1
|
Szabo L, Lejri I, Grimm A, Eckert A. Spermidine Enhances Mitochondrial Bioenergetics in Young and Aged Human-Induced Pluripotent Stem Cell-Derived Neurons. Antioxidants (Basel) 2024; 13:1482. [PMID: 39765811 PMCID: PMC11673406 DOI: 10.3390/antiox13121482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
The accumulation of damaged mitochondria has long been considered a hallmark of the aging process. Among various factors, age-related mitochondrial alterations comprise bioenergetic impairments and disturbances in reactive oxygen species (ROS) control, thereby negatively affecting mitochondrial performance and ultimately accelerating aging. Previous studies have revealed that polyamine spermidine appears to exert health-protective and lifespan-promoting effects. Notably, recent findings have also described a spermidine-induced improvement in age-associated mitochondrial dysfunction, but the beneficial effects of spermidine on aged mitochondria have not been entirely examined yet. Here, we show that spermidine positively regulates several parameters related to mitochondrial bioenergetics and mitochondrial redox homeostasis in young and aged human-induced pluripotent stem cell-derived neurons. We report that spermidine treatment increases adenosine triphosphate production and mitochondrial membrane potential, which is accompanied by an attenuation in mitochondrial ROS levels in both age groups. Furthermore, we demonstrate a spermidine-mediated amelioration in mitochondrial respiration in both young and aged neurons. Overall, our findings suggest that nutritional spermidine supplementation might represent an attractive therapeutic approach to enhance mitochondrial function, consequently decelerating aging.
Collapse
Affiliation(s)
- Leonora Szabo
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
| | - Imane Lejri
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
| | - Amandine Grimm
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4055 Basel, Switzerland
| | - Anne Eckert
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
| |
Collapse
|
2
|
Riou A, Broeglin A, Grimm A. Mitochondrial transplantation in brain disorders: Achievements, methods, and challenges. Neurosci Biobehav Rev 2024; 169:105971. [PMID: 39638101 DOI: 10.1016/j.neubiorev.2024.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Mitochondrial transplantation is a new treatment strategy aimed at repairing cellular damage by introducing healthy mitochondria into injured cells. The approach shows promise in protecting brain function in various neurological disorders such as traumatic brain injury/ischemia, neurodegenerative diseases, cognitive disorders, and cancer. These conditions are often characterized by mitochondrial dysfunction, leading to impaired energy production and neuronal death. The review highlights promising preclinical studies where mitochondrial transplantation has been shown to restore mitochondrial function, reduce inflammation, and improve cognitive and motor functions in several animal models. It also addresses significant challenges that must be overcome before this therapy can be clinically applied. Current efforts to overcome these challenges, including advancements in isolation techniques, cryopreservation methods, finding an appropriate mitochondria source, and potential delivery routes, are discussed. Considering the rising incidence of neurological disorders and the limited effectiveness of current treatments, this review offers a comprehensive overview of the current state of mitochondrial transplantation research and critically assesses the remaining obstacles. It provides valuable insights that could steer future studies and potentially lead to more effective treatments for various brain disorders.
Collapse
Affiliation(s)
- Aurélien Riou
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel 4055, Switzerland
| | - Aline Broeglin
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel 4055, Switzerland
| | - Amandine Grimm
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel 4055, Switzerland; Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, Basel 4002, Switzerland.
| |
Collapse
|
3
|
Comyn T, Preat T, Pavlowsky A, Plaçais PY. Mitochondrial plasticity: An emergent concept in neuronal plasticity and memory. Neurobiol Dis 2024; 203:106740. [PMID: 39557174 DOI: 10.1016/j.nbd.2024.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024] Open
Abstract
Mitochondria are classically viewed as 'on demand' energy suppliers to neurons in support of their activity. In order to adapt to a wide range of demands, mitochondria need to be highly dynamic and capable of adjusting their metabolic activity, shape, and localization. Although these plastic properties give them a central support role in basal neuronal physiology, recent lines of evidence point toward a role for mitochondria in the regulation of high-order cognitive functions such as memory formation. In this review, we discuss the interplay between mitochondrial function and neural plasticity in sustaining memory formation at the molecular and cellular levels. First, we explore the global significance of mitochondria in memory formation. Then, we will detail the memory-relevant cellular and molecular mechanisms of mitochondrial plasticity. Finally, we focus on those mitochondrial functions, including but not limited to ATP production, that give mitochondria their pivotal role in memory formation. Altogether, this review highlights the central role of mitochondrial structural and functional plasticity in supporting and regulating neuronal plasticity and memory.
Collapse
Affiliation(s)
- Typhaine Comyn
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| | - Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| |
Collapse
|
4
|
Giménez-Palomo A, Andreu H, de Juan O, Olivier L, Ochandiano I, Ilzarbe L, Valentí M, Stoppa A, Llach CD, Pacenza G, Andreazza AC, Berk M, Vieta E, Pacchiarotti I. Mitochondrial Dysfunction as a Biomarker of Illness State in Bipolar Disorder: A Critical Review. Brain Sci 2024; 14:1199. [PMID: 39766398 PMCID: PMC11674880 DOI: 10.3390/brainsci14121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Mitochondria are organelles involved in different cellular functions, especially energy production. A relationship between mitochondrial dysfunction and mood disorders, especially bipolar disorder (BD), has been reported in the scientific literature, which suggests altered energy production and higher levels of oxidative stress compared to healthy controls. Specifically, in BD, the hypothesis of a biphasic pattern of energy availability has been postulated according to mood states. Current evidence highlights the presence of mitochondrial dysfunction in BD and variations between the manic, depressive, and euthymic phases. These findings need to be confirmed in future studies to identify biomarkers that may lead to individualized management of patients with BD and also to identify profiles with a higher risk of presenting an unfavorable course of illness, which would enable the design of preventive and therapeutic strategies in determined subpopulations of patients with BD. The limitations of this review include the non-systematic methodology, variety of mitochondrial-related functions associated with BD, heterogeneous study designs, preliminary evidence for specific findings, and limited recommendations regarding the use of mitochondrial modulators in BD.
Collapse
Affiliation(s)
- Anna Giménez-Palomo
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Helena Andreu
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Oscar de Juan
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Luis Olivier
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Iñaki Ochandiano
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Lidia Ilzarbe
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Marc Valentí
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Aldo Stoppa
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Cristian-Daniel Llach
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5G 1M9, Canada;
| | - Giulio Pacenza
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
| | - Ana Cristina Andreazza
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON M5S 1A8, Canada
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine and Barwon Health, Deakin University, Geelong, VIC 3220, Australia
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
| | - Isabella Pacchiarotti
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
| |
Collapse
|
5
|
Cicali KA, Tapia-Rojas C. Synaptic mitochondria: A crucial factor in the aged hippocampus. Ageing Res Rev 2024; 101:102524. [PMID: 39369797 DOI: 10.1016/j.arr.2024.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Aging is a multifaceted biological process characterized by progressive molecular and cellular damage accumulation. The brain hippocampus undergoes functional deterioration with age, caused by cellular deficits, decreased synaptic communication, and neuronal death, ultimately leading to memory impairment. One of the factors contributing to this dysfunction is the loss of mitochondrial function. In neurons, mitochondria are categorized into synaptic and non-synaptic pools based on their location. Synaptic mitochondria, situated at the synapses, play a crucial role in maintaining neuronal function and synaptic plasticity, whereas non-synaptic mitochondria are distributed throughout other neuronal compartments, supporting overall cellular metabolism and energy supply. The proper function of synaptic mitochondria is essential for synaptic transmission as they provide the energy required and regulate calcium homeostasis at the communication sites between neurons. Maintaining the structure and functionality of synaptic mitochondria involves intricate processes, including mitochondrial dynamics such as fission, fusion, transport, and quality control mechanisms. These processes ensure that mitochondria remain functional, replace damaged organelles, and sustain cellular homeostasis at synapses. Notably, deficiencies in these mechanisms have been increasingly associated with aging and the onset of age-related neurodegenerative diseases. Synaptic mitochondria from the hippocampus are particularly vulnerable to age-related changes, including alterations in morphology and a decline in functionality, which significantly contribute to decreased synaptic activity during aging. This review comprehensively explores the critical roles that mitochondrial dynamics and quality control mechanisms play in preserving synaptic activity and neuronal function. It emphasizes the emerging evidence linking the deterioration of synaptic mitochondria to the aging process and the development of neurodegenerative diseases, highlighting the importance of these organelles from hippocampal neurons as potential therapeutic targets for mitigating cognitive decline and synaptic degeneration associated with aging. The novelty of this review lies in its focus on the unique vulnerability of hippocampal synaptic mitochondria to aging, underscoring their importance in maintaining brain function across the lifespan.
Collapse
Affiliation(s)
- Karina A Cicali
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile.
| |
Collapse
|
6
|
Niu W, Yu S, Li X, Wang Z, Chen R, Michalski C, Jahangiri A, Zohdy Y, Chern JJ, Whitworth TJ, Wang J, Xu J, Zhou Y, Qin Z, Li B, Gambello MJ, Peng J, Wen Z. Longitudinal multi-omics reveals pathogenic TSC2 variants disrupt developmental trajectories of human cortical organoids derived from Tuberous Sclerosis Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617121. [PMID: 39416123 PMCID: PMC11482767 DOI: 10.1101/2024.10.07.617121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Tuberous Sclerosis Complex (TSC), an autosomal dominant condition, is caused by heterozygous mutations in either the TSC1 or TSC2 genes, manifesting in systemic growth of benign tumors. In addition to brain lesions, neurologic sequelae represent the greatest morbidity in TSC patients. Investigations utilizing TSC1/2-knockout animal or human stem cell models suggest that TSC deficiency-causing hyper-activation of mTOR signaling might precipitate anomalous neurodevelopmental processes. However, how the pathogenic variants of TSC1/2 genes affect the longitudinal trajectory of human brain development remains largely unexplored. Here, we employed 3-dimensional cortical organoids derived from induced pluripotent stem cells (iPSCs) from TSC patients harboring TSC2 variants, alongside organoids from age- and sex-matched healthy individuals as controls. Through comprehensively longitudinal molecular and cellular analyses of TSC organoids, we found that TSC2 pathogenic variants dysregulate neurogenesis, synaptogenesis, and gliogenesis, particularly for reactive astrogliosis. The altered developmental trajectory of TSC organoids significantly resembles the molecular signatures of neuropsychiatric disorders, including autism spectrum disorders, epilepsy, and intellectual disability. Intriguingly, single cell transcriptomic analyses on TSC organoids revealed that TSC2 pathogenic variants disrupt the neuron/reactive astrocyte crosstalk within the NLGN-NRXN signaling network. Furthermore, cellular and electrophysiological assessments of TSC cortical organoids, along with proteomic analyses of synaptosomes, demonstrated that the TSC2 variants precipitate perturbations in synaptic transmission, neuronal network activity, mitochondrial translational integrity, and neurofilament formation. Notably, similar perturbations were observed in surgically resected cortical specimens from TSC patients. Collectively, our study illustrates that disease-associated TSC2 variants disrupt the neurodevelopmental trajectories through perturbations of gene regulatory networks during early cortical development, leading to mitochondrial dysfunction, aberrant neurofilament formation, impaired synaptic formation and neuronal network activity.
Collapse
Affiliation(s)
- Weibo Niu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- These authors contributed equally
| | - Shaojun Yu
- Department of Computer Science, Emory University, Atlanta, GA 30322, USA
- These authors contributed equally
| | - Xiangru Li
- College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Zhen Wang
- Department of Structural Biology, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Rui Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christina Michalski
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Arman Jahangiri
- Department of Neurological Surgery, Emory University, Atlanta, GA 30322, USA
- Pediatric Neurosurgery Associates at Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Youssef Zohdy
- Department of Neurological Surgery, Emory University, Atlanta, GA 30322, USA
- Pediatric Neurosurgery Associates at Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Joshua J Chern
- Department of Neurological Surgery, Emory University, Atlanta, GA 30322, USA
- Pediatric Neurosurgery Associates at Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Ted J Whitworth
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, GA 30322, USA
| | - Jianjun Wang
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jie Xu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ying Zhou
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Junmin Peng
- Department of Structural Biology, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Giacco A, Iervolino S, Cioffi F, Peluso T, Mercurio G, Roberto L, de Rosa V, Cammarota M, Varricchio S, Staibano S, Boscia F, Canzoniero LMT, De Felice M, Ambrosino C, Moreno M, Silvestri E. Brain Abnormalities in Young Single- and Double-Heterozygote Mice for Both Nkx2-1- and Pax8-Null Mutations. Mol Neurobiol 2024:10.1007/s12035-024-04524-7. [PMID: 39375286 DOI: 10.1007/s12035-024-04524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
In humans and mice, Nkx2-1 and Pax8 are crucial morphogenic transcription factors defining the early development of the thyroid and specific extrathyroidal tissues. By using 3-month-old single or double heterozygotes for Nkx2-1- and Pax8-null mutations (DHTP) mice, we studied brain abnormalities under different human-like dysthyroidisms, focusing on putative alterations of specific neurotransmitter systems, expression of markers of pre- and post-synaptic function and, given the physio-pathological role mitochondria have in controlling the bioenergetic status of neurons, of mitochondrial dynamics and oxidative balance. Compared to Wt controls, DHTP mice, bearing both systemic and brain hypothyroidism, showed altered expression of synaptic markers, generic and cholinergic (corroborated by immunohistochemistry in caudate, putamen, hippocampus, and basal forebrain) and glutamatergic ones, and reduced expression of key proteins of synaptic plasticity potency and several isoforms of glutamate receptors. The brain of DHTP mice was characterized by lower levels of H2O2 and imbalanced mitochondrial dynamics. Nkx2-1 + / - mice showed dopaminergic neuron-specific alterations, morphologically, more evident in the substantia nigra of DHTP mice. Nkx2-1 + / - mice also showed enhanced mitochondrial biogenesis and oxidative capacity likely as a global response of the brain to Nkx2-1 haploinsufficiency and/or to their elevated T3 circulating levels. Reduced transcription of both tyrosine hydroxylase and dopamine transporter was observed in Pax8 + / - euthyroid mice, suggesting a dopaminergic dysfunction, albeit likely at an early stage, but consistent with the deregulated glucose homeostasis observed in such animals. Overall, new information was obtained on the impact of haploinsufficiency of Pax8 and NKx2-1 on several brain neuroanatomical, molecular, and neurochemical aspects, thus opening the way for future targeting brain dysfunctions in the management of both overt and subclinical thyroid dysfunctions.
Collapse
Affiliation(s)
- Antonia Giacco
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100, Benevento, Italy
| | - Stefania Iervolino
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100, Benevento, Italy
| | - Federica Cioffi
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100, Benevento, Italy
| | - Teresa Peluso
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100, Benevento, Italy
| | - Giovanna Mercurio
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100, Benevento, Italy
| | - Luca Roberto
- Biogem, Biology and Molecular Genetics Institute, Via Camporeale, 83031, Ariano Irpino, Av, Italy
| | - Valeria de Rosa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Mariarosaria Cammarota
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Silvia Varricchio
- Department of Advanced Biomedical Sciences, Pathology Section, University of Naples Federico II, 80131, Naples, Italy
| | - Stefania Staibano
- Department of Advanced Biomedical Sciences, Pathology Section, University of Naples Federico II, 80131, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | | - Mario De Felice
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Via Pansini 6, 80131, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 6, 80131, Naples, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100, Benevento, Italy
- Biogem, Biology and Molecular Genetics Institute, Via Camporeale, 83031, Ariano Irpino, Av, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Via Pansini 6, 80131, Naples, Italy
| | - Maria Moreno
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100, Benevento, Italy
| | - Elena Silvestri
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100, Benevento, Italy.
| |
Collapse
|
8
|
Song M, Qiang Y, Zhao X, Song F. Cyclin-dependent Kinase 5 and Neurodegenerative Diseases. Mol Neurobiol 2024; 61:7287-7302. [PMID: 38378992 DOI: 10.1007/s12035-024-04047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Neurodegenerative diseases are a group of diseases characterized by the progressive loss of neurons, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. These diseases have a high incidence and mortality rate globally, placing a heavy burden on patients and their families. The pathogenesis of neurodegenerative diseases is complex, and there are no effective treatments at present. Cyclin-dependent kinase 5 is a proline-directed serine/threonine protein kinase that is closely related to the development and function of the nervous system. Under physiological conditions, it is involved in regulating the process of neuronal proliferation, differentiation, migration, and synaptic plasticity. Moreover, there is increasing evidence that cyclin-dependent kinase 5 also plays an important role in the pathogenesis of neurodegenerative diseases. In this review, we address the biological characteristics of cyclin-dependent kinase 5 and its role in neurodegenerative diseases. In particular, this review highlights the underlying mechanistic linkages between cyclin-dependent kinase 5 and mitochondrial dysfunction, oxidative stress and neuroinflammation in the context of neurodegeneration. Finally, we also summarize the currently available cyclin-dependent kinase 5 inhibitors and their prospects for the treatment of neurodegenerative diseases. Taken together, a better understanding of the molecular mechanisms of cyclin-dependent kinase 5 involved in neurodegenerative diseases can lead to the development of new strategies for the prevention and treatment of these devastating diseases.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yalong Qiang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
9
|
LeVine SM. The Azalea Hypothesis of Alzheimer Disease: A Functional Iron Deficiency Promotes Neurodegeneration. Neuroscientist 2024; 30:525-544. [PMID: 37599439 PMCID: PMC10876915 DOI: 10.1177/10738584231191743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Chlorosis in azaleas is characterized by an interveinal yellowing of leaves that is typically caused by a deficiency of iron. This condition is usually due to the inability of cells to properly acquire iron as a consequence of unfavorable conditions, such as an elevated pH, rather than insufficient iron levels. The causes and effects of chlorosis were found to have similarities with those pertaining to a recently presented hypothesis that describes a pathogenic process in Alzheimer disease. This hypothesis states that iron becomes sequestered (e.g., by amyloid β and tau), causing a functional deficiency of iron that disrupts biochemical processes leading to neurodegeneration. Additional mechanisms that contribute to iron becoming unavailable include iron-containing structures not undergoing proper recycling (e.g., disrupted mitophagy and altered ferritinophagy) and failure to successfully translocate iron from one compartment to another (e.g., due to impaired lysosomal acidification). Other contributors to a functional deficiency of iron in patients with Alzheimer disease include altered metabolism of heme or altered production of iron-containing proteins and their partners (e.g., subunits, upstream proteins). A review of the evidence supporting this hypothesis is presented. Also, parallels between the mechanisms underlying a functional iron-deficient state in Alzheimer disease and those occurring for chlorosis in plants are discussed. Finally, a model describing the generation of a functional iron deficiency in Alzheimer disease is put forward.
Collapse
Affiliation(s)
- Steven M. LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, US
| |
Collapse
|
10
|
Kui L, Ma P, Zhao W, Yan B, Kuang X, Li B, Geng R, Zheng T, Zheng Q. Developmental cochlear defects are involved in early-onset hearing loss in A/J mice. Dev Dyn 2024. [PMID: 39291400 DOI: 10.1002/dvdy.741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND A/J mice exhibited a severe hearing loss (HL) at juvenile stage. Up-to-date, studies on HL in A/J mice have mostly focused on the damage or dysfunction of hair cells (HCs), spiral ganglion neurons (SGNs), and stereocilia. We examined A/J mice at the early postnatal stage and found that the damage and the loss of outer hair cells (OHCs) are not severe enough to explain the profound HL observed at this age, which suggests that other cochlear defects may be responsible for HL. To better understand the mechanisms of early-onset HLin A/J mice, we characterized the pathology of the cochlea from postnatal day 3 to day 21. RESULTS Our results showed defects in cochlear HC stereocilia and MET channel function as early as 3 days old. We also found abnormal localization and a significant reduction in the number of ribbon synapses in 2-week-old A/J mice. There are also abnormalities in the cochlear nerve innervation and terminal swellings in 3-week-old A/J mice. CONCLUSION All of the abnormalities of cochlear existed in the A/J mice were identified in the juvenile stage and occurred before HCs or auditory nerve loss and was the initial pathological change. Our results suggest that developmental defects and subsequent cochlear degeneration are responsible for early-onset hearing loss in A/J mice.
Collapse
Affiliation(s)
- Lihong Kui
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Peng Ma
- Department of Medical Genetics and Cell Biology, Binzhou Medical University, Yantai, China
| | - Wenben Zhao
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Bin Yan
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Xiaojing Kuang
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| |
Collapse
|
11
|
Khaliulin I, Hamoudi W, Amal H. The multifaceted role of mitochondria in autism spectrum disorder. Mol Psychiatry 2024:10.1038/s41380-024-02725-z. [PMID: 39223276 DOI: 10.1038/s41380-024-02725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Normal brain functioning relies on high aerobic energy production provided by mitochondria. Failure to supply a sufficient amount of energy, seen in different brain disorders, including autism spectrum disorder (ASD), may have a significant negative impact on brain development and support of different brain functions. Mitochondrial dysfunction, manifested in the abnormal activities of the electron transport chain and impaired energy metabolism, greatly contributes to ASD. The aberrant functioning of this organelle is of such high importance that ASD has been proposed as a mitochondrial disease. It should be noted that aerobic energy production is not the only function of the mitochondria. In particular, these organelles are involved in the regulation of Ca2+ homeostasis, different mechanisms of programmed cell death, autophagy, and reactive oxygen and nitrogen species (ROS and RNS) production. Several syndromes originated from mitochondria-related mutations display ASD phenotype. Abnormalities in Ca2+ handling and ATP production in the brain mitochondria affect synaptic transmission, plasticity, and synaptic development, contributing to ASD. ROS and Ca2+ regulate the activity of the mitochondrial permeability transition pore (mPTP). The prolonged opening of this pore affects the redox state of the mitochondria, impairs oxidative phosphorylation, and activates apoptosis, ultimately leading to cell death. A dysregulation between the enhanced mitochondria-related processes of apoptosis and the inhibited autophagy leads to the accumulation of toxic products in the brains of individuals with ASD. Although many mitochondria-related mechanisms still have to be investigated, and whether they are the cause or consequence of this disorder is still unknown, the accumulating data show that the breakdown of any of the mitochondrial functions may contribute to abnormal brain development leading to ASD. In this review, we discuss the multifaceted role of mitochondria in ASD from the various aspects of neuroscience.
Collapse
Affiliation(s)
- Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wajeha Hamoudi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
12
|
Qu L, Xu S, Lan Z, Fang S, Xu Y, Zhu X. Apolipoprotein E in Alzheimer's Disease: Focus on Synaptic Function and Therapeutic Strategy. Mol Neurobiol 2024:10.1007/s12035-024-04449-1. [PMID: 39214953 DOI: 10.1007/s12035-024-04449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Synaptic dysfunction is a critical pathological feature in the early phase of Alzheimer's disease (AD) that precedes typical hallmarks of AD, including beta-amyloid (Aβ) plaques and neurofibrillary tangles. However, the underlying mechanism of synaptic dysfunction remains incompletely defined. Apolipoprotein E (APOE) has been shown to play a key role in the pathogenesis of AD, and the ε4 allele of APOE remains the strongest genetic risk factor for sporadic AD. It is widely recognized that APOE4 accelerates the development of Aβ and tau pathology in AD. Recent studies have indicated that APOE affects synaptic function through a variety of pathways. Here, we summarize the mechanism of modulating synapses by various APOE isoforms and demonstrate the therapeutic potential by targeting APOE4 for AD treatment.
Collapse
Affiliation(s)
- Longjie Qu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Shuai Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhen Lan
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Shuang Fang
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210008, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China.
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, 210008, China.
| |
Collapse
|
13
|
Chen HK, Wang YH, Lei CS, Guo YR, Tang MC, Tsai TF, Chen YF, Wang CH. Loss of Cisd2 Exacerbates the Progression of Age-Related Hearing Loss. Aging Dis 2024:AD.2024.1036. [PMID: 39226169 DOI: 10.14336/ad.2024.1036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024] Open
Abstract
Age-related hearing loss (ARHL) is a disease that impacts human quality of life and contributes to the progression of other neuronal problems. Various stressors induce an increase in free radicals, destroy mitochondria to further contribute to cellular malfunction, and compromise cell viability, ultimately leading to functional decline. Cisd2, a master gene for Marfan syndrome, plays an essential role in maintaining mitochondrial integrity and functions. As shown by our data, specific deletion of Cisd2 in the cochlea exacerbated the hearing impairment of ARHL in C57BL/6 mice. Increased defects in mitochondrial function, potassium homeostasis and synapse activity were observed in the Cisd2-deleted mouse models. These mechanistic phenotypes combined with oxidative stress contribute to cell death in the whole cochlea. Human patients with obviously deteriorated ARHL had low Cisd2 expression; therefore, Cisd2 may be a potential target for designing therapeutic methods to attenuate the disease progression of ARHL.
Collapse
Affiliation(s)
- Hang-Kang Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114201, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Yen-Hsin Wang
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Cing-Syuan Lei
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Yu-Ru Guo
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ming-Chi Tang
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 11221, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Aging and Health Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Genome Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Yi-Fan Chen
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Hung Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114201, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| |
Collapse
|
14
|
Pradeepkiran JA, Baig J, Seman A, Reddy PH. Mitochondria in Aging and Alzheimer's Disease: Focus on Mitophagy. Neuroscientist 2024; 30:440-457. [PMID: 36597577 DOI: 10.1177/10738584221139761] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid β and phosphorylated τ protein aggregates in the brain, which leads to the loss of neurons. Under the microscope, the function of mitochondria is uniquely primed to play a pivotal role in neuronal cell survival, energy metabolism, and cell death. Research studies indicate that mitochondrial dysfunction, excessive oxidative damage, and defective mitophagy in neurons are early indicators of AD. This review article summarizes the latest development of mitochondria in AD: 1) disease mechanism pathways, 2) the importance of mitochondria in neuronal functions, 3) metabolic pathways and functions, 4) the link between mitochondrial dysfunction and mitophagy mechanisms in AD, and 5) the development of potential mitochondrial-targeted therapeutics and interventions to treat patients with AD.
Collapse
Affiliation(s)
| | - Javaria Baig
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ashley Seman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
15
|
K Soman S, Swain M, Dagda RK. BDNF-TrkB Signaling in Mitochondria: Implications for Neurodegenerative Diseases. Mol Neurobiol 2024:10.1007/s12035-024-04357-4. [PMID: 39030441 DOI: 10.1007/s12035-024-04357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal development, synaptic plasticity, and overall neuronal health by binding to its receptor, tyrosine receptor kinase B (TrkB). This review delves into the intricate mechanisms through which BDNF-TrkB signaling influences mitochondrial function and potentially influences pathology in neurodegenerative diseases. This review highlights the BDNF-TrkB signaling pathway which regulates mitochondrial bioenergetics, biogenesis, and dynamics, mitochondrial processes vital for synaptic transmission and plasticity. Furthermore, we explore how the BDNF-TrkB-PKA signaling in the cytosol and in mitochondria affects mitochondrial transport and distribution and mitochondrial content, which is crucial for supporting the energy demands of synapses. The dysregulation of this signaling pathway is linked to various neurodegenerative diseases, including Alzheimer's and Parkinson's disease, which are characterized by mitochondrial dysfunction and reduced BDNF expression. By examining seminal studies that have characterized this signaling pathway in health and disease, the present review underscores the potential of enhancing BDNF-TrkB signaling to mitigate mitochondrial dysfunction in neurodegenerative diseases, offering insights into therapeutic strategies to enhance neuronal resilience and function.
Collapse
Affiliation(s)
- Smijin K Soman
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Maryann Swain
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA.
| |
Collapse
|
16
|
Cai G, Xu J, Zhang C, Jiang J, Chen G, Chen J, Liu Q, Xu G, Lan Y. Identifying biomarkers related to motor function in chronic stroke: A fNIRS and TMS study. CNS Neurosci Ther 2024; 30:e14889. [PMID: 39073240 DOI: 10.1111/cns.14889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Upper limb motor impairment commonly occurs after stroke, impairing quality of life. Brain network reorganization likely differs between subgroups with differing impairment severity. This study explored differences in functional connectivity (FC) and corticospinal tract (CST) integrity between patients with mild/moderate versus severe hemiplegia poststroke to clarify the neural correlates underlying motor deficits. METHOD Sixty chronic stroke patients with upper limb motor impairment were categorized into mild/moderate and severe groups based on Fugl-Meyer scores. Resting-state FC was assessed using functional near-infrared spectroscopy (fNIRS) to compare connectivity patterns between groups across motor regions. CST integrity was evaluated by inducing motor evoked potentials (MEP) via transcranial magnetic stimulation. RESULTS Compared to the mild/moderate group, the severe group exhibited heightened premotor cortex-primary motor cortex (PMC-M1) connectivity (t = 4.56, p < 0.01). Absence of MEP was also more frequent in the severe group (χ2 = 12.31, p = 0.01). Bayesian models effectively distinguished subgroups and identified the PMC-M1 connection as highly contributory (accuracy = 91.30%, area under the receiver operating characteristic curve [AUC] = 0.86). CONCLUSION Distinct patterns of connectivity and corticospinal integrity exist between stroke subgroups with differing impairments. Strengthened connectivity potentially indicates recruitment of additional motor resources to compensate for damage. These findings elucidate the neural correlates underlying motor deficits poststroke and could guide personalized, network-based therapies targeting predictive biomarkers to improve rehabilitation outcomes.
Collapse
Affiliation(s)
- Guiyuan Cai
- Department of Rehabilitation Medicine, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiayue Xu
- Department of Rehabilitation Medicine, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Cailing Zhang
- Department of Rehabilitation Medicine, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junbo Jiang
- Department of Rehabilitation Medicine, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Gengbin Chen
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Jialin Chen
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Quan Liu
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Guangqing Xu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation Medicine, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Aging Frailty and Neurorehabilitation, Guangzhou, China
| |
Collapse
|
17
|
Speer KE, Naumovski N, McKune AJ. Heart rate variability to track autonomic nervous system health in young children: Effects of physical activity and cardiometabolic risk factors. Physiol Behav 2024; 281:114576. [PMID: 38692385 DOI: 10.1016/j.physbeh.2024.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Evidence for a key role of dysregulated autonomic nervous system (ANS) activity in maladaptive stress response/recovery and non-communicable disease development is extensive. Monitoring ANS activity via regular heart rate variability (HRV) measurement is growing in popularity in adult populations given that low HRV has been associated with ANS dysregulation, poor stress response/reactivity, increased cardiometabolic disease risk and early mortality. Although cardiometabolic disease may originate in early life, regular HRV measurement for assessing ANS activity in childhood populations, especially those consisting of children < 6 years of age, remains largely unpractised. A greater understanding of ANS activity modifiers in early life may improve analysis and interpretation of HRV measurements, thereby optimising its usefulness. Taking into consideration that HRV and ANS activity can be improved via daily engagement in physical activity (PA), this review will discuss the ANS and HRV, ANS activity modifiers, cardiometabolic disease risk factors and PA as they relate to childhood/adolescent populations (≤ 18 years old).
Collapse
Affiliation(s)
- Kathryn E Speer
- Faculty of Health, University of Canberra, 11 Kirinari Street, Bruce, ACT, 2617, Australia; Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, 11 Kirinari Street, Bruce, ACT, 2617, Australia; Research Institute of Sport and Exercise, University of Canberra, 11 Kirinari Street, Bruce, 2617, Australia.
| | - Nenad Naumovski
- Faculty of Health, University of Canberra, 11 Kirinari Street, Bruce, ACT, 2617, Australia; Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, 11 Kirinari Street, Bruce, ACT, 2617, Australia; Research Institute of Sport and Exercise, University of Canberra, 11 Kirinari Street, Bruce, 2617, Australia; Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, 17671, Greece
| | - Andrew J McKune
- Faculty of Health, University of Canberra, 11 Kirinari Street, Bruce, ACT, 2617, Australia; Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, 11 Kirinari Street, Bruce, ACT, 2617, Australia; Research Institute of Sport and Exercise, University of Canberra, 11 Kirinari Street, Bruce, 2617, Australia; Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, 4000, South Africa
| |
Collapse
|
18
|
Zhang W, Jiao B, Yu S, Zhang C, Zhang K, Liu B, Zhang X. Histone deacetylase as emerging pharmacological therapeutic target for neuropathic pain: From epigenetic to selective drugs. CNS Neurosci Ther 2024; 30:e14745. [PMID: 38715326 PMCID: PMC11077000 DOI: 10.1111/cns.14745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Neuropathic pain remains a formidable challenge for modern medicine. The first-line pharmacological therapies exhibit limited efficacy and unfavorable side effect profiles, highlighting an unmet need for effective therapeutic medications. The past decades have witnessed an explosion in efforts to translate epigenetic concepts into pain therapy and shed light on epigenetics as a promising avenue for pain research. Recently, the aberrant activity of histone deacetylase (HDAC) has emerged as a key mechanism contributing to the development and maintenance of neuropathic pain. AIMS In this review, we highlight the distinctive role of specific HDAC subtypes in a cell-specific manner in pain nociception, and outline the recent experimental evidence supporting the therapeutic potential of HDACi in neuropathic pain. METHODS We have summarized studies of HDAC in neuropathic pain in Pubmed. RESULTS HDACs, widely distributed in the neuronal and non-neuronal cells of the dorsal root ganglion and spinal cord, regulate gene expression by deacetylation of histone or non-histone proteins and involving in increased neuronal excitability and neuroinflammation, thus promoting peripheral and central sensitization. Importantly, pharmacological manipulation of aberrant acetylation using HDAC-targeted inhibitors (HDACi) has shown promising pain-relieving properties in various preclinical models of neuropathic pain. Yet, many of which exhibit low-specificity that may induce off-target toxicities, underscoring the necessity for the development of isoform-selective HDACi in pain management. CONCLUSIONS Abnormally elevated HDACs promote neuronal excitability and neuroinflammation by epigenetically modulating pivotal gene expression in neuronal and immune cells, contributing to peripheral and central sensitization in the progression of neuropathic pain, and HDACi showed significant efficacy and great potential for alleviating neuropathic pain.
Collapse
Affiliation(s)
- Wencui Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bo Jiao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shangchen Yu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Caixia Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Kaiwen Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Baowen Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xianwei Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
19
|
Si J, Chen X, Qi K, Li D, Liu B, Zheng Y, Ji E, Yang S. Shengmaisan combined with Liuwei Dihuang Decoction alleviates chronic intermittent hypoxia-induced cognitive impairment by activating the EPO/EPOR/JAK2 signaling pathway. Chin J Nat Med 2024; 22:426-440. [PMID: 38796216 DOI: 10.1016/s1875-5364(24)60640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 05/28/2024]
Abstract
Chronic intermittent hypoxia (CIH), a principal pathophysiological aspect of obstructive sleep apnea (OSA), is associated with cognitive deficits. Clinical evidence suggests that a combination of Shengmaisan and Liuwei Dihuang Decoctions (SMS-LD) can enhance cognitive function by nourishing yin and strengthening the kidneys. This study aimed to assess the efficacy and underlying mechanisms of SMS-LD in addressing cognitive impairments induced by CIH. We exposed C57BL/6N mice to CIH for five weeks (20%-5% O2, 5 min/cycle, 8 h/day) and administered SMS-LD intragastrically (15.0 or 30 g·kg-1·day) 30 min before each CIH session. Additionally, AG490, a JJanus kinase 2 (JAK2) inhibitor, was administered via intracerebroventricular injection. Cognitive function was evaluated using the Morris water maze, while synaptic and mitochondrial structures were examined by transmission electron microscopy. Oxidative stress levels were determined using DHE staining, and the activation of the erythropoietin (ER)/ER receptor (EPOR)/JAK2 signaling pathway was analyzed through immunohistochemistry and Western blotting. To further investigate molecular mechanisms, HT22 cells were treated in vitro with either SMS-LD medicated serum alone or in combination with AG490 and then exposed to CIH for 48 h. Our results indicate that SMS-LD significantly mitigated CIH-induced cognitive impairments in mice. Specifically, SMS-LD treatment enhanced dendritic spine density, ameliorated mitochondrial dysfunction, reduced oxidative stress, and activated the EPO/EPOR/JAK2 signaling pathway. Conversely, AG490 negated SMS-LD's neuroprotective and cognitive improvement effects under CIH conditions. These findings suggest that SMS-LD's beneficial impact on cognitive impairment and synaptic and mitochondrial integrity under CIH conditions may predominantly be attributed to the activation of the EPO/EPOR/JAK2 signaling pathway.
Collapse
Affiliation(s)
- Jianchao Si
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Xue Chen
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Kerong Qi
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Dongli Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Bingbing Liu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Yuying Zheng
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China; Department of Geriatrics, First People's Hospital of Xiaogan, Xiaogan 432000, China
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang 050000, China.
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang 050000, China.
| |
Collapse
|
20
|
Wang J, Zhao P, Cheng P, Zhang Z, Yang S, Wang J, Wang X, Zhu G. Exploring the effect of Anshen Dingzhi prescription on hippocampal mitochondrial signals in single prolonged stress mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117713. [PMID: 38181935 DOI: 10.1016/j.jep.2024.117713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE Anshen Dingzhi prescription (ADP), which was first published in the masterpiece of traditional Chinese Medicine in the Qing Dynasty, "Yi Xue Xin Wu" (1732 CE), is documented to interrupt panic-related disorders. However, the mechanism of its action is still not clear. AIM OF THE STUDY This study aims to investigate the effects of ADP on post-traumatic stress disorder (PTSD)-like behaviors and explore the mechanism from perspective of sirtuin1 (SIRT1)-peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α)-dependent mitochondrial function. MATERIALS AND METHODS The changes of SIRT1-PGC-1α signal and mitochondrial function were evaluated in the hippocampus of mice receiving single prolonged stress (SPS). Later, the roles of this signaling pathway played in fear memory generalization and anxiety-like behavior in SPS mice was investigated using two agonists of this signaling pathway. On this basis, the effects of ADP (36.8 mg/kg) with definite therapeutic effects, on mitochondrial function were investigated and further confirmed by a SIRT1 inhibitor. Finally, the possible components of ADP targeting PGC-1α were monitored through bioinformatics. RESULTS Compared with control mice, SIRT1-PGC-1α signal in the hippocampus was impaired in SPS mice, accompanied with dysfunction of mitochondria and abnormal expression of synaptic proteins. The agonists of SIRT1-PGC-1α signal, ZLN005, as well as resveratrol improved the behavioral changes of mice caused by SPS, reversed the decline of proteins in SIRT1-PGC-1α signal, mitochondrial dysfunction, and the abnormal expression of synaptic proteins. The fingerprint was established for the quality control of ADP. At a dose of 36.8 mg/kg, ADP could prevent fear memory generalization and anxiety-like behavior in SPS mice. Mechanically, ADP promoted SIRT1-PGC-1α signal and repaired mitochondrial function. Importantly, SIRT1 inhibitor, selisistat eliminated the ameliorative effects of ADP on behavioral and mitochondrial function. Through molecular docking simulation, the brain-entering components of ADP, including malkangunin, Rg5, fumarine, frutinone A, celabenzine, and inermin had high binding energy with PGC-1α. CONCLUSION Dysfunction of SIRT1-PGC-1α-dependent mitochondrial function is attributed to SPS-triggered fear generalization and anxiety-like behavior, and ADP could improve PTSD-like behaviors likely through activating this signaling pathway.
Collapse
Affiliation(s)
- Juan Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Panpan Zhao
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ping Cheng
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhengrong Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shaojie Yang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China; Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China
| | - Jingji Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China; Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China
| | - Xuncui Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
21
|
He J, Hou T, Wang Q, Wang Q, Jiang Y, Chen L, Xu J, Qi Y, Jia D, Gu Y, Gao L, Yu Y, Wang L, Kang L, Si J, Wang L, Chen S. L-arginine metabolism ameliorates age-related cognitive impairment by Amuc_1100-mediated gut homeostasis maintaining. Aging Cell 2024; 23:e14081. [PMID: 38236004 PMCID: PMC11019123 DOI: 10.1111/acel.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024] Open
Abstract
Aging-induced cognitive impairment is associated with a loss of metabolic homeostasis and plasticity. An emerging idea is that targeting key metabolites is sufficient to impact the function of other organisms. Therefore, more metabolism-targeted therapeutic intervention is needed to improve cognitive impairment. We first conducted untargeted metabolomic analyses and 16S rRNA to identify the aging-associated metabolic adaption and intestinal microbiome change. Untargeted metabolomic analyses of plasma revealed L-arginine metabolic homeostasis was altered during the aging process. Impaired L-arginine metabolic homeostasis was associated with low abundance of intestinal Akkermansia muciniphila (AKK) colonization in mice. Long-term supplementation of AKK outer membranes protein-Amuc_1100, rescued the L-arginine level and restored cognitive impairment in aging mice. Mechanically, Amuc_1100 acted directly as a source of L-arginine and enriched the L-arginine-producing bacteria. In aged brain, Amuc_1100 promoted the superoxide dismutase to alleviated oxidation stress, and increased nitric oxide, derivatives of L-arginine, to improve synaptic plasticity. Meanwhile, L-arginine repaired lipopolysaccharide-induced intestinal barrier damage and promoted growth of colon organoid. Our findings indicated that aging-related cognitive impairment was closely associated with the disorders of L-arginine metabolism. AKK-derived Amuc_1100, as a potential postbiotic, targeting the L-arginine metabolism, might provide a promising therapeutic strategy to maintain the intestinal homeostasis and cognitive function in aging.
Collapse
Affiliation(s)
- Jiamin He
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Tongyao Hou
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Qiwen Wang
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Qingyi Wang
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Yao Jiang
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Luyi Chen
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Department of General PracticeSir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Jilei Xu
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Yadong Qi
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Dingjiacheng Jia
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Yanrou Gu
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Department of Gastroenterology, Wenzhou People's HospitalWenzhou Medical UniversityWenzhouChina
| | - Lidan Gao
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Third Affiliated Hospital of Shanghai University, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's HospitalWenzhouChina
| | - Yingcong Yu
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Department of Gastroenterology, Wenzhou People's HospitalWenzhou Medical UniversityWenzhouChina
| | - Lan Wang
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Lijun Kang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain‐Machine Integration, School of Brain Science and Brain MedicineZhejiang UniversityHangzhouChina
| | - Jianmin Si
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Liangjing Wang
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Shujie Chen
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
22
|
D'Andrea L, Audano M, Pedretti S, Pelucchi S, Stringhi R, Imperato G, De Cesare G, Cambria C, Laporte MH, Zamboni N, Antonucci F, Di Luca M, Mitro N, Marcello E. Glucose-derived glutamate drives neuronal terminal differentiation in vitro. EMBO Rep 2024; 25:991-1021. [PMID: 38243137 PMCID: PMC10933318 DOI: 10.1038/s44319-023-00048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024] Open
Abstract
Neuronal maturation is the phase during which neurons acquire their final characteristics in terms of morphology, electrical activity, and metabolism. However, little is known about the metabolic pathways governing neuronal maturation. Here, we investigate the contribution of the main metabolic pathways, namely glucose, glutamine, and fatty acid oxidation, during the maturation of primary rat hippocampal neurons. Blunting glucose oxidation through the genetic and chemical inhibition of the mitochondrial pyruvate transporter reveals that this protein is critical for the production of glutamate, which is required for neuronal arborization, proper dendritic elongation, and spine formation. Glutamate supplementation in the early phase of differentiation restores morphological defects and synaptic function in mitochondrial pyruvate transporter-inhibited cells. Furthermore, the selective activation of metabotropic glutamate receptors restores the impairment of neuronal differentiation due to the reduced generation of glucose-derived glutamate and rescues synaptic local translation. Fatty acid oxidation does not impact neuronal maturation. Whereas glutamine metabolism is important for mitochondria, it is not for endogenous glutamate production. Our results provide insights into the role of glucose-derived glutamate as a key player in neuronal terminal differentiation.
Collapse
Affiliation(s)
- Laura D'Andrea
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Ramona Stringhi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Gabriele Imperato
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Giulia De Cesare
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Clara Cambria
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Via F.lli Cervi 93, Segrate, 20054 Milan and via Vanvitelli 32, Milan, Italy
| | - Marine H Laporte
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Via F.lli Cervi 93, Segrate, 20054 Milan and via Vanvitelli 32, Milan, Italy
- Institute of Neuroscience, IN-CNR, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy.
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
23
|
Głombik K, Kukla-Bartoszek M, Curzytek K, Basta-Kaim A, Budziszewska B. Contribution of changes in the orexin system and energy sensors in the brain in depressive disorder - a study in an animal model. Pharmacol Rep 2024; 76:51-71. [PMID: 38194217 PMCID: PMC10830606 DOI: 10.1007/s43440-023-00559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Maternal elevated glucocorticoid levels during pregnancy can affect the developing fetus, permanently altering the structure and function of its brain throughout life. Excessive action of these hormones is known to contribute to psychiatric disorders, including depression. MATERIALS The study was performed in a rat model of depression based on prenatal administration of dexamethasone (DEX) in late pregnancy (0.1 mg/kg, days 14-21). We evaluated the effects of prenatal DEX treatment on the cognition and bioenergetic signaling pathways in the brain of adult male rats, in the frontal cortex and hippocampus, and in response to stress in adulthood, using behavioral and biochemical test batteries. RESULTS We revealed cognitive deficits in rats prenatally treated with DEX. At the molecular level, a decrease in the orexin A and orexin B levels and downregulation of the AMPK-SIRT1-PGC1α transduction pathway in the frontal cortex of these animals were observed. In the hippocampus, a decreased expression of orexin B was found and changes in the MR/GR ratio were demonstrated. Furthermore, an increase in HDAC5 level triggered by the prenatal DEX treatment in both brain structures and a decrease in MeCP2 level in the hippocampus were reported. CONCLUSIONS Our study demonstrated that prenatal DEX treatment is associated with cognitive dysfunction and alterations in various proteins leading to metabolic changes in the frontal cortex, while in the hippocampus adaptation mechanisms were activated. The presented results imply that different pathophysiological metabolic processes may be involved in depression development, which may be useful in the search for novel therapies.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| | - Magdalena Kukla-Bartoszek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Katarzyna Curzytek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| |
Collapse
|
24
|
Han X, Huang S, Zhuang Z, Zhang X, Xie M, Lou N, Hua M, Zhuang X, Yu S, Chen S. Phosphatidate phosphatase Lipin1 involves in diabetic encephalopathy pathogenesis via regulating synaptic mitochondrial dynamics. Redox Biol 2024; 69:102996. [PMID: 38103341 PMCID: PMC10770635 DOI: 10.1016/j.redox.2023.102996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Diabetic encephalopathy (DE) is a common central nervous system complication of diabetes mellitus without effective therapy currently. Recent studies have highlighted synaptic mitochondrial damages as a possible pathological basis for DE, but the underlying mechanisms remain unclear. Our previous work has revealed that phosphatidate phosphatase Lipin1, a critical enzyme involved with phospholipid synthesis, is closely related to the pathogenesis of DE. Here, we demonstrate that Lipin1 is significantly down-regulated in rat hippocampus of DE. Knock-down of Lipin1 within hippocampus of normal rats induces dysregulation of homeostasis in synaptic mitochondrial dynamics with an increase of mitochondrial fission and a decrease of fusion, then causes synaptic mitochondrial dysfunction, synaptic plasticity deficits as well as cognitive impairments, similar to that observed in response to chronic hyperglycemia exposure. In contrast, an up-regulation of Lipin1 within hippocampus in the DE model ameliorates this cascade of dysfunction. We also find that the effect of Lipin1 that regulating mitochondrial dynamics results from maintaining appropriate phospholipid components in the mitochondrial membrane. In conclusion, alterations in hippocampal Lipin1 contribute to hippocampal synaptic mitochondrial dysfunction and cognitive deficits observed in DE. Targeting Lipin1 might be a potential therapeutic strategy for the clinical treatment of DE.
Collapse
Affiliation(s)
- Xiaolin Han
- Depratment of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Shan Huang
- Depratment of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Ziyun Zhuang
- Depratment of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China; Department of Endocrinology and Metabolism, First People's Hospital of Jinan, Jinan, 250011, China
| | - Xiaochen Zhang
- Depratment of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China; Department of Clinical Medicine, Heze Medical College, Heze, 274009, China
| | - Min Xie
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Nengjun Lou
- Depratment of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan, 250033, China
| | - Mengyu Hua
- Depratment of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xianghua Zhuang
- Depratment of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan, 250033, China.
| | - Shuyan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Shihong Chen
- Depratment of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan, 250033, China.
| |
Collapse
|
25
|
Zhu Y, Hui Q, Zhang Z, Fu H, Qin Y, Zhao Q, Li Q, Zhang J, Guo L, He W, Han C. Advancements in the study of synaptic plasticity and mitochondrial autophagy relationship. J Neurosci Res 2024; 102:e25309. [PMID: 38400573 DOI: 10.1002/jnr.25309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Synapses serve as the points of communication between neurons, consisting primarily of three components: the presynaptic membrane, synaptic cleft, and postsynaptic membrane. They transmit signals through the release and reception of neurotransmitters. Synaptic plasticity, the ability of synapses to undergo structural and functional changes, is influenced by proteins such as growth-associated proteins, synaptic vesicle proteins, postsynaptic density proteins, and neurotrophic growth factors. Furthermore, maintaining synaptic plasticity consumes more than half of the brain's energy, with a significant portion of this energy originating from ATP generated through mitochondrial energy metabolism. Consequently, the quantity, distribution, transport, and function of mitochondria impact the stability of brain energy metabolism, thereby participating in the regulation of fundamental processes in synaptic plasticity, including neuronal differentiation, neurite outgrowth, synapse formation, and neurotransmitter release. This article provides a comprehensive overview of the proteins associated with presynaptic plasticity, postsynaptic plasticity, and common factors between the two, as well as the relationship between mitochondrial energy metabolism and synaptic plasticity.
Collapse
Affiliation(s)
- Yousong Zhu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinlong Hui
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zheng Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Hao Fu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yali Qin
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qiong Zhao
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinqing Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Junlong Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Lei Guo
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Wenbin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Cheng Han
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
26
|
Marzoog BA. Autophagy as an Anti-senescent in Aging Neurocytes. Curr Mol Med 2024; 24:182-190. [PMID: 36683318 DOI: 10.2174/1566524023666230120102718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 01/24/2023]
Abstract
Neuron homeostasis is crucial for the organism, and its maintenance is multifactorial, including autophagy. The turnover of aberrant intracellular components is a fundamental pathogenetic mechanism for cell aging. Autophagy is involved in the acceleration of the neurocyte aging process and the modification of cell longevity. Neurocyte aging is a process of loss of cell identity through cellular and subcellular changes that include molecular loss of epigenetics, transcriptomic, proteomic, and autophagy dysfunction. Autophagy dysfunction is the hallmark of neurocyte aging. Cell aging is the credential feature of neurodegenerative diseases. Pathophysiologically, aged neurocytes are characterized by dysregulated autophagy and subsequently neurocyte metabolic stress, resulting in accelerated neurocyte aging. In particular, chaperone- mediated autophagy perturbation results in upregulated expression of aging and apoptosis genes. Aged neurocytes are also characterized by the down-regulation of autophagy-related genes, such as ATG5-ATG12, LC3-II / LC3-I ratio, Beclin-1, and p62. Slowing aging through autophagy targeting is sufficient to improve prognosis in neurodegenerative diseases. Three primary anti-senescent molecules are involved in the aging process: mTOR, AMPK, and Sirtuins. Autophagy therapeutic effects can be applied to reverse and slow aging. This article discusses current advances in the role of autophagy in neurocyte homeostasis, aging, and potential therapeutic strategies to reduce aging and increase cell longevity.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- National Research Mordovia State University, Bolshevitskaya Street, 68, Saransk, 430005, Rep. Mordovia, Russia
| |
Collapse
|
27
|
Zhang X, Yuan T, Chen X, Liu X, Hu J, Liu Z. Effects of DHA on cognitive dysfunction in aging and Alzheimer's disease: The mediating roles of ApoE. Prog Lipid Res 2024; 93:101256. [PMID: 37890592 DOI: 10.1016/j.plipres.2023.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
The prevalence of Alzheimer's disease (AD) continues to rise due to the increasing aging population. Among the various genetic factors associated with AD, apolipoprotein E (ApoE), a lipid transporter, stands out as the primary genetic risk factor. Specifically, individuals carrying the ApoE4 allele exhibit a significantly higher risk. However, emerging research indicates that dietary factors play a prominent role in modifying the risk of AD. Docosahexaenoic acid (DHA), a prominent ω-3 fatty acid, has garnered considerable attention for its potential to ameliorate cognitive function. The intricate interplay between DHA and the ApoE genotype within the brain, which may influence DHA's utilization and functionality, warrants further investigation. This review meticulously examines experimental and clinical studies exploring the effects of DHA on cognitive decline. Special emphasis is placed on elucidating the role of ApoE gene polymorphism and the underlying mechanisms are discussed. These studies suggest that early DHA supplementation may confer benefits to cognitively normal older adults carrying the ApoE4 gene. However, once AD develops, ApoE4 non-carriers may experience greater benefits compared to ApoE4 carriers, although the overall effectiveness of DHA supplementation at this stage is limited. Potential mechanisms underlying these differential effects may include accelerated DHA catabolism in ApoE4 carriers, impaired transport across the blood-brain barrier (BBB), and compromised lipidation and circulatory function in ApoE4 carriers. Thus, the supplementation of DHA may represent a potential intervention strategy aimed at compensating for these deficiencies in ApoE4 carriers prior to the onset of AD.
Collapse
Affiliation(s)
- Xin Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China; Dongguan Chuangwei Precision Nutrition and Health Innovation Center, Dongguan, Guangdong 523170, China; Shaanxi Precision Nutrition and Health Research Institute, Xi'an, Shaanxi 710300, China.
| |
Collapse
|
28
|
Piette C, Gervasi N, Venance L. Synaptic plasticity through a naturalistic lens. Front Synaptic Neurosci 2023; 15:1250753. [PMID: 38145207 PMCID: PMC10744866 DOI: 10.3389/fnsyn.2023.1250753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
From the myriad of studies on neuronal plasticity, investigating its underlying molecular mechanisms up to its behavioral relevance, a very complex landscape has emerged. Recent efforts have been achieved toward more naturalistic investigations as an attempt to better capture the synaptic plasticity underpinning of learning and memory, which has been fostered by the development of in vivo electrophysiological and imaging tools. In this review, we examine these naturalistic investigations, by devoting a first part to synaptic plasticity rules issued from naturalistic in vivo-like activity patterns. We next give an overview of the novel tools, which enable an increased spatio-temporal specificity for detecting and manipulating plasticity expressed at individual spines up to neuronal circuit level during behavior. Finally, we put particular emphasis on works considering brain-body communication loops and macroscale contributors to synaptic plasticity, such as body internal states and brain energy metabolism.
Collapse
Affiliation(s)
- Charlotte Piette
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | | | - Laurent Venance
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
29
|
Singh YP, Kumar N, Chauhan BS, Garg P. Carbamate as a potential anti-Alzheimer's pharmacophore: A review. Drug Dev Res 2023; 84:1624-1651. [PMID: 37694498 DOI: 10.1002/ddr.22113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Alzheimer's disease (AD) is a progressive age-related neurodegenerative brain disorder, which leads to loss of memory and other cognitive dysfunction. The underlying mechanisms of AD pathogenesis are very complex and still not fully explored. Cholinergic neuronal loss, accumulation of amyloid plaque, metal ions dyshomeostasis, tau hyperphosphorylation, oxidative stress, neuroinflammation, and mitochondrial dysfunction are major hallmarks of AD. The current treatment options for AD are acetylcholinesterase inhibitors (donepezil, rivastigmine, and galantamine) and NMDA receptor antagonists (memantine). These FDA-approved drugs mainly provide symptomatic relief without addressing the pathological aspects of disease progression. So, there is an urgent need for novel drug development that not only addresses the basic mechanisms of the disease but also shows the neuroprotective property. Various research groups across the globe are working on the development of multifunctional agents for AD amelioration using different core scaffolds for their design, and carbamate is among them. Rivastigmine was the first carbamate drug investigated for AD management. The carbamate fragment, a core scaffold of rivastigmine, act as a potential inhibitor of acetylcholinesterase. In this review, we summarize the last 10 years of research conducted on the modification of carbamate with different substituents which primarily target ChE inhibition, reduce oxidative stress, and modulate Aβ aggregation.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | | | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| |
Collapse
|
30
|
Flores A, Nguyen NM, Pendyala G. Developmental outcomes with perinatal exposure (DOPE) to prescription opioids. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:339-351. [PMID: 38058996 PMCID: PMC10696573 DOI: 10.1515/nipt-2023-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Researchers have found considerable evidence in the past 20 years that perinatal opioid exposure leads to an increased risk of developmental disorders in offspring that persist into adulthood. The use of opioids to treat pain concerning pregnancy, delivery, and postpartum complications has been rising. As a result, communities have reported a 300-400 % increase in Neonatal Opioid Withdrawal Syndrome (NOWS). NOWS represents the initial stage of several behavioral, phenotypic, and synaptic deficits. This review article summarizes the Developmental Outcomes of Perinatal Exposure (DOPE) to prescription opioids. Moreover, we also seek to connect these findings to clinical research that describes DOPE at multiple stages of life. Since specific mechanisms that underlie DOPE remain unclear, this article aims to provide a framework for conceptualizing across all ages and highlight the implications they may have for longevity.
Collapse
Affiliation(s)
- Adrian Flores
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Cellular and Integrative Physiology, UNMC, Omaha, NE, USA
| | - Nghi M. Nguyen
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, USA
- Child Health Research Institute, Omaha, NE, USA
- National Strategic Research Institute, UNMC, Omaha, NE, USA
| |
Collapse
|
31
|
Lail H, Mabb AM, Parent MB, Pinheiro F, Wanders D. Effects of Dietary Methionine Restriction on Cognition in Mice. Nutrients 2023; 15:4950. [PMID: 38068808 PMCID: PMC10707861 DOI: 10.3390/nu15234950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Dietary restriction of the essential amino acid, methionine, has been shown to induce unique metabolic protection. The peripheral benefits of methionine restriction (MR) are well established and include improvements in metabolic, energy, inflammatory, and lifespan parameters in preclinical models. These benefits all occur despite MR increasing energy intake, making MR an attractive dietary intervention for the prevention or reversal of many metabolic and chronic conditions. New and emerging evidence suggests that MR also benefits the brain and promotes cognitive health. Despite widespread interest in MR over the past few decades, many findings are limited in scope, and gaps remain in our understanding of its comprehensive effects on the brain and cognition. This review details the current literature investigating the impact of MR on cognition in various mouse models, highlights some of the key mechanisms responsible for its cognitive benefits, and identifies gaps that should be addressed in MR research moving forward. Overall findings indicate that in animal models, MR is associated with protection against obesity-, age-, and Alzheimer's disease-induced impairments in learning and memory that depend on different brain regions, including the prefrontal cortex, amygdala, and hippocampus. These benefits are likely mediated by increases in fibroblast growth factor 21, alterations in methionine metabolism pathways, reductions in neuroinflammation and central oxidative stress, and potentially alterations in the gut microbiome, mitochondrial function, and synaptic plasticity.
Collapse
Affiliation(s)
- Hannah Lail
- Department of Nutrition, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA; (H.L.); (F.P.)
- Department of Chemistry, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30303, USA
| | - Angela M. Mabb
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30302, USA; (A.M.M.); (M.B.P.)
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302, USA
| | - Marise B. Parent
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30302, USA; (A.M.M.); (M.B.P.)
- Department of Psychology, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA
| | - Filipe Pinheiro
- Department of Nutrition, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA; (H.L.); (F.P.)
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA; (H.L.); (F.P.)
| |
Collapse
|
32
|
Gauvrit T, Benderradji H, Pelletier A, Aboulouard S, Faivre E, Carvalho K, Deleau A, Vallez E, Launay A, Bogdanova A, Besegher M, Le Gras S, Tailleux A, Salzet M, Buée L, Delahaye F, Blum D, Vieau D. Multi-Omics Data Integration Reveals Sex-Dependent Hippocampal Programming by Maternal High-Fat Diet during Lactation in Adult Mouse Offspring. Nutrients 2023; 15:4691. [PMID: 37960344 PMCID: PMC10649590 DOI: 10.3390/nu15214691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Early-life exposure to high-fat diets (HF) can program metabolic and cognitive alterations in adult offspring. Although the hippocampus plays a crucial role in memory and metabolic homeostasis, few studies have reported the impact of maternal HF on this structure. We assessed the effects of maternal HF during lactation on physiological, metabolic, and cognitive parameters in young adult offspring mice. To identify early-programming mechanisms in the hippocampus, we developed a multi-omics strategy in male and female offspring. Maternal HF induced a transient increased body weight at weaning, and a mild glucose intolerance only in 3-month-old male mice with no change in plasma metabolic parameters in adult male and female offspring. Behavioral alterations revealed by a Barnes maze test were observed both in 6-month-old male and female mice. The multi-omics strategy unveiled sex-specific transcriptomic and proteomic modifications in the hippocampus of adult offspring. These studies that were confirmed by regulon analysis show that, although genes whose expression was modified by maternal HF were different between sexes, the main pathways affected were similar with mitochondria and synapses as main hippocampal targets of maternal HF. The effects of maternal HF reported here may help to better characterize sex-dependent molecular pathways involved in cognitive disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Thibaut Gauvrit
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Hamza Benderradji
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Alexandre Pelletier
- The Department of Pharmacology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA;
| | - Soulaimane Aboulouard
- U1192—Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), University of Lille, INSERM, 59000 Lille, France; (S.A.); (M.S.)
| | - Emilie Faivre
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Kévin Carvalho
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Aude Deleau
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Emmanuelle Vallez
- Institut Pasteur de Lille, U1011-EGID, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (E.V.); (A.T.)
| | - Agathe Launay
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Anna Bogdanova
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Mélanie Besegher
- US 41-UMS 2014-PLBS, Animal Facility, University of Lille, CNRS, INSERM, CHU Lille, 59000 Lille, France;
| | - Stéphanie Le Gras
- CNRS U7104, INSERM U1258, GenomEast Platform, IGBMC, University of Strasbourg, 67412 Illkirch, France;
| | - Anne Tailleux
- Institut Pasteur de Lille, U1011-EGID, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (E.V.); (A.T.)
| | - Michel Salzet
- U1192—Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), University of Lille, INSERM, 59000 Lille, France; (S.A.); (M.S.)
| | - Luc Buée
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Fabien Delahaye
- Sanofi Precision Medicine and Computational Biology, 94081 Vitry-sur-Seine, France;
| | - David Blum
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Didier Vieau
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| |
Collapse
|
33
|
Cao Y, Sun W, Liu C, Zhou Z, Deng Z, Zhang M, Yan M, Yin X, Zhu X. Resveratrol ameliorates diabetic encephalopathy through PDE4D/PKA/Drp1 signaling. Brain Res Bull 2023; 203:110763. [PMID: 37722608 DOI: 10.1016/j.brainresbull.2023.110763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Diabetic encephalopathy (DE) is a central nervous complication of diabetes mellitus which is characterized by cognitive impairment and neurochemical abnormalities. However, no effective approaches are available to prevent its progression and development. PDE4D serves many functions in the pathogenesis of neurodegenerative diseases involving PKA signaling. This study illustrated the role of PDE4D in DE and investigated whether resveratrol protected against DE via inhibiting PDE4D. db/db male mice and hippocampus cell line (HT22) were used to investigate the role of PDE4D and the protective effect of resveratrol on cognitive function under high glucose (HG). PDE4D overexpression or knockdown lentivirus and PKA specific inhibitor H89 were used to further identify the indispensable role of PDE4D/PKA signaling pathway in resveratrol's amelioration effect of neurotoxicity. Resveratrol attenuated cognitive impairment in db/db mice, reduced PDE4D protein, restored the impaired mitochondrial function in db/db mice. The in vitro study also confirmed the neuroprotective effect of resveratrol on neurotoxicity. PDE4D overexpression resulted in cell injury and downregulation of cAMP, PKA and pDrp1(Ser637) under normal condition. In contrast, PDE4D knockdown improved cell injury and elevated cAMP, PKA and pDrp1(Ser637) levels caused in HG-cultured HT22 cells. PDE4D over-expression blunted the improvement effects of resveratrol on PKA, pDrp1(Ser637) and mitochondrial function. Moreover, PKA inhibitor H89 blunted the inhibitory effects of resveratrol on pDrp1(Ser637) and mitochondrial function in HG-treated HT22. These data indicated that resveratrol may improve cognitive impairment in db/db mice by modulating mitochondrial function through the PDE4D dependent pathway.
Collapse
Affiliation(s)
- Yanjuan Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Wen Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Chang Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zihui Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zongli Deng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Mingjie Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
34
|
Xu W, Gao W, Guo Y, Xue F, Di L, Fang S, Fan L, He Y, Zhou Y, Xie X, Pang X. Targeting mitophagy for depression amelioration: a novel therapeutic strategy. Front Neurosci 2023; 17:1235241. [PMID: 37869512 PMCID: PMC10587558 DOI: 10.3389/fnins.2023.1235241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Major depressive disorder is a global psychiatric condition characterized by persistent low mood and anhedonia, which seriously jeopardizes the physical and mental well-being of affected individuals. While various hypotheses have been proposed to explicate the etiology of depression, the precise pathogenesis and effective treatment of this disorder remain elusive. Mitochondria, as the primary organelles responsible for cellular energy production, possess the ability to meet the essential energy demands of the brain. Research indicated that the accumulation of damaged mitochondria is associated with the onset of depression. Mitophagy, a type of cellular autophagy, specifically targets and removes excess or damaged mitochondria. Emerging evidence demonstrated that mitophagy dysfunction was involved in the progression of depression, and several pharmacological interventions that stimulating mitophagy exerted excellent antidepressant actions. We provided an overview of updated advancements on the regulatory mechanism of mitophagy and the mitophagy abnormality in depressed patients and animals, as well as in cell models of depression. Meanwhile, various therapeutic strategies to restore mitophagy for depression alleviation were also discussed in this review.
Collapse
Affiliation(s)
- Wangjun Xu
- School of Pharmacy, Henan University, Kaifeng, China
| | - Weiping Gao
- School of Pharmacy, Henan University, Kaifeng, China
| | - Yukun Guo
- School of Pharmacy, Henan University, Kaifeng, China
| | - Feng Xue
- School of Pharmacy, Henan University, Kaifeng, China
| | - Lulu Di
- School of Pharmacy, Henan University, Kaifeng, China
| | - Shaojie Fang
- School of Pharmacy, Henan University, Kaifeng, China
| | - Linlin Fan
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Pharmacy, Henan University, Kaifeng, China
| | - Yangyang He
- School of Pharmacy, Henan University, Kaifeng, China
- Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China
| | - Yunfeng Zhou
- School of Pharmacy, Henan University, Kaifeng, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, China
| | - Xinmei Xie
- School of Pharmacy, Henan University, Kaifeng, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, China
| | - Xiaobin Pang
- School of Pharmacy, Henan University, Kaifeng, China
- Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
35
|
Chou SM, Yen YH, Yuan F, Zhang SC, Chong CM. Neuronal Senescence in the Aged Brain. Aging Dis 2023; 14:1618-1632. [PMID: 37196117 PMCID: PMC10529744 DOI: 10.14336/ad.2023.0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/14/2023] [Indexed: 05/19/2023] Open
Abstract
Cellular senescence is a highly complicated cellular state that occurs throughout the lifespan of an organism. It has been well-defined in mitotic cells by various senescent features. Neurons are long-lived post-mitotic cells with special structures and functions. With age, neurons display morphological and functional changes, accompanying alterations in proteostasis, redox balance, and Ca2+ dynamics; however, it is ambiguous whether these neuronal changes belong to the features of neuronal senescence. In this review, we strive to identify and classify changes that are relatively specific to neurons in the aging brain and define them as features of neuronal senescence through comparisons with common senescent features. We also associate them with the functional decline of multiple cellular homeostasis systems, proposing the possibility that these systems are the main drivers of neuronal senescence. We hope this summary will serve as a steppingstone for further inputs on a comprehensive but relatively specific list of phenotypes for neuronal senescence and in particular their underlying molecular events during aging. This will in turn shine light on the association between neuronal senescence and neurodegeneration and lead to the development of strategies to perturb the processes.
Collapse
Affiliation(s)
- Shu-Min Chou
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore.
| | - Yu-Hsin Yen
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore.
| | - Fang Yuan
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore.
| | - Su-Chun Zhang
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore.
- Department of Neuroscience, Department of Neurology, Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
36
|
Yan Q, Yin Y, Li X, Li M. Exosome-shuttled MYCBPAP from bone marrow mesenchymal stem cells regulates synaptic remodeling and ameliorates ischemic stroke in rats. J Chem Neuroanat 2023; 132:102309. [PMID: 37423468 DOI: 10.1016/j.jchemneu.2023.102309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND PURPOSE Mesenchymal stem cells (MSC) have been demonstrated to improve cardiac function via the secretion of paracrine factors rather than direct differentiation. We, therefore, investigated whether bone marrow-derived MSC (BMSC)-released exosomes (BMSC-exo) enhance neurological recovery in spontaneously hypertensive rats (SHR) with ischemic stroke. METHODS Markers of BMSC and BMSC-exo were detected to characterize BMSC and BMSC-exo. A green fluorescent PKH-67-labeled assay was conducted to ensure BMSC-exo internalization. Rat neuronal cells (RNC) were induced with Ang II and oxygen-glucose deprivation. The protective effects of BMSC-exo on RNC were studied by CCK-8, LDH, and immunofluorescence assays. SHR were subjected to middle cerebral artery occlusion, and the systolic and diastolic blood pressure changes in the modeled rats were measured. The effects of BMSC-exo on SHR were investigated by mNSS scoring, foot-fault tests, immunohistochemistry, Western blot, TTC staining, TUNEL, and HE staining. The hub genes related to SHR and proteins shuttled by BMSC-exo were intersected to obtain a possible candidate, followed by rescue experiments. RESULTS BMSC-exo significantly promoted RNC viability and repressed cell apoptosis and cytotoxicity. Moreover, SHR administrated with BMSC-exo exhibited significant improvement in functional recovery and narrowed infarct size. BMSC-exo shuttled the MYCBPAP protein. Knockdown of MYCBPAP inhibited the protective effects of BMSC-exo on RNC and exacerbated synaptic damage in SHR. CONCLUSIONS MYCBPAP shuttled by BMSC-exo facilitates synaptic remodeling in SHR, which may contribute to a therapeutic strategy for ischemic stroke treatment.
Collapse
Affiliation(s)
- Qiuyue Yan
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061001 Hebei, PR China.
| | - Yong Yin
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061001 Hebei, PR China
| | - Xuechun Li
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061001 Hebei, PR China
| | - Meng Li
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061001 Hebei, PR China
| |
Collapse
|
37
|
Uspalenko NI, Mosentsov AA, Khmil NV, Pavlik LL, Belosludtseva NV, Khunderyakova NV, Shigaeva MI, Medvedeva VP, Malkov AE, Kitchigina VF, Mironova GD. Uridine as a Regulator of Functional and Ultrastructural Changes in the Brain of Rats in a Model of 6-OHDA-Induced Parkinson's Disease. Int J Mol Sci 2023; 24:14304. [PMID: 37762607 PMCID: PMC10531918 DOI: 10.3390/ijms241814304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Using a model of Parkinson's disease (PD) induced by the bilateral injection of neurotoxin 6-hydroxydopamine (6-OHDA) into rat brain substantia nigra (SN), we showed uridine to exert a protective effect associated with activation of the mitochondrial ATP-dependent potassium (mitoK-ATP) channel. Injection of 4 µg neurotoxin evoked a 70% decrease in the time the experimental animal spent on the rod in the RotaRod test, an increase in the amount of lipid peroxides in blood serum and cerebral-cortex mitochondria and the rate of reactive oxygen species formation, and a decrease in Ca2+ retention in mitochondria. Herewith, lymphocytes featured an increase in the activity of lactate dehydrogenase, a cytosolic enzyme of glycolysis, without changes in succinate-dehydrogenase activity. Structural changes occurring in the SN and striatum manifested themselves in the destruction of mitochondria, degeneration of neurons and synapses, and stratification of myelin sheaths in them. Subcutaneous injections of 30 µg/kg uridine for 22 days restored the neurotoxin-induced changes in these parameters to levels close to the control. 5-Hydroxydecanoate (5 mg/kg), a specific mitoK-ATP channel inhibitor, eliminated the beneficial effect of uridine for almost all characteristics tested, indicating the involvement of the mitoK-ATP channel in the protective effect of uridine. The mechanism of the protective effect of uridine and its therapeutic applications for the prevention and treatment of PD are discussed.
Collapse
Affiliation(s)
- Nina I. Uspalenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.I.U.); (A.A.M.); (N.V.K.); (L.L.P.); (N.V.B.); (N.V.K.); (M.I.S.); (V.P.M.); (A.E.M.); (V.F.K.)
- Pushchino State Natural Science Institute, Pushchino 142290, Russia
| | - Alexei A. Mosentsov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.I.U.); (A.A.M.); (N.V.K.); (L.L.P.); (N.V.B.); (N.V.K.); (M.I.S.); (V.P.M.); (A.E.M.); (V.F.K.)
| | - Natalia V. Khmil
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.I.U.); (A.A.M.); (N.V.K.); (L.L.P.); (N.V.B.); (N.V.K.); (M.I.S.); (V.P.M.); (A.E.M.); (V.F.K.)
| | - Lyubov L. Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.I.U.); (A.A.M.); (N.V.K.); (L.L.P.); (N.V.B.); (N.V.K.); (M.I.S.); (V.P.M.); (A.E.M.); (V.F.K.)
| | - Natalia V. Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.I.U.); (A.A.M.); (N.V.K.); (L.L.P.); (N.V.B.); (N.V.K.); (M.I.S.); (V.P.M.); (A.E.M.); (V.F.K.)
- Pushchino State Natural Science Institute, Pushchino 142290, Russia
| | - Natalia V. Khunderyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.I.U.); (A.A.M.); (N.V.K.); (L.L.P.); (N.V.B.); (N.V.K.); (M.I.S.); (V.P.M.); (A.E.M.); (V.F.K.)
- Pushchino State Natural Science Institute, Pushchino 142290, Russia
| | - Maria I. Shigaeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.I.U.); (A.A.M.); (N.V.K.); (L.L.P.); (N.V.B.); (N.V.K.); (M.I.S.); (V.P.M.); (A.E.M.); (V.F.K.)
| | - Vasilisa P. Medvedeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.I.U.); (A.A.M.); (N.V.K.); (L.L.P.); (N.V.B.); (N.V.K.); (M.I.S.); (V.P.M.); (A.E.M.); (V.F.K.)
- Pushchino State Natural Science Institute, Pushchino 142290, Russia
| | - Anton E. Malkov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.I.U.); (A.A.M.); (N.V.K.); (L.L.P.); (N.V.B.); (N.V.K.); (M.I.S.); (V.P.M.); (A.E.M.); (V.F.K.)
| | - Valentina F. Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.I.U.); (A.A.M.); (N.V.K.); (L.L.P.); (N.V.B.); (N.V.K.); (M.I.S.); (V.P.M.); (A.E.M.); (V.F.K.)
| | - Galina D. Mironova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.I.U.); (A.A.M.); (N.V.K.); (L.L.P.); (N.V.B.); (N.V.K.); (M.I.S.); (V.P.M.); (A.E.M.); (V.F.K.)
- Pushchino State Natural Science Institute, Pushchino 142290, Russia
| |
Collapse
|
38
|
Fonseca C, Ettcheto M, Bicker J, Fernandes MJ, Falcão A, Camins A, Fortuna A. Under the umbrella of depression and Alzheimer's disease physiopathology: Can cannabinoids be a dual-pleiotropic therapy? Ageing Res Rev 2023; 90:101998. [PMID: 37414155 DOI: 10.1016/j.arr.2023.101998] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/17/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Depression and Alzheimer´s disease (AD) are two disorders highly prevalent worldwide. Depression affects more than 300 million people worldwide while AD affects 60-80% of the 55 million cases of dementia. Both diseases are affected by aging with high prevalence in elderly and share not only the main brain affected areas but also several physiopathological mechanisms. Depression disease is already ascribed as a risk factor to the development of AD. Despite the wide diversity of pharmacological treatments currently available in clinical practice for depression management, they remain associated to a slow recovery process and to treatment-resistant depression. On the other hand, AD treatment is essentially based in symptomatology relieve. Thus, the need for new multi-target treatments arises. Herein, we discuss the current state-of-art regarding the contribution of the endocannabinoid system (ECS) in synaptic transmission processes, synapses plasticity and neurogenesis and consequently the use of exogenous cannabinoids in the treatment of depression and on delaying the progression of AD. Besides the well-known imbalance of neurotransmitter levels, including serotonin, noradrenaline, dopamine and glutamate, recent scientific evidence highlights aberrant spine density, neuroinflammation, dysregulation of neurotrophic factor levels and formation of amyloid beta (Aβ) peptides, as the main physiopathological mechanisms compromised in depression and AD. The contribution of the ECS in these mechanisms is herein specified as well as the pleiotropic effects of phytocannabinoids. At the end, it became evident that Cannabinol, Cannabidiol, Cannabigerol, Cannabidivarin and Cannabichromene may act in novel therapeutic targets, presenting high potential in the pharmacotherapy of both diseases.
Collapse
Affiliation(s)
- Carla Fonseca
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Maria José Fernandes
- Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo-UNIFESP, Rua Pedro de Toledo, 669, CEP, São Paulo 04039-032, Brazil
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
39
|
Inoue R, Nishimune H. Neuronal Plasticity and Age-Related Functional Decline in the Motor Cortex. Cells 2023; 12:2142. [PMID: 37681874 PMCID: PMC10487126 DOI: 10.3390/cells12172142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Physiological aging causes a decline of motor function due to impairment of motor cortex function, losses of motor neurons and neuromuscular junctions, sarcopenia, and frailty. There is increasing evidence suggesting that the changes in motor function start earlier in the middle-aged stage. The mechanism underlining the middle-aged decline in motor function seems to relate to the central nervous system rather than the peripheral neuromuscular system. The motor cortex is one of the responsible central nervous systems for coordinating and learning motor functions. The neuronal circuits in the motor cortex show plasticity in response to motor learning, including LTP. This motor cortex plasticity seems important for the intervention method mechanisms that revert the age-related decline of motor function. This review will focus on recent findings on the role of plasticity in the motor cortex for motor function and age-related changes. The review will also introduce our recent identification of an age-related decline of neuronal activity in the primary motor cortex of middle-aged mice using electrophysiological recordings of brain slices.
Collapse
Affiliation(s)
- Ritsuko Inoue
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Hiroshi Nishimune
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-8-1 Harumicho, Fuchu-shi, Tokyo 183-8538, Japan
| |
Collapse
|
40
|
Aquilani R, Cotta Ramusino M, Maestri R, Iadarola P, Boselli M, Perini G, Boschi F, Dossena M, Bellini A, Buonocore D, Doria E, Costa A, Verri M. Several dementia subtypes and mild cognitive impairment share brain reduction of neurotransmitter precursor amino acids, impaired energy metabolism, and lipid hyperoxidation. Front Aging Neurosci 2023; 15:1237469. [PMID: 37655338 PMCID: PMC10466813 DOI: 10.3389/fnagi.2023.1237469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Objective Dementias and mild cognitive impairment (MCI) are associated with variously combined changes in the neurotransmitter system and signaling, from neurotransmitter synthesis to synaptic binding. The study tested the hypothesis that different dementia subtypes and MCI may share similar reductions of brain availability in amino acid precursors (AAPs) of neurotransmitter synthesis and concomitant similar impairment in energy production and increase of oxidative stress, i.e., two important metabolic alterations that impact neurotransmission. Materials and methods Sixty-five demented patients (Alzheimer's disease, AD, n = 44; frontotemporal disease, FTD, n = 13; vascular disease, VaD, n = 8), 10 subjects with MCI and 15 control subjects (CTRL) were recruited for this study. Cerebrospinal fluid (CSF) and plasma levels of AAPs, energy substrates (lactate, pyruvate), and an oxidative stress marker (malondialdehyde, MDA) were measured in all participants. Results Demented patients and subjects with MCI were similar for age, anthropometric parameters, biohumoral variables, insulin resistance (HOMA index model), and CSF neuropathology markers. Compared to age-matched CTRL, both demented patients and MCI subjects showed low CSF AAP tyrosine (precursor of dopamine and catecholamines), tryptophan (precursor of serotonin), methionine (precursor of acetylcholine) limited to AD and FTD, and phenylalanine (an essential amino acid largely used for protein synthesis) (p = 0.03 to <0.0001). No significant differences were found among dementia subtypes or between each dementia subtype and MCI subjects. In addition, demented patients and MCI subjects, compared to CTRL, had similar increases in CSF and plasma levels of pyruvate (CSF: p = 0.023 to <0.0001; plasma: p < 0.002 to <0.0001) and MDA (CSF: p < 0.035 to 0.002; plasma: p < 0.0001). Only in AD patients was the CSF level of lactate higher than in CTRL (p = 0.003). Lactate/pyruvate ratios were lower in all experimental groups than in CTRL. Conclusion AD, FTD, and VaD dementia patients and MCI subjects may share similar deficits in AAPs, partly in energy substrates, and similar increases in oxidative stress. These metabolic alterations may be due to AAP overconsumption following high brain protein turnover (leading to phenylalanine reductions), altered mitochondrial structure and function, and an excess of free radical production. All these metabolic alterations may have a negative impact on synaptic plasticity and activity.
Collapse
Affiliation(s)
- Roberto Aquilani
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Matteo Cotta Ramusino
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Maestri
- Department of Biomedical Engineering of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Mirella Boselli
- Neurorehabilitation Unit of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| | - Giulia Perini
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Federica Boschi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maurizia Dossena
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Anna Bellini
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Daniela Buonocore
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Enrico Doria
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Alfredo Costa
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Manuela Verri
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| |
Collapse
|
41
|
Liebers DT, Ebina W, Iosifescu DV. Sodium-Glucose Cotransporter-2 Inhibitors in Depression. Harv Rev Psychiatry 2023; 31:214-221. [PMID: 37437254 DOI: 10.1097/hrp.0000000000000374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
ABSTRACT Novel treatment strategies that refract existing treatment algorithms for depressive disorders are being sought. Abnormal brain bioenergetic metabolism may represent an alternative, therapeutically targetable neurobiological basis for depression. A growing body of research points to endogenous ketones as candidate neuroprotective metabolites with the potential to enhance brain bioenergetics and improve mood. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally approved for the treatment of diabetes, induce ketogenesis and are associated with mood improvement in population-based studies. In this column, we highlight the rationale for the hypothesis that ketogenesis induced by SGLT2 inhibitors may be an effective treatment for depressive disorders.
Collapse
Affiliation(s)
- David T Liebers
- From Department of Psychiatry, New York University Grossman School of Medicine (Drs. Liebers and Iosifescu); Division of Hematology and Medical Oncology, New York University Grossman School of Medicine (Dr. Ebina); Clinical Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Dr. Iosifescu)
| | | | | |
Collapse
|
42
|
Jia J, Tian X, He J, Ma G, He W. Taurine promotes axonal sprouting via Shh-mediated mitochondrial improvement in stroke. Acta Cir Bras 2023; 38:e382323. [PMID: 37377249 DOI: 10.1590/acb382323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/18/2023] [Indexed: 06/29/2023] Open
Abstract
PURPOSE Motor function is restored by axonal sprouting in ischemic stroke. Mitochondria play a crucial role in axonal sprouting. Taurine (TAU) is known to protect the brain against experimental stroke, but its role in axonal sprouting and the underlying mechanism are unclear. METHODS We evaluated the motor function of stroke mice using the rotarod test on days 7, 14, and 28. Immunocytochemistry with biotinylated dextran amine was used to detect axonal sprouting. We observed neurite outgrowth and cell apoptosis in cortical neurons under oxygen and glucose deprivation (OGD), respectively. Furthermore, we evaluated the mitochondrial function, adenosine triphosphate (ATP), mitochondrial DNA (mtDNA), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PCG-1α), transcription factor A of mitochondria (TFAM), protein patched homolog 1 (PTCH1), and cellular myelocytomatosis oncogene (c-Myc). RESULTS TAU recovered the motor function and promoted axonal sprouting in ischemic mice. TAU restored the neuritogenesis ability of cortical neurons and reduced OGD-induced cell apoptosis. TAU also reduced reactive oxygen species, stabilized mitochondrial membrane potential, enhanced ATP and mtDNA content, increased the levels of PGC-1α, and TFAM, and restored the impaired levels of PTCH1, and c-Myc. Furthermore, these TAU-related effects could be blocked using an Shh inhibitor (cyclopamine). CONCLUSION Taurine promoted axonal sprouting via Shh-mediated mitochondrial improvement in ischemic stroke.
Collapse
Affiliation(s)
- Jianwen Jia
- Capital Medical University - Beijing Chaoyang Hospital - Department of Neurosurgery - Beijing, China
| | - Xiaochao Tian
- Second Hospital of Hebei Medical University - Department of Cardiology - Hebei, China
| | - Jinzhao He
- Heyuan People's Hospital - Guangdong Provincial People's Hospital Heyuan Hospital - Department of Neurology - Guangdong, China
| | - Guozhong Ma
- Heyuan People's Hospital - Guangdong Provincial People's Hospital Heyuan Hospital - Department of Neurology - Guangdong, China
| | - Weiliang He
- Heyuan People's Hospital - Guangdong Provincial People's Hospital Heyuan Hospital - Department of Neurology - Guangdong, China
- Heyuan People's Hospital - Heyuan Key Laboratory of Molecular Diagnosis & Disease Prevention and Treatment - Doctors Station of Guangdong province - Guangdong, China
| |
Collapse
|
43
|
Meng L, Li Y, Liu C, Zhang G, Chen J, Xiong M, Pan L, Zhang X, Chen G, Xiong J, Liu C, Xu X, Bu L, Zhang Z, Zhang Z. Islet Amyloid Polypeptide Triggers α-synuclein Pathology in Parkinson's Disease. Prog Neurobiol 2023; 226:102462. [PMID: 37150314 DOI: 10.1016/j.pneurobio.2023.102462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/28/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Pathologic aggregation and prion-like propagation of α-synuclein (α-syn) are the hallmarks of Parkinson's disease (PD). Emerging evidence shows that type 2 diabetes mellitus (T2DM) is a risk factor for PD. Interestingly, T2DM is characterized by the amyloid deposition of islet amyloid polypeptide (IAPP) in the pancreas. Although T2DM and PD share pathological similarities, the underlying molecular mechanisms bridging these two diseases remain unknown. Here, we report that IAPP co-deposits with α-syn in the brains of PD patients. IAPP interacts with α-syn and accelerates its aggregation. In addition, the IAPP-seeded α-syn fibrils show enhanced seeding activity and neurotoxicity compared with pure α-syn fibrils in vitro and in vivo. Strikingly, intravenous injection of IAPP fibrils into α-syn A53T transgenic mice or human SNCA transgenic mice accelerated the aggregation of α-syn and PD-like motor deficits. Taken together, these findings support that IAPP acts as a trigger of α-syn pathology in PD, and provide a mechanistic explanation for the increased risk and faster progression of PD in patients with T2DM.
Collapse
Affiliation(s)
- Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yiming Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Congcong Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiehui Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chaoyang Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lihong Bu
- PET-CT/MRI Center, Faculty of Radiology and Nuclear Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
44
|
Song C, Zhao J, Hao J, Mi D, Zhang J, Liu Y, Wu S, Gao F, Jiang W. Aminoprocalcitonin protects against hippocampal neuronal death via preserving oxidative phosphorylation in refractory status epilepticus. Cell Death Discov 2023; 9:144. [PMID: 37142587 PMCID: PMC10160063 DOI: 10.1038/s41420-023-01445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Refractory status epilepticus (RSE) is a neurological emergency where sustaining seizure causes severe neuronal death. Currently, there is no available neuroprotectant effective in RSE. Aminoprocalcitonin (NPCT) is a conserved peptide cleaved from procalcitonin, but its distribution and function in the brain remain enigmatic. Survival of neurons relies on sufficient energy supply. Recently, we found that NPCT was extensively distributed in the brain and had potent modulations on neuronal oxidative phosphorylation (OXPHOS), suggesting that NPCT might be involved in neuronal death by regulating energy status. In the present study, combining biochemical and histological methods, high-throughput RNA-sequence, Seahorse XFe analyser, an array of mitochondria function assays, and behavior-electroencephalogram (EEG) monitoring, we investigated the roles and translational values of NPCT in neuronal death after RSE. We found that NPCT was extensively distributed throughout gray matters in rat brain while RSE triggered NPCT overexpression in hippocampal CA3 pyramidal neurons. High-throughput RNA-sequence demonstrated that the influences of NPCT on primary hippocampal neurons were enriched in OXPHOS. Further function assays verified that NPCT facilitated ATP production, enhanced the activities of mitochondrial respiratory chain complexes I, IV, V, and increased neuronal maximal respiration capacity. NPCT exerted multiple neurotrophic effects including facilitating synaptogenesis, neuritogenesis, spinogenesis, and suppression of caspase-3. A polyclonal NPCT immunoneutralization antibody was developed to antagonize NPCT. In the in vitro 0-Mg2+ seizure model, immunoneutralization of NPCT caused more neuronal death, while exogenous NPCT supplementation, though did not reverse death outcomes, preserved mitochondrial membrane potential. In rat RSE model, both peripheral and intracerebroventricular immunoneutralization of NPCT exacerbated hippocampal neuronal death and peripheral immunoneutralization increased mortality. Intracerebroventricular immunoneutralization of NPCT further led to more serious hippocampal ATP depletion, and significant EEG power exhaustion. We conclude that NPCT is a neuropeptide regulating neuronal OXPHOS. During RSE, NPCT was overexpressed to protect hippocampal neuronal survival via facilitating energy supply.
Collapse
Affiliation(s)
- Changgeng Song
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Jingjing Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Jianmin Hao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Dan Mi
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Jiajia Zhang
- National Translational Science Centre for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Yingying Liu
- Department of Neurobiology, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Shengxi Wu
- Department of Neurobiology, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Fang Gao
- Department of Neurobiology, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China.
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
45
|
Kim S, Seong KM, Lee SH. Acetylcholine titre regulation by non-neuronal acetylcholinesterase 1 and its putative roles in honey bee physiology. INSECT MOLECULAR BIOLOGY 2023. [PMID: 37130064 DOI: 10.1111/imb.12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Similar to other insects, honey bees have two acetylcholinesterases (AChEs), AmAChE1 and AmAChE2. The primary catalytic enzyme for acetylcholine (ACh) hydrolysis in synapses is AmAChE2, which is predominantly expressed in neuronal tissues, whereas AmAChE1 is expressed in both neuronal and non-neuronal tissues, with limited catalytic activity. Unlike constitutively expressed AmAChE2, AmAChE1 expression is induced under stressful conditions such as heat shock and brood rearing suppression, but its role in regulating ACh titre remains unclear. In this paper, to elucidate the role of AmAChE1, the expression of AmAChE1 was suppressed via RNA interference (RNAi) in AmAChE1-induced worker bees. The ACh titre measurement following RNAi revealed that the expression of AmAChE1 downregulated the overall ACh titre in all tissues examined without altering AmAChE2 expression. Transcriptome analysis showed that AmAChE1 knockdown upregulated protein biosynthesis, cell respiration, and thermogenesis in the head. These findings suggest that AmAChE1 is involved in decreasing neuronal activity, enhancing energy conservation, and potentially extending longevity under stressful conditions via ACh titre regulation.
Collapse
Affiliation(s)
- Sanghyeon Kim
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Keon Mook Seong
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Si Hyeock Lee
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
46
|
Yang M, Shen Y, Zhao S, Zhang R, Dong W, Lei X. Protective effect of resveratrol on mitochondrial biogenesis during hyperoxia-induced brain injury in neonatal pups. BMC Neurosci 2023; 24:27. [PMID: 37098490 PMCID: PMC10127954 DOI: 10.1186/s12868-023-00797-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/14/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Neonatal hyperoxic brain injury is caused by exposure to hyperphysiological oxygen content during the period of incomplete development of the oxidative stress defence system, resulting in a large number of reactive oxygen species (ROS) and causing damage to brain tissue. Mitochondrial biogenesis refers to the synthesis of new mitochondria from existing mitochondria, mostly through the PGC-1α/Nrfs/TFAM signalling pathway. Resveratrol (Res), a silencing information regulator 2-related enzyme 1 (Sirt1) agonist, has been shown to upregulate the level of Sirt1 and the expression of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). We speculate that Res has a protective effect on hyperoxia-induced brain injury through mitochondrial biogenesis. METHODS Sprague-Dawley (SD) pups were randomly divided into the nonhyperoxia (NN) group, the nonhyperoxia with dimethyl sulfoxide (ND) group, the nonhyperoxia with Res (NR) group, the hyperoxia (HN) group, the hyperoxia with dimethyl sulfoxide (HD) group, and the hyperoxia with Res (HR) group within 12 h after birth. The HN, HD, and HR groups were placed in a high-oxygen environment (80‒85%), and the other three groups were placed in the standard atmosphere. The NR and HR groups were given 60 mg/kg Res every day, the ND and HD groups were given the same dose of dimethyl sulfoxide (DMSO) every day, and the NN and HN groups were given the same dose of normal saline every day. On postnatal day (PN) 1, PN7, and PN14, brain samples were acquired for HE staining to assess pathology, TUNEL to detect apoptosis, and real-time quantitative polymerase chain reaction and immunoblotting to detect the expression levels of Sirt1, PGC-1α, nuclear respiratory factor 1 (Nrf1), nuclear respiratory factor 2 (Nrf2) and mitochondrial transcription factor A (TFAM) in brain tissue. RESULTS Hyperoxia induced brain tissue injury; increased brain tissue apoptosis; inhibited Sirt1, PGC-1α, Nrf1, Nrf2, TFAM mRNA expression in mitochondria; diminished the ND1 copy number and ND4/ND1 ratio; and decreased Sirt1, PGC-1α, Nrf1, Nrf2, and TFAM protein levels in the brain. In contrast, Res reduced brain injury and attenuated brain tissue apoptosis in neonatal pups and increased the levels of the corresponding indices. CONCLUSION Res has a protective effect on hyperoxia-induced brain injury in neonatal SD pups by upregulating Sirt1 and stimulating the PGC-1α/Nrfs/TFAM signalling pathway for mitochondrial biogenesis.
Collapse
Affiliation(s)
- Menghan Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, No. 8, Section 2, Kangcheng Road, Luzhou, Sichuan, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Yunchuan Shen
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, No. 8, Section 2, Kangcheng Road, Luzhou, Sichuan, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Shuai Zhao
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, No. 8, Section 2, Kangcheng Road, Luzhou, Sichuan, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Rong Zhang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, No. 8, Section 2, Kangcheng Road, Luzhou, Sichuan, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, No. 8, Section 2, Kangcheng Road, Luzhou, Sichuan, 646000, China.
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China.
| | - Xiaoping Lei
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, No. 8, Section 2, Kangcheng Road, Luzhou, Sichuan, 646000, China.
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China.
| |
Collapse
|
47
|
Shi J, Liu D, Jin Q, Chen X, Zhang R, Shi T, Zhu S, Zhang Y, Zong X, Wang C, Li L. Whole-Transcriptome Analysis of Repeated Low-Level Sarin-Exposed Rat Hippocampus and Identification of Cerna Networks to Investigate the Mechanism of Sarin-Induced Cognitive Impairment. BIOLOGY 2023; 12:biology12040627. [PMID: 37106826 PMCID: PMC10136365 DOI: 10.3390/biology12040627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Sarin is a potent organophosphorus nerve agent that causes cognitive dysfunction, but its underlying molecular mechanisms are poorly understood. In this study, a rat model of repeated low-level sarin exposure was established using the subcutaneous injection of 0.4 × LD50 for 21 consecutive days. Sarin-exposed rats showed persistent learning and memory impairment and reduced hippocampal dendritic spine density. A whole-transcriptome analysis was applied to study the mechanism of sarin-induced cognitive impairment, and a total of 1035 differentially expressed mRNA (DEmRNA), including 44 DEmiRNA, 305 DElncRNA, and 412 DEcircRNA, were found in the hippocampus of sarin-treated rats. According to Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and Protein-Protein Interaction (PPI) analysis, these DERNAs were mainly involved in neuronal synaptic plasticity and were related to the pathogenesis of neurodegenerative diseases. The circRNA/lncRNA-miRNA-mRNA ceRNA network was constructed, in which Circ_Fmn1, miR-741-3p, miR-764-3p, miR-871-3p, KIF1A, PTPN11, SYN1, and MT-CO3 formed one circuit, and Circ_Cacna1c, miR-10b-5p, miR-18a-5p, CACNA1C, PRKCD, and RASGRP1 constituted another circuit. The balance between the two circuits was crucial for maintaining synaptic plasticity and may be the regulatory mechanism by which sarin causes cognitive impairment. Our study reveals the ceRNA regulation mechanism of sarin exposure for the first time and provides new insights into the molecular mechanisms of other organophosphorus toxicants.
Collapse
Affiliation(s)
- Jingjing Shi
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Dongxin Liu
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Qian Jin
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Tong Shi
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Siqing Zhu
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Yi Zhang
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Xingxing Zong
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| |
Collapse
|
48
|
Glavis-Bloom C, Vanderlip CR, Weiser Novak S, Kuwajima M, Kirk L, Harris KM, Manor U, Reynolds JH. Violation of the ultrastructural size principle in the dorsolateral prefrontal cortex underlies working memory impairment in the aged common marmoset (Callithrix jacchus). Front Aging Neurosci 2023; 15:1146245. [PMID: 37122384 PMCID: PMC10132463 DOI: 10.3389/fnagi.2023.1146245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Morphology and function of the dorsolateral prefrontal cortex (dlPFC), and corresponding working memory performance, are affected early in the aging process, but nearly half of aged individuals are spared of working memory deficits. Translationally relevant model systems are critical for determining the neurobiological drivers of this variability. The common marmoset (Callithrix jacchus) is advantageous as a model for these investigations because, as a non-human primate, marmosets have a clearly defined dlPFC that enables measurement of prefrontal-dependent cognitive functions, and their short (∼10 year) lifespan facilitates longitudinal studies of aging. Previously, we characterized working memory capacity in a cohort of marmosets that collectively covered the lifespan, and found age-related working memory impairment. We also found a remarkable degree of heterogeneity in performance, similar to that found in humans. Here, we tested the hypothesis that changes to synaptic ultrastructure that affect synaptic efficacy stratify marmosets that age with cognitive impairment from those that age without cognitive impairment. We utilized electron microscopy to visualize synapses in the marmoset dlPFC and measured the sizes of boutons, presynaptic mitochondria, and synapses. We found that coordinated scaling of the sizes of synapses and mitochondria with their associated boutons is essential for intact working memory performance in aged marmosets. Further, lack of synaptic scaling, due to a remarkable failure of synaptic mitochondria to scale with presynaptic boutons, selectively underlies age-related working memory impairment. We posit that this decoupling results in mismatched energy supply and demand, leading to impaired synaptic transmission. We also found that aged marmosets have fewer synapses in dlPFC than young, though the severity of synapse loss did not predict whether aging occurred with or without cognitive impairment. This work identifies a novel mechanism of synapse dysfunction that stratifies marmosets that age with cognitive impairment from those that age without cognitive impairment. The process by which synaptic scaling is regulated is yet unknown and warrants future investigation.
Collapse
Affiliation(s)
- Courtney Glavis-Bloom
- Salk Institute for Biological Studies, Systems Neurobiology Laboratory, La Jolla, CA, United States
| | - Casey R. Vanderlip
- Salk Institute for Biological Studies, Systems Neurobiology Laboratory, La Jolla, CA, United States
| | - Sammy Weiser Novak
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, CA, United States
| | - Masaaki Kuwajima
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States
| | - Lyndsey Kirk
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States
| | - Kristen M. Harris
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States
| | - Uri Manor
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, CA, United States
| | - John H. Reynolds
- Salk Institute for Biological Studies, Systems Neurobiology Laboratory, La Jolla, CA, United States
| |
Collapse
|
49
|
Javani G, Babri S, Farajdokht F, Ghaffari-Nasab A, Mohaddes G. Mitotherapy restores hippocampal mitochondrial function and cognitive impairment in aged male rats subjected to chronic mild stress. Biogerontology 2023; 24:257-273. [PMID: 36626036 DOI: 10.1007/s10522-022-10014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023]
Abstract
This study aimed to determine the effects of mitotherapy on learning and memory and hippocampal kynurenine (Kyn) pathway, mitochondria function, and dendritic arborization and spines density in aged rats subjected to chronic mild stress. Twenty-eight male Wistar rats (22 months old( were randomly divided into Aged, Aged + Mit, Aged + Stress, and Aged + Stress + Mit groups. Aged rats in the stress groups were subjected to different stressors for 28 days. The Aged + Mit and Aged + stress + Mit groups were treated with intracerebroventricular injection (10 µl) of fresh mitochondria harvested from the young rats' brains, and other groups received 10 µl mitochondria storage buffer. Spatial and episodic-like memories were assessed via the Barnes maze and novel object recognition tests. Indoleamine 2,3-dioxygenase (IDO) expression and activity, Kyn, Tryptophan (TRY), ATP levels, and mitochondrial membrane potential (MMP) were measured in the hippocampus region. Golgi-Cox staining was also performed to assess the dendritic branching pattern and dendritic spines in the hippocampal CA1 subfield. The results showed that mitotherapy markedly improved both spatial and episodic memories in the Aged + Stress + Mit group compared to the Aged + Stress. Moreover, mitotherapy decreased IDO protein expression and activity and Kyn levels, while it increased ATP levels and improved MMP in the hippocampus of the Aged + Stress + Mit group. Besides, mitotherapy restored dendritic atrophy and loss of spine density in the hippocampal neurons of the stress-exposed aged rats. These findings provide evidence for the therapeutic effect of mitotherapy against stress-induced cognitive deterioration in aged rats by improving hippocampal mitochondrial function and modulation of the Kyn pathway.
Collapse
Affiliation(s)
- Gonja Javani
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Babri
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Gisou Mohaddes
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA.
| |
Collapse
|
50
|
Sun D, Deng J, Wang Y, Xie J, Li X, Li X, Wang X, Zhou F, Qin S, Liu X. SAG, a sonic hedgehog signaling agonist, alleviates anxiety behavior in high-fat diet-fed mice. Brain Res Bull 2023; 195:25-36. [PMID: 36736922 DOI: 10.1016/j.brainresbull.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Anxiety is a prevalent and disabling psychiatric disorder. Mitochondrial dysfunction due to the high-fat diet (HFD) was regarded as a risk factor in the pathogenesis of anxiety. The Sonic hedgehog (SHH) pathway was known to improve mitochondrial dysfunction through antioxidant and anti-apoptotic effects on some neurological diseases. Nonetheless, its effect on anxiety has not been well studied. In this study, we aimed to explore whether SHH signaling pathway plays a protective role in anxiety by regulating mitochondrial homeostasis. SAG, a typical SHH signaling agonist, was administered intraperitoneally in HFD-fed mice. HFD-induced anxiety-like behavior in mice was confirmed using the open field and elevated plus maze tests. Immunofluorescence staining and Western blotting assays showed that the SHH signaling was downregulated in the prefrontal cortex neurons from HFD-fed mice. Electron microscopy results showed the mitochondria in the prefrontal cortex of HFD-fed mice were fragmented, which appeared small and spherical, and the area, perimeter and circularity of mitochondria were decreased. Mitofusin2 (Mfn2) and dynamin-related protein 1 (Drp1) were the key proteins involved in mitochondrial division and fusion. SAG treatment could rectify the imbalanced expression of Mfn2 and Drp1 in the prefrontal cortex of the HFD-fed mice, and alleviate the mitochondrial fragmentation. Furthermore, SAG decreased anxiety-like behavior in the HFD-fed mice. These findings suggested that SHH signal was neuroprotective in obesity and SAG relieved anxiety-like behavior through reducing mitochondrial fragmentation.
Collapse
Affiliation(s)
- Dexu Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Human Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiaxin Deng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yifan Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jinyu Xie
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaotian Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Feng Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|