation, as well as on two public datasets of 1600 images for IMC segmentation. For the private dataset, our method obtain the IMC Dice, Lumen Dice, Precision, Recall, and F1 score of 0.814 ± 0.061, 0.941 ± 0.024, 0.911 ± 0.044, 0.916 ± 0.039, and 0.913 ± 0.027, respectively. For the public datasets, we obtain the IMC Dice, Precision, Recall, and F1 score of 0.885 ± 0.067, 0.885 ± 0.070, 0.894 ± 0.089, and 0.885 ± 0.067, respectively. The results demonstrate that the proposed method precedes some cutting-edge methods, and the ablation experiments show the validity of each module. The proposed method may be useful for the IMC segmentation of carotid ultrasound images in the clinic. Our code is publicly available at https://github.com/yuanyc798/US-IMC-code.
Collapse
Affiliation(s)
- Yanchao Yuan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Hefei Innovation Research Institute, Beihang University, Hefei, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Cancheng Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Hefei Innovation Research Institute, Beihang University, Hefei, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Lu Xu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Hefei Innovation Research Institute, Beihang University, Hefei, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Shangming Zhu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Yang Hua
- Department of Vascular Ultrasonography, XuanWu Hospital, Capital Medical University, Beijing, China; Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Jicong Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Hefei Innovation Research Institute, Beihang University, Hefei, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China.
| |
Collapse
|
9
|
Agarwal M, Agarwal S, Saba L, Chabert GL, Gupta S, Carriero A, Pasche A, Danna P, Mehmedovic A, Faa G, Shrivastava S, Jain K, Jain H, Jujaray T, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Sobel DW, Miner M, Balestrieri A, Sfikakis PP, Tsoulfas G, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Yadav RR, Nagy F, Kincses ZT, Ruzsa Z, Naidu S, Viskovic K, Kalra MK, Suri JS. Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: A multicenter study using COVLIAS 2.0. Comput Biol Med 2022; 146:105571. [PMID: 35751196 PMCID: PMC9123805 DOI: 10.1016/j.compbiomed.2022.105571] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND COVLIAS 1.0: an automated lung segmentation was designed for COVID-19 diagnosis. It has issues related to storage space and speed. This study shows that COVLIAS 2.0 uses pruned AI (PAI) networks for improving both storage and speed, wiliest high performance on lung segmentation and lesion localization. METHOD ology: The proposed study uses multicenter ∼9,000 CT slices from two different nations, namely, CroMed from Croatia (80 patients, experimental data), and NovMed from Italy (72 patients, validation data). We hypothesize that by using pruning and evolutionary optimization algorithms, the size of the AI models can be reduced significantly, ensuring optimal performance. Eight different pruning techniques (i) differential evolution (DE), (ii) genetic algorithm (GA), (iii) particle swarm optimization algorithm (PSO), and (iv) whale optimization algorithm (WO) in two deep learning frameworks (i) Fully connected network (FCN) and (ii) SegNet were designed. COVLIAS 2.0 was validated using "Unseen NovMed" and benchmarked against MedSeg. Statistical tests for stability and reliability were also conducted. RESULTS Pruning algorithms (i) FCN-DE, (ii) FCN-GA, (iii) FCN-PSO, and (iv) FCN-WO showed improvement in storage by 92.4%, 95.3%, 98.7%, and 99.8% respectively when compared against solo FCN, and (v) SegNet-DE, (vi) SegNet-GA, (vii) SegNet-PSO, and (viii) SegNet-WO showed improvement by 97.1%, 97.9%, 98.8%, and 99.2% respectively when compared against solo SegNet. AUC > 0.94 (p < 0.0001) on CroMed and > 0.86 (p < 0.0001) on NovMed data set for all eight EA model. PAI <0.25 s per image. DenseNet-121-based Grad-CAM heatmaps showed validation on glass ground opacity lesions. CONCLUSIONS Eight PAI networks that were successfully validated are five times faster, storage efficient, and could be used in clinical settings.
Collapse
Affiliation(s)
- Mohit Agarwal
- Department of Computer Science Engineering, Bennett University, India
| | - Sushant Agarwal
- Department of Computer Science Engineering, PSIT, Kanpur, India; Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Gian Luca Chabert
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Suneet Gupta
- Department of Computer Science Engineering, Bennett University, India
| | - Alessandro Carriero
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Alessio Pasche
- Depart of Radiology, "Maggiore della Carità" Hospital, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Pietro Danna
- Depart of Radiology, "Maggiore della Carità" Hospital, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | | | - Gavino Faa
- Department of Pathology - AOU of Cagliari, Italy
| | - Saurabh Shrivastava
- College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad, 244001, India
| | - Kanishka Jain
- College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad, 244001, India
| | - Harsh Jain
- College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad, 244001, India
| | - Tanay Jujaray
- Dept of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | | | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | | | - Amer M Johri
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - David W Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, Thessaloniki, Greece
| | | | | | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK; Arthritis Research UK Epidemiology Unit, Manchester University, Manchester, UK
| | - Jagjit S Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, Canada
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and Univ. of Nicosia Medical School, Cyprus
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | | | - Mostafa Fatemi
- Dept. of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, MN, USA
| | - Azra Alizad
- Dept. of Radiology, Mayo Clinic College of Medicine and Science, MN, USA
| | | | | | - Frence Nagy
- Department of Radiology, University of Szeged, 6725, Hungary
| | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Budapest, Hungary
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN, USA
| | | | - Manudeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jasjit S Suri
- College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad, 244001, India; Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
10
|
Suri JS, Agarwal S, Chabert GL, Carriero A, Paschè A, Danna PSC, Saba L, Mehmedović A, Faa G, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou AD, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Nagy F, Ruzsa Z, Fouda MM, Naidu S, Viskovic K, Kalra MK. COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans. Diagnostics (Basel) 2022; 12:1482. [PMID: 35741292 PMCID: PMC9221733 DOI: 10.3390/diagnostics12061482] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023] Open
Abstract
Background: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the “COVLIAS 2.0-cXAI” system using four kinds of class activation maps (CAM) models. Methodology: Our cohort consisted of ~6000 CT slices from two sources (Croatia, 80 COVID-19 patients and Italy, 15 control patients). COVLIAS 2.0-cXAI design consisted of three stages: (i) automated lung segmentation using hybrid deep learning ResNet-UNet model by automatic adjustment of Hounsfield units, hyperparameter optimization, and parallel and distributed training, (ii) classification using three kinds of DenseNet (DN) models (DN-121, DN-169, DN-201), and (iii) validation using four kinds of CAM visualization techniques: gradient-weighted class activation mapping (Grad-CAM), Grad-CAM++, score-weighted CAM (Score-CAM), and FasterScore-CAM. The COVLIAS 2.0-cXAI was validated by three trained senior radiologists for its stability and reliability. The Friedman test was also performed on the scores of the three radiologists. Results: The ResNet-UNet segmentation model resulted in dice similarity of 0.96, Jaccard index of 0.93, a correlation coefficient of 0.99, with a figure-of-merit of 95.99%, while the classifier accuracies for the three DN nets (DN-121, DN-169, and DN-201) were 98%, 98%, and 99% with a loss of ~0.003, ~0.0025, and ~0.002 using 50 epochs, respectively. The mean AUC for all three DN models was 0.99 (p < 0.0001). The COVLIAS 2.0-cXAI showed 80% scans for mean alignment index (MAI) between heatmaps and gold standard, a score of four out of five, establishing the system for clinical settings. Conclusions: The COVLIAS 2.0-cXAI successfully showed a cloud-based explainable AI system for lesion localization in lung CT scans.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA;
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA;
- Department of Computer Science Engineering, PSIT, Kanpur 209305, India
| | - Gian Luca Chabert
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Alessandro Carriero
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy;
| | - Alessio Paschè
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Pietro S. C. Danna
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Armin Mehmedović
- Department of Radiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (A.M.); (K.V.)
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Paramjit S. Chadha
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 17674 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Martin Miner
- Men’s Health Center, Miriam Hospital, Providence, RI 02912, USA;
| | - David W. Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 17674 Athens, Greece;
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece;
| | | | - Vikas Agarwal
- Department of Immunology, SGPIMS, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON M5G 1N8, Canada;
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Engomi 2408, Cyprus;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22902, USA;
| | - Vijay Rathore
- AtheroPoint LLC., Roseville, CA 95661, USA; (S.K.D.); (V.R.)
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Ferenc Nagy
- Internal Medicine Department, University of Szeged, 6725 Szeged, Hungary;
| | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, 1122 Budapest, Hungary;
| | - Mostafa M. Fouda
- Department of ECE, Idaho State University, Pocatello, ID 83209, USA;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Klaudija Viskovic
- Department of Radiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (A.M.); (K.V.)
| | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| |
Collapse
|
11
|
Suri JS, Agarwal S, Chabert GL, Carriero A, Paschè A, Danna PSC, Saba L, Mehmedović A, Faa G, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou AD, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Nagy F, Ruzsa Z, Fouda MM, Naidu S, Viskovic K, Kalra MK. COVLIAS 1.0 Lesion vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans. Diagnostics (Basel) 2022; 12:1283. [PMID: 35626438 PMCID: PMC9141749 DOI: 10.3390/diagnostics12051283] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Background: COVID-19 is a disease with multiple variants, and is quickly spreading throughout the world. It is crucial to identify patients who are suspected of having COVID-19 early, because the vaccine is not readily available in certain parts of the world. Methodology: Lung computed tomography (CT) imaging can be used to diagnose COVID-19 as an alternative to the RT-PCR test in some cases. The occurrence of ground-glass opacities in the lung region is a characteristic of COVID-19 in chest CT scans, and these are daunting to locate and segment manually. The proposed study consists of a combination of solo deep learning (DL) and hybrid DL (HDL) models to tackle the lesion location and segmentation more quickly. One DL and four HDL models—namely, PSPNet, VGG-SegNet, ResNet-SegNet, VGG-UNet, and ResNet-UNet—were trained by an expert radiologist. The training scheme adopted a fivefold cross-validation strategy on a cohort of 3000 images selected from a set of 40 COVID-19-positive individuals. Results: The proposed variability study uses tracings from two trained radiologists as part of the validation. Five artificial intelligence (AI) models were benchmarked against MedSeg. The best AI model, ResNet-UNet, was superior to MedSeg by 9% and 15% for Dice and Jaccard, respectively, when compared against MD 1, and by 4% and 8%, respectively, when compared against MD 2. Statistical tests—namely, the Mann−Whitney test, paired t-test, and Wilcoxon test—demonstrated its stability and reliability, with p < 0.0001. The online system for each slice was <1 s. Conclusions: The AI models reliably located and segmented COVID-19 lesions in CT scans. The COVLIAS 1.0Lesion lesion locator passed the intervariability test.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA;
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA;
- Department of Computer Science Engineering, PSIT, Kanpur 209305, India
| | - Gian Luca Chabert
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Alessandro Carriero
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy;
| | - Alessio Paschè
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Pietro S. C. Danna
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Armin Mehmedović
- University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (A.M.); (K.V.)
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Paramjit S. Chadha
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 17674 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Martin Miner
- Men’s Health Center, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece;
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada;
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia 2408, Cyprus;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22908, USA;
| | - Vijay Rathore
- AtheroPoint LLC, Roseville, CA 95661, USA; (S.K.D.); (V.R.)
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Ferenc Nagy
- Internal Medicine Department, University of Szeged, 6725 Szeged, Hungary;
| | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, 6725 Szeged, Hungary;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Klaudija Viskovic
- University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (A.M.); (K.V.)
| | - Manudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| |
Collapse
|
12
|
A hybrid deep learning paradigm for carotid plaque tissue characterization and its validation in multicenter cohorts using a supercomputer framework. Comput Biol Med 2021; 141:105131. [PMID: 34922173 DOI: 10.1016/j.compbiomed.2021.105131] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/20/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Early and automated detection of carotid plaques prevents strokes, which are the second leading cause of death worldwide according to the World Health Organization. Artificial intelligence (AI) offers automated solutions for plaque tissue characterization. Recently, solo deep learning (SDL) models have been used, but they do not take advantage of the tandem connectivity offered by AI's hybrid nature. Therefore, this study explores the use of hybrid deep learning (HDL) models in a multicenter framework, making this study the first of its kind. METHODS We hypothesize that HDL techniques perform better than SDL and transfer learning (TL) techniques. We propose two kinds of HDL frameworks: (i) the fusion of two SDLs (Inception with ResNet) or (ii) 10 other kinds of tandem models that fuse SDL with ML. The system Atheromatic™ 2.0HDL (AtheroPoint, CA, USA) was designed on an augmentation framework and three kinds of loss functions (cross-entropy, hinge, and mean-square-error) during training to determine the best optimization paradigm. These 11 combined HDL models were then benchmarked against one SDL model and five types of TL models; thus, this study considers a total of 17 AI models. RESULTS Among the 17 AI models, the best performing HDL system was that comprising CNN and decision tree (DT), as its accuracy and area-under-the-curve were 99.78 ± 1.05% and 0.99 (p<0.0001), respectively. These values are 6.4% and 3.2% better than those recorded for the SDL and TL models, respectively. We validated the performance of the HDL models with diagnostics odds ratio (DOR) and Cohen and Kappa statistics; here, HDL outperformed DL and TL by 23% and 7%, respectively. The online system ran in <2 s. CONCLUSION HDL is a fast, reliable, and effective tool for characterizing the carotid plaque for early stroke risk stratification.
Collapse
|
13
|
Jain PK, Sharma N, Saba L, Paraskevas KI, Kalra MK, Johri A, Laird JR, Nicolaides AN, Suri JS. Unseen Artificial Intelligence-Deep Learning Paradigm for Segmentation of Low Atherosclerotic Plaque in Carotid Ultrasound: A Multicenter Cardiovascular Study. Diagnostics (Basel) 2021; 11:2257. [PMID: 34943494 PMCID: PMC8699942 DOI: 10.3390/diagnostics11122257] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The early detection of carotid wall plaque is recommended in the prevention of cardiovascular disease (CVD) in moderate-risk patients. Previous techniques for B-mode carotid atherosclerotic wall plaque segmentation used artificial intelligence (AI) methods on monoethnic databases, where training and testing are from the "same" ethnic group ("Seen AI"). Therefore, the versatility of the system is questionable. This is the first study of its kind that uses the "Unseen AI" paradigm where training and testing are from "different" ethnic groups. We hypothesized that deep learning (DL) models should perform in 10% proximity between "Unseen AI" and "Seen AI". METHODOLOGY Two cohorts from multi-ethnic groups (330 Japanese and 300 Hong Kong (HK)) were used for the validation of our hypothesis. We used a four-layered UNet architecture for the segmentation of the atherosclerotic wall with low plaque. "Unseen AI" (training: Japanese, testing: HK or vice versa) and "Seen AI" experiments (single ethnicity or mixed ethnicity) were performed. Evaluation was conducted by measuring the wall plaque area. Statistical tests were conducted for its stability and reliability. RESULTS When using the UNet DL architecture, the "Unseen AI" pair one (Training: 330 Japanese and Testing: 300 HK), the mean accuracy, dice-similarity, and correlation-coefficient were 98.55, 78.38, and 0.80 (p < 0.0001), respectively, while for "Unseen AI" pair two (Training: 300 HK and Testing: 330 Japanese), these were 98.67, 82.49, and 0.87 (p < 0.0001), respectively. Using "Seen AI", the same parameters were 99.01, 86.89 and 0.92 (p < 0.0001), respectively. CONCLUSION We demonstrated that "Unseen AI" was in close proximity (<10%) to "Seen AI", validating our DL model for low atherosclerotic wall plaque segmentation. The online system runs < 1 s.
Collapse
Affiliation(s)
- Pankaj K. Jain
- School of Biomedical Engineering, IIT (BHU), Varanasi 221005, India; (P.K.J.); (N.S.)
| | - Neeraj Sharma
- School of Biomedical Engineering, IIT (BHU), Varanasi 221005, India; (P.K.J.); (N.S.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy;
| | | | - Mandeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| | - Amer Johri
- Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Andrew N. Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia 1700, Cyprus;
| | - Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
14
|
Munjral S, Ahluwalia P, Jamthikar AD, Puvvula A, Saba L, Faa G, Singh IM, Chadha PS, Turk M, Johri AM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra P, Agarwal V, Kitas GD, Kolluri R, Teji J, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Viswanathan V, Krishnan PK, Omerzu T, Naidu S, Nicolaides A, Suri JS. Nutrition, atherosclerosis, arterial imaging, cardiovascular risk stratification, and manifestations in COVID-19 framework: a narrative review. FRONT BIOSCI-LANDMRK 2021; 26:1312-1339. [PMID: 34856770 DOI: 10.52586/5026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
Background: Atherosclerosis is the primary cause of the cardiovascular disease (CVD). Several risk factors lead to atherosclerosis, and altered nutrition is one among those. Nutrition has been ignored quite often in the process of CVD risk assessment. Altered nutrition along with carotid ultrasound imaging-driven atherosclerotic plaque features can help in understanding and banishing the problems associated with the late diagnosis of CVD. Artificial intelligence (AI) is another promisingly adopted technology for CVD risk assessment and management. Therefore, we hypothesize that the risk of atherosclerotic CVD can be accurately monitored using carotid ultrasound imaging, predicted using AI-based algorithms, and reduced with the help of proper nutrition. Layout: The review presents a pathophysiological link between nutrition and atherosclerosis by gaining a deep insight into the processes involved at each stage of plaque development. After targeting the causes and finding out results by low-cost, user-friendly, ultrasound-based arterial imaging, it is important to (i) stratify the risks and (ii) monitor them by measuring plaque burden and computing risk score as part of the preventive framework. Artificial intelligence (AI)-based strategies are used to provide efficient CVD risk assessments. Finally, the review presents the role of AI for CVD risk assessment during COVID-19. Conclusions: By studying the mechanism of low-density lipoprotein formation, saturated and trans fat, and other dietary components that lead to plaque formation, we demonstrate the use of CVD risk assessment due to nutrition and atherosclerosis disease formation during normal and COVID times. Further, nutrition if included, as a part of the associated risk factors can benefit from atherosclerotic disease progression and its management using AI-based CVD risk assessment.
Collapse
Affiliation(s)
- Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Superspeciality Hospital, 110058 New Delhi, India
| | - Ankush D Jamthikar
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
- Visvesvaraya National Institute of Technology, 440001 Nagpur, India
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
- Annu's Hospitals for Skin and Diabetes, 24002 Nellore, AP, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 09125 Cagliari, Italy
| | - Gavino Faa
- Department of Pathology, AOU of Cagliari, 09125 Cagliari, Italy
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | - Paramjit S Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27749 Delmenhorst, Germany
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, ON K7L, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001 New Delhi, India
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 106 71 Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02906, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, RI 02903, USA
| | - David W Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02906, USA
| | | | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 106 71 Athens, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, 546 30 Thessaloniki, Greece
| | | | - Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226018 Lucknow, UP, India
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226018 Lucknow, UP, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, DY2 8 Dudley, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, M13 9 Manchester, UK
| | | | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60629, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON M5H, Canada
| | - Surinder K Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001 New Delhi, India
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95823, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, MN 55441, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, MN 55441, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor MVD Research Centre, 600003 Chennai, India
| | - P K Krishnan
- Neurology Department, Fortis Hospital, 562123 Bangalore, India
| | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, 999058 Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| |
Collapse
|
15
|
Jain PK, Sharma N, Saba L, Paraskevas KI, Kalra MK, Johri A, Nicolaides AN, Suri JS. Automated deep learning-based paradigm for high-risk plaque detection in B-mode common carotid ultrasound scans: an asymptomatic Japanese cohort study. INT ANGIOL 2021; 41:9-23. [PMID: 34825801 DOI: 10.23736/s0392-9590.21.04771-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The death due to stroke is caused by embolism of the arteries which is due to the rupture of the atherosclerotic lesions in carotid arteries. The lesion formation is over time, and thus, early screening is recommended for asymptomatic and moderate-risk patients. The previous techniques adopted conventional methods or semi-automated and, more recently, machine learning solutions. A handful of studies have emerged based on solo deep learning (SDL) models such as UNet architecture. METHODS The proposed research is the first to adopt hybrid deep learning (HDL) artificial intelligence models such as SegNet-UNet. This model is benchmarked against UNet and advanced conventional models using scale-space such as AtheroEdge 2.0 (AtheroPoint, CA, USA). All our resultant statistics of the three systems were in the order of UNet, SegNet-UNet, and AtheroEdge 2.0. RESULTS Using the database of 379 ultrasound scans from a Japanese cohort of 190 patients having moderate risk and implementing the cross-validation deep learning framework, our system performance using area-under-the-curve (AUC) for UNet, SegNet-UNet, and AtheroEdge 2.0 were 0.93, 0.94, and 0.95 (p<0.001), respectively. The coefficient of correlation between the three systems and ground truth (GT) were: 0.82, 0.89, and 0.85 (p<0.001 for all three), respectively. The mean absolute area error for the three systems against manual GT was 4.07±4.70 mm2, 3.11±3.92 mm2, 3.72±4.76 mm2, respectively, proving the superior performance SegNet-UNet against UNet and AtheroEdge 2.0, respectively. Statistical tests were also conducted for their reliability and stability. CONCLUSIONS The proposed study demonstrates a fast, accurate, and reliable solution for early detection and quantification of plaque lesions in common carotid artery ultrasound scans. The system runs on a test US image in < 1 second, proving overall performance to be clinically reliable.
Collapse
Affiliation(s)
- Pankaj K Jain
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Neeraj Sharma
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Luca Saba
- Department of Radiology, Cagliari University Hospital, Cagliari, Italy
| | | | - Mandeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
16
|
Suri JS, Agarwal S, Elavarthi P, Pathak R, Ketireddy V, Columbu M, Saba L, Gupta SK, Faa G, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Ferenc N, Ruzsa Z, Gupta A, Naidu S, Kalra MK. Inter-Variability Study of COVLIAS 1.0: Hybrid Deep Learning Models for COVID-19 Lung Segmentation in Computed Tomography. Diagnostics (Basel) 2021; 11:2025. [PMID: 34829372 PMCID: PMC8625039 DOI: 10.3390/diagnostics11112025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
Background: For COVID-19 lung severity, segmentation of lungs on computed tomography (CT) is the first crucial step. Current deep learning (DL)-based Artificial Intelligence (AI) models have a bias in the training stage of segmentation because only one set of ground truth (GT) annotations are evaluated. We propose a robust and stable inter-variability analysis of CT lung segmentation in COVID-19 to avoid the effect of bias. Methodology: The proposed inter-variability study consists of two GT tracers for lung segmentation on chest CT. Three AI models, PSP Net, VGG-SegNet, and ResNet-SegNet, were trained using GT annotations. We hypothesized that if AI models are trained on the GT tracings from multiple experience levels, and if the AI performance on the test data between these AI models is within the 5% range, one can consider such an AI model robust and unbiased. The K5 protocol (training to testing: 80%:20%) was adapted. Ten kinds of metrics were used for performance evaluation. Results: The database consisted of 5000 CT chest images from 72 COVID-19-infected patients. By computing the coefficient of correlations (CC) between the output of the two AI models trained corresponding to the two GT tracers, computing their differences in their CC, and repeating the process for all three AI-models, we show the differences as 0%, 0.51%, and 2.04% (all < 5%), thereby validating the hypothesis. The performance was comparable; however, it had the following order: ResNet-SegNet > PSP Net > VGG-SegNet. Conclusions: The AI models were clinically robust and stable during the inter-variability analysis on the CT lung segmentation on COVID-19 patients.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA; (S.A.); (P.E.)
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA; (S.A.); (P.E.)
- Department of Computer Science Engineering, PSIT, Kanpur 209305, India
| | - Pranav Elavarthi
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA; (S.A.); (P.E.)
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312, USA
| | - Rajesh Pathak
- Department of Computer Science Engineering, Rawatpura Sarkar University, Raipur 492001, India;
| | | | - Marta Columbu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Suneet K. Gupta
- Department of Computer Science, Bennett University, Noida 201310, India;
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Paramjit S. Chadha
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 10558 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Martin Miner
- Men’s Health Center, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National & Kapodistrian University of Athens, 10679 Athens, Greece;
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, 54636 Thessaloniki, Greece;
| | | | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PT, UK
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada;
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia 2368, Cyprus;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA;
| | - Vijay Rathore
- AtheroPoint LLC, Roseville, CA 95611, USA; (S.K.D.); (V.R.)
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Nagy Ferenc
- Internal Medicine Department, University of Szeged, 6725 Szeged, Hungary;
| | - Zoltan Ruzsa
- Zoltan Invasive Cardiology Division, University of Szeged, 6725 Szeged, Hungary;
| | - Archna Gupta
- Radiology Department, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| |
Collapse
|
17
|
Li L, Hu Z, Huang Y, Zhu W, Wang Y, Chen M, Yu J. Automatic multi-plaque tracking and segmentation in ultrasonic videos. Med Image Anal 2021; 74:102201. [PMID: 34562695 DOI: 10.1016/j.media.2021.102201] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 01/14/2023]
Abstract
Carotid plaque tracking and segmentation in ultrasound videos is the premise for subsequent plaque property evaluation and treatment plan development. However, the task is quite challenging, as it needs to address the problems of poor image quality, plaque shape variations among frames, the existence of multiple plaques, etc. To overcome these challenges, we propose a new automatic multi-plaque tracking and segmentation (AMPTS) framework. AMPTS consists of three modules. The first module is a multi-object detector, in which a Dual Attention U-Net is proposed to detect multiple plaques and vessels simultaneously. The second module is a set of single-object trackers that can utilize the previous tracking results efficiently and achieve stable tracking of the current target by using channel attention and a ranking strategy. To make the first module and the second module work together, a parallel tracking module based on a simplified 'tracking-by-detection' mechanism is proposed to solve the challenge of tracking object variation. Extensive experiments are conducted to compare the proposed method with several state-of-the-art deep learning based methods. The experimental results demonstrate that the proposed method has high accuracy and generalizability with a Dice similarity coefficient of 0.83 which is 0.16, 0.06 and 0.27 greater than MAST (Lai et al., 2020), Track R-CNN (Voigtlaender et al., 2019) and VSD (Yang et al., 2019) respectively and has made significant improvements on seven other indicators. In the additional Testing set 2, our method achieved a Dice similarity coefficient of 0.80, an accuracy of 0.79, a precision of 0.91, a Recall 0.70, a F1 score of 0.79, an AP@0.5 of 0.92, an AP@0.7 of 0.74, and an expected average overlap of 0.79. Numerous ablation studies suggest the effectiveness of each proposed component and the great potential for multiple carotid plaques tracking and segmentation in clinical practice.
Collapse
Affiliation(s)
- Leyin Li
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Zhaoyu Hu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yunqian Huang
- Department of Ultrasound, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenqian Zhu
- Department of Ultrasound, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Wang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Man Chen
- Department of Ultrasound, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Jinhua Yu
- School of Information Science and Technology, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Suri JS, Agarwal S, Pathak R, Ketireddy V, Columbu M, Saba L, Gupta SK, Faa G, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Frence N, Ruzsa Z, Gupta A, Naidu S, Kalra M. COVLIAS 1.0: Lung Segmentation in COVID-19 Computed Tomography Scans Using Hybrid Deep Learning Artificial Intelligence Models. Diagnostics (Basel) 2021; 11:1405. [PMID: 34441340 PMCID: PMC8392426 DOI: 10.3390/diagnostics11081405] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND COVID-19 lung segmentation using Computed Tomography (CT) scans is important for the diagnosis of lung severity. The process of automated lung segmentation is challenging due to (a) CT radiation dosage and (b) ground-glass opacities caused by COVID-19. The lung segmentation methodologies proposed in 2020 were semi- or automated but not reliable, accurate, and user-friendly. The proposed study presents a COVID Lung Image Analysis System (COVLIAS 1.0, AtheroPoint™, Roseville, CA, USA) consisting of hybrid deep learning (HDL) models for lung segmentation. METHODOLOGY The COVLIAS 1.0 consists of three methods based on solo deep learning (SDL) or hybrid deep learning (HDL). SegNet is proposed in the SDL category while VGG-SegNet and ResNet-SegNet are designed under the HDL paradigm. The three proposed AI approaches were benchmarked against the National Institute of Health (NIH)-based conventional segmentation model using fuzzy-connectedness. A cross-validation protocol with a 40:60 ratio between training and testing was designed, with 10% validation data. The ground truth (GT) was manually traced by a radiologist trained personnel. For performance evaluation, nine different criteria were selected to perform the evaluation of SDL or HDL lung segmentation regions and lungs long axis against GT. RESULTS Using the database of 5000 chest CT images (from 72 patients), COVLIAS 1.0 yielded AUC of ~0.96, ~0.97, ~0.98, and ~0.96 (p-value < 0.001), respectively within 5% range of GT area, for SegNet, VGG-SegNet, ResNet-SegNet, and NIH. The mean Figure of Merit using four models (left and right lung) was above 94%. On benchmarking against the National Institute of Health (NIH) segmentation method, the proposed model demonstrated a 58% and 44% improvement in ResNet-SegNet, 52% and 36% improvement in VGG-SegNet for lung area, and lung long axis, respectively. The PE statistics performance was in the following order: ResNet-SegNet > VGG-SegNet > NIH > SegNet. The HDL runs in <1 s on test data per image. CONCLUSIONS The COVLIAS 1.0 system can be applied in real-time for radiology-based clinical settings.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA;
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA;
- Department of Computer Science Engineering, PSIT, Kanpur 209305, India
| | - Rajesh Pathak
- Department of Computer Science Engineering, Rawatpura Sarkar University, Raipur 492015, India;
| | | | - Marta Columbu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Suneet K. Gupta
- Department of Computer Science, Bennett University, Noida 201310, India;
| | - Gavino Faa
- Department of Pathology—AOU of Cagliari, 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Paramjit S. Chadha
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 208011, India;
| | - Klaudija Viskovic
- Department of Radiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 176 74 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence City, RI 02912, USA; (G.P.); (D.W.S.)
| | - Martin Miner
- Men’s Health Center, Miriam Hospital Providence, Providence, RI 02906, USA;
| | - David W. Sobel
- Minimally Invasive Urology Institute, Brown University, Providence City, RI 02912, USA; (G.P.); (D.W.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - George Tsoulfas
- Department of Transplantation Surgery, Aristoteleion University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON M5G 1N8, Canada;
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia 2408, Cyprus;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA;
| | - Vijay Rathore
- Athero Point LLC, Roseville, CA 95611, USA; (S.K.D.); (V.R.)
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Nagy Frence
- Department of Internal Medicines, Invasive Cardiology Division, University of Szeged, 6720 Szeged, Hungary; (N.F.); (Z.R.)
| | - Zoltan Ruzsa
- Department of Internal Medicines, Invasive Cardiology Division, University of Szeged, 6720 Szeged, Hungary; (N.F.); (Z.R.)
| | - Archna Gupta
- Radiology Department, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55455, USA;
| | - Mannudeep Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| |
Collapse
|
19
|
Jain PK, Sharma N, Giannopoulos AA, Saba L, Nicolaides A, Suri JS. Hybrid deep learning segmentation models for atherosclerotic plaque in internal carotid artery B-mode ultrasound. Comput Biol Med 2021; 136:104721. [PMID: 34371320 DOI: 10.1016/j.compbiomed.2021.104721] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022]
Abstract
The automated and accurate carotid plaque segmentation in B-mode ultrasound (US) is an essential part of stroke risk stratification. Previous segmented methods used AtheroEdge™ 2.0 (AtheroPoint™, Roseville, CA) for the common carotid artery (CCA). This study focuses on automated plaque segmentation in the internal carotid artery (ICA) using solo deep learning (SDL) and hybrid deep learning (HDL) models. The methodology consists of a novel design of 10 types of SDL/HDL models (AtheroEdge™ 3.0 systems (AtheroPoint™, Roseville, CA) with a depth of four layers each. Five of the models use cross-entropy (CE)-loss, and the other five models use Dice similarity coefficient (DSC)-loss functions derived from UNet, UNet+, SegNet, SegNet-UNet, and SegNet-UNet+. The K10 protocol (Train:Test:90%:10%) was applied for all 10 models for training and predicting (segmenting) the plaque region, which was then quantified to compute the plaque area in mm2. Further, the data augmentation effect was analyzed. The database consisted of 970 ICA B-mode US scans taken from 99 moderate to high-risk patients. Using the difference area threshold of 10 mm2 between ground truth (GT) and artificial intelligence (AI), the area under the curve (AUC) values were 0.91, 0.911, 0.908, 0.905, and 0.898, all with a p-value of <0.001 (for CE-loss models) and 0.883, 0.889, 0.905, 0.889, and 0.907, all with a p-value of <0.001 (for DSC-loss models). The correlations between the AI-based plaque area and GT plaque area were 0.98, 0.96, 0.97, 0.98, and 0.97, all with a p-value of <0.001 (for CE-loss models) and 0.98, 0.98, 0.97, 0.98, and 0.98 (for DSC-loss models). Overall, the online system performs plaque segmentation in less than 1 s. We validate our hypothesis that HDL and SDL models demonstrate comparable performance. SegNet-UNet was the best-performing hybrid architecture.
Collapse
Affiliation(s)
| | | | | | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
20
|
Saba L, Sanagala SS, Gupta SK, Koppula VK, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Misra DP, Agarwal V, Sharma AM, Viswanathan V, Rathore VS, Turk M, Kolluri R, Viskovic K, Cuadrado-Godia E, Kitas GD, Sharma N, Nicolaides A, Suri JS. Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1206. [PMID: 34430647 PMCID: PMC8350643 DOI: 10.21037/atm-20-7676] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality in the United States of America and globally. Carotid arterial plaque, a cause and also a marker of such CVD, can be detected by various non-invasive imaging modalities such as magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound (US). Characterization and classification of carotid plaque-type in these imaging modalities, especially into symptomatic and asymptomatic plaque, helps in the planning of carotid endarterectomy or stenting. It can be challenging to characterize plaque components due to (I) partial volume effect in magnetic resonance imaging (MRI) or (II) varying Hausdorff values in plaque regions in CT, and (III) attenuation of echoes reflected by the plaque during US causing acoustic shadowing. Artificial intelligence (AI) methods have become an indispensable part of healthcare and their applications to the non-invasive imaging technologies such as MRI, CT, and the US. In this narrative review, three main types of AI models (machine learning, deep learning, and transfer learning) are analyzed when applied to MRI, CT, and the US. A link between carotid plaque characteristics and the risk of coronary artery disease is presented. With regard to characterization, we review tools and techniques that use AI models to distinguish carotid plaque types based on signal processing and feature strengths. We conclude that AI-based solutions offer an accurate and robust path for tissue characterization and classification for carotid artery plaque imaging in all three imaging modalities. Due to cost, user-friendliness, and clinical effectiveness, AI in the US has dominated the most.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (AOU), Cagliari, Italy
| | - Skandha S. Sanagala
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India
- CSE Department, Bennett University, Greater Noida, UP, India
| | - Suneet K. Gupta
- CSE Department, Bennett University, Greater Noida, UP, India
| | - Vijaya K. Koppula
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, Ontario, Canada
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, Rhode Island, USA
| | - Martin Miner
- Men’s Health Center, Miriam Hospital Providence, Rhode Island, USA
| | | | - Athanasios Protogerou
- Department of Cardiovascular Prevention, National and Kapodistrian University of Athens, Athens, Greece
| | - Durga P. Misra
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Aditya M. Sharma
- Division of Cardiovascular Medicine, University of Virginia, VA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes & Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | | | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | | | | | | | - George D. Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Neeraj Sharma
- Department of Biomedical Engineering, IIT-BHU, Banaras, UP, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia, Cyprus
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
21
|
Flores AM, Demsas F, Leeper NJ, Ross EG. Leveraging Machine Learning and Artificial Intelligence to Improve Peripheral Artery Disease Detection, Treatment, and Outcomes. Circ Res 2021; 128:1833-1850. [PMID: 34110911 PMCID: PMC8285054 DOI: 10.1161/circresaha.121.318224] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peripheral artery disease is an atherosclerotic disorder which, when present, portends poor patient outcomes. Low diagnosis rates perpetuate poor management, leading to limb loss and excess rates of cardiovascular morbidity and death. Machine learning algorithms and artificially intelligent systems have shown great promise in application to many areas in health care, such as accurately detecting disease, predicting patient outcomes, and automating image interpretation. Although the application of these technologies to peripheral artery disease are in their infancy, their promises are tremendous. In this review, we provide an introduction to important concepts in the fields of machine learning and artificial intelligence, detail the current state of how these technologies have been applied to peripheral artery disease, and discuss potential areas for future care enhancement with advanced analytics.
Collapse
Affiliation(s)
- Alyssa M Flores
- Department of Surgery, Division of Vascular Surgery (A.M.F., F.D., N.J.L., E.G.R.), Stanford University School of Medicine, CA
| | - Falen Demsas
- Department of Surgery, Division of Vascular Surgery (A.M.F., F.D., N.J.L., E.G.R.), Stanford University School of Medicine, CA
| | - Nicholas J Leeper
- Department of Surgery, Division of Vascular Surgery (A.M.F., F.D., N.J.L., E.G.R.), Stanford University School of Medicine, CA
- Department of Medicine, Division of Cardiovascular Medicine (N.J.L.), Stanford University School of Medicine, CA
- Stanford Cardiovascular Institute, CA (N.J.L., E.G.R.)
| | - Elsie Gyang Ross
- Department of Surgery, Division of Vascular Surgery (A.M.F., F.D., N.J.L., E.G.R.), Stanford University School of Medicine, CA
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, CA. (E.G.R.)
- Stanford Cardiovascular Institute, CA (N.J.L., E.G.R.)
| |
Collapse
|
22
|
Lian S, Luo Z, Feng C, Li S, Li S. APRIL: Anatomical prior-guided reinforcement learning for accurate carotid lumen diameter and intima-media thickness measurement. Med Image Anal 2021; 71:102040. [PMID: 33789178 DOI: 10.1016/j.media.2021.102040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/30/2021] [Accepted: 03/09/2021] [Indexed: 01/17/2023]
Abstract
Carotid artery lumen diameter (CALD) and carotid artery intima-media thickness (CIMT) are essential factors for estimating the risk of many cardiovascular diseases. The automatic measurement of them in ultrasound (US) images is an efficient assisting diagnostic procedure. Despite the advances, existing methods still suffer the issue of low measuring accuracy and poor prediction stability, mainly due to the following disadvantages: (1) ignore anatomical prior and prone to give anatomically inaccurate estimation; (2) require carefully designed post-processing, which may introduce more estimation errors; (3) rely on massive pixel-wise annotations during training; (4) can not estimate the uncertainty of the predictions. In this study, we propose the Anatomical Prior-guided ReInforcement Learning model (APRIL), which innovatively formulate the measurement of CALD & CIMT as an RL problem and dynamically incorporate anatomical prior (AP) into the system through a novel reward. With the guidance of AP, the designed keypoints in APRIL can avoid various anatomy impossible mis-locations, and accurately measure the CALD & CIMT based on their corresponding locations. Moreover, this formulation significantly reduces human annotation effort by only using several keypoints and can help to eliminate the extra post-processing steps. Further, we introduce an uncertainty module for measuring the prediction variance, which can guide us to adaptively rectify the estimation of those frames with considerable uncertainty. Experiments on a challenging carotid US dataset show that APRIL can achieve MAE (in pixel/mm) of 3.02±2.23 / 0.18±0.13 for CALD, and 0.96±0.70 / 0.06±0.04 for CIMT, which significantly surpass popular approaches that use more annotations.
Collapse
Affiliation(s)
- Sheng Lian
- Department of Artificial Intelligence, Xiamen University, Xiamen, Fujian, China; Digital Image Group (DIG), London, ON, Canada; School of Biomedical Engineering, Western University, London, ON, Canada
| | - Zhiming Luo
- Department of Artificial Intelligence, Xiamen University, Xiamen, Fujian, China.
| | - Cheng Feng
- Department of Ultrasound, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen Third Peoples Hospital, Shenzhen, Guangdong, China
| | - Shaozi Li
- Department of Artificial Intelligence, Xiamen University, Xiamen, Fujian, China.
| | - Shuo Li
- Digital Image Group (DIG), London, ON, Canada; School of Biomedical Engineering, Western University, London, ON, Canada.
| |
Collapse
|
23
|
Viswanathan V, Puvvula A, Jamthikar AD, Saba L, Johri AM, Kotsis V, Khanna NN, Dhanjil SK, Majhail M, Misra DP, Agarwal V, Kitas GD, Sharma AM, Kolluri R, Naidu S, Suri JS. Bidirectional link between diabetes mellitus and coronavirus disease 2019 leading to cardiovascular disease: A narrative review. World J Diabetes 2021; 12:215-237. [PMID: 33758644 PMCID: PMC7958478 DOI: 10.4239/wjd.v12.i3.215] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/20/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic where several comorbidities have been shown to have a significant effect on mortality. Patients with diabetes mellitus (DM) have a higher mortality rate than non-DM patients if they get COVID-19. Recent studies have indicated that patients with a history of diabetes can increase the risk of severe acute respiratory syndrome coronavirus 2 infection. Additionally, patients without any history of diabetes can acquire new-onset DM when infected with COVID-19. Thus, there is a need to explore the bidirectional link between these two conditions, confirming the vicious loop between "DM/COVID-19". This narrative review presents (1) the bidirectional association between the DM and COVID-19, (2) the manifestations of the DM/COVID-19 loop leading to cardiovascular disease, (3) an understanding of primary and secondary factors that influence mortality due to the DM/COVID-19 loop, (4) the role of vitamin-D in DM patients during COVID-19, and finally, (5) the monitoring tools for tracking atherosclerosis burden in DM patients during COVID-19 and "COVID-triggered DM" patients. We conclude that the bidirectional nature of DM/COVID-19 causes acceleration towards cardiovascular events. Due to this alarming condition, early monitoring of atherosclerotic burden is required in "Diabetes patients during COVID-19" or "new-onset Diabetes triggered by COVID-19 in Non-Diabetes patients".
Collapse
Affiliation(s)
- Vijay Viswanathan
- M Viswanathan Hospital for Diabetes, M Viswanathan Diabetes Research Centre, Chennai 600013, India
| | - Anudeep Puvvula
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, Andhra Pradesh, India
| | - Ankush D Jamthikar
- Department of Electronics and Communications, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Monserrato 09045, Cagliari, Italy
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Vasilios Kotsis
- 3rd Department of Internal Medicine, Hypertension Center, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki 541-24, Greece
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110020, India
| | - Surinder K Dhanjil
- Stroke Diagnosis and Monitoring Division, AtheroPoint™ LLC, CA 95661, United States
| | - Misha Majhail
- Stroke Diagnosis and Monitoring Division, AtheroPoint™, Roseville, CA 95661, United States
| | - Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Vikas Agarwal
- Departments of Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, United Kingdom
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, United Kingdom
| | - Aditya M Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Raghu Kolluri
- OhioHealth Heart and Vascular, Ohio, OH 43082, United States
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, United States
| | - Jasjit S Suri
- Stroke Diagnosis and Monitoring Division, AtheroPoint™, Roseville, CA 95661, United States
| |
Collapse
|
24
|
JAMTHIKAR AD, PUVVULA A, GUPTA D, JOHRI AM, NAMBI V, KHANNA NN, SABA L, MAVROGENI S, LAIRD JR, PAREEK G, MINER M, SFIKAKIS PP, PROTOGEROU A, KITAS GD, NICOLAIDES A, SHARMA AM, VISWANATHAN V, RATHORE VS, KOLLURI R, BHATT DL, SURI JS. Cardiovascular disease and stroke risk assessment in patients with chronic kidney disease using integration of estimated glomerular filtration rate, ultrasonic image phenotypes, and artificial intelligence: a narrative review. INT ANGIOL 2021; 40:150-164. [DOI: 10.23736/s0392-9590.20.04538-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Agarwal M, Saba L, Gupta SK, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Sharma AM, Viswanathan V, Kitas GD, Nicolaides A, Suri JS. Wilson disease tissue classification and characterization using seven artificial intelligence models embedded with 3D optimization paradigm on a weak training brain magnetic resonance imaging datasets: a supercomputer application. Med Biol Eng Comput 2021; 59:511-533. [PMID: 33547549 DOI: 10.1007/s11517-021-02322-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/18/2021] [Indexed: 01/16/2023]
Abstract
Wilson's disease (WD) is caused by copper accumulation in the brain and liver, and if not treated early, can lead to severe disability and death. WD has shown white matter hyperintensity (WMH) in the brain magnetic resonance scans (MRI) scans, but the diagnosis is challenging due to (i) subtle intensity changes and (ii) weak training MRI when using artificial intelligence (AI). Design and validate seven types of high-performing AI-based computer-aided design (CADx) systems consisting of 3D optimized classification, and characterization of WD against controls. We propose a "conventional deep convolution neural network" (cDCNN) and an "improved DCNN" (iDCNN) where rectified linear unit (ReLU) activation function was modified ensuring "differentiable at zero." Three-dimensional optimization was achieved by recording accuracy while changing the CNN layers and augmentation by several folds. WD was characterized using (i) CNN-based feature map strength and (ii) Bispectrum strengths of pixels having higher probabilities of WD. We further computed the (a) area under the curve (AUC), (b) diagnostic odds ratio (DOR), (c) reliability, and (d) stability and (e) benchmarking. Optimal results were achieved using 9 layers of CNN, with 4-fold augmentation. iDCNN yields superior performance compared to cDCNN with accuracy and AUC of 98.28 ± 1.55, 0.99 (p < 0.0001), and 97.19 ± 2.53%, 0.984 (p < 0.0001), respectively. DOR of iDCNN outperformed cDCNN fourfold. iDCNN also outperformed (a) transfer learning-based "Inception V3" paradigm by 11.92% and (b) four types of "conventional machine learning-based systems": k-NN, decision tree, support vector machine, and random forest by 55.13%, 28.36%, 15.35%, and 14.11%, respectively. The AI-based systems can potentially be useful in the early WD diagnosis. Graphical Abstract.
Collapse
Affiliation(s)
- Mohit Agarwal
- CSE Department, Bennett University, Greater Noida, UP, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Suneet K Gupta
- CSE Department, Bennett University, Greater Noida, UP, India
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Ontario, Kingston, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Providence, RI, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention, National and Kapodistrian Univ. of Athens, Athens, Greece
| | - Aditya M Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes & Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA.
| |
Collapse
|
26
|
Suri JS, Puvvula A, Majhail M, Biswas M, Jamthikar AD, Saba L, Faa G, Singh IM, Oberleitner R, Turk M, Srivastava S, Chadha PS, Suri HS, Johri AM, Nambi V, Sanches JM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Bit A, Pareek G, Miner M, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Kolluri R, Teji J, Porcu M, Al-Maini M, Agbakoba A, Sockalingam M, Sexena A, Nicolaides A, Sharma A, Rathore V, Viswanathan V, Naidu S, Bhatt DL. Integration of cardiovascular risk assessment with COVID-19 using artificial intelligence. Rev Cardiovasc Med 2020; 21:541-560. [PMID: 33387999 DOI: 10.31083/j.rcm.2020.04.236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 11/06/2022] Open
Abstract
Artificial Intelligence (AI), in general, refers to the machines (or computers) that mimic "cognitive" functions that we associate with our mind, such as "learning" and "solving problem". New biomarkers derived from medical imaging are being discovered and are then fused with non-imaging biomarkers (such as office, laboratory, physiological, genetic, epidemiological, and clinical-based biomarkers) in a big data framework, to develop AI systems. These systems can support risk prediction and monitoring. This perspective narrative shows the powerful methods of AI for tracking cardiovascular risks. We conclude that AI could potentially become an integral part of the COVID-19 disease management system. Countries, large and small, should join hands with the WHO in building biobanks for scientists around the world to build AI-based platforms for tracking the cardiovascular risk assessment during COVID-19 times and long-term follow-up of the survivors.
Collapse
Affiliation(s)
- Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
- Annu's Hospitals for Skin and Diabetes, Nellore, 524001, AP, India
| | - Misha Majhail
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
- Oakmount High School and AtheroPoint™, Roseville, 95747, CA, USA
| | | | - Ankush D Jamthikar
- Department of ECE, Visvesvaraya National Institute of Technology, Nagpur, 440010, MH, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100, Cagliari, Italy
| | - Gavino Faa
- Department of Pathology, 09100, AOU of Cagliari, Italy
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
| | | | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27749, Delmenhorst, Germany
| | - Saurabh Srivastava
- School of Computing Science & Engineering, Galgotias University, 201301, Gr. Noida, India
| | - Paramjit S Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, 95747, CA, USA
| | | | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, B0P 1R0, Ontario, Canada
| | - Vijay Nambi
- Department of Cardiology, Baylor College of Medicine, 77001, TX, USA
| | - J Miguel Sanches
- Institute of Systems and Robotics, Instituto Superior Tecnico, 1000-001, Lisboa, Portugal
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001, New Delhi, India
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 104 31, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, 94574, CA, USA
| | - Arindam Bit
- Department of Biomedical Engineering, NIT, Raipur, 783334, CG, India
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, 02901, Rhode Island, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, 02901, Rhode Island, USA
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100, Cagliari, Italy
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 104 31, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, 544 53, Thessaloniki, Greece
| | | | - Durga Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226001, UP, India
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226001, UP, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, DY1, Dudley, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, M13, Manchester, UK
| | | | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, 60601, Chicago, USA
| | - Michele Porcu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100, Cagliari, Italy
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, M3H 6A7, Toronto, Canada
| | | | | | - Ajit Sexena
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001, New Delhi, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 999058, Cyprus
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, 22901, VA, USA
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, 94203, CA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, 600001, Chennai, India
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, 55801, MN, USA
| | - Deepak L Bhatt
- Brigham and Women's Hospital Heart & Vascular Center, Harvard Medical School, Boston, 02108, MA, USA
| |
Collapse
|
27
|
Multiclass machine learning vs. conventional calculators for stroke/CVD risk assessment using carotid plaque predictors with coronary angiography scores as gold standard: a 500 participants study. Int J Cardiovasc Imaging 2020; 37:1171-1187. [DOI: 10.1007/s10554-020-02099-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
|
28
|
Low-Cost Office-Based Cardiovascular Risk Stratification Using Machine Learning and Focused Carotid Ultrasound in an Asian-Indian Cohort. J Med Syst 2020; 44:208. [DOI: 10.1007/s10916-020-01675-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
|
29
|
Jamthikar AD, Gupta D, Saba L, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Sattar N, Johri AM, Pareek G, Miner M, Sfikakis PP, Protogerou A, Viswanathan V, Sharma A, Kitas GD, Nicolaides A, Kolluri R, Suri JS. Artificial intelligence framework for predictive cardiovascular and stroke risk assessment models: A narrative review of integrated approaches using carotid ultrasound. Comput Biol Med 2020; 126:104043. [PMID: 33065389 DOI: 10.1016/j.compbiomed.2020.104043] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/10/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
RECENT FINDINGS Cardiovascular disease (CVD) is the leading cause of mortality and poses challenges for healthcare providers globally. Risk-based approaches for the management of CVD are becoming popular for recommending treatment plans for asymptomatic individuals. Several conventional predictive CVD risk models based do not provide an accurate CVD risk assessment for patients with different baseline risk profiles. Artificial intelligence (AI) algorithms have changed the landscape of CVD risk assessment and demonstrated a better performance when compared against conventional models, mainly due to its ability to handle the input nonlinear variations. Further, it has the flexibility to add risk factors derived from medical imaging modalities that image the morphology of the plaque. The integration of noninvasive carotid ultrasound image-based phenotypes with conventional risk factors in the AI framework has further provided stronger power for CVD risk prediction, so-called "integrated predictive CVD risk models." PURPOSE of the review: The objective of this review is (i) to understand several aspects in the development of predictive CVD risk models, (ii) to explore current conventional predictive risk models and their successes and challenges, and (iii) to refine the search for predictive CVD risk models using noninvasive carotid ultrasound as an exemplar in the artificial intelligence-based framework. CONCLUSION Conventional predictive CVD risk models are suboptimal and could be improved. This review examines the potential to include more noninvasive image-based phenotypes in the CVD risk assessment using powerful AI-based strategies.
Collapse
Affiliation(s)
- Ankush D Jamthikar
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, Croatia
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Naveed Sattar
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Scotland, UK
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology, National and Kapodistrian Univ. of Athens, Greece
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, United Kingdom
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia, Cyprus
| | | | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
30
|
Skandha SS, Gupta SK, Saba L, Koppula VK, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Misra DP, Agarwal V, Sharma AM, Viswanathan V, Rathore VS, Turk M, Kolluri R, Viskovic K, Cuadrado-Godia E, Kitas GD, Nicolaides A, Suri JS. 3-D optimized classification and characterization artificial intelligence paradigm for cardiovascular/stroke risk stratification using carotid ultrasound-based delineated plaque: Atheromatic™ 2.0. Comput Biol Med 2020; 125:103958. [PMID: 32927257 DOI: 10.1016/j.compbiomed.2020.103958] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE Atherosclerotic plaque tissue rupture is one of the leading causes of strokes. Early carotid plaque monitoring can help reduce cardiovascular morbidity and mortality. Manual ultrasound plaque classification and characterization methods are time-consuming and can be imprecise due to significant variations in tissue characteristics. We report a novel artificial intelligence (AI)-based plaque tissue classification and characterization system. METHODS We hypothesize that symptomatic plaque is hypoechoic due to its large lipid core and minimal collagen, as well as its heterogeneous makeup. Meanwhile, asymptomatic plaque is hyperechoic due to its small lipid core, abundant collagen, and the fact that it is often calcified. We designed a computer-aided diagnosis (CADx) system consisting of three kinds of deep learning (DL) classification paradigms: Deep Convolutional Neural Network (DCNN), Visual Geometric Group-16 (VGG16), and transfer learning, (tCNN). DCNN was 3-D optimized by varying the number of CNN layers and data augmentation frameworks. The DL systems were benchmarked against four types of machine learning (ML) classification systems, and the CADx system was characterized using two novel strategies consisting of DL mean feature strength (MFS) and a bispectrum model using higher-order spectra. RESULTS After balancing symptomatic and asymptomatic plaque classes, a five-fold augmentation process was applied, yielding 1000 carotid scans in each class. Then, using a K10 protocol (trained to test the ratio of 90%-10%), tCNN and DCNN yielded accuracy (area under the curve (AUC)) pairs of 83.33%, 0.833 (p < 0.0001) and 95.66%, 0.956 (p < 0.0001), respectively. DCNN was superior to ML by 7.01%. As part of the characterization process, the MFS of the symptomatic plaque was found to be higher compared to the asymptomatic plaque by 17.5% (p < 0.0001). A similar pattern was seen in the bispectrum, which was higher for symptomatic plaque by 5.4% (p < 0.0001). It took <2 s to perform the online CADx process on a supercomputer. CONCLUSIONS The performance order of the three AI systems was DCNN > tCNN > ML. Bispectrum-based on higher-order spectra proved a powerful paradigm for plaque tissue characterization. Overall, the AI-based systems offer a powerful solution for plaque tissue classification and characterization.
Collapse
Affiliation(s)
- Sanagala S Skandha
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India; CSE Department, Bennett University, Greater Noida, UP, India
| | - Suneet K Gupta
- CSE Department, Bennett University, Greater Noida, UP, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Vijaya K Koppula
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, RI, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention, National and Kapodistrian Univ. of Athens, Greece
| | - Durga P Misra
- Dept. of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Vikas Agarwal
- Dept. of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Aditya M Sharma
- Division of Cardiovascular Medicine, University of Virginia, VA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes & Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Vijay S Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | | | | | | | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
31
|
Sun Y, Xu L, Jiang Y, Ma M, Wang XY, Xing Y. Significance of high resolution MRI in the identification of carotid plaque. Exp Ther Med 2020; 20:3653-3660. [PMID: 32855717 PMCID: PMC7444342 DOI: 10.3892/etm.2020.9091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/01/2020] [Indexed: 11/25/2022] Open
Abstract
The stability of carotid artery plaque serves a key role in the occurrence of stroke. The present study was based on the recruitment of patients with acute ischemic cerebrovascular disease. High-resolution magnetic resonance imaging (HR-MRI) was used to identify the nature of carotid artery plaque, and the results were then used to manage the high-risk group of stroke. The patients were divided equally into a symptomatic group (36 cases) and an asymptomatic group (36 cases). According to the degree of carotid artery stenosis, the patients were divided into mild, moderate and severe stenosis groups, each group comprising 12 patients, and HR-MRI was performed. The proportion of patients with vulnerable plaque in the symptomatic group was higher compared with that in the asymptomatic group (P<0.05). The more severe the stenosis, the higher the proportion of vulnerable plaque that was identified (P<0.05). Compared with carotid ultrasound, HR-MRI was indicated to have the capability to both identify and quantify the different components in the plaque, allowing an assessment of its properties. In conclusion, the present study demonstrated that carotid HR-MRI is able to distinguish and quantify the different components of plaque, which may prove to be helpful for the hierarchical management of a population at high risk of stroke.
Collapse
Affiliation(s)
- Yong Sun
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lei Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yan Jiang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ming Ma
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xin-Yi Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ying Xing
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
32
|
Yedavalli VS, Tong E, Martin D, Yeom KW, Forkert ND. Artificial intelligence in stroke imaging: Current and future perspectives. Clin Imaging 2020; 69:246-254. [PMID: 32980785 DOI: 10.1016/j.clinimag.2020.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/08/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
Artificial intelligence (AI) is a fast-growing research area in computer science that aims to mimic cognitive processes through a number of techniques. Supervised machine learning, a subfield of AI, includes methods that can identify patterns in high-dimensional data using labeled 'ground truth' data and apply these learnt patterns to analyze, interpret, or make predictions on new datasets. Supervised machine learning has become a significant area of interest within the medical community. Radiology and neuroradiology in particular are especially well suited for application of machine learning due to the vast amount of data that is generated. One devastating disease for which neuroimaging plays a significant role in the clinical management is stroke. Within this context, AI techniques can play pivotal roles for image-based diagnosis and management of stroke. This overview focuses on the recent advances of artificial intelligence methods - particularly supervised machine learning and deep learning - with respect to workflow, image acquisition and reconstruction, and image interpretation in patients with acute stroke, while also discussing potential pitfalls and future applications.
Collapse
Affiliation(s)
- Vivek S Yedavalli
- Stanford University, Department of Radiology, Division of Neuroradiology and Neurointervention, 300 Pasteur Drive, Room S047, Stanford, CA 94305, United States of America; Johns Hopkins Hospital, Department of Radiological Sciences, 600 N. Wolfe St. B 112-D, Baltimore, MD 21287, United States of America.
| | - Elizabeth Tong
- Stanford University, Department of Radiology, Division of Neuroradiology and Neurointervention, 300 Pasteur Drive, Room S031, Stanford, CA 94305, United States of America.
| | - Dann Martin
- Stanford University, Department of Radiology, Division of Neuroradiology and Neurointervention, 300 Pasteur Drive, Room S047, Stanford, CA 94305, United States of America.
| | - Kristen W Yeom
- Stanford University, Department of Radiology, Divisions of Neuroradiology and Pediatric Neuroradiology, 725 Welch Rd. MC 5654, Stanford, CA 94304, United States of America.
| | - Nils D Forkert
- Department of Radiology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute Cumming School of Medicine, University of Calgary, HSC Building, Room 2913, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department Clinical Neurosciences, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute Cumming School of Medicine, University of Calgary, HSC Building, Room 2913, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
33
|
Suri JS, Puvvula A, Biswas M, Majhail M, Saba L, Faa G, Singh IM, Oberleitner R, Turk M, Chadha PS, Johri AM, Sanches JM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Ahluwalia P, Kolluri R, Teji J, Maini MA, Agbakoba A, Dhanjil SK, Sockalingam M, Saxena A, Nicolaides A, Sharma A, Rathore V, Ajuluchukwu JNA, Fatemi M, Alizad A, Viswanathan V, Krishnan PR, Naidu S. COVID-19 pathways for brain and heart injury in comorbidity patients: A role of medical imaging and artificial intelligence-based COVID severity classification: A review. Comput Biol Med 2020; 124:103960. [PMID: 32919186 PMCID: PMC7426723 DOI: 10.1016/j.compbiomed.2020.103960] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/05/2023]
Abstract
Artificial intelligence (AI) has penetrated the field of medicine, particularly the field of radiology. Since its emergence, the highly virulent coronavirus disease 2019 (COVID-19) has infected over 10 million people, leading to over 500,000 deaths as of July 1st, 2020. Since the outbreak began, almost 28,000 articles about COVID-19 have been published (https://pubmed.ncbi.nlm.nih.gov); however, few have explored the role of imaging and artificial intelligence in COVID-19 patients-specifically, those with comorbidities. This paper begins by presenting the four pathways that can lead to heart and brain injuries following a COVID-19 infection. Our survey also offers insights into the role that imaging can play in the treatment of comorbid patients, based on probabilities derived from COVID-19 symptom statistics. Such symptoms include myocardial injury, hypoxia, plaque rupture, arrhythmias, venous thromboembolism, coronary thrombosis, encephalitis, ischemia, inflammation, and lung injury. At its core, this study considers the role of image-based AI, which can be used to characterize the tissues of a COVID-19 patient and classify the severity of their infection. Image-based AI is more important than ever as the pandemic surges and countries worldwide grapple with limited medical resources for detection and diagnosis.
Collapse
Affiliation(s)
- Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA; Annu's Hospitals for Skin and Diabetes, Nellore, AP, India
| | | | - Misha Majhail
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA; Oakmont High School and AtheroPoint™, Roseville, CA, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | - Gavino Faa
- Department of Pathology - AOU of Cagliari, Italy
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | | | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | - Paramjit S Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Amer M Johri
- Department of Medicine, Division of Cardiology,Queen's University, Kingston, Ontario, Canada
| | - J Miguel Sanches
- Institute of Systems and Robotics, Instituto Superior Tecnico, Lisboa, Portugal
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - David W Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | | | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Vikas Agarwal
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK; Arthritis Research UK Epidemiology Unit, Manchester University, Manchester, UK
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Superspeciality Hospital, New Delhi, India
| | | | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| | - Mustafa Al Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, Canada
| | | | | | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | | | - Mostafa Fatemi
- Dept. of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, MN, USA
| | - Azra Alizad
- Dept. of Radiology, Mayo Clinic College of Medicine and Science, MN, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | | | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN, USA
| |
Collapse
|
34
|
Jamthikar A, Gupta D, Saba L, Khanna NN, Araki T, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Viswanathan V, Sharma A, Nicolaides A, Kitas GD, Suri JS. Cardiovascular/stroke risk predictive calculators: a comparison between statistical and machine learning models. Cardiovasc Diagn Ther 2020; 10:919-938. [PMID: 32968651 DOI: 10.21037/cdt.2020.01.07] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Statistically derived cardiovascular risk calculators (CVRC) that use conventional risk factors, generally underestimate or overestimate the risk of cardiovascular disease (CVD) or stroke events primarily due to lack of integration of plaque burden. This study investigates the role of machine learning (ML)-based CVD/stroke risk calculators (CVRCML) and compares against statistically derived CVRC (CVRCStat) based on (I) conventional factors or (II) combined conventional with plaque burden (integrated factors). Methods The proposed study is divided into 3 parts: (I) statistical calculator: initially, the 10-year CVD/stroke risk was computed using 13 types of CVRCStat (without and with plaque burden) and binary risk stratification of the patients was performed using the predefined thresholds and risk classes; (II) ML calculator: using the same risk factors (without and with plaque burden), as adopted in 13 different CVRCStat, the patients were again risk-stratified using CVRCML based on support vector machine (SVM) and finally; (III) both types of calculators were evaluated using AUC based on ROC analysis, which was computed using combination of predicted class and endpoint equivalent to CVD/stroke events. Results An Institutional Review Board approved 202 patients (156 males and 46 females) of Japanese ethnicity were recruited for this study with a mean age of 69±11 years. The AUC for 13 different types of CVRCStat calculators were: AECRS2.0 (AUC 0.83, P<0.001), QRISK3 (AUC 0.72, P<0.001), WHO (AUC 0.70, P<0.001), ASCVD (AUC 0.67, P<0.001), FRScardio (AUC 0.67, P<0.01), FRSstroke (AUC 0.64, P<0.001), MSRC (AUC 0.63, P=0.03), UKPDS56 (AUC 0.63, P<0.001), NIPPON (AUC 0.63, P<0.001), PROCAM (AUC 0.59, P<0.001), RRS (AUC 0.57, P<0.001), UKPDS60 (AUC 0.53, P<0.001), and SCORE (AUC 0.45, P<0.001), while the AUC for the CVRCML with integrated risk factors (AUC 0.88, P<0.001), a 42% increase in performance. The overall risk-stratification accuracy for the CVRCML with integrated risk factors was 92.52% which was higher compared all the other CVRCStat. Conclusions ML-based CVD/stroke risk calculator provided a higher predictive ability of 10-year CVD/stroke compared to the 13 different types of statistically derived risk calculators including integrated model AECRS 2.0.
Collapse
Affiliation(s)
- Ankush Jamthikar
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University, Tokyo, Japan
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, Rhode Island, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia, Cyprus
| | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
35
|
Jamthikar A, Gupta D, Cuadrado-Godia E, Puvvula A, Khanna NN, Saba L, Viskovic K, Mavrogeni S, Turk M, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Kitas GD, Shankar C, Nicolaides A, Viswanathan V, Sharma A, Suri JS. Ultrasound-based stroke/cardiovascular risk stratification using Framingham Risk Score and ASCVD Risk Score based on "Integrated Vascular Age" instead of "Chronological Age": a multi-ethnic study of Asian Indian, Caucasian, and Japanese cohorts. Cardiovasc Diagn Ther 2020; 10:939-954. [PMID: 32968652 DOI: 10.21037/cdt.2020.01.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Vascular age (VA) has recently emerged for CVD risk assessment and can either be computed using conventional risk factors (CRF) or by using carotid intima-media thickness (cIMT) derived from carotid ultrasound (CUS). This study investigates a novel method of integrating both CRF and cIMT for estimating VA [so-called integrated VA (IVA)]. Further, the study analyzes and compares CVD/stroke risk using the Framingham Risk Score (FRS)-based risk calculator when adapting IVA against VA. Methods The system follows a four-step process: (I) VA using cIMT based using linear-regression (LR) model and its coefficients; (II) VA prediction using ten CRF using a multivariate linear regression (MLR)-based model with gender adjustment; (III) coefficients from the LR-based model and MLR-based model are combined using a linear model to predict the final IVA; (IV) the final step consists of FRS-based risk stratification with IVA as inputs and benchmarked against FRS using conventional method of CA. Area-under-the-curve (AUC) is computed using IVA and benchmarked against CA while taking the response variable as a standardized combination of cIMT and glycated hemoglobin. Results The study recruited 648 patients, 202 were Japanese, 314 were Asian Indian, and 132 were Caucasians. Both left and right common carotid arteries (CCA) of all the population were scanned, thus a total of 1,287 ultrasound scans. The 10-year FRS using IVA reported higher AUC (AUC =0.78) compared with 10-year FRS using CA (AUC =0.66) by ~18%. Conclusions IVA is an efficient biomarker for risk stratifications for patients in routine practice.
Collapse
Affiliation(s)
- Ankush Jamthikar
- Department of Electronics and Communications Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of Electronics and Communications Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | | | - Anudeep Puvvula
- Annu's Hospitals for Skin and Diabetes, Nellore, Andra Pradesh, India
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, Rhode Island, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology, National and Kapodistrian Univ. of Athens, Athens, Greece
| | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia, Cyprus
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
36
|
Biswas M, Saba L, Chakrabartty S, Khanna NN, Song H, Suri HS, Sfikakis PP, Mavrogeni S, Viskovic K, Laird JR, Cuadrado-Godia E, Nicolaides A, Sharma A, Viswanathan V, Protogerou A, Kitas G, Pareek G, Miner M, Suri JS. Two-stage artificial intelligence model for jointly measurement of atherosclerotic wall thickness and plaque burden in carotid ultrasound: A screening tool for cardiovascular/stroke risk assessment. Comput Biol Med 2020; 123:103847. [PMID: 32768040 DOI: 10.1016/j.compbiomed.2020.103847] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Abstract
MOTIVATION The early screening of cardiovascular diseases (CVD) can lead to effective treatment. Thus, accurate and reliable atherosclerotic carotid wall detection and plaque measurements are crucial. Current measurement methods are time-consuming and do not utilize the power of knowledge-based paradigms such as artificial intelligence (AI). We present an AI-based methodology for the joint automated detection and measurement of wall thickness and carotid plaque (CP) in the form of carotid intima-media thickness (cIMT) and total plaque area (TPA), a class of AtheroEdge™ system (AtheroPoint™, CA, USA). METHOD The novel system consists of two stages, and each stage comprises an independent deep learning (DL) model. In Stage I, the first DL model segregates the common carotid artery (CCA) patches from ultrasound (US) images into the rectangular wall and non-wall patches. The characterized wall patches are integrated to form the region of interest (ROI), which is then fed into Stage II. In Stage II, the second DL model segments the far wall region. Lumen-intima (LI) and media-adventitial (MA) boundaries are then extracted from the wall region, which is then used for cIMT and PA measurement. RESULTS Using the database of 250 carotid scans, the cIMT error using the AI model is 0.0935±0.0637 mm, which is lower than those of all previous methods. The PA error is found to be 2.7939±2.3702 mm2. The system's correlation coefficient (CC) between AI and ground truth (GT) values for cIMT is 0.99 (p < 0.0001), which is higher compared with the CC of 0.96 (p < 0.0001) shown by the earlier DL method. The CC for PA between AI and GT values is 0.89 (p < 0.0001). CONCLUSION A novel AI-based strategy was applied to carotid US images for the joint detection of carotid wall thickness (cWT) and plaque area (PA), followed by cIMT and PA measurement. This AI-based strategy shows improved performance using the patch technique compared with previous methods using full carotid scans.
Collapse
Affiliation(s)
| | - Luca Saba
- Department of Radiology, A.O.U., Italy
| | | | - Narender N Khanna
- Cardiology Department, Indraprastha Apollo Hospitals, New Delhi, India
| | | | | | | | | | - Klaudija Viskovic
- Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, UK; Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, VA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | | | - George Kitas
- Department of Rheumatology, University of Manchester, Dudley, UK
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|