1
|
Majumdar S, Tiwari A, Mallick D, Patel DK, Trigun SK, Krishnamurthy S. Oral Release Kinetics, Biodistribution, and Excretion of Dopants from Barium-Containing Bioactive Glass in Rats. ACS OMEGA 2024; 9:7188-7205. [PMID: 38371771 PMCID: PMC10870265 DOI: 10.1021/acsomega.3c09250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/20/2024]
Abstract
Background: Inorganic biomaterials are biologically active and are used as implants and drug delivery system. They have therapeutically active elements present in their framework that are released in the physiological milieu. Release of these dopants above the supraphysiological limit may produce adverse effects and physicochemical interactions with the loaded drugs. Therefore, this necessitates evaluating the in vivo release kinetics, biodistribution, and excretion profiles of dopants from barium-doped bioglass (BaBG) that has potential anti-inflammatory, antiulcer, and regenerative properties. Methods: In vitro leaching of Ca, Si, and Ba from BaBG was analyzed in simulated body fluid. Release kinetics post single-dose oral administration (1, 5, and 10 mg/kg) was performed in rats. Blood was collected at different time points, and pharmacokinetic parameters of released elements were calculated. The routes of excretion and biodistribution in major organs were evaluated using ICP-MS. Results: Elements were released after the oral administration of BaBG into the plasma. They showed dose-dependent release kinetics and mean residence time. Cmax was observed at 24 h for all elements, followed by a downhill fall. There was also a dose-dependent increase in the volume of distribution, and the clearance of dopants was mostly through feces. Ba and Si were biodistributed significantly in the liver, spleen, and kidneys. However, by the end of day 7, there was a leveling-off effect observed for all elements. Conclusion: All of the dopants exhibited a dose-dependent increase in release kinetics and biodistribution in vital organs. This study will help in dose optimization and understanding of various physicochemical and pharmacokinetic interactions when BaBG is used for future pharmacological studies.
Collapse
Affiliation(s)
- Shreyasi Majumdar
- Neurotherapeutics
Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Anshul Tiwari
- Analytical
Sciences and Accredited Testing Services, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
| | - Debasmit Mallick
- Department
of Zoology, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Devendra K. Patel
- Analytical
Sciences and Accredited Testing Services, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
| | - Surendra Kumar Trigun
- Department
of Zoology, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics
Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
2
|
Roncal-Jimenez CA, Rogers KL, Stem A, Wijkstrom J, Wernerson A, Fox J, Garcia Trabanino R, Brindley S, Garcia G, Miyazaki M, Miyazaki-Anzai S, Sasai F, Urra M, Cara-Fuentes G, Sánchez-Lozada LG, Rodriguez-Iturbe B, Butler Dawson J, Madero M, Brown JM, Johnson RJ. Intranasal Administration of Sugarcane Ash Causes Chronic Kidney Disease in Rats. Am J Physiol Renal Physiol 2024; 326:F477-F484. [PMID: 38234297 PMCID: PMC11207544 DOI: 10.1152/ajprenal.00251.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/15/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024] Open
Abstract
Background. Silica nanoparticles found in sugarcane ash have been postulated to be a toxicant contributing to chronic kidney disease of unknown etiology (CKDu). However, while the administration of manufactured silica nanoparticles is known to cause chronic tubulointerstitial disease in rats, the effect of administering sugarcane ash on kidney pathology remains unknown. Here we investigate whether sugarcane ash can induce CKD in rats. Methods. Sugarcane ash was administered for 13 weeks into the nares of rats (5 mg/day for 5d/week), and blood, urine and kidney tissues were collected at 13 weeks (at the end of ash administration) and in a separate group of rats at 24 weeks (11 weeks after stopping ash administration). Kidney histology was evaluated, and inflammation and fibrosis (collagen deposition) measured. Results. Sugarcane ash exposure led to the accumulation of silica in the kidneys, lungs, liver and spleen of rats. Mild proteinuria developed although renal function was largely maintained. However, biopsies showed focal glomeruli with segmental glomerulosclerosis, and tubulointerstitial inflammation and fibrosis that tended to worsen even after the ash administration had been stopped. Staining for the lysosomal marker, LAMP-1, showed decreased staining in ash administered rats consistent with lysosomal activation. Conclusion. Sugarcane ash containing silica nanoparticles can cause CKD in rats.
Collapse
Affiliation(s)
- Carlos A Roncal-Jimenez
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Keegan L Rogers
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Arthur Stem
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Adams County, United States
| | - Julia Wijkstrom
- CLINTEC, Division of renal medicine, Karolinska Institute, Stockholm, Sweden
| | - Annika Wernerson
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Jacob Fox
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Stephen Brindley
- Toxicology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Gabriela Garcia
- Medicine-Nephrology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Auroa, United States
| | - Shinobu Miyazaki-Anzai
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO, United States
| | - Fumihiko Sasai
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Manuel Urra
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Gabriel Cara-Fuentes
- Medicine-Nephrology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - L Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de CardiologÃ-a, Mexico City, D.F., Mexico
| | - Bernardo Rodriguez-Iturbe
- Nefrología y MetaboismoMineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Ciudad de Mexico, Mexico
| | - Jaime Butler Dawson
- Center for Work, Health, and Environment, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Magdalena Madero
- Division of Nephrology, Instituto Nacional de Cardiologia Ignacio Chávez, Mexico City, Mexico
| | - Jared M Brown
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
3
|
Santoro A, Marino M, Vandenberg LN, Szychlinska MA, Lamparelli EP, Scalia F, Della Rocca N, D’Auria R, Pastorino GMG, Della Porta G, Operto FF, Viggiano A, Cappello F, Meccariello R. PLASTAMINATION: Outcomes on the Central Nervous System and Reproduction. Curr Neuropharmacol 2024; 22:1870-1898. [PMID: 38549522 PMCID: PMC11284724 DOI: 10.2174/1570159x22666240216085947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Environmental exposures to non-biodegradable and biodegradable plastics are unavoidable. Microplastics (MPs) and nanoplastics (NPs) from the manufacturing of plastics (primary sources) and the degradation of plastic waste (secondary sources) can enter the food chain directly or indirectly and, passing biological barriers, could target both the brain and the gonads. Hence, the worldwide diffusion of environmental plastic contamination (PLASTAMINATION) in daily life may represent a possible and potentially serious risk to human health. OBJECTIVE This review provides an overview of the effects of non-biodegradable and the more recently introduced biodegradable MPs and NPs on the brain and brain-dependent reproductive functions, summarizing the molecular mechanisms and outcomes on nervous and reproductive organs. Data from in vitro, ex vivo, non-mammalian and mammalian animal models and epidemiological studies have been reviewed and discussed. RESULTS MPs and NPs from non-biodegradable plastics affect organs, tissues and cells from sensitive systems such as the brain and reproductive organs. Both MPs and NPs induce oxidative stress, chronic inflammation, energy metabolism disorders, mitochondrial dysfunction and cytotoxicity, which in turn are responsible for neuroinflammation, dysregulation of synaptic functions, metabolic dysbiosis, poor gamete quality, and neuronal and reproductive toxicity. In spite of this mechanistic knowledge gained from studies of non-biodegradable plastics, relatively little is known about the adverse effects or molecular mechanisms of MPs and NPs from biodegradable plastics. CONCLUSION The neurological and reproductive health risks of MPs/NPs exposure warrant serious consideration, and further studies on biodegradable plastics are recommended.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Marianna Marino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Marta Anna Szychlinska
- Faculty of Medicine and Surgery, Kore University of Enna, Cittadella Universitaria 94100 Enna (EN), Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Federica Scalia
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Natalia Della Rocca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Raffaella D’Auria
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Grazia Maria Giovanna Pastorino
- Child and Adolescence Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of 84100 Salerno, Salerno, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesca Felicia Operto
- Department of Science of Health School of Medicine, University Magna Graecia 88100 Catanzaro, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, 90127, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, 80133 Naples, Italy
| |
Collapse
|
4
|
Chen Q, Yuan L, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. Meta-Analysis of Nanoparticle Distribution in Tumors and Major Organs in Tumor-Bearing Mice. ACS NANO 2023; 17:19810-19831. [PMID: 37812732 PMCID: PMC10604101 DOI: 10.1021/acsnano.3c04037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
Low tumor delivery efficiency is a critical barrier in cancer nanomedicine. This study reports an updated version of "Nano-Tumor Database", which increases the number of time-dependent concentration data sets for different nanoparticles (NPs) in tumors from the previous version of 376 data sets with 1732 data points from 200 studies to the current version of 534 data sets with 2345 data points from 297 studies published from 2005 to 2021. Additionally, the current database includes 1972 data sets for five major organs (i.e., liver, spleen, lung, heart, and kidney) with a total of 8461 concentration data points. Tumor delivery and organ distribution are calculated using three pharmacokinetic parameters, including delivery efficiency, maximum concentration, and distribution coefficient. The median tumor delivery efficiency is 0.67% injected dose (ID), which is low but is consistent with previous studies. Employing the best regression model for tumor delivery efficiency, we generate hypothetical scenarios with different combinations of NP factors that may lead to a higher delivery efficiency of >3%ID, which requires further experimentation to confirm. In healthy organs, the highest NP accumulation is in the liver (10.69%ID/g), followed by the spleen 6.93%ID/g and the kidney 3.22%ID/g. Our perspective on how to facilitate NP design and clinical translation is presented. This study reports a substantially expanded "Nano-Tumor Database" and several statistical models that may help nanomedicine design in the future.
Collapse
Affiliation(s)
- Qiran Chen
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Long Yuan
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Wei-Chun Chou
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Yi-Hsien Cheng
- Department
of Anatomy and Physiology, Kansas State
University, Manhattan, Kansas 66506, United States
- Institute
of Computational Comparative Medicine, Kansas
State University, Manhattan, Kansas 66506, United States
| | - Chunla He
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Department
of Biostatistics College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32608, United States
| | - Nancy A. Monteiro-Riviere
- Nanotechnology
Innovation Center of Kansas State, Kansas
State University, Manhattan, Kansas 66506, United States
- Center
for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Jim E. Riviere
- Center
for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, North Carolina 27606, United States
- 1
Data Consortium, Kansas State University, Olathe, Kansas 66061, United States
| | - Zhoumeng Lin
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
5
|
Zhao M, Zhou G, Wang J, Zhang Y, Xue J, Liu J, Xie J, Ren L, Zhou X. MiR-5622-3p inhibits ZCWPW1 to induce apoptosis in silica-exposed mice and spermatocyte cells. Nanotoxicology 2023:1-13. [PMID: 37315217 DOI: 10.1080/17435390.2023.2223632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
Silica nanoparticles (SiNPs) could cause damage to spermatogenesis, and microRNAs were reported to be associated with male reproduction. This research was designed to explore the toxic impacts of SiNPs induced in male reproduction through miR-5622-3p. In vivo, 60 mice were randomized into the control group and SiNPs group, in which they were exposed to SiNPs for 35 days and then recovered for 15 days. In vitro, 4 groups were set: control group, SiNPs group, SiNPs + miR-5622-3p inhibitor group, and SiNPs + miR-5622-3p inhibitor negative control (NC) group. Our research indicated SiNPs caused the apoptosis of spermatogenic cells, increased level of γ-H2AX, raised the expressions of RAD51, DMC1, 53BP1, and LC8 which were DNA damage repair relative factors, and upregulated Cleaved-Caspase-9 and Cleaved-Caspase-3 levels. Furthermore, SiNPs also elevated the expression of miR-5622-3p but downregulated the level of ZCWPW1. However, miR-5622-3p inhibitor reduced the level of miR-5622-3p, increased the level of ZCWPW1, relieved DNA damage, and depressed the activation of apoptosis pathway, thus, alleviating spermatogenic cells apoptosis caused by SiNPs. The above-mentioned results indicated that SiNPs induced DNA damage resulting in activating of DNA damage response. Meanwhile, SiNPs raised the level of miR-5622-3p targeting inhibited expression of ZCWPW1 to suppress the repair process, possibly making DNA damage so severe that leading to the failure of DNA damage repair, finally inducing the apoptosis of spermatogenic cells.
Collapse
Affiliation(s)
- Moxuan Zhao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Jingjing Wang
- Department of Laboratory Animal, Capital Medical University, Beijing, China
| | - Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Jinglong Xue
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Jianhui Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, China
| | - Junhong Xie
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Badawy MM, Sayed-Ahmed MZ, Almoshari Y, Alqahtani SS, Alshahrani S, Mabrouk HAA, Abd-Elsalam MM, Alkashif K, Ahmad S, El-Sebaey AM, Hamama MG, Ahmed DAM. Magnesium Supplementation Alleviates the Toxic Effects of Silica Nanoparticles on the Kidneys, Liver, and Adrenal Glands in Rats. TOXICS 2023; 11:381. [PMID: 37112608 PMCID: PMC10141093 DOI: 10.3390/toxics11040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Concerns regarding the possible hazards to human health have been raised by the growing usage of silica nanoparticles (SiNPs) in a variety of applications, including industrial, agricultural, and medical applications. This in vivo subchronic study was conducted to assess the following: (1) the toxicity of orally administered SiNPs on the liver, kidneys, and adrenal glands; (2) the relationship between SiNPs exposure and oxidative stress; and (3) the role of magnesium in mitigating these toxic effects. A total of 24 Sprague Dawley male adult rats were divided equally into four groups, as follows: control group, magnesium (Mg) group (50 mg/kg/d), SiNPs group (100 mg/kg/d), and SiNPs+ Mg group. Rats were treated with SiNPs by oral gavage for 90 days. The liver transaminases, serum creatinine, and cortisol levels were evaluated. The tissue malondialdehyde (MDA) and reduced glutathione (GSH) levels were measured. Additionally, the weight of the organs and the histopathological changes were examined. Our results demonstrated that SiNPs exposure caused increased weight in the kidneys and adrenal glands. Exposure to SiNPs was also associated with significant alterations in liver transaminases, serum creatinine, cortisol, MDA, and GSH. Additionally, histopathological changes were significantly reported in the liver, kidneys, and adrenal glands of SiNPs-treated rats. Notably, when we compared the control group with the treated groups with SiNPs and Mg, the results revealed that magnesium could mitigate SiNPs-induced biochemical and histopathologic changes, confirming its effective role as an antioxidant that reduced the accumulation of SiNPs in tissues, and that it returns the levels of liver transaminases, serum creatinine, cortisol, MDA, and GSH to almost normal values.
Collapse
Affiliation(s)
- Mohamed Moharram Badawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Mohamed Z. Sayed-Ahmed
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Saad S. Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Heba Allah Ali Mabrouk
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Kafrelsheikh University, Kafr el-Sheikh 33516, Egypt
| | - Marwa M. Abd-Elsalam
- Department of Histology, Faculty of Medicine, Kafrelsheikh University, Kafr el-Sheikh 33516, Egypt
| | - Khalid Alkashif
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Sarfaraz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Ahmed M. El-Sebaey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed G. Hamama
- Anatomy Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Dalia Alsaied Moustafa Ahmed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
7
|
Yoo NK, Youn SM, Choi SJ. Oral Toxicokinetics, Tissue Distribution, and 28-Day Oral Toxicity of Two Differently Manufactured Food Additive Silicon Dioxides. Int J Mol Sci 2022; 23:4023. [PMID: 35409381 PMCID: PMC8999665 DOI: 10.3390/ijms23074023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/23/2022] [Accepted: 04/02/2022] [Indexed: 11/20/2022] Open
Abstract
(1) Background: Synthetic amorphous silica (SAS) is widely used as a food additive and contains nano-sized particles. SAS can be produced by fumed and precipitated methods, which may possess different physiochemical properties, toxicokinetics, and oral toxicity. (2) Methods: The toxicokinetics of fumed SAS and precipitated SAS were evaluated following a single-dose oral administration in rats. The tissue distribution and fate of both SAS particles were assessed after repeated oral administration in rats for 28 d, followed by recovery period for 90 d. Their 28-d repeated oral toxicity was also evaluated. (3) Results: Precipitated SAS showed higher oral absorption than fumed SAS, but the oral absorption of both SAS particles was low (<4%), even at 2000 mg/kg. Our tissue-distribution study revealed that both SAS particles, at a high dose (2000 mg/kg), were accumulated in the liver after repeated administration for 28 d, but the increased concentrations returned to normal levels at 29 d, the first day of the recovery period. A higher distribution level of precipitated SAS than fumed SAS and decomposed particle fates of both SAS particles were found in the liver at 28 d. No significant toxicological findings were observed after 28-d oral administration, suggesting their low oral toxicity. (4) Conclusions: Different manufacturing methods of SAS can, therefore, affect its oral toxicokinetics and tissue distribution, but not oral toxicity.
Collapse
Affiliation(s)
| | | | - Soo-Jin Choi
- Division of Applied Food System, Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea; (N.-K.Y.); (S.-M.Y.)
| |
Collapse
|
8
|
Sofranko A, Wahle T, Kolling J, Heusinkveld HJ, Stahlmecke B, Rosenbruch M, Albrecht C, Schins RPF. Effects of subchronic dietary exposure to the engineered nanomaterials SiO 2 and CeO 2 in C57BL/6J and 5xFAD Alzheimer model mice. Part Fibre Toxicol 2022; 19:23. [PMID: 35337343 PMCID: PMC8957165 DOI: 10.1186/s12989-022-00461-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is an increasing concern about the neurotoxicity of engineered nanomaterials (NMs). To investigate the effects of subchronic oral exposures to SiO2 and CeO2 NMs on Alzheimer's disease (AD)-like pathology, 5xFAD transgenic mice and their C57BL/6J littermates were fed ad libitum for 3 or 14 weeks with control food pellets, or pellets dosed with these respective NMs at 0.1% or 1% (w/w). Behaviour effects were evaluated by X-maze, string suspension, balance beam and open field tests. Brains were analysed for plaque load, beta-amyloid peptide levels, markers of oxidative stress and neuroinflammation. RESULTS No marked behavioural impairments were observed in the mice exposed to SiO2 or CeO2 and neither treatment resulted in accelerated plaque formation, increased oxidative stress or inflammation. In contrast, the 5xFAD mice exposed to 1% CeO2 for 14 weeks showed significantly lower hippocampal Aβ plaque load and improved locomotor activity compared to the corresponding controls. CONCLUSIONS The findings from the present study suggest that long-term oral exposure to SiO2 or CeO2 NMs has no neurotoxic and AD-promoting effects. The reduced plaque burden observed in the mice following dietary CeO2 exposure warrants further investigation to establish the underlying mechanism, given the easy applicability of this administration method.
Collapse
Affiliation(s)
- Adriana Sofranko
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Tina Wahle
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Julia Kolling
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Harm J Heusinkveld
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Burkhard Stahlmecke
- Institute for Energy and Environmental Technology e.V. (IUTA), Duisburg, Germany
| | | | - Catrin Albrecht
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
- State Office for Consumer Protection Saxony-Anhalt, Stendal, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| |
Collapse
|
9
|
Landsiedel R, Hahn D, Ossig R, Ritz S, Sauer L, Buesen R, Rehm S, Wohlleben W, Groeters S, Strauss V, Sperber S, Wami H, Dobrindt U, Prior K, Harmsen D, van Ravenzwaay B, Schnekenburger J. Gut microbiome and plasma metabolome changes in rats after oral gavage of nanoparticles: sensitive indicators of possible adverse health effects. Part Fibre Toxicol 2022; 19:21. [PMID: 35321750 PMCID: PMC8941749 DOI: 10.1186/s12989-022-00459-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The oral uptake of nanoparticles is an important route of human exposure and requires solid models for hazard assessment. While the systemic availability is generally low, ingestion may not only affect gastrointestinal tissues but also intestinal microbes. The gut microbiota contributes essentially to human health, whereas gut microbial dysbiosis is known to promote several intestinal and extra-intestinal diseases. Gut microbiota-derived metabolites, which are found in the blood stream, serve as key molecular mediators of host metabolism and immunity. RESULTS Gut microbiota and the plasma metabolome were analyzed in male Wistar rats receiving either SiO2 (1000 mg/kg body weight/day) or Ag nanoparticles (100 mg/kg body weight/day) during a 28-day oral gavage study. Comprehensive clinical, histopathological and hematological examinations showed no signs of nanoparticle-induced toxicity. In contrast, the gut microbiota was affected by both nanoparticles, with significant alterations at all analyzed taxonomical levels. Treatments with each of the nanoparticles led to an increased abundance of Prevotellaceae, a family with gut species known to be correlated with intestinal inflammation. Only in Ag nanoparticle-exposed animals, Akkermansia, a genus known for its protective impact on the intestinal barrier was depleted to hardly detectable levels. In SiO2 nanoparticles-treated animals, several genera were significantly reduced, including probiotics such as Enterococcus. From the analysis of 231 plasma metabolites, we found 18 metabolites to be significantly altered in Ag-or SiO2 nanoparticles-treated rats. For most of these metabolites, an association with gut microbiota has been reported previously. Strikingly, both nanoparticle-treatments led to a significant reduction of gut microbiota-derived indole-3-acetic acid in plasma. This ligand of the arylhydrocarbon receptor is critical for regulating immunity, stem cell maintenance, cellular differentiation and xenobiotic-metabolizing enzymes. CONCLUSIONS The combined profiling of intestinal microbiome and plasma metabolome may serve as an early and sensitive indicator of gut microbiome changes induced by orally administered nanoparticles; this will help to recognize potential adverse effects of these changes to the host.
Collapse
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Daniela Hahn
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstrasse 17, 48149, Muenster, Germany
| | - Rainer Ossig
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstrasse 17, 48149, Muenster, Germany
| | - Sabrina Ritz
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstrasse 17, 48149, Muenster, Germany
| | - Lydia Sauer
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstrasse 17, 48149, Muenster, Germany
| | - Roland Buesen
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Sascha Rehm
- HB Technologies AG, 72076, Tübingen, Germany
- Medical Data Integration Center, University Tuebingen, 72072, Tübingen, Germany
| | | | - Sibylle Groeters
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Volker Strauss
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Saskia Sperber
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Haleluya Wami
- Institute of Hygiene, University of Muenster, 48149, Muenster, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Muenster, 48149, Muenster, Germany
| | - Karola Prior
- Department of Periodontology and Operative Dentistry, University Hospital Muenster, 48149, Muenster, Germany
| | - Dag Harmsen
- Department of Periodontology and Operative Dentistry, University Hospital Muenster, 48149, Muenster, Germany
| | | | - Juergen Schnekenburger
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstrasse 17, 48149, Muenster, Germany.
| |
Collapse
|
10
|
Potential Toxic Effects of Exposure to Titanium Silicon Oxide Nanoparticles in Male Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042029. [PMID: 35206216 PMCID: PMC8872251 DOI: 10.3390/ijerph19042029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
Abstract
Recently, nano titanium silicon oxide (TiSiO4 NPs) has been used in different fields and industries. Very few toxicological data exist for TiSiO4 NPs. In the present study, the potential adverse effects of oral exposure to a single dose of TiSiO4 NPs ≤ 50 nm (250 mg/kg b.w.) in adult male rats were investigated through the assessment of biomarkers for serum biochemical parameters, liver DNA damage, and histopathological examination and determination of Si and Ti in the exposed rat tissues. The results revealed that there were no significant changes in serum total protein, albumin, and triglycerides content, while total cholesterol level was significantly increased 7 days after exposure. TiSiO4 NPs significantly increased superoxide dismutase (SOD), glutathione peroxidase (GPx), acetylcholine esterase (AChE), lactate dehydrogenase (LDH) activity, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels in the exposed rat serum, whereas alanine aminotransferase (ALT), aspartate aminotransferase (AST) activity, urea level, immunoglobulins (IgG and IgM) concentrations, progesterone, and testosterone levels were significantly decreased. The liver comet assay indices were significantly increased after 7 days post-exposure. Moreover, histopathological changes and the accumulation of Si and Ti in liver, kidney, spleen, and lung tissues of treated rats were recorded.
Collapse
|
11
|
Di Cristo L, Oomen AG, Dekkers S, Moore C, Rocchia W, Murphy F, Johnston HJ, Janer G, Haase A, Stone V, Sabella S. Grouping Hypotheses and an Integrated Approach to Testing and Assessment of Nanomaterials Following Oral Ingestion. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2623. [PMID: 34685072 PMCID: PMC8541163 DOI: 10.3390/nano11102623] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
The risk assessment of ingested nanomaterials (NMs) is an important issue. Here we present nine integrated approaches to testing and assessment (IATAs) to group ingested NMs following predefined hypotheses. The IATAs are structured as decision trees and tiered testing strategies for each decision node to support a grouping decision. Implications (e.g., regulatory or precautionary) per group are indicated. IATAs integrate information on durability and biopersistence (dissolution kinetics) to specific hazard endpoints, e.g., inflammation and genotoxicity, which are possibly indicative of toxicity. Based on IATAs, groups of similar nanoforms (NFs) of a NM can be formed, such as very slow dissolving, highly biopersistent and systemically toxic NFs. Reference NMs (ZnO, SiO2 and TiO2) along with related NFs are applied as case studies to testing the oral IATAs. Results based on the Tier 1 level suggest a hierarchy of biodurability and biopersistence of TiO2 > SiO2 > ZnO, and are confirmed by in vivo data (Tier 3 level). Interestingly, our analysis suggests that TiO2 and SiO2 NFs are able to induce both local and systemic toxicity along with microbiota dysbiosis and can be grouped according to the tested fate and hazard descriptors. This supports that the decision nodes of the oral IATAs are suitable for classification and assessment of the toxicity of NFs.
Collapse
Affiliation(s)
- Luisana Di Cristo
- Nanoregulatory Platform, Drug Discovery and Development Department, Istituto Italiano Di Tecnologia, 16163 Genova, Italy; (L.D.C.); (C.M.)
| | - Agnes G. Oomen
- National Institute for Public Health and the Environment (RIVM), 3720 Bilthoven, The Netherlands; (A.G.O.); (S.D.)
| | - Susan Dekkers
- National Institute for Public Health and the Environment (RIVM), 3720 Bilthoven, The Netherlands; (A.G.O.); (S.D.)
| | - Colin Moore
- Nanoregulatory Platform, Drug Discovery and Development Department, Istituto Italiano Di Tecnologia, 16163 Genova, Italy; (L.D.C.); (C.M.)
| | - Walter Rocchia
- Computational Modelling of Nanoscale and Biophysical Systems—CONCEPT Lab, Istituto Italiano Di Tecnologia, 16163 Genova, Italy;
| | - Fiona Murphy
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (F.M.); (H.J.J.); (V.S.)
| | - Helinor J. Johnston
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (F.M.); (H.J.J.); (V.S.)
| | - Gemma Janer
- LEITAT Technological Center, 08005 Barcelona, Spain;
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany;
| | - Vicki Stone
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (F.M.); (H.J.J.); (V.S.)
| | - Stefania Sabella
- Nanoregulatory Platform, Drug Discovery and Development Department, Istituto Italiano Di Tecnologia, 16163 Genova, Italy; (L.D.C.); (C.M.)
| |
Collapse
|
12
|
Azouz RA, Korany RMS. Toxic Impacts of Amorphous Silica Nanoparticles on Liver and Kidney of Male Adult Rats: an In Vivo Study. Biol Trace Elem Res 2021; 199:2653-2662. [PMID: 32964349 DOI: 10.1007/s12011-020-02386-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
Abstract
The toxic effects of the amorphous silica nanoparticles have not been thoroughly studied. Moreover, the majority of the in vivo investigations were performed using an inhalation exposure method. The current study aimed to explore the potential toxic effects of silica nanoparticles (SiNPs) after the treatment of adult male rats with two different concentrations (500 and 1000 ppm) via drinking water for 28 days. The genotoxicity, antioxidant status, and liver and kidney functions were assessed. Besides, histopathological and immunohistochemical evaluations were performed. The results showed a significant elevation in the malondialdehyde (MDA) level concurrent with a reduction in total reduced glutathione (GSH) concentration and catalase activity in the 1000-ppm SiNP-exposed rats as well as increase in ALT and AST activity confirmed by various histopathological alterations detected in liver. Also, in the 1000-ppm SiNP-exposed animals, there was an elevation in urea and creatinine levels confirmed by histopathological alterations detected in kidneys. Immunohistochemical findings in both liver and kidneys indicated strong expression of caspase-3 in the 1000-ppm SiNP-treated rats compared with the control and 500-ppm SiNP-treated groups. Such findings indicated that the 1000-ppm SiNPs exerted severe hepato-renal toxic impacts when compared with the control and 500-ppm SiNP-exposed rats.
Collapse
Affiliation(s)
- Rehab A Azouz
- Toxicology and Forensic Medicine Department, Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Reda M S Korany
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
13
|
Determination of Two Differently Manufactured Silicon Dioxide Nanoparticles by Cloud Point Extraction Approach in Intestinal Cells, Intestinal Barriers and Tissues. Int J Mol Sci 2021; 22:ijms22137035. [PMID: 34210022 PMCID: PMC8268481 DOI: 10.3390/ijms22137035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/20/2021] [Accepted: 06/26/2021] [Indexed: 11/17/2022] Open
Abstract
Food additive amorphous silicon dioxide (SiO2) particles are manufactured by two different methods—precipitated and fumed procedures—which can induce different physicochemical properties and biological fates. In this study, precipitated and fumed SiO2 particles were characterized in terms of constituent particle size, hydrodynamic diameter, zeta potential, surface area, and solubility. Their fates in intestinal cells, intestinal barriers, and tissues after oral administration in rats were determined by optimizing Triton X-114-based cloud point extraction (CPE). The results demonstrate that the constituent particle sizes of precipitated and fumed SiO2 particles were similar, but their aggregate states differed from biofluid types, which also affect dissolution properties. Significantly higher cellular uptake, intestinal transport amount, and tissue accumulation of precipitated SiO2 than of fumed SiO2 was found. The intracellular fates of both types of particles in intestinal cells were primarily particle forms, but slowly decomposed into ions during intestinal transport and after distribution in the liver, and completely dissolved in the bloodstream and kidneys. These findings will provide crucial information for understanding and predicting the potential toxicity of food additive SiO2 after oral intake.
Collapse
|
14
|
Lee AR, Baek SM, Lee SW, Kim TU, Han JE, Bae S, Park SJ, Kim TH, Jeong KS, Choi SK, Park JK. Nuclear VEGFR-2 Expression of Hepatocytes Is Involved in Hepatocyte Proliferation and Liver Regeneration During Chronic Liver Injury. In Vivo 2021; 35:1473-1483. [PMID: 33910825 DOI: 10.21873/invivo.12400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The pathological role of vascular endothelial growth factor receptor 2 (VEGFR-2) in chronic liver injury and liver regeneration is not fully understood. This study analysed the role of VEGFR-2 in liver fibrosis and its regeneration process. MATERIALS AND METHODS We administered intraperitoneally 50 mg/kg to 300 mg/kg thioacetamide (TAA) to 9-week-old male mice for 17 weeks. We measured levels of VEGFR-2 protein and identified the location of cells that specifically express VEGFR-2. RESULTS VEGFR-2 is rarely expressed in normal hepatocytes. However, high VEGFR-2 expression in liver sinusoidal endothelial cells was noted in the TAA group. Conversely, the group that experienced regeneration from liver fibrosis showed significantly higher VEGFR-2 expression in the nucleus of hepatocytes compared to the other groups. CONCLUSION VEGFR-2 plays a pivotal role in the nucleus of hepatocytes during liver regeneration and VEGFR-2 may be closely related to cell division. Therefore, VEGFR-2 may be a new therapeutic target for liver regeneration.
Collapse
Affiliation(s)
- A-Rang Lee
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Su-Min Baek
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seoung-Woo Lee
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tae-Un Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jee Eun Han
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seulgi Bae
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Joon Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tae-Hwan Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyu-Shik Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Seong-Kyoon Choi
- Core Protein Resources Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jin-Kyu Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea; .,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
15
|
Duan S, Zhang M, Li J, Tian J, Yin H, Wang X, Zhang L. Uterine metabolic disorder induced by silica nanoparticles: biodistribution and bioactivity revealed by labeling with FITC. J Nanobiotechnology 2021; 19:62. [PMID: 33639958 PMCID: PMC7916316 DOI: 10.1186/s12951-021-00810-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Extensive application of nanomaterials has dramatically increased the risk of silica nanoparticle (SiNP, SiO2) exposure, yet their biological effect on reproduction has not been fully elucidated. By tracking the uterine biodistribution of SiNP in pregnant mice, this study was conducted to evaluate the biological effect of SiNP on reproduction. First, SiNP was conjugated with FITC, and then the FITC-SiNP was administrated to trophoblast (100 µg/mL, 24 h) in vitro and pregnant mice (0.25 mg/mouse, 2-24 h) in vivo. It was found that the FITC-SiNP was internalized by trophoblast and deposited in the uterus. The internalization of SiNP caused trophoblast dysfunction and apoptosis, while SiNP accumulation in the uterus induced diffuse inflammatory infiltration. The genome-wide alteration of gene expression was studied by high throughput sequencing analysis, where 75 genes were found to be dysregulated after SiNP exposure, among which ACOT2, SCD1, and CPT1A were demonstrated to regulate the biosynthesis of unsaturated fatty acids. Moreover, the suppression of unsaturated fatty acids caused mitochondrial overload of long-chain fatty acyl-CoA (LACoA), which further induced both trophoblast apoptosis and endometrial inflammation. In conclusion, the successful conjugation of FITC onto SiNP facilitated the tracking of SiNP in vitro and in vivo, while exposure to FITC-SiNP induced uterine metabolic disorder, which was regulated by the ACOT/CPT1A/SCD1 axis through the biosynthesis of unsaturated fatty acids signaling pathway.
Collapse
Affiliation(s)
- Shuyin Duan
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, 250001, Jinan, China.,School of Public Health, Zhengzhou University, 450001, Zhengzhou, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, 250001, Jinan, China
| | - Junxia Li
- School of Public Health, Weifang Medical University, 261053, Weifang, China
| | - Jiaqi Tian
- School of Public Health, Weifang Medical University, 261053, Weifang, China
| | - Haoyu Yin
- School of Public Health, Weifang Medical University, 261053, Weifang, China
| | - Xietong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, 250001, Jinan, China.,Department of Obstetrics and Gynecology, Shandong Provincial Hospital, 250001, Jinan, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, 250001, Jinan, China.
| |
Collapse
|
16
|
Li Z, Mu Y, Peng C, Lavin MF, Shao H, Du Z. Understanding the mechanisms of silica nanoparticles for nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1658. [PMID: 32602269 PMCID: PMC7757183 DOI: 10.1002/wnan.1658] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
Abstract
As a consequence of recent progression in biomedicine and nanotechnology, nanomedicine has emerged rapidly as a new discipline with extensive application of nanomaterials in biology, medicine, and pharmacology. Among the various nanomaterials, silica nanoparticles (SNPs) are particularly promising in nanomedicine applications due to their large specific surface area, adjustable pore size, facile surface modification, and excellent biocompatibility. This paper reviews the synthesis of SNPs and their recent usage in drug delivery, biomedical imaging, photodynamic and photothermal therapy, and other applications. In addition, the possible adverse effects of SNPs in nanomedicine applications are reviewed from reported in vitro and in vivo studies. Finally, the potential opportunities and challenges for the future use of SNPs are discussed. This article is categorized under:Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies
Collapse
Affiliation(s)
- Ziyuan Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingwen Mu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Cheng Peng
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Martin F Lavin
- University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Hua Shao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhongjun Du
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
17
|
Wang C, Chen S, Bao L, Liu X, Hu F, Yuan H. Size-Controlled Preparation and Behavior Study of Phospholipid-Calcium Carbonate Hybrid Nanoparticles. Int J Nanomedicine 2020; 15:4049-4062. [PMID: 32606663 PMCID: PMC7293410 DOI: 10.2147/ijn.s237156] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background Calcium carbonate (CC) nanoparticles have broad biomedical utilizations, owing to their multiple intrinsic merits. However, bare CC nanoparticles do not allow for the development of multifunctional devices suitable for advanced drug delivery in cancer therapy. Methods Phospholipid-modified phospholipid–CC hybrid nanoparticles were prepared in our study using a combination of vapor-diffusion and solvent-diffusion methods to offer optimized pharmaceutical capabilities. Results Considering that particle size is a critical parameter that plays an important role in both in vitro and in vivo behaviors of nanoparticles, we here for the first time a present detailed protocol for the size-controlled preparation of hybrid nanoparticles, as well as analysis of the in vitro/in vivo behaviors of differently sized hybrid nanoparticles. Conclusion Our results might significantly advance the application of this promising material in more varied fields.
Collapse
Affiliation(s)
- Cheng Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shaoqing Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lu Bao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xuerong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
18
|
Mehmood Y, Khan IU, Shahzad Y, Khan RU, Iqbal MS, Khan HA, Khalid I, Yousaf AM, Khalid SH, Asghar S, Asif M, Hussain T, Shah SU. In-Vitro and In-Vivo Evaluation of Velpatasvir- Loaded Mesoporous Silica Scaffolds. A Prospective Carrier for Drug Bioavailability Enhancement. Pharmaceutics 2020; 12:E307. [PMID: 32231052 PMCID: PMC7238066 DOI: 10.3390/pharmaceutics12040307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
The limited aqueous solubility of many active pharmaceutical ingredients (APIs) is responsible for their poor performance and low drug levels in blood and at target sites. Various approaches have been adopted to tackle this issue. Most recently, mesoporous silica nanoparticles (MSN) have gained attention of pharmaceutical scientists for bio-imaging, bio-sensing, gene delivery, drug solubility enhancement, and controlled and targeted drug release. Here, we have successfully incorporated the poorly water soluble antiviral drug velpatasvir (VLP) in MSN. These spherical particles were 186 nm in diameter with polydispersity index of 0.244. Blank MSN have specific surface area and pore diameter of 602.5 ± 0.7 m2/g and 5.9 nm, respectively, which reduced after successful incorporation of drug. Drug was in amorphous form in synthesized VLP-loaded silica particles (VLP-MSN) with no significant interaction with carrier. Pure VLP showed poor dissolution with progressive increment in pH of dissolution media which could limit its availability in systemic circulation after oral administration. After VLP loading in silica carriers, drug released rapidly over a wide range of pH values, i.e., 1.2 to 6.8, thus indicating an improvement in the solubility profile of VLP. These particles were biocompatible, with an LD50 of 448 µg/mL, and in-vivo pharmacokinetic results demonstrated that VLP-MSN significantly enhanced the bioavailability as compared to pure drug. The above results clearly demonstrate satisfactory in-vitro performance, biocompatibility, non-toxicity and in-vivo bioavailability enhancement with VLP-MSN.
Collapse
Affiliation(s)
- Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Rizwan Ullah Khan
- Department of Pathology, Prince Faisal Cancer Centre, Buraydah Al Qassim 51431, Saudi Arabia
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11492, Saudi Arabia
| | - Haseeb Ahmad Khan
- Department of Pathology, FMH College of Medicine and Dentistry, Lahore 54000, Pakistan
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Talib Hussain
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Shefaat Ullah Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| |
Collapse
|
19
|
Hauser M, Nowack B. Meta-Analysis of Pharmacokinetic Studies of Nanobiomaterials for the Prediction of Excretion Depending on Particle Characteristics. Front Bioeng Biotechnol 2019; 7:405. [PMID: 31921810 PMCID: PMC6927930 DOI: 10.3389/fbioe.2019.00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/27/2019] [Indexed: 02/03/2023] Open
Abstract
The growth in development and use of nanobiomaterials (NBMs) has raised questions regarding their possible distribution in the environment. Because most NBMs are not yet available on the market and exposure monitoring is thus not possible, prospective exposure modeling is the method of choice to get information on their future environmental exposure. An important input for such models is the fraction of the NBM excreted after their application to humans. The aim of this study was to analyze the current literature on excretion of NBMs using a meta-analysis. Published pharmacokinetic data from in vivo animal experiments was collected and compiled in a database, including information on the material characteristics. An evaluation of the data showed that there is no correlation between the excretion (in % of injected dose, ID) and the material type, the dose, the zeta potential or the size of the particles. However, the excretion is dependent on the type of administration with orally administered NBMs being excreted to a larger extent than intravenously administered ones. A statistically significant difference was found for IV vs. oral and oral vs. inhalation. The database provided by this work can be used for future studies to parameterize the transfer of NBMs from humans to wastewater. Generic probability distributions of excretion for oral and IV-administration are provided to enable excretion modeling of NBMs without data for a specific NBM.
Collapse
Affiliation(s)
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
20
|
Lee AR, Nam K, Lee BJ, Lee SW, Baek SM, Bang JS, Choi SK, Park SJ, Kim TH, Jeong KS, Lee DY, Park JK. Hepatic Cellular Distribution of Silica Nanoparticles by Surface Energy Modification. Int J Mol Sci 2019; 20:ijms20153812. [PMID: 31387201 PMCID: PMC6696118 DOI: 10.3390/ijms20153812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
The cellular distribution of silica nanoparticles (NPs) in the liver is not well understood. Targeting specific cells is one of the most important issues in NP-based drug delivery to improve delivery efficacy. In this context, the present study analyzed the relative cellular distribution pattern of silica NPs in the liver, and the effect of surface energy modification on NPs. Hydrophobic NP surface modification enhanced NP delivery to the liver and liver sinusoid fFendothelial cells (LSECs). Conversely, hydrophilic NP surface modification was commensurate with targeting hepatic stellate cells (HSCs) rather than other cell types. There was no notable difference in NP delivery to Kupffer cells or hepatocytes, regardless of hydrophilic or hydrophobic NP surface modification, suggesting that both the targeting of hepatocytes and evasion of phagocytosis by Kupffer cells are not associated with surface energy modification of silica NPs. This study provides useful information to target specific cell types using silica NPs, as well as to understand the relationship between NP surface energy and the NP distribution pattern in the liver, thereby helping to establish strategies for cell targeting using various NPs.
Collapse
Affiliation(s)
- A-Rang Lee
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Kibeom Nam
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Byeong Jun Lee
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Seoung-Woo Lee
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Su-Min Baek
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Jun-Sun Bang
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Seong-Kyoon Choi
- Core Protein Resources Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Sang-Joon Park
- Laboratory of Veterinary Histology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Tae-Hwan Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Kyu-Shik Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Dong Yun Lee
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, Korea.
| | - Jin-Kyu Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
21
|
Boudard D, Aureli F, Laurent B, Sturm N, Raggi A, Antier E, Lakhdar L, Marche PN, Cottier M, Cubadda F, Bencsik A. Chronic Oral Exposure to Synthetic Amorphous Silica (NM-200) Results in Renal and Liver Lesions in Mice. Kidney Int Rep 2019; 4:1463-1471. [PMID: 31701056 PMCID: PMC6829198 DOI: 10.1016/j.ekir.2019.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 01/13/2023] Open
Abstract
Introduction Silicon dioxide, produced as synthetic amorphous silica (SAS), is made of nanoparticles (NPs), either present as such or as agglomerates and aggregates, and is widely used in many types of food processes and products as an additive. To assess whether repeated, long-term exposure to SAS NPs may result in adverse effects, mice were exposed for 18 months via drinking water to NM-200, one of the reference nanostructured silica used for applications related to food, at 4.8 mg NM-200/kg body weight per day, a dose relevant to the estimated dietary exposure to SAS in humans. Methods The experiment focused on the kidney and liver as target organs and was carried out in parallel using 3 mouse lines (wild type and transgenic) differing for the expression of α-synuclein, that is, murine and human mutated (A53T). Sensitive determination of silicon revealed higher contents in liver and kidneys of NM-200–exposed mice compared with unexposed aged-matched controls. Results Histological abnormalities, such as vacuolization of tubular epithelial cells, were detected in all kidneys, as well as inflammatory responses that were also detected in livers of exposed animals. Less frequent but more deleterious, amyloidosis lesions were observed in glomeruli, associated with perivascular amyloid accumulation in liver. Conclusion These histological findings, in conjunction with the observation of detectable deposition of silica, highlight that chronic oral intake of SAS may pose a health risk to humans and need to be examined further.
Collapse
Affiliation(s)
- Delphine Boudard
- CHU Saint Etienne, UF6725 Cytologie et Histologie Rénale, St-Etienne, France.,Université de Lyon, INSERM UMR 1059, Equipe DVH/PIB, Faculté de Médecine St-Etienne, France
| | - Federica Aureli
- Istituto Superiore di Sanità-Italian National Institute of Health, Rome, Italy
| | - Blandine Laurent
- CHU Saint Etienne, UF6725 Cytologie et Histologie Rénale, St-Etienne, France
| | | | - Andrea Raggi
- Istituto Superiore di Sanità-Italian National Institute of Health, Rome, Italy
| | | | | | | | - Michèle Cottier
- CHU Saint Etienne, UF6725 Cytologie et Histologie Rénale, St-Etienne, France
| | - Francesco Cubadda
- Istituto Superiore di Sanità-Italian National Institute of Health, Rome, Italy
| | | |
Collapse
|
22
|
Parchur AK, Sharma G, Jagtap JM, Gogineni VR, LaViolette PS, Flister MJ, White SB, Joshi A. Vascular Interventional Radiology-Guided Photothermal Therapy of Colorectal Cancer Liver Metastasis with Theranostic Gold Nanorods. ACS NANO 2018; 12:6597-6611. [PMID: 29969226 PMCID: PMC9272590 DOI: 10.1021/acsnano.8b01424] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report sub-100 nm optical/magnetic resonance (MR)/X-ray contrast-bearing theranostic nanoparticles (TNPs) for interventional image-guided photothermal therapy (PTT) of solid tumors. TNPs were composed of Au@Gd2O3:Ln (Ln = Yb/Er) with X-ray contrast (∼486 HU; 1014 NPs/mL, 0.167 nM) and MR contrast (∼1.1 × 108 mM-1 S-1 at 9.4 T field strength). Although TNPs are deposited in tumors following systemic administration via enhanced permeation and retention effect, the delivered dose to tumors is typically low; this can adversely impact the efficacy of PTT. To overcome this limitation, we investigated the feasibility of site-selective hepatic image-guided delivery of TNPs in rats bearing colorectal liver metastasis (CRLM). The mesenteric vein of tumor-bearing rats was catheterized, and TNPs were infused into the liver by accessing the portal vein for site-selective delivery. The uptake of TNPs with hepatic delivery was compared with systemic administration. MR imaging confirmed that delivery via the hepatic portal vein can double the CRLM tumor-to-liver contrast compared with systemic administration. Photothermal ablation was performed by inserting a 100 μm fiber-optic carrying 808 nm light via a JB1, 3-French catheter for 3 min under DynaCT image guidance. Histological analysis revealed that the thermal damage was largely confined to the tumor region with minimal damage to the adjacent liver tissue. Transmission electron microscopy imaging validated the stability of core-shell structure of TNPs in vivo pre- and post-PTT. TNPs comprising Gd-shell-coated Au nanorods can be effectively employed for the site-directed PTT of CRLM by leveraging interventional radiology methods.
Collapse
Affiliation(s)
- Abdul Kareem Parchur
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Gayatri Sharma
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Jaidip M. Jagtap
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | | | - Peter S. LaViolette
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Michael J. Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Sarah Beth White
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Amit Joshi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
23
|
Abstract
The field of nanotechnology has grown exponentially during the last few decades, due in part to the use of nanoparticles in many manufacturing processes, as well as their potential as clinical agents for treatment of diseases and for drug delivery. This has created several new avenues by which humans can be exposed to nanoparticles. Unfortunately, investigations assessing the toxicological impacts of nanoparticles (i.e. nanotoxicity), as well as their possible risks to human health and the environment, have not kept pace with the rapid rise in their use. This has created a gap-in-knowledge and a substantial need for more research. Studies are needed to help complete our understanding of the mechanisms of toxicity of nanoparticles, as well as the mechanisms mediating their distribution and accumulation in cells and tissues and their elimination from the body. This review summarizes our knowledge on nanoparticles, including their various applications, routes of exposure, their potential toxicity and risks to human health.
Collapse
|
24
|
Almansour M, Alarifi S, Jarrar B. In vivo investigation on the chronic hepatotoxicity induced by intraperitoneal administration of 10-nm silicon dioxide nanoparticles. Int J Nanomedicine 2018; 13:2685-2696. [PMID: 29765215 PMCID: PMC5944457 DOI: 10.2147/ijn.s162847] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Silicon dioxide (silica) nanoparticles (SDNPs) are widely used in nanotechnology and medicine, but these nanomaterials may carry a high risk for human health while little is known about their toxicity. Methods We investigated the alterations in morphometry, biochemistry, hematology, histology of liver tissue and gene expression of drug-metabolizing enzymes induced by 10-nm SDNPs. Healthy male Wistar albino rats were exposed to 20, 35 and 50 repeated injections of SDNPs (2 mg/kg body weight). Whole blood, serum and plasma samples were used for hematological and biochemical analyses, whereas liver biopsies were processed for histopathological and gene expression alterations. Results In comparison with control rats, exposure to SDNPs lowered the body weight gain and liver index and increased the counts of white blood cells and platelets, but lowered the platelet larger cell ratio and plateletcrit. Levels of alkaline phosphatase, lactate dehydrogenase, low-density lipids, procalcitonin, aspartate aminotransferase and alanine aminotransferase, as well as potassium, phosphorus and iron concentrations, were increased. Histopathology revealed that SDNPs could induce hydropic degeneration, sinusoidal dilatation, hyperplasia of Kupffer cells, karyopyknosis and infiltration of inflammatory cells in the liver. SDNPs reduced the expression of 12 genes of drug-metabolizing enzymes significantly (p<0.05). Conclusion These results suggest that SDNPs could cause alterations in morphometry, biochemistry, hematology, liver tissues and the expression of drug-metabolizing enzyme genes.
Collapse
Affiliation(s)
- Mansour Almansour
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bashir Jarrar
- Department of Biological Sciences, College of Science, Jerash University, Jerash, Jordan
| |
Collapse
|
25
|
Duffy MJ, Planas O, Faust A, Vogl T, Hermann S, Schäfers M, Nonell S, Strassert CA. Towards optimized naphthalocyanines as sonochromes for photoacoustic imaging in vivo. PHOTOACOUSTICS 2018; 9:49-61. [PMID: 29707479 PMCID: PMC5914198 DOI: 10.1016/j.pacs.2017.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/14/2017] [Indexed: 05/10/2023]
Abstract
In this paper we establish a methodology to predict photoacoustic imaging capabilities from the structure of absorber molecules (sonochromes). The comparative in vitro and in vivo screening of naphthalocyanines and cyanine dyes has shown a substitution pattern dependent shift in photoacoustic excitation wavelength, with distal substitution producing the preferred maximum around 800 nm. Central ion change showed variable production of photoacoustic signals, as well as singlet oxygen photoproduction and fluorescence with the optimum for photoacoustic imaging being nickel(II). Our approach paves the way for the design, evaluation and realization of optimized sonochromes as photoacoustic contrast agents.
Collapse
Affiliation(s)
- Mitchell J. Duffy
- European Institute for Molecular Imaging (EIMI), University of Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Germany
| | - Oriol Planas
- Institut Químic de Sarrià, Universitat Ramon Llull, Spain
| | - Andreas Faust
- European Institute for Molecular Imaging (EIMI), University of Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Germany
| | - Thomas Vogl
- Institut für Immunologie, University of Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Germany
- Department of Nuclear Medicine, University Hospital of Münster, Germany
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Spain
| | - Cristian A. Strassert
- Physikalisches Institut and Center for Nanotechnology (CeNTech) University of Münster, Germany
- Corresponding author.
| |
Collapse
|
26
|
Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F, Sebaihi N, Hoet PH. Toxicology of silica nanoparticles: an update. Arch Toxicol 2017; 91:2967-3010. [PMID: 28573455 PMCID: PMC5562771 DOI: 10.1007/s00204-017-1993-y] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022]
Abstract
Large-scale production and use of amorphous silica nanoparticles (SiNPs) have increased the risk of human exposure to SiNPs, while their health effects remain unclear. In this review, scientific papers from 2010 to 2016 were systematically selected and sorted based on in vitro and in vivo studies: to provide an update on SiNPs toxicity and to address the knowledge gaps indicated in the review of Napierska (Part Fibre Toxicol 7:39, 2010). Toxicity of SiNPs in vitro is size, dose, and cell type dependent. SiNPs synthesized by wet route exhibited noticeably different biological effects compared to thermal route-based SiNPs. Amorphous SiNPs (particularly colloidal and stöber) induced toxicity via mechanisms similar to crystalline silica. In vivo, route of administration and physico-chemical properties of SiNPs influences the toxicokinetics. Adverse effects were mainly observed in acutely exposed animals, while no significant signs of toxicity were noted in chronically dosed animals. The correlation between in vitro and in vivo toxicity remains less well established mainly due to improper-unrealistic-dosing both in vitro and in vivo. In conclusion, notwithstanding the multiple studies published in recent years, unambiguous linking of physico-chemical properties of SiNPs types to toxicity, bioavailability, or human health effects is not yet possible.
Collapse
Affiliation(s)
- Sivakumar Murugadoss
- Unit for Lung Toxicology, Katholieke Universiteit Leuven, Herestraat 49, O&N1, Room: 07.702, box 706, 3000 Louvain, Belgium
| | - Dominique Lison
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université Catholique de Louvain, Avenue E. Mounier 52/B1.52.12, 1200 Brussels, Belgium
| | - Lode Godderis
- Department of Occupational, Environmental and Insurance Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 35 block d, box 7001, 3000 Louvain, Belgium
| | - Sybille Van Den Brule
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université Catholique de Louvain, Avenue E. Mounier 52/B1.52.12, 1200 Brussels, Belgium
| | - Jan Mast
- EM-unit, Center for Veterinary and Agrochemical Studies and Research (CODA-CERVA), Groeselenberg 99, Uccle, 1180 Brussels, Belgium
| | - Frederic Brassinne
- EM-unit, Center for Veterinary and Agrochemical Studies and Research (CODA-CERVA), Groeselenberg 99, Uccle, 1180 Brussels, Belgium
| | - Noham Sebaihi
- General Quality and Safety, Metrology Department, National Standards, North Gate-Office 2A29, Bd du Roi Albert II, 16, 1000 Brussels, Belgium
| | - Peter H. Hoet
- Unit for Lung Toxicology, Katholieke Universiteit Leuven, Herestraat 49, O&N1, Room: 07.702, box 706, 3000 Louvain, Belgium
| |
Collapse
|
27
|
Kim M, Park JH, Jeong H, Hong J, Choi WS, Lee BH, Park CY. An Evaluation of the in vivo Safety of Nonporous Silica Nanoparticles: Ocular Topical Administration versus Oral Administration. Sci Rep 2017; 7:8238. [PMID: 28811672 PMCID: PMC5557988 DOI: 10.1038/s41598-017-08843-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Nonporous silica nanoparticles (SiNPs) have potential as promising carriers for ophthalmic drugs. However, the in vivo safety of ocular topical SiNPs remains unclear. This study investigated the in vivo safety of oral and ocular topical applications of 100 nm-sized SiNPs in Sprague-Dawley rats. The rats were divided into the following four groups: low-dose oral administration (total 100 mg/kg of SiNPs mixed with food for one week), high-dose oral administration (total 1000 mg/kg of SiNPs mixed with food for one week), ocular topical administration (10 mg/ml concentration, one drop, applied to the right eyes four times a day for one month), or a negative control (no SiNP treatment). The rats were observed for 12 weeks to investigate any signs of general or ocular toxicity. During the observation period, no differences were observed in the body weights, food and water intakes, behaviors and abnormal symptoms of the four groups. No animal deaths occurred. After 12 weeks, hematologic, blood biochemical parameters and ophthalmic examinations revealed no abnormal findings in any of the animals. The lack of toxicity of the SiNPs was further verified in autopsy findings of brain, liver, lung, spleen, heart, kidneys, intestine, eyeballs, and ovaries or testes.
Collapse
Affiliation(s)
- Martha Kim
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Joo-Hee Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Hyejoong Jeong
- School of Chemical Engineering and Material Science, Chung-Ang University, Seoul, South Korea
| | - Jinkee Hong
- School of Chemical Engineering and Material Science, Chung-Ang University, Seoul, South Korea
| | - Woo Sung Choi
- Laboratory Animal Center, Osong Medical Innovation Foundation, Cheongju, South Korea
| | - Byung-Han Lee
- Laboratory Animal Center, Osong Medical Innovation Foundation, Cheongju, South Korea
| | - Choul Yong Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea.
| |
Collapse
|
28
|
Abstract
In recent years, spherical nanoparticles has been studied extensively on biomedical applications including bioimaging and biosensing, diagnostics and theranostics, but the effect of the shape of nanoparticles has received little attention. In the present study, we designed three different shaped fluorescent mesoporous silica nanoparticles (MSNs), long rod nanoparticles (NLR), short rod nanoparticles (NSR), and spherical nanoparticles (NS) to systematically examine their behavior in vivo after oral administration. The results of the ex vivo optical imaging study in mice indicated that rod nanoparticles had a longer residence time in the gastrointestinal compared with spherical nanoparticles. The in vivo biodistribution showed that all the orally administered MSNs were mainly taken up by the liver, and kidney. NLR had a great capacity to overcoming rapid clearance by the RES and exhibited a longer circulation in the blood than NSR and NS. During renal excretion, the spherical nanoparticles were cleared faster than rod nanoparticles. In addition, it was also found that MSNs can be degraded in vivo and NSR were degraded faster than NLR and NS probably owing to their higher specific surface area. The pharmacokinetic results demonstrated that nifedipine(NI)-loaded NLR had a higher bioavailability than NI-loaded NSR and NS.
Collapse
|
29
|
Go MR, Bae SH, Kim HJ, Yu J, Choi SJ. Interactions between Food Additive Silica Nanoparticles and Food Matrices. Front Microbiol 2017. [PMID: 28638373 PMCID: PMC5461366 DOI: 10.3389/fmicb.2017.01013] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nanoparticles (NPs) have been widely utilized in the food industry as additives with their beneficial characteristics, such as improving sensory property and processing suitability, enhancing functional and nutritional values, and extending shelf-life of foods. Silica is used as an anti-caking agent to improve flow property of powered ingredients and as a carrier for flavors or active compounds in food. Along with the rapid development of nanotechnology, the sizes of silica fall into nanoscale, thereby raising concerns about the potential toxicity of nano-sized silica materials. There have been a number of studies carried out to investigate possible adverse effects of NPs on the gastrointestinal tract. The interactions between NPs and surrounding food matrices should be also taken into account since the interactions can affect their bioavailability, efficacy, and toxicity. In the present study, we investigated the interactions between food additive silica NPs and food matrices, such as saccharides, proteins, lipids, and minerals. Quantitative analysis was performed to determine food component-NP corona using HPLC, fluorescence quenching, GC-MS, and ICP-AES. The results demonstrate that zeta potential and hydrodynamic radius of silica NPs changed in the presence of all food matrices, but their solubility was not affected. However, quantitative analysis on the interactions revealed that a small portion of food matrices interacted with silica NPs and the interactions were highly dependent on the type of food component. Moreover, minor nutrients could also affect the interactions, as evidenced by higher NP interaction with honey rather than with a simple sugar mixture containing an equivalent amount of fructose, glucose, sucrose, and maltose. These findings provide fundamental information to extend our understanding about the interactions between silica NPs and food components and to predict the interaction effect on the safety aspects of food-grade NPs.
Collapse
Affiliation(s)
- Mi-Ran Go
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's UniversitySeoul, South Korea
| | - Song-Hwa Bae
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's UniversitySeoul, South Korea
| | - Hyeon-Jin Kim
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's UniversitySeoul, South Korea
| | - Jin Yu
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's UniversitySeoul, South Korea
| | - Soo-Jin Choi
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's UniversitySeoul, South Korea
| |
Collapse
|
30
|
Chan WT, Liu CC, Chiang Chiau JS, Tsai ST, Liang CK, Cheng ML, Lee HC, Yeung CY, Hou SY. In vivo toxicologic study of larger silica nanoparticles in mice. Int J Nanomedicine 2017; 12:3421-3432. [PMID: 28496319 PMCID: PMC5417664 DOI: 10.2147/ijn.s126823] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Silica nanoparticles (SiNPs) are being studied and used for medical purposes. As nanotechnology grows rapidly, its biosafety and toxicity have frequently raised concerns. However, diverse results have been reported about the safety of SiNPs; several studies reported that smaller particles might exhibit toxic effects to some cell lines, and larger particles of 100 nm were reported to be genotoxic to the cocultured cells. Here, we investigated the in vivo toxicity of SiNPs of 150 nm in various dosages via intravenous administration in mice. The mice were observed for 14 days before blood examination and histopathological assay. All the mice survived and behaved normally after the administration of nanoparticles. No significant weight change was noted. Blood examinations showed no definite systemic dysfunction of organ systems. Histopathological studies of vital organs confirmed no SiNP-related adverse effects. We concluded that 150 nm SiNPs were biocompatible and safe for in vivo use in mice.
Collapse
Affiliation(s)
- Wai-Tao Chan
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital.,Graduate Institute of Engineering Technology, National Taipei University of Technology.,Mackay Medicine, Nursing, and Management College
| | - Cheng-Che Liu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei
| | | | - Shang-Ting Tsai
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei
| | - Chih-Kai Liang
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei
| | - Mei-Lien Cheng
- Department of Medical Research, MacKay Memorial Hospital, Hsinchu
| | - Hung-Chang Lee
- Department of Pediatrics, MacKay Memorial Hospital, Hsinchu.,Department of Pediatrics, Taipei Medical University, Taipei
| | - Chun-Yun Yeung
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital.,Mackay Medicine, Nursing, and Management College.,Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China
| | - Shao-Yi Hou
- Graduate Institute of Engineering Technology, National Taipei University of Technology.,Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei
| |
Collapse
|
31
|
Morry J, Ngamcherdtrakul W, Yantasee W. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol 2017; 11:240-253. [PMID: 28012439 PMCID: PMC5198743 DOI: 10.1016/j.redox.2016.12.011] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress, mainly contributed by reactive oxygen species (ROS), has been implicated in pathogenesis of several diseases. We review two primary examples; fibrosis and cancer. In fibrosis, ROS promote activation and proliferation of fibroblasts and myofibroblasts, activating TGF-β pathway in an autocrine manner. In cancer, ROS account for its genomic instability, resistance to apoptosis, proliferation, and angiogenesis. Importantly, ROS trigger cancer cell invasion through invadopodia formation as well as extravasation into a distant metastasis site. Use of antioxidant supplements, enzymes, and inhibitors for ROS-generating NADPH oxidases (NOX) is a logical therapeutic intervention for fibrosis and cancer. We review such attempts, progress, and challenges. Lastly, we review how nanoparticles with inherent antioxidant activity can also be a promising therapeutic option, considering their additional feature as a delivery platform for drugs, genes, and imaging agents.
Collapse
Affiliation(s)
- Jingga Morry
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Worapol Ngamcherdtrakul
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA; PDX Pharmaceuticals, LLC, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA; PDX Pharmaceuticals, LLC, 3303 SW Bond Ave, Portland, OR 97239, USA.
| |
Collapse
|
32
|
Dumkova J, Vrlikova L, Vecera Z, Putnova B, Docekal B, Mikuska P, Fictum P, Hampl A, Buchtova M. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs. Int J Mol Sci 2016; 17:ijms17060874. [PMID: 27271611 PMCID: PMC4926408 DOI: 10.3390/ijms17060874] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environmental pollution by industrial products such as cadmium oxide (CdO) nanoparticles. Here, we aimed to unravel the CdO nanoparticle destiny upon their entry into lungs by inhalations, with the main focus on the ultrastructural changes that the nanoparticles may cause to tissues of the primary and secondary target organs. We indeed found the CdO nanoparticles to be transported from the lungs into secondary target organs by blood. In lungs, inhaled CdO nanoparticles caused significant alterations in parenchyma tissue including hyperemia, enlarged pulmonary septa, congested capillaries, alveolar emphysema and small areas of atelectasis. Nanoparticles were observed in the cytoplasm of cells lining bronchioles, in the alveolar spaces as well as inside the membranous pneumocytes and in phagosomes of lung macrophages. Nanoparticles even penetrated through the membrane into some organelles including mitochondria and they also accumulated in the cytoplasmic vesicles. In livers, inhalation caused periportal inflammation and local hepatic necrosis. Only minor changes such as diffusely thickened filtration membrane with intramembranous electron dense deposits were observed in kidney. Taken together, inhaled CdO nanoparticles not only accumulated in lungs but they were also transported to other organs causing serious damage at tissue as well as cellular level.
Collapse
Affiliation(s)
- Jana Dumkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic.
| | - Lucie Vrlikova
- Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic.
| | - Zbynek Vecera
- Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic.
| | - Barbora Putnova
- Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic.
| | - Bohumil Docekal
- Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic.
| | - Pavel Mikuska
- Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic.
| | - Petr Fictum
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno 612 42, Czech Republic.
| | - Ales Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic.
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic.
- Department of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic.
| |
Collapse
|
33
|
Cappelletti R, Ceppi M, Claudatus J, Gennaro V. Health status of male steel workers at an electric arc furnace (EAF) in Trentino, Italy. J Occup Med Toxicol 2016; 11:7. [PMID: 26900394 PMCID: PMC4761198 DOI: 10.1186/s12995-016-0095-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Background The aim of this retrospective cohort study was to determine if the workers of an Electric Arc Furnace (EAF), which recycles scrap, had higher mortality and morbidity due to possible exposure to pollutants at work. EAFs do not run on coke ovens. In EAFs 40 % of the particulate matter (PM) is made up of PM 2.5. The foundry dust contained iron, aluminum, zinc, manganese, lead, chromium, nickel, cadmium, mercury, arsenic, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls and dioxins. Methods Mortality study: a cohort of 331 exposed workers (6731 person-years) was studied from 19/03/1979 to 31/12/2009 (mean follow up 20.7 years). The group of exposed workers was compared to the general population and to a small control group of 32 workers from the same company. Morbidity study: rates of exemption from health fee for the seven major diseases of 235 exposed workers were compared to the rates of exemption in the Province of Trento. Results Mortality study: an excess mortality was found in the exposed workers as compared to the general population (SMR 1.13; 95 % CI: 0.76–1.62; 29 deaths) and to the internal group (RR 2.34; 95 % CI: 0.39–95.7). The mortality rate was increased for all tumours (SMR 1.36; 95 % CI: 0.75–2.29; 14 cases), for lung cancer (SMR 3.35; 95 % CI 1.45–6.60; 8 cases), for ischemic heart disease (SMR 1.27; 95 % CI: 0.35–3.26; 4 cases), for chronic liver disease (SMR 1.16; 95 % CI: 0.14–4.20; 2 cases) and for injury and poisoning (SMR 1.32; 95 % CI: 0.48–2.88; 6 cases). Morbidity study: there was a statistically significant increase of diabetes, rheumatoid arthritis, hypertension and cardiovascular diseases in exposed workers. Conclusions With the limitations of this relatively small cohort, we found a statistically significant increase of diabetes, cardiovascular diseases and deaths due to lung cancer in exposed workers. These findings cannot be explained by PAH exposure alone; metal particulates are the most important pollutants in the working area of EAFs. A reliable method for measuring metal PM in tissues is urgently needed for exposure assessment. This study underlines the necessity to maximize the standards of security toward foundry dusts/diffuse emission. Further studies on EAF’s are needed to confirm our findings and to increase statistical power.
Collapse
Affiliation(s)
- Roberto Cappelletti
- International Society of Doctors for the Environment (ISDE Italy), via della Fioraia 17/19, 52100 Arezzo, Italy
| | - Marcello Ceppi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera Universitaria "San Martino" Istituto Nazionale per la Ricerca sul Cancro (IST), largo R. Benzi 10, 16132 Genoa, Italy
| | - Justina Claudatus
- International Society of Doctors for the Environment (ISDE Italy), via della Fioraia 17/19, 52100 Arezzo, Italy
| | - Valerio Gennaro
- International Society of Doctors for the Environment (ISDE Italy), via della Fioraia 17/19, 52100 Arezzo, Italy ; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera Universitaria "San Martino" Istituto Nazionale per la Ricerca sul Cancro (IST), largo R. Benzi 10, 16132 Genoa, Italy
| |
Collapse
|