1
|
Wang L, Gui J, Tian B, Ding R, Wang W, Jiang C, Zhang S, Zhang X, Liu J, Jiang L. Particulate matter induced cognitive impairments via endoplasmic reticulum stress-mediated damage to mitochondria-associated endoplasmic reticulum membranes in immature rats. Toxicology 2024; 509:153979. [PMID: 39442789 DOI: 10.1016/j.tox.2024.153979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Particulate matter (PM) exposure has been increasingly recognized as detrimental to cognitive function and is associated with neurodevelopmental disorders. Mitochondria-associated endoplasmic reticulum membranes (MAMs) form an integrated interface between mitochondria and the endoplasmic reticulum (ER), facilitating crucial cellular functions. Prolonged ER stress (ERS) is implicated in various pathological states in the nervous system. MAMs and ERS may play vital roles in adverse effects of early-life PM exposure on cognitive abilities. This study investigated whether ERS plays a role in PM-induced MAMs dysfunction, leading to neuronal damage and cognitive impairments in early postnatal rats. Using a rat model with PM exposure concentrations of 2 and 10 mg/kg from postnatal Day 3 (PND3) to PND28, we observed that PM exposure resulted in anxiety-like behavior and impaired spatial working memory. The protein levels of ERS markers, including GRP78 and CHOP, were significantly increased in response to PM exposure. Western blot, transmission electron microscopy (TEM), and immunofluorescence analyses revealed decreased MAMs-related proteins and disrupted MAM structure and function caused by PM exposure. Administration of the ERS inhibitor 4-phenylbutyric acid (4-PBA) ameliorated these effects, restoring MAMs integrity and improving cognitive deficits. These findings highlighted the key role of ERS-MAMs dysfunction in PM-induced neurotoxicity and cognitive impairments, providing a new perspective and strategy for the prevention of cognitive deficits in early age with PM exposure.
Collapse
Affiliation(s)
- Lingman Wang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Jianxiong Gui
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Bing Tian
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Ran Ding
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Wandi Wang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Chunxue Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Shengxuan Zhang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xiaofang Zhang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Jie Liu
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| |
Collapse
|
2
|
Kooshan Z, Cárdenas-Piedra L, Clements J, Batra J. Glycolysis, the sweet appetite of the tumor microenvironment. Cancer Lett 2024; 600:217156. [PMID: 39127341 DOI: 10.1016/j.canlet.2024.217156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Cancer cells display an altered metabolic phenotype, characterised by increased glycolysis and lactate production, even in the presence of sufficient oxygen - a phenomenon known as the Warburg effect. This metabolic reprogramming is a crucial adaptation that enables cancer cells to meet their elevated energy and biosynthetic demands. Importantly, the tumor microenvironment plays a pivotal role in shaping and sustaining this metabolic shift in cancer cells. This review explores the intricate relationship between the tumor microenvironment and the Warburg effect, highlighting how communication within this niche regulates cancer cell metabolism and impacts tumor progression and therapeutic resistance. We discuss the potential of targeting the Warburg effect as a promising therapeutic strategy, with the aim of disrupting the metabolic advantage of cancer cells and enhancing our understanding of this complex interplay within the tumor microenvironment.
Collapse
Affiliation(s)
- Zeinab Kooshan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Lilibeth Cárdenas-Piedra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia.
| |
Collapse
|
3
|
Wang G, Shen WB, Chen AW, Reece EA, Yang P. Diabetes and Early Development: Epigenetics, Biological Stress, and Aging. Am J Perinatol 2024. [PMID: 39209306 DOI: 10.1055/a-2405-1493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pregestational diabetes, either type 1 or type 2 diabetes, induces structural birth defects including neural tube defects and congenital heart defects in human fetuses. Rodent models of type 1 and type 2 diabetic embryopathy have been established and faithfully mimic human conditions. Hyperglycemia of maternal diabetes triggers oxidative stress in the developing neuroepithelium and the embryonic heart leading to the activation of proapoptotic kinases and excessive cell death. Oxidative stress also activates the unfolded protein response and endoplasmic reticulum stress. Hyperglycemia alters epigenetic landscapes by suppressing histone deacetylation, perturbing microRNA (miRNA) expression, and increasing DNA methylation. At cellular levels, besides the induction of cell apoptosis, hyperglycemia suppresses cell proliferation and induces premature senescence. Stress signaling elicited by maternal diabetes disrupts cellular organelle homeostasis leading to mitochondrial dysfunction, mitochondrial dynamic alteration, and autophagy impairment. Blocking oxidative stress, kinase activation, and cellular senescence ameliorates diabetic embryopathy. Deleting the mir200c gene or restoring mir322 expression abolishes maternal diabetes hyperglycemia-induced senescence and cellular stress, respectively. Both the autophagy activator trehalose and the senomorphic rapamycin can alleviate diabetic embryopathy. Thus, targeting cellular stress, miRNAs, senescence, or restoring autophagy or mitochondrial fusion is a promising approach to prevent poorly controlled maternal diabetes-induced structural birth defects. In this review, we summarize the causal events in diabetic embryopathy and propose preventions for this pathological condition. KEY POINTS: · Maternal diabetes induces structural birth defects.. · Kinase signaling and cellular organelle stress are critically involved in neural tube defects.. · Maternal diabetes increases DNA methylation and suppresses developmental gene expression.. · Cellular apoptosis and senescence are induced by maternal diabetes in the neuroepithelium.. · microRNAs disrupt mitochondrial fusion leading to congenital heart diseases in diabetic pregnancy..
Collapse
Affiliation(s)
- Guanglei Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anna Wu Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Sugiyama T, Nishitoh H. Neurodegenerative diseases associated with the disruption of proteostasis and their therapeutic strategies using chemical chaperones. J Biochem 2024; 176:179-186. [PMID: 38955196 DOI: 10.1093/jb/mvae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/29/2024] [Indexed: 07/04/2024] Open
Abstract
Aberrant proteostasis is thought to be involved in the pathogenesis of neurodegenerative diseases. Some proteostasis abnormalities are ameliorated by chaperones. Chaperones are divided into three groups: molecular, pharmacological and chemical. Chemical chaperones intended to alleviate stress in organelles, such as the endoplasmic reticulum (ER), are now being administered clinically. Of the chemical chaperones, 4-phenylbutyrate (4-PBA) has been used as a research reagent, and its mechanism of action includes chaperone effects and the inhibition of histone deacetylase. Moreover, it also binds to the B-site of SEC24 and regulates COPII-mediated transport from the ER. Although its therapeutic effect may not be strong, elucidating the mechanism of action of 4-PBA may contribute to the identification of novel therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Takashi Sugiyama
- Laboratory of Biochemistry and Molecular Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
- Department of Neurology, Faculty of Medicine, University of Miyazaki Hospital, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
5
|
Stacpoole PW, Dirain CO. The pyruvate dehydrogenase complex at the epigenetic crossroads of acetylation and lactylation. Mol Genet Metab 2024; 143:108540. [PMID: 39067348 DOI: 10.1016/j.ymgme.2024.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
The pyruvate dehydrogenase complex (PDC) is remarkable for its size and structure as well as for its physiological and pathological importance. Its canonical location is in the mitochondrial matrix, where it primes the tricarboxylic acid (TCA) cycle by decarboxylating glycolytically-derived pyruvate to acetyl-CoA. Less well appreciated is its role in helping to shape the epigenetic landscape, from early development throughout mammalian life by its ability to "moonlight" in the nucleus, with major repercussions for human healthspan and lifespan. The PDC's influence on two crucial modifiers of the epigenome, acetylation and lactylation, is the focus of this brief review.
Collapse
Affiliation(s)
- Peter W Stacpoole
- University of Florida, College of Medicine Department of Medicine, Department of Biochemistry & Molecular Biology, Gainesville, FL, United States.
| | - Carolyn O Dirain
- University of Florida, College of Medicine Department of Medicine, Gainesville, FL, United States
| |
Collapse
|
6
|
Perdomo-Ramírez A, Ramos-Trujillo E, Machado JD, García-Nieto V, Mura-Escorche G, Claverie-Martin F. 4-Phenylbutyric Acid Treatment Reduces Low-Molecular-Weight Proteinuria in a Clcn5 Knock-in Mouse Model for Dent Disease-1. Int J Mol Sci 2024; 25:8110. [PMID: 39125679 PMCID: PMC11311629 DOI: 10.3390/ijms25158110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Dent disease-1 (DD-1) is a rare X-linked tubular disorder characterized by low-molecular-weight proteinuria (LMWP), hypercalciuria, nephrolithiasis and nephrocalcinosis. This disease is caused by inactivating mutations in the CLCN5 gene which encodes the voltage-gated ClC-5 chloride/proton antiporter. Currently, the treatment of DD-1 is only supportive and focused on delaying the progression of the disease. Here, we generated and characterized a Clcn5 knock-in mouse model that carries a pathogenic CLCN5 variant, c. 1566_1568delTGT; p.Val523del, which has been previously detected in several DD-1 unrelated patients, and presents the main clinical manifestations of DD-1 such as high levels of urinary b2-microglobulin, phosphate and calcium. Mutation p.Val523del causes partial ClC-5 retention in the endoplasmic reticulum. Additionally, we assessed the ability of sodium 4-phenylbutyrate, a small chemical chaperone, to ameliorate DD-1 symptoms in this mouse model. The proposed model would be of significant value in the investigation of the fundamental pathological processes underlying DD-1 and in the development of effective therapeutic strategies for this rare condition.
Collapse
Affiliation(s)
- Ana Perdomo-Ramírez
- Unidad de Investigacion, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigacion Sanitaria de Canarias (IISC), 38010 Santa Cruz de Tenerife, Spain; (A.P.-R.); (G.M.-E.)
| | - Elena Ramos-Trujillo
- Unidad de Investigacion, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigacion Sanitaria de Canarias (IISC), 38010 Santa Cruz de Tenerife, Spain; (A.P.-R.); (G.M.-E.)
- Seccion Medicina, Departamento de Medicina Fisica y Farmacologia, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain;
| | - Jose David Machado
- Seccion Medicina, Departamento de Medicina Fisica y Farmacologia, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain;
| | - Victor García-Nieto
- Unidad de Nefrologia Pediatrica, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
| | - Glorián Mura-Escorche
- Unidad de Investigacion, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigacion Sanitaria de Canarias (IISC), 38010 Santa Cruz de Tenerife, Spain; (A.P.-R.); (G.M.-E.)
| | - Félix Claverie-Martin
- Unidad de Investigacion, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigacion Sanitaria de Canarias (IISC), 38010 Santa Cruz de Tenerife, Spain; (A.P.-R.); (G.M.-E.)
| |
Collapse
|
7
|
Ketabforoush A, Faghihi F, Azedi F, Ariaei A, Habibi MA, Khalili M, Ashtiani BH, Joghataei MT, Arnold WD. Sodium Phenylbutyrate and Tauroursodeoxycholic Acid: A Story of Hope Turned to Disappointment in Amyotrophic Lateral Sclerosis Treatment. Clin Drug Investig 2024; 44:495-512. [PMID: 38909349 DOI: 10.1007/s40261-024-01371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 06/24/2024]
Abstract
The absence of a definitive cure for amyotrophic lateral sclerosis (ALS) emphasizes the crucial need to explore new and improved treatment approaches for this fatal, progressive, and disabling neurodegenerative disorder. As at the end of 2023, five treatments - riluzole, edaravone, dextromethorphan hydrobromide + quinidine sulfate (DHQ), tofersen, and sodium phenylbutyrate-tauroursodeoxycholic acid (PB-TUDCA) - were FDA approved for the treatment of patients with ALS. Among them PB-TUDCA has been shown to impact DNA processing impairments, mitochondria dysfunction, endoplasmic reticulum stress, oxidative stress, and pathologic folded protein agglomeration defects, which have been associated with ALS pathophysiology. The Phase 2 CENTAUR trial demonstrated significant impact of PB-TUDCA on the ALS Functional Rating Scale-Revised (ALSFRS-R) risk of death, hospitalization, and the need for tracheostomy or permanent assisted ventilation in patients with ALS based on post hoc analyses. More recently, contrasting with the CENTAUR trial results, results from the Phase 3 PHOENIX trial (NCT05021536) showed no change in ALSFRS-R total score at 48 weeks. Consequently, the sponsor company initiated the process with the US FDA and Health Canada to voluntarily withdraw the marketing authorizations for PB-TUDCA. In the present article, we review ALS pathophysiology, with a focus on PB-TUDCA's proposed mechanisms of action and recent clinical trial results and discuss the implications of conflicting trial data for ALS and other neurological disorders.
Collapse
Affiliation(s)
- Arsh Ketabforoush
- NextGen Precision Health, University of Missouri, 1030 Hitt St., Columbia, MO, 65211, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Armin Ariaei
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Amin Habibi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Maryam Khalili
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahram Haghi Ashtiani
- Department of Neurology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - W David Arnold
- NextGen Precision Health, University of Missouri, 1030 Hitt St., Columbia, MO, 65211, USA.
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA.
- Department of Neurology, University of Missouri, Columbia, MO, USA.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
8
|
Chakraborty P, Gamage HKAH, Laird AS. Butyrate as a potential therapeutic agent for neurodegenerative disorders. Neurochem Int 2024; 176:105745. [PMID: 38641025 DOI: 10.1016/j.neuint.2024.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Maintaining an optimum microbial community within the gastrointestinal tract is intricately linked to human metabolic, immune and brain health. Disturbance to these microbial populations perturbs the production of vital bioactive compounds synthesised by the gut microbiome, such as short-chain fatty acids (SCFAs). Of the SCFAs, butyrate is known to be a major source of energy for colonocytes and has valuable effects on the maintenance of intestinal epithelium and blood brain barrier integrity, gut motility and transit, anti-inflammatory effects, and autophagy induction. Inducing endogenous butyrate production is likely to be beneficial for gut-brain homeostasis and for optimal neuronal function. For these reasons, butyrate has gained interest as a potential therapy for not only metabolic and immunological disorders, but also conditions related to the brain, including neurodegenerative diseases. While direct and indirect sources of butyrate, including prebiotics, probiotics, butyrate pro-drugs and glucosidase inhibitors, offer a promising therapeutic avenue, their efficacy and dosage in neurodegenerative conditions remain largely unknown. Here, we review current literature on effects of butyrate relevant to neuronal function, the impact of butyrate in a range of neurodegenerative diseases and related treatments that may have potential for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Prapti Chakraborty
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Hasinika K A H Gamage
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia; ARC Training Centre for Facilitated Advancement of Australia's Bioactives, Macquarie University, NSW, 2109, Australia
| | - Angela S Laird
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
9
|
Piccolo D, Zarouchlioti C, Bellingham J, Guarascio R, Ziaka K, Molday RS, Cheetham ME. A Proximity Complementation Assay to Identify Small Molecules That Enhance the Traffic of ABCA4 Misfolding Variants. Int J Mol Sci 2024; 25:4521. [PMID: 38674104 PMCID: PMC11050442 DOI: 10.3390/ijms25084521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
ABCA4-related retinopathy is the most common inherited Mendelian eye disorder worldwide, caused by biallelic variants in the ATP-binding cassette transporter ABCA4. To date, over 2200 ABCA4 variants have been identified, including missense, nonsense, indels, splice site and deep intronic defects. Notably, more than 60% are missense variants that can lead to protein misfolding, mistrafficking and degradation. Currently no approved therapies target ABCA4. In this study, we demonstrate that ABCA4 misfolding variants are temperature-sensitive and reduced temperature growth (30 °C) improves their traffic to the plasma membrane, suggesting the folding of these variants could be rescuable. Consequently, an in vitro platform was developed for the rapid and robust detection of ABCA4 traffic to the plasma membrane in transiently transfected cells. The system was used to assess selected candidate small molecules that were reported to improve the folding or traffic of other ABC transporters. Two candidates, 4-PBA and AICAR, were identified and validated for their ability to enhance both wild-type ABCA4 and variant trafficking to the cell surface in cell culture. We envision that this platform could serve as a primary screen for more sophisticated in vitro testing, enabling the discovery of breakthrough agents to rescue ABCA4 protein defects and mitigate ABCA4-related retinopathy.
Collapse
Affiliation(s)
- Davide Piccolo
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Christina Zarouchlioti
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Rosellina Guarascio
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Kalliopi Ziaka
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Michael E. Cheetham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| |
Collapse
|
10
|
Martínez-Pacheco H, Zepeda RC, Picazo O, Quirarte GL, Roldán-Roldán G. Class I histone deacetylases inhibition reverses memory impairment induced by acute stress in mice. PLoS One 2024; 19:e0302374. [PMID: 38635564 PMCID: PMC11025869 DOI: 10.1371/journal.pone.0302374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
While chronic stress induces learning and memory impairments, acute stress may facilitate or prevent memory consolidation depending on whether it occurs during the learning event or before it, respectively. On the other hand, it has been shown that histone acetylation regulates long-term memory formation. This study aimed to evaluate the effect of two inhibitors of class I histone deacetylases (HDACs), 4-phenylbutyrate (PB) and IN14 (100 mg/kg/day, ip for 2 days), on memory performance in mice exposed to a single 15-min forced swimming stress session. Plasma corticosterone levels were determined 30 minutes after acute swim stress in one group of mice. In another experimental series, independent groups of mice were trained in one of three different memory tasks: Object recognition test, Elevated T maze, and Buried food location test. Subsequently, the hippocampi were removed to perform ELISA assays for histone deacetylase 2 (HDAC2) expression. Acute stress induced an increase in plasma corticosterone levels, as well as hippocampal HDAC2 content, along with an impaired performance in memory tests. Moreover, PB and IN14 treatment prevented memory loss in stressed mice. These findings suggest that HDAC2 is involved in acute stress-induced cognitive impairment. None of the drugs improved memory in non-stressed animals, indicating that HDACs inhibitors are not cognitive boosters, but rather potentially useful drugs for mitigating memory deficits.
Collapse
Affiliation(s)
- Heidy Martínez-Pacheco
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Querétaro, México
| | | | - Ofir Picazo
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Gina L. Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Querétaro, México
| | - Gabriel Roldán-Roldán
- Laboratorio de Neurobiología Conductual, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
11
|
Jinyi L, Keyu Y, Shanshan D, Shuyang H, Ruirui L, Qingyu G, Fei L. ERS Mediated by GRP-78/PERK/CHOP Signaling Is Involved in Fluoride-Induced Ameloblast Apoptosis. Biol Trace Elem Res 2024; 202:1103-1114. [PMID: 37410266 DOI: 10.1007/s12011-023-03746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023]
Abstract
Fluoride can be widely ingested from the environment, and its excessive intake could result in adverse effects. Dental fluorosis is an early sign of fluoride toxicity which can cause esthetic and functional problems. Though apoptosis in ameloblasts is one of the potential mechanisms, the specific signal cascade is in-conclusive. High-throughput sequencing and molecular biological techniques were used in this study to explore the underlying pathogenesis of dental fluorosis, for its prevention and treatment. A fluorosis cell model was established. Viability and apoptosis rate of mouse ameloblast-derived cell line (LS8 cells) was measured using cell counting kit-8 (CCK-8) assay and flow cytometry analysis. Cells were harvested with or without 2-mM sodium fluoride (NaF) stimulation for high-throughput sequencing. Based on the sequencing data, subcellular structures, endoplasmic reticulum stress (ERS), and apoptosis related biomarkers were verified using transmission electron microscopy, quantitative real-time polymerase chain reaction, and Western blotting techniques. Expression of ERS markers, apoptosis related proteins, and enamel formation enzymes were detected using Western blotting after addition of 4-phenylbutyrate (4-PBA). NaF-inhibited LS8 cells displayed time- and dose- dependent viability. Additionally, apoptosis and morphological changes were observed. RNA-sequencing data showed that protein processing in endoplasmic reticulum was obviously affected. ERS and apoptosis were induced by excessive NaF. Downregulation of kallikrein-related peptidase 4 (KLK4) was also observed. Inhibition of ERS by 4-PBA rescued the apoptotic and functional protein changes in cells. Excessive fluoride induces apoptosis by activating ERS, which is mediated by GRP-78/PERK/CHOP signaling. Key proteinase is present in maturation-stage enamel; KLK4 was also affected by fluoride, but rescued by 4-PBA. This study presents a possibility for therapeutic strategies for dental fluorosis, while further exploration is required.
Collapse
Affiliation(s)
- Li Jinyi
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi Wu Road No.98, Xi'an 710004, 710041, People's Republic of China
| | - Yang Keyu
- National Regional Children's Medical Center (Northwest), Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, People's Republic of China
| | - Dai Shanshan
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi Wu Road No.98, Xi'an 710004, 710041, People's Republic of China
| | - He Shuyang
- Faculty of dentistry, The university of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Liu Ruirui
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Guo Qingyu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China.
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi Wu Road No.98, Xi'an 710004, 710041, People's Republic of China.
| | - Liu Fei
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China.
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi Wu Road No.98, Xi'an 710004, 710041, People's Republic of China.
| |
Collapse
|
12
|
Kawakatsu R, Tadagaki K, Yamasaki K, Yoshida T. Venetoclax efficacy on acute myeloid leukemia is enhanced by the combination with butyrate. Sci Rep 2024; 14:4975. [PMID: 38424468 PMCID: PMC10904797 DOI: 10.1038/s41598-024-55286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Venetoclax has been approved recently for treatment of Acute myeloid leukemia (AML). Venetoclax is a BH3-mimetic and induces apoptosis via Bcl-2 inhibition. However, venetoclax's effect is still restrictive and a novel strategy is needed. In the present study, we demonstrate that sodium butyrate (NaB) facilitates the venetoclax's efficacy of cell death in AML cells. As a single agent, NaB or venetoclax exerted just a weak effect on cell death induction for AML cell line KG-1. The combination with NaB and venetoclax drastically induced cell death. NaB upregulated pro-apoptotic factors, Bax and Bak, indicating the synergistic effect by the collaboration with Bcl-2 inhibition by venetoclax. The combined treatment with NaB and venetoclax strongly cleaved a caspase substrate poly (ADP-ribose) polymerase (PARP) and a potent pan-caspase inhibitor Q-VD-OPh almost completely blocked the cell death induced by the combination, meaning that the combination mainly induced apoptosis. The combination with NaB and venetoclax also strongly induced cell death in another AML cell line SKNO-1 but did not affect chronic myeloid leukemia (CML) cell line K562, indicating that the effect was specific for AML cells. Our results provide a novel strategy to strengthen the effect of venetoclax for AML treatment.
Collapse
Affiliation(s)
- Renshi Kawakatsu
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kenjiro Tadagaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kenta Yamasaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tatsushi Yoshida
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
13
|
Commey KL, Enaka A, Nakamura R, Yamamoto A, Tsukigawa K, Nishi K, Iohara D, Hirayama F, Otagiri M, Yamasaki K. Development of α-Cyclodextrin-Based Orally Disintegrating Tablets for 4-Phenylbutyrate. Pharmaceutics 2024; 16:82. [PMID: 38258093 PMCID: PMC10818935 DOI: 10.3390/pharmaceutics16010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Despite major improvements brought about by the introduction of taste-masked formulations of 4-phenylbutyrate (PB), poor compliance remains a significant drawback to treatment for some pediatric and dysphagic patients with urea cycle disorders (UCDs). This study reports on the development of a cyclodextrin (CD)-based orally disintegrating tablet (ODT) formulation for PB as an alternative to existing formulations. This is based on previous reports of the PB taste-masking potential of CDs and the suitability of ODTs for improving compliance in pediatric and dysphagic populations. In preliminary studies, the interactions of PB with α and βCD in the solid state were characterized using X-ray diffraction, scanning electron microscopy, dissolution, and accelerated stability studies. Based on these studies, lyophilized PB-CD solid systems were formulated into ODTs after wet granulation. Evaluation of the ODTs showed that they had adequate physical characteristics, including hardness and friability and good storage stability. Notably, the developed αCD-based ODT for PB had a disintegration time of 28 s and achieved a slightly acidic and agreeable pH (≈5.5) in solution, which is suitable for effective PB-CD complexation and taste masking. The developed formulation could be helpful as an alternative to existing PB formulations, especially for pediatric and dysphagic UCD patients.
Collapse
Affiliation(s)
- Kindness L. Commey
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Airi Enaka
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
| | - Ryota Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
| | - Asami Yamamoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
| | - Kenji Tsukigawa
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Daisuke Iohara
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Fumitoshi Hirayama
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| |
Collapse
|
14
|
Zhu G, Gao H, Li Y, Li X, Yang X, Wang C, Guo Z, Fan H, Fan L. Suppression of endoplasmic reticulum stress by 4-PBA enhanced atherosclerotic plaque stability via up-regulating CLOCK expression. Pathol Res Pract 2024; 253:154969. [PMID: 38029715 DOI: 10.1016/j.prp.2023.154969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Endoplasmic reticulum (ER) stress refers to a condition where the normal functioning of the ER is disrupted due to a variety of cellular stress factors. As a result, there is an accumulation of unfolded and misfolded proteins within the ER. Numerous studies have shown that ER stress can exacerbate inflammatory reactions and contribute to the development of various inflammatory diseases. However, the role of ER stress in the stability of atherosclerotic plaques remains poorly understood. In this study, we aimed to explore the potential impact of a specific ER stress inhibitor known as 4-phenyl butyric acid (4-PBA) on atherosclerosis in mice. The mice were fed a high-fat diet, and treatment with 4-PBA significantly improved the stability of the atherosclerotic plaques. This was evidenced by a reduction in oxidative stress and an increase in circadian locomotor output cycles kaput (CLOCK) protein and mRNA expression within the plaques. Additionally, 4-PBA reduced the expression of ER stress-related proteins and decreased apoptosis in the atherosclerotic plaques. In vitro investigation, we observed the effect of 4-PBA on vascular smooth muscle cells (VSMCs) that were exposed to oxidized low-density lipoprotein (ox-LDL), a significant contributor to the development of atherosclerosis. 4-PBA reduced reactive oxygen species (ROS) production and attenuated apoptosis, GRP78 and CHOP protein expression in ox-LDL-Induced VSMCs via up-regulating CLOCK expression. However, when the short hairpin RNA against CLOCK (sh-CLOCK) was introduced to the VSMCs, the protective effect of 4-PBA was abolished. This suggests that the up-regulation of CLOCK expression is crucial for the beneficial effects of 4-PBA on atherosclerotic plaque stability. This finding suggests that targeting ER stress and modulating CLOCK protein levels might be a promising way to enhance the stability of atherosclerotic plaques.
Collapse
Affiliation(s)
- Guanglang Zhu
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongxia Gao
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Li
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Li
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaohu Yang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenyu Guo
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Heyu Fan
- School of Arts and Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Longhua Fan
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China; Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Xie W, Shan Y, Wu Z, Liu N, Yang J, Zhang H, Sun S, Chi J, Feng W, Lin H, Guo H. Herpud1 deficiency alleviates homocysteine-induced aortic valve calcification. Cell Biol Toxicol 2023; 39:2665-2684. [PMID: 36746840 DOI: 10.1007/s10565-023-09794-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/21/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To evaluate the role and therapeutic value of homocysteine (hcy)-inducible endoplasmic reticulum stress (ERS) protein with ubiquitin like domain 1 (Herpud1) in hcy-induced calcific aortic valve disease (CAVD). BACKGROUND The morbidity and mortality rates of calcific aortic valve disease (CAVD) remain high while treatment options are limited. METHODS In vivo, we use the low-density lipoprotein receptor (LDLR) and Herpud1 double knockout (LDLR-/-/Herpud1-/-) mice and used high methionine diet (HMD) to assess of aortic valve calcification lesions, ERS activation, autophagy, and osteogenic differentiation of aortic valve interstitial cells (AVICs). In vitro, the role of Herpud1 in the Hcy-related osteogenic differentiation of AVICs was investigated by manipulating of Herpud1 expression. RESULTS Herpud1 was highly expressed in calcified human and mouse aortic valves as well as primary aortic valve interstitial cells (AVICs). Hcy increased Herpud1 expression through the ERS pathway and promoted CAVD progression. Herpud1 deficiency inhibited hcy-induced CAVD in vitro and in vivo. Herpud1 silencing activated cell autophagy, which subsequently inhibited hcy-induced osteogenic differentiation of AVICs. ERS inhibitor 4-phenyl butyric acid (4-PBA) significantly attenuated aortic valve calcification in HMD-fed low-density lipoprotein receptor-/- (LDLR-/-) mice by suppressing ERS and subsequent Herpud1 biosynthesis. CONCLUSIONS These findings identify a previously unknown mechanism of Herpud1 upregulation in Hcy-related CAVD, suggesting that Herpud1 silencing or inhibition is a viable therapeutic strategy for arresting CAVD progression. HIGHLIGHTS • Herpud1 is upregulated in the leaflets of Hcy-treated mice and patients with CAVD. • In mice, global knockout of Herpud1 alleviates aortic valve calcification and Herpud1 silencing activates cell autophagy, inhibiting osteogenic differentiation of AVICs induced by Hcy. • 4-PBA suppressed Herpud1 expression to alleviate AVIC calcification in Hcy treated AVICs and to mitigate aortic valve calcification in mice.
Collapse
Affiliation(s)
- Wenqing Xie
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Yue Shan
- Department of Anesthesiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
| | - Zhuonan Wu
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Nan Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Jinjin Yang
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Hanlin Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shiming Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
- Shaoxing Key Laboratory of Cardio-cerebral Vascular Disease Rehabilitation Technology Innovation and Application, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Weizhong Feng
- Department of Cardiovascular Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China.
- Shaoxing Key Laboratory of Cardio-cerebral Vascular Disease Rehabilitation Technology Innovation and Application, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| | - Hangyuan Guo
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
- Shaoxing Key Laboratory of Cardio-cerebral Vascular Disease Rehabilitation Technology Innovation and Application, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
16
|
Yamasaki E, Thakore P, Ali S, Solano AS, Wang X, Gao X, Labelle-Dumais C, Chaumeil MM, Gould DB, Earley S. Impaired intracellular Ca 2+ signaling contributes to age-related cerebral small vessel disease in Col4a1 mutant mice. Sci Signal 2023; 16:eadi3966. [PMID: 37963192 PMCID: PMC10726848 DOI: 10.1126/scisignal.adi3966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Humans and mice with mutations in COL4A1 and COL4A2 manifest hallmarks of cerebral small vessel disease (cSVD). Mice with a missense mutation in Col4a1 at amino acid 1344 (Col4a1+/G1344D) exhibit age-dependent intracerebral hemorrhages (ICHs) and brain lesions. Here, we report that this pathology was associated with the loss of myogenic vasoconstriction, an intrinsic vascular response essential for the autoregulation of cerebral blood flow. Electrophysiological analyses showed that the loss of myogenic constriction resulted from blunted pressure-induced smooth muscle cell (SMC) membrane depolarization. Furthermore, we found that dysregulation of membrane potential was associated with impaired Ca2+-dependent activation of large-conductance Ca2+-activated K+ (BK) and transient receptor potential melastatin 4 (TRPM4) cation channels linked to disruptions in sarcoplasmic reticulum (SR) Ca2+ signaling. Col4a1 mutations impair protein folding, which can cause SR stress. Treating Col4a1+/G1344D mice with 4-phenylbutyrate, a compound that promotes the trafficking of misfolded proteins and alleviates SR stress, restored SR Ca2+ signaling, maintained BK and TRPM4 channel activity, prevented loss of myogenic tone, and reduced ICHs. We conclude that alterations in SR Ca2+ handling that impair ion channel activity result in dysregulation of SMC membrane potential and loss of myogenic tone and contribute to age-related cSVD in Col4a1+/G1344D mice.
Collapse
Affiliation(s)
- Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Sher Ali
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Alfredo Sanchez Solano
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Xiaowei Wang
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA 94158, USA
| | - Xiao Gao
- Department of Physical Therapy and Rehabilitation Science, UCSF School of Medicine, San Francisco, CA 94143, USA
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, San Francisco, CA 94143, USA
| | | | - Myriam M. Chaumeil
- Department of Physical Therapy and Rehabilitation Science, UCSF School of Medicine, San Francisco, CA 94143, USA
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Douglas B. Gould
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA 94158, USA
- Department of Anatomy, Institute for Human Genetics, Cardiovascular Research Institute, Bakar Aging Research Institute, UCSF School of Medicine, San Francisco, CA 94158, USA
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| |
Collapse
|
17
|
Taler K, Zatari N, Lone MI, Rotem-Bamberger S, Inbal A. Identification of Small Molecules for Prevention of Lens Epithelium-Derived Cataract Using Zebrafish. Cells 2023; 12:2540. [PMID: 37947618 PMCID: PMC10650733 DOI: 10.3390/cells12212540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Cataract is the leading cause of blindness worldwide. It can be treated by surgery, whereby the damaged crystalline lens is replaced by a synthetic lens. Although cataract surgery is highly effective, a relatively common complication named posterior capsular opacification (PCO) leads to secondary loss of vision. PCO is caused by abnormal proliferation and migration of residual lens epithelial cells (LECs) that were not removed during the surgery, which results in interruption to the passage of light. Despite technical improvements to the surgery, this complication has not been eradicated. Efforts are being made to identify drugs that can be applied post-surgery, to inhibit PCO development. Towards the goal of identifying such drugs, we used zebrafish embryos homozygous for a mutation in plod3 that develop a lens phenotype with characteristics of PCO. Using both biased and unbiased approaches, we identified small molecules that can block the lens phenotype of the mutants. Our findings confirm the relevance of zebrafish plod3 mutants' lens phenotype as a model for lens epithelium-derived cataract and add to our understanding of the molecular mechanisms that contribute to the development of this pathology. This understanding should help in the development of strategies for PCO prevention.
Collapse
Affiliation(s)
| | | | | | | | - Adi Inbal
- Department of Medical Neurobiology, Institute for Medical Research—Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112002, Israel; (K.T.); (N.Z.); (M.I.L.); (S.R.-B.)
| |
Collapse
|
18
|
Commey KL, Nakatake A, Enaka A, Nakamura R, Nishi K, Tsukigawa K, Ikeda H, Yamaguchi K, Iohara D, Hirayama F, Yamasaki K, Otagiri M. Study of the Structural Chemistry of the Inclusion Complexation of 4-Phenylbutyrate and Related Compounds with Cyclodextrins in Solution: Differences in Inclusion Mode with Cavity Size Dependency. Int J Mol Sci 2023; 24:15091. [PMID: 37894771 PMCID: PMC10606765 DOI: 10.3390/ijms242015091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
4-phenylbutyrate (PB) and structurally related compounds hold promise for treating many diseases, including cancers. However, pharmaceutical limitations, such as an unpleasant taste or poor aqueous solubility, impede their evaluation and clinical use. This study explores cyclodextrin (CD) complexation as a strategy to address these limitations. The structural chemistry of the CD complexes of these compounds was analyzed using phase solubility, nuclear magnetic resonance (NMR) spectroscopic techniques, and molecular modeling to inform the choice of CD for such application. The study revealed that PB and its shorter-chain derivative form 1:1 αCD complexes, while the longer-chain derivatives form 1:2 (guest:host) complexes. αCD includes the alkyl chain of the shorter-chain compounds, depositing the phenyl ring around its secondary rim, whereas two αCD molecules sandwich the phenyl ring in a secondary-to-secondary rim orientation for the longer-chain derivatives. βCD includes each compound to form 1:1 complexes, with their alkyl chains bent to varying degrees within the CD cavity. γCD includes two molecules of each compound to form 2:1 complexes, with both parallel and antiparallel orientations plausible. The study found that αCD is more suitable for overcoming the pharmaceutical drawbacks of PB and its shorter-chain derivative, while βCD is better for the longer-chain derivatives.
Collapse
Affiliation(s)
- Kindness L. Commey
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.N.); (A.E.); (R.N.); (K.N.); (K.T.); (K.Y.); (D.I.); (F.H.)
| | - Akari Nakatake
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.N.); (A.E.); (R.N.); (K.N.); (K.T.); (K.Y.); (D.I.); (F.H.)
| | - Airi Enaka
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.N.); (A.E.); (R.N.); (K.N.); (K.T.); (K.Y.); (D.I.); (F.H.)
| | - Ryota Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.N.); (A.E.); (R.N.); (K.N.); (K.T.); (K.Y.); (D.I.); (F.H.)
| | - Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.N.); (A.E.); (R.N.); (K.N.); (K.T.); (K.Y.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Kenji Tsukigawa
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.N.); (A.E.); (R.N.); (K.N.); (K.T.); (K.Y.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Hirohito Ikeda
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Jonan-ku, Fukuoka 814-0180, Japan;
| | - Koki Yamaguchi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.N.); (A.E.); (R.N.); (K.N.); (K.T.); (K.Y.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Daisuke Iohara
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.N.); (A.E.); (R.N.); (K.N.); (K.T.); (K.Y.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Fumitoshi Hirayama
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.N.); (A.E.); (R.N.); (K.N.); (K.T.); (K.Y.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.N.); (A.E.); (R.N.); (K.N.); (K.T.); (K.Y.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.N.); (A.E.); (R.N.); (K.N.); (K.T.); (K.Y.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| |
Collapse
|
19
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Endoplasmic reticulum stress and alterations of peroxiredoxins in aged hearts. Mech Ageing Dev 2023; 215:111859. [PMID: 37661065 PMCID: PMC11103240 DOI: 10.1016/j.mad.2023.111859] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Aging-related cardiovascular disease is influenced by multiple factors, with oxidative stress being a key contributor. Aging-induced endoplasmic reticulum (ER) stress exacerbates oxidative stress by impairing mitochondrial function. Furthermore, a decline in antioxidants, including peroxiredoxins (PRDXs), augments the oxidative stress during aging. To explore if ER stress leads to PRDX degradation during aging, young adult (3 mo.) and aged (24 mo.) male mice were studied. Treatment with 4-phenylbutyrate (4-PBA) was used to alleviate ER stress in young adult and aged mice. Aged hearts showed elevated oxidative stress levels compared to young hearts. However, treatment with 4-PBA to attenuate ER stress reduced oxidative stress in aged hearts, indicating that ER stress contributes to increased oxidative stress in aging. Moreover, aging resulted in reduced levels of peroxiredoxin 3 (PRDX3) in mitochondria and peroxiredoxin 4 (PRDX4) in myocardium. While 4-PBA treatment improved PRDX3 content in aged hearts, it did not restore PRDX4 content in aged mice. These findings suggest that ER stress not only leads to mitochondrial dysfunction and increased oxidant stress but also impairs a vital antioxidant defense through decreased PRDX3 content. Additionally, the results suggest that PRDX4 may contribute an upstream role in inducing ER stress during aging.
Collapse
Affiliation(s)
- Qun Chen
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jeremy Thompson
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ying Hu
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Edward J Lesnefsky
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA; Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA; Richmond Department of Veterans Affairs Medical Center, Richmond, VA 23249, USA.
| |
Collapse
|
20
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Endoplasmic reticulum homeostasis: a potential target for diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1182848. [PMID: 37383398 PMCID: PMC10296190 DOI: 10.3389/fendo.2023.1182848] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
The endoplasmic reticulum (ER) is the most vigorous organelle in intracellular metabolism and is involved in physiological processes such as protein and lipid synthesis and calcium ion transport. Recently, the abnormal function of the ER has also been reported to be involved in the progression of kidney disease, especially in diabetic nephropathy (DN). Here, we reviewed the function of the ER and summarized the regulation of homeostasis through the UPR and ER-phagy. Then, we also reviewed the role of abnormal ER homeostasis in residential renal cells in DN. Finally, some ER stress activators and inhibitors were also summarized, and the possibility of maintaining ER homeostasis as a potential therapeutic target for DN was discussed.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
21
|
Zhang Q, Chen Y, Wang Q, Wang Y, Feng W, Chai L, Liu J, Li D, Chen H, Qiu Y, Shen N, Shi X, Xie X, Li M. HMGB1-induced activation of ER stress contributes to pulmonary artery hypertension in vitro and in vivo. Respir Res 2023; 24:149. [PMID: 37268944 DOI: 10.1186/s12931-023-02454-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND HMGB1 and ER stress have been considered to participate in the progression of pulmonary artery hypertension (PAH). However, the molecular mechanism underlying HMGB1 and ER stress in PAH remains unclear. This study aims to explore whether HMGB1 induces pulmonary artery smooth muscle cells (PASMCs) functions and pulmonary artery remodeling through ER stress activation. METHODS Primary cultured PASMCs and monocrotaline (MCT)-induced PAH rats were applied in this study. Cell proliferation and migration were determined by CCK-8, EdU and transwell assay. Western blotting was conducted to detect the protein levels of protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor-4 (ATF4), seven in absentia homolog 2 (SIAH2) and homeodomain interacting protein kinase 2 (HIPK2). Hemodynamic measurements, immunohistochemistry staining, hematoxylin and eosin staining were used to evaluate the development of PAH. The ultrastructure of ER was observed by transmission electron microscopy. RESULTS In primary cultured PASMCs, HMGB1 reduced HIPK2 expression through upregulation of ER stress-related proteins (PERK and ATF4) and subsequently increased SIAH2 expression, which ultimately led to PASMC proliferation and migration. In MCT-induced PAH rats, interfering with HMGB1 by glycyrrhizin, suppression of ER stress by 4-phenylbutyric acid or targeting SIAH2 by vitamin K3 attenuated the development of PAH. Additionally, tetramethylpyrazine (TMP), as a component of traditional Chinese herbal medicine, reversed hemodynamic deterioration and vascular remodeling by targeting PERK/ATF4/SIAH2/HIPK2 axis. CONCLUSIONS The present study provides a novel insight to understand the pathogenesis of PAH and suggests that targeting HMGB1/PERK/ATF4/SIAH2/HIPK2 cascade might have potential therapeutic value for the prevention and treatment of PAH.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yuqian Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Wei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jin Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Danyang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Huan Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yuanjie Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Nirui Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Xiangyu Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
22
|
Eleftheriadis T, Pissas G, Golfinopoulos S, Efthymiadi M, Poulianiti C, Polyzou Konsta MA, Liakopoulos V, Stefanidis I. Routes of Albumin Overload Toxicity in Renal Tubular Epithelial Cells. Int J Mol Sci 2023; 24:ijms24119640. [PMID: 37298591 DOI: 10.3390/ijms24119640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Besides being a marker of kidney disease severity, albuminuria exerts a toxic effect on renal proximal tubular epithelial cells (RPTECs). We evaluated whether an unfolded protein response (UPR) or DNA damage response (DDR) is elicited in RPTECs exposed to high albumin concentration. The deleterious outcomes of the above pathways, apoptosis, senescence, or epithelial-to-mesenchymal transition (EMT) were evaluated. Albumin caused reactive oxygen species (ROS) overproduction and protein modification, and a UPR assessed the level of crucial molecules involved in this pathway. ROS also induced a DDR evaluated by critical molecules involved in this pathway. Apoptosis ensued through the extrinsic pathway. Senescence also occurred, and the RPTECs acquired a senescence-associated secretory phenotype since they overproduced IL-1β and TGF-β1. The latter may contribute to the observed EMT. Agents against endoplasmic reticulum stress (ERS) only partially alleviated the above changes, while the inhibition of ROS upregulation prevented both UPR and DDR and all the subsequent harmful effects. Briefly, albumin overload causes cellular apoptosis, senescence, and EMT in RPTECs by triggering UPR and DDR. Promising anti-ERS factors are beneficial but cannot eliminate the albumin-induced deleterious effects because DDR also occurs. Factors that suppress ROS overproduction may be more effective since they could halt UPR and DDR.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Spyridon Golfinopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Maria Efthymiadi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Christina Poulianiti
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Maria Anna Polyzou Konsta
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece
| |
Collapse
|
23
|
Myszor IT, Gudmundsson GH. Modulation of innate immunity in airway epithelium for host-directed therapy. Front Immunol 2023; 14:1197908. [PMID: 37251385 PMCID: PMC10213533 DOI: 10.3389/fimmu.2023.1197908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Innate immunity of the mucosal surfaces provides the first-line defense from invading pathogens and pollutants conferring protection from the external environment. Innate immune system of the airway epithelium consists of several components including the mucus layer, mucociliary clearance of beating cilia, production of host defense peptides, epithelial barrier integrity provided by tight and adherens junctions, pathogen recognition receptors, receptors for chemokines and cytokines, production of reactive oxygen species, and autophagy. Therefore, multiple components interplay with each other for efficient protection from pathogens that still can subvert host innate immune defenses. Hence, the modulation of innate immune responses with different inducers to boost host endogenous front-line defenses in the lung epithelium to fend off pathogens and to enhance epithelial innate immune responses in the immunocompromised individuals is of interest for host-directed therapy. Herein, we reviewed possibilities of modulation innate immune responses in the airway epithelium for host-directed therapy presenting an alternative approach to standard antibiotics.
Collapse
Affiliation(s)
- Iwona T. Myszor
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Wang N, Mei H, Dhawan G, Zhang W, Han J, Soloshonok VA. New Approved Drugs Appearing in the Pharmaceutical Market in 2022 Featuring Fragments of Tailor-Made Amino Acids and Fluorine. Molecules 2023; 28:molecules28093651. [PMID: 37175060 PMCID: PMC10180415 DOI: 10.3390/molecules28093651] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The strategic fluorination of oxidatively vulnerable sites in bioactive compounds is a relatively recent, widely used approach allowing us to modulate the stability, bio-absorption, and overall efficiency of pharmaceutical drugs. On the other hand, natural and tailor-made amino acids are traditionally used as basic scaffolds for the development of bioactive molecules. The main goal of this review article is to emphasize these general trends featured in recently approved pharmaceutical drugs.
Collapse
Affiliation(s)
- Nana Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gagan Dhawan
- School of Allied Medical Sciences, Delhi Skill and Entrepreneurship University, Dwarka, New Delhi 110075, India
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi 110019, India
- Delhi School of Skill Enhancement and Entrepreneurship Development, Institution of Eminence, University of Delhi, Delhi 110007, India
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, 48011 Bilbao, Spain
| |
Collapse
|
25
|
Uzay B, Kavalali ET. Genetic disorders of neurotransmitter release machinery. Front Synaptic Neurosci 2023; 15:1148957. [PMID: 37066095 PMCID: PMC10102358 DOI: 10.3389/fnsyn.2023.1148957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
Synaptic neurotransmitter release is an evolutionarily conserved process that mediates rapid information transfer between neurons as well as several peripheral tissues. Release of neurotransmitters are ensured by successive events such as synaptic vesicle docking and priming that prepare synaptic vesicles for rapid fusion. These events are orchestrated by interaction of different presynaptic proteins and are regulated by presynaptic calcium. Recent studies have identified various mutations in different components of neurotransmitter release machinery resulting in aberrant neurotransmitter release, which underlie a wide spectrum of psychiatric and neurological symptoms. Here, we review how these genetic alterations in different components of the core neurotransmitter release machinery affect the information transfer between neurons and how aberrant synaptic release affects nervous system function.
Collapse
Affiliation(s)
- Burak Uzay
- Vanderbilt Brain Institute, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Ege T. Kavalali
- Vanderbilt Brain Institute, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
26
|
Barrier ML, Myszor IT, Sahariah P, Sigurdsson S, Carmena-Bargueño M, Pérez-Sánchez H, Gudmundsson GH. Aroylated phenylenediamine HO53 modulates innate immunity, histone acetylation and metabolism. Mol Immunol 2023; 155:153-164. [PMID: 36812763 DOI: 10.1016/j.molimm.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/18/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023]
Abstract
In the current context of antibiotic resistance, the need to find alternative treatment strategies is urgent. Our research aimed to use synthetized aroylated phenylenediamines (APDs) to induce the expression of cathelicidin antimicrobial peptide gene (CAMP) to minimize the necessity of antibiotic use during infection. One of these compounds, HO53, showed promising results in inducing CAMP expression in bronchial epithelium cells (BCi-NS1.1 hereafter BCi). Thus, to decipher the cellular effects of HO53 on BCi cells, we performed RNA sequencing (RNAseq) analysis after 4, 8 and 24 h treatment of HO53. The number of differentially expressed transcripts pointed out an epigenetic modulation. Yet, the chemical structure and in silico modeling indicated HO53 as a histone deacetylase (HDAC) inhibitor. When exposed to a histone acetyl transferase (HAT) inhibitor, BCi cells showed a decreased expression of CAMP. Inversely, when treated with a specific HDAC3 inhibitor (RGFP996), BCi cells showed an increased expression of CAMP, indicating acetylation status in cells as determinant for the induction of the expression of the gene CAMP expression. Interestingly, a combination treatment with both HO53 and HDAC3 inhibitor RGFP966 leads to a further increase of CAMP expression. Moreover, HDAC3 inhibition by RGFP966 leads to increased expression of STAT3 and HIF1A, both previously demonstrated to be involved in pathways regulating CAMP expression. Importantly, HIF1α is considered as a master regulator in metabolism. A significant number of genes of metabolic enzymes were detected in our RNAseq data with enhanced expression conveying a shift toward enhanced glycolysis. Overall, we are demonstrating that HO53 might have a translational value against infections in the future through a mechanism leading to innate immunity strengthening involving HDAC inhibition and shifting the cells towards an immunometabolism, which further favors innate immunity activation.
Collapse
Affiliation(s)
- Marjorie Laurence Barrier
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Iwona Teresa Myszor
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Priyanka Sahariah
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Snaevar Sigurdsson
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Gudmundur Hrafn Gudmundsson
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
27
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
28
|
Wang S, Yang K, Li C, Liu W, Gao T, Yuan F, Guo R, Liu Z, Tan Y, Hu X, Tian Y, Zhou D. 4-Phenyl-butyric Acid Inhibits Japanese Encephalitis Virus Replication via Inhibiting Endoplasmic Reticulum Stress Response. Viruses 2023; 15:v15020534. [PMID: 36851748 PMCID: PMC9962822 DOI: 10.3390/v15020534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Japanese encephalitis virus (JEV) infection causes host endoplasmic reticulum stress (ERS) reaction, and then induces cell apoptosis through the UPR pathway, invading the central nervous system and causing an inflammation storm. The endoplasmic reticulum stress inhibitor, 4-phenyl-butyric acid (4-PBA), has an inhibitory effect on the replication of flavivirus. Here, we studied the effect of 4-PBA on JEV infection both in vitro and vivo. The results showed that 4-PBA treatment could significantly decrease the titer of JEV, inhibit the expression of the JEV NS3 protein (in vitro, p < 0.01) and reduce the positive rate of the JEV E protein (in vivo, p < 0.001). Compared to the control group, 4-PBA treatment can restore the weight of JEV-infected mice, decrease the level of IL-1β in serum and alleviate the abnormalities in brain tissue structure. Endoplasmic reticulum stress test found that the expression level of GRP78 was much lower and activation levels of PERK and IRE1 pathways were reduced in the 4-PBA treatment group. Furthermore, 4-PBA inhibited the UPR pathway activated by NS3, NS4b and NS5 RdRp. The above results indicated that 4-PBA could block JEV replication and inhibit ER stress caused by JEV. Interestingly, 4-PBA could reduce the expression of NS5 by inhibiting transcription (p < 0.001), but had no effect on the expression of NS3 and NS4b. This result may indicate that 4-PBA has antiviral activity independent of the UPR pathway. In summary, the effect of 4-PBA on JEV infection is related to the inhibition of ER stress, and it may be a promising drug for the treatment of Japanese encephalitis.
Collapse
|
29
|
Kasture AS, Fischer FP, Kunert L, Burger ML, Burgstaller AC, El-Kasaby A, Hummel T, Sucic S. Drosophila melanogaster as a model for unraveling unique molecular features of epilepsy elicited by human GABA transporter 1 variants. Front Neurosci 2023; 16:1074427. [PMID: 36741049 PMCID: PMC9893286 DOI: 10.3389/fnins.2022.1074427] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
Mutations in the human γ-aminobutyric acid (GABA) transporter 1 (hGAT-1) can instigate myoclonic-atonic and other generalized epilepsies in the afflicted individuals. We systematically examined fifteen hGAT-1 disease variants, all of which dramatically reduced or completely abolished GABA uptake activity. Many of these loss-of-function variants were absent from their regular site of action at the cell surface, due to protein misfolding and/or impaired trafficking machinery (as verified by confocal microscopy and de-glycosylation experiments). A modest fraction of the mutants displayed correct targeting to the plasma membrane, but nonetheless rendered the mutated proteins devoid of GABA transport, possibly due to structural alterations in the GABA binding site/translocation pathway. We here focused on a folding-deficient A288V variant. In flies, A288V reiterated its impeded expression pattern, closely mimicking the ER-retention demonstrated in transfected HEK293 cells. Functionally, A288V presented a temperature-sensitive seizure phenotype in fruit flies. We employed diverse small molecules to restore the expression and activity of folding-deficient hGAT-1 epilepsy variants, in vitro (in HEK293 cells) and in vivo (in flies). We identified three compounds (chemical and pharmacological chaperones) conferring moderate rescue capacity for several variants. Our data grant crucial new insights into: (i) the molecular basis of epilepsy in patients harboring hGAT-1 mutations, and (ii) a proof-of-principle that protein folding deficits in disease-associated hGAT-1 variants can be corrected using the pharmacochaperoning approach. Such innovative pharmaco-therapeutic prospects inspire the rational design of novel drugs for alleviating the clinical symptoms triggered by the numerous emerging pathogenic mutations in hGAT-1.
Collapse
Affiliation(s)
- Ameya S. Kasture
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria,Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Florian P. Fischer
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria,Department of Epileptology and Neurology, University of Aachen, Aachen, Germany
| | - Lisa Kunert
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Melanie L. Burger
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Ali El-Kasaby
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Hummel
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria,*Correspondence: Sonja Sucic,
| |
Collapse
|
30
|
Lee ES, Aryal YP, Kim TY, Pokharel E, Kim JY, Yamamoto H, An CH, An SY, Jung JK, Lee Y, Ha JH, Sohn WJ, Kim JY. The effects of 4-Phenylbutyric acid on ER stress during mouse tooth development. Front Physiol 2023; 13:1079355. [PMID: 36685173 PMCID: PMC9848431 DOI: 10.3389/fphys.2022.1079355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: During tooth development, proper protein folding and trafficking are significant processes as newly synthesized proteins proceed to form designated tissues. Endoplasmic reticulum (ER) stress occurs inevitably in tooth development as unfolded and misfolded proteins accumulate in ER. 4-Phenylbutyric acid (4PBA) is a FDA approved drug and known as a chemical chaperone which alleviates the ER stress. Recently, several studies showed that 4PBA performs therapeutic effects in some genetic diseases due to misfolding of proteins, metabolic related-diseases and apoptosis due to ER stress. However, the roles of 4PBA during odontogenesis are not elucidated. This study revealed the effects of 4PBA during molar development in mice. Methods: We employed in vitro organ cultivation and renal transplantation methods which would mimic the permanent tooth development in an infant period of human. The in vitro cultivated tooth germs and renal calcified teeth were examined by histology and immunohistochemical analysis. Results and Discussion: Our results revealed that treatment of 4PBA altered expression patterns of enamel knot related signaling molecules, and consequently affected cellular secretion and patterned formation of dental hard tissues including dentin and enamel during tooth morphogenesis. The alteration of ER stress by 4PBA treatment during organogenesis would suggest that proper ER stress is important for pattern formation during tooth development and morphogenesis, and 4PBA as a chemical chaperone would be one of the candidate molecules for dental and hard tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | - Ji-Youn Kim
- Department of Dental Hygiene, Gachon University, Incheon, Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, Daegu, South Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, Daegu, South Korea
| | | | | | - Jung-Hong Ha
- Department of Conservative Dentistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Wern-Joo Sohn
- Department of K-Beauty Business, College of Cosmetics and Pharmaceuticals, Daegu Haany University, Gyeongsan, Korea
| | - Jae-Young Kim
- Department of Biochemistry, Daegu, South Korea,*Correspondence: Jae-Young Kim,
| |
Collapse
|
31
|
Epimutations and Their Effect on Chromatin Organization: Exciting Avenues for Cancer Treatment. Cancers (Basel) 2022; 15:cancers15010215. [PMID: 36612210 PMCID: PMC9818548 DOI: 10.3390/cancers15010215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
The three-dimensional architecture of genomes is complex. It is organized as fibers, loops, and domains that form high-order structures. By using different chromosome conformation techniques, the complex relationship between transcription and genome organization in the three-dimensional organization of genomes has been deciphered. Epigenetic changes, such as DNA methylation and histone modification, are the hallmark of cancers. Tumor initiation, progression, and metastasis are linked to these epigenetic modifications. Epigenetic inhibitors can reverse these altered modifications. A number of epigenetic inhibitors have been approved by FDA that target DNA methylation and histone modification. This review discusses the techniques involved in studying the three-dimensional organization of genomes, DNA methylation and histone modification, epigenetic deregulation in cancer, and epigenetic therapies targeting the tumor.
Collapse
|
32
|
Chemical chaperones ameliorate neurodegenerative disorders in Derlin-1-deficient mice via improvement of cholesterol biosynthesis. Sci Rep 2022; 12:21840. [PMID: 36528738 PMCID: PMC9759528 DOI: 10.1038/s41598-022-26370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
There are no available therapies targeting the underlying molecular mechanisms of neurodegenerative diseases. Although chaperone therapies that alleviate endoplasmic reticulum (ER) stress recently showed promise in the treatment of neurodegenerative diseases, the detailed mechanisms remain unclear. We previously reported that mice with central nervous system-specific deletion of Derlin-1, which encodes an essential component for ER quality control, are useful as models of neurodegenerative diseases such as spinocerebellar degeneration. Cholesterol biosynthesis is essential for brain development, and its disruption inhibits neurite outgrowth, causing brain atrophy. In this study, we report a novel mechanism by which chemical chaperones ameliorate brain atrophy and motor dysfunction. ER stress was induced in the cerebella of Derlin-1 deficiency mice, whereas the administration of a chemical chaperone did not alleviate ER stress. However, chemical chaperone treatment ameliorated cholesterol biosynthesis impairment through SREBP-2 activation and simultaneously relieved brain atrophy and motor dysfunction. Altogether, these findings demonstrate that ER stress may not be the target of action of chaperone therapies and that chemical chaperone-mediated improvement of brain cholesterol biosynthesis is a promising novel therapeutic strategy for neurodegenerative diseases.
Collapse
|
33
|
Deka D, D'Incà R, Sturniolo GC, Das A, Pathak S, Banerjee A. Role of ER Stress Mediated Unfolded Protein Responses and ER Stress Inhibitors in the Pathogenesis of Inflammatory Bowel Disease. Dig Dis Sci 2022; 67:5392-5406. [PMID: 35318552 DOI: 10.1007/s10620-022-07467-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/28/2022] [Indexed: 01/05/2023]
Abstract
Previous investigations have increased the knowledge about the pathological processes of inflammatory bowel diseases. Besides the complex organization of immune reactions, the mucosal epithelial lining has been recognized as a crucial regulator in the commencement and persistence of intestinal inflammation. As the intestinal epithelium is exposed to various environmental factors, the intestinal epithelial cells are confronted with diverse cellular stress conditions. In eukaryotic cells, an imbalance in the endoplasmic reticulum (ER) might cause aggregation of unfolded or misfolded proteins in the lumen of ER, a condition known as endoplasmic reticulum stress. This cellular mechanism stimulates the unfolded protein response (UPR), which elevates the potential of the endoplasmic reticulum protein folding, improves protein production and its maturation, and also stimulates ER-associated protein degradation. Current analyses reported that in the epithelium, the ER stress might cause the pathogenesis of inflammatory bowel disease that affects the synthesis of protein, inducing the apoptosis of the epithelial cell and stimulating the proinflammatory reactions in the gut. There have been significant efforts to develop small molecules or molecular chaperones that will be potent in ameliorating ER stress. The restoration of UPR balance in the endoplasmic reticulum via pharmacological intervention might be a novel therapeutic approach for the treatment of inflammatory bowel diseases (IBDs). This review provides novel insights into the role of chemical chaperone UPR modulators to modify ER stress levels. We further discuss the future directions/challenges in the development of therapeutic strategies for IBDs by targeting the ER stress. Figure depicting the role of endoplasmic reticulum stress-mediated inflammatory bowel disease and the therapeutic role of endoplasmic reticulum stress inhibitors in alleviating the diseased condition.
Collapse
Affiliation(s)
- Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Renata D'Incà
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, 35128, Padua, Italy
| | - Giacomo Carlo Sturniolo
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, 35128, Padua, Italy
| | - Alakesh Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India.
| |
Collapse
|
34
|
O’Brien K, Ried K, Binjemain T, Sali A. Integrative Approaches to the Treatment of Cancer. Cancers (Basel) 2022; 14:5933. [PMID: 36497414 PMCID: PMC9740147 DOI: 10.3390/cancers14235933] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
A significant proportion of cancer patients use forms of complementary medicine or therapies. An integrative approach to cancer management combines conventional medicine with evidence-based complementary medicines/therapies and lifestyle interventions, for the treatment and prevention of disease and the optimisation of health. Its basis is a holistic one; to treat the whole person, not just the disease. It makes use of adjunct technologies which may assist the clinician in diagnosis of early carcinogenesis and monitoring of treatment effectiveness. Many factors contribute to the development of cancer including some which are largely modifiable by the patient and which oncologists may be in a position to advise on, such as stress, poor nutrition, lack of physical activity, poor sleep, and Vitamin D deficiency. An integrative approach to addressing these factors may contribute to better overall health of the patient and better outcomes. Evidence-based complementary medicine approaches include the use of supplements, herbal medicine, various practices that reduce stress, and physical therapies. Individualised to the patient, these can also help address the symptoms and signs associated with cancer and its orthodox treatment.
Collapse
Affiliation(s)
- Kylie O’Brien
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Karin Ried
- National Institute of Integrative Medicine, Hawthorn, VIC 3122, Australia
| | - Taufiq Binjemain
- National Institute of Integrative Medicine, Hawthorn, VIC 3122, Australia
| | - Avni Sali
- National Institute of Integrative Medicine, Hawthorn, VIC 3122, Australia
| |
Collapse
|
35
|
Askari S, Azizi F, Javadpour P, Karimi N, Ghasemi R. Endoplasmic reticulum stress as an underlying factor in leading causes of blindness and potential therapeutic effects of 4-phenylbutyric acid: from bench to bedside. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2022.2145945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sahar Askari
- Neuroscience Research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azizi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Karimi
- Eye and Skull Base Research Centers, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran5Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Morris-Blanco KC, Chokkalla AK, Arruri V, Jeong S, Probelsky SM, Vemuganti R. Epigenetic mechanisms and potential therapeutic targets in stroke. J Cereb Blood Flow Metab 2022; 42:2000-2016. [PMID: 35854641 PMCID: PMC9580166 DOI: 10.1177/0271678x221116192] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Accumulating evidence indicates a central role for epigenetic modifications in the progression of stroke pathology. These epigenetic mechanisms are involved in complex and dynamic processes that modulate post-stroke gene expression, cellular injury response, motor function, and cognitive ability. Despite decades of research, stroke continues to be classified as a leading cause of death and disability worldwide with limited clinical interventions. Thus, technological advances in the field of epigenetics may provide innovative targets to develop new stroke therapies. This review presents the evidence on the impact of epigenomic readers, writers, and erasers in both ischemic and hemorrhagic stroke pathophysiology. We specifically explore the role of DNA methylation, DNA hydroxymethylation, histone modifications, and epigenomic regulation by long non-coding RNAs in modulating gene expression and functional outcome after stroke. Furthermore, we highlight promising pharmacological approaches and biomarkers in relation to epigenetics for translational therapeutic applications.
Collapse
Affiliation(s)
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Soomin Jeong
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Samantha M Probelsky
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| |
Collapse
|
37
|
Burgin HJ, Crameri JJ, Stojanovski D, Sanchez MIGL, Ziemann M, McKenzie M. Stimulating Mitochondrial Biogenesis with Deoxyribonucleosides Increases Functional Capacity in ECHS1-Deficient Cells. Int J Mol Sci 2022; 23:12610. [PMID: 36293464 PMCID: PMC9604038 DOI: 10.3390/ijms232012610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
The lack of effective treatments for mitochondrial disease has seen the development of new approaches, including those that stimulate mitochondrial biogenesis to boost ATP production. Here, we examined the effects of deoxyribonucleosides (dNs) on mitochondrial biogenesis and function in Short chain enoyl-CoA hydratase 1 (ECHS1) 'knockout' (KO) cells, which exhibit combined defects in both oxidative phosphorylation (OXPHOS) and mitochondrial fatty acid β-oxidation (FAO). DNs treatment increased mitochondrial DNA (mtDNA) copy number and the expression of mtDNA-encoded transcripts in both CONTROL (CON) and ECHS1 KO cells. DNs treatment also altered global nuclear gene expression, with key gene sets including 'respiratory electron transport' and 'formation of ATP by chemiosmotic coupling' increased in both CON and ECHS1 KO cells. Genes involved in OXPHOS complex I biogenesis were also upregulated in both CON and ECHS1 KO cells following dNs treatment, with a corresponding increase in the steady-state levels of holocomplex I in ECHS1 KO cells. Steady-state levels of OXPHOS complex V, and the CIII2/CIV and CI/CIII2/CIV supercomplexes, were also increased by dNs treatment in ECHS1 KO cells. Importantly, treatment with dNs increased both basal and maximal mitochondrial oxygen consumption in ECHS1 KO cells when metabolizing either glucose or the fatty acid palmitoyl-L-carnitine. These findings highlight the ability of dNs to improve overall mitochondrial respiratory function, via the stimulation mitochondrial biogenesis, in the face of combined defects in OXPHOS and FAO due to ECHS1 deficiency.
Collapse
Affiliation(s)
- Harrison James Burgin
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC 3216, Australia
| | - Jordan James Crameri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - M. Isabel G. Lopez Sanchez
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery Melbourne, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Mark Ziemann
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC 3216, Australia
| | - Matthew McKenzie
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC 3216, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3168, Australia
| |
Collapse
|
38
|
Fels JA, Dash J, Leslie K, Manfredi G, Kawamata H. Effects of
PB‐TURSO
on the transcriptional and metabolic landscape of sporadic
ALS
fibroblasts. Ann Clin Transl Neurol 2022; 9:1551-1564. [PMID: 36083004 PMCID: PMC9539390 DOI: 10.1002/acn3.51648] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
Objective Methods Results Interpretation
Collapse
Affiliation(s)
- Jasmine A. Fels
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine 407 East 61st Street New York New York 10065 USA
- Neuroscience Graduate Program Weill Cornell Graduate School of Medical Sciences 1300 York Ave New York New York 10065 USA
| | - Jalia Dash
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine 407 East 61st Street New York New York 10065 USA
| | - Kent Leslie
- Amylyx Pharmaceuticals 43 Thorndike Street Cambridge Massachusetts 02141 USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine 407 East 61st Street New York New York 10065 USA
| | - Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine 407 East 61st Street New York New York 10065 USA
| |
Collapse
|
39
|
West G, Turunen M, Aalto A, Virtanen L, Li SP, Heliö T, Meinander A, Taimen P. A heterozygous p.S143P mutation in LMNA associates with proteasome dysfunction and enhanced autophagy-mediated degradation of mutant lamins A and C. Front Cell Dev Biol 2022; 10:932983. [PMID: 36111332 PMCID: PMC9468711 DOI: 10.3389/fcell.2022.932983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
Lamins A and C are nuclear intermediate filament proteins that form a proteinaceous meshwork called lamina beneath the inner nuclear membrane. Mutations in the LMNA gene encoding lamins A and C cause a heterogenous group of inherited degenerative diseases known as laminopathies. Previous studies have revealed altered cell signaling pathways in lamin-mutant patient cells, but little is known about the fate of mutant lamins A and C within the cells. Here, we analyzed the turnover of lamins A and C in cells derived from a dilated cardiomyopathy patient with a heterozygous p.S143P mutation in LMNA. We found that transcriptional activation and mRNA levels of LMNA are increased in the primary patient fibroblasts, but the protein levels of lamins A and C remain equal in control and patient cells because of a meticulous interplay between autophagy and the ubiquitin-proteasome system (UPS). Both endogenous and ectopic expression of p.S143P lamins A and C cause significantly reduced activity of UPS and an accumulation of K48-ubiquitin chains in the nucleus. Furthermore, K48-ubiquitinated lamins A and C are degraded by compensatory enhanced autophagy, as shown by increased autophagosome formation and binding of lamins A and C to microtubule-associated protein 1A/1B-light chain 3. Finally, chaperone 4-PBA augmented protein degradation by restoring UPS activity as well as autophagy in the patient cells. In summary, our results suggest that the p.S143P-mutant lamins A and C have overloading and deleterious effects on protein degradation machinery and pharmacological interventions with compounds enhancing protein degradation may be beneficial for cell homeostasis.
Collapse
Affiliation(s)
- Gun West
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland,InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland
| | - Minttu Turunen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland,InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland
| | - Anna Aalto
- InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland,Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Laura Virtanen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland,InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland
| | - Song-Ping Li
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland,InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland
| | - Tiina Heliö
- Heart and Lung Center Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Annika Meinander
- InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland,Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Pekka Taimen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland,InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland,Department of Pathology, Laboratory Division, Turku University Hospital, Turku, Finland,*Correspondence: Pekka Taimen,
| |
Collapse
|
40
|
The Role of 4-Phenylbutyric Acid in Gut Microbial Dysbiosis in a Mouse Model of Simulated Microgravity. Life (Basel) 2022; 12:life12091301. [PMID: 36143337 PMCID: PMC9503658 DOI: 10.3390/life12091301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The altered gut microbes of astronauts during space travel may contribute to health issues after their return to Earth. Previously, an association between the elevated endoplasmic reticulum (ER) stress and gut microbial dysbiosis has been described. Herein, we induced gut microbial changes in mice under a simulated microgravity environment in an established model of hindlimb unloaded (HU) mice. The intestinal metabolomic profiles under microgravity conditions using the HU model were examined, along with the potential role of 4-phenylbutyric acid (4-PBA), a potent ER stress inhibitor. For a microgravity environment, the mice were suspended in special cages individually for three weeks. Mice were sacrificed, and gut dissections were performed, followed by amplicon sequencing analysis of bacterial species via DNA extraction and 16S rRNA analysis. The results indicate that the gut bacterial communities of mice differed under gravity and microgravity conditions. Principal component analyses revealed differences in the bacterial community structure in all groups. Around 434 operational taxonomic units (OTUs) were specific to mice seen in controls, while 620 OTUs were specific to HU mice. Additionally, 321 bacterial OTUs were specific to HU mice treated with 4-PBA. When the relative abundance of taxa was analyzed, Bacteroidetes dominated the gut of control and HU mice treated with 4-PBA.. In contrast, the untreated HU mice were dominated by Firmicutes. At the genus level, a reduction in beneficial species of Akkermansia and Lactobacillus was observed in HU but not the unloaded–treated and control mice. Furthermore, an increase in the relative abundance of Lachnospiraceae and Enterorhabdus, associated with inflammation, was observed in HUmice but not in controls and unloaded-treated mice. Following treatment with 4-PBA, the ratio of Firmicutes to Bacteroidetes was restored in unloaded–treated mice, comparable to controls. Of note, beneficial microbes such as Akkermansia and Lactobacillus were observed in unloaded–treated mice but not or in lesser relative abundance in HU mice. Nonetheless, microbial diversity was reduced in unloaded–treated mice compared to controls, and future studies are needed to mitigate this finding. These may comprise the addition of pre-/pro- and postbiotic species in the diet to increase microbial diversity. Overall, the findings suggest that 4-PBA, a potent ER stress inhibitor, may have therapeutic value in treating patients on prolonged bed rest or astronauts during spaceflight.
Collapse
|
41
|
Jain K, Tyagi T, Du J, Hu X, Patell K, Martin KA, Hwa J. Unfolded Protein Response Differentially Modulates the Platelet Phenotype. Circ Res 2022; 131:290-307. [PMID: 35862006 PMCID: PMC9357223 DOI: 10.1161/circresaha.121.320530] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Unfolded protein response (UPR) is a multifaceted signaling cascade that alleviates protein misfolding. Although well studied in nucleated cells, UPR in absence of transcriptional regulation has not been described. Intricately associated with cardiovascular diseases, platelets, despite being anucleate, respond rapidly to stressors in blood. We investigate the UPR in anucleate platelets and explore its role, if any, on platelet physiology and function. METHODS Human and mouse platelets were studied using a combination of ex vivo and in vivo experiments. Platelet lineage-specific knockout mice were generated independently for each of the 3 UPR pathways, PERK (protein kinase RNA [PKR]-like endoplasmic reticulum kinase), XBP1 (X-binding protein), and ATF6 (activating transcription factor 6). Diabetes patients were prospectively recruited, and platelets were evaluated for activation of UPR under chronic pathophysiological disease conditions. RESULTS Tunicamycin induced the IRE1α (inositol-requiring enzyme-1alpha)-XBP1 pathway in human and mouse platelets, while oxidative stress predominantly activated the PERK pathway. PERK deletion significantly increased platelet aggregation and apoptosis and phosphorylation of PLCγ2, PLCβ3, and p38 MAPK. Deficiency of XBP1 increased platelet aggregation, with higher PLCβ3 and PKCδ activation. ATF6 deletion mediated a relatively modest effect on platelet phenotype with increased PKA (protein kinase A). Platelets from diabetes patients exhibited a positive correlation between disease severity, platelet activation, and protein aggregation, with only IRE1α-XBP1 activation. Moreover, IRE1α inhibition increased platelet aggregation, while clinically approved chemical chaperone, sodium 4-phenylbutyrate reduced the platelet hyperactivation. CONCLUSIONS We show for the first time, that UPR activation occurs in platelets and can be independent of genomic regulation, with selective induction being specific to the source and severity of stress. Each UPR pathway plays a key role and can differentially modulate the platelet activation pathways and phenotype. Targeting the specific arms of UPR may provide a new antiplatelet strategy to mitigate thrombotic risk in diabetes and other cardiovascular diseases.
Collapse
Affiliation(s)
- Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Jing Du
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Xiaoyue Hu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Kanchi Patell
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Kathleen A. Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| |
Collapse
|
42
|
Gong Q, Zhang R, Wei F, Fang J, Zhang J, Sun J, Sun Q, Wang H. SGLT2 inhibitor-empagliflozin treatment ameliorates diabetic retinopathy manifestations and exerts protective effects associated with augmenting branched chain amino acids catabolism and transportation in db/db mice. Biomed Pharmacother 2022; 152:113222. [PMID: 35671581 DOI: 10.1016/j.biopha.2022.113222] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022] Open
Abstract
Empagliflozin (EMPA) is the first sodium-glucose co-transporter 2 inhibitor to significantly reduce cardiovascular and kidney complications in type 2 diabetes mellitus. Given this, we speculate that EMPA may have the potential to intervene in diabetic retinopathy (DR), which is another diabetes-specific microvascular complication. Db/db mice were treated with EMPA for different periods to observe the retinas and related mechanisms. EMPA effectively balanced body weight and blood glucose levels, mitigated ocular edema and microaneurysm in db/db mice. EMPA significantly inhibited oxidative stress, apoptosis and recovered tight junction in diabetic retinas. MS/MS analyses showed that EMPA suppressed aberrant branched-chain amino acid (BCAAs) accumulation in db/db retinas, which led to the inhibition of the mammalian target of rapamycin activation, downregulation of inflammation, and angiogenic factors, including TNF-ɑ, IL-6, VCAM-1, and VEGF induced by diabetes. Furthermore, branched-chain α-keto acids (BCKAs), which are catabolites of BCAAs, were increased in diabetic retinas and decreased with EMPA application. Moreover, branched-chain ketoacid dehydrogenase kinase (BCKDK) was enhanced, BCKDHA and BCKDHB were decreased in diabetic retinas. This could be reversed by EMPA treatment, thus promoting BCAAs catabolism to decrease BCAAs and BCKAs accumulation in diabetic retinas. The high levels of BCAAs in the plasma and enhanced L-type amino acid transporter 1 (LAT1) were responsible for the high levels of BCAAs in diabetic retinas, which could be inhibited by EMPA. Overall, EMPA could ameliorate DR manifestations. The normalization of BCAAs catabolism and intake may play a role in this process. This study supports EMPA as a protective drug against DR.
Collapse
Affiliation(s)
- Qiaoyun Gong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Rulin Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jun Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Qian Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| |
Collapse
|
43
|
Tao X, Zhu Y, Diaz-Perez Z, Yu SH, Foley JR, Stewart TM, Casero RA, Steet R, Zhai RG. Phenylbutyrate modulates polyamine acetylase and ameliorates Snyder-Robinson syndrome in a Drosophila model and patient cells. JCI Insight 2022; 7:e158457. [PMID: 35801587 PMCID: PMC9310527 DOI: 10.1172/jci.insight.158457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022] Open
Abstract
Polyamine dysregulation plays key roles in a broad range of human diseases from cancer to neurodegeneration. Snyder-Robinson syndrome (SRS) is the first known genetic disorder of the polyamine pathway, caused by X-linked recessive loss-of-function mutations in spermine synthase. In the Drosophila SRS model, altered spermidine/spermine balance has been associated with increased generation of ROS and aldehydes, consistent with elevated spermidine catabolism. These toxic byproducts cause mitochondrial and lysosomal dysfunction, which are also observed in cells from SRS patients. No efficient therapy is available. We explored the biochemical mechanism and discovered acetyl-CoA reduction and altered protein acetylation as potentially novel pathomechanisms of SRS. We repurposed the FDA-approved drug phenylbutyrate (PBA) to treat SRS using an in vivo Drosophila model and patient fibroblast cell models. PBA treatment significantly restored the function of mitochondria and autolysosomes and extended life span in vivo in the Drosophila SRS model. Treating fibroblasts of patients with SRS with PBA ameliorated autolysosome dysfunction. We further explored the mechanism of drug action and found that PBA downregulates the first and rate-limiting spermidine catabolic enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1), reduces the production of toxic metabolites, and inhibits the reduction of the substrate acetyl-CoA. Taken together, we revealed PBA as a potential modulator of SAT1 and acetyl-CoA levels and propose PBA as a therapy for SRS and potentially other polyamine dysregulation-related diseases.
Collapse
Affiliation(s)
- Xianzun Tao
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Zoraida Diaz-Perez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Seok-Ho Yu
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Jackson R. Foley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Tracy Murray Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Robert A. Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Richard Steet
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - R. Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
44
|
Braun D, Bohleber S, Vatine GD, Svendsen CN, Schweizer U. Sodium Phenylbutyrate Rescues Thyroid Hormone Transport in Brain Endothelial-Like Cells. Thyroid 2022; 32:860-870. [PMID: 35357974 DOI: 10.1089/thy.2021.0643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Monocarboxylate transporter 8 (MCT8) deficiency is a rare genetic disease leading to a severe developmental delay due to a lack of thyroid hormones (THs) during critical stages of human brain development. Some MCT8-deficient patients are not as severely affected as others. Previously, we hypothesized that these patients' mutations do not affect the functionality but destabilize the MCT8 protein, leading to a diminished number of functional MCT8 molecules at the cell surface. Methods: We have already demonstrated that the chemical chaperone sodium phenylbutyrate (NaPB) rescues the function of these mutants by stabilizing their protein expression in an overexpressing cell system. Here, we expanded our previous work and used iPSC (induced pluripotent stem cell)-derived brain microvascular endothelial-like cells (iBMECs) as a physiologically relevant cell model of human origin to test for NaPB responsiveness. The effects on mutant MCT8 expression and function were tested by Western blotting and radioactive uptake assays. Results: We found that NaPB rescues decreased mutant MCT8 expression and restores transport function in iBMECs carrying patient's mutation MCT8-P321L. Further, we identified MCT10 as an alternative TH transporter in iBMECs that contributes to triiodothyronine uptake, the biological active TH. Our results indicate an upregulation of MCT10 after NaPB treatment. In addition, we detected an increase in thyroxine (T4) uptake after NaPB treatment that was not mediated by rescued MCT8 but an unidentified T4 transporter. Conclusions: We demonstrate that NaPB is suitable to stabilize a pathogenic missense mutation in a human-derived cell model. Further, it activates TH transport independent of MCT8. Both options fuel future studies to investigate repurposing the Food and Drug Administration-approved drug NaPB in selected cases of MCT8 deficiency.
Collapse
Affiliation(s)
- Doreen Braun
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Simon Bohleber
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Gad D Vatine
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, The Regenerative Medicine and Stem Cell (RMSC) Research Center and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Department of Biomedical Sciences, The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Clive N Svendsen
- Department of Biomedical Sciences, The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
45
|
Lee ES, Aryal YP, Kim TY, Kim JY, Yamamoto H, An CH, An SY, Lee Y, Sohn WJ, Jung JK, Ha JH, Kim JY. Facilitation of Reparative Dentin Using a Drug Repositioning Approach With 4-Phenylbutric Acid. Front Physiol 2022; 13:885593. [PMID: 35600310 PMCID: PMC9114641 DOI: 10.3389/fphys.2022.885593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
For hard tissue formation, cellular mechanisms, involved in protein folding, processing, and secretion play important roles in the endoplasmic reticulum (ER). In pathological and regeneration conditions, ER stress hinders proper formation and secretion of proteins, and tissue regeneration by unfolded protein synthesis. 4-Phenylbutyric acid (4PBA) is a chemical chaperone that alleviates ER stress through modulation in proteins folding and protein trafficking. However, previous studies about 4PBA only focused on the metabolic diseases rather than on hard tissue formation and regeneration. Herein, we evaluated the function of 4PBA in dentin regeneration using an exposed pulp animal model system via a local delivery method as a drug repositioning strategy. Our results showed altered morphological changes and cellular physiology with histology and immunohistochemistry. The 4PBA treatment modulated the inflammation reaction and resolved ER stress in the early stage of pulp exposure. In addition, 4PBA treatment activated blood vessel formation and TGF-β1 expression in the dentin-pulp complex. Micro-computed tomography and histological examinations confirmed the facilitated formation of the dentin bridge in the 4PBA-treated specimens. These results suggest that proper modulation of ER stress would be an important factor for secretion and patterned formation in dentin regeneration.
Collapse
Affiliation(s)
- Eui-Seon Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, Gachon University, Incheon, South Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan, South Korea
| | - Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Jung-Hong Ha
- Department of Conservative Dentistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
- *Correspondence: Jae-Young Kim, , orcid.org/0000-0002-6752-5683; Jung-Hong Ha, , orcid.org/0000-0002-0469-4324
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
- *Correspondence: Jae-Young Kim, , orcid.org/0000-0002-6752-5683; Jung-Hong Ha, , orcid.org/0000-0002-0469-4324
| |
Collapse
|
46
|
Duran I, Zieba J, Csukasi F, Martin JH, Wachtell D, Barad M, Dawson B, Fafilek B, Jacobsen CM, Ambrose CG, Cohn DH, Krejci P, Lee BH, Krakow D. 4-PBA Treatment Improves Bone Phenotypes in the Aga2 Mouse Model of Osteogenesis Imperfecta. J Bone Miner Res 2022; 37:675-686. [PMID: 34997935 PMCID: PMC9018561 DOI: 10.1002/jbmr.4501] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022]
Abstract
Osteogenesis imperfecta (OI) is a genetically heterogenous disorder most often due to heterozygosity for mutations in the type I procollagen genes, COL1A1 or COL1A2. The disorder is characterized by bone fragility leading to increased fracture incidence and long-bone deformities. Although multiple mechanisms underlie OI, endoplasmic reticulum (ER) stress as a cellular response to defective collagen trafficking is emerging as a contributor to OI pathogenesis. Herein, we used 4-phenylbutiric acid (4-PBA), an established chemical chaperone, to determine if treatment of Aga2+/- mice, a model for moderately severe OI due to a Col1a1 structural mutation, could attenuate the phenotype. In vitro, Aga2+/- osteoblasts show increased protein kinase RNA-like endoplasmic reticulum kinase (PERK) activation protein levels, which improved upon treatment with 4-PBA. The in vivo data demonstrate that a postweaning 5-week 4-PBA treatment increased total body length and weight, decreased fracture incidence, increased femoral bone volume fraction (BV/TV), and increased cortical thickness. These findings were associated with in vivo evidence of decreased bone-derived protein levels of the ER stress markers binding immunoglobulin protein (BiP), CCAAT/-enhancer-binding protein homologous protein (CHOP), and activating transcription factor 4 (ATF4) as well as increased levels of the autophagosome marker light chain 3A/B (LC3A/B). Genetic ablation of CHOP in Aga2+/- mice resulted in increased severity of the Aga2+/- phenotype, suggesting that the reduction in CHOP observed in vitro after treatment is a consequence rather than a cause of reduced ER stress. These findings suggest the potential use of chemical chaperones as an adjunct treatment for forms of OI associated with ER stress. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA.,Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Málaga, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Jennifer Zieba
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Fabiana Csukasi
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA.,Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Málaga, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Jorge H Martin
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Davis Wachtell
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Maya Barad
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Christina M Jacobsen
- Divisions of Endocrinology and Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Catherine G Ambrose
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Daniel H Cohn
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA.,Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA.,Department of Human Genetics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
47
|
Sicking M, Živná M, Bhadra P, Barešová V, Tirincsi A, Hadzibeganovic D, Hodaňová K, Vyleťal P, Sovová J, Jedličková I, Jung M, Bell T, Helms V, Bleyer AJ, Kmoch S, Cavalié A, Lang S. Phenylbutyrate rescues the transport defect of the Sec61α mutations V67G and T185A for renin. Life Sci Alliance 2022; 5:e202101150. [PMID: 35064074 PMCID: PMC8807872 DOI: 10.26508/lsa.202101150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
The human Sec61 complex is a widely distributed and abundant molecular machine. It resides in the membrane of the endoplasmic reticulum to channel two types of cargo: protein substrates and calcium ions. The SEC61A1 gene encodes for the pore-forming Sec61α subunit of the Sec61 complex. Despite their ubiquitous expression, the idiopathic SEC61A1 missense mutations p.V67G and p.T185A trigger a localized disease pattern diagnosed as autosomal dominant tubulointerstitial kidney disease (ADTKD-SEC61A1). Using cellular disease models for ADTKD-SEC61A1, we identified an impaired protein transport of the renal secretory protein renin and a reduced abundance of regulatory calcium transporters, including SERCA2. Treatment with the molecular chaperone phenylbutyrate reversed the defective protein transport of renin and the imbalanced calcium homeostasis. Signal peptide substitution experiments pointed at targeting sequences as the cause for the substrate-specific impairment of protein transport in the presence of the V67G or T185A mutations. Similarly, dominant mutations in the signal peptide of renin also cause ADTKD and point to impaired transport of this renal hormone as important pathogenic feature for ADTKD-SEC61A1 patients as well.
Collapse
Affiliation(s)
- Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Martina Živná
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pratiti Bhadra
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Veronika Barešová
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Andrea Tirincsi
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Drazena Hadzibeganovic
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Kateřina Hodaňová
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Vyleťal
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Sovová
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Jedličková
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Jung
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Thomas Bell
- Department of Chemistry, University of Nevada, Reno, NV, USA
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Anthony J Bleyer
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adolfo Cavalié
- Experimental and Clinical Pharmacology and Toxicology, Pre-clinical Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
48
|
Generation of resolving memory neutrophils through pharmacological training with 4-PBA or genetic deletion of TRAM. Cell Death Dis 2022; 13:345. [PMID: 35418110 PMCID: PMC9007399 DOI: 10.1038/s41419-022-04809-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
Neutrophils are the dominant leukocytes in circulation and the first responders to infection and inflammatory cues. While the roles of neutrophils in driving inflammation have been widely recognized, the contribution of neutrophils in facilitating inflammation resolution is under-studied. Here, through single-cell RNA sequencing analysis, we identified a subpopulation of neutrophils exhibiting pro-resolving characteristics with greater Cd200r and Cd86 expression at the resting state. We further discovered that 4-PBA, a peroxisomal stress-reducing agent, can potently train neutrophils into the resolving state with enhanced expression of CD200R, CD86, as well as soluble pro-resolving mediators Resolvin D1 and SerpinB1. Resolving neutrophils trained by 4-PBA manifest enhanced phagocytosis and bacterial-killing functions. Mechanistically, the generation of resolving neutrophils is mediated by the PPARγ/LMO4/STAT3 signaling circuit modulated by TLR4 adaptor molecule TRAM. We further demonstrated that genetic deletion of TRAM renders the constitutive expansion of resolving neutrophils, with an enhanced signaling circuitry of PPARγ/LMO4/STAT3. These findings may have profound implications for the effective training of resolving neutrophils with therapeutic potential in the treatment of both acute infection as well as chronic inflammatory diseases.
Collapse
|
49
|
Howell R, Clarke MA, Reuschl AK, Chen T, Abbott-Imboden S, Singer M, Lowe DM, Bennett CL, Chain B, Jolly C, Fisher J. Executable network of SARS-CoV-2-host interaction predicts drug combination treatments. NPJ Digit Med 2022; 5:18. [PMID: 35165389 PMCID: PMC8844383 DOI: 10.1038/s41746-022-00561-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has pushed healthcare systems globally to a breaking point. The urgent need for effective and affordable COVID-19 treatments calls for repurposing combinations of approved drugs. The challenge is to identify which combinations are likely to be most effective and at what stages of the disease. Here, we present the first disease-stage executable signalling network model of SARS-CoV-2-host interactions used to predict effective repurposed drug combinations for treating early- and late stage severe disease. Using our executable model, we performed in silico screening of 9870 pairs of 140 potential targets and have identified nine new drug combinations. Camostat and Apilimod were predicted to be the most promising combination in effectively supressing viral replication in the early stages of severe disease and were validated experimentally in human Caco-2 cells. Our study further demonstrates the power of executable mechanistic modelling to enable rapid pre-clinical evaluation of combination therapies tailored to disease progression. It also presents a novel resource and expandable model system that can respond to further needs in the pandemic.
Collapse
Affiliation(s)
- Rowan Howell
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Matthew A Clarke
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Ann-Kathrin Reuschl
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
| | - Tianyi Chen
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Sean Abbott-Imboden
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK
| | - David M Lowe
- Institute of Immunity and Transplantation, University College London, London, NW3 2PF, UK
| | - Clare L Bennett
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
- Institute of Immunity and Transplantation, University College London, London, NW3 2PF, UK
| | - Benjamin Chain
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
- Department of Computer Science, Gower Street, University College London, London, WC1E 6BT, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK.
| | - Jasmin Fisher
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK.
| |
Collapse
|
50
|
Devadiga SJ, Bharate SS. Recent developments in the management of Huntington's disease. Bioorg Chem 2022; 120:105642. [PMID: 35121553 DOI: 10.1016/j.bioorg.2022.105642] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022]
Abstract
Huntington's disease (HD) is a rare, incurable, inheritedneurodegenerative disorder manifested by chorea, hyperkinetic, and hypokinetic movements. The FDA has approved only two drugs, viz. tetrabenazine, and deutetrabenazine, to manage the chorea associated with HD. However, several other drugs are used as an off-label to manage chorea and other symptoms such as depression, anxiety, muscle tremors, and cognitive dysfunction associated with HD. So far, there is no disease-modifying treatment available. Drug repurposing has been a primary drive to search for new anti-HD drugs. Numerous molecular targets along with a wide range of small molecules and gene therapies are currently under clinical investigation. More than 200 clinical studies are underway for HD, 75% are interventional, and 25% are observational studies. The present review discusses the small molecule clinical pipeline and molecular targets for HD. Furthermore, the biomarkers, diagnostic tests, gene therapies, behavioral and observational studies for HD were also deliberated.
Collapse
Affiliation(s)
- Shanaika J Devadiga
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sonali S Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|