1
|
Athira AS, Abhijith B, Sruthi PK, Ragavamenon AC, Lankalapalli RS, Reshma MV. Lyophilized ash gourd ( Benincasa hispida (Thunb.) Cogn.) juice alleviates diet-induced prediabetes in a rat model. Food Funct 2025; 16:1534-1549. [PMID: 39903217 DOI: 10.1039/d4fo05327c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Prediabetes is characterized by elevated blood sugar levels, indicating an increased risk of developing diabetes. This study evaluated the effects of ash gourd (AG), a tropical fruit from the Cucurbitaceae family, on prediabetes, as well as its phytochemical composition. A prediabetic rat model was developed in Sprague-Dawley (SD) rats by administering a high fat diet (HFD) for 16 weeks. This model exhibited reduced pancreatic function, heightened insulin resistance, and decreased insulin sensitivity compared to a standard diet group, leading to hyperglycemia and dyslipidemia, hallmarks of prediabetic conditions. Histological analysis of hepatic tissue revealed macro- and microvesicular fat accumulation and inflammatory changes, supporting these findings. This study highlights the utility of HFD-induced SD rats as a model for prediabetic conditions. Following this, lyophilized ash gourd juice (LAGJ) powder was administered to the prediabetic rat model to assess its potential for reversing prediabetic conditions. LAGJ administration resulted in a significant reduction in fasting blood sugar (FBS) levels, glucose intolerance, and insulin resistance. Additionally, LAGJ significantly mitigated fatty liver changes compared to the prediabetic untreated control (PUC) group. Histological examination of liver tissue in the LAGJ treated group showed a typical architecture similar to that of the normal control group. These findings indicate that LAGJ could be a promising intervention for individuals with prediabetes who are at risk of developing type 2 diabetes and fatty liver disease. Phytochemical analysis of AG pulp revealed the presence of stigmasterol, stigmasteryl β-glucoside, and 6'-O-palmitoyl stigmasteryl β-glucoside.
Collapse
Affiliation(s)
- A S Athira
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Balan Abhijith
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
| | - P K Sruthi
- Department of Biochemistry, Amala Cancer Research Centre, Amala Nagar, Thrissur-680555, Kerala, India
| | - Achuthan C Ragavamenon
- Department of Biochemistry, Amala Cancer Research Centre, Amala Nagar, Thrissur-680555, Kerala, India
| | - Ravi S Lankalapalli
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
| | - M V Reshma
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Weale CJ, Schroeder C, Matshazi DM, Davids SFG, Erasmus RT, Kengne AP, Davison GM, Matsha TE. Investigating the altered expression of miR-486-5p and miR-novel-chr1_40444 in dysglycemia in a South African population. J Diabetes Investig 2024; 15:1377-1389. [PMID: 39087408 PMCID: PMC11442782 DOI: 10.1111/jdi.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
AIMS This study aims to investigate miR-486-5p and miR-novel-chr1_40444 expressions in dysglycemic individuals. Validating RNA-sequencing findings in a larger sample via reverse transcription qPCR (RT-qPCR), we aim to address global diagnostic and screening limitations, using an African cohort as an example. MATERIALS AND METHODS This cross-sectional study involved 1,271 individuals [normoglycemic (n = 974), prediabetic (n = 206), screen-detected type 2 diabetes (n = 91)] from the ongoing Vascular and Metabolic Health (VMH) study in Cape Town, South Africa. Whole blood miRNA expression was assessed using TaqMan-based RT-qPCR, with data normalized to an endogenous control (miR-16-5p). RESULTS Significant underexpression was observed in prediabetes vs normoglycemia for miR-486-5p (P = 0.038), whilst both miRNAs demonstrated significant upregulation in screen-detected type 2 diabetes vs normoglycemia (miR-486-5p, P = 0.009; miR-novel-chr1_40444, P < 0.001), and screen-detected type 2 diabetes in comparison with prediabetes (miR-486-5p, P < 0.001; miR-novel-chr1_40444, P < 0.001). Multivariable regression analyses revealed pronounced interrelations between miR-novel-chr1_40444 and screen-detected type 2 diabetes in unadjusted and adjusted models (Model 1: P < 0.001, Model 2: P < 0.001, Model 3: P = 0.030). Moreover, receiver operating characteristic (ROC) curves revealed significantly enhanced diagnostic capabilities for screen-detected type 2 diabetes vs either normoglycemia (AUC = 0.971, P < 0.001), non-diabetes (AUC = 0.959, P < 0.001), or prediabetes (AUC = 0.902, P < 0.001) when combining the miRNAs with 2 h postprandial glucose. CONCLUSIONS This study demonstrated the enhanced power of incorporating miRNAs with traditional markers in distinguishing screen-detected type 2 diabetes, warranting further investigations on their unique role in the development of type 2 diabetes.
Collapse
Affiliation(s)
- Cecil J Weale
- SAMRC/CPUT Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness SciencesCape Peninsula University of TechnologyCape TownSouth Africa
| | - Chanelle Schroeder
- SAMRC/CPUT Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness SciencesCape Peninsula University of TechnologyCape TownSouth Africa
| | - Don M Matshazi
- SAMRC/CPUT Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness SciencesCape Peninsula University of TechnologyCape TownSouth Africa
| | - Saarah FG Davids
- SAMRC/CPUT Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness SciencesCape Peninsula University of TechnologyCape TownSouth Africa
| | - Rajiv T Erasmus
- SAMRC/CPUT Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness SciencesCape Peninsula University of TechnologyCape TownSouth Africa
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health SciencesStellenbosch University and National Health Laboratory ServiceCape TownSouth Africa
| | - Andre P Kengne
- Non‐Communicable Diseases Research UnitSouth African Medical Research CouncilCape TownSouth Africa
- Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Department of Biological and Environmental Sciences, Faculty of Natural SciencesWalter Sisulu UniversityMthathaSouth Africa
| | - Glenda M Davison
- SAMRC/CPUT Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness SciencesCape Peninsula University of TechnologyCape TownSouth Africa
| | - Tandi E Matsha
- SAMRC/CPUT Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness SciencesCape Peninsula University of TechnologyCape TownSouth Africa
- Sefako Makgatho Health Sciences University (SMU)PretoriaSouth Africa
| |
Collapse
|
3
|
Fakhrolmobasheri M, Shafie D, Manshaee B, Karbasi S, Mazroui A, Najafabadi MM, Mazaheri-Tehrani S, Sadeghi M, Roohafza H, Emamimeybodi M, Heidarpour M, Rabanipour N, Sarrafzadegan N. Accuracy of novel anthropometric indices for assessing the risk for progression of prediabetes to diabetes; 13 years of results from Isfahan Cohort Study. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230269. [PMID: 39420936 PMCID: PMC11460962 DOI: 10.20945/2359-4292-2023-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/21/2024] [Indexed: 10/19/2024]
Abstract
Objective We examined the accuracy of novel anthropometric indices in predicting the progression of prediabetes to diabetes. Subjects and methods This study was performed on the pre-diabetic sub-population from Isfahan Cohort Study (ICS). Participants were followed up from 2001 to 2013. During every 5-year follow-up survey, patients' data regarding the incidence and time of incidence of diabetes were recorded. We evaluated the association between the risk of developing diabetes and novel anthropometric indices including: visceral adiposity index (VAI), lipid accumulation products (LAP), deep abdominal adipose tissue (DAAT), abdominal volume index (AVI), A body shape index (ABSI), body roundness index (BRI) and weight-adjusted waist index (WWI). We categorized the indices into two groups according to the median value of each index in the population. We used Cox regression analysis to obtain hazard ratios (HR) using the first group as the reference category and used receiver operating characteristics (ROC) curve analysis for comparing the predictive performance of the indices. Results From 215 included subjects, 79 developed diabetes during the 13-year follow-up. AVI, LAP, BRI, and VAI indicated statistically significant HR in crude and adjusted regression models. LAP had the greatest association with the development of diabetes HR = 2.18 (1.36-3.50) in multivariable analysis. ROC curve analysis indicated that LAP has the greatest predictive performance among indices (area under the curve = 0.627). Conclusion Regardless of baseline confounding variables, prediabetic patients with a higher LAP index may be at significantly higher risk for developing diabetes.
Collapse
Affiliation(s)
- Mohammad Fakhrolmobasheri
- Isfahan Cardiovascular Research CenterCardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Shafie
- Heart Failure Research CenterIsfahan Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrad Manshaee
- Heart Failure Research CenterIsfahan Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Karbasi
- Heart Failure Research CenterIsfahan Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Mazroui
- Heart Failure Research CenterIsfahan Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Mohammadi Najafabadi
- Heart Failure Research CenterIsfahan Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sadegh Mazaheri-Tehrani
- Isfahan Cardiovascular Research CenterCardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- Child Growth and Development Research CenterResearch Institute for Primordial Prevention of Non-Communicable DiseaseIsfahan University of Medical SciencesIsfahanIran Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research CommitteeSchool of MedicineIsfahan University of Medical SciencesIsfahanIran Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Sadeghi
- Cardiac Rehabilitation Research CenterIsfahan Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran Cardiac Rehabilitation Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Roohafza
- Cardiac Rehabilitation Research CenterIsfahan Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran Cardiac Rehabilitation Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Emamimeybodi
- Cardiac Arrhythmia CenterUniversity of CaliforniaLos AngelesCaliforniaUSA UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California, USA
- Neurocardiology Program of ExcellenceUniversity of CaliforniaLos AngelesCaliforniaUSA UCLA Neurocardiology Program of Excellence, University of California, Los Angeles, California, USA
| | - Maryam Heidarpour
- Isfahan Endocrine and Metabolism Research CenterIsfahan University of Medical SciencesIsfahanIran Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najmeh Rabanipour
- Department of Biostatistics and Epidemiology,School of HealthIsfahan University of Medical SciencesIsfahanIranDepartment of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research CenterCardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Balkrishna A, Singh S, Mishra S, Rana M, Mishra RK, Rajput SK, Arya V. Impact of Biosensors and Biomarkers in Diabetes Care: A Review. BIOMEDICAL MATERIALS & DEVICES 2024. [DOI: 10.1007/s44174-024-00230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/27/2024] [Indexed: 01/04/2025]
|
5
|
Chakraborty R, Mukherjee AK, Bala A. Breakthroughs in road mapping IL-35 mediated immunotherapy for type-1 and autoimmune diabetes mellitus. Cytokine 2024; 181:156692. [PMID: 38986251 DOI: 10.1016/j.cyto.2024.156692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
IL-35 is a recently discovered protein made up of IL-12α and IL-27β chains. It is encoded by IL12A and EBI3 genes. Interest in researching IL-35 has significantly increased in recent years, as evidenced by numerous scientific publications. Diabetes is on the rise globally, causing more illness and death in developing countries. The International Diabetes Federation (IDF) reports that diabetes is increasingly affecting children and teenagers, with varying rates across different regions. Therefore, scientists seek new diabetes treatments despite the growth of drug research. Recent research aims to emphasize IL-35 as a critical regulator of diabetes, especially type 1 and autoimmune diabetes. This review provides an overview of recent research on IL-35 and its link to diabetes and its associated complications. Studies suggest that IL-35 can offer protection against type-1 diabetes and autoimmune diabetes by regulating macrophage polarization, T-cell-related cytokines, and regulatory B cells (Bregs). This review will hopefully assist biomedical scientists in exploring the potential role of IL-35-mediated immunotherapy in treating diabetes. However, further research is necessary to determine the exact mechanism and plan clinical trials.
Collapse
Affiliation(s)
- Ratul Chakraborty
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati 781035, Assam, India; Academy of Scientific and Innovative Research (AcSIR), AcSIR (an Indian Institute of National Importance), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati 781035, Assam, India
| | - Asis Bala
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati 781035, Assam, India; Academy of Scientific and Innovative Research (AcSIR), AcSIR (an Indian Institute of National Importance), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
6
|
Zinellu A, Mangoni AA. A systematic review and meta-analysis of ischemia-modified albumin in diabetes mellitus. Heliyon 2024; 10:e35953. [PMID: 39224304 PMCID: PMC11366936 DOI: 10.1016/j.heliyon.2024.e35953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Aim There is an ongoing search for novel biomarkers of diabetes. We conducted a systematic review and meta-analysis of the serum concentrations of ischemia-modified albumin (IMA), a candidate biomarker of oxidative stress, acidosis, and ischemia, in patients with pre-diabetes, different types of diabetes mellitus (type 1, T1DM, type 2, T2DM, and gestational, GDM), and healthy controls. Methods We searched for case-control studies published in PubMed, Web of Science, and Scopus from inception to December 31, 2023. The risk of bias and the certainty of evidence were assessed using the Joanna Briggs Institute Critical Appraisal Checklist and GRADE, respectively. Results In 29 studies, T2DM patients had significantly higher IMA concentrations when compared to controls (standard mean difference, SMD = 1.83, 95 % CI 1.46 to 2.21, p˂0.001; I2 = 95.7 %, p < 0.001; low certainty of evidence). Significant associations were observed between the SMD and glycated hemoglobin (p = 0.007), creatinine (p = 0.003), triglycerides (p = 0.029), and the presence of diabetes complications (p = 0.003). Similar trends, albeit in a smaller number of studies, were observed in T1DM (two studies; SMD = 1.59, 95 % CI -0.09 to 3.26, p˂0.063; I2 = 95.8 %, p < 0.001), GDM (three studies; SMD = 3.41, 95 % CI 1.14 to 5.67, p = 0.003; I2 = 97.0 %, p < 0.001) and pre-diabetes (three studies; SMD = 15.25, 95 % CI 9.86 to 20.65, p˂0.001; I2 = 99.3 %, p < 0.001). Conclusion Our study suggests that IMA is a promising biomarker for determining the presence of oxidative stress, acidosis, and ischemia in pre-diabetes and T1DM, T2DM, and GDM. However, the utility of measuring circulating IMA warrants confirmation in prospective studies investigating clinical endpoints in pre-diabetes and in different types of diabetes (PROSPERO registration number: CRD42024504690).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
7
|
Zuliska S, Maksum IP, Einaga Y, Kadja GTM, Irkham I. Advances in electrochemical biosensors employing carbon-based electrodes for detection of biomarkers in diabetes mellitus. ADMET AND DMPK 2024; 12:487-527. [PMID: 39091901 PMCID: PMC11289508 DOI: 10.5599/admet.2361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
Background and purpose The increase in diabetes cases has become a major concern in the healthcare sector, necessitating the development of efficient and minimal diagnostic methods. This study aims to provide a comprehensive examination of electrochemical biosensors for detecting diabetes mellitus biomarkers, with a special focus on the utilization of carbon-based electrodes. Review approach A detailed analysis of electrochemical biosensors incorporating various carbon electrodes, including screen-printed carbon electrodes, glassy carbon electrodes, and carbon paste electrodes, is presented. The advantages of carbon-based electrodes in biosensor design are highlighted. The review covers the detection of several key diabetes biomarkers, such as glucose, glycated hemoglobin (HbA1c), glycated human serum albumin (GHSA), insulin, and novel biomarkers. Key results Recent developments in electrochemical biosensor technology over the last decade are summarized, emphasizing their potential in clinical applications, particularly in point-of-care settings. The utilization of carbon-based electrodes in biosensors is shown to offer significant advantages, including enhanced sensitivity, selectivity, and cost-effectiveness. Conclusion This review underscores the importance of carbon-based electrodes in the design of electrochemical biosensors and raises awareness for the detection of novel biomarkers for more specific and personalized diabetes mellitus cases. The advancements in this field highlight the potential of these biosensors in future clinical applications, especially in point-of-care diagnostics.
Collapse
Affiliation(s)
- Serly Zuliska
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Grandprix Thomreys Marth Kadja
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Irkham Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| |
Collapse
|
8
|
Yousef H, Feng SF, Jelinek HF. Exploratory risk prediction of type II diabetes with isolation forests and novel biomarkers. Sci Rep 2024; 14:14409. [PMID: 38909127 PMCID: PMC11193708 DOI: 10.1038/s41598-024-65044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Type II diabetes mellitus (T2DM) is a rising global health burden due to its rapidly increasing prevalence worldwide, and can result in serious complications. Therefore, it is of utmost importance to identify individuals at risk as early as possible to avoid long-term T2DM complications. In this study, we developed an interpretable machine learning model leveraging baseline levels of biomarkers of oxidative stress (OS), inflammation, and mitochondrial dysfunction (MD) for identifying individuals at risk of developing T2DM. In particular, Isolation Forest (iForest) was applied as an anomaly detection algorithm to address class imbalance. iForest was trained on the control group data to detect cases of high risk for T2DM development as outliers. Two iForest models were trained and evaluated through ten-fold cross-validation, the first on traditional biomarkers (BMI, blood glucose levels (BGL) and triglycerides) alone and the second including the additional aforementioned biomarkers. The second model outperformed the first across all evaluation metrics, particularly for F1 score and recall, which were increased from 0.61 ± 0.05 to 0.81 ± 0.05 and 0.57 ± 0.06 to 0.81 ± 0.08, respectively. The feature importance scores identified a novel combination of biomarkers, including interleukin-10 (IL-10), 8-isoprostane, humanin (HN), and oxidized glutathione (GSSG), which were revealed to be more influential than the traditional biomarkers in the outcome prediction. These results reveal a promising method for simultaneously predicting and understanding the risk of T2DM development and suggest possible pharmacological intervention to address inflammation and OS early in disease progression.
Collapse
Affiliation(s)
- Hibba Yousef
- Biotechnology Research Center, Technology Innovation Institute, Masdar City, P. O. Box 9639, Abu Dhabi, United Arab Emirates.
| | - Samuel F Feng
- Department of Science and Engineering, Sorbonne University Abu Dhabi, Abu Dhabi, United Arab Emirates
- SUAD Research Institute, Sorbonne University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Herbert F Jelinek
- Department of Medical Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
- Biotechnology Center, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Dinić S, Arambašić Jovanović J, Uskoković A, Jovanović A, Grdović N, Rajić J, Đorđević M, Sarić A, Bugarski B, Vidaković M, Mihailović M. Liposome Encapsulation Enhances the Antidiabetic Efficacy of Silibinin. Pharmaceutics 2024; 16:801. [PMID: 38931922 PMCID: PMC11207473 DOI: 10.3390/pharmaceutics16060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Silibinin has considerable therapeutic potential for the treatment of diabetes through anti-inflammatory, antioxidant, and immunomodulatory properties. However, the therapeutic application of silibinin is quite limited due to its poor bioavailability. In the present study, an attempt was made to improve the antidiabetic efficacy of silibinin by its encapsulation in liposomal vesicles. The liposomes with a high encapsulation efficiency of silibinin (96%) and a zeta potential of -26.2 ± 0.6 mV were developed and studied using nicotinamide/streptozotocin-induced diabetic rats. Administration of silibinin-loaded liposomes to diabetic rats lowered glucose levels, increased insulin levels, and improved pancreatic islet architecture. The anti-inflammatory effect of silibinin-loaded liposomes was demonstrated by a decrease in serum C-reactive protein (CRP) levels and a reduced deposition of collagen fibers in the islets of diabetic rats. Furthermore, silibinin-loaded liposomes were more efficient in lowering glucose, alanine transaminase, triglyceride, and creatinine levels in diabetic rats than pure silibinin. In addition, silibinin-loaded liposomes had a significantly better effect on beta-cell mass and Glut2 glucose receptor distribution in diabetic islets than pure silibinin. The present results clearly show that liposome encapsulation of silibinin enhances its antidiabetic efficacy, which may contribute to the therapeutic benefit of silibinin in the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Svetlana Dinić
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Jelena Arambašić Jovanović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Aleksandra Uskoković
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Aleksandra Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, 11080 Belgrade, Serbia;
| | - Nevena Grdović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Jovana Rajić
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Marija Đorđević
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Ana Sarić
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| |
Collapse
|
10
|
Arif M, Nigoskar S, Verma MK, Amir AH. Screening type 2 Diabetes mellitus among Indians using inflammatory biomarkers. Bioinformation 2024; 20:515-519. [PMID: 39132231 PMCID: PMC11309108 DOI: 10.6026/973206300200515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/13/2024] Open
Abstract
Diabetes is a metabolic disorder associated with chronic inflammation; pre-diabetes phase promotes to inflammatory mechanism then finally progress to diabetes and its associated complications. Therefore, it is of interest to investigate the changes in inflammatory biomarkers Evidence that inflammatory markers play a role in the development as well as severity of Type 2 diabetes mellitus (T2DM). This study has been designed to decipher the involvement of Tumor Necrosis Factor (TNFα), Interleukin-6 (IL-6), Nesfatin-1 and Blood sugar in the etiopathogenesis of T2DM. This retrospective observational study analyzed patient records from our hospital, focusing on those with diabetes or pre-diabetes. Glycosylated hemoglobin, inflammatory biomarkers, Fasting Blood Glucose, and Post-Prandial Blood Glucose were assessed. SPSS 28 facilitated statistical analysis; utilizing Bivariate Correlation assessed the relationship between inflammatory biomarkers and diabetes status (glycosylated hemoglobin). In the pre-diabetic vs. diabetic groups, significant differences exist in IL-6 (p=0.0344), TNF-α (p=0.041), Nesfatin-1 (p=0.0485), fasting blood glucose (p=0.036), and 2h post-prandial blood glucose (p=0.048). IL6 (AUC=0.729, p<0.001), TNF (AUC=0.761, p<0.001), and Nesfatin1 (AUC=0.892, p<0.001) show moderate discriminative power. PP (AUC=0.992, p<0.001) and hbA1c (AUC=0.993, p<0.001) exhibit excellent discriminatory ability. Correlations: IL6 with TNF (r=0.672, p<0.001) and Nesfatin1 (r=0.542, p<0.001); TNF with Nesfatin1 (r=0.591, p<0.001), hbA1c (r=0.683, p<0.001), and PP (r=0.367, p<0.001); Nesfatin1 with PP (r=0.594, p<0.001) and hbA1c (r=0.800, p<0.001). Age has a negative correlation with hbA1c (r=-0.119, p=0.086). Thus, data shows a significant association between inflammatory markers, blood glucose levels, and the progression from pre-diabetes to diabetes.
Collapse
Affiliation(s)
- Mohammad Arif
- Department of Biochemistry, Index Medical College &Research Center Indore, Madhya Pradesh, India
| | - Shreya Nigoskar
- Department of Biochemistry, Index Medical College &Research Center Indore, Madhya Pradesh, India
| | - Manish Kumar Verma
- Department of Biochemistry, Rajashri Dashrath Autonomous State Medical College Ayodhya, U.P, India
| | - Ameerul Hasan Amir
- Department of Biochemistry, Autonomous State Medical College, Lalitpur, India
| |
Collapse
|
11
|
Bergman M, Manco M, Satman I, Chan J, Schmidt MI, Sesti G, Vanessa Fiorentino T, Abdul-Ghani M, Jagannathan R, Kumar Thyparambil Aravindakshan P, Gabriel R, Mohan V, Buysschaert M, Bennakhi A, Pascal Kengne A, Dorcely B, Nilsson PM, Tuomi T, Battelino T, Hussain A, Ceriello A, Tuomilehto J. International Diabetes Federation Position Statement on the 1-hour post-load plasma glucose for the diagnosis of intermediate hyperglycaemia and type 2 diabetes. Diabetes Res Clin Pract 2024; 209:111589. [PMID: 38458916 DOI: 10.1016/j.diabres.2024.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Many individuals with intermediate hyperglycaemia (IH), including impaired fasting glycaemia (IFG) and impaired glucose tolerance (IGT), as presently defined, will progress to type 2 diabetes (T2D). There is confirmatory evidence that T2D can be prevented by lifestyle modification and/or medications, in people with IGT diagnosed by 2-h plasma glucose (PG) during a 75-gram oral glucose tolerance test (OGTT). Over the last 40 years, a wealth of epidemiological data has confirmed the superior value of 1-h plasma glucose (PG) over fasting PG (FPG), glycated haemoglobin (HbA1c) and 2-h PG in populations of different ethnicity, sex and age in predicting diabetes and associated complications including death. Given the relentlessly rising prevalence of diabetes, a more sensitive, practical method is needed to detect people with IH and T2D for early prevention or treatment in the often lengthy trajectory to T2D and its complications. The International Diabetes Federation (IDF) Position Statement reviews findings that the 1-h post-load PG ≥ 155 mg/dL (8.6 mmol/L) in people with normal glucose tolerance (NGT) during an OGTT is highly predictive for detecting progression to T2D, micro- and macrovascular complications, obstructive sleep apnoea, cystic fibrosis-related diabetes mellitus, metabolic dysfunction-associated steatotic liver disease, and mortality in individuals with risk factors. The 1-h PG of 209 mg/dL (11.6 mmol/L) is also diagnostic of T2D. Importantly, the 1-h PG cut points for diagnosing IH and T2D can be detected earlier than the recommended 2-h PG thresholds. Taken together, the 1-h PG provides an opportunity to avoid misclassification of glycaemic status if FPG or HbA1c alone are used. The 1-h PG also allows early detection of high-risk people for intervention to prevent progression to T2D which will benefit the sizeable and growing population of individuals at increased risk of T2D. Using a 1-h OGTT, subsequent to screening with a non-laboratory diabetes risk tool, and intervening early will favourably impact the global diabetes epidemic. Health services should consider developing a policy for screening for IH based on local human and technical resources. People with a 1-h PG ≥ 155 mg/dL (8.6 mmol/L) are considered to have IH and should be prescribed lifestyle intervention and referred to a diabetes prevention program. People with a 1-h PG ≥ 209 mg/dL (11.6 mmol/L) are considered to have T2D and should have a repeat test to confirm the diagnosis of T2D and then referred for further evaluation and treatment. The substantive data presented in the Position Statement provides strong evidence for redefining current diagnostic criteria for IH and T2D by adding the 1-h PG.
Collapse
Affiliation(s)
- Michael Bergman
- NYU Grossman School of Medicine, Departments of Medicine and of Population Health, Division of Endocrinology, Diabetes and Metabolism, VA New York Harbor Healthcare System, New York, NY, USA.
| | - Melania Manco
- Predictive and Preventive Medicine Research Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Ilhan Satman
- Istanbul University Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Istanbul, Turkey
| | - Juliana Chan
- The Chinese University of Hong Kong, Faculty of Medicine, Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, Hong Kong, China
| | - Maria Inês Schmidt
- Postgraduate Program in Epidemiology, School of Medicine and Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, 00189 Rome, Italy
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio Texas, USA
| | - Ram Jagannathan
- Hubert Department of Global Health Rollins, School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Rafael Gabriel
- Department of International Health, National School of Public Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Viswanathan Mohan
- Dr. Mohan's Diabetes Specialities Centre and Madras Diabetes Research Foundation, Chennai, India
| | - Martin Buysschaert
- Department of Endocrinology and Diabetology, Université Catholique de Louvain, University, Clinic Saint-Luc, Brussels, Belgium
| | - Abdullah Bennakhi
- Dasman Diabetes Institute Office of Regulatory Affairs, Ethics Review Committee, Kuwait
| | - Andre Pascal Kengne
- South African Medical Research Council, Francie Van Zijl Dr, Parow Valley, Cape Town, 7501, South Africa
| | - Brenda Dorcely
- NYU Grossman School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York, NY, USA
| | - Peter M Nilsson
- Department of Clinical Sciences and Lund University Diabetes Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Tiinamaija Tuomi
- Folkhälsan Research Center, Helsinki, Finland; Abdominal Center, Endocrinology, Helsinki University Central Hospital, Research Program for Diabetes and Obesity, Center of Helsinki, Helsinki, Finland
| | | | - Akhtar Hussain
- Faculty of Health Sciences, Nord University, Bodø, Norway; Faculty of Medicine, Federal University of Ceará (FAMED-UFC), Brazil; International Diabetes Federation (IDF), Brussels, Belgium; Diabetes in Asia Study Group, Post Box: 752, Doha-Qatar; Centre for Global Health Research, Diabetic Association of Bangladesh, Dhaka, Bangladesh
| | | | - Jaakko Tuomilehto
- Department of International Health, National School of Public Health, Instituto de Salud Carlos III, Madrid, Spain; Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland; Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Gradisteanu Pircalabioru G, Musat M, Elian V, Iliescu C. Liquid Biopsy: A Game Changer for Type 2 Diabetes. Int J Mol Sci 2024; 25:2661. [PMID: 38473908 DOI: 10.3390/ijms25052661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
As the burden of type 2 diabetes (T2D) continues to escalate globally, there is a growing need for novel, less-invasive biomarkers capable of early diabetes detection and monitoring of disease progression. Liquid biopsy, recognized for its minimally invasive nature, is increasingly being applied beyond oncology, and nevertheless shows its potential when the collection of the tissue biopsy is not possible. This diagnostic approach involves utilizing liquid biopsy markers such as cell-free nucleic acids, extracellular vesicles, and diverse metabolites for the molecular diagnosis of T2D and its related complications. In this context, we thoroughly examine recent developments in T2D liquid biopsy research. Additionally, we discuss the primary challenges and future prospects of employing liquid biopsy in the management of T2D. Prognosis, diagnosis and monitoring of T2D through liquid biopsy could be a game-changing technique for personalized diabetes management.
Collapse
Affiliation(s)
- Gratiela Gradisteanu Pircalabioru
- eBio-Hub Research-Center, National University of Science and Technology "Politehnica" Bucharest, 6 Iuliu Maniu Bulevard, Campus Building, 061344 Bucharest, Romania
- Research Institute of University of Bucharest, University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., 050094 Bucharest, Romania
| | - Madalina Musat
- eBio-Hub Research-Center, National University of Science and Technology "Politehnica" Bucharest, 6 Iuliu Maniu Bulevard, Campus Building, 061344 Bucharest, Romania
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania
- Department of Endocrinology, C.I. Parhon National Institute of Endocrinology, 011683 Bucharest, Romania
| | - Viviana Elian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 5-7 Ion Movila Street, 030167 Bucharest, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Prof. Dr. N. C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
| | - Ciprian Iliescu
- eBio-Hub Research-Center, National University of Science and Technology "Politehnica" Bucharest, 6 Iuliu Maniu Bulevard, Campus Building, 061344 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., 050094 Bucharest, Romania
- National Research and Development Institute in Microtechnologies-IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania
| |
Collapse
|
13
|
Dumont BL, Neagoe PE, Charles E, Villeneuve L, Tardif JC, Räkel A, White M, Sirois MG. Low-Density Neutrophils Contribute to Subclinical Inflammation in Patients with Type 2 Diabetes. Int J Mol Sci 2024; 25:1674. [PMID: 38338951 PMCID: PMC10855851 DOI: 10.3390/ijms25031674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Type 2 diabetes (T2D) is characterized by low-grade inflammation. Low-density neutrophils (LDNs) represent normally less than 2% of total neutrophils but increase in multiple pathologies, releasing inflammatory cytokines and neutrophil extracellular traps (NETs). We assessed the count and role of high-density neutrophils (HDNs), LDNs, and NET-related activities in patients with T2D. HDNs and LDNs were purified by fluorescence-activated cell sorting (FACS) and counted by flow cytometry. Circulating inflammatory and NETs biomarkers were measured by ELISA (Enzyme Linked Immunosorbent Assay). NET formation was quantified by confocal microscopy. Neutrophil adhesion onto a human extracellular matrix (hECM) was assessed by optical microscopy. We recruited 22 healthy volunteers (HVs) and 18 patients with T2D. LDN counts in patients with diabetes were significantly higher (160%), along with circulating NETs biomarkers (citrullinated H3 histone (H3Cit), myeloperoxidase (MPO), and MPO-DNA (137%, 175%, and 69%, respectively) versus HV. Circulating interleukins (IL-6 and IL-8) and C-Reactive Protein (CRP) were significantly increased by 117%, 171%, and 79%, respectively, in patients compared to HVs. Isolated LDNs from patients expressed more H3Cit, MPO, and NETs, formed more NETs, and adhered more on hECM compared to LDNs from HVs. Patients with T2D present higher levels of circulating LDN- and NET-related biomarkers and associated pro-inflammatory activities.
Collapse
Affiliation(s)
- Benjamin L. Dumont
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; (B.L.D.); (P.-E.N.); (E.C.); (L.V.); (J.-C.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Paul-Eduard Neagoe
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; (B.L.D.); (P.-E.N.); (E.C.); (L.V.); (J.-C.T.)
| | - Elcha Charles
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; (B.L.D.); (P.-E.N.); (E.C.); (L.V.); (J.-C.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; (B.L.D.); (P.-E.N.); (E.C.); (L.V.); (J.-C.T.)
| | - Jean-Claude Tardif
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; (B.L.D.); (P.-E.N.); (E.C.); (L.V.); (J.-C.T.)
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| | - Agnès Räkel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada;
- Research Center, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0A9, Canada
| | - Michel White
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; (B.L.D.); (P.-E.N.); (E.C.); (L.V.); (J.-C.T.)
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| | - Martin G. Sirois
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; (B.L.D.); (P.-E.N.); (E.C.); (L.V.); (J.-C.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
14
|
Katiyar D, Manish. Recent Advances in Electrochemical Biosensors Targeting Stress Markers. Comb Chem High Throughput Screen 2024; 27:1877-1886. [PMID: 38279751 DOI: 10.2174/0113862073278547231210170007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 01/28/2024]
Abstract
INTRODUCTION When the body experiences a change in its internal environment due to factors such as mood (euphoria, stress) and illness, it releases biomarkers in large quantities. These biomarkers are used for detecting a disease at its early stages. This involves the detection of insufficient quantities of biocomponents, which can be done by using nanomaterials, conventional materials, and biotechnology; thus, scientists can increase the sensitivity of electrochemical sensors. According to studies conducted in this area, electrochemical sensors have shown promise as a diagnostic tool due to their ability to identify and pinpoint illness biomarkers. The present review article was compiled to gather the latest information on electrochemical biosensors targeting stress markers. MATERIALS AND METHODS The authors searched scholarly databases like ScienceDirect, Pubmed, Medline, and Scopus for information on electrochemical biosensors targeting stress markers. RESULTS In this article, we looked at the recent developments in electrochemical sensors for stress monitoring. Because of advances in nanomaterial and biomolecule processes, electrochemical biosensors have been developed with the sensitivity to detect several biomarkers in real-time in therapeutically relevant materials. CONCLUSION This biomarker sensor strategy can analyze various biofluids (sweat, plasma, urine, and saliva).
Collapse
Affiliation(s)
- Deepti Katiyar
- Department of Pharmacognosy, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Manish
- Department of Electronics and Communication Engineering, ABES Engineering College, 19th KM Stone, NH-09 Ghaziabad, 201009, Uttar Pradesh, India
| |
Collapse
|
15
|
Hengky A, Pratama K, Tandarto K. MORTALITY AND CARDIOVASCULAR RISK REDUCTION AFTER REVERSION OF PREDIABETES TO NORMOGLYCEMIA: A SYSTEMATIC REVIEW. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2024; 20:74-79. [PMID: 39372294 PMCID: PMC11449248 DOI: 10.4183/aeb.2024.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Introduction It is unclear whether reversion to normoglycemia decreases overall cardiovascular events and all-cause mortality risk in the long term. We aim to investigate the magnitude of change in cardiovascular risk and mortality in patients who reverted from a prediabetes state. Methods Three electronic databases, including PubMed, Proquest, and EBSCOHost databases, were utilized. A manual hand search of articles was also done. We selected studies that measure cardiovascular risk and all-cause mortality risk after reversion from prediabetes to normoglycemia. The following terms and its variant were used in the search strategy: 'reversion,' 'prediabetes,' 'normoglycemia,' cardiovascular risk,' and 'mortality.' Results Seven studies with a total of 73,845 participants were obtained. Most studies suggest that reversion of prediabetes reduced the cardiovascular and all-cause mortality risk (RR: 0.50 - 0.78) compared to persistent prediabetes state or progression to diabetes with long-term follow-up ranging from 5 to 12 years, while two studies did not show significant association in CVD and all-cause morality risk. Conclusion Although there were mixed results regarding if prediabetes poses a higher risk than normoglycemia for cardiovascular events and all-cause mortality, measures to normalize blood glucose for prediabetes should still be advocated.
Collapse
Affiliation(s)
- A. Hengky
- Atma Jaya Catholic University of Indonesia - Pluit Campus -Jl. Pluit Raya II , Jakarta
| | - K.G. Pratama
- Atma Jaya Catholic University of Indonesia - Pluit Campus -Jl. Pluit Raya II , Jakarta
- Rumah Sakit Ken Saras - General Medicine, Semarang Regency, Central Java, Indonesia
| | - K. Tandarto
- Atma Jaya Catholic University of Indonesia - Pluit Campus -Jl. Pluit Raya II , Jakarta
| |
Collapse
|
16
|
Portha B, Liu J. Les AGE (produits terminaux de glycation) : attention danger. Origine, effets toxiques et stratégies thérapeutiques. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2023; 58:376-388. [DOI: 10.1016/j.cnd.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Paquette JS, Rhéaume C, Cordeau P, Moulin JA, Audet-Walsh E, Blanchette V, Drouin-Chartier JP, Toi AK, Tremblay A. The Longevity Protein Klotho: A Promising Tool to Monitor Lifestyle Improvements. Metabolites 2023; 13:1157. [PMID: 37999253 PMCID: PMC10673288 DOI: 10.3390/metabo13111157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Aging is not a disease; it is a natural evolution of human physiology. Medical advances have extended our life expectancy, but chronic diseases and geriatric syndrome continue to affect the increasingly aging population. Yet modern medicine perpetuates an approach based on treatment rather than prevention and education. In order to help solve this ever-growing problem, a new discipline has emerged: lifestyle medicine. Nutrition, physical activity, stress management, restorative sleep, social connection, and avoidance of risky substances are the pillars on which lifestyle medicine is founded. The aim of this discipline is to increase healthspan and reduce the duration of morbidity by making changes to our lifestyle. In this review, we propose the use of klotho protein as a novel biomarker for lifestyle medicine in order to quantify and monitor the health status of individuals, as no integrative tool currently exists.
Collapse
Affiliation(s)
- Jean-Sébastien Paquette
- Primary Care Research and Innovation Laboratory (Laboratoire ARIMED), Groupe de Médecine de Famille Universitaire du Nord de Lanaudière, Centre Intégré de Santé et de Services Sociaux de Lanaudière, Joliette, QC J6E 5X7, Canada
- Department of Family Medicine and Emergency Medicine, Faculty of Medicine, Laval University, Québec City, QC G1V 0A6, Canada
- Vitam, Research Center on Sustainable Health, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Caroline Rhéaume
- Department of Family Medicine and Emergency Medicine, Faculty of Medicine, Laval University, Québec City, QC G1V 0A6, Canada
- Vitam, Research Center on Sustainable Health, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Pierre Cordeau
- Vitam, Research Center on Sustainable Health, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Julie-Alexandra Moulin
- Vitam, Research Center on Sustainable Health, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Etienne Audet-Walsh
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Virginie Blanchette
- Vitam, Research Center on Sustainable Health, Université Laval, Québec City, QC G1V 0A6, Canada
- Department of Human Kinetics and Podiatric Medicine, Université du Québec à Trois-Rivières, Trois-Rivières, QC G1V 0A6, Canada
| | - Jean-Philippe Drouin-Chartier
- NUTRISS (Nutrition, Health and Society) Research Centre, Institute on Nutrition and Functional Foods (INAF), Laval University, Québec City, QC G1V 0A6, Canada
- Faculty of Pharmacy, Laval University, Québec City, QC G1V 0A6, Canada
| | - Alfred-Kodjo Toi
- Vitam, Research Center on Sustainable Health, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Angelo Tremblay
- NUTRISS (Nutrition, Health and Society) Research Centre, Institute on Nutrition and Functional Foods (INAF), Laval University, Québec City, QC G1V 0A6, Canada
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada
| |
Collapse
|
18
|
Benítez-Camacho J, Ballesteros A, Beltrán-Camacho L, Rojas-Torres M, Rosal-Vela A, Jimenez-Palomares M, Sanchez-Gomar I, Durán-Ruiz MC. Endothelial progenitor cells as biomarkers of diabetes-related cardiovascular complications. Stem Cell Res Ther 2023; 14:324. [PMID: 37950274 PMCID: PMC10636846 DOI: 10.1186/s13287-023-03537-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
Diabetes mellitus (DM) constitutes a chronic metabolic disease characterized by elevated levels of blood glucose which can also lead to the so-called diabetic vascular complications (DVCs), responsible for most of the morbidity, hospitalizations and death registered in these patients. Currently, different approaches to prevent or reduce DM and its DVCs have focused on reducing blood sugar levels, cholesterol management or even changes in lifestyle habits. However, even the strictest glycaemic control strategies are not always sufficient to prevent the development of DVCs, which reflects the need to identify reliable biomarkers capable of predicting further vascular complications in diabetic patients. Endothelial progenitor cells (EPCs), widely known for their potential applications in cell therapy due to their regenerative properties, may be used as differential markers in DVCs, considering that the number and functionality of these cells are affected under the pathological environments related to DM. Besides, drugs commonly used with DM patients may influence the level or behaviour of EPCs as a pleiotropic effect that could finally be decisive in the prognosis of the disease. In the current review, we have analysed the relationship between diabetes and DVCs, focusing on the potential use of EPCs as biomarkers of diabetes progression towards the development of major vascular complications. Moreover, the effects of different drugs on the number and function of EPCs have been also addressed.
Collapse
Affiliation(s)
- Josefa Benítez-Camacho
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Ballesteros
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
| | - Lucía Beltrán-Camacho
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
- Cell Biology, Physiology and Immunology Department, Córdoba University, Córdoba, Spain
| | - Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Margarita Jimenez-Palomares
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Ismael Sanchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain.
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain.
| |
Collapse
|
19
|
Esmaeilzadeh A, Mohammadi V, Elahi R, Rezakhani N. The role of heat shock proteins (HSPs) in type 2 diabetes mellitus pathophysiology. J Diabetes Complications 2023; 37:108564. [PMID: 37852076 DOI: 10.1016/j.jdiacomp.2023.108564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 10/20/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by sustained hyperglycemia caused by impaired insulin signaling and secretion. Metabolic stress, caused by an inappropriate diet, is one of the major hallmarks provoking inflammation, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Heat shock proteins (HSPs) are a group of highly conserved proteins that have a crucial role in chaperoning damaged and misfolded proteins to avoid disruption of cellular homeostasis under stress conditions. To do this, HSPs interact with diverse intra-and extracellular pathways among which are the insulin signaling, insulin secretion, and apoptosis pathways. Therefore, HSP dysfunction, e.g. HSP70, may lead to disruption of the pathways responsible for insulin secretion and uptake. Consistently, the altered expression of other HSPs and genetic polymorphisms in HSP-producing genes in diabetic subjects has made HSPs hot research in T2DM. This paper provides a comprehensive overview of the role of different HSPs in T2DM pathogenesis, affected cellular pathways, and the potential therapeutic strategies targeting HSPs in T2DM.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Rezakhani
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
20
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
21
|
Biavaschi M, Melchiors Morsch VM, Jacobi LF, Hoppen A, Bianchin N, Chitolina Schetinger MR. Predisposition to Type 2 Diabetes in Aspects of the Glycemic Curve and Glycated Hemoglobin in Healthy, Young Adults: A Cross-sectional Study. Can J Diabetes 2023; 47:587-593. [PMID: 37225120 DOI: 10.1016/j.jcjd.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVES Our aim in this study was to identify predictors for diabetes among the characteristics of the glycemic curve and glycated hemoglobin (A1C) in healthy, young adults. METHODS We used a cross-sectional study to establish predictors for diabetes based on earlier studies and evaluated occurrence of the condition in 81 healthy, young adult subjects. These volunteers underwent analysis of fasting plasma glucose, oral glucose tolerance test plasma glucose, A1C, and inflammatory markers (leukocytes, monocytes, and C-reactive protein). The nonparametric Mann-Whitney U test, Fisher's exact test, chi-square test, Kruskal-Wallis test, and multiple-comparisons test were used to analyze the data. RESULTS We studied 2 age groups, homogeneous in terms of family history of diabetes: one group ranged in age from ≥18 to <28 years (median 20 years; body mass index [BMI] 24 kg/m2) and the other group ranged in age from ≥28 to <45 years (median 35 years; BMI 24 kg/m2). The older group had a higher incidence of predictors (p=0.0005) and was associated with the predictors 30-minute blood glucose ≥164 mg/dL (p=0.0190), 60-minute blood glucose ≥125 mg/dL (p=0.0346), and A1C ≥5.5% (p=0.0162), with a monophasic glycemic curve (p=0.007). The younger group was associated with the 2-hour plasma glucose predictor ≥140 mg/dL (p=0.014). All subjects had fasting glucose in the normal range. CONCLUSIONS Healthy, young adults may already have predictors of diabetes, identified mainly by aspects of the glycemic curve and A1C, but at more modest levels than those with prediabetes.
Collapse
Affiliation(s)
- Marcelo Biavaschi
- Department of Medical Clinic and Endocrinology, Federal University of Santa Maria, Rio Grande do Sul, Brazil.
| | - Vera Maria Melchiors Morsch
- Department of Biochemistry and Molecular Biology, Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | | | - Andressa Hoppen
- Faculty of Medicine, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Nathieli Bianchin
- Department of Biochemistry and Molecular Biology, Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Maria Rosa Chitolina Schetinger
- Department of Biochemistry and Molecular Biology, Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
22
|
Mouliou DS. C-Reactive Protein: Pathophysiology, Diagnosis, False Test Results and a Novel Diagnostic Algorithm for Clinicians. Diseases 2023; 11:132. [PMID: 37873776 PMCID: PMC10594506 DOI: 10.3390/diseases11040132] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
The current literature provides a body of evidence on C-Reactive Protein (CRP) and its potential role in inflammation. However, most pieces of evidence are sparse and controversial. This critical state-of-the-art monography provides all the crucial data on the potential biochemical properties of the protein, along with further evidence on its potential pathobiology, both for its pentameric and monomeric forms, including information for its ligands as well as the possible function of autoantibodies against the protein. Furthermore, the current evidence on its potential utility as a biomarker of various diseases is presented, of all cardiovascular, respiratory, hepatobiliary, gastrointestinal, pancreatic, renal, gynecological, andrological, dental, oral, otorhinolaryngological, ophthalmological, dermatological, musculoskeletal, neurological, mental, splenic, thyroid conditions, as well as infections, autoimmune-supposed conditions and neoplasms, including other possible factors that have been linked with elevated concentrations of that protein. Moreover, data on molecular diagnostics on CRP are discussed, and possible etiologies of false test results are highlighted. Additionally, this review evaluates all current pieces of evidence on CRP and systemic inflammation, and highlights future goals. Finally, a novel diagnostic algorithm to carefully assess the CRP level for a precise diagnosis of a medical condition is illustrated.
Collapse
|
23
|
Aleidi SM, Al Fahmawi H, Masoud A, Rahman AA. Metabolomics in diabetes mellitus: clinical insight. Expert Rev Proteomics 2023; 20:451-467. [PMID: 38108261 DOI: 10.1080/14789450.2023.2295866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Diabetes Mellitus (DM) is a chronic heterogeneous metabolic disorder characterized by hyperglycemia due to the destruction of insulin-producing pancreatic β cells and/or insulin resistance. It is now considered a global epidemic disease associated with serious threats to a patient's life. Understanding the metabolic pathways involved in disease pathogenesis and progression is important and would improve prevention and management strategies. Metabolomics is an emerging field of research that offers valuable insights into the metabolic perturbation associated with metabolic diseases, including DM. AREA COVERED Herein, we discussed the metabolomics in type 1 and 2 DM research, including its contribution to understanding disease pathogenesis and identifying potential novel biomarkers clinically useful for disease screening, monitoring, and prognosis. In addition, we highlighted the metabolic changes associated with treatment effects, including insulin and different anti-diabetic medications. EXPERT OPINION By analyzing the metabolome, the metabolic disturbances involved in T1DM and T2DM can be explored, enhancing our understanding of the disease progression and potentially leading to novel clinical diagnostic and effective new therapeutic approaches. In addition, identifying specific metabolites would be potential clinical biomarkers for predicting the disease and thus preventing and managing hyperglycemia and its complications.
Collapse
Affiliation(s)
- Shereen M Aleidi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Hiba Al Fahmawi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Afshan Masoud
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Anas Abdel Rahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
24
|
Lempesis IG, Georgakopoulou VE. Physiopathological mechanisms related to inflammation in obesity and type 2 diabetes mellitus. World J Exp Med 2023; 13:7-16. [PMID: 37396883 PMCID: PMC10308320 DOI: 10.5493/wjem.v13.i3.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/15/2023] [Accepted: 04/10/2023] [Indexed: 06/16/2023] Open
Abstract
Overweight, obesity, and type 2 diabetes mellitus pose global health problems that are ever-increasing. A chronic low-grade inflammatory status and the presence of various pro-inflammatory markers either in circulation or within dysfunctional metabolic tissues are well established. The presence of these factors can, to some extent, predict disease development and progression. A central role is played by the presence of dysfunctional adipose tissue, liver dysfunction, and skeletal muscle dysfunction, which collectively contribute to the increased circulatory levels of proinflammatory factors. Weight loss and classical metabolic interventions achieve a decrease in many of these factors' circulating levels, implying that a better understanding of the processes or even the modulation of inflammation may alleviate these diseases. This review suggests that inflammation plays a significant role in the development and progression of these conditions and that measuring inflammatory markers may be useful for assessing disease risk and development of future treatment methods.
Collapse
Affiliation(s)
- Ioannis G Lempesis
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Athens 11527, Greece
| | | |
Collapse
|
25
|
Taren D, Alaofè H, Yamanaka AB, Coleman P, Fleming T, Aflague T, Shallcross L, Wilkens L, Novotny R. Diet and Acanthosis Nigricans over a Two-Year Period in Children of the Pacific Region. Nutrients 2023; 15:2718. [PMID: 37375623 DOI: 10.3390/nu15122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The impact that dietary carbohydrates have on children developing type 2 diabetes remains controversial. Furthermore, there are limited pediatric longitudinal studies on changes in body mass index (BMI) and diet related to the development of acanthosis nigricans (AN), a risk factor associated with type 2 diabetes. METHODS Two 24 h dietary records were collected for 558 children, 2-8 years of age, at baseline and at a 2-year follow-up. Data on age, sex, BMI, and the presence of AN were also collected at each time point from the Children's Healthy Living Program. Logistic regression was used to determine factors associated with the presence of AN at follow-up. Multinominal regression was used to determine factors associated with changes in AN status. Linear regression was used to measure the associations between changes in dietary intake and in the Burke Score for AN. RESULTS AN was present in 28 children at baseline and 34 children at follow-up. Adjusting for the presence of AN at baseline, age, sex, study group, baseline BMI, change in BMI z-score, time between assessments, and baseline intake, an increase from baseline for each teaspoon of sugar and serving of carbohydrate-rich food increased the risk for having AN at follow-up by 9% and 8%, respectively (p ≤ 0.05). An increased intake of added sugar (teaspoons) increased the risk of developing AN by 13% (p ≤ 0.01) and an increase in servings of foods rich in starch increased the risk of developing AN by 12% (p ≤ 0.01) compared to children who never had AN. Increasing the intake of fruit was also associated with decreased Burke Scores using multiple regression. However, the intake of energy and macronutrients were not associated with AN. CONCLUSIONS Added sugar and foods rich in starch were independently associated with the occurrence of AN, suggesting the type of carbohydrates consumed is a factor in AN occurrence.
Collapse
Affiliation(s)
- Douglas Taren
- Section of Nutrition, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Halimatou Alaofè
- Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA
| | - Ashley B Yamanaka
- Human Nutrition, Food and Animal Sciences Department, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Patricia Coleman
- Cooperative Research, Extension, and Education Service, Northern Marianas College, Saipan, MP 96950, USA
| | - Travis Fleming
- Agriculture, Community and Natural Resources Division, Samoa Community College, Pago Pago, AS 96799, USA
| | - Tanisha Aflague
- Cooperative Extension and Outreach, College of Natural and Applied Sciences, University of Guam, Mangilao, GU 96913, USA
| | - Leslie Shallcross
- Health, Home and Family Development, UAF Institute of Agriculture, Natural Resources and Extension, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Lynne Wilkens
- Biostatistics Shared Resource, University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA
| | - Rachel Novotny
- Human Nutrition, Food and Animal Sciences Department, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
26
|
Keijer J, Escoté X, Galmés S, Palou-March A, Serra F, Aldubayan MA, Pigsborg K, Magkos F, Baker EJ, Calder PC, Góralska J, Razny U, Malczewska-Malec M, Suñol D, Galofré M, Rodríguez MA, Canela N, Malcic RG, Bosch M, Favari C, Mena P, Del Rio D, Caimari A, Gutierrez B, Del Bas JM. Omics biomarkers and an approach for their practical implementation to delineate health status for personalized nutrition strategies. Crit Rev Food Sci Nutr 2023; 64:8279-8307. [PMID: 37077157 DOI: 10.1080/10408398.2023.2198605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Personalized nutrition (PN) has gained much attention as a tool for empowerment of consumers to promote changes in dietary behavior, optimizing health status and preventing diet related diseases. Generalized implementation of PN faces different obstacles, one of the most relevant being metabolic characterization of the individual. Although omics technologies allow for assessment the dynamics of metabolism with unprecedented detail, its translatability as affordable and simple PN protocols is still difficult due to the complexity of metabolic regulation and to different technical and economical constrains. In this work, we propose a conceptual framework that considers the dysregulation of a few overarching processes, namely Carbohydrate metabolism, lipid metabolism, inflammation, oxidative stress and microbiota-derived metabolites, as the basis of the onset of several non-communicable diseases. These processes can be assessed and characterized by specific sets of proteomic, metabolomic and genetic markers that minimize operational constrains and maximize the information obtained at the individual level. Current machine learning and data analysis methodologies allow the development of algorithms to integrate omics and genetic markers. Reduction of dimensionality of variables facilitates the implementation of omics and genetic information in digital tools. This framework is exemplified by presenting the EU-Funded project PREVENTOMICS as a use case.
Collapse
Affiliation(s)
- Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Xavier Escoté
- EURECAT, Centre Tecnològic de Catalunya, Nutrition and Health, Reus, Spain
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Andreu Palou-March
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Mona Adnan Aldubayan
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Nutrition, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Kristina Pigsborg
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ella J Baker
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Joanna Góralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Urszula Razny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | | | - David Suñol
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Mar Galofré
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Miguel A Rodríguez
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Radu G Malcic
- Health and Biomedicine, LEITAT Technological Centre, Barcelona, Spain
| | - Montserrat Bosch
- Applied Microbiology and Biotechnologies, LEITAT Technological Centre, Terrassa, Spain
| | - Claudia Favari
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| | | | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| |
Collapse
|
27
|
Esquivel-Hernández DA, Martínez-López YE, Sánchez-Castañeda JP, Neri-Rosario D, Padrón-Manrique C, Giron-Villalobos D, Mendoza-Ortíz C, Resendis-Antonio O. A network perspective on the ecology of gut microbiota and progression of type 2 diabetes: Linkages to keystone taxa in a Mexican cohort. Front Endocrinol (Lausanne) 2023; 14:1128767. [PMID: 37124757 PMCID: PMC10130651 DOI: 10.3389/fendo.2023.1128767] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The human gut microbiota (GM) is a dynamic system which ecological interactions among the community members affect the host metabolism. Understanding the principles that rule the bidirectional communication between GM and its host, is one of the most valuable enterprise for uncovering how bacterial ecology influences the clinical variables in the host. Methods Here, we used SparCC to infer association networks in 16S rRNA gene amplicon data from the GM of a cohort of Mexican patients with type 2 diabetes (T2D) in different stages: NG (normoglycemic), IFG (impaired fasting glucose), IGT (impaired glucose tolerance), IFG + IGT (impaired fasting glucose plus impaired glucose tolerance), T2D and T2D treated (T2D with a 5-year ongoing treatment). Results By exploring the network topology from the different stages of T2D, we observed that, as the disease progress, the networks lose the association between bacteria. It suggests that the microbial community becomes highly sensitive to perturbations in individuals with T2D. With the purpose to identify those genera that guide this transition, we computationally found keystone taxa (driver nodes) and core genera for a Mexican T2D cohort. Altogether, we suggest a set of genera driving the progress of the T2D in a Mexican cohort, among them Ruminococcaceae NK4A214 group, Ruminococcaceae UCG-010, Ruminococcaceae UCG-002, Ruminococcaceae UCG-005, Alistipes, Anaerostipes, and Terrisporobacter. Discussion Based on a network approach, this study suggests a set of genera that can serve as a potential biomarker to distinguish the distinct degree of advances in T2D for a Mexican cohort of patients. Beyond limiting our conclusion to one population, we present a computational pipeline to link ecological networks and clinical stages in T2D, and desirable aim to advance in the field of precision medicine.
Collapse
Affiliation(s)
| | - Yoscelina Estrella Martínez-López
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, León, Guanajuato, Mexico
| | - Jean Paul Sánchez-Castañeda
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Daniel Neri-Rosario
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Cristian Padrón-Manrique
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - David Giron-Villalobos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Cristian Mendoza-Ortíz
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Coordinación de la Investigación Científica – Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
28
|
Abstract
CONTEXT The prevalence of diabetic neuropathy is drastically increasing in the world. To halt the progression of diabetic neuropathy, there is an unmet need to have potential biomarkers for the diagnosis and new drug discovery. OBJECTIVE To study various biomarkers involved in the pathogenesis of diabetic neuropathy. METHODS The literature was searched with the help of various scientific databases and resources like PubMed, ProQuest, Scopus, and Google scholar from the year 1976 to 2020. RESULTS Biomarkers of diabetic neuropathy are categorised as inflammatory biomarkers such as MCP-1, VEGF, TRPV1, NF-κB; oxidative biomarkers such as adiponectin, NFE2L2; enzyme biomarkers like NADPH, ceruloplasmin, HO-1, DPP-4, PARP α; miscellaneous biomarkers such as SIRT1, caveolin 1, MALAT1, and microRNA. All biomarkers have a significant role in the pathogenesis of diabetic neuropathy. CONCLUSION These biomarkers have a potential role in the progression of diabetic neuropathy and can be considered as potential targets for new drug discovery.
Collapse
Affiliation(s)
- Kaveri M Adki
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
29
|
Li H, Xie X, Liu H, Zhang L, Qiang D, Li L, He YT, Bai G. Analysis of protein expression changes in patients with prediabetes using proteomics approaches. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9448. [PMID: 36460301 DOI: 10.1002/rcm.9448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
RATIONALE Proteomics and metabolomics are widely used in the study of diabetes, but rarely in prediabetes research. This study aimed to explore the mechanisms of early-onset type 2 diabetes mellitus (T2DM) by analyzing proteomic changes at different stages of glucose metabolism. METHODS A total of 40 individuals undergoing routine physical health examinations between December 2016 and April 2017 were enrolled. Subjects were divided into four groups based on fasting blood glucose (FPG) levels: FPG < 5.6 mmol/L (group A); FPG ≥ 5.6 mmol/L and <6.1 mmol/L (group B); FPG ≥ 6.1 mmol/L and <7.0 mmol/L (group C); and FPG ≥ 7.0 mmol/L (group D). Each group had 10 cases. Sera from these 40 subjects were analyzed by label-free quantitative liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). LC/MS/MS with selected reaction monitoring mode was also performed for qualitative and quantitative metabolomics analysis. Differentially expressed proteins were identified. Partial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to analyze the differentially expressed metabolites. RESULTS A total of 202 differentially expressed proteins were screened and were identified as mainly secreted proteins. Comparing group A with group B, 32 proteins were up-regulated and 18 proteins were down-regulated. Comparing group A with group C, 24 proteins were up-regulated and 24 proteins were down-regulated. Comparing group A with group D, 19 proteins were up-regulated and 17 proteins were down-regulated. The fold change for up-regulated proteins was >1.2, p < 0.05, while the fold change for down-regulated proteins was <-1.2, p < 0.05. PLS-DA and OPLS-DA revealed 113 differentially expressed metabolites. Correlation analysis of differentially expressed metabolites of group A versus group B revealed that among the down-regulated differential proteins, transforming growth factor β-induced protein ig-h3 correlated negatively with metabolite L-saccharin, while among the up-regulated differential proteins, apolipoprotein C-IV correlated negatively with metabolite 3-methyloxindole. Among all differentially expressed proteins, 19 proteins were associated with early initiation of chronic inflammation, including CD14 and CSF-1R, which were newly identified in the early onset of T2DM. CONCLUSIONS Many proteins are differentially expressed between prediabetes and after T2DM diagnosis, although the specific mechanism remains unclear. The expression level of CD14 was significantly up-regulated and that of CSF-1R was significantly down-regulated when FPG was ≥5.6 mmol/L, suggesting that CD14 and CSF-1R may be important markers for early-onset T2DM and may serve as new targets for T2DM treatment.
Collapse
Affiliation(s)
- Huan Li
- Department of Endocrinology, First People's Hospital of Yinchuan, Yinchuan, China
| | - Xiaomin Xie
- Department of Endocrinology, First People's Hospital of Yinchuan, Yinchuan, China
| | - Huili Liu
- Department of Endocrinology, First People's Hospital of Yinchuan, Yinchuan, China
| | - Li Zhang
- Department of Endocrinology, First People's Hospital of Yinchuan, Yinchuan, China
| | - Dan Qiang
- Department of Endocrinology, First People's Hospital of Yinchuan, Yinchuan, China
| | - Ling Li
- Department of Endocrinology, First People's Hospital of Yinchuan, Yinchuan, China
| | - Yan Ting He
- Department of Endocrinology, First People's Hospital of Yinchuan, Yinchuan, China
| | - Guirong Bai
- Department of Endocrinology, First People's Hospital of Yinchuan, Yinchuan, China
| |
Collapse
|
30
|
Denimal D, Monier S, Bouillet B, Vergès B, Duvillard L. High-Density Lipoprotein Alterations in Type 2 Diabetes and Obesity. Metabolites 2023; 13:metabo13020253. [PMID: 36837872 PMCID: PMC9967905 DOI: 10.3390/metabo13020253] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Alterations affecting high-density lipoproteins (HDLs) are one of the various abnormalities observed in dyslipidemia in type 2 diabetes mellitus (T2DM) and obesity. Kinetic studies have demonstrated that the catabolism of HDL particles is accelerated. Both the size and the lipidome and proteome of HDL particles are significantly modified, which likely contributes to some of the functional defects of HDLs. Studies on cholesterol efflux capacity have yielded heterogeneous results, ranging from a defect to an improvement. Several studies indicate that HDLs are less able to inhibit the nuclear factor kappa-B (NF-κB) proinflammatory pathway, and subsequently, the adhesion of monocytes on endothelium and their recruitment into the subendothelial space. In addition, the antioxidative function of HDL particles is diminished, thus facilitating the deleterious effects of oxidized low-density lipoproteins on vasculature. Lastly, the HDL-induced activation of endothelial nitric oxide synthase is less effective in T2DM and metabolic syndrome, contributing to several HDL functional defects, such as an impaired capacity to promote vasodilatation and endothelium repair, and difficulty counteracting the production of reactive oxygen species and inflammation.
Collapse
Affiliation(s)
- Damien Denimal
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Biochemistry, CHU Dijon Bourgogne, 21000 Dijon, France
- Correspondence:
| | - Serge Monier
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
| | - Benjamin Bouillet
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Bruno Vergès
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Laurence Duvillard
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Biochemistry, CHU Dijon Bourgogne, 21000 Dijon, France
| |
Collapse
|
31
|
Suemanotham N, Photcharatinnakorn P, Chantong B, Buranasinsup S, Phochantachinda S, Sakcamduang W, Reamtong O, Thiangtrongjit T, Chatchaisak D. Curcuminoid supplementation in canine diabetic mellitus and its complications using proteomic analysis. Front Vet Sci 2022; 9:1057972. [PMID: 36619946 PMCID: PMC9816143 DOI: 10.3389/fvets.2022.1057972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Inflammation and oxidative stress contribute to diabetes pathogenesis and consequences. Therapeutic approaches for canine diabetes remain a challenge. Curcumin has anti-inflammatory and anti-oxidative effects and is beneficial for humans with diabetes mellitus (DM); however, data on its impact on canine diabetes is limited. This study aimed to evaluate the potential for causing adverse effects, anti-inflammatory effects, anti-oxidative effects and proteomic patterns of curcuminoid supplementation on canine DM. Methods Altogether, 18 dogs were divided into two groups: DM (n = 6) and healthy (n = 12). Curcuminoid 250 mg was given to the DM group orally daily for 180 days. Blood and urine sample collection for hematological parameters, blood biochemistry, urinalysis, oxidative stress parameters, inflammatory markers and proteomics were performed every 6 weeks. Results and discussion Curcuminoid supplementation with standard therapy significantly decreased oxidative stress with the increased glutathione/oxidized glutathione ratio, but cytokine levels were unaffected. According to the proteomic analysis, curcuminoid altered the expression of alpha-2-HS-glycoprotein, transthyretin, apolipoprotein A-I and apolipoprotein A-IV, suggesting that curcuminoid improves insulin sensitivity and reduces cardiovascular complications. No negative impact on clinical symptoms, kidneys or liver markers was identified. This study proposed that curcuminoids might be used as a targeted antioxidant strategy as an adjunctive treatment to minimize diabetes complications in dogs.
Collapse
Affiliation(s)
- Namphung Suemanotham
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand,Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Boonrat Chantong
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Shutipen Buranasinsup
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Walasinee Sakcamduang
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duangthip Chatchaisak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand,*Correspondence: Duangthip Chatchaisak ✉
| |
Collapse
|
32
|
Mohammadinejad A, Heydari M, Kazemi Oskuee R, Rezayi M. A Critical Systematic Review of Developing Aptasensors for Diagnosis and Detection of Diabetes Biomarkers. Crit Rev Anal Chem 2022; 52:1795-1817. [DOI: 10.1080/10408347.2021.1919986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arash Mohammadinejad
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Heydari
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Sohail MU, Mashood F, Oberbach A, Chennakkandathil S, Schmidt F. The role of pathogens in diabetes pathogenesis and the potential of immunoproteomics as a diagnostic and prognostic tool. Front Microbiol 2022; 13:1042362. [PMID: 36483212 PMCID: PMC9724628 DOI: 10.3389/fmicb.2022.1042362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 09/11/2024] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases marked by hyperglycemia, which increases the risk of systemic infections. DM patients are at greater risk of hospitalization and mortality from bacterial, viral, and fungal infections. Poor glycemic control can result in skin, blood, bone, urinary, gastrointestinal, and respiratory tract infections and recurrent infections. Therefore, the evidence that infections play a critical role in DM progression and the hazard ratio for a person with DM dying from any infection is higher. Early diagnosis and better glycemic control can help prevent infections and improve treatment outcomes. Perhaps, half (49.7%) of the people living with DM are undiagnosed, resulting in a higher frequency of infections induced by the hyperglycemic milieu that favors immune dysfunction. Novel diagnostic and therapeutic markers for glycemic control and infection prevention are desirable. High-throughput blood-based immunoassays that screen infections and hyperglycemia are required to guide timely interventions and efficiently monitor treatment responses. The present review aims to collect information on the most common infections associated with DM, their origin, pathogenesis, and the potential of immunoproteomics assays in the early diagnosis of the infections. While infections are common in DM, their role in glycemic control and disease pathogenesis is poorly described. Nevertheless, more research is required to identify novel diagnostic and prognostic markers to understand DM pathogenesis and management of infections. Precise monitoring of diabetic infections by immunoproteomics may provide novel insights into disease pathogenesis and healthy prognosis.
Collapse
Affiliation(s)
| | | | - Andreas Oberbach
- Experimental Cardiac Surgery LMU Munich, Department of Cardiac Surgery, Ludwig Maximillian University of Munich, Munich, Germany
| | | | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine, Doha, Qatar
| |
Collapse
|
34
|
Zupančič B, Umek N, Ugwoke CK, Cvetko E, Horvat S, Grdadolnik J. Application of FTIR Spectroscopy to Detect Changes in Skeletal Muscle Composition Due to Obesity with Insulin Resistance and STZ-Induced Diabetes. Int J Mol Sci 2022; 23:ijms232012498. [PMID: 36293355 PMCID: PMC9603871 DOI: 10.3390/ijms232012498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Age, obesity, and diabetes mellitus are pathophysiologically interconnected factors that significantly contribute to the global burden of non-communicable diseases. These metabolic conditions are associated with impaired insulin function, which disrupts the metabolism of carbohydrates, lipids, and proteins and can lead to structural and functional changes in skeletal muscle. Therefore, the alterations in the macromolecular composition of skeletal muscle may provide an indication of the underlying mechanisms of insulin-related disorders. The aim of this study was to investigate the potential of Fourier transform infrared (FTIR) spectroscopy to reveal the changes in macromolecular composition in weight-bearing and non-weight-bearing muscles of old, obese, insulin-resistant, and young streptozotocin (STZ)-induced diabetic mice. The efficiency of FTIR spectroscopy was evaluated by comparison with the results of gold-standard histochemical techniques. The differences in biomolecular phenotypes and the alterations in muscle composition in relation to their functional properties observed from FTIR spectra suggest that FTIR spectroscopy can detect most of the changes observed in muscle tissue by histochemical analyses and more. Therefore, it could be used as an effective alternative because it allows for the complete characterization of macromolecular composition in a single, relatively simple experiment, avoiding some obvious drawbacks of histochemical methods.
Collapse
Affiliation(s)
- Barbara Zupančič
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Nejc Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (N.U.); (J.G.)
| | | | - Erika Cvetko
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Simon Horvat
- Chair for Genetics, Biotechnology and Immunology, Biotechnical Faculty, University of Ljubljana, 1230 Domžale, Slovenia
| | - Jože Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- Correspondence: (N.U.); (J.G.)
| |
Collapse
|
35
|
Mojsak P, Maliszewska K, Klimaszewska P, Miniewska K, Godzien J, Sieminska J, Kretowski A, Ciborowski M. Optimization of a GC-MS method for the profiling of microbiota-dependent metabolites in blood samples: An application to type 2 diabetes and prediabetes. Front Mol Biosci 2022; 9:982672. [PMID: 36213115 PMCID: PMC9538375 DOI: 10.3389/fmolb.2022.982672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Changes in serum or plasma metabolome may reflect gut microbiota dysbiosis, which is also known to occur in patients with prediabetes and type 2 diabetes (T2DM). Thus, developing a robust method for the analysis of microbiota-dependent metabolites (MDMs) is an important issue. Gas chromatography with mass spectrometry (GC–MS) is a powerful approach enabling detection of a wide range of MDMs in biofluid samples with good repeatability and reproducibility, but requires selection of a suitable solvents and conditions. For this reason, we conducted for the first time the study in which, we demonstrated an optimisation of samples preparation steps for the measurement of 75 MDMs in two matrices. Different solvents or mixtures of solvents for MDMs extraction, various concentrations and volumes of derivatizing reagents as well as temperature programs at methoxymation and silylation step, were tested. The stability, repeatability and reproducibility of the 75 MDMs measurement were assessed by determining the relative standard deviation (RSD). Finally, we used the developed method to analyse serum samples from 18 prediabetic (PreDiab group) and 24 T2DM patients (T2DM group) from our 1000PLUS cohort. The study groups were homogeneous and did not differ in age and body mass index. To select statistically significant metabolites, T2DM vs. PreDiab comparison was performed using multivariate statistics. Our experiment revealed changes in 18 MDMs belonging to different classes of compounds, and seven of them, based on the SVM classification model, were selected as a panel of potential biomarkers, able to distinguish between patients with T2DM and prediabetes.
Collapse
Affiliation(s)
- Patrycja Mojsak
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Maliszewska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | | | - Katarzyna Miniewska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Godzien
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Julia Sieminska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Michal Ciborowski,
| |
Collapse
|
36
|
Banimfreg BH, Shamayleh A, Alshraideh H, Semreen MH, Soares NC. Untargeted approach to investigating the metabolomics profile of type 2 diabetes emiratis. J Proteomics 2022; 269:104718. [PMID: 36100153 DOI: 10.1016/j.jprot.2022.104718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/28/2022] [Accepted: 08/20/2022] [Indexed: 12/12/2022]
Abstract
Type 2 Diabetes (T2D) is expected to be the seventh most significant cause of death worldwide by 2030. Although research into its mechanism has received the attention it deserves, our understanding of T2D is still limited. This case-control study employs untargeted metabolomics to explore novel T2D plasma biomarkers in the Emirati population. Ninety-two UAE nationals were included in the cohort, with fifty T2D and forty-two non-T2D profiles. Participants were then stratified into three groups based on metabolic profiles, clinically verified diabetic status, and current HbA1c values: namely controlled diabetics, uncontrolled diabetics and prediabetics, and non-diabetics. The study identified fifteen significant differentially abundant metabolites between the uncontrolled diabetics group and the prediabetics or controlled diabetics group. Interestingly, some metabolites essential for the corticosteroid and thyroid signaling pathways were found to be significantly elevated in poorly controlled T2D, including cortisol, glycocholic acid, bile acids, thyroxine, and the tryptophan metabolite, 5-hydroxyindoleacetic acid. These findings align with those from prior western cohorts and suggest an intriguing linkage between T2D glycemic control and thyroid and adrenal signaling that may provide new diagnostic and prognostic indicators. RESEARCH SIGNIFICANCE: This study investigates the underlooked metabolomic role and correlation with T2D in the UAE population. The report indicates fifteen significant differentially abundant metabolites between on diabetics, uncontrolled diabetics and or controlled diabetics or prediabetics. This panel of metabolites such as thyroxine and corticosteroids should be considered further as potential diagnostic or prognostic biomarkers for T2D in the region.
Collapse
Affiliation(s)
- Bayan Hassan Banimfreg
- College of Engineering, Department of Industrial Engineering, American University of Sharjah, United Arab Emirates
| | - Abdulrahim Shamayleh
- College of Engineering, Department of Industrial Engineering, American University of Sharjah, United Arab Emirates
| | - Hussam Alshraideh
- College of Engineering, Department of Industrial Engineering, American University of Sharjah, United Arab Emirates
| | - Mohammad Harb Semreen
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Nelson C Soares
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
37
|
Pan X, Meng J, Xu L, Chang M, Feng C, Geng X, Cheng Y, Guo D, Liu R, Wang Z, Li D, Tan L. In-depth investigation of the hypoglycemic mechanism of Morchella importuna polysaccharide via metabonomics combined with 16S rRNA sequencing. Int J Biol Macromol 2022; 220:659-670. [PMID: 35995180 DOI: 10.1016/j.ijbiomac.2022.08.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Increasing evidence indicates that type 2 diabetes mellitus (T2DM) is closely related to intestinal bacteria disorders and abnormal hepatic metabolism. Morchella importuna polysaccharide (MIP) shows excellent hypoglycemic activity in vitro. However, the hypoglycemic effect and mechanism of MIP in vivo have yet to be investigated. In this study, the blood glucose, blood lipid and insulin resistance of diabetic mice after MIP intervention were measured to evaluate its hypoglycemic effect. Then, the microbiome and metabolomics were combined to explore the hypoglycemic mechanism of MIP. Results indicated that high dose MIP (400 mg/kg) had significant hypoglycemic effect. Furthermore, MIP could reverse diabetes-induced intestinal disorder by increasing the abundance of Akkermansia, Blautia, Dubosiella, and Lachnospiraceae, as well as decreasing the abundance of Helicobacteraceae. Besides, the hepatic metabolites and complex network systems formed by multiple metabolic pathways were regulated after MIP treatment. Notably, a new biomarker of diabetes (N-P-coumaroyl spermidine) was discovered in this study. Moreover, the significant association between intestinal bacteria and hepatic metabolites was determined by correlations analysis, which in turn confirmed MIP alleviated T2DM via the gut-liver axis. Therefore, these findings elucidated in-depth hypoglycemic mechanisms of MIP and provided a new biomarker for the prevention of diabetes.
Collapse
Affiliation(s)
- Xu Pan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, China.
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China.
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Dongdong Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Rongzhu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhichao Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Dongjie Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Lirui Tan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| |
Collapse
|
38
|
Hu H, Lai T, Farid F. Feasibility Study of Constructing a Screening Tool for Adolescent Diabetes Detection Applying Machine Learning Methods. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22166155. [PMID: 36015915 PMCID: PMC9416136 DOI: 10.3390/s22166155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 06/02/2023]
Abstract
Prediabetes and diabetes are becoming alarmingly prevalent among adolescents over the past decade. However, an effective screening tool that can assess diabetes risks smoothly is still in its infancy. In order to contribute to such significant gaps, this research proposes a machine learning-based predictive model to detect adolescent diabetes. The model applies supervised machine learning and a novel feature selection method to the National Health and Nutritional Examination Survey datasets after an exhaustive search to select reliable and accurate data. The best model achieved an area under the curve (AUC) score of 71%. This research proves that a screening tool based on supervised machine learning models can assist in the automated detection of youth diabetes. It also identifies some critical predictors to such detection using Lasso Regression, Random Forest Importance and Gradient Boosted Tree Importance feature selection methods. The most contributing features to Youth diabetes detection are physical characteristics (e.g., waist, leg length, gender), dietary information (e.g., water, protein, sodium) and demographics. These predictors can be further utilised in other areas of medical research, such as electronic medical history.
Collapse
Affiliation(s)
- Hansel Hu
- Atlas Advisors, Australia Pty Ltd., Sydney, NSW 2000, Australia
| | - Tin Lai
- School of Computer Science, Faculty of Engineering, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Farnaz Farid
- Cybersecurity and Behavioural Science, School of Social Sciences, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
39
|
Culver MN, McMillan NK, Cross BL, Robinson AT, Montoye AH, Riemann BL, Flatt AA, Grosicki GJ. Sleep duration irregularity is associated with elevated blood pressure in young adults. Chronobiol Int 2022; 39:1320-1328. [PMID: 35844152 DOI: 10.1080/07420528.2022.2101373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sleep irregularity (i.e., highly variable sleep patterns) is an emerging risk factor for cardiometabolic disease. Though irregular sleep patterns are common among young adults, the cardiometabolic health (CMH) repercussions of sleep irregularity in this population are unclear. We examined associations between sleep duration and irregularity with measures of CMH in 44 (24 M/20 F, 23 ± 5y, BMI 26 ± 4 kg/m2, blood pressure (BP): 125/71 ± 14/9 mmHg) young adults. Participants wore actigraphy monitors for seven-days and sleep duration irregularity was operationalized as the standard deviation of nightly sleep duration (sleep SD). CMH variables of interest included brachial and aortic BP, arterial stiffness (cf-PWV), augmentation index (AIx75), and fasting blood glucose and lipids. Associations between sleep duration and sleep SD with CMH variables were assessed via correlations adjusted for sex and BMI. Sleep duration generally was not associated with CMH indices. However, sleep SD was associated with brachial systolic (r = 0.433, p = .027) and diastolic BP (r = 0.415, p = .035). Similarly, sleep duration SD was associated with aortic systolic BP (r = 0.447, p = .022). Our findings show that sleep irregularity, but not duration, is associated with higher brachial and central BP in young adults.Abbreviations: AIx75: augmentation index at a heart rate of 75 beats per minute; BP: blood pressure; CMH: cardiometabolic health; cf-PWV: carotid-femoral pulse wave velocity; DXA: dual x-ray absorptiometry; mg/dl: milligrams per deciliter; PWA: pulse wave analysis; PWV: pulse wave velocity; sleep duration SD: standard deviation of nightly sleep duration.
Collapse
Affiliation(s)
- Meral N Culver
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, Georgia, USA.,Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, USA
| | - Nathan K McMillan
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, Georgia, USA
| | - Brett L Cross
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, Georgia, USA
| | - Austin T Robinson
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, USA
| | - Alexander Hk Montoye
- Department of Integrative Physiology and Health Science, Alma College, Alma, Michigan, USA
| | - Bryan L Riemann
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, Georgia, USA
| | - Andrew A Flatt
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, Georgia, USA
| | - Gregory J Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, Georgia, USA
| |
Collapse
|
40
|
Chu SS, Nguyen HA, Zhang J, Tabassum S, Cao H. Towards Multiplexed and Multimodal Biosensor Platforms in Real-Time Monitoring of Metabolic Disorders. SENSORS (BASEL, SWITZERLAND) 2022; 22:5200. [PMID: 35890880 PMCID: PMC9323394 DOI: 10.3390/s22145200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Metabolic syndrome (MS) is a cluster of conditions that increases the probability of heart disease, stroke, and diabetes, and is very common worldwide. While the exact cause of MS has yet to be understood, there is evidence indicating the relationship between MS and the dysregulation of the immune system. The resultant biomarkers that are expressed in the process are gaining relevance in the early detection of related MS. However, sensing only a single analyte has its limitations because one analyte can be involved with various conditions. Thus, for MS, which generally results from the co-existence of multiple complications, a multi-analyte sensing platform is necessary for precise diagnosis. In this review, we summarize various types of biomarkers related to MS and the non-invasively accessible biofluids that are available for sensing. Then two types of widely used sensing platform, the electrochemical and optical, are discussed in terms of multimodal biosensing, figure-of-merit (FOM), sensitivity, and specificity for early diagnosis of MS. This provides a thorough insight into the current status of the available platforms and how the electrochemical and optical modalities can complement each other for a more reliable sensing platform for MS.
Collapse
Affiliation(s)
- Sung Sik Chu
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA; (S.S.C.); (J.Z.)
| | - Hung Anh Nguyen
- Department of Electrical Engineering and Computer Science, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA;
| | - Jimmy Zhang
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA; (S.S.C.); (J.Z.)
| | - Shawana Tabassum
- Department of Electrical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Hung Cao
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA; (S.S.C.); (J.Z.)
- Department of Electrical Engineering and Computer Science, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA;
| |
Collapse
|
41
|
Cesar TB, Ramos FMM, Ribeiro CB. Nutraceutical Eriocitrin (Eriomin) Reduces Hyperglycemia by Increasing Glucagon-Like Peptide 1 and Downregulates Systemic Inflammation: A Crossover-Randomized Clinical Trial. J Med Food 2022; 25:1050-1058. [PMID: 35796695 DOI: 10.1089/jmf.2021.0181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
This double-blind, randomized, placebo/controlled, crossover study evaluated the efficacy of Eriomin® in reducing hyperglycemia and improving diabetes-related biomarkers in individuals with hyperglycemia above 110 mg/dL (mean 123 ± 18 mg/dL). Subjects (n = 30), divided into two groups (Eriomin or Placebo), who received a dose of 200 mg/d of the designated supplement for 12 weeks and, after a washout period of 2 weeks, switched to the other supplement in the following 12 weeks. Assessments of biochemical, metabolic, inflammatory, blood pressure, anthropometry, and dietary parameters were performed at the beginning and end of each intervention. Treatment with 200 mg/d of Eriomin significantly decreased blood glucose (-5%), homeostasis model assessment of insulin resistance (-11%), glucagon (-13%), interleukin-6 (-14%), tumor necrosis factor alpha (-20%), and alkaline phosphatase (-13%); but increased glucagon-like peptide 1 (GLP-1) by (17%) (P ≤ .05). At the end of the placebo period, there was a 13% increase in triglycerides (P ≤ .05). Other parameters evaluated did not change with Eriomin or placebo. In conclusion, intervention with Eriomin benefited the glycemic control of prediabetic and diabetic patients, with higher blood glucose levels, by increasing GLP-1 and decreasing systemic inflammation.
Collapse
Affiliation(s)
- Thais Borges Cesar
- Laboratory of Nutrition, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Fernanda Maria Manzini Ramos
- Laboratory of Nutrition, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Carolina Barbosa Ribeiro
- Laboratory of Nutrition, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
42
|
Plasma carnitine, choline, γ-butyrobetaine, and trimethylamine-N-oxide, but not zonulin, are reduced in overweight/obese patients with pre/diabetes or impaired glycemia. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
43
|
Lages M, Barros R, Moreira P, Guarino MP. Metabolic Effects of an Oral Glucose Tolerance Test Compared to the Mixed Meal Tolerance Tests: A Narrative Review. Nutrients 2022; 14:nu14102032. [PMID: 35631171 PMCID: PMC9147413 DOI: 10.3390/nu14102032] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 01/03/2023] Open
Abstract
The oral glucose tolerance test (OGTT) is recommended for assessing abnormalities in glucose homeostasis. Recognised as the gold standard test for diagnosing diabetes, the OGTT provides useful information about glucose tolerance. However, it does not replicate the process of absorption and digestion of complex foods, such as that which occurs with a mixed meal tolerance test (MMTT), an alternative that is still not well explored in the diagnosis of metabolic alterations. The MMTT could be an asset in detecting glucose homeostasis disorders, including diabetes since it has more similarities to the common dietary pattern, allowing early detection of subtle changes in metabolic homeostasis in response to combined nutrients. This alternative has the advantage of being more tolerable and pleasant to patients since it induces a more gradual increase in blood glucose, thus reducing the risk of rebound hypoglycemia and other related complications. The present article reviewed the clinical data available regarding the possibility of screening or diagnosing altered glucose homeostasis, including type 2 diabetes mellitus, with the MMTT.
Collapse
Affiliation(s)
- Marlene Lages
- ciTechCare—Center for Innovative Care and Health Technology, Polytechnic of Leiria, 2410-541 Leiria, Portugal;
- Faculty of Nutrition and Food Science, University of Porto, 4150-180 Porto, Portugal; (R.B.); (P.M.)
- EPIUnit—Instituto de Saude Publica, Universidade do Porto, 4200-450 Porto, Portugal
| | - Renata Barros
- Faculty of Nutrition and Food Science, University of Porto, 4150-180 Porto, Portugal; (R.B.); (P.M.)
- EPIUnit—Instituto de Saude Publica, Universidade do Porto, 4200-450 Porto, Portugal
| | - Pedro Moreira
- Faculty of Nutrition and Food Science, University of Porto, 4150-180 Porto, Portugal; (R.B.); (P.M.)
- EPIUnit—Instituto de Saude Publica, Universidade do Porto, 4200-450 Porto, Portugal
- Laboratorio Para a Investigação Integrativa e Translacional em Saude Populacional (ITR), Portugal Centre in Physical Activity, Health and Leisure, University of Porto, 4200-450 Porto, Portugal
| | - Maria P. Guarino
- Faculty of Nutrition and Food Science, University of Porto, 4150-180 Porto, Portugal; (R.B.); (P.M.)
- School of Health Sciences, Polytechnic of Leiria, 2411-901 Leiria, Portugal
- Correspondence:
| |
Collapse
|
44
|
Karagiannidis E, Moysidis DV, Papazoglou AS, Panteris E, Deda O, Stalikas N, Sofidis G, Kartas A, Bekiaridou A, Giannakoulas G, Gika H, Theodoridis G, Sianos G. Prognostic significance of metabolomic biomarkers in patients with diabetes mellitus and coronary artery disease. Cardiovasc Diabetol 2022; 21:70. [PMID: 35525960 PMCID: PMC9077877 DOI: 10.1186/s12933-022-01494-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/06/2022] [Indexed: 12/18/2022] Open
Abstract
Background Diabetes mellitus (DM) and coronary artery disease (CAD) constitute inter-related clinical entities. Biomarker profiling emerges as a promising tool for the early diagnosis and risk stratification of either DM or CAD. However, studies assessing the predictive capacity of novel metabolomics biomarkers in coexistent CAD and DM are scarce. Methods This post-hoc analysis of the CorLipid trial (NCT04580173) included 316 patients with CAD and comorbid DM who underwent emergency or elective coronary angiography due to acute or chronic coronary syndrome. Cox regression analyses were performed to identify metabolomic predictors of the primary outcome, which was defined as the composite of major adverse cardiovascular or cerebrovascular events (MACCE: cardiovascular death, myocardial infarction, stroke, major bleeding), repeat unplanned revascularizations and cardiovascular hospitalizations. Linear regression analyses were also performed to detect significant predictors of CAD complexity, as assessed by the SYNTAX score. Results After a median 2-year follow up period (IQR = 0.7 years), the primary outcome occurred in 69 (21.8%) of patients. Acylcarnitine ratio C4/C18:2, apolipoprotein (apo) B, history of heart failure (HF), age > 65 years and presence of acute coronary syndrome were independent predictors of the primary outcome in diabetic patients with CAD (aHR = 1.89 [1.09, 3.29]; 1.02 [1.01, 1.04]; 1.28 [1.01, 1.41]; 1.04 [1.01, 1.05]; and 1.12 [1.05–1.21], respectively). Higher levels of ceramide ratio C24:1/C24:0, acylcarnitine ratio C4/C18:2, age > 65 and peripheral artery disease were independent predictors of higher CAD complexity (adjusted β = 7.36 [5.74, 20.47]; 3.02 [0.09 to 6.06]; 3.02 [0.09, 6.06], respectively), while higher levels of apoA1 were independent predictors of lower complexity (adjusted β= − 0.65 [− 1.31, − 0.02]). Conclusions In patients with comorbid DM and CAD, novel metabolomic biomarkers and metabolomics-based prediction models could be recruited to predict clinical outcomes and assess the complexity of CAD, thereby enabling the integration of personalized medicine into routine clinical practice. These associations should be interpreted taking into account the observational nature of this study, and thus, larger trials are needed to confirm its results and validate them in different and larger diabetic populations.
Collapse
Affiliation(s)
- Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece.
| | - Dimitrios V Moysidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Andreas S Papazoglou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Eleftherios Panteris
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.,Biomic_Auth, Bioanalysis and Omics Lab, Centre for Interdisciplinary Research of Aristotle, University of Thessaloniki, Innovation Area of Thessaloniki, 57001, Thermi, Greece
| | - Olga Deda
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.,Biomic_Auth, Bioanalysis and Omics Lab, Centre for Interdisciplinary Research of Aristotle, University of Thessaloniki, Innovation Area of Thessaloniki, 57001, Thermi, Greece
| | - Nikolaos Stalikas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Georgios Sofidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Anastasios Kartas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Alexandra Bekiaridou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - George Giannakoulas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Helen Gika
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.,Biomic_Auth, Bioanalysis and Omics Lab, Centre for Interdisciplinary Research of Aristotle, University of Thessaloniki, Innovation Area of Thessaloniki, 57001, Thermi, Greece
| | - George Theodoridis
- Biomic_Auth, Bioanalysis and Omics Lab, Centre for Interdisciplinary Research of Aristotle, University of Thessaloniki, Innovation Area of Thessaloniki, 57001, Thermi, Greece.,Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Sianos
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece.
| |
Collapse
|
45
|
Drayton DJ, Birch RJ, D'Souza-Ferrer C, Ayres M, Howell SJ, Ajjan RA. Diabetes mellitus and perioperative outcomes: a scoping review of the literature. Br J Anaesth 2022; 128:817-828. [PMID: 35300865 PMCID: PMC9131255 DOI: 10.1016/j.bja.2022.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is frequently encountered in the perioperative period. DM may increase the risk of adverse perioperative outcomes owing to the potential vascular complications of DM. We conducted a scoping review to examine the association between DM and adverse perioperative outcomes. METHODS A systematic search strategy of the published literature was built and applied in multiple databases. Observational studies examining the association between DM and adverse perioperative outcomes were included. Abstract screening determined full texts suitable for inclusion. Core information was extracted from each of the included studies including study design, definition of DM, type of DM, surgical specialties, and outcomes. Only primary outcomes are reported in this review. RESULTS The search strategy identified 2363 records. Of those, 61 were included and 28 were excluded with justification. DM was mostly defined by either haemoglobin A1c (HbA1c) or blood glucose values (19 studies each). Other definitions included 'prior diagnosis' or use of medication. In 17 studies the definition was unclear. Type 2 DM was the most frequently studied subtype. Five of seven studies found DM was associated with mortality, 5/13 reported an association with 'complications' (as a composite measure), and 12/17 studies found DM was associated with 'infection'. Overall, 33/61 studies reported that DM was associated with the primary outcome measure. CONCLUSION Diabetes mellitus is inconsistently defined in the published literature, which limits the potential for pooled analysis. Further research is necessary to determine which cohort of patients with DM are most at risk of adverse postoperative outcomes, and how control influences this association.
Collapse
Affiliation(s)
| | | | | | - Michael Ayres
- Leeds Institute of Medical Research, University of Leeds, UK
| | - Simon J Howell
- Leeds Institute of Medical Research, University of Leeds, UK
| | - Ramzi A Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK
| |
Collapse
|
46
|
Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells 2022; 11:cells11081312. [PMID: 35455991 PMCID: PMC9029922 DOI: 10.3390/cells11081312] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
Advanced glycation end-products (AGEs) constitute a non-homogenous, chemically diverse group of compounds formed either exogeneously or endogeneously on the course of various pathways in the human body. In general, they are formed non-enzymatically by condensation between carbonyl groups of reducing sugars and free amine groups of nucleic acids, proteins, or lipids, followed by further rearrangements yielding stable, irreversible end-products. In the last decades, AGEs have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes and diseases, such as diabetes, cancer, cardiovascular, neurodegenerative diseases, and even infection with the SARS-CoV-2 virus. They are recognized by several cellular receptors and trigger many signaling pathways related to inflammation and oxidative stress. Despite many experimental research outcomes published recently, the complexity of their engagement in human physiology and pathophysiological states requires further elucidation. This review focuses on the receptors of AGEs, especially on the structural aspects of receptor-ligand interaction, and the diseases in which AGEs are involved. It also aims to present AGE classification in subgroups and to describe the basic processes leading to both exogeneous and endogeneous AGE formation.
Collapse
|
47
|
Ortiz-Martínez M, González-González M, Martagón AJ, Hlavinka V, Willson RC, Rito-Palomares M. Recent Developments in Biomarkers for Diagnosis and Screening of Type 2 Diabetes Mellitus. Curr Diab Rep 2022; 22:95-115. [PMID: 35267140 PMCID: PMC8907395 DOI: 10.1007/s11892-022-01453-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Diabetes mellitus is a complex, chronic illness characterized by elevated blood glucose levels that occurs when there is cellular resistance to insulin action, pancreatic β-cells do not produce sufficient insulin, or both. Diabetes prevalence has greatly increased in recent decades; consequently, it is considered one of the fastest-growing public health emergencies globally. Poor blood glucose control can result in long-term micro- and macrovascular complications such as nephropathy, retinopathy, neuropathy, and cardiovascular disease. Individuals with diabetes require continuous medical care, including pharmacological intervention as well as lifestyle and dietary changes. RECENT FINDINGS The most common form of diabetes mellitus, type 2 diabetes (T2DM), represents approximately 90% of all cases worldwide. T2DM occurs more often in middle-aged and elderly adults, and its cause is multifactorial. However, its incidence has increased in children and young adults due to obesity, sedentary lifestyle, and inadequate nutrition. This high incidence is also accompanied by an estimated underdiagnosis prevalence of more than 50% worldwide. Implementing successful and cost-effective strategies for systematic screening of diabetes mellitus is imperative to ensure early detection, lowering patients' risk of developing life-threatening disease complications. Therefore, identifying new biomarkers and assay methods for diabetes mellitus to develop robust, non-invasive, painless, highly-sensitive, and precise screening techniques is essential. This review focuses on the recent development of new clinically validated and novel biomarkers as well as the methods for their determination that represent cost-effective alternatives for screening and early diagnosis of T2DM.
Collapse
Affiliation(s)
- Margarita Ortiz-Martínez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
| | - Mirna González-González
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México.
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Nuevo León, México.
| | - Alexandro J Martagón
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Nuevo León, México
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Victoria Hlavinka
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Richard C Willson
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Nuevo León, México
| |
Collapse
|
48
|
Al-hadlaq SM, Balto HA, Hassan WM, Marraiki NA, El-Ansary AK. Biomarkers of non-communicable chronic disease: an update on contemporary methods. PeerJ 2022; 10:e12977. [PMID: 35233297 PMCID: PMC8882335 DOI: 10.7717/peerj.12977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/31/2022] [Indexed: 01/11/2023] Open
Abstract
Chronic diseases constitute a major global burden with significant impact on health systems, economies, and quality of life. Chronic diseases include a broad range of diseases that can be communicable or non-communicable. Chronic diseases are often associated with modifications of normal physiological levels of various analytes that are routinely measured in serum and other body fluids, as well as pathological findings, such as chronic inflammation, oxidative stress, and mitochondrial dysfunction. Identification of at-risk populations, early diagnosis, and prediction of prognosis play a major role in preventing or reducing the burden of chronic diseases. Biomarkers are tools that are used by health professionals to aid in the identification and management of chronic diseases. Biomarkers can be diagnostic, predictive, or prognostic. Several individual or grouped biomarkers have been used successfully in the diagnosis and prediction of certain chronic diseases, however, it is generally accepted that a more sophisticated approach to link and interpret various biomarkers involved in chronic disease is necessary to improve our current procedures. In order to ensure a comprehensive and unbiased coverage of the literature, first a primary frame of the manuscript (title, headings and subheadings) was drafted by the authors working on this paper. Second, based on the components drafted in the preliminary skeleton a comprehensive search of the literature was performed using the PubMed and Google Scholar search engines. Multiple keywords related to the topic were used. Out of screened papers, only 190 papers, which are the most relevant, and recent articles were selected to cover the topic in relation to etiological mechanisms of different chronic diseases, the most recently used biomarkers of chronic diseases and finally the advances in the applications of multivariate biomarkers of chronic diseases as statistical and clinically applied tool for the early diagnosis of chronic diseases was discussed. Recently, multivariate biomarkers analysis approach has been employed with promising prospect. A brief discussion of the multivariate approach for the early diagnosis of the most common chronic diseases was highlighted in this review. The use of diagnostic algorithms might show the way for novel criteria and enhanced diagnostic effectiveness inpatients with one or numerous non-communicable chronic diseases. The search for new relevant biomarkers for the better diagnosis of patients with non-communicable chronic diseases according to the risk of progression, sickness, and fatality is ongoing. It is important to determine whether the newly identified biomarkers are purely associations or real biomarkers of underlying pathophysiological processes. Use of multivariate analysis could be of great importance in this regard.
Collapse
Affiliation(s)
- Solaiman M. Al-hadlaq
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Hanan A. Balto
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia,Central Research Laboratory, Female Campus, King Saud University, Riyadh, Saudi Arabia
| | - Wail M. Hassan
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, KS, United States of America
| | - Najat A. Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Afaf K. El-Ansary
- Central Research Laboratory, Female Campus, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
49
|
Semi-Quantitative MALDI Measurements of Blood-Based Samples for Molecular Diagnostics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030997. [PMID: 35164262 PMCID: PMC8840133 DOI: 10.3390/molecules27030997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022]
Abstract
Accurate and precise measurement of the relative protein content of blood-based samples using mass spectrometry is challenging due to the large number of circulating proteins and the dynamic range of their abundances. Traditional spectral processing methods often struggle with accurately detecting overlapping peaks that are observed in these samples. In this work, we develop a novel spectral processing algorithm that effectively detects over 1650 peaks with over 3.5 orders of magnitude in intensity in the 3 to 30 kD m/z range. The algorithm utilizes a convolution of the peak shape to enhance peak detection, and accurate peak fitting to provide highly reproducible relative abundance estimates for both isolated peaks and overlapping peaks. We demonstrate a substantial increase in the reproducibility of the measurements of relative protein abundance when comparing this processing method to a traditional processing method for sample sets run on multiple matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) instruments. By utilizing protein set enrichment analysis, we find a sizable increase in the number of features associated with biological processes compared to previously reported results. The new processing method could be very beneficial when developing high-performance molecular diagnostic tests in disease indications.
Collapse
|
50
|
Mizoshita N, Yamada Y, Murase M, Goto Y, Inagaki S. Nanoporous Substrates with Molecular-Level Perfluoroalkyl/Alkylamide Surface for Laser Desorption/Ionization Mass Spectrometry of Small Proteins. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3716-3725. [PMID: 34978407 DOI: 10.1021/acsami.1c19565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rapid detection of biomolecules greatly contributes to health management, clinical diagnosis, and prevention of diseases. Mass spectrometry (MS) is effective for detecting and analyzing various molecules at high throughput. However, there are problems with the MS analysis of biological samples, including complicated separation operations and essential pretreatments. In this study, a nanostructured organosilica substrate for laser desorption/ionization mass spectrometry (LDI-MS) is designed and synthesized to detect peptides and small proteins efficiently and rapidly. The surface functionality of the substrate is tuned by perfluoroalkyl/alkylamide groups mixed at a molecular level. This contributes to both lowering the surface free energy and introducing weak anchoring sites for peptides and proteins. Analyte molecules applied onto the substrate are homogeneously distributed and readily desorbed by the laser irradiation. The organosilica substrate enables the efficient LDI of various compounds, including peptides, small proteins, phospholipids, and drugs. An amyloid β protein fragment, which is known as a biomarker for Alzheimer's disease, is detectable at 0.05 fmol μL-1. The detection of the amyloid β at 0.2 fmol μL-1 is also confirmed in the presence of blood components. Nanostructured organosilica substrates incorporating a molecular-level surface design have the potential to enable easy detection of a wide range of biomolecules.
Collapse
Affiliation(s)
| | - Yuri Yamada
- Toyota Central R&D Laboratories., Inc., Nagakute, Aichi 480-1192, Japan
| | - Masakazu Murase
- Toyota Central R&D Laboratories., Inc., Nagakute, Aichi 480-1192, Japan
| | - Yasutomo Goto
- Toyota Central R&D Laboratories., Inc., Nagakute, Aichi 480-1192, Japan
| | - Shinji Inagaki
- Toyota Central R&D Laboratories., Inc., Nagakute, Aichi 480-1192, Japan
| |
Collapse
|