1
|
Xu S, Yuan X, Wang Y, Fu Z, Chen K, Cui Z, Xu L, Zhang H, Xia D, Wu Y. Bisphenols exposure at environmentally relevant dose promoted ovarian cancer progression and modulated tumor microenvironment through β-catenin/SPP1 axis. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137824. [PMID: 40054195 DOI: 10.1016/j.jhazmat.2025.137824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 04/16/2025]
Abstract
Bisphenol A (BPA) and its substitute, Bisphenol S (BPS) are typical endocrine-disrupting chemicals used in plastics, but their cancer-promoting effect has remained controversial. Here, we investigated the effects of environmentally relevant doses of BPA/BPS exposure on the tumor microenvironment (TME) in ovarian cancer. BPA exposure levels was exhibiting a declining trend and BPS showing an ascending trend in the female population by analyzing the NHANES data (2013-2016). Low doses of BPA/BPS both significantly promoted the migration and invasion of ovarian cancer cells in a dose-dependent manner by activating the Wnt/β-catenin signaling pathway, thereby facilitating the SPP1 gene transcription. Notably, low-dose BPA/BPS exposure stimulated ovarian cancer cells to secrete OPN protein (coded by the SPP1 gene), subsequently inducing the transformation of fibroblasts into cancer-associated fibroblasts (CAFs), which could reshape the TME of ovarian cancer. Two in-vivo experiments established with nude mice and SPP1-/- mice respectively, both confirmed that low-dose BPA/BPS exposure increased the incidence of tumor metastasis accompanied by CAF infiltration, while administration of OPN-neutralizing antibodies effectively blocked these effects. Our results indicated that exposure to either BPA or its substitute BPS could promote the release of secreted protein OPN via the β-catenin/SPP1 axis, ultimately modulating the TME and enhancing the progression of ovarian cancer, providing new evidence and potential intervention strategies for the toxicological assessment and management of bisphenols.
Collapse
Affiliation(s)
- Sinan Xu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiqin Fu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyan Cui
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Leting Xu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honghe Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Guo J, Yu H, Guo Y, Liu J, Chen Y, Li Z. Identification of endocrine disrupting chemicals targeting NTD-related hub genes during pregnancy via in silico analysis. Reprod Toxicol 2025; 134:108904. [PMID: 40187376 DOI: 10.1016/j.reprotox.2025.108904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/24/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Neural tube defects (NTDs) represent severe congenital malformations of the central nervous system with multifactorial etiology, involving intricate gene-environment interactions that remain incompletely characterized. Endocrine disrupting chemicals (EDCs) are exogenous substances with hormone-disrupting properties that are ubiquitous in our surroundings. These chemicals pose a significant threat to human health, contributing to a range of diseases. Pregnant women are particularly vulnerable to the effects of EDCs, as these substances can traverse the placental barrier and impact the development of both the placenta and fetus. This study utilized placental and fetal transcriptome data to identify hub genes associated with NTDs during pregnancy. By leveraging the Comparative Toxicogenomics Database (CTD), we predicted the EDCs targeting these hub genes and performed molecular docking to assess their interactions. Our findings revealed four hub genes (CTSC, FCER1G, ITGB2, and LYVE1) in NTDs, with 72 EDCs identified as their targets. Molecular docking demonstrated that atrazine, bisphenol A (BPA) and diuron exhibited stable affinity with the proteins encoded by hub genes. These findings provide new insights into the environmental endocrine disruptors that affect the development of NTDs during pregnancy.
Collapse
Affiliation(s)
- Junjie Guo
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No. 998 Aiying Street, Harbin, Heilongjiang 150023, China
| | - Hao Yu
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No. 998 Aiying Street, Harbin, Heilongjiang 150023, China
| | - Yujun Guo
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No. 998 Aiying Street, Harbin, Heilongjiang 150023, China
| | - Jinming Liu
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No. 998 Aiying Street, Harbin, Heilongjiang 150023, China
| | - Yuzhu Chen
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No. 998 Aiying Street, Harbin, Heilongjiang 150023, China
| | - Zhaozhu Li
- Department of Pediatric Surgery, The Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, No. 998 Aiying Street, Harbin, Heilongjiang 150023, China.
| |
Collapse
|
3
|
Van Hassel L, Felton R, Tubbs C, Beck J, Albert M, Baeten V, Fernandez Pierna JA, Debier C, Finkelstein M. Hormonal disruption from plastic ingestion in northern fulmars: Activation and inhibition of estrogen receptors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126145. [PMID: 40154871 DOI: 10.1016/j.envpol.2025.126145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/07/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Plastic pollution is of global concern, yet documented harmful effects from plastic ingestion in wild species is limited. Procellariiformes, such as northern fulmars (Fulmarus glacialis, fulmar), have high levels of plastic ingestion, and we investigated their potential hormonal disruption. As human estrogen receptors (ERs) are commonly used to assess risk of hormonal disruption for wild species, we first compared human and fulmar ER responses to plastic-associated chemicals using a luciferase-reporter gene assay. ERs from both species were activated by bisphenol-A (BPA), bisphenol-S (BPS), 4-octylphenol (4-OP), and benzyl butyl phthalate (BBP), and inhibited by tetrabromobisphenol-A (TBBPA), 2,5,2',5'tetrachloro-biphenyl (PCB-52), and 2,2',3,4,4',5'-hexachlorobiphenyl (PCB-138), although we observed species-specific differences in sensitivity. To assess if ingested plastic had the potential to alter fulmar hormone function, plastic recovered from fulmar stomachs (n = 27) were leached for 14 days with daily solvent renewal and leachates were exposed to fulmar ERs. Almost 50 % of the birds (13 out of 27) had ingested plastic that leached chemicals which caused ER activation and/or inhibition on day 1, with ∼70 % of these (9 out of 13) also showing a response on day 5 and/or 14. The polymer composition of the recovered plastic pieces (n = 142) was identified with infrared spectroscopy. Polyethylene (PE) (60 %) was the most abundant polymer, followed by polypropylene (PP) (35 %), polyethylene terephthalate (PET) (3 %) and unidentifiable (2 %). Polymer type was not associated with ER response, suggesting that chemical additives, not polymer composition, were responsible for the observed hormonal disruption. To our knowledge, we provide the first data on a seabird's ER response to plastic-associated chemicals. Overall, we highlight the potential for plastic ingestion to disrupt fulmar hormone function, providing important information about the harmful effects of plastic pollution.
Collapse
Affiliation(s)
- Liesbeth Van Hassel
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium; Microbiology & Environmental Toxicology Department, University of California, Santa Cruz, CA, 95064, USA.
| | - Rachel Felton
- Reproductive Sciences, San Diego Zoo Wildlife Alliance, 15600 San Pasqual Valley Road, Escondido, CA, 92027, USA
| | - Christopher Tubbs
- Reproductive Sciences, San Diego Zoo Wildlife Alliance, 15600 San Pasqual Valley Road, Escondido, CA, 92027, USA
| | - Jessie Beck
- Ecology and Evolutionary Biology Department, University of California, Santa Cruz, CA, 95064, USA
| | - Maxime Albert
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium; Département Connaissance et Valorisation des Produits, Walloon Agricultural Research Center (CRA-W), Chée de Namur, 24, 5030, Gembloux, Belgium
| | - Vincent Baeten
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium; Département Connaissance et Valorisation des Produits, Walloon Agricultural Research Center (CRA-W), Chée de Namur, 24, 5030, Gembloux, Belgium
| | - Juan Antonio Fernandez Pierna
- Département Connaissance et Valorisation des Produits, Walloon Agricultural Research Center (CRA-W), Chée de Namur, 24, 5030, Gembloux, Belgium
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Myra Finkelstein
- Microbiology & Environmental Toxicology Department, University of California, Santa Cruz, CA, 95064, USA
| |
Collapse
|
4
|
Bonaldo B, Casile A, Bettarelli M, Marraudino M, Gotti S. Perinatal exposure to bisphenol A or S alters differently sexual behavior and kisspeptin system in mice. ENVIRONMENTAL RESEARCH 2025; 269:120888. [PMID: 39828186 DOI: 10.1016/j.envres.2025.120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The effects of bisphenol A (BPA), a highly diffused endocrine-disrupting chemical found mainly in plastics, on neural circuits and behaviors are well-known. However, the effects of its substitutes have not been fully investigated. Thus, in the present study, we compare the effects of perinatal exposure to bisphenol A or S (BPS) on reproductive behaviors and related hypothalamic kisspeptin system in mice. C57BL/6J dams were orally treated with 4 μg/kg body weight/day of BPA, BPS, or vehicle from mating until the weaning of the offspring. In the adult offspring, we performed the two-bedding T-Maze test, and we observed the spontaneous sexual behavior. Exposure to BPA caused a delay in puberty onset in females, while BPS caused anticipation in males, and both altered the estrous cycle in females. The sexual and sexual-related behaviors were partially altered in males, especially in the BPA-exposed ones. Regarding the kisspeptin immunoreactivity in the analyzed hypothalamic nuclei, in BPA- or BPS-treated females, we observed an increase within the rostral periventricular area, while BPA led to an increase in the paraventricular nucleus, and BPS induced a reduction compared to control females. Among males, we observed a significant increase in the arcuate nucleus of BPA-treated males and a significant decrease in the paraventricular nucleus of BPS-treated ones. These results support the idea that perinatal exposure to low doses of either BPA or BPS is altering, in a sexually differentiated way, some reproductive-relevant parameters, sexual behaviors, and kisspeptin hypothalamic nuclei.
Collapse
Affiliation(s)
- Brigitta Bonaldo
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy.
| | - Antonino Casile
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy; School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, Camerino, 62032, Italy
| | - Martina Bettarelli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
| | - Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| |
Collapse
|
5
|
Song C, Shi Y, Li M, Wu L, Xiong X, Liu J, Xia D. An efficient catalyst screening strategy combining machine learning and causal inference. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124665. [PMID: 39999759 DOI: 10.1016/j.jenvman.2025.124665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Due to the diversity of catalyst synthesis methods, the optimization of catalysts by traditional experimental methods have brought greater challenges. This study presents a new strategy for determining catalyst performance by substituting causal inference results as prior knowledge into machine learning models, which was used to explore the correlation between the ratio of nitrogen functional groups in catalysts and degradation performance, so as to solve the problem of low efficiency in catalyst screening. A dataset comprising 14 critical parameters, including the physicochemical properties of catalysts and reaction conditions, was established through the analysis of 182 experimental results. The analysis results based on real data show that CatBoost model performs best (R2 = 0.953, MAE = 3.277, RMSE = 5.615). SHAP analysis showed that pyridinic N was a key N-functional group that affects the degradation performance of BPA. DoWhy causal inference further verified the positive effect of pyridinic N, with causal effect estimate of 0.4388. This strategy reduces the selection range of the best catalyst through causal inference pre-screening, and used CatBoost model to accurately evaluate the performance of its catalyst, which can reduce the catalyst screening process from multiple processes to a single process, and significantly improve the catalyst selection efficiency.
Collapse
Affiliation(s)
- Chenyu Song
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, PR China
| | - Yintao Shi
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, PR China; School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China.
| | - Meng Li
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, PR China; Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Lin Wu
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, PR China
| | - Xiaorong Xiong
- School of Computing, Huanggang Normal University, Huanggang, 438000, PR China
| | - Jianyun Liu
- Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Dongsheng Xia
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, PR China.
| |
Collapse
|
6
|
Khalifa M, Fayed RH, Ahmed YH, Abdelhameed MF, Essa AF, Khalil HMA. Ferulic acid ameliorates bisphenol A (BPA)-induced Alzheimer's disease-like pathology through Akt-ERK crosstalk pathway in male rats. Psychopharmacology (Berl) 2025; 242:461-480. [PMID: 39441400 PMCID: PMC11861243 DOI: 10.1007/s00213-024-06697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES This study investigated the neuroprotective effect of ferulic acid (FA) against bisphenol A (BPA) induced Alzheimer's disease-like pathology in male rats. METHODS Rats were allocated into four groups, control, BPA, BPA + FA, and FA, respectively, for 40 days. Spatial working memory and recognition memory were evaluated. Moreover, the brain levels of oxidative stress biomarkers, proinflammatory cytokines, extracellular signal-regulated kinase (ERK), and phosphorylated serine/threonine protein kinase (p-Akt) were measured. We also determined the brain neuropathological protein levels, including Beta-Amyloid 1-42, total Tau (tTau), and phosphorylated Tau (pTau) proteins. Furthermore, brain levels of Acetylcholinesterase (AChE) and Beta-secretase (BACE) were assessed. Brain histological investigation and immunohistochemistry determination of glial fibrillar acidic protein (GFAP) were also performed. Moreover, docking simulation was adapted to understand the inhibitory role of FA on AChE, BACE-1, and ERK1/2. RESULTS Interestingly, the BPA + FA treated group showed a reversal in the cognitive impairments induced by BPA, which was associated with improved brain redox status. They also exhibited a significant decrease in brain inflammatory cytokines, ERK, and p-Akt levels. Moreover, they revealed a decline in beta-amyloid 1-42 and a significant improvement in tTau expression and pTau protein levels in the brain tissue. Further, the brain levels of AChE and BACE were substantially reduced in BPA + FA rats. The neuroprotective effect of FA was confirmed by restoring the normal architecture of brain tissue, which was associated with decreasing GFAP. CONCLUSION FA could be a potent neuroprotectant agent against AD with a possible prospect for its therapeutic capabilities and nutritional supplement value due to its antioxidant and antiapoptotic properties.
Collapse
Affiliation(s)
- Mhasen Khalifa
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Rabie H Fayed
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Yasmine H Ahmed
- Cytology and Histology Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Ahmed F Essa
- Department of Natural Compounds Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Faculty of Veterinary medicine, King Salman International University, South sinai, Ras Sudr, Egypt
| |
Collapse
|
7
|
Xie N, Bai J, Hou Y, Liu J, Zhang Y, Meng X, Wang X. hPSCs-derived brain organoids for disease modeling, toxicity testing and drug evaluation. Exp Neurol 2025; 385:115110. [PMID: 39667657 DOI: 10.1016/j.expneurol.2024.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Due to the differences and variances in genetic background, in vitro and animal models cannot meet the modern medical exploration of real human brain structure and function. Recently, brain organoids generated by human pluripotent stem cells (hPSCs) can mimic the structure and physiological function of human brain, being widely used in medical research. Brain organoids generated from normal hPSCs or patient-derived induced pluripotent stem cells offer a more promising approach for the study of diverse human brain diseases. More importantly, the use of the established brain organoid model for drug evaluation is conducive to shorten the clinical transformation period. Herein, we summarize methods for the identification of brain organoids from cellular diversity, morphology and neuronal activity, brain disease modeling, toxicity testing, and drug evaluation. Based on this, it is hoped that this review will provide new insights into the pathogenesis of brain diseases and drug research and development, promoting the rapid development of brain science.
Collapse
Affiliation(s)
- Na Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jinrong Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ya Hou
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Jia Liu
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
8
|
Li Z, Robaire B. Effects of Endocrine-Disrupting Chemicals on Adrenal Function. Endocrinology 2025; 166:bqaf045. [PMID: 40048632 PMCID: PMC11907101 DOI: 10.1210/endocr/bqaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Indexed: 03/15/2025]
Abstract
The adrenal glands play crucial roles in regulating metabolism, blood pressure, immune system function, and response to stress through the secretion of hormones. Despite their critical functions, the adrenal glands are often overlooked in studies on the effects of potential toxicants. Research across human, animal, and in vitro studies has identified more than 60 compounds that can induce adrenocortical toxicity. These compounds, known as endocrine-disrupting chemicals (EDCs), are natural or synthetic substances that interfere with the endocrine system. This review aims to provide an overview of the effects of 4 major families of EDCs-flame retardants, bisphenols, phthalates, and microplastics-on the function of the adrenal glands. The PubMed database was searched for studies reporting the effects of the chemicals in these 4 families on the adrenal glands. There is clear evidence that the morphology and function of the adrenal gland are affected, particularly through disrupting the steroidogenic pathway. Additionally, some EDCs have been shown to exert transgenerational effects, raising further concerns about their long-term effect. However, most EDCs have not been thoroughly evaluated for their effects on the function of the adrenal glands, especially in human studies. Thus, developing regulatory testing guideline to include the adrenal glands in the screening of EDCs is urgently needed.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
- Department of Obstetrics & Gynecology, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
9
|
Cui Y, Liu Y, Pan X, Bao Y, Shi W, Cao L. Dilong (Earthworm) alleviates cyclophosphamide-induced brain injury by reducing mitochondrial damage in neuronal cells. Neuroscience 2025; 567:37-44. [PMID: 39742944 DOI: 10.1016/j.neuroscience.2024.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
The experiment was designed to explore the effects and mechanism of Dilong on alleviating cyclophosphamide (CTX)-induced brain injury in mice. Fifty male SPF Kunming mice aged 6-8 weeks were randomly divided into five groups: Group A served as the control group; Group B received intraperitoneal injection of CTX; Groups C, D, and E were administered Dilong at doses of 100, 200, and 400 mg/kg respectively for 14 days after intraperitoneal injection of CTX. Results showed that after modeling, the movement speed of mice significantly decreased (P < 0.05), and the number of neurons in the hippocampus and cortex decreased. Dilong can mitigate the behavioral abnormalities and reduction of brain neuronal cells caused by CTX. CTX had no significant effect on the number of astrocytes, microglia, and microglia M1 and M2 polarization, but it had a significant damaging effect on neuronal cells (P < 0.05). The mechanism of action is that CTX causes a decrease in cellular mitochondrial respiratory enzyme activity (P < 0.05) and abnormal mitochondrial structure, which leads to the activation of the cellular scorching pathway. Dilong significantly increased mitochondrial respiratory enzyme activity (P < 0.05), and the mitochondrial structure was restored to some extent. By significantly reducing NLRP3/TLR4/caspase1/pro caspase1/GSDMD (P < 0.05), it increased neuronal cell survival. This resulted in an increase in neuronal cell survival, thus exerting a protective effect on the brain.
Collapse
Affiliation(s)
- Yuqing Cui
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Rongchang, Chongqing 402460, China
| | - Yishan Liu
- Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; Beijing Municipal Bureau of Agriculture and Rural Affairs, Beijing 10000, China
| | - Xingliang Pan
- Beijing Municipal Bureau of Agriculture and Rural Affairs, Beijing 10000, China
| | - Yongzhan Bao
- Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; Hebei Provincial Engineering Center for Chinese Veterinary Herbal Medicine, Baoding 071000, China
| | - Wanyu Shi
- Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; Hebei Provincial Engineering Center for Chinese Veterinary Herbal Medicine, Baoding 071000, China
| | - Liting Cao
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Rongchang, Chongqing 402460, China.
| |
Collapse
|
10
|
Iskandarani L, Romanelli S, Hales BF, Robaire B. The effects of bisphenol A and its analogs on steroidogenesis in MA-10 Leydig cells and KGN granulosa cells†. Biol Reprod 2025; 112:399-414. [PMID: 39520287 PMCID: PMC11833478 DOI: 10.1093/biolre/ioae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/17/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenols are a family of chemicals used in the manufacture of consumer products containing polycarbonate plastics and epoxy resins. Studies have shown that exposure to bisphenol A (BPA) may disrupt steroidogenesis and induce adverse effects on male and female reproduction, but little is known about BPA replacements. We determined the effects of six bisphenols on the steroidogenic function of MA-10 Leydig cells and KGN granulosa cells by measuring the levels of progesterone and estradiol produced by these cells as well as the expression of transcripts involved in steroid and cholesterol biosynthesis. MA-10 and KGN cells were exposed for 48 h to one of six bisphenols (0.01-50 μM): BPA, bisphenol F, bisphenol S, bisphenol AF, bisphenol M, or bisphenol TMC, under both basal and dibutyryl cAMP (Bu2cAMP)-stimulated conditions. In MA-10 cells, most bisphenols increased the Bu2cAMP-stimulated production of progesterone. In KGN cells, there was a general decrease in progesterone production, while estradiol levels were increased following exposure to many bisphenols. Quantitative real-time polymerase chain reaction analyses revealed that all six bisphenols (≥1 μM) upregulated the expression of STAR, a cholesterol transporter, in both cell lines after stimulation. Key transcripts directly involved in steroid and cholesterol biosynthesis were significantly altered in a cell line, chemical, and concentration-dependent manner. Thus, BPA and five of its analogs can disrupt steroid production in two steroidogenic cell lines and alter the levels of transcripts involved in this process. Importantly, BPA replacements do not appear to have fewer effects than BPA.
Collapse
Affiliation(s)
- Lama Iskandarani
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Sabrina Romanelli
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Haridevamuthu B, Madesh S, Bharti AK, Dhivya LS, Rajagopal R, Alfarhan A, Muthu Kumaradoss K, Arockiaraj J. Protective effect of a novel furan hybrid chalcone against bisphenol A-induced craniofacial developmental toxicity in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2025; 288:110072. [PMID: 39571873 DOI: 10.1016/j.cbpc.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024]
Abstract
Bisphenol A (BPA), a pervasive endocrine disruptor, is known to cause significant developmental toxicity, particularly affecting craniofacial structures through oxidative stress and apoptosis. A novel furan hybrid chalcone derivative, 3-(2-hydroxy-5-nitrophenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DK04), specifically with a hydroxyl group for its antioxidant properties and a nitro group for enhanced electron-withdrawing ability, was evaluated for its potential to mitigate these toxic effects. Zebrafish embryos were exposed to BPA and co-treated with various concentrations of DK04. Our results demonstrated that DK04 significantly reduced reactive oxygen species (ROS) generation and lipid peroxidation, increased antioxidant enzyme activities (SOD and CAT), and restored the balance between pro-apoptotic (p53) and anti-apoptotic (bcl2) genes. Furthermore, DK04 treatment improved bone mineralization and chondrogenesis by reversing BPA-induced disruptions in osteogenic markers (runx2, sox9a, bmp6, and mmp13a). The locomotion impairments observed in BPA-exposed embryos were also ameliorated by DK04, indicating its potential neuroprotective effects. These findings suggest that DK04 offers a multifaceted approach to counteract BPA toxicity, making it a promising candidate for therapeutic intervention. This research underscores the importance of developing prophylactic compounds to safeguard health against environmental toxicants like BPA. Future studies should focus on long-term safety and efficacy in mammalian models and explore synergistic effects with other protective agents to broaden the applications of DK04 and contribute to public health benefits.
Collapse
Affiliation(s)
- B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| | - S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Ankit Kumar Bharti
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - L S Dhivya
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
12
|
Cull ME, Winn LM. Bisphenol A and its potential mechanism of action for reproductive toxicity. Toxicology 2025; 511:154040. [PMID: 39725262 DOI: 10.1016/j.tox.2024.154040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Bisphenol A (BPA) is an organic synthetic chemical used worldwide. Billions of pounds of BPA are produced annually through industrial processes to be used in commercial products, making human exposure to BPA ubiquitous. Concerns have been raised due to the potential adverse health effects of BPA, specifically in vulnerable populations, such as pregnant persons and children. BPA is an endocrine-disrupting chemical, and through this function has been linked to reproductive toxicity. We review BPA's historical and current use, health and safety concerns and regulations, sources of exposure, and evidence for male and female reproductive toxicity. Evidence from epidemiological and animal studies idenfity that low- and high-exposure levels of BPA (prenatal, postnatal and adulthood exposure) can adversely affect male and female fertility and reproductive organs. While the cause of BPA-induced reproductive toxicity is not fully understood, we discuss BPA's estrogenic and androgenic activity, and its ability to disrupt the hypothalamic-pituitary-gonadal axis as a potential associated mechanism. There are significant differences in tolerable daily intakes of BPA set by global agencies, making interpretation of previous and emerging research findings challenging and inconsistent. Although BPA is deemed toxic by some government agencies, most do not currently consider it a health risk due to low populational exposure levels. However, we highlight evidence that even at acute, low exposure, BPA can adversely affect reproductive function. We recommend continuing research into the adverse effects of BPA on human health and revisiting the regulatory measures of BPA to limit exposure and promote public awareness of its potential to cause reproductive toxicity.
Collapse
Affiliation(s)
- Megan E Cull
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada; School of Environmental Studies, Queen's University, Kingston, Canada.
| |
Collapse
|
13
|
Zhang B, Quan H, Wen C, Ying Y, Zhu Y, Ge RS, Zhu Q. Inhibition of FTO expression by thiodiphenol impairs Leydig cell maturation in pubertal male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117815. [PMID: 39889475 DOI: 10.1016/j.ecoenv.2025.117815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
This study investigated the multifaceted effects of 4,4'-thiodiphenol (TDP) on male reproductive health, focusing on its toxicity, hormonal modulation, and impact on steroidogenesis. Male rats were exposed to TDP at varying doses (0, 1, 10, and 100 mg/kg) from day 35-56 postpartum. Overt toxicity was evident as TDP significantly reduced inhibited spermatogenesis at 10 and 100 mg/kg. TDP exhibited anti-androgenic properties by inhibiting testosterone biosynthesis at 10 and 100 mg/kg, correlating with increased LH levels at 10 mg/kg and altered T/LH ratios at ≥ 1 mg/kg. Immunohistochemical analysis revealed a dose-dependent increase in Leydig cell (LC) numbers, particularly at 100 mg/kg, attributed to enhanced LC proliferation as evidenced by elevated PCNA labeling. RNA-seq and qPCR analyses demonstrated the impact of TDP on LC gene expression, notably downregulating steroidogenesis-related genes such as Lhcgr, Star, Cyp11a1, and Hsd3b1, and inducing oxidative stress pathway genes. Protein expression studies confirmed reduced levels of key steroidogenic proteins and increased oxidative stress, evidenced by elevated malondialdehyde levels and reduced SOD1 expression. In vitro studies further elucidated the inhibition of TDP on steroidogenesis and induction of reactive oxygen species (ROS), independent of cytotoxicity. Additionally, the modulation of m6A RNA methylation was explored, showing an increase in m6A levels and a reduction in FTO and ALKBH5 expression and overexpression of Fto reversed TDP-mediated suppression of testosterone and steroidogenic and antioxidative genes, suggesting a novel regulatory mechanism involving RNA modification. Collectively, these findings underscore the potential of TDP as an endocrine disruptor with significant implications for male reproductive health.
Collapse
Affiliation(s)
- Bingru Zhang
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou and Key Laboratory of Structural Malformations in Children of Zhejiang Province, Zhejiang, China
| | - Hehua Quan
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou and Key Laboratory of Structural Malformations in Children of Zhejiang Province, Zhejiang, China
| | - Chao Wen
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou and Key Laboratory of Structural Malformations in Children of Zhejiang Province, Zhejiang, China
| | - Yingfen Ying
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou and Key Laboratory of Structural Malformations in Children of Zhejiang Province, Zhejiang, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou and Key Laboratory of Structural Malformations in Children of Zhejiang Province, Zhejiang, China.
| | - Qiqi Zhu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou and Key Laboratory of Structural Malformations in Children of Zhejiang Province, Zhejiang, China.
| |
Collapse
|
14
|
Nazmy MM, Noor NA, Mohammed FF, Khadrawy YA, Radwan NM. Taurine protection attenuates bisphenol-A-induced behavioral, neurochemical, and histopathological alterations in male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03767-4. [PMID: 39820545 DOI: 10.1007/s00210-024-03767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/25/2024] [Indexed: 01/19/2025]
Abstract
Due to the continuous exposure to bisphenol-A (BPA), the current study was conducted to evaluate taurine's neuroprotective action against BPA's adverse effect on the brain. Rats were grouped into control, BPA-treated rats, and taurine + BPA-treated rats. At the end of the 35-day treatment period, the memory of the rats was evaluated using the novel object test and the Y-maze test. An open-field test was used to measure motor activity. The changes in monoamines, monoamine oxidase (MAO), acetylcholinesterase (AChE), Na+,K+,ATPase, oxidative stress, caspase-3, and histopathology were evaluated in the cortical and hippocampal tissues of all groups. Data analysis by ANOVA revealed that BPA treatment induced motor hyperactivity and short- and long-term memory impairment. In the cortex, BPA decreased serotonin (5-HT), norepinephrine (NE), MAO, Na+,K+,ATPase, and nitric oxide (NO) and increased dopamine (DA), AChE, lipid peroxidation (MDA), glutathione (GSH), and caspase-3. In the hippocampus, BPA increased 5-HT, DA, NE, MAO, AChE, MDA, NO, GSH, and caspase-3 and decreased Na+,K+,ATPase. These neurochemical changes were accompanied by significant histopathological alterations. Taurine treatment prevented memory impairment and motor hyperactivity induced by BPA. Taurine attenuated the neurochemical changes, oxidative stress, and caspase-3 level. Taurine improved the histopathological change induced by BPA. In conclusion, taurine significantly prevented BPA-induced cognitive deficits, motor coordination impairments, neurotransmitter imbalances, histopathological alterations, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Mohamed M Nazmy
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University, Badr City, Cairo, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Neveen A Noor
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Faten F Mohammed
- Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Pathology, College of Veterinary Medicine, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Yasser A Khadrawy
- Medical Physiology Department, Clinical Studies and Medical Research Institute, National Research Centre, Giza, Egypt.
| | - Nasr M Radwan
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Buoso E, Masi M, Limosani RV, Oliviero C, Saeed S, Iulini M, Passoni FC, Racchi M, Corsini E. Endocrine Disrupting Toxicity of Bisphenol A and Its Analogs: Implications in the Neuro-Immune Milieu. J Xenobiot 2025; 15:13. [PMID: 39846545 PMCID: PMC11755641 DOI: 10.3390/jox15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/22/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic substances that are able to interfere with hormonal systems and alter their physiological signaling. EDCs have been recognized as a public health issue due to their widespread use, environmental persistence and the potential levels of long-term exposure with implications in multiple pathological conditions. Their reported adverse effects pose critical concerns about their use, warranting their strict regulation. This is the case of bisphenol A (BPA), a well-known EDC whose tolerable daily intake (TDI) was re-evaluated in 2023 by the European Food Safety Authority (EFSA), and the immune system has been identified as the most sensitive to BPA exposure. Increasing scientific evidence indicates that EDCs can interfere with several hormone receptors, pathways and interacting proteins, resulting in a complex, cell context-dependent response that may differ among tissues. In this regard, the neuronal and immune systems are important targets of hormonal signaling and are now emerging as critical players in endocrine disruption. Here, we use BPA and its analogs as proof-of-concept EDCs to address their detrimental effects on the immune and nervous systems and to highlight complex interrelationships within the immune-neuroendocrine network (INEN). Finally, we propose that Receptor for Activated C Kinase 1 (RACK1), an important target for EDCs and a valuable screening tool, could serve as a central hub in our toxicology model to explain bisphenol-mediated adverse effects on the INEN.
Collapse
Affiliation(s)
- Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy; (R.V.L.); (C.O.); (S.S.); (M.R.)
- Department of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02215, USA
| | - Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy;
| | - Roberta Valeria Limosani
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy; (R.V.L.); (C.O.); (S.S.); (M.R.)
| | - Chiara Oliviero
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy; (R.V.L.); (C.O.); (S.S.); (M.R.)
| | - Sabrina Saeed
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy; (R.V.L.); (C.O.); (S.S.); (M.R.)
| | - Martina Iulini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Science, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.I.); (F.C.P.); (E.C.)
| | - Francesca Carlotta Passoni
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Science, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.I.); (F.C.P.); (E.C.)
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy; (R.V.L.); (C.O.); (S.S.); (M.R.)
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Science, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.I.); (F.C.P.); (E.C.)
| |
Collapse
|
16
|
Li J, Yu G, Wang L, Zhang W, Ke W, Li Y, Liu D, Xie K, Xu Y, Cha C, Guo G, Zhang J. Enriched environment rescues bisphenol A induced anxiety-like behavior and cognitive impairment by modulating synaptic plasticity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117427. [PMID: 39632333 DOI: 10.1016/j.ecoenv.2024.117427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/24/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Bisphenol A (BPA) is an exogenous endocrine disruptor in the environmental context, garnering attention for its harmful effects on the nervous system function and behavior. Research indicates that being exposed to BPA may result in anxiety-like behavior and impairment in cognitive function. Enriched environment (EE) is beneficial to improve cognitive behavior, but whether EE can improve BPA-induced behavioral impairment is still unclear. This research explored the possible pathways through which EE alleviates anxiety-like behavior and cognitive impairment in mice exposed to BPA. Except for the control mice, all mice received BPA treatment. After BPA treatment, some mice were housed normally, some housed with EE, and some were given NMDA and AMPA receptor agonists. Our research revealed that exposure to BPA results in anxiety-like behavior in open field and elevated-plus maze experiments. Additionally, spatial and learning memory cognitive impairments were observed in Y-maze and water maze tests. Furthermore, exposure to BPA led to a decrease in both the density and maturity of dendritic spines, as well as a reduction in neurite length and branch numbers. PSD-95, GluA1, and NR2A expression were down-regulated, and excitatory synaptic transmission was decreased. However, EE treatment increased dendrite spine density and maturity, up-regulated PSD-95, GluA1and NR2A expression, enhanced excitatory synaptic transmission, and relieved anxiety-like behavior and cognitive impairment in BPA mice. Furthermore, administering NMDA or AMPA receptor agonists to BPA mice led to an increase in dendritic spine density and maturity, a rise in mEPSC amplitude, as well as a restoration of anxiety-like behavior and cognitive deficits induced by BPA. The findings of this study provide proof that EE has a neuroprotective effect in reducing anxiety-related behavior and cognitive decline caused by BPA.
Collapse
Affiliation(s)
- Jiong Li
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Guangyin Yu
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Laijian Wang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Wenjun Zhang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Wenya Ke
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Yifei Li
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Danlei Liu
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Keman Xie
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Yuanyuan Xu
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Caihui Cha
- Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou 510120, China
| | - Guoqing Guo
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Jifeng Zhang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
17
|
Ding Z, Chen H, Cheng H, Wu C, Ruan H, Zhu B, Zhou P, Xu Z, Xiang H. BPZ inhibits early mouse embryonic development by disrupting maternal-to-zygotic transition and mitochondrial function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117693. [PMID: 39788034 DOI: 10.1016/j.ecoenv.2025.117693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/16/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
The use of Bisphenol A (BPA) has been widely restricted due to its adverse health effects. Bisphenol Z (BPZ) is used as an alternative to BPA, and humans are widely exposed to BPZ through various routes. Recent studies have shown that BPZ exposure adversely affects mouse oocyte meiotic maturation. This study investigates the impact of BPZ exposure on early mouse embryonic development alongside an exploration of the underlying mechanisms. The findings reveal that exposure to BPZ leads to a reduction in early embryo quality and hinders developmental progression. RNA sequencing analysis has identified 593 differentially expressed genes as a result of BPZ exposure, highlighting considerable changes in early embryonic gene expression. Mechanistically, BPZ exposure inhibits the activation of the zygotic genome and impedes maternal mRNA degradation, thereby interfering with maternal-to-zygotic transition (MZT). Further analysis indicates compromised mitochondrial function, as evidenced by abnormal distribution, diminished membrane potential, and lower ATP levels. Consequently, BPZ-exposed embryos exhibit elevated levels of reactive oxygen species, superoxide anions, and oxidative DNA damage. Moreover, BPZ exposure is associated with an increase in γ-H2A.X expression. Additionally, BPZ exposure alters the expression levels of histone modifications, including H3K27me2, H3K27me3, H3K9me3, and H3K27ac, in early embryos. Collectively, BPZ exposure significantly impairs early embryo quality by disrupting mitochondrial function, inducing oxidative stress and DNA damage, altering histone modifications, and inhibiting MZT, ultimately resulting in hindered blastocyst formation. These findings underscore the profound adverse effects of BPZ on early embryonic development, indicating the need for caution when considering it as a safe alternative to BPA.
Collapse
Affiliation(s)
- Zhiming Ding
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Huilei Chen
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu 233000, China
| | - Huiru Cheng
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Caiyun Wu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Hongzhen Ruan
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Bingjing Zhu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Ping Zhou
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China.
| | - Zuying Xu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China.
| | - Huifen Xiang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China.
| |
Collapse
|
18
|
Wang X, Ma J, Li W, Hou Z, Li H, Li Y, Wang S, Tie Y. BPA Exacerbates Zinc Deficiency-Induced Testicular Tissue Inflammation in Male Mice Through the TNF-α/NF-κB/Caspase8 Signaling Pathway. Biol Trace Elem Res 2024:10.1007/s12011-024-04464-2. [PMID: 39638945 DOI: 10.1007/s12011-024-04464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical that is toxic to reproduction. Zinc (Zn) plays an important role in male reproductive health. Zn deficiency (ZD) can co-exist with BPA. In order to investigate the specific mechanism of reproductive damage caused by BPA exposure in ZD male mice, a mouse model of ZD, BPA exposure, and their combined exposure was established in this study. Forty 4-week-old SPF male ICR mice with an average body weight of 31.7 ± 4.2 g were divided into four groups including normal Zn diet group 30 mg/(kg•d), BPA exposure group 150 mg/(kg•d), zinc deficiency diet group 7.5 mg/(kg•d), and BPA + ZD combined exposure group (BPA 150 mg/(kg•d) + ZD 7.5 mg/(kg•d)). The mice were kept for 8 weeks. The results showed that the testicular tissue structure was disturbed, and semen quality, serum Zn, testicular tissue Zn, and testicular tissue free Zn ions were decreased in the BPA-exposed and ZD groups. The expression of zinc transporters (ZIP7, ZIP8, ZIP13, and ZIP14) in testicular tissue was changed. The expressions of pro-inflammatory cytokines including TNF-α and IL-1β as well as inflammatory pathway-related proteins (IKB-α, p-IKB-α, NF-κB, p-NF-κB, Caspase8, and Caspase3) were increased, while the expressions of anti-inflammatory cytokines (TGF-β and IL-10) were decreased. The changes in the above indexes in the BPA + ZD group were more obvious. Both BPA exposure and ZD can induce testicular tissue inflammation through the TNF-α/NF-κB/Caspase8 signaling pathway, and BPA further aggravates zinc deficiency-induced testicular tissue inflammation and apoptosis damage.
Collapse
Affiliation(s)
- Xinying Wang
- North China University of Science and Technology, Tangshan, 063210, Hebei Province, China.
- Hebei General Hospital, NO.348 Heping West Road, Xinhua District, Shijiazhuang City, P.R. 050051, Hebei Province, China.
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China.
| | - Wen Li
- Hebei Chest Hospital, Shijiazhuang, 050041, Hebei, China
| | - Zhan Hou
- Hebei General Hospital, NO.348 Heping West Road, Xinhua District, Shijiazhuang City, P.R. 050051, Hebei Province, China
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Huanhuan Li
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China
| | - Yuanjing Li
- School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China.
| | - Yanqing Tie
- Hebei General Hospital, NO.348 Heping West Road, Xinhua District, Shijiazhuang City, P.R. 050051, Hebei Province, China.
| |
Collapse
|
19
|
Du Y, Jin W, Yang S, Jia Y, Li X, Li J, Zhang M, Zhang Y. Determination of bisphenol analogues in bottled water using deep eutectic solvent and magnetic multi-walled carbon nanotubes followed by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A 2024; 1738:465479. [PMID: 39500077 DOI: 10.1016/j.chroma.2024.465479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/20/2024] [Accepted: 10/27/2024] [Indexed: 11/25/2024]
Abstract
Bisphenol analogues (BPs) are a class of typical environmental endocrine disruptors (EDCs) that have recently attracted increasing attention with regard to their potential effects on human health. The objective of this study was to develop a method using a magnetic soft material, which consisted of hydrophilic deep eutectic solvent (DES) and magnetic multi-walled carbon nanotubes (MMWCNTs), for the dispersive solid-phase extraction (d-SPE), coupled with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), for the determination of the levels of nine BPs in bottled water. The hydrophilic DES enable the rapid dispersion of MMWCNTs when the material is injected rapidly into the sample solution using a pipette gun. This process can therefore be completed in a relatively short period of time, resulting in an efficient extraction. Under optimal conditions, the limit of detections (LODs) of the method were 0.0003-0.003 μg/L and the limit of quantifications (LOQs) were 0.001-0.01 μg/L. The relative standard deviations (RSDs) of the method were only 2.42-7.59 % for inter-day and 3.71-9.67 % for intra-day. The method demonstrated good reproducibilities and recoveries, rendering it suitable for the determination of BPs in large-volume water samples.
Collapse
Affiliation(s)
- Yu Du
- Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China
| | - Weiyi Jin
- Institute of Health Inspection and Testing, Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, China
| | - Siyu Yang
- Institute of Health Inspection and Testing, Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, China
| | - Yeqing Jia
- Institute of Health Inspection and Testing, Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, China
| | - Xinghua Li
- Institute of Health Inspection and Testing, Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, China
| | - Jianping Li
- Institute of Health Inspection and Testing, Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, China
| | - Mingyue Zhang
- Institute of Health Inspection and Testing, Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, China.
| | - Yi Zhang
- Institute of Health Inspection and Testing, Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, China.
| |
Collapse
|
20
|
Hao J, Beng S, Ma Z, Xu H, Yang T, Yang Q, Wang Y, Zheng W, Ma Y, Zhang S, Kuang L, Fu W. Short-Term Exposure of Bisphenol A Deteriorates the Quality of Rabbit Milk by Impairing Milk Fat Synthesis. Food Sci Nutr 2024; 12:10666-10679. [PMID: 39723079 PMCID: PMC11666964 DOI: 10.1002/fsn3.4561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 12/28/2024] Open
Abstract
This study aimed to investigate the effects of short-term exposure of Bisphenol A (BPA) on the growth and lactation performance, blood parameters, and milk composition of lactating rabbits and explore its potential molecular mechanisms. Eight lactating rabbits with similar body weight were selected and randomly divided into the experimental group (BPA) and the control group (Ctrl). The group BPA was orally administered 80 mg/kg/day BPA on the 15th day postpartum, while the group Ctrl received a corresponding volume of vehicle. Blood and milk samples were collected after 7 days treatment. The results showed that short-term ingestion of BPA did not obviously alter the body weight, feed intake, or milk yield of the lactating rabbits. ELISA assays indicated that BPA did not significantly affect the plasma levels of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), creatinine (CRE), alanine aminotransferase (ALT), aspartate aminotransferase (AST), uric acid (UA), and urea. Utilizing untargeted metabolomics, we first depicted the metabolomic profile of rabbit milk, and identified 277 differential metabolites (DMs), with 141 DMs upregulated (e.g., BPA, and its metabolites including Cetirizine N-oxide) and 136 DMs downregulated (e.g., Oleamide, Tiglic acid, PC O-38:4) in the group BPA. KEGG analysis revealed that the DMs were mainly enriched in pathways comprising fatty acid metabolism, fatty acid degradation, and phosphatidylinositol signaling system, emphasizing the effect of BPA on milk fat metabolism. Hence, we established the BPA-induced MAC-T model, and the results showed that BPA significantly reduced cell viability and impacted lipid synthesis, as evidenced by reduced lipid droplets (BODIPY and Oil Red O staining) and decreased expression of genes related to lipid synthesis (e.g., PPARγ, ACACA, LPL). In summary, we first drew the metabolomic profile of rabbit milk and confirmed that short-term BPA exposure impacted mammary lipid synthesis, thereby reducing the milk quality of lactating rabbits and providing fundamental data for resolving the toxicological mechanisms of BPA on mammal lactation.
Collapse
Affiliation(s)
- Jia Hao
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Shaohui Beng
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Zifeng Ma
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Hongmei Xu
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Ting Yang
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Qiman Yang
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Yunduan Wang
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Wenhui Zheng
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Yisha Ma
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | - Shuo Zhang
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
| | | | - Wei Fu
- College of Animal & Veterinary SciencesSouthwest Minzu UniversityChengduChina
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of EducationSouthwest Minzu UniversityChengduChina
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of ChinaSouthwest Minzu UniversityChengduChina
| |
Collapse
|
21
|
Yang D, Zhao D, Chen H, Cai Y, Liu Y, Guo F, Li F, Zhang Y, Xu Z, Xue J, Kannan K. Distribution, bioaccumulation and human exposure risk of bisphenol analogues, bisphenol A diglycidyl ether and its derivatives in the Dongjiang River basin, south China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175969. [PMID: 39222812 DOI: 10.1016/j.scitotenv.2024.175969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Bisphenols, bisphenol A diglycidyl ether (BADGE), and bisphenol F diglycidyl ether (BFDGE) are commonly used as raw materials or additives in the production of several industrial and consumer products. However, information regarding the occurrence and distribution of these industrial chemicals in freshwater ecosystem is limited. In this study, four bisphenols, six BADGEs, and three BFDGEs were determined in abiotic and biotic samples collected from the Dongjiang River basin in southern China. Among the four bisphenols, BPA was widely present in all samples analyzed including surface water (median: 1.81 ng/L), sediment (3.1 ng/g dw), aquatic plants (3.69 ng/g dw), algae (7.57 ng/g dw), zooplankton (6.17 ng/g dw), and fish muscle (5.28 ng/g dw). Among the nine BADGEs and BFDGEs analyzed, BADGE, BADGE•H2O, BADGE·HCl·H2O and BADGE•2H2O was found in all sample types. Although the median concentration of BADGE•2H2O in surface water was below LOQ, this compound was found at median concentrations of 2.61, 3.59, 1.03, 1.69, and 49.8 ng/g dw in sediment, plants, algae, zooplankton, and fish muscle, respectively. Significant positive linear correlations were found among logarithmic transformed concentrations of BPA, BADGE, BADGE•H2O, BADGE•HCl•H2O, and BADGE•2H2O in sediment. The bioconcentration factor (logBCF) values of BADGE, BADGE•H2O, BADGE•HCl, BADGE•HCl•H2O, BADGE•2H2O, and BADGE•2HCl in fish, plants, algae, and zooplankton were > 3.3 L/kg (wet weight), indicating that these chemicals possess moderate bioaccumulation potential. The estimated daily total intake of bisphenols and BADGEs through fish consumption was 75.1 ng/kg bw/day for urban adult residents. The study provides baseline information on the occurrence of bisphenols, BADGEs, and BFDGEs in a freshwater ecosystem.
Collapse
Affiliation(s)
- Danlin Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Daoming Zhao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Honglin Chen
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Fen Guo
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Feilong Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihao Xu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingchuan Xue
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, United States; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, NY 12237, United States
| |
Collapse
|
22
|
Bhoi S, Sarangi P, Pradhan LK, Sahoo PK, Sahoo BS, Aparna S, Raut S, Das SK. Bisphenol F-induced precocious genesis of aggressive neurobehavioral response is associated with heightened monoamine oxidase activity and neurodegeneration in zebrafish brain. Neurotoxicol Teratol 2024; 106:107402. [PMID: 39454971 DOI: 10.1016/j.ntt.2024.107402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
The production and use of plastics and plastics products has increased dramatically in recent decades. Moreover, their unprotected disposal into ambient life sustaining environment poses a significant health risk. Bisphenol F (BPF) an alternative to bisphenol A (BPA) has been extensively employed for making of plastics. Recent reports have documented the neurotoxic potential of BPF through induction of altered neurochemical profile, microglia-astrocyte-mediated neuroinflammation, oxidative stress, transformed neurobehavioral response, cognitive dysfunction, etc. In the present study, our approach was to understand the underlying mechanism of BPF-persuaded genesis of aggressive neurobehavioral response in zebrafish. The basic findings advocated a temporal transformation in native explorative behaviour and progressive induction of aggressive behavioural response in zebrafish following exposure to BPF. Our neurobehavioral findings supported the argument of oxidative stress-mediated neuromorphological transformation in the periventricular grey zone (PGZ) of the zebrafish brain. In line with earlier reports, our findings also showed that heightened monoamine oxidase (MAO) activity and downregulation in tyrosine hydroxylase expression in the zebrafish brain is associated with the precocious genesis of aggressive neurobehavioral response in zebrafish brain. Our findings also shed light on BPF-instigated apoptotic neuronal death as revealed by augmented chromatin condensation and cleaved caspase-3 expression. Further observation showed that the downregulation of NeuN (a marker of post-mitotic mature neuron) expression provided substantial neurotoxicity, leading to neurodegeneration in the PGZ region of the zebrafish brain. These basic findings grossly advocate that BPF acts as a potent neurotoxicant in transmuting native neurobehavioral response through the induction of oxidative stress, heightened MAO activity and neuromorphological transformation in the zebrafish brain.
Collapse
Affiliation(s)
- Suvam Bhoi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Prerana Sarangi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India; Centre of Excellence, Natural Products and Therapeutics Laboratory, Department of Biotechnology and Bioinformatics, Sambalpur University, Odisha 768019, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Bhabani Sankar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India; Institute of Life Sciences, NALCO Nagar, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - Sai Aparna
- Department of Zoology, Ravenshaw University, College Square, Cuttack, Odisha 751003, India
| | - Sangeeta Raut
- Environmental Biotechnology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India; Department of Zoology, Kuntala Kumari Sabat Women's College, Balasore, Odisha 756003, India.
| |
Collapse
|
23
|
Tiwari S, Phoolmala, Goyal S, Yadav RK, Chaturvedi RK. Bisphenol-F and Bisphenol-S (BPF and BPS) Impair the Stemness of Neural Stem Cells and Neuronal Fate Decision in the Hippocampus Leading to Cognitive Dysfunctions. Mol Neurobiol 2024; 61:9347-9368. [PMID: 38635025 DOI: 10.1007/s12035-024-04160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Neurogenesis occurs throughout life in the hippocampus of the brain, and many environmental toxicants inhibit neural stem cell (NSC) function and neuronal generation. Bisphenol-A (BPA), an endocrine disrupter used for surface coating of plastic products causes injury in the developing and adult brain; thus, many countries have banned its usage in plastic consumer products. BPA analogs/alternatives such as bisphenol-F (BPF) and bisphenol-S (BPS) may also cause neurotoxicity; however, their effects on neurogenesis are still not known. We studied the effects of BPF and BPS exposure from gestational day 6 to postnatal day 21 on neurogenesis. We found that exposure to non-cytotoxic concentrations of BPF and BPS significantly decreased the number/size of neurospheres, BrdU+ (proliferating NSC marker) and MAP-2+ (neuronal marker) cells and GFAP+ astrocytes in the hippocampus NSC culture, suggesting reduced NSC stemness and self-renewal and neuronal differentiation and increased gliogenesis. These analogs also reduced the number of BrdU/Sox-2+, BrdU/Dcx+, and BrdU/NeuN+ co-labeled cells in the hippocampus of the rat brain, suggesting decreased NSC proliferation and impaired maturation of newborn neurons. BPF and BPS treatment increases BrdU/cleaved caspase-3+ cells and Bax-2 and cleaved caspase protein levels, leading to increased apoptosis in hippocampal NSCs. Transmission electron microscopy studies suggest that BPF and BPS also caused degeneration of neuronal myelin sheath, altered mitochondrial morphology, and reduced number of synapses in the hippocampus leading to altered cognitive functions. These results suggest that BPF and BPS exposure decreased the NSC pool, inhibited neurogenesis, induced apoptosis of NSCs, caused myelin degeneration/synapse degeneration, and impaired learning and memory in rats.
Collapse
Affiliation(s)
- Saurabh Tiwari
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Phoolmala
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shweta Goyal
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ranjeet Kumar Yadav
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajnish Kumar Chaturvedi
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
24
|
Helli B, Navabi SP, Hosseini SA, Sabahi A, Khorsandi L, Amirrajab N, Mahdavinia M, Rahmani S, Dehghani MA. The Protective Effects of Syringic Acid on Bisphenol A-Induced Neurotoxicity Possibly Through AMPK/PGC-1α/Fndc5 and CREB/BDNF Signaling Pathways. Mol Neurobiol 2024; 61:7767-7784. [PMID: 38430353 DOI: 10.1007/s12035-024-04048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Bisphenol A (BPA), an endocrine disruptor, is commonly used to produce epoxy resins and polycarbonate plastics. Continuous exposure to BPA may contribute to the development of diseases in humans and seriously affect their health. Previous research suggests a significant relationship between the increased incidence of neurological diseases and the level of BPA in the living environment. Syringic acid (SA), a natural derivative of gallic acid, has recently considered much attention due to neuromodulator activity and its anti-oxidant, anti-apoptotic, and anti-inflammatory effects. Therefore, in this study, we aimed to investigate the effects of SA on oxidative stress, apoptosis, memory and locomotor disorders, and mitochondrial function, and to identify the mechanisms related to Alzheimer's disease (AD) in the brain of rats receiving high doses of BPA. For this purpose, male Wistar rats received BPA (50, 100, and 200 mg/kg) and SA (50 mg/kg) for 21 days. The results showed that BPA exposure significantly altered the rats' neurobehavioral responses. Additionally, BPA, by increasing the level of ROS, and MDA level, increased the level of oxidative stress while reducing the level of antioxidant enzymes, such as SOD, CAT, GPx, and mitochondrial GSH. The administration of BPA at 200 mg/kg significantly decreased the expression of ERRα, TFAM, irisin, PGC-1α, Bcl-2, and FNDC5, while it increased the expression of TrkB, cytochrome C, caspase 3, and Bax. Moreover, the Western blotting results showed that BPA increased the levels of P-AMPK, GSK3b, p-tau, and Aβ, while it decreased the levels of PKA, P-PKA, Akt, BDNF, CREB, P-CREB, and PI3K. Meanwhile, SA at 50 mg/kg reversed the behavioral, biochemical, and molecular changes induced by high doses of BPA. Overall, BPA could lead to the development of AD by affecting the mitochondria-dependent apoptosis pathway, as well as AMPK/PGC-1α/FNDC5 and CREB/BDNF/TrkB signaling pathways, and finally, by increasing the expression of tau and Aβ proteins. In conclusion, SA, as an antioxidant, significantly reduced the toxicity of BPA.
Collapse
Affiliation(s)
- Bizhan Helli
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Parisa Navabi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Sabahi
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasrin Amirrajab
- Department of Laboratory Sciences' School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sohrab Rahmani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Dehghani
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
25
|
Morsy MM, Ahmad MM, Hassan NH. Maternal exposure to low-dose bisphenol A and its potential neurotoxic impact on male pups: A histological, immunohistochemical, and ultrastructural study. Tissue Cell 2024; 90:102503. [PMID: 39137535 DOI: 10.1016/j.tice.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Bisphenol A (BPA) is a widely used chemical with a harmful effect on animal and human. The neonatal and juvenile period is a highly risky neurodevelopmental period. AIM This study aimed to determine how male albino rat pups' cerebral cortex was altered by low doses of BPA given to mothers and the role of the oxidative stress. METHODS Thirty pregnant rats were randomly split into three equal groups, negative control, and positive control: received 1 cc of corn oil once a day through gastric tube and BPA treated: a dose of 200 µg/kg/day (dissolved in 1 cc corn oil). The male rat pups of each group were sacrificed at 1 week, 3 weeks and 6 weeks. The cerebra were then separated from the brain for histological and biochemical studies. RESULTS Rats administered BPA had raised levels of lipid peroxidation marker (MDA), lower levels of enzymatic antioxidants (SOD and CAT) with decreased body, cerebral weights, and decreased levels of non-enzymatic antioxidant defense (GSH). Histo-pathologically, shrunken pyramidal cells with congested blood vessels appeared. GFAP displayed increased number of positive immune-reactive astrocytes with high statistically significant increase in the area % in BPA treated group when compared to the control groups, on contrary to MBP. Semi-thin and ultra-thin BPA-sections revealed degenerative changes in myelinated axons with tiny nucleus and broken nuclear membranes. Lysosomes, dilated endoplasmic reticulum cisternae with noticeable increase in unmyelinated nerve fibers were also observed. CONCLUSION The structure of the developing cerebral cortex is negatively impacted by BPA due to oxidative stress.
Collapse
Affiliation(s)
- Manal Mohammad Morsy
- Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, 44519, Egypt.
| | - Marwa M Ahmad
- Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, 44519, Egypt.
| | - Nancy Husseiny Hassan
- Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, 44519, Egypt.
| |
Collapse
|
26
|
He B, Xu HM, Li SW, Zhang YF, Tian JW. Emerging regulatory roles of noncoding RNAs induced by bisphenol a (BPA) and its alternatives in human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124447. [PMID: 38942269 DOI: 10.1016/j.envpol.2024.124447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Bisphenols (BPs), including BPA, BPF, BPS, and BPAF, are synthetic phenolic organic compounds and endocrine-disrupting chemicals. These organics have been broadly utilized to produce epoxy resins, polycarbonate plastics, and other products. Mounting evidence has shown that BPs, especially BPA, may enter into the human body and participate in the development of human diseases mediated by nuclear hormone receptors. Moreover, BPA may negatively affect human health at the epigenetic level through processes such as DNA methylation and histone acetylation. Recent studies have demonstrated that, as part of epigenetics, noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and small nucleolar RNAs (snoRNAs), have vital impacts on BP-related diseases, such as reproductive system diseases, nervous system diseases, digestive system diseases, endocrine system diseases, and other diseases. Moreover, based on the bioinformatic analysis, changes in ncRNAs may be relevant to normal activities and functions and BP-induced diseases. Thus, we conducted a meta-analysis to identify more promising ncRNAs as biomarkers and therapeutic targets for BP exposure and relevant human diseases. In this review, we summarize the regulatory functions of ncRNAs induced by BPs in human diseases and latent molecular mechanisms, as well as identify prospective biomarkers and therapeutic targets for BP exposure and upper diseases.
Collapse
Affiliation(s)
- Bo He
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shu-Wei Li
- Department of Neurology, Qingdao Huangdao District Central Hospital, Qingdao 266555, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Jia-Wei Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
27
|
Zhang J, Zhu S, Sun J, Liu Y. Bisphenol S Promotes the Transfer of Antibiotic Resistance Genes via Transformation. Int J Mol Sci 2024; 25:9819. [PMID: 39337307 PMCID: PMC11431945 DOI: 10.3390/ijms25189819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The antibiotic resistance crisis has seriously jeopardized public health and human safety. As one of the ways of horizontal transfer, transformation enables bacteria to acquire exogenous genes naturally. Bisphenol compounds are now widely used in plastics, food, and beverage packaging, and have become a new environmental pollutant. However, their potential relationship with the spread of antibiotic resistance genes (ARGs) in the environment remains largely unexplored. In this study, we aimed to assess whether the ubiquitous bisphenol S (BPS) could promote the transformation of plasmid-borne ARGs. Using plasmid pUC19 carrying the ampicillin resistance gene as an extracellular ARG and model microorganism E. coli DH5α as the recipient, we established a transformation system. Transformation assays revealed that environmentally relevant concentrations of BPS (0.1-10 μg/mL) markedly enhanced the transformation frequency of plasmid-borne ARGs into E. coli DH5α up to 2.02-fold. Fluorescent probes and transcript-level analyses suggest that BPS stimulated increased reactive oxygen species (ROS) production, activated the SOS response, induced membrane damage, and increased membrane fluidity, which weakened the barrier for plasmid transfer, allowing foreign DNA to be more easily absorbed. Moreover, BPS stimulates ATP supply by activating the tricarboxylic acid (TCA) cycle, which promotes flagellar motility and expands the search for foreign DNA. Overall, these findings provide important insight into the role of bisphenol compounds in facilitating the horizontal spread of ARGs and emphasize the need to monitor the residues of these environmental contaminants.
Collapse
Affiliation(s)
- Jiayi Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shuyao Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jingyi Sun
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
28
|
Jiang C, Guan J, Tang X, Zhang Y, Li X, Li Y, Chen Z, Zhang J, Li JD. Prenatal low-dose Bisphenol A exposure impacts cortical development via cAMP-PKA-CREB pathway in offspring. Front Integr Neurosci 2024; 18:1419607. [PMID: 39170668 PMCID: PMC11335628 DOI: 10.3389/fnint.2024.1419607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Bisphenol A (BPA) is a widely used plasticizer known to cause various disorders. Despite a global reduction in the use of BPA-containing products, prenatal exposure to low-dose BPA, even those below established safety limits, has been linked to neurological and behavioral deficits in childhood. The precise mechanisms underlying these effects remain unclear. In the present study, we observed a significant increase in the number of cortical neurons in offspring born to dams exposed to low-dose BPA during pregnancy. We also found that this prenatal exposure to low-dose BPA led to increased proliferation but reduced migration of cortical neurons. Transcriptomic analysis via RNA sequencing revealed an aberrant activation of the cAMP-PKA-CREB pathway in offspring exposed to BPA. The use of H89, a selective PKA inhibitor, effectively rescued the deficits in both proliferation and migration of cortical neurons. Furthermore, offspring from dams exposed to low-dose BPA exhibited manic-like behaviors, including hyperactivity, anti-depressant-like responses, and reduced anxiety. While H89 normalized hyperactivity, it didn't affect the other behavioral changes. These results suggest that the overactivation of PKA plays a causative role in BPA-induced changes in neuronal development. Our data also indicate that manic-like behaviors induced by prenatal low-dose BPA exposure may be influenced by both altered neuronal development and abnormal PKA signaling in adulthood.
Collapse
Affiliation(s)
- Chu Jiang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Jun Guan
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Xiangrong Tang
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yichun Zhang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Xiangyu Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Yuting Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiheng Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Zhang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Jia-Da Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Changsha, Hunan, China
| |
Collapse
|
29
|
Hajimohammadi S, Rameshrad M, Karimi G. Exploring the therapeutic effects of sulforaphane: an in-depth review on endoplasmic reticulum stress modulation across different disease contexts. Inflammopharmacology 2024; 32:2185-2201. [PMID: 38922526 DOI: 10.1007/s10787-024-01506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
The endoplasmic reticulum (ER) is an intracellular organelle that contributes to the folding of proteins and calcium homeostasis. Numerous elements can disrupt its function, leading to the accumulation of proteins that are unfolded or misfolded in the lumen of the ER, a condition that is known as ER stress. This phenomenon can trigger cell death through the activation of apoptosis and inflammation. Glucoraphanin (GRA) is the predominant glucosinolate found in cruciferous vegetables. Various mechanical and biochemical processes activate the enzyme myrosinase, leading to the hydrolysis of glucoraphanin into the bioactive compound sulforaphane. Sulforaphane is an organosulfur compound that belongs to the isothiocyanate group. It possesses a wide range of activities and has shown remarkable potential as an anti-inflammatory, antioxidant, antitumor, and anti-angiogenic substance. Additionally, sulforaphane is resistant to oxidation, has been demonstrated to have low toxicity, and is considered well-tolerable in individuals. These properties make it a valuable natural dietary supplement for research purposes. Sulforaphane has been demonstrated as a potential candidate drug molecule for managing a range of diseases, primarily because of its potent antioxidant, anti-inflammatory, and anti-apoptotic properties, which can be mediated by modulation of ER stress pathways. This review seeks to cover a wealth of data supporting the broad range of protective functions of sulforaphane, improving various diseases, such as cardiovascular, central nervous system, liver, eye, and reproductive diseases, as well as diabetes, cancer, gastroenteritis, and osteoarthritis, through the amelioration of ER stress in both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Samaneh Hajimohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Science, Mashhad, Iran
| | - Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Research Institute, Mashhad University of Medical Science, Mashhad, Iran.
| |
Collapse
|
30
|
Caglayan MO, Şahin S, Üstündağ Z. An Overview of Aptamer-Based Sensor Platforms for the Detection of Bisphenol-A. Crit Rev Anal Chem 2024; 54:1320-1341. [PMID: 36001397 DOI: 10.1080/10408347.2022.2113359] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Endocrine disruptive compounds are natural or anthropogenic environmental micropollutants that alter the function of the endocrine system ultimately damaging the metabolism. Bisphenol A (BPA) is the most common of these pollutants and it is often used in epoxy coatings and polycarbonates as a plasticizer. Therefore, monitoring BPA levels in different environments is very important and challenging. In recent years, an increasing number of BPA detection methods have been proposed. This article presents a critical review of aptamer-based electrochemical, fluorescence-based, colorimetric, and several other BPA detection platforms published in the last decade. Furthermore, a statistical evaluation has been made using principle component analysis showing analytical performance parameters do not create very different clusters. Comparisons to other BPA detection methods are also presented so that the reader has an overall literature overview.
Collapse
Affiliation(s)
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
31
|
Grazia Mele V, Chioccarelli T, Diano N, Cappetta D, Ferraro B, Telesca M, Moggio M, Porreca V, De Angelis A, Berrino L, Fasano S, Cobellis G, Chianese R, Manfrevola F. Variation of sperm quality and circular RNA content in men exposed to environmental contamination with heavy metals in 'Land of Fires', Italy. Hum Reprod 2024; 39:1628-1644. [PMID: 38885964 PMCID: PMC11291948 DOI: 10.1093/humrep/deae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Indexed: 06/20/2024] Open
Abstract
STUDY QUESTION Can illegal discharge of toxic waste into the environment induce a new condition of morpho-epigenetic pathozoospermia in normozoospermic young men? SUMMARY ANSWER Toxic environmental contaminants promote the onset of a new pathozoospermic condition in young normozoospermic men, consisting of morpho-functional defects and a sperm increase of low-quality circular RNA (circRNA) cargo, tightly linked to contaminant bioaccumulation in seminal plasma. WHAT IS KNOWN ALREADY Epidemiological findings have reported several reproductive anomalies depending on exposure to contaminants discharged into the environment, such as germ cell apoptosis, steroidogenesis defects, oxidative stress induction, blood-testis barrier dysfunctions, and poor sperm quality onset. In this scenario, a vast geographical area located in Campania, Italy, called the 'Land of Fires', has been associated with an excessive illegal discharge of toxic waste into the environment, negatively impacting human health, including male reproductive functions. STUDY DESIGN, SIZE, DURATION Semen samples were obtained from healthy normozoospermic men divided into two experimental groups, consisting of men living in the 'Land of Fires' (LF; n = 80) or not (CTRL; n = 80), with age ranging from 25 to 40 years. The study was carried out following World Health Organization guidelines. PARTICIPANTS/MATERIALS, SETTING, METHODS Quality parameters of semen from CTRL- and LF-normozoospermic men were evaluated by computer-assisted semen analysis; high-quality spermatozoa from CTRL and LF groups (n = 80 for each experimental group) were obtained using a 80-40% discontinuous centrifugation gradient. Seminal plasma was collected following centrifugation and used for the dosage of chemical elements, dioxins and steroid hormones by liquid chromatography with tandem mass spectrometry. Sperm morpho-functional investigations (cellular morphology, acrosome maturation, IZUMO1 fertility marker analysis, plasma membrane lipid state, oxidative stress) were assessed on the purified high-quality spermatozoa fraction by immunochemistry/immunofluorescence and western blot analyses. Sperm circRNA cargo was evaluated by quantitative RT-PCR, and the physical interaction among circRNAs and fused in sarcoma (FUS) protein was detected using an RNA-binding protein immunoprecipitation assay. Protein immunoprecipitation experiments were carried out to demonstrate FUS/p-300 protein interaction in sperm cells. Lastly, in vitro lead (Pb) treatment of high-quality spermatozoa collected from normozoospermic controls was used to investigate a correlation between Pb accumulation and onset of the morpho-epigenetic pathozoospermic phenotype. MAIN RESULTS AND THE ROLE OF CHANCE Several morphological defects were identified in LF-spermatozoa, including: a significant increase (P < 0.05 versus CTRL) in the percentage of spermatozoa characterized by structural defects in sperm head and tail; and a high percentage (P < 0.01) of peanut agglutinin and IZUMO1 null signal cells. In agreement with these data, abnormal steroid hormone levels in LF seminal plasma suggest a premature acrosome reaction onset in LF-spermatozoa. The abnormal immunofluorescence signals of plasma membrane cholesterol complexes/lipid rafts organization (Filipin III and Flotillin-1) and of oxidative stress markers [3-nitrotyrosine and 3-nitrotyrosine and 4-hydroxy-2-nonenal] observed in LF-spermatozoa and associated with a sperm motility reduction (P < 0.01), demonstrated an affected membrane fluidity, potentially impacting sperm motility. Bioaccumulation of heavy metals and dioxins occurring in LF seminal plasma and a direct correlation between Pb and deregulated circRNAs related to high- and low-sperm quality was also revealed. In molecular terms, we demonstrated that Pb bioaccumulation promoted FUS hyperacetylation via physical interaction with p-300 and, in turn, its shuttling from sperm head to tail, significantly enhancing (P < 0.01 versus CTRL) the endogenous backsplicing of sperm low-quality circRNAs in LF-spermatozoa. LIMITATIONS, REASONS FOR CAUTION Participants were interviewed to better understand their area of origin, their eating habits as well as their lifestyles, however any information incorrectly communicated or voluntarily omitted that could potentially compromise experimental group determination cannot be excluded. A possible association between seminal Pb content and other heavy metals in modulating sperm quality should be explored further. Future investigations will be performed in order to identify potential synergistic or anti-synergistic effects of heavy metals on male reproduction. WIDER IMPLICATIONS OF THE FINDINGS Our study provides new findings regarding the effects of environmental contaminants on male reproduction, highlighting how a sperm phenotype classified as normozoospermic may potentially not match with a healthy morpho-functional and epigenetic one. Overall, our results improve the knowledge to allow a proper assessment of sperm quality through circRNAs as biomarkers to select spermatozoa with high morpho-epigenetic quality to use for ART. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by 'Convenzione Azienda Sanitaria Locale (ASL) Caserta, Regione Campania' (ASL CE Prot. N. 1217885/DIR. GE). The authors have no conflict of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Vincenza Grazia Mele
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Nadia Diano
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Bruno Ferraro
- UOSD of Reproductive Pathophysiology, Marcianise Hospital, Caserta, Italy
| | - Marialucia Telesca
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Martina Moggio
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| |
Collapse
|
32
|
Bartkowiak-Wieczorek J, Jaros A, Gajdzińska A, Wojtyła-Buciora P, Szymański I, Szymaniak J, Janusz W, Walczak I, Jonaszka G, Bienert A. The Dual Faces of Oestrogen: The Impact of Exogenous Oestrogen on the Physiological and Pathophysiological Functions of Tissues and Organs. Int J Mol Sci 2024; 25:8167. [PMID: 39125736 PMCID: PMC11311417 DOI: 10.3390/ijms25158167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Oestrogen plays a crucial physiological role in both women and men. It regulates reproductive functions and maintains various non-reproductive tissues through its receptors, such as oestrogen receptor 1/oestrogen receptor α (ESR1/Erα), oestrogen receptor 2/oestrogen receptor β (ESR2/Erβ), and G protein-coupled oestrogen receptor 1 (GPER). This hormone is essential for the proper functioning of women's ovaries and uterus. Oestrogen supports testicular function and spermatogenesis in men and contributes to bone density, cardiovascular health, and metabolic processes in both sexes. Nuclear receptors Er-α and Er-β belong to the group of transcription activators that stimulate cell proliferation. In the environment, compounds similar in structure to the oestrogens compete with endogenous hormones for binding sites to receptors and to disrupt homeostasis. The lack of balance in oestrogen levels can lead to infertility, cancer, immunological disorders, and other conditions. Exogenous endocrine-active compounds, such as bisphenol A (BPA), phthalates, and organic phosphoric acid esters, can disrupt signalling pathways responsible for cell division and apoptosis processes. The metabolism of oestrogen and its structurally similar compounds can produce carcinogenic substances. It can also stimulate the growth of cancer cells by regulating genes crucial for cell proliferation and cell cycle progression, with long-term elevated levels linked to hormone-dependent cancers such as breast cancer. Oestrogens can also affect markers of immunological activation and contribute to the development of autoimmune diseases. Hormone replacement therapy, oral contraception, in vitro fertilisation stimulation, and hormonal stimulation of transgender people can increase the risk of breast cancer. Cortisol, similar in structure to oestrogen, can serve as a biomarker associated with the risk of developing breast cancer. The aim of this review is to analyse the sources of oestrogens and their effects on the endogenous and exogenous process of homeostasis.
Collapse
Affiliation(s)
- Joanna Bartkowiak-Wieczorek
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Agnieszka Jaros
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.J.); (A.B.)
| | - Anna Gajdzińska
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Paulina Wojtyła-Buciora
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
- Department of Social Medicine and Public Health, Calisia University, 62-800 Kalisz, Poland
| | - Igor Szymański
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Julian Szymaniak
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Wojciech Janusz
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Iga Walczak
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Gabriela Jonaszka
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Agnieszka Bienert
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.J.); (A.B.)
| |
Collapse
|
33
|
Turra BO, Bonotto NCA, Teixeira CF, Chelotti ME, Rodrigues JR, Mastella MH, Azzolin VF, Ribeiro EE, Barbisan F, Cruz IBM. Bisphenol-A induced cyto-genotoxicity on retinal pigment epithelial cells is differentially modulated by a multi-supplement containing guarana, selenium, and L-carnitine. BRAZ J BIOL 2024; 84:e282840. [PMID: 38985071 DOI: 10.1590/1519-6984.282840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/30/2024] [Indexed: 07/11/2024] Open
Abstract
Bisphenol A (BPA) may adversely affect human health by inducing oxidative stress and irreversible damage to cells. Bioactive compounds found in some functional foods, individually or in combination, can attenuate the negative effects of BPA exposure; an example is the multi-supplement containing guarana (Gua), selenium (Se), and L-carnitine (LC) -GSC- which has already demonstrated antioxidant, genoprotective, and immunomodulatory activities. This study aimed to determine the effect of GSC and its constituents on oxidative and genotoxic alterations triggered by BPA exposure in the retinal epithelial cell line. The cells exposed to BPA (0.001, 0.01, 0.1, 1, 3, and 10 µM) to determine the lowest concentration required to induce cyto-genotoxicity. ARPE-19 cells were then concomitantly exposed to the selected BPA concentration, GSC, and its components (Gua, 1.07 mg/mL; Se, 0.178 µg/mL; and LC, 1.43 mg/mL). Flow cytometry, biochemical assays, qRT-PCR, genotoxicity, apoptosis, and cellular proliferation. Based on our results, 10 µM of BPA could induce cyto-genotoxic and oxidative alterations. BPA did not alter the Bcl-2/BAX expression ratio but induced Casp3 and Casp8 overexpression, suggesting that apoptosis was induced mainly via the extrinsic pathway. GSC partially reversed the alterations triggered by BPA in ARPE-19 cells. However, Se had unexpected negative effects on ARPE-19 cells. The multi-supplement GSC may attenuate changes in oxidative and genotoxic markers related to exposure of ARPE-19 cells to BPA. our results revealed that the antioxidant, anti-apoptotic, and genoprotective properties of GSC were not universally shared by its individual, once Se did not exhibit any positive impact.
Collapse
Affiliation(s)
- B O Turra
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Morfologia, Programa de Pós-graduação em Farmacologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - N C A Bonotto
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Morfologia, Programa de Pós-graduação em Farmacologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - C F Teixeira
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Morfologia, Programa de Pós-graduação em Farmacologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - M E Chelotti
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Morfologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - J R Rodrigues
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Morfologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - M H Mastella
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Morfologia, Programa de Pós-graduação em Farmacologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - V F Azzolin
- Fundação Universidade Aberta da Terceira Idade - FUnATI, Laboratório Gerontec, Manaus, AM, Brasil
| | - E E Ribeiro
- Fundação Universidade Aberta da Terceira Idade - FUnATI, Laboratório Gerontec, Manaus, AM, Brasil
| | - F Barbisan
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Patologia, Programa de Pós-graduação em Farmacologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - I B M Cruz
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Patologia, Programa de Pós-graduação em Farmacologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| |
Collapse
|
34
|
Lv L, Li Y, Chen X, Qin Z. Transcriptomic analysis reveals the effects of maternal exposure to bisphenol AF on hypothalamic development in male neonatal mice. J Environ Sci (China) 2024; 141:304-313. [PMID: 38408830 DOI: 10.1016/j.jes.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 02/28/2024]
Abstract
Fragmented data suggest that bisphenol AF (BPAF), a chemical widely used in a variety of products, might have potential impacts on the hypothalamus. Here, we employed male neonatal mice following maternal exposure to explore the effects of low-dose BPAF on hypothalamic development by RNA-sequencing. We found that maternal exposure to approximately 50 µg/(kg·day) BPAF from postanal day (PND) 0 to PND 15 altered the hypothalamic transcriptome, primarily involving the pathways and genes associated with extracellular matrix (ECM) and intercellular adhesion, neuroendocrine regulation, and neurological processes. Further RNA analysis confirmed the changes in the expression levels of concerned genes. Importantly, we further revealed that low-dose BPAF posed a stimulatory impact on pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus and induced the browning of inguinal white adipose tissue. All findings indicate that developmental exposure to low-dose BPAF could interfere with hypothalamic development and thereby lead to alterations in the metabolism. Interestingly, 5000 µg/(kg·day) BPAF caused slighter, non-significant or even inverse alterations than the low dose of 50 µg/(kg·day), displaying a dose-independent effect. Further observations suggest that the the dose-independent effects of BPAF might be associated with oxidative stress and inflammatory responses caused by the high dose. Overall, our study highlights a risk of low-dose BPAF to human neuroendocrine regulation and metabolism.
Collapse
Affiliation(s)
- Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuanyue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Morales-Grahl E, Hilz EN, Gore AC. Regrettable Substitutes and the Brain: What Animal Models and Human Studies Tell Us about the Neurodevelopmental Effects of Bisphenol, Per- and Polyfluoroalkyl Substances, and Phthalate Replacements. Int J Mol Sci 2024; 25:6887. [PMID: 38999997 PMCID: PMC11241431 DOI: 10.3390/ijms25136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
In recent decades, emerging evidence has identified endocrine and neurologic health concerns related to exposure to endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), certain per- and polyfluoroalkyl compounds (PFASs), and phthalates. This has resulted in consumer pressure to remove these chemicals from the market, especially in food-contact materials and personal care products, driving their replacement with structurally or functionally similar substitutes. However, these "new-generation" chemicals may be just as or more harmful than their predecessors and some have not received adequate testing. This review discusses the research on early-life exposures to new-generation bisphenols, PFASs, and phthalates and their links to neurodevelopmental and behavioral alterations in zebrafish, rodents, and humans. As a whole, the evidence suggests that BPA alternatives, especially BPAF, and newer PFASs, such as GenX, can have significant effects on neurodevelopment. The need for further research, especially regarding phthalate replacements and bio-based alternatives, is briefly discussed.
Collapse
Affiliation(s)
| | | | - Andrea C. Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA; (E.M.-G.); (E.N.H.)
| |
Collapse
|
36
|
Yarahmadi A, Heidari S, Sepahvand P, Afkhami H, Kheradjoo H. Microplastics and environmental effects: investigating the effects of microplastics on aquatic habitats and their impact on human health. Front Public Health 2024; 12:1411389. [PMID: 38912266 PMCID: PMC11191580 DOI: 10.3389/fpubh.2024.1411389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
Microplastics (MPs) are particles with a diameter of <5 mm. The disposal of plastic waste into the environment poses a significant and pressing issue concern globally. Growing worry has been expressed in recent years over the impact of MPs on both human health and the entire natural ecosystem. MPs impact the feeding and digestive capabilities of marine organisms, as well as hinder the development of plant roots and leaves. Numerous studies have shown that the majority of individuals consume substantial quantities of MPs either through their dietary intake or by inhaling them. MPs have been identified in various human biological samples, such as lungs, stool, placenta, sputum, breast milk, liver, and blood. MPs can cause various illnesses in humans, depending on how they enter the body. Healthy and sustainable ecosystems depend on the proper functioning of microbiota, however, MPs disrupt the balance of microbiota. Also, due to their high surface area compared to their volume and chemical characteristics, MPs act as pollutant absorbers in different environments. Multiple policies and initiatives exist at both the domestic and global levels to mitigate pollution caused by MPs. Various techniques are currently employed to remove MPs, such as biodegradation, filtration systems, incineration, landfill disposal, and recycling, among others. In this review, we will discuss the sources and types of MPs, the presence of MPs in different environments and food, the impact of MPs on human health and microbiota, mechanisms of pollutant adsorption on MPs, and the methods of removing MPs with algae and microbes.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | | | - Parisa Sepahvand
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
37
|
Chen Z, Li X, Gao J, Liu Y, Zhang N, Guo Y, Wang Z, Dong Z. Reproductive toxic effects of chronic exposure to bisphenol A and its analogues in marine medaka (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106927. [PMID: 38643640 DOI: 10.1016/j.aquatox.2024.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
As awareness of BPA's health risks has increased, many countries and regions have implemented strict controls on its use. Consequently, bisphenol analogues like BPF and BPAF are being increasingly used as substitutes. However, these compounds are also becoming increasingly prevalent in the environment due to production, use and disposal processes. The oceans act as a repository for various pollutants, and recent studies have revealed the extensive presence of bisphenols (BPs, including BPA, BPF, BPAF, etc.) in the marine environment, posing numerous health hazards to marine wildlife. Nevertheless, the reproductive toxicity of these chemicals on marine fish is not comprehensively comprehended yet. Thus, the histological features of the gonads and the gene expression profiles of HPG (Hypothalamic-Pituitary-Gonadal) axis-related genes in marine medaka (Oryzias melastigma) were studied after exposure to single and combined BPs for 70 days. The effects of each exposure group on spawning, embryo fertilization, and hatching in marine medaka were also assessed. Furthermore, the impacts of each exposure group on the genes related to methylation in the F2 and F3 generations were consistently investigated. BPs exposure was found to cause follicular atresia, irregular oocytes, and empty follicles in the ovary; but no significant lesions in the testis were observed. The expression of several HPG axis genes, including cyp19b, 17βhsd, 3βhsd, and fshr, resulted in significant changes compared to the control group. The quantity of eggs laid and fertilization rate decreased in all groups treated with BPs, with the BPAF-treated group showing a notable reduction in the number of eggs laid. Additionally, the hatching rate showed a more significant decline in the BPF-treated group. The analysis of methylated genes in the offspring of bisphenol-treated groups revealed significant changes in the expression of genes including amh, dnmt1, dnmt3ab, mbd2, and mecp2, indicating a potential transgenerational impact of bisphenols on phenotype through epigenetic modifications. Overall, the potential detrimental impact of bisphenol on the reproduction of marine medaka emphasizes the need for caution in considering the use of BPAF and BPF as substitutes.
Collapse
Affiliation(s)
- Zuchun Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Xueyou Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Jiahao Gao
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Yue Liu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Ning Zhang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China.
| |
Collapse
|
38
|
Lombó M, Giommi C, Zarantoniello M, Chemello G. A Pretty Kettle of Fish: A Review on the Current Challenges in Mediterranean Teleost Reproduction. Animals (Basel) 2024; 14:1597. [PMID: 38891644 PMCID: PMC11171123 DOI: 10.3390/ani14111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The Mediterranean region is facing several environmental changes and pollution issues. Teleosts are particularly sensitive to these challenges due to their intricate reproductive biology and reliance on specific environmental cues for successful reproduction. Wild populations struggle with the triad of climate change, environmental contamination, and overfishing, which can deeply affect reproductive success and population dynamics. In farmed species, abiotic factors affecting reproduction are easier to control, whereas finding alternatives to conventional diets for farmed teleosts is crucial for enhancing broodstock health, reproductive success, and the sustainability of the aquaculture sector. Addressing these challenges involves ongoing research into formulating specialized diets, optimizing feeding strategies, and developing alternative and sustainable feed ingredients. To achieve a deeper comprehension of these challenges, studies employing model species have emerged as pivotal tools. These models offer advantages in understanding reproductive mechanisms due to their well-defined physiology, genetic tractability, and ease of manipulation. Yet, while providing invaluable insights, their applicability to diverse species remains constrained by inherent variations across taxa and oversimplification of complex environmental interactions, thus limiting the extrapolation of the scientific findings. Bridging these gaps necessitates multidisciplinary approaches, emphasizing conservation efforts for wild species and tailored nutritional strategies for aquaculture, thereby fostering sustainable teleost reproduction in the Mediterranean.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, 24071 León, Spain
| | - Christian Giommi
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
| | - Giulia Chemello
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| |
Collapse
|
39
|
Yao K, Kang Q, Liu W, Chen D, Wang L, Li S. Chronic exposure to tire rubber-derived contaminant 6PPD-quinone impairs sperm quality and induces the damage of reproductive capacity in male mice. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134165. [PMID: 38574660 DOI: 10.1016/j.jhazmat.2024.134165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
It has been reported that N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), a derivative of the tire antioxidant, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), exhibits acute toxicity towards organisms. However, the possible reproductive toxicity of 6PPD-Q in mammals has rarely been reported. In this study, the effects of 6PPD-Q on the reproductive toxicity of C57Bl/6 male mice were assessed after exposure to 6PPD-Q for 40 days at 4 mg/kg body weight (bw). Exposure to 6PPD-Q not only led to a decrease in testosterone levels but also adversely affected semen quality and in vitro fertilization (IVF) outcomes, thereby indicating impaired male fertility resulting from 6PPD-Q exposure. Additionally, transcriptomic and metabolomic analyses revealed that 6PPD-Q elicited differential expression of genes and metabolites primarily enriched in spermatogenesis, apoptosis, arginine biosynthesis, and sphingolipid metabolism in the testes of mice. In conclusion, our study reveals the toxicity of 6PPD-Q on the reproductive capacity concerning baseline endocrine disorders, sperm quality, germ cell apoptosis, and the sphingolipid signaling pathway in mice. These findings contribute to an enhanced understanding of the health hazards posed by 6PPD-Q to mammals, thereby facilitating the development of more robust safety regulations governing the utilization and disposal of rubber products.
Collapse
Affiliation(s)
- Kezhen Yao
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Quanmin Kang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenbo Liu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, China
| | - Danna Chen
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lefeng Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shun Li
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Jamka M, Kurek S, Makarewicz-Bukowska A, Miśkiewicz-Chotnicka A, Wasiewicz-Gajdzis M, Walkowiak J. No Differences in Urine Bisphenol A Concentrations between Subjects Categorized with Normal Cognitive Function and Mild Cognitive Impairment Based on Montreal Cognitive Assessment Scores. Metabolites 2024; 14:271. [PMID: 38786748 PMCID: PMC11123393 DOI: 10.3390/metabo14050271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
A link between bisphenol A (BPA) exposure and cognitive disorders has been suggested. However, the differences in BPA concentrations between subjects with and without cognitive impairment have not been analysed. Therefore, this observational study aimed to compare urine BPA levels in subjects with normal cognitive function (NCF) and mild cognitive impairment (MCI). A total of 89 MCI subjects and 89 well-matched NCF individuals were included in this study. Cognitive functions were assessed using the Montreal Cognitive Assessment (MOCA) scale. Urine BPA concentrations were evaluated by gas chromatography-mass spectrometry and adjusted for creatinine levels. Moreover, anthropometric parameters, body composition, sociodemographic factors, and physical activity were also assessed. Creatinine-adjusted urine BPA levels did not differ between the NCF and MCI groups (1.8 (1.4-2.7) vs. 2.2 (1.4-3.6) µg/g creatinine, p = 0.1528). However, there were significant differences in MOCA results between groups when the study population was divided into tertiles according to BPA concentrations (p = 0.0325). Nevertheless, multivariate logistic regression demonstrated that only education levels were independently associated with MCI. In conclusion, urine BPA levels are not significantly different between subjects with MCI and NCF, but these findings need to be confirmed in further studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznan, Poland; (M.J.); (S.K.); (A.M.-B.); (A.M.-C.); (M.W.-G.)
| |
Collapse
|
41
|
Mottola F, Palmieri I, Carannante M, Barretta A, Roychoudhury S, Rocco L. Oxidative Stress Biomarkers in Male Infertility: Established Methodologies and Future Perspectives. Genes (Basel) 2024; 15:539. [PMID: 38790168 PMCID: PMC11121722 DOI: 10.3390/genes15050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Male fertility can be affected by oxidative stress (OS), which occurs when an imbalance between the production of reactive oxygen species (ROS) and the body's ability to neutralize them arises. OS can damage cells and influence sperm production. High levels of lipid peroxidation have been linked to reduced sperm motility and decreased fertilization ability. This literature review discusses the most commonly used biomarkers to measure sperm damage caused by ROS, such as the high level of OS in seminal plasma as an indicator of imbalance in antioxidant activity. The investigated biomarkers include 8-hydroxy-2-deoxyguanosine acid (8-OHdG), a marker of DNA damage caused by ROS, and F2 isoprostanoids (8-isoprostanes) produced by lipid peroxidation. Furthermore, this review focuses on recent methodologies including the NGS polymorphisms and differentially expressed gene (DEG) analysis, as well as the epigenetic mechanisms linked to ROS during spermatogenesis along with new methodologies developed to evaluate OS biomarkers. Finally, this review addresses a valuable insight into the mechanisms of male infertility provided by these advances and how they have led to new treatment possibilities. Overall, the use of biomarkers to evaluate OS in male infertility has supplied innovative diagnostic and therapeutic approaches, enhancing our understanding of male infertility mechanisms.
Collapse
Affiliation(s)
- Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | - Ilaria Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | - Maria Carannante
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | - Angela Barretta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | | | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| |
Collapse
|
42
|
Yu Z, Lin Y, Wu L, Wang L, Fan Y, Xu L, Zhang L, Wu W, Tao J, Huan F, Liu W, Wang J, Gao R. Bisphenol F exposure induces depression-like changes: Roles of the kynurenine metabolic pathway along the "liver-brain" axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123356. [PMID: 38266696 DOI: 10.1016/j.envpol.2024.123356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/26/2024]
Abstract
Bisphenol F (BPF), one of the major alternatives of Bisphenol A (BPA), is becoming extensively used in industrial production with great harm to human beings and environment. Recent studies have revealed that environmental exposure is crucial to the initiation and development of depression. Thereby, the aim the present study is to ascertain the correlationship between the BPF exposure and depression occurrence. In the current study, BPF strikingly triggered depression-like changes in mice through the sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST), accompanied by the perturbation of the kynurenine (KYN) metabolic pathway along the "liver-brain" axis. Mechanistically, the neurotransmitters from the tryptophan metabolic pathway were converted to the toxic KYN pathway after BPF treatment. With the ELISA assay, it revealed that the toxic KYN metabolites, including KYN and 3-hydroxykynurenine (3-HK), were strikingly increased in the mouse brains which was ascribed to the enhanced expression of the rate-limiting enzymes Indoleamine 2,3-dioxygenase (IDO1) and Kynurenine 3-monooxygenase (KMO) respectively. Interestingly, the increased brain KYN induced by BPF was also validated partially from the periphery, since the ELISA and western blotting results indicated the significantly increased KYN in the serum and L-type amino acid transporter 1 (LAT1) in the brain, the key transporter responsible for KYN and 3-HK crossing the blood-brain barrier. Intriguingly, the liver-derived KYN metabolic pathway was the important source of the peripheral KYN and 3-HK, as BPF substantially enhanced hepatic IDO1, Tryptophan, 2, 3-dioxygenase (TDO2), and KMO levels indicated by western blotting. This study is the first to delineate previously unrecognized BPF-induced depression by regulating the KYN metabolic pathway along the "liver-brain" axis; therefore, targeting LAT1 or hepatic KYN signaling may provide a potentially unique therapeutic intervention in BPF-induced depression.
Collapse
Affiliation(s)
- Zheng Yu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Yuxin Lin
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Linlin Wu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China; The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Luyao Wang
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Yichun Fan
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Liuting Xu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Linwei Zhang
- Department of Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Weilan Wu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Jingxian Tao
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Fei Huan
- Department of Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Wenwei Liu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Jun Wang
- Department of Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China; China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
| |
Collapse
|
43
|
Wang J, Zhao C, Feng J, Sun P, Zhang Y, Han A, Zhang Y, Ma H. Advances in understanding the reproductive toxicity of endocrine-disrupting chemicals in women. Front Cell Dev Biol 2024; 12:1390247. [PMID: 38606320 PMCID: PMC11007058 DOI: 10.3389/fcell.2024.1390247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Recently, there has been a noticeable increase in disorders of the female reproductive system, accompanied by a rise in adverse pregnancy outcomes. This trend is increasingly being linked to environmental pollution, particularly through the lens of Endocrine Disrupting Chemicals (EDCs). These external agents disrupt natural processes of hormones, including synthesis, metabolism, secretion, transport, binding, as well as elimination. These disruptions can significantly impair human reproductive functions. A wealth of animal studies and epidemiological research indicates that exposure to toxic environmental factors can interfere with the endocrine system's normal functioning, resulting in negative reproductive outcomes. However, the mechanisms of these adverse effects are largely unknown. This work reviews the reproductive toxicity of five major environmental EDCs-Bisphenol A (BPA), Phthalates (PAEs), Triclocarban Triclosan and Disinfection Byproducts (DBPs)-to lay a foundational theoretical basis for further toxicological study of EDCs. Additionally, it aims to spark advancements in the prevention and treatment of female reproductive toxicity caused by these chemicals.
Collapse
Affiliation(s)
- Jinguang Wang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Chunwu Zhao
- Gastrointestinal Surgery Center of Weifang People’s Hospital, Weifang, China
| | - Jie Feng
- Gynecology and Obstetrics Department, Fangzi District People’s Hospital, Weifang, China
| | - Pingping Sun
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Yuhua Zhang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Ailing Han
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Yuemin Zhang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Huagang Ma
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| |
Collapse
|
44
|
Qi T, Jing D, Zhang K, Shi J, Qiu H, Kan C, Han F, Wu C, Sun X. Environmental toxicology of bisphenol A: Mechanistic insights and clinical implications on the neuroendocrine system. Behav Brain Res 2024; 460:114840. [PMID: 38157990 DOI: 10.1016/j.bbr.2023.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol A (BPA) is a widely used environmental estrogen found in a variety of products, including food packaging, canned goods, baby bottle soothers, reusable cups, medical devices, tableware, dental sealants, and other consumer goods. This substance has been found to have detrimental effects on both the environment and human health, particularly on the reproductive, immune, embryonic development, nervous, endocrine, and respiratory systems. This paper aims to provide a comprehensive review of the effects of BPA on the neuroendocrine system, with a primary focus on its impact on the brain, neurons, oligodendrocytes, neural stem cell proliferation, DNA damage, and behavioral development. Additionally, the review explores the clinical implications of BPA, specifically examining its role in the onset and progression of various diseases associated with the neuroendocrine metabolic system. By delving into the mechanistic analysis and clinical implications, this review aims to serve as a valuable resource for studying the impacts of BPA exposure on organisms.
Collapse
Affiliation(s)
- Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Dongqing Jing
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Neurology 1, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chunyan Wu
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
45
|
He X, Yang Z, Wang L, Sun Y, Cao H, Liang Y. NeuTox: A weighted ensemble model for screening potential neuronal cytotoxicity of chemicals based on various types of molecular representations. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133443. [PMID: 38198870 DOI: 10.1016/j.jhazmat.2024.133443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Chemical-induced neurotoxicity has been widely brought into focus in the risk assessment of chemical safety. However, the traditional in vivo animal models to evaluate neurotoxicity are time-consuming and expensive, which cannot completely represent the pathophysiology of neurotoxicity in humans. Cytotoxicity to human neuroblastoma cell line (SH-SY5Y) is commonly used as an alternative to animal testing for the assessment of neurotoxicity, yet it is still not appropriate for high throughput screening of potential neuronal cytotoxicity of chemicals. In this study, we constructed an ensemble prediction model, termed NeuTox, by combining multiple machine learning algorithms with molecular representations based on the weighted score of Particle Swarm Optimization. For the test set, NeuTox shows excellent performance with an accuracy of 0.9064, which are superior to the top-performing individual models. The subsequent experimental verifications reveal that 5,5'-isopropylidenedi-2-biphenylol and 4,4'-cyclo-hexylidenebisphenol exhibited stronger SH-SY5Y-based cytotoxicity compared to bisphenol A, suggesting that NeuTox has good generalization ability in the first-tier assessment of neuronal cytotoxicity of BPA analogs. For ease of use, NeuTox is presented as an online web server that can be freely accessed via http://www.iehneutox-predictor.cn/NeuToxPredict/Predict.
Collapse
Affiliation(s)
- Xuejun He
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zeguo Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yuzhen Sun
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
46
|
Zheng J, Chen S, Lu H, Xia M, Wang S, Li X, Li H, Wang Y, Ge RS, Liu Y. Enhanced inhibition of human and rat aromatase activity by benzene ring substitutions in bisphenol A: QSAR structure-activity relationship and in silico docking analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133252. [PMID: 38128231 DOI: 10.1016/j.jhazmat.2023.133252] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Bisphenol A (BPA) is a widely used plastic material, but its potential endocrine disrupting effect has restricted its use. The BPA alternatives have raised concerns. This study aimed to compare inhibitory potencies of 11 BPA analogues on human and rat placental aromatase (CYP19A1). The inhibitory potency on human CYP19A1 ranged from bisphenol H (IC50, 0.93 μM) to tetramethyl BPA and tetrabromobisphenol S (ineffective at 100 μM) when compared to BPA (IC50, 73.48 μM). Most of them were mixed/competitive inhibitors and inhibited estradiol production in human BeWo cells. Molecular docking analysis showed all BPA analogues bind to steroid active site or in between steroid and heme of CYP19A1 and form a hydrogen bond with catalytic residue Met374. Pharmacophore analysis showed that there were 4 hydrophobic regions for BPA analogues, with bisphenol H occupying 4 regions. Bivariate correlation analysis showed that LogP (lipophilicity) and LogS (water solubility) of BPA analogues were correlated with their IC50 values. Computerized drug metabolism and pharmacokinetics analysis showed that bisphenol H, tetrabromobisphenol A, and tetrachlorobisphenol A had low solubility, which might explain their weaker inhibition on estradiol production on BeWo cells. In conclusion, BPA analogues mostly can inhibit CYP19A1 and the lipophilicity determines their inhibitory strength.
Collapse
Affiliation(s)
- Jingyi Zheng
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Sailing Chen
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Han Lu
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Miaomiao Xia
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Xiaoheng Li
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Huitao Li
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Yiyan Wang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China.
| | - Ren-Shan Ge
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China.
| | - Yi Liu
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
47
|
Zhang Y, Yan C, Xie Q, Wu B, Zhang Y. Exposure to bisphenol A affects transcriptome-wide N6-methyladenine methylation in ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116071. [PMID: 38354435 DOI: 10.1016/j.ecoenv.2024.116071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Bisphenol A (BPA) is an endocrine disruptor of potential reproductive toxicities. Increasingly research elucidated that BPA exposure to the environment would change the epigenetic modifications of transcriptome, but the mechanism by which BPA affects m6A methylation in interfering with female reproductive health remains uncertain. Therefore, this study preliminarily proposed and tested the hypothesis that BPA exposure alters the m6A modification level in transcripts in female ovarian granulosa cells. After BPA was exposed to granulosa cells for 24 h, RNA methylation related regulatory genes (such as METTL3, METTL14, ALKBH5, FTO) and the global m6A levels showed significant differences. Next, we applied MERIP-seq analysis to obtain information on the genome-wide m6A modification changes and identified 1595 differentially methylated mRNA transcripts, and 50 differentially methylated lncRNA transcripts. Further joint analysis of gene common expression showed that 33 genes were hypermethylated and up-regulated, 71 were hypermethylated and down-regulated, 49 were hypomethylated and up-regulated, and 20 were hypomethylated and down-regulated. Enriched Gene Ontology (GO) and biological pathway analysis revealed that these unique genes were mainly enriched in lipid metabolism, cell proliferation, and apoptosis related pathways. Six of these genes (mRNAs IMPA1, MCOLN1, DCTN3, BRCA2, and lncRNAs MALAT1, XIST) were validated using RT-qPCR and IGV software. Through comprehensive analysis of epitranscriptome and protein-protein interaction (PPI) data, lncRNAs MALAT1 and XIST are expected to serve as new markers for BPA interfering with the female reproductive system. In brief, these data show a novel and necessary connection between the damage of BPA exposure on female ovarian granulosa cells and RNA methylation modification.
Collapse
Affiliation(s)
- Yuxia Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Congcong Yan
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qian Xie
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Wu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Yingchun Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
48
|
Sun Y, Sha M, Qin Y, Xiao J, Li W, Li S, Chen S. Bisphenol A induces placental ferroptosis and fetal growth restriction via the YAP/TAZ-ferritinophagy axis. Free Radic Biol Med 2024; 213:524-540. [PMID: 38326183 DOI: 10.1016/j.freeradbiomed.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Exposure to bisphenol A (BPA) during gestation leads to fetal growth restriction (FGR), whereby the underlying mechanisms remain unknown. Here, we found that FGR patients showed higher levels of BPA in the urine, serum, and placenta; meanwhile, trophoblast ferroptosis was observed in FGR placentas, as indicated by accumulated intracellular iron, impaired antioxidant molecules, and increased lipid peroxidation products. To investigate the role of ferroptosis in placental and fetal growth, BPA stimulation was performed both in vivo and in vitro. BPA exposure during gestation was associated with FGR in mice; also, it induces ferroptosis in mouse placentas and human placental trophoblast. Pretreatment with ferroptosis inhibitor ferritin-1 (Fer-1) alleviated BPA-induced oxidative damage and cell death. Notably, BPA reduced the trophoblastic expression of Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which regulated tissue growth and organ size. YAP or TAZ siRNA enhanced BPA-induced ferroptosis, suggesting that trophoblast ferroptosis is dependent on YAP/TAZ downregulation after BPA stimulation. Consistently, the protein levels of YAP/TAZ were also reduced in FGR placentas. Further results revealed that silencing YAP/TAZ promoted BPA-induced ferroptosis through autophagy. Pretreatment with autophagy inhibitor chloroquine (CQ) attenuated BPA-induced trophoblast ferroptosis. Ferritinophagy, an autophagic degradation of ferritin (FTH1), was observed in FGR placentas. Similarly, BPA reduced the protein level of FTH1 in placental trophoblast. Pretreatment with iron chelator desferrioxamine (DFO) and NCOA4 (an autophagy cargo receptor) siRNA weakened the ferroptosis of trophoblast after exposure to BPA, indicating that autophagy mediates ferroptosis in BPA-stimulated trophoblast by degrading ferritin. In summary, ferroptosis was featured in BPA-associated FGR and trophoblast injury; the regulation of ferroptosis involved the YAP/TAZ-autophagy-ferritin axis.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Menghan Sha
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yu Qin
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Juan Xiao
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Li
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shufang Li
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Suhua Chen
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
49
|
Jiang C, Dong W, Gao G, Sun W, Wang Y, Zhan B, Sun Y, Yu J. Maternal oral exposure to low-dose BPA accelerates the onset of puberty by promoting prepubertal Kiss1 expression in the AVPV nucleus of female offspring. Reprod Toxicol 2024; 124:108543. [PMID: 38232916 DOI: 10.1016/j.reprotox.2024.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
As the incidence of precocious puberty has risen in recent years and the age at puberty onset is younger, children may be at increased risk for health consequences associated with the early onset of puberty. Bisphenol A (BPA) is recognized as an endocrine disruptor chemical that is reported to induce precocious puberty. The effect of BPA exposure modes, times, and doses (especially low dose) were controversial. In the present study, we evaluated the potential effects of maternal exposure to low-dose BPA on the hypothalamus, particularly on the arcuate (ARC) nucleus and anteroventral periventricular (AVPV) nucleus during peri-puberty in offspring of BPA-treated rats. Pregnant rats were exposed to corn oil vehicle, 0.05 mg·kg-1·day-1 BPA, or 5 mg·kg-1·day-1 from gestation day 1 (GD1) to postnatal day 21 (PND21) by daily gavage. Body weight (BW), vaginal opening (VO), ovarian follicular luteinization, and relevant hormone concentrations were measured; hypothalamic Kiss1 and GnRH1 levels by western immunoblot analysis were also assessed as indices of puberty onset. During or after exposure, low-dose BPA restricted BW after birth (at PND1 and PND5), and subsequently accelerated puberty onset by promoting the expression of prepubertal Kiss1 and GnRH1 in the AVPV nucleus on PND30, leading to advanced VO, an elevation in LH and FSH concentrations (on PND30). We also noted increased BW on PND30 and PND35. Maternal oral exposure to low-dose BPA altered the BW curve during the neonatal and peripubertal periods, and subsequently accelerated puberty onset by promoting prepubertal Kiss1 expression in the AVPV nucleus.
Collapse
Affiliation(s)
- Chenyan Jiang
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Wenke Dong
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Guanglin Gao
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Wen Sun
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yonghong Wang
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Bowen Zhan
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yanyan Sun
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China.
| | - Jian Yu
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
50
|
Gong Y, Liu P. A Novel Magnetic β-Cyclodextrin-Modified Graphene Oxide and Chitosan Composite as an Adsorbent for Trace Extraction of Four Bisphenol Pollutants from Environmental Water Samples and Food Samples. Molecules 2024; 29:867. [PMID: 38398619 PMCID: PMC10893499 DOI: 10.3390/molecules29040867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, a novel functionalized magnetic composite (MNCGC) for magnetic solid-phase extraction of bisphenols from environmental and food samples was developed, featuring a multistep synthesis with Fe3O4, chitosan, graphene oxide, and β-cyclodextrin, crosslinked by glutaraldehyde. Characterization confirmed its advantageous morphology, intact crystal structure of the magnetic core, specific surface area, and magnetization, enabling efficient adsorption and separation via an external magnetic field. The optimized MSPE-HPLC-FLD method demonstrated excellent sensitivity, linearity, and recovery rates exceeding 80% for bisphenol pollutants, validating the method's effectiveness in enriching and detecting trace levels of bisphenols in complex matrices. This approach offers a new avenue for analyzing multiple bisphenol residues, with successful application to environmental water and food samples, showing high recovery rates.
Collapse
Affiliation(s)
- Yichao Gong
- School of Eco-Environment, Hebei University, Baoding 071000, China
- College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai 054001, China
| | - Pengyan Liu
- School of Eco-Environment, Hebei University, Baoding 071000, China
| |
Collapse
|