1
|
Lane T, Makarov V, Nelson JAE, Meeker RB, Sanna G, Riabova O, Kazakova E, Monakhova N, Tsedilin A, Urbina F, Jones T, Suchy A, Ekins S. N-Phenyl-1-(phenylsulfonyl)-1 H-1,2,4-triazol-3-amine as a New Class of HIV-1 Non-nucleoside Reverse Transcriptase Inhibitor. J Med Chem 2023; 66:6193-6217. [PMID: 37130343 PMCID: PMC10269403 DOI: 10.1021/acs.jmedchem.2c02055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Highly active antiretroviral therapy (HAART) has revolutionized human immunodeficiency virus (HIV) healthcare, turning it from a terminal to a potentially chronic disease, although some patients can develop severe comorbidities. These include neurological complications, such as HIV-associated neurocognitive disorders (HAND), which result in cognitive and/or motor function symptoms. We now describe the discovery, synthesis, and evaluation of a new class of N-phenyl-1-(phenylsulfonyl)-1H-1,2,4-triazol-3-amine HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTI) aimed at avoiding HAND. The most promising molecule, 12126065, exhibited antiviral activity against wild-type HIV-1 in TZM cells (EC50 = 0.24 nM) with low in vitro cytotoxicity (CC50 = 4.8 μM) as well as retained activity against clinically relevant HIV mutants. 12126065 also demonstrated no in vivo acute or subacute toxicity, good in vivo brain penetration, and minimal neurotoxicity in mouse neurons up to 10 μM, with a 50% toxicity concentration (TC50) of >100 μM, well below its EC50.
Collapse
Affiliation(s)
- Thomas Lane
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab, 3510, Raleigh, NC 27606, USA
| | - Vadim Makarov
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow 119071, Russia
| | - Julie A. E. Nelson
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Rick B. Meeker
- Department of Neurology, University of North Carolina, NC 27514, USA
| | - Giuseppina Sanna
- Department of Biomedical Science, University of Cagliari, Monserrato, 09042, Italy
| | - Olga Riabova
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow 119071, Russia
| | - Elena Kazakova
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow 119071, Russia
| | - Natalia Monakhova
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow 119071, Russia
| | - Andrey Tsedilin
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow 119071, Russia
| | - Fabio Urbina
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab, 3510, Raleigh, NC 27606, USA
| | - Thane Jones
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab, 3510, Raleigh, NC 27606, USA
| | - Ashley Suchy
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab, 3510, Raleigh, NC 27606, USA
| |
Collapse
|
2
|
McGuire JL, Grinspan JB, Jordan-Sciutto KL. Update on Central Nervous System Effects of HIV in Adolescents and Young Adults. Curr HIV/AIDS Rep 2023; 20:19-28. [PMID: 36809477 PMCID: PMC10695667 DOI: 10.1007/s11904-023-00651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE OF REVIEW : Behaviorally acquired (non-perinatal) HIV infection during adolescence and young adulthood occurs in the midst of key brain developmental processes such as frontal lobe neuronal pruning and myelination of white matter, but we know little about the effects of new infection and therapy on the developing brain. RECENT FINDINGS Adolescents and young adults account for a disproportionately high fraction of new HIV infections each year. Limited data exist regarding neurocognitive performance in this age group, but suggest impairment is at least as prevalent as in older adults, despite lower viremia, higher CD4 + T cell counts, and shorter durations of infection in adolescents/young adults. Neuroimaging and neuropathologic studies specific to this population are underway. The full impact of HIV on brain growth and development in youth with behaviorally acquired HIV has yet to be determined; it must be investigated further to develop future targeted treatment and mitigation strategies.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Division of Neurology, Children's Hospital of Philadelphia, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Judith B Grinspan
- Division of Neurology, Children's Hospital of Philadelphia, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly L Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Law-Ye B, de Truchis P, Peyrassou D, Force G, Carlier RY. Elevation of brain ADC (apparent diffusion coefficient) in HIV-associated neurocognitive disorders and evolution after treatment: A pilot study. J Neurol Sci 2022; 442:120446. [PMID: 36265262 DOI: 10.1016/j.jns.2022.120446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Thirty to 50% of HIV-infected patients develop HIV-Associated Neurocognitive Disorders (HAND) despite virological control. The previously published Neuro+3 study showed their neurocognitive status can be improved by intensifying antiviral therapy. Our study is a part of the Neuro3+ study and aims to study apparent diffusion coefficient (ADC) as a biomarker for neurological improvement. PATIENTS AND METHODS We prospectively included 31 patients with HAND. They received therapy with better CNS Penetration Effectiveness (CPE) score with two-year follow-up. Cognitive status was assessed at day 0 (D0) and week 96 (W96) using Frascati 3-stage classification and Global Deficit Score (GDS). Brain MRI at D0 and W96 assessed morphological data (white matter hyperintensities, opportunistic infections, ischemic lesions, atrophy) and measured whole brain apparent diffusion coefficient (ADC). We compared their data with a control group of 20 healthy patients with similar ages and sex ratio. RESULTS After ARV intensification, cognitive status was significantly improved: GDS (n = 1,4 vs 1,0 p = 0.01) and Frascati scale (2HAD/22MND/7ANI vs 1HAD/8MND/17ANI p = 0.001). Mean ADC was significantly higher in patients at inclusion than in controls (0.88 × 10-3 mm2/s ± 0.06 vs 0.81 × 10-3 mm2/s ± 0.04, p = 0.0001). ADC decreased after treatment (0.88 × 10-3 mm2/s ± 0.06 vs 0.85 × 10-3 mm2/s ± 0.06 (p = 0,04). In subgroup analysis, ADC significantly decreased in clinically improved patients (0.89 × 10-3 mm2/s ± 0.07 vs 0.85 × 10-3 mm2/s ± 0.07 (p = 0,03)) and did not significantly change in non-clinically improved patients (0.86 × 10-3 mm2/s ± 0.07 vs 0.84 × 10-3 mm2/s ± 0.07 (p = 0,31)). After treatment, there was no significant difference between patients and controls (0.85 × 10-3 mm2/s ± 0.06 vs 0.81 × 10-3 mm2/s ± 0.04, p = 0.17). CONCLUSION Whole-brain ADC is a good biomarker of HIV-associated neurocognitive disorders. It is significantly increased in patients with HAND compared with controls and significantly decreases after treatment. It is all the more important to have a quantitative biomarker as conventional imaging does not contribute to the diagnosis.
Collapse
Affiliation(s)
- Bruno Law-Ye
- Neuroradiology Department, Pitié-Salpêtrière University Hospital, APHP, Paris, France.
| | - Pierre de Truchis
- Infectiology Department, Garches University Hospital, Garches, France; UMR 1179, UVSQ-Paris-Saclay University, France
| | - David Peyrassou
- Radiology Department, DMU Smart Imaging, Raymond Poincaré University Hospital, APHP, Garches, France
| | - Gilles Force
- Infectiology Department, Garches University Hospital, Garches, France
| | - Robert-Yves Carlier
- Radiology Department, DMU Smart Imaging, Raymond Poincaré University Hospital, APHP, Garches, France; APHP-Université Paris-Saclay, Garches, France
| |
Collapse
|
4
|
Rudd H, Toborek M. Pitfalls of Antiretroviral Therapy: Current Status and Long-Term CNS Toxicity. Biomolecules 2022; 12:biom12070894. [PMID: 35883450 PMCID: PMC9312798 DOI: 10.3390/biom12070894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
HIV can traverse the BBB using a Trojan horse-like mechanism. Hidden within infected immune cells, HIV can infiltrate the highly safeguarded CNS and propagate disease. Once integrated within the host genome, HIV becomes a stable provirus, which can remain dormant, evade detection by the immune system or antiretroviral therapy (ART), and result in rebound viraemia. As ART targets actively replicating HIV, has low BBB penetrance, and exposes patients to long-term toxicity, further investigation into novel therapeutic approaches is required. Viral proteins can be produced by latent HIV, which may play a synergistic role alongside ART in promoting neuroinflammatory pathophysiology. It is believed that the ability to specifically target these proviral reservoirs would be a vital driving force towards a cure for HIV infection. A novel drug design platform, using the in-tandem administration of several therapeutic approaches, can be used to precisely target the various components of HIV infection, ultimately leading to the eradication of active and latent HIV and a functional cure for HIV. The aim of this review is to explore the pitfalls of ART and potential novel therapeutic alternatives.
Collapse
Affiliation(s)
- Harrison Rudd
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
- Correspondence: ; Tel.: +1-(305)-243-0230
| |
Collapse
|
5
|
Hagberg L, Edén A, Zetterberg H, Price RW, Gisslén M. Blood biomarkers for HIV infection with focus on neurologic complications-A review. Acta Neurol Scand 2022; 146:56-60. [PMID: 35470863 PMCID: PMC9324809 DOI: 10.1111/ane.13629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Although clinical examinations, neuroimaging, and cerebrospinal fluid analyses are the most important ways to evaluate the impact of HIV infection on the brain and in diagnosis of opportunistic infections, several blood biomarkers including HIV RNA concentrations, CD4 +T-cell count, and neurofilament light chain protein (NfL) concentration, along with tests for opportunistic infections can provide important information for clinical decisions.
Collapse
Affiliation(s)
- Lars Hagberg
- Department of Infectious Diseases Institute of Biomedicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
| | - Arvid Edén
- Department of Infectious Diseases Institute of Biomedicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
| | - Henrik Zetterberg
- Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Mölndal Sweden
- Department of Neurodegenerative Disease UCL Institute of Neurology London UK
- UK Dementia Research Institute at UCL London UK
- Hong Kong Center for Neurodegenerative Diseases Hong Kong China
| | - Richard W. Price
- Department of Neurology University of California San Francisco San Francisco California USA
| | - Magnus Gisslén
- Department of Infectious Diseases Institute of Biomedicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
| |
Collapse
|
6
|
Kalada W, Cory TJ. The Importance of Tissue Sanctuaries and Cellular Reservoirs of HIV-1. Curr HIV Res 2021; 20:102-110. [PMID: 34961449 DOI: 10.2174/1570162x20666211227161237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
Purpose of Review - There have been significant developments in the treatment of people living with HIV-1/AIDS with current antiretroviral therapies; however, these developments have not been able to achieve a functional or sterilizing cure for HIV-1. While there are multiple barriers, one such barrier is the existence of pharmacological sanctuaries and viral reservoirs where the concentration of antiretrovirals is suboptimal, which includes the gut-associated lymphoid tissue, central nervous system, lymph nodes, and myeloid cells. This review will focus on illustrating the significance of these sanctuaries, specific barriers to optimal antiretroviral concentrations in each of these sites, and potential strategies to overcome these barriers. Recent Findings - Research and studies have shown that a uniform antiretroviral distribution is not achieved with current therapies. This may allow for low-level replication associated with low antiretroviral concentrations in these sanctuaries/reservoirs. Many methods are being investigated to increase antiretroviral concentrations in these sites, such as blocking transporting enzymes functions, modulating transporter expression and nanoformulations of current antiretrovirals. While these methods have been shown to increase antiretroviral concentrations in the sanctuaries/reservoirs, no functional or sterilizing cure has been achieved due to these approaches. Summary - New methods of increasing antiretroviral concentrations at the specific sites of HIV-1 replication has the potential to target cellular reservoirs. In order to optimize antiretroviral distribution into viral sanctuaries/reservoirs, additional research is needed.
Collapse
Affiliation(s)
- William Kalada
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy. 881 Madison Avenue, Memphis, TN, USA
| | - Theodore James Cory
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy. 881 Madison Avenue, Memphis, TN, USA
| |
Collapse
|
7
|
Comley-White N, Potterton J, Ntsiea V. Physical sequelae of growing into adolescence with perinatally acquired HIV: a scoping review protocol. JBI Evid Synth 2021; 19:3149-3154. [PMID: 34054032 DOI: 10.11124/jbies-20-00338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This scoping review aims to identify and describe the physical sequelae experienced by adolescents with perinatally acquired HIV. INTRODUCTION Perinatally acquired HIV is a prevalent condition affecting adolescents. It results in neurocognitive dysfunction and mental health challenges. Data show that some of the physical challenges facing this population include stunted growth and delayed puberty; however, other physical challenges remain largely unknown. INCLUSION CRITERIA This review will consider studies that include adolescents aged 10 to 19 years, with perinatally (vertically) acquired HIV. Adolescents from any geographic area, of any ethnicity or socioeconomic background will be considered. The concepts included will be all physical sequelae of perinatally acquired HIV. Studies of any research design, including quantitative, qualitative, and mixed methods, as well as systematic reviews, will be considered. METHODS This review will utilize a three-step search strategy. There will be an initial search of MEDLINE (PubMed), followed by a full search of MEDLINE (PubMed), PEDro, CINAHL (EBSCO), Scopus (Elsevier), ScienceDirect (Elsevier), and Google Scholar. Gray literature will be searched using CDC Stacks and OpenGrey. Lastly, the reference lists of all articles will be checked for additional studies. Titles and abstracts will be screened by two independent reviewers against the inclusion criteria, and a third reviewer will resolve any discrepancies. Results will be charted on a data extraction tool and presented with a table, diagrammatic representation, and a descriptive narrative.
Collapse
Affiliation(s)
- Nicolette Comley-White
- Department of Physiotherapy, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | |
Collapse
|
8
|
Abstract
In the era of combination antiretroviral therapy, the diagnosis and management of HIV-associated neurocognitive disorders (HANDs) has arisen. Traditionally, severe HAND was seen in those with untreated HIV infection and had a guarded prognosis. Antiretroviral therapy has provided longevity and viral control to many living with the disease, revealing an increase in prevalence of less severe forms of HAND. Despite peripheral blood and cerebrospinal fluid viral suppression, cognitive impairment occurs and progresses for reasons that are unclear at present. This article provides a review of current theories behind the development of HAND, clinical and pathologic findings, recent developments, and future research opportunities.
Collapse
|
9
|
Chen H, Lin F, Liu S, Da Y, Guo D. Neurological manifestations, laboratory and neuroimaging features in HIV-infected patients. ACTA ACUST UNITED AC 2019; 22:311-315. [PMID: 29057859 PMCID: PMC5946383 DOI: 10.17712/nsj.2017.4.20160606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objectives: To present detailed information regarding these aspects in Human Immunodeficiency Virus (HIV)-infected patients making an effort to improve the recognition of neurological complications of HIV infection. Methods: This retrospective study analyzed the clinical manifestations, laboratory and neuroimaging results of HIV-infected patients with neurological complications at Xuanwu hospital, Beijing, China from January 2011 to December 2014, one of top-rated hospitals in Beijing, China. Results: A diverse range of clinical diagnoses was identified, including encephalopathy, meningoencephalitis, peripheral neuropathy, multiple sclerosis, cerebral infarction and lymphoma associated with HIV infection. The mostly observed neurological disorders were motor/sensory deficits in the limbs (75%), cognitive impairments (42%) and fever (33%). Non-specific results of laboratory tests, including elevated erythrocyte sedimentation rate (ESR), cerebrospinal fluid (CSF) protein concentration and IgG, were found. Brain Magnetic Resonance Imaging (MRI) abnormalities displayed a variety of patterns and distributions due to diverse clinical profiles. Conclusion: The clinical scenarios of HIV-infected patients are remarkably diverse and complex. Etiological tests would be cardinal to make more definitive diagnosis for HIV-infected patients. Prospective studies with follow-up were needed to bring more accurate information.
Collapse
Affiliation(s)
- Hai Chen
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, People`s Republic of China
| | | | | | | | | |
Collapse
|
10
|
Lahkar S, Kumar Das M. Surface modified kokum butter lipid nanoparticles for the brain targeted delivery of nevirapine. J Microencapsul 2019; 35:680-694. [PMID: 30702369 DOI: 10.1080/02652048.2019.1573857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
AIM The present work investigates the efficacy of Polysorbate 80(P80) coated Kokum butter (KB) solid lipid nanoparticles (P80NvKLNs) for the brain targeted delivery of Nevirapine (Nv). METHODS Solid lipid nanoparticles (SLNs) were prepared by nanoprecipitation technique and evaluated for drug excipient compatibility studies, z- average particle size (nm), zeta potential (mv), percentage drug entrapment efficiency (%EE), surface morphology and in-vitro drug release properties. The in-vivo biodistribution and brain targeting efficiency of nanoparticles were studied in healthy male Wistar rat (150-200 g). RESULTS P80NvKLNs were found to be smooth surfaced, spherical shaped having average particle size of 177.80 ± 0.82 nm, zeta potential of -8.91 ± 4.36 mv and %EE of 31.32 ± 0.42%. P80NvKLNs remained in blood circulation for 48 h maintaining a sustained release in brain for 24 h (p < 0.05). CONCLUSION The study proves the efficacy of Polysorbate 80 coated Kokum butter nanoparticles for brain-targeted delivery of drugs providing ample opportunities for further study.
Collapse
Affiliation(s)
- Sunita Lahkar
- a Department of Pharmaceutical Sciences , Dibrugarh University , Dibrugarh , Assam , India
| | - Malay Kumar Das
- a Department of Pharmaceutical Sciences , Dibrugarh University , Dibrugarh , Assam , India
| |
Collapse
|
11
|
Srinivas N, Joseph SB, Robertson K, Kincer LP, Menezes P, Adamson L, Schauer AP, Blake KH, White N, Sykes C, Luciw P, Eron JJ, Forrest A, Price RW, Spudich S, Swanstrom R, Kashuba AD. Predicting Efavirenz Concentrations in the Brain Tissue of HIV-Infected Individuals and Exploring their Relationship to Neurocognitive Impairment. Clin Transl Sci 2019; 12:302-311. [PMID: 30675981 PMCID: PMC6510381 DOI: 10.1111/cts.12620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/13/2018] [Indexed: 11/26/2022] Open
Abstract
Sparse data exist on the penetration of antiretrovirals into brain tissue. In this work, we present a framework to use efavirenz (EFV) pharmacokinetic (PK) data in plasma, cerebrospinal fluid (CSF), and brain tissue of eight rhesus macaques to predict brain tissue concentrations in HIV-infected individuals. We then perform exposure-response analysis with the model-predicted EFV area under the concentration-time curve (AUC) and neurocognitive scores collected from a group of 24 HIV-infected participants. Adult rhesus macaques were dosed daily with 200 mg EFV (as part of a four-drug regimen) for 10 days. Plasma was collected at 8 time points over 10 days and at necropsy, whereas CSF and brain tissue were collected at necropsy. In the clinical study, data were obtained from one paired plasma and CSF sample of participants prescribed EFV, and neuropsychological test evaluations were administered across 15 domains. PK modeling was performed using ADAPT version 5.0 Biomedical Simulation Resource, Los Angeles, CA) with the iterative two-stage estimation method. An eight-compartment model best described EFV distribution across the plasma, CSF, and brain tissue of rhesus macaques and humans. Model-predicted median brain tissue concentrations in humans were 31 and 8,000 ng/mL, respectively. Model-predicted brain tissue AUC was highly correlated with plasma AUC (γ = 0.99, P < 0.001) but not CSF AUC (γ = 0.34, P = 0.1) and did not show any relationship with neurocognitive scores (γ < 0.05, P > 0.05). This analysis provides an approach to estimate PK the brain tissue in order to perform PK/pharmacodynamic analyses at the target site.
Collapse
Affiliation(s)
- Nithya Srinivas
- Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Present address:
Incyte CorporationWilmingtonDelawareUSA
| | - Sarah Beth Joseph
- School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Kevin Robertson
- School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Laura P. Kincer
- School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Prema Menezes
- School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Lourdes Adamson
- School of MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Amanda P. Schauer
- Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Kimberly H. Blake
- Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Nicole White
- Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Craig Sykes
- Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Paul Luciw
- School of MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Joseph J. Eron
- School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | | - Richard W. Price
- Department of NeurologySchool of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Serena Spudich
- Department of NeurologyYale School of MedicineNew HavenConnecticutUSA
| | - Ronald Swanstrom
- School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Angela D.M. Kashuba
- Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
12
|
Cerebrospinal fluid extracellular vesicles and neurofilament light protein as biomarkers of central nervous system injury in HIV-infected patients on antiretroviral therapy. AIDS 2019; 33:615-625. [PMID: 30557159 PMCID: PMC6399073 DOI: 10.1097/qad.0000000000002121] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective: The relationship of cerebrospinal fluid (CSF) extracellular vesicles to neurocognitive impairment (NCI) in HIV-infected individuals is unclear. Here, we characterize CSF extracellular vesicles and their association with central nervous system (CNS) injury related biomarkers [neurofilament light (NFL), S100B, neopterin] and NCI in HIV-positive individuals on combination antiretroviral therapy (cART). Design: A cross-sectional and longitudinal study of CSF samples from HIV-positive individuals on cART. Methods: NFL, S100B and neopterin were measured by ELISA in 190 CSF samples from 112 individuals (67 HIV-positive and 45 HIV-negative). CSF extracellular vesicles were isolated and characterized by electron microscopy, nanoparticle tracking analysis, immunoblotting for exosome markers (CD9, CD63, CD81, FLOT-1) and ELISA for HLA-DR. Results: HIV-positive individuals had median age 52 years, 67% with suppressed plasma viral load (< 50 copies/ml), median CD4+ nadir 66 cells/μl and CD4+ cell count 313 cells/μl. CSF NFL, S100B and neopterin levels were higher in HIV-positive vs. HIV-negative individuals, and nonsuppressed vs. suppressed HIV-positive individuals. Although CSF NFL and S100B levels were higher in NCI vs. unimpaired HIV-positive individuals (P < 0.05), only NFL was associated with NCI in adjusted models (P < 0.05). CSF extracellular vesicles were increased in HIV-positive vs. HIV-negative individuals, and NCI vs. unimpaired HIV-positive individuals (P < 0.05), and correlated positively with NFL (P < 0.001). HLA-DR was enriched in CSF extracellular vesicles from HIV-positive individuals with NCI (P < 0.05), suggesting that myeloid cells are a potential source of CSF extracellular vesicles during HIV infection. Conclusion: Increased CSF extracellular vesicles correlate with neuronal injury biomarker NFL in cART-treated HIV-positive individuals with neurocognitive impairment, suggesting potential applications as novel biomarkers of CNS injury.
Collapse
|
13
|
New targets for HIV drug discovery. Drug Discov Today 2019; 24:1139-1147. [PMID: 30885676 DOI: 10.1016/j.drudis.2019.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Recent estimates suggest close to one million people per year die globally owing to HIV-related illnesses. Therefore, there is still a need to identify new targets to develop future treatments. Many of the more recently identified targets are host-related and these might be more difficult for the virus to develop drug resistance to. In addition, there are virus-related targets (capsid and RNAse H) that have yet to be exploited clinically. Several of the newer targets also address virulence factors, virus latency or target persistence. The targets highlighted in this review could represent the next generation of viable candidates for drug discovery projects as well as continue the search for a cure for this disease.
Collapse
|
14
|
Zou S, Balinang JM, Paris JJ, Hauser KF, Fuss B, Knapp PE. Effects of HIV-1 Tat on oligodendrocyte viability are mediated by CaMKIIβ-GSK3β interactions. J Neurochem 2019; 149:98-110. [PMID: 30674062 DOI: 10.1111/jnc.14668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 12/16/2022]
Abstract
Myelin disruptions are frequently reported in human immunodeficiency virus (HIV)-infected individuals and can occur in the CNS very early in the disease process. Immature oligodendrocytes (OLs) are quite sensitive to toxic increases in [Ca2+ ]i caused by exposure to HIV-1 Tat (transactivator of transcription, a protein essential for HIV replication and gene expression), but sensitivity to Tat-induced [Ca2+ ]i is reduced in mature OLs. Tat exposure also increased the activity of Ca2+ /calmodulin-dependent kinase IIβ (CaMKIIβ), the major isoform of CaMKII expressed by OLs, in both immature and mature OLs. Since CaMKIIβ is reported to interact with glycogen synthase kinase 3β (GSK3β), and GSK3β activity is implicated in OL apoptosis as well as HIV neuropathology, we hypothesized that disparate effects of Tat on OL viability with maturity might be because of an altered balance of CaMKIIβ-GSK3β activities. Tat expression in vivo led to increased CaMKIIβ and GSK3β activity in multiple brain regions in transgenic mice. In vitro, immature murine OLs expressed higher levels of GSK3β, but much lower levels of CaMKIIβ, than did mature OLs. Exogenous Tat up-regulated GSK3β activity in immature, but not mature, OLs. Tat-induced death of immature OLs was rescued by the GSK3β inhibitors valproic acid or SB415286, supporting involvement of GSK3β signaling. Pharmacologically inhibiting CaMKIIβ increased GSK3β activity in Tat-treated OLs, and genetically knocking down CaMKIIβ promoted death in mature OL cultures treated with Tat. Together, these results suggest that the effects of Tat on OL viability are dependent on CaMKIIβ-GSK3β interactions, and that increasing CaMKIIβ activity is a potential approach for limiting OL/myelin injury with HIV infection.
Collapse
Affiliation(s)
- Shiping Zou
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Joyce M Balinang
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Jason J Paris
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Kurt F Hauser
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Pamela E Knapp
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
15
|
Zorn KM, Lane TR, Russo DP, Clark AM, Makarov V, Ekins S. Multiple Machine Learning Comparisons of HIV Cell-based and Reverse Transcriptase Data Sets. Mol Pharm 2019; 16:1620-1632. [PMID: 30779585 DOI: 10.1021/acs.molpharmaceut.8b01297] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human immunodeficiency virus (HIV) causes over a million deaths every year and has a huge economic impact in many countries. The first class of drugs approved were nucleoside reverse transcriptase inhibitors. A newer generation of reverse transcriptase inhibitors have become susceptible to drug resistant strains of HIV, and hence, alternatives are urgently needed. We have recently pioneered the use of Bayesian machine learning to generate models with public data to identify new compounds for testing against different disease targets. The current study has used the NIAID ChemDB HIV, Opportunistic Infection and Tuberculosis Therapeutics Database for machine learning studies. We curated and cleaned data from HIV-1 wild-type cell-based and reverse transcriptase (RT) DNA polymerase inhibition assays. Compounds from this database with ≤1 μM HIV-1 RT DNA polymerase activity inhibition and cell-based HIV-1 inhibition are correlated (Pearson r = 0.44, n = 1137, p < 0.0001). Models were trained using multiple machine learning approaches (Bernoulli Naive Bayes, AdaBoost Decision Tree, Random Forest, support vector classification, k-Nearest Neighbors, and deep neural networks as well as consensus approaches) and then their predictive abilities were compared. Our comparison of different machine learning methods demonstrated that support vector classification, deep learning, and a consensus were generally comparable and not significantly different from each other using 5-fold cross validation and using 24 training and test set combinations. This study demonstrates findings in line with our previous studies for various targets that training and testing with multiple data sets does not demonstrate a significant difference between support vector machine and deep neural networks.
Collapse
Affiliation(s)
- Kimberley M Zorn
- Collaborations Pharmaceuticals, Inc. , Main Campus Drive, Lab 3510 , Raleigh , North Carolina 27606 , United States
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc. , Main Campus Drive, Lab 3510 , Raleigh , North Carolina 27606 , United States
| | - Daniel P Russo
- Collaborations Pharmaceuticals, Inc. , Main Campus Drive, Lab 3510 , Raleigh , North Carolina 27606 , United States.,The Rutgers Center for Computational and Integrative Biology , Camden , New Jersey 08102 , United States
| | - Alex M Clark
- Molecular Materials Informatics, Inc. , 2234 Duvernay Street , Montreal , Quebec H3J2Y3 , Canada
| | - Vadim Makarov
- Bach Institute of Biochemistry , Research Center of Biotechnology of the Russian Academy of Sciences , Leninsky Prospekt 33-2 , Moscow 119071 , Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc. , Main Campus Drive, Lab 3510 , Raleigh , North Carolina 27606 , United States
| |
Collapse
|
16
|
Mechanisms of neuropathogenesis in HIV and HCV: similarities, differences, and unknowns. J Neurovirol 2018; 24:670-678. [PMID: 30291565 DOI: 10.1007/s13365-018-0678-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022]
Abstract
HIV and hepatitis C virus (HCV) have both been associated with cognitive impairment. Combination antiretroviral therapy (cART) has dramatically changed the nature of cognitive impairment in HIV-infected persons, while the role of direct-acting antivirals (DAA) in neurocognition of HCV-infected individuals remains unclear. Also, whether HIV and HCV interact to promote neurocognitive decline or whether they each contribute an individual effect continues to be an open question. In this work, we review the virally mediated mechanisms of HIV- and HCV-mediated neuropathogenesis, with an emphasis on the role of dual infection, and discuss observed changes with HIV viral suppression and HCV functional cure on neurocognitive impairments.
Collapse
|
17
|
Abstract
Endothelins were discovered more than thirty years ago as potent vasoactive compounds. Beyond their well-documented cardiovascular properties, however, the contributions of the endothelin pathway have been demonstrated in several neuroinflammatory processes and the peptides have been reported as clinically relevant biomarkers in neurodegenerative diseases. Several studies report that endothelin-1 significantly contributes to the progression of neuroinflammatory processes, particularly during infections in the central nervous system (CNS), and is associated with a loss of endothelial integrity at the blood brain barrier level. Because of the paucity of clinical trials with endothelin-1 antagonists in several infectious and non-infectious neuroinflammatory diseases, it remains an open question whether the 21 amino acid peptide is a mediator/modulator rather than a biomarker of the progression of neurodegeneration. This review focuses on the potential roles of endothelins in the pathology of neuroinflammatory processes, including infectious diseases of viral, bacterial or parasitic origin in which the synthesis of endothelins or its pharmacology have been investigated from the cell to the bedside in several cases, as well as in non-infectious inflammatory processes such as neurodegenerative disorders like Alzheimers Disease or central nervous system vasculitis.
Collapse
|
18
|
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) remain a common end-organ manifestation of viral infection. Subclinical and mild symptoms lead to neurocognitive and behavioral abnormalities. These are associated, in part, with viral penetrance and persistence in the central nervous system. Infections of peripheral blood monocytes, macrophages, and microglia are the primary drivers of neuroinflammation and neuronal impairments. While current antiretroviral therapy (ART) has reduced the incidence of HIV-associated dementia, milder forms of HAND continue. Depression, comorbid conditions such as infectious liver disease, drugs of abuse, antiretroviral drugs themselves, age-related neurodegenerative diseases, gastrointestinal maladies, and concurrent social and economic issues can make accurate diagnosis of HAND challenging. Increased life expectancy as a result of ART clearly creates this variety of comorbid conditions that often blur the link between the virus and disease. With the discovery of novel biomarkers, neuropsychologic testing, and imaging techniques to better diagnose HAND, the emergence of brain-penetrant ART, adjunctive therapies, longer life expectancy, and better understanding of disease pathogenesis, disease elimination is perhaps a realistic possibility. This review focuses on HIV-associated disease pathobiology with an eye towards changing trends in the face of widespread availability of ART.
Collapse
|
19
|
Peripheral and cerebrospinal fluid immune activation and inflammation in chronically HIV-infected patients before and after virally suppressive combination antiretroviral therapy (cART). J Neurovirol 2018; 24:679-694. [PMID: 29987585 DOI: 10.1007/s13365-018-0661-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/13/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
Cerebrospinal fluid (CSF)/plasma HIV-RNA ratio has been associated with residual neurocognitive impairment on cART, leading us to hypothesize a specific peripheral and/or CSF immune feature in patients with high CSF/plasma ratio (≥ 1). In patients with diverse pre-cART CSF/plasma ratio (61/70 with CSF/plasma ratio < 1, L-CSF, 9/70 with CSF/plasma ratio ≥ 1, H-CSF), we investigated the effects of 12 months of effective cART on peripheral and CSF inflammatory markers, on T cell activation/maturation and HIV/CMV-specific intracellular cytokine pattern. We also studied the possible clinical association between peripheral/CSF pro-inflammatory milieu and neurocognitive screening tests (MMSE, FAB, IHDS). Prior to cART, the two groups were comparable for peripheral and CSF inflammation, T cell activation/proliferation and maturation, and HIV/CMV-specific response. Upon cART initiation, both H-CSF and L-CSF featured a significant reduction in plasma TNF-α and circulating CD8 activation, with a redistribution of memory/naïve T cell subsets in L-CSF alone. In the CSF compartment, cART seemed able to reduce pro-inflammatory cytokine/chemokine levels in both H-CSF and L-CSF patients. Interestingly, despite a reduction in the pro-inflammatory milieu, no changes were shown in neurocognitive screening tests in both patients' groups. We hereby show that 12-month cART is able to reduce intratechal and peripheral pro-inflammatory burden; a longer cART exposure and a more comprehensive neuropsychological evaluation might be necessary to gain a broader insight into the possible effects on neurocognitive performance.
Collapse
|
20
|
González RG, Fell R, He J, Campbell J, Burdo TH, Autissier P, Annamalai L, Taheri F, Parker T, Lifson JD, Halpern EF, Vangel M, Masliah E, Westmoreland SV, Williams KC, Ratai EM. Temporal/compartmental changes in viral RNA and neuronal injury in a primate model of NeuroAIDS. PLoS One 2018; 13:e0196949. [PMID: 29750804 PMCID: PMC5947913 DOI: 10.1371/journal.pone.0196949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/23/2018] [Indexed: 02/01/2023] Open
Abstract
Despite the advent of highly active anti-retroviral therapy HIV-associated neurocognitive disorders (HAND) continue to be a significant problem. Furthermore, the precise pathogenesis of this neurodegeneration is still unclear. The objective of this study was to examine the relationship between infection by the simian immunodeficiency virus (SIV) and neuronal injury in the rhesus macaque using in vivo and postmortem sampling techniques. The effect of SIV infection in 23 adult rhesus macaques was investigated using an accelerated NeuroAIDS model. Disease progression was modulated either with combination anti-retroviral therapy (cART, 4 animals) or minocycline (7 animals). Twelve animals remained untreated. Viral loads were monitored in the blood and cerebral spinal fluid, as were levels of activated monocytes in the blood. Neuronal injury was monitored in vivo using magnetic resonance spectroscopy. Viral RNA was quantified in brain tissue of each animal postmortem using reverse transcription polymerase chain reaction (RT-PCR), and neuronal injury was assessed by immunohistochemistry. Without treatment, viral RNA in plasma, cerebral spinal fluid, and brain tissue appears to reach a plateau. Neuronal injury was highly correlated both to plasma viral levels and a subset of infected/activated monocytes (CD14+CD16+), which are known to traffic the virus into the brain. Treatment with either cART or minocycline decreased brain viral levels and partially reversed alterations in in vivo and immunohistochemical markers for neuronal injury. These findings suggest there is significant turnover of replicating virus within the brain and the severity of neuronal injury is directly related to the brain viral load.
Collapse
Affiliation(s)
- R. Gilberto González
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Robert Fell
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
| | - Julian He
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Jennifer Campbell
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Tricia H. Burdo
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Patrick Autissier
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | | | - Faramarz Taheri
- New England Primate Research Center, Southborough, MA, United States of America
| | - Termara Parker
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Elkan F. Halpern
- Harvard Medical School, Boston, MA, United States of America
- Institute for Technology Assessment, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Mark Vangel
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Eliezer Masliah
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, United States of America
| | | | - Kenneth C. Williams
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Eva-Maria Ratai
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
21
|
Gelman BB, Endsley J, Kolson D. When do models of NeuroAIDS faithfully imitate "the real thing"? J Neurovirol 2017; 24:146-155. [PMID: 29256039 PMCID: PMC5910470 DOI: 10.1007/s13365-017-0601-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 02/07/2023]
Abstract
HIV-infected patients treated with antiretroviral medicines (ART) still face neurological challenges. HIV-associated neurocognitive disturbances (HAND) can occur, and latent viral DNA persisting in the central nervous system (CNS) prevents eradication of HIV. This communication focuses on how to develop experimental models of HAND and CNS HIV latency that best imitate the CNS pathophysiology in diseased humans, which we take to be “the real thing.” Models of HIV encephalitis (HIVE) with active CNS viral replication were developed in the early years of the AIDS pandemic. The clinical relevancy of such models is in sharp decline because HIVE seldom occurs in virally suppressed patients, while HAND remains common. The search for improved models of HAND should incorporate the neurochemical, neuroimmunological and neuropathological features of virally suppressed patients. Common anomalies in these patients as established in autopsy brain specimens include brain endothelial cell activation and neurochemical imbalances of synaptic transmission; classical neurodegeneration may not be as crucial. With regard to latent HIV with viral suppression, human brain specimens show that the pool of latent proviral HIV DNA in the CNS is relatively small relative to the total body pool and does not change substantially over years. The CNS pool of latent virus probably differs from lymphoid tissues, because the mononuclear phagocyte system sustains productive infection (versus lymphocytes). These and yet-to-be discovered aspects of the human CNS of virally suppressed patients need to be better defined and addressed in experimental models. To maintain clinical relevancy, models of HAND and viral latency should faithfully emulate “the real thing.”
Collapse
Affiliation(s)
- Benjamin B Gelman
- Department of Pathology, Route 0419, University of Texas Medical Branch, Galveston, TX, 77555-0419, USA.
| | - Janice Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Dennis Kolson
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104-6140, USA
| |
Collapse
|
22
|
Kunze C, Börner K, Kienle E, Orschmann T, Rusha E, Schneider M, Radivojkov-Blagojevic M, Drukker M, Desbordes S, Grimm D, Brack-Werner R. Synthetic AAV/CRISPR vectors for blocking HIV-1 expression in persistently infected astrocytes. Glia 2017; 66:413-427. [PMID: 29119608 DOI: 10.1002/glia.23254] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/04/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023]
Abstract
Astrocytes, the most abundant cells in the mammalian brain, perform key functions and are involved in several neurodegenerative diseases. The human immunodeficiency virus (HIV) can persist in astrocytes, contributing to the HIV burden and neurological dysfunctions in infected individuals. While a comprehensive approach to HIV cure must include the targeting of HIV-1 in astrocytes, dedicated tools for this purpose are still lacking. Here we report a novel Adeno-associated virus-based vector (AAV9P1) with a synthetic surface peptide for transduction of astrocytes. Analysis of AAV9P1 transduction efficiencies with single brain cell populations, including primary human brain cells, as well as human brain organoids demonstrated that AAV9P1 targeted terminally differentiated human astrocytes much more efficiently than neurons. We then investigated whether AAV9P1 can be used to deliver HIV-inhibitory genes to astrocytes. To this end we generated AAV9P1 vectors containing genes for HIV-1 proviral editing by CRISPR/Cas9. Latently HIV-1 infected astrocytes transduced with these vectors showed significantly diminished reactivation of proviruses, compared with untransduced cultures. Sequence analysis identified mutations/deletions in key HIV-1 transcriptional control regions. We conclude that AAV9P1 is a promising tool for gene delivery to astrocytes and may facilitate inactivation/destruction of persisting HIV-1 proviruses in astrocyte reservoirs.
Collapse
Affiliation(s)
- Christine Kunze
- Institute of Virology, Helmholtz Center Munich, Neuherberg, 85764, Germany
| | - Kathleen Börner
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, 69120, Germany.,BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg University, Heidelberg, 69120, Germany.,German Center for Infection Research (DZIF), Partner site Heidelberg, Heidelberg, 69120, Germany
| | - Eike Kienle
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, 69120, Germany.,BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg University, Heidelberg, 69120, Germany
| | - Tanja Orschmann
- SCADEV, Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg, 85764, Germany
| | - Ejona Rusha
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, 85764, Germany
| | - Martha Schneider
- Institute of Virology, Helmholtz Center Munich, Neuherberg, 85764, Germany
| | | | - Micha Drukker
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, 85764, Germany
| | - Sabrina Desbordes
- SCADEV, Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg, 85764, Germany
| | - Dirk Grimm
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, 69120, Germany.,BioQuant Center and Cluster of Excellence CellNetworks at Heidelberg University, Heidelberg, 69120, Germany.,German Center for Infection Research (DZIF), Partner site Heidelberg, Heidelberg, 69120, Germany
| | - Ruth Brack-Werner
- Institute of Virology, Helmholtz Center Munich, Neuherberg, 85764, Germany
| |
Collapse
|
23
|
Incidence of Neurological Disorders Among HIV-Infected Individuals With Universal Health Care in Taiwan From 2000 to 2010. J Acquir Immune Defic Syndr 2017; 75:509-516. [PMID: 28520614 DOI: 10.1097/qai.0000000000001448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the incidence of and factors associated with neurological disorders in a large Taiwanese cohort of HIV-infected persons with free access to highly active antiretroviral therapy (HAART). DESIGN A retrospective population-based cohort study was conducted using the National Health Insurance Research Database for the years 2000-2010. METHODS We identified 13,316 HIV-positive persons from 2000 through 2010. We used direct standardization to calculate age-adjusted and sex-adjusted incidence rates based on the 2000 World Health Organization world standard population. Factors associated with neurological disorders were analyzed using a Cox proportional hazards model. RESULTS The standardized incidence of neurological disorders among HIV-infected persons increased from 22.16 per 1000 person-years in 2000 to 25.23 per 1000 person-years in 2010. Cognitive disorders increased significantly from 0.36 per 1000 person-years in 2001 to 7.44 per 1000 person-years in 2010 (trend P < 0.001). The rate of neurological disorders increased with age ≥55 years [adjusted hazard ratios (AHRs) 2.54, 95% confidence interval (CI): 1.89 to 3.40], hypertension (AHR 1.41, 95% CI: 1.12 to 1.76), substance abuse (AHR 1.65, 95% CI: 1.36 to 2.02), opportunistic infection (AHR 1.76, 95% CI: 1.47 to 2.11), syphilis (AHR 1.27, 95% CI: 1.10 to 1.47), and emergency department visits >5 (AHR 2.41, 95% CI: 1.96 to 2.97). The incidence of neurological disorders was negatively associated with adherence to HAART (adherence ≥85% AHR: 0.79, 95% CI: 0.64 to 0.97). CONCLUSIONS The rising incidence of cognitive disorders among HIV-positive persons highlights the need to provide routine neurological evaluations at clinical visits. Receiving HAART with adherence ≥85% contributes to a reduced risk of neurological disorders.
Collapse
|
24
|
Xing Y, Shepherd N, Lan J, Li W, Rane S, Gupta SK, Zhang S, Dong J, Yu Q. MMPs/TIMPs imbalances in the peripheral blood and cerebrospinal fluid are associated with the pathogenesis of HIV-1-associated neurocognitive disorders. Brain Behav Immun 2017; 65:161-172. [PMID: 28487203 PMCID: PMC5793222 DOI: 10.1016/j.bbi.2017.04.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/13/2017] [Accepted: 04/30/2017] [Indexed: 10/19/2022] Open
Abstract
HIV-1-associated neurocognitive disorders (HAND) continue to be a major concern in the infected population, despite the widespread use of combined antiretroviral therapy (cART). Growing evidence suggests that an imbalance between matrix metalloproteinases (MMPs) and endogenous tissue inhibitors of MMPs (TIMPs) contributes to the pathogenesis of HAND. In our present study, we examined protein levels and enzymatic activities of MMPs and TIMPs in both plasma and cerebrospinal fluid (CSF) samples from HIV-1 patients with or without HAND and HIV-1-negative controls. Imbalances between MMPs and TIMPs with distinct patterns were revealed in both the peripheral blood and CSF of HIV-1 patients, especially those with HAND. In the peripheral blood, the protein levels of MMP-2, MMP-9, TIMP-1, TIMP-2, and the enzymatic activities of MMP-2 and MMP-9 were increased in HIV-1 patients with or without HAND when compared with HIV-1-negative controls. The enzymatic activity of MMP-2, but not MMP-9, was further increased in plasma samples of HAND patients than that of HIV-1 patients without HAND. Notably, the ratio of MMP-2/TIMP-2 in plasma was significantly increased in HAND patients, not in patients without HAND. In the CSF, MMP-2 activity was increased, but the ratio of MMP-2/TIMP-2 was not altered. De novo induction and activation of MMP-9 in the CSF of HAND patients was particularly prominent. The imbalances between MMPs and TIMPs in the blood and CSF were related to the altered profiles of inflammatory cytokines/chemokines and monocyte activation in these individuals. In addition, plasma from HIV-1 patients directly induced integrity disruption of an in vitro blood-brain barrier (BBB) model, leading to increased BBB permeability and robust transmigration of monocytes/macrophages. These results indicate that imbalances between MMPs and TIMPs are involved in BBB disruption and are implicated in the pathogenesis of neurological disorders such as HAND in HIV-1 patients.
Collapse
Affiliation(s)
- Yanyan Xing
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong 510632, China; Indiana Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Nicole Shepherd
- Indiana Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jie Lan
- Indiana Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Wei Li
- Indiana Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Sushmita Rane
- Indiana Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Samir K Gupta
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Shanxiang Zhang
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jun Dong
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong 510632, China; Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Qigui Yu
- Indiana Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
25
|
Carter CJ. Genetic, Transcriptome, Proteomic, and Epidemiological Evidence for Blood-Brain Barrier Disruption and Polymicrobial Brain Invasion as Determinant Factors in Alzheimer's Disease. J Alzheimers Dis Rep 2017; 1:125-157. [PMID: 30480234 PMCID: PMC6159731 DOI: 10.3233/adr-170017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diverse pathogens are detected in Alzheimer's disease (AD) brains. A bioinformatics survey showed that AD genome-wide association study (GWAS) genes (localized in bone marrow, immune locations and microglia) relate to multiple host/pathogen interactomes (Candida albicans, Cryptococcus neoformans, Bornavirus, Borrelia burgdorferri, cytomegalovirus, Ebola virus, HSV-1, HERV-W, HIV-1, Epstein-Barr, hepatitis C, influenza, Chlamydia pneumoniae, Porphyrymonas gingivalis, Helicobacter pylori, Toxoplasma gondii, Trypanosoma cruzi). These interactomes also relate to the AD hippocampal transcriptome and to plaque or tangle proteins. Upregulated AD hippocampal genes match those upregulated by multiple bacteria, viruses, fungi, or protozoa in immunocompetent cells. AD genes are enriched in GWAS datasets reflecting pathogen diversity, suggesting selection for pathogen resistance, as supported by the old age of AD patients, implying resistance to earlier infections. APOE4 is concentrated in regions of high parasitic burden and protects against childhood tropical infections and hepatitis C. Immune/inflammatory gain of function applies to APOE4, CR1, and TREM2 variants. AD genes are also expressed in the blood-brain barrier (BBB), which is disrupted by AD risk factors (age, alcohol, aluminum, concussion, cerebral hypoperfusion, diabetes, homocysteine, hypercholesterolemia, hypertension, obesity, pesticides, pollution, physical inactivity, sleep disruption, smoking) and by pathogens, directly or via olfactory routes to basal-forebrain BBB control centers. The BBB benefits from statins, NSAIDs, estrogen, melatonin, memantine, and the Mediterranean diet. Polymicrobial involvement is supported by upregulation of bacterial, viral, and fungal sensors/defenders in the AD brain, blood, or cerebrospinal fluid. AD serum amyloid-β autoantibodies may attenuate its antimicrobial effects favoring microbial survival and cerebral invasion leading to activation of neurodestructive immune/inflammatory processes, which may also be augmented by age-related immunosenescence. AD may thus respond to antibiotic, antifungal, or antiviral therapy.
Collapse
|
26
|
Cross-sectional and longitudinal small animal PET shows pre and post-synaptic striatal dopaminergic deficits in an animal model of HIV. Nucl Med Biol 2017; 55:27-33. [PMID: 29031113 DOI: 10.1016/j.nucmedbio.2017.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/01/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022]
Abstract
INTRODUCTION In vivo imaging biomarkers of various HIV neuropathologies, including dopaminergic dysfunction, are still lacking. Towards developing dopaminergic biomarkers of brain involvement in HIV, we assessed the pre and postsynaptic components of the dopaminergic system in the HIV-1 transgenic rat (Tg), a well-characterized model of treated HIV+ patients, using small-animal PET imaging. METHODS Fifteen to 18 month-old Tg and wild type (WT) rats were imaged with both [18F]-FP-CMT, a dopamine transporter (DAT) ligand (n=16), and [18F]-Fallypride, a D2/D3 dopamine receptor (D2/D3DR) ligand (n=16). Five to 8 month-old Tg and WT rats (n=18) were also imaged with [18F]-FP-CMT. A subset of animals was imaged longitudinally at 7 and 17 months of age. Multiplex immunohistochemistry staining for DAT, tyrosine hydroxylase, D2DR, D3DR, GFAP, Iba1 and NeuN was performed on a subgroup of the scanned animals. RESULTS [18F]-FP-CMT and [18F]-Fallypride binding potential (BPND) values were significantly lower in 15-18 month-old Tg compared to age-matched WT rats (p<0.0001 and 0.001, respectively). [18F]-FP-CMT BPND values in 5-8 month-old rats, however, were not significantly different. Longitudinal age-related decrease in [18F]-FP-CMT BPND was exacerbated in the Tg rat. Immunohistochemistry showed decreased staining of dopaminergic markers in Tg rats. Rats with higher serum gp120 had lower mean BPND values for both ligands. CONCLUSIONS We found presynaptic and postsynaptic dopaminergic dysfunction/loss in older Tg compared to WT rats. We believe this to be related to neurotoxicity of viral proteins present in the Tg rats' serum and brain. ADVANCES IN KNOWLEDGE Our findings confirm prior reports of neurobehavioral abnormalities suggestive of dopaminergic dysfunction in this model. They also suggest similarities between the Tg rat and HIV+ patients as far as dopaminergic dysfunction. IMPLICATIONS FOR PATIENT CARE The Tg rat, along with the above-described quantitative PET imaging biomarkers, can have a role in the evaluation of HIV neuroprotective therapies prior to human translation.
Collapse
|
27
|
Ghosh AK, Sarkar A. An enantioselective enzymatic desymmetrization route to hexahydro-4 H-furopyranol, a high-affinity ligand for HIV-1 protease inhibitors. Tetrahedron Lett 2017; 58:3230-3233. [PMID: 29200514 DOI: 10.1016/j.tetlet.2017.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An enantioselective synthesis of (3aS,4S,7aR)-hexahydro-4H-furo[2,3-b]pyran-4-ol, a high-affinity nonpeptide ligand for a variety of potent HIV-1 protease inhibitors is described. The key steps involved a highly enantioselective enzymatic desymmetrization of meso-diacetate, an efficient transacetalization, and a highly diastereoselective reduction of a ketone. This route is amenable to large-scale synthesis using readily available starting materials.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 479 07, United States
| | - Anindya Sarkar
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 479 07, United States
| |
Collapse
|
28
|
Ekins S, Mathews P, Saito EK, Diaz N, Naylor D, Chung J, McMurtray AM. α7-Nicotinic acetylcholine receptor inhibition by indinavir: implications for cognitive dysfunction in treated HIV disease. AIDS 2017; 31:1083-1089. [PMID: 28358738 DOI: 10.1097/qad.0000000000001488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The study set out to determine if the HIV protease inhibitor, indinavir, alters responsiveness of α7-nicotinic acetylcholine receptors to acetylcholine. DESIGN Treatment with HAART has dramatically reduced development of HIV-associated dementia and more severe forms of cognitive impairment. However, many individuals continue to experience cognitive decline of uncertain cause. Previous studies have failed to demonstrate significant alterations of functional brain connectivity, structural brain changes, or changes in cerebral blood flow sufficient to explain cognitive decline in virally suppressed individuals. This suggests that the mechanisms underlying development and progression of cognitive problems likely occurs at a micro rather than macro level, such as disruptions in neurotransmitter system signaling. MATERIALS AND METHODS Indinavir's effects on α7-nicotinic acetylcholine receptor activity was tested using a ScreenPatch IonWorks Barracuda-based assay in a mammalian cell model. RESULTS At low concentrations (0.0003-10 μmol/l) indinavir acts as a positive allosteric modulator (EC50 = 0.021 μmol/l), whereas at concentrations greater than 10 μmol/l (30-100 μmol/l) indinavir acts as an inhibitor of the α7-nicotinic acetylcholine receptor. CONCLUSION At concentrations greater than 10 μmol/l indinavir reduces synaptic transmission in the acetylcholine neurotransmitter system, which could possibly contribute to cognitive dysfunction. These results suggest that further experiments should be considered to assess whether patients might benefit from treatment with cholinesterase inhibitors that counteract the effects of indinavir.
Collapse
|
29
|
Hu G, Witwer KW, Bond VC, Haughey N, Kashanchi F, Pulliam L, Buch S. Proceedings of the ISEV symposium on "HIV, NeuroAIDS, drug abuse & EVs". J Extracell Vesicles 2017; 6:1294360. [PMID: 28800366 PMCID: PMC5373676 DOI: 10.1080/20013078.2017.1294360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/06/2017] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) are globular, membrane bound nanovesicles (30-100 nm range) that are shed both during normal cellular functioning and under pathological conditions by most cell types. In recent years, there has been significant interest in the study of these vesicles as conduits for the delivery of information between cells from both analogous and disparate tissues. Their ability to carry specialised cargo including signalling mediators, proteins, messenger RNA and miRNAs characterises these vesicles as primary facilitators of cell-to-cell communication and regulation. EVs have also been demonstrated to play important roles in the field of cancer biology and metastasis. However, significant knowledge gaps exist in the role these vesicles play in the context of HIV infection and drug abuse. To foster discussion in this area a satellite symposium on "HIV, NeuroAIDS, Drug Abuse & EVs", was held in conjunction with the annual meeting of the International Society for Extracellular Vesicles (ISEV) in Bethesda, in April 2015. Experts in HIV and drug abuse fields were invited to share their findings on the role of EVs in HIV-1 infection and drug addiction. Additional discussion included current areas of research in EV biology in HIV infection and drug abuse.
Collapse
Affiliation(s)
- Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincent C Bond
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Norman Haughey
- Department of Neurology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Psychiatry, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Lynn Pulliam
- Departments of Laboratory Medicine and Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
30
|
Liu H, Liu J, Xu E, Tu G, Guo M, Liang S, Xiong H. Human immunodeficiency virus protein Tat induces oligodendrocyte injury by enhancing outward K + current conducted by K V1.3. Neurobiol Dis 2016; 97:1-10. [PMID: 27816768 DOI: 10.1016/j.nbd.2016.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/21/2016] [Accepted: 10/30/2016] [Indexed: 12/28/2022] Open
Abstract
Brain white matter damage is frequently detected in patients infected with human immunodeficiency virus type 1 (HIV-1). White matter is composed of neuronal axons sheathed by oligodendrocytes (Ols), the myelin-forming cells in central nervous system. Ols are susceptible to HIV-1 viral trans-activator of transcription (Tat) and injury of Ols results in myelin sheath damage. It has been demonstrated that activation of voltage-gated K+ (KV) channels induces cell apoptosis and Ols predominantly express K+ channel KV1.3. It is our hypothesis that Tat injures Ols via activation of KV1.3. To test this hypothesis, we studied the involvement of KV1.3 in Tat-induced Ol/myelin injury both in vitro and ex vivo. Application of Tat to primary rat Ol cultures enhanced whole-cell KV1.3 current recorded under voltage clamp configuration and confirmed by specific KV1.3 antagonists Margatoxin (MgTx) and 5-(4-phenoxybutoxy) psoralen (PAP). The Tat enhancement of KV1.3 current was associated with Tat-induced Ol apoptosis, which was blocked by MgTx and PAP or by siRNA knockdown of KV1.3 gene. The Tat-induced Ol injury was validated in cultured rat brain slices, particularly in corpus callosum and striatum, that incubation of the slices with Tat resulted in myelin damage and reduction of myelin basic protein which were also blocked by aforementioned KV1.3 antagonists. Further studies revealed that Tat interacts with KV1.3 as determined by protein pull-down of recombinant GST-Tat with KV1.3 expressed in rat brains and HEK293 cells. Such protein-protein interaction may alter channel protein phosphorylation, resultant channel activity and consequent Ol/myelin injury. Taken together, these results demonstrate an involvement of KV1.3 in Tat- induced Ol/myelin injury, a potential mechanism for the pathogenesis of HIV-1-associated white matter damage.
Collapse
Affiliation(s)
- Han Liu
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Jianuo Liu
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Enquan Xu
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Guihua Tu
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Minglei Guo
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Shangdong Liang
- Department of Physiology, College of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Huangui Xiong
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
31
|
Marban C, Forouzanfar F, Ait-Ammar A, Fahmi F, El Mekdad H, Daouad F, Rohr O, Schwartz C. Targeting the Brain Reservoirs: Toward an HIV Cure. Front Immunol 2016; 7:397. [PMID: 27746784 PMCID: PMC5044677 DOI: 10.3389/fimmu.2016.00397] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/20/2016] [Indexed: 12/23/2022] Open
Abstract
One of the top research priorities of the international AIDS society by the action “Towards an HIV Cure” is the purge or the decrease of the pool of all latently infected cells. This strategy is based on reactivation of latently reservoirs (the shock) followed by an intensifying combination antiretroviral therapy (cART) to kill them (the kill). The central nervous system (CNS) has potential latently infected cells, i.e., perivascular macrophages, microglial cells, and astrocytes that will need to be eliminated. However, the CNS has several characteristics that may preclude the achievement of a cure. In this review, we discuss several limitations to the eradication of brain reservoirs and how we could circumvent these limitations by making it efforts in four directions: (i) designing efficient latency-reversal agents for CNS-cell types, (ii) improving cART by targeting HIV transcription, (iii) improving delivery of HIV drugs in the CNS and in the CNS-cell types, and (iv) developing therapeutic immunization. As a prerequisite to these efforts, we also believe that a better comprehension of molecular mechanisms involved in establishment and persistence of HIV latency in brain reservoirs are essential to design new molecules for strategies aiming to achieve a cure for instance the “shock and kill” strategy.
Collapse
Affiliation(s)
- Céline Marban
- INSERM UMR 1121 Faculté de Chirurgie Dentaire, Université de Strasbourg , Strasbourg , France
| | | | - Amina Ait-Ammar
- EA7292, DHPI, Université de Strasbourg , Strasbourg , France
| | - Faiza Fahmi
- EA7292, DHPI, Université de Strasbourg , Strasbourg , France
| | - Hala El Mekdad
- EA7292, DHPI, Université de Strasbourg, Strasbourg, France; IUT Louis Pasteur de Schiltigheim, Université de Strasbourg, Schiltigheim, France
| | - Fadoua Daouad
- EA7292, DHPI, Université de Strasbourg , Strasbourg , France
| | - Olivier Rohr
- EA7292, DHPI, Université de Strasbourg, Strasbourg, France; IUT Louis Pasteur de Schiltigheim, Université de Strasbourg, Schiltigheim, France; Institut Universitaire de France, Paris, France
| | - Christian Schwartz
- EA7292, DHPI, Université de Strasbourg, Strasbourg, France; IUT Louis Pasteur de Schiltigheim, Université de Strasbourg, Schiltigheim, France
| |
Collapse
|
32
|
Sutera FM, De Caro V, Giannola LI. Small endogenous molecules as moiety to improve targeting of CNS drugs. Expert Opin Drug Deliv 2016; 14:93-107. [DOI: 10.1080/17425247.2016.1208651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Flavia Maria Sutera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Viviana De Caro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Libero Italo Giannola
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
33
|
Bachis A, Forcelli P, Masliah E, Campbell L, Mocchetti I. Expression of gp120 in mice evokes anxiety behavior: Co-occurrence with increased dendritic spines and brain-derived neurotrophic factor in the amygdala. Brain Behav Immun 2016; 54:170-177. [PMID: 26845379 PMCID: PMC4828280 DOI: 10.1016/j.bbi.2016.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/20/2016] [Accepted: 01/31/2016] [Indexed: 01/28/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV) infection of the brain produces cognitive and motor disorders. In addition, HIV positive individuals exhibit behavioral alterations, such as apathy, and a decrease in spontaneity or emotional responses, typically seen in anxiety disorders. Anxiety can lead to psychological stress, which has been shown to influence HIV disease progression. These considerations underscore the importance of determining if anxiety in HIV is purely psychosocial, or if by contrast, there are the molecular cascades associated directly with HIV infection that may mediate anxiety. The present study had two goals: (1) to determine if chronic exposure to viral proteins would induce anxiety-like behavior in an animal model and (2) to determine if this exposure results in anatomical abnormalities that could explain increased anxiety. We have used gp120 transgenic mice, which display behavior and molecular deficiencies similar to HIV positive subjects with cognitive and motor impairments. In comparison to wild type mice, 6 months old gp120 transgenic mice demonstrated an anxiety like behavior measured by open field, light/dark transition task, and prepulse inhibition tests. Moreover, gp120 transgenic mice have an increased number of spines in the amygdala, as well as higher levels of brain-derived neurotrophic factor and tissue plasminogen activator when compared to age-matched wild type. Our data support the hypothesis that HIV, through gp120, may cause structural changes in the amygdala that lead to maladaptive responses to anxiety.
Collapse
Affiliation(s)
- Alessia Bachis
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center Washington DC 20057
| | - Patrick Forcelli
- Department of Pharmacology and Physiology, Georgetown University Medical Center Washington DC 20057
| | - Eliezer Masliah
- Departments of Pathology and Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Lee Campbell
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center Washington DC 20057,Department of Pharmacology and Physiology, Georgetown University Medical Center Washington DC 20057
| | - Italo Mocchetti
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
34
|
Purohit V, Rapaka RS, Rutter J. Cannabinoid receptor-2 and HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol 2016; 9:447-53. [PMID: 25015040 DOI: 10.1007/s11481-014-9554-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/02/2014] [Indexed: 12/11/2022]
Abstract
Despite the wide spread use of highly active antiretroviral therapy (HAART), mild forms of HIV-associated neuro cognitive disorders (HAND) remain commonplace. HAART treated patients now show low levels of viremia and more subtle yet biologically important signs of brain macrophage and microglial activation. Adjunctive therapeutic strategies are required to eliminate HIV-1 infection and suppress immune activation and its associated neuroinflammation. In this regard, cannabinoid receptor-2(CB2) activation is a promising means to attenuate HAND by inhibiting HIV replication, down regulating inflammation, and suppressing chemokine-like activity of viral neurotoxic proteins (for example, Tat and HIV-1gp120), and thereby prevent neuronal and synaptic loss. Inhibiting even low level HIV replication can attenuate neuronal injury by decreasing the production of neurotoxins. Down regulation of inflammation by CB2 activation is mediated through blunted activation of peri vascular macrophages and microglia; decreased production of tumor necrosis factor-α, chemokines and virotoxins. Down regulated neuroinflammation can decrease blood brain barrier permeability and leukocyte infiltration resulting in reduced neuronal injury. It is suggested that CB2 agonists may further attenuate HAND in HIVinfected patients on HAART. In addition, CB2 activation may also blunt brain injury by attenuating drug addiction.
Collapse
|
35
|
Dasuri K, Pepping JK, Fernandez-Kim SO, Gupta S, Keller JN, Scherer PE, Bruce-Keller AJ. Elevated adiponectin prevents HIV protease inhibitor toxicity and preserves cerebrovascular homeostasis in mice. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1228-35. [PMID: 26912411 DOI: 10.1016/j.bbadis.2016.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/03/2016] [Accepted: 02/17/2016] [Indexed: 01/22/2023]
Abstract
HIV protease inhibitors are key components of HIV antiretroviral therapies, which are fundamental in the treatment of HIV infection. However, the protease inhibitors are well-known to induce metabolic dysfunction which can in turn escalate the complications of HIV, including HIV associated neurocognitive disorders. As experimental and epidemiological data support a therapeutic role for adiponectin in both metabolic and neurologic homeostasis, this study was designed to determine if increased adiponectin could prevent the detrimental effects of protease inhibitors in mice. Adult male wild type (WT) and adiponectin-overexpressing (ADTg) mice were thus subjected to a 4-week regimen of lopinavir/ritonavir, followed by comprehensive metabolic, neurobehavioral, and neurochemical analyses. Data show that lopinavir/ritonavir-induced lipodystrophy, hypoadiponectinemia, hyperglycemia, hyperinsulinemia, and hypertriglyceridemia were attenuated in ADTg mice. Furthermore, cognitive function and blood-brain barrier integrity were preserved, while loss of cerebrovascular markers and white matter injury were prevented in ADTg mice. Finally, lopinavir/ritonavir caused significant increases in expression of markers of brain inflammation and decreases in synaptic markers in WT, but not in ADTg mice. Collectively, these data reinforce the pathophysiologic link from metabolic dysfunction to loss of cerebrovascular and cognitive homeostasis; and suggest that preservation and/or replacement of adiponectin could prevent these key aspects of HIV protease inhibitor-induced toxicity in clinical settings.
Collapse
Affiliation(s)
- Kalavathi Dasuri
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Jennifer K Pepping
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Sun-Ok Fernandez-Kim
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Sunita Gupta
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Jeffrey N Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Annadora J Bruce-Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States.
| |
Collapse
|
36
|
Rebensburg S, Helfer M, Schneider M, Koppensteiner H, Eberle J, Schindler M, Gürtler L, Brack-Werner R. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins. Sci Rep 2016; 6:20394. [PMID: 26833261 PMCID: PMC4735868 DOI: 10.1038/srep20394] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/31/2015] [Indexed: 12/31/2022] Open
Abstract
Novel therapeutic options are urgently needed to improve global treatment of virus infections. Herbal products with confirmed clinical safety features are attractive starting material for the identification of new antiviral activities. Here we demonstrate that Cistus incanus (Ci) herbal products inhibit human immunodeficiency virus (HIV) infections in vitro. Ci extract inhibited clinical HIV-1 and HIV-2 isolates, and, importantly, a virus isolate with multiple drug resistances, confirming broad anti-HIV activity. Antiviral activity was highly selective for virus particles, preventing primary attachment of the virus to the cell surface and viral envelope proteins from binding to heparin. Bioassay-guided fractionation indicated that Ci extract contains numerous antiviral compounds and therefore has favorably low propensity to induce virus resistance. Indeed, no resistant viruses emerged during 24 weeks of continuous propagation of the virus in the presence of Ci extracts. Finally, Ci extracts also inhibited infection by virus particles pseudotyped with Ebola and Marburg virus envelope proteins, indicating that antiviral activity of Ci extract extends to emerging viral pathogens. These results demonstrate that Ci extracts show potent and broad in vitro antiviral activity against viruses that cause life-threatening diseases in humans and are promising sources of agents that target virus particles.
Collapse
Affiliation(s)
- Stephanie Rebensburg
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Virology, Oberschleißheim
| | - Markus Helfer
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Virology, Oberschleißheim
| | - Martha Schneider
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Virology, Oberschleißheim
| | - Herwig Koppensteiner
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Virology, Oberschleißheim
| | - Josef Eberle
- Ludwig Maximilian’s University, Max von Pettenkofer Institute, Munich
| | - Michael Schindler
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Virology, Oberschleißheim
- University Hospital of Tübingen, Department of Medical Virology and Epidemiology of Viral Diseases, Tübingen
| | - Lutz Gürtler
- Ludwig Maximilian’s University, Max von Pettenkofer Institute, Munich
| | - Ruth Brack-Werner
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Virology, Oberschleißheim
- German Center for Infection Research, partner site Munich, Germany
| |
Collapse
|
37
|
Oligodendrocytes Are Targets of HIV-1 Tat: NMDA and AMPA Receptor-Mediated Effects on Survival and Development. J Neurosci 2015; 35:11384-98. [PMID: 26269645 DOI: 10.1523/jneurosci.4740-14.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Myelin pallor in HIV(+) individuals can occur very early during the disease process. While myelin damage might partly originate from HIV-induced vascular changes, the timing suggests that myelin and/or oligodendrocytes (OLs) may be directly affected. Histological (Golgi-Kopsch, electron microscopy) and biochemical studies have revealed an increased occurrence of abnormal OL/myelin morphology and dysregulated myelin protein expression in transgenic mice expressing the HIV-1 transactivator of transcription (Tat) protein. This suggests that viral proteins by themselves might cause OL injury. Since Tat interacts with NMDARs, we hypothesized that activation of NMDARs and subsequent disruption of cytoplasmic Ca(2+) ([Ca(2+)]i) homeostasis might be one cause of white matter injury after HIV infection. In culture, HIV-1 Tat caused concentration-dependent death of immature OLs, while more mature OLs remained alive but had reduced myelin-like membranes. Tat also induced [Ca(2+)]i increases and Thr-287 autophosphorylation of Ca(2+)/calmodulin-dependent protein kinase II β (CaMKIIβ) in OLs. Tat-induced [Ca(2+)]i was attenuated by the NMDAR antagonist MK801, and also by the AMPA/kainate receptor antagonist CNQX. Importantly, both MK801 and CNQX blocked Tat-induced death of immature OLs, but only MK801 reversed Tat effects on myelin-like membranes. These results suggest that OLs can be direct targets of HIV proteins released from infected cells. Although viability and membrane production are both affected by glutamatergic receptor-mediated Ca(2+) influx, and possibly the ensuing CaMKIIβ activation, the roles of AMPARs and NMDARs appear to be different and dependent on the stage of OL differentiation. SIGNIFICANCE STATEMENT Over 33 million individuals are currently infected by HIV. Among these individuals, ∼60% develop HIV-associated neurocognitive disorders. Myelin damage and white matter injury have been frequently reported in HIV patients but not extensively studied. Clinical studies using combined antiretroviral therapy (cART) together with adjunctive "anti-inflammatory" drugs show no improvement over cART alone, suggesting existence of injury mechanisms in addition to inflammation. In our studies, oligodendrocytes exhibited rapid increases in intracellular Ca(2+) level upon HIV-1 transactivator of transcription (Tat) exposure. Thus, immature and mature oligodendrocytes can be direct targets of Tat. Since ionotropic glutamate receptor antagonists can partially or fully reverse the detrimental effects of Tat, glutamate receptors could be a potential therapeutic target for white matter damage in HIV patients.
Collapse
|
38
|
Lee DE, Yue X, Ibrahim WG, Lentz MR, Peterson KL, Jagoda EM, Kassiou M, Maric D, Reid WC, Hammoud DA. Lack of neuroinflammation in the HIV-1 transgenic rat: an [(18)F]-DPA714 PET imaging study. J Neuroinflammation 2015; 12:171. [PMID: 26377670 PMCID: PMC4574011 DOI: 10.1186/s12974-015-0390-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/02/2015] [Indexed: 11/29/2022] Open
Abstract
Background HIV-associated neuroinflammation is believed to be a major contributing factor in the development of HIV-associated neurocognitive disorders (HAND). In this study, we used micropositron emission tomography (PET) imaging to quantify neuroinflammation in HIV-1 transgenic rat (Tg), a small animal model of HIV, known to develop neurological and behavioral problems. Methods Dynamic [18F]DPA-714 PET imaging was performed in Tg and age-matched wild-type (WT) rats in three age groups: 3-, 9-, and 16-month-old animals. As a positive control for neuroinflammation, we performed unilateral intrastriatal injection of quinolinic acid (QA) in a separate group of WT rats. To confirm our findings, we performed multiplex immunofluorescent staining for Iba1 and we measured cytokine/chemokine levels in brain lysates of Tg and WT rats at different ages. Results [18F]DPA-714 uptake in HIV-1 Tg rat brains was generally higher than in age-matched WT rats but this was not statistically significant in any age group. [18F]DPA-714 uptake in the QA-lesioned rats was significantly higher ipsilateral to the lesion compared to contralateral side indicating neuroinflammatory changes. Iba1 immunofluorescence showed no significant differences in microglial activation between the Tg and WT rats, while the QA-lesioned rats showed significant activation. Finally, cytokine/chemokine levels in brain lysates of the Tg rats and WT rats were not significantly different. Conclusion Microglial activation might not be the primary mechanism for neuropathology in the HIV-1 Tg rats. Although [18F]DPA-714 is a good biomarker of neuroinflammation, it cannot be reliably used as an in vivo biomarker of neurodegeneration in the HIV-1 Tg rat. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0390-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dianne E Lee
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, 10 Center Drive, Room 1C368, Bethesda, MD, 20814-9692, USA
| | - Xuyi Yue
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wael G Ibrahim
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, 10 Center Drive, Room 1C368, Bethesda, MD, 20814-9692, USA
| | - Margaret R Lentz
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, 10 Center Drive, Room 1C368, Bethesda, MD, 20814-9692, USA
| | - Kristin L Peterson
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, 10 Center Drive, Room 1C368, Bethesda, MD, 20814-9692, USA
| | - Elaine M Jagoda
- Molecular Imaging Program (MIP), National Cancer Institute (NCI), Bethesda, MD, USA
| | - Michael Kassiou
- Chemistry Department, The University of Sydney, Sydney, Australia
| | - Dragan Maric
- Division of Intermural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - William C Reid
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, 10 Center Drive, Room 1C368, Bethesda, MD, 20814-9692, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, 10 Center Drive, Room 1C368, Bethesda, MD, 20814-9692, USA.
| |
Collapse
|
39
|
Abstract
This review discusses HIV-associated neurocognitive disorders. Practical screening methods are needed for the nurse practitioner to detect neurocognitive impairment in HIV-infected patients.
Collapse
|
40
|
A new model for post-integration latency in macroglial cells to study HIV-1 reservoirs of the brain. AIDS 2015; 29:1147-59. [PMID: 26035317 DOI: 10.1097/qad.0000000000000691] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Macroglial cells like astrocytes are key targets for the formation of HIV-1 reservoirs in the brain. The 'shock-and-kill' HIV-1 cure strategy proposes eradication of reservoirs by clinical treatment with latency reversing agents (LRAs). However, virus activation may endanger the brain, due to limited cell turnover, viral neurotoxicity and poor penetration of antiretroviral drugs. Since the brain is not accessible to clinical sampling, we established an experimental model to investigate the LRA effects on HIV-1 latency in macroglial reservoirs. DESIGN Human neural stem cells (HNSC.100) were used to generate a system that models HIV-1 transcriptional latency in proliferating progenitor, as well as differentiated macroglial cell populations and latency-modulating effects of LRAs and compounds targeting HIV-1 transcription were analysed. METHODS HNSCs were infected with pseudotyped Env-defective HIV-1 viruses. HIV-1 DNA and RNA levels were quantified by qPCR. Expression of latent GFP-reporter viruses was analysed by confocal microscopy and flow cytometry. NF-κB signalling was investigated by confocal microscopy and chromatin immunoprecipitation. RESULTS Two of the eight well known LRAs (tumour necrosis factor-alpha, suberoylanilide hydroxamic acid) reactivated HIV-1 in latently infected HNSCs. Tumour necrosis factor-alpha reactivated HIV-1 in progenitor and differentiated populations, whereas suberoylanilide hydroxamic acid was more potent in progenitors. Pre-treatment with inhibitors of key HIV-1 transcription factors (NF-κB, Cdk9) suppressed HIV-1 reactivation. CONCLUSION We conclude that latent HIV-1 in macroglial reservoirs can be activated by selected LRAs. Identification of small molecules that suppress HIV-1 reactivation supports functional cure strategies. We propose using the HNSC model to develop novel strategies to enforce provirus quiescence in the brain.
Collapse
|
41
|
Adjunctive and long-acting nanoformulated antiretroviral therapies for HIV-associated neurocognitive disorders. Curr Opin HIV AIDS 2015; 9:585-90. [PMID: 25226025 DOI: 10.1097/coh.0000000000000111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW We are pleased to review current and future strategies being developed to modulate neuroinflammation while reducing residual viral burden in the central nervous system. This has been realized by targeted long-acting antiretroviral nano and adjunctive therapies being developed for HIV-infected people. Our ultimate goal is to eliminate virus from its central nervous system reservoirs and, in so doing, reverse the cognitive and motor dysfunctions. RECENT FINDINGS Herein, we highlight our laboratories' development of adjunctive and nanomedicine therapies for HIV-associated neurocognitive disorders. An emphasis is placed on drug-drug interactions that target both the viral life cycle and secretory proinflammatory neurotoxic factors and signaling pathways. SUMMARY Antiretroviral therapy has improved the quality and duration of life for people living with HIV-1. A significant long-term comorbid illness is HIV-associated neurocognitive disorders. Symptoms, although reduced in severity, are common. Disease occurs, in part, through continued low-level viral replication, inducing secondary glial neuroinflammatory activities. Our recent works and those of others have seen disease attenuated in animal models through the use of adjunctive and long-acting reservoir-targeted nanoformulated antiretroviral therapy. The translation of these inventions from animals to humans is the focus of this review.
Collapse
|
42
|
McGuire JL, Gill AJ, Douglas SD, Kolson DL. Central and peripheral markers of neurodegeneration and monocyte activation in HIV-associated neurocognitive disorders. J Neurovirol 2015; 21:439-48. [PMID: 25776526 PMCID: PMC4511078 DOI: 10.1007/s13365-015-0333-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/02/2015] [Accepted: 02/24/2015] [Indexed: 02/02/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) affect up to 50 % of HIV-infected adults, independently predict HIV morbidity/mortality, and are associated with neuronal damage and monocyte activation. Cerebrospinal fluid (CSF) neurofilament subunits (NFL, pNFH) are sensitive surrogate markers of neuronal damage in several neurodegenerative diseases. In HIV, CSF NFL is elevated in individuals with and without cognitive impairment, suggesting early/persistent neuronal injury during HIV infection. Although individuals with severe cognitive impairment (HIV-associated dementia (HAD)) express higher CSF NFL levels than cognitively normal HIV-infected individuals, the relationships between severity of cognitive impairment, monocyte activation, neurofilament expression, and systemic infection are unclear. We performed a retrospective cross-sectional study of 48 HIV-infected adults with varying levels of cognitive impairment, not receiving antiretroviral therapy (ART), enrolled in the CNS Anti-Retroviral Therapy Effects Research (CHARTER) study. We quantified NFL, pNFH, and monocyte activation markers (sCD14/sCD163) in paired CSF/plasma samples. By examining subjects off ART, these correlations are not confounded by possible effects of ART on inflammation and neurodegeneration. We found that CSF NFL levels were elevated in individuals with HAD compared to cognitively normal or mildly impaired individuals with CD4+ T-lymphocyte nadirs ≤200. In addition, CSF NFL levels were significantly positively correlated to plasma HIV-1 RNA viral load and negatively correlated to plasma CD4+ T-lymphocyte count, suggesting a link between neuronal injury and systemic HIV infection. Finally, CSF NFL was significantly positively correlated with CSF pNFH, sCD163, and sCD14, demonstrating that monocyte activation within the CNS compartment is directly associated with neuronal injury at all stages of HAND.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA,
| | | | | | | |
Collapse
|
43
|
McGuire JL, Barrett JS, Vezina HE, Spitsin S, Douglas SD. Adjuvant therapies for HIV-associated neurocognitive disorders. Ann Clin Transl Neurol 2014; 1:938-52. [PMID: 25540809 PMCID: PMC4265066 DOI: 10.1002/acn3.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE HIV-associated neurocognitive disorder (HAND) is a frequent and heterogeneous complication of HIV, affecting nearly 50% of infected individuals in the combined antiretroviral therapy (cART) era. This is a particularly devastating statistic because the diagnosis of HAND confers an increased risk of HIV-associated morbidity and mortality in affected patients. While cART is helpful in the treatment of the more severe forms of HAND, there is a therapeutic gap in the milder forms of HAND, where cART is less effective. Multiple adjuvant therapies with various mechanisms of action have been studied (N-methyl D-aspartate [NMDA]-receptor antagonists, MAO-B inhibitors, tetracycline-class antibiotics, and others), but none have shown a clear positive effect in HAND. While this lack of efficacy may be because the appropriate therapeutic targets have not yet been determined, we aimed to discuss that study results may also influenced by clinical trial design. METHODS This report is a systematic review of clinical trials of adjuvant therapies for HAND performed from January 1996 through June 2014. RESULTS Possible drawbacks in study design, including lack of standardized case definitions, poorly defined target populations, inappropriate dose selection and measurable outcomes, and brief study durations may have masked true underlying mechanistic effects of previously investigated adjuvant therapies for HAND in specific patient populations. CONCLUSIONS A proposal for streamlining and maximizing the likelihood of success in future clinical studies using a 'learning and confirming' investigational paradigm, incorporating stronger adaptive Phase I/II study designs, computerized modeling, and population/goal of treatment-specific Phase III clinical trials is presented.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Division of Neurology, The Children’s Hospital of
PhiladelphiaPhiladelphia, Pennsylvania
- Department of Neurology, The Perelman School of Medicine
at the University of PennsylvaniaPhiladelphia, Pennsylvania
- Center for Clinical Epidemiology and Biostatistics,
Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, Pennsylvania
| | - Jeffrey S Barrett
- Laboratory for Applied PK/PD, Division of Clinical
Pharmacology & Therapeutics, The Children’s Hospital of PhiladelphiaPhiladelphia, Pennsylvania
| | - Heather E Vezina
- Laboratory for Applied PK/PD, Division of Clinical
Pharmacology & Therapeutics, The Children’s Hospital of PhiladelphiaPhiladelphia, Pennsylvania
| | - Sergei Spitsin
- The Children’s Hospital of Philadelphia Research
InstitutePhiladelphia, Pennsylvania
| | - Steven D Douglas
- The Children’s Hospital of Philadelphia Research
InstitutePhiladelphia, Pennsylvania
- Division of Allergy & Immunology, The
Children’s Hospital of PhiladelphiaPhiladelphia, Pennsylvania
- Department of Pediatrics, The Perelman School of Medicine
at the University of PennsylvaniaPhiladelphia, Pennsylvania
| |
Collapse
|
44
|
Ghosh AK, Yashchuk S, Mizuno A, Chakraborty N, Agniswamy J, Wang YF, Aoki M, Gomez PMS, Amano M, Weber IT, Mitsuya H. Design of gem-difluoro-bis-tetrahydrofuran as P2 ligand for HIV-1 protease inhibitors to improve brain penetration: synthesis, X-ray studies, and biological evaluation. ChemMedChem 2014; 10:107-15. [PMID: 25336073 DOI: 10.1002/cmdc.201402358] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Indexed: 01/10/2023]
Abstract
The structure-based design, synthesis, biological evaluation, and X-ray structural studies of fluorine-containing HIV-1 protease inhibitors are described. The synthesis of both enantiomers of the gem-difluoro-bis-THF ligands was carried out in a stereoselective manner using a Reformatskii-Claisen reaction as the key step. Optically active ligands were converted into protease inhibitors. Two of these inhibitors, (3R,3aS,6aS)-4,4-difluorohexahydrofuro[2,3-b]furan-3-yl(2S,3R)-3-hydroxy-4-((N-isobutyl-4-methoxyphenyl)sulfonamido)-1-phenylbutan-2-yl) carbamate (3) and (3R,3aS,6aS)-4,4-difluorohexahydrofuro[2,3-b]furan-3-yl(2S,3R)-3-hydroxy-4-((N-isobutyl-4-aminophenyl)sulfonamido)phenylbutan-2-yl) carbamate (4), exhibited HIV-1 protease inhibitory Ki values in the picomolar range. Both 3 and 4 showed very potent antiviral activity, with respective EC50 values of 0.8 and 3.1 nM against the laboratory strain HIV-1LAI . The two inhibitors exhibited better lipophilicity profiles than darunavir, and also showed much improved blood-brain barrier permeability in an in vitro model. A high-resolution X-ray structure of inhibitor 4 in complex with HIV-1 protease was determined, revealing that the fluorinated ligand makes extensive interactions with the S2 subsite of HIV-1 protease, including hydrogen bonding interactions with the protease backbone atoms. Moreover, both fluorine atoms on the bis-THF ligand formed strong interactions with the flap Gly 48 carbonyl oxygen atom.
Collapse
Affiliation(s)
- Arun K Ghosh
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907 (USA).
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Guevara-Silva E. Cognitive impairment and antiretroviral treatment in a Peruvian population of patients with human immunodeficiency virus. NEUROLOGÍA (ENGLISH EDITION) 2014. [DOI: 10.1016/j.nrleng.2013.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
46
|
Assaf BT, Knight HL, Miller AD. rhesus cytomegalovirus (macacine herpesvirus 3)-associated facial neuritis in simian immunodeficiency virus-infected rhesus macaques (Macaca mulatta). Vet Pathol 2014; 52:217-23. [PMID: 24686387 DOI: 10.1177/0300985814529313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peripheral neuropathies are common sequelae to human immunodeficiency virus (HIV) infection in humans and are due to a variety of mechanisms, including direct antiretroviral toxicity, HIV-mediated damage, immune-mediated disorders, and opportunistic viral infections. Rhesus macaques (Macaca mulatta) infected with simian immunodeficiency virus (SIV) remain the most consistent animal model for unraveling the pathogenesis of lentiviral-associated disease and its associated opportunistic infections. Rhesus cytomegalovirus (RhCMV) is the most common opportunistic viral infection in rhesus macaques infected with SIV and causes multiorgan pathology; however, its role in peripheral nerve pathology has not been explored. We have identified 115 coinfected cases with SIV and RhCMV, of which 10 cases of RhCMV-associated facial neuritis were found (8.7% prevalence). Histologic lesions were consistent in all cases and ranged from partial to complete obliteration of the nerves of the tongue, lacrimal gland, and other facial tissues with a mixed inflammatory population of neutrophils and macrophages, of which the latter commonly contained intranuclear inclusion bodies. Luxol fast blue staining and myelin basic protein immunohistochemistry confirmed the progressive myelin loss in the peripheral nerves. Bielschowsky silver stain revealed progressive loss of axons directly related to the severity of inflammation. Double immunohistochemistry with spectral imaging analysis revealed RhCMV-infected macrophages directly associated with the neuritis, and there was no evidence to support RhCMV infection of Schwann cells. These results suggest that peripheral nerve damage is a bystander effect secondary to inflammation rather than a direct infection of Schwann cells and warrants further investigations into the pathogenesis of RhCMV-induced peripheral neuropathy.
Collapse
Affiliation(s)
- B T Assaf
- Harvard Medical School, New England Primate Research Center, Division of Comparative Pathology, Southborough, MA, USA Oregon Health and Science University, Oregon National Primate Research Center, Division of Pathobiology and Immunology, Beaverton, OR, USA
| | - H L Knight
- Harvard Medical School, New England Primate Research Center, Division of Comparative Pathology, Southborough, MA, USA
| | - A D Miller
- Harvard Medical School, New England Primate Research Center, Division of Comparative Pathology, Southborough, MA, USA Cornell University College of Veterinary Medicine, Department of Biomedical Sciences, Section of Anatomic Pathology, Ithaca, NY, USA
| |
Collapse
|
47
|
Antiretroviral Protease Inhibitors Accelerate Glutathione Export from Viable Cultured Rat Neurons. Neurochem Res 2014; 39:883-92. [DOI: 10.1007/s11064-014-1284-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
|
48
|
Pepping JK, Otvos L, Surmacz E, Gupta S, Keller JN, Bruce-Keller AJ. Designer adiponectin receptor agonist stabilizes metabolic function and prevents brain injury caused by HIV protease inhibitors. J Neuroimmune Pharmacol 2014; 9:388-98. [PMID: 24562631 DOI: 10.1007/s11481-014-9529-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/06/2014] [Indexed: 02/06/2023]
Abstract
HIV protease inhibitors (PI) are fundamental to combination antiretroviral therapy, which has revolutionized HIV clinical care and produced significant reductions in HIV-associated morbidity and mortality. However, PI administration is frequently associated with severe metabolic impairment, including lipodystrophy, dyslipidemia, and insulin resistance; all of which can contribute to cardiovascular and neurologic co-morbidities. Experimental and epidemiological data support a potentially important role for the adipokine adiponectin in both metabolic and neurologic physiology. This study examined if ADP355, a novel, peptide-based adiponectin receptor agonist, could neutralize the detrimental effects of PI treatment in experimental animal models. Adult male C57BL/6 mice were subjected to a clinically relevant, 4-week regimen of lopinavir/ritonavir, with daily injections of ADP355 administered only during the final 2 weeks of PI exposure. Comprehensive metabolic, neurobehavioral, and biochemical analyses revealed that ADP355 administration partially reversed PI-induced loss of subcutaneous adipose tissue, attenuated PI-induced hyperinsulinemia, hypertriglyceridemia, and hypoadiponectinemia, and prevented PI-induced cognitive impairment and brain injury. Collectively, these data reinforce the link between metabolic co-morbidities and cognitive impairment and suggest that pharmacological reactivation of adiponectin pathways could remediate key aspects of PI-induced metabolic syndrome in clinical settings. Furthermore, therapeutic targeting of adiponectin receptors could show utility in reducing the prevalence and/or severity of HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Jennifer K Pepping
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | | | | | | | | | | |
Collapse
|
49
|
Clifford DB, Ances BM. HIV-associated neurocognitive disorder. THE LANCET. INFECTIOUS DISEASES 2014; 13:976-86. [PMID: 24156898 DOI: 10.1016/s1473-3099(13)70269-x] [Citation(s) in RCA: 445] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurological involvement in HIV is often associated with cognitive impairment. Although severe and progressive neurocognitive impairment has become rare in HIV clinics in the era of potent antiretroviral therapy, most patients with HIV worldwide have poor outcomes on formal neurocognitive tests. In this Review, we describe the manifestations of HIV-associated neurocognitive disorder in the era of effective HIV therapy, outline diagnosis and treatment recommendations, and explore the research questions that remain. Although comorbid disorders, such as hepatitis C infection or epilepsy, might cause some impairment, their prevalence is insufficient to explain the frequency with which it is encountered. HIV disease markers, such as viral load and CD4 cell counts, are not strongly associated with ongoing impairment on treatment, whereas cardiovascular disease markers and inflammatory markers are. New cerebrospinal fluid and neuroimaging biomarkers are needed to detect and follow impairment. Ongoing research efforts to optimise HIV therapy within the CNS, and potentially to intervene in downstream mechanisms of neurotoxicity, remain important avenues for future investigation. Ultimately, the full control of virus in the brain is a necessary step in the goal of HIV eradication.
Collapse
Affiliation(s)
- David B Clifford
- Department of Neurology and Medicine, Washington University in St Louis, St Louis, MO, USA.
| | | |
Collapse
|
50
|
Abstract
Viruses are important pathogens of the nervous system. Here we describe the basic properties of viruses and the principles of virus classification, evolution, structure, and replication, with a focus on neurotropic viruses that are important neuropathogens of humans. These properties then provide the background for introductions to pathogenesis of viral diseases of the nervous system, host immune responses to virus infection, and the diagnosis and treatment of virus infections of the nervous system.
Collapse
Affiliation(s)
- Philip E Pellett
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Subhash Mitra
- Division of Infectious Diseases, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA; Division of Infectious Diseases, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Thomas C Holland
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|