1
|
Haridevamuthu B, Madesh S, Bharti AK, Dhivya LS, Rajagopal R, Alfarhan A, Muthu Kumaradoss K, Arockiaraj J. Protective effect of a novel furan hybrid chalcone against bisphenol A-induced craniofacial developmental toxicity in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2025; 288:110072. [PMID: 39571873 DOI: 10.1016/j.cbpc.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024]
Abstract
Bisphenol A (BPA), a pervasive endocrine disruptor, is known to cause significant developmental toxicity, particularly affecting craniofacial structures through oxidative stress and apoptosis. A novel furan hybrid chalcone derivative, 3-(2-hydroxy-5-nitrophenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DK04), specifically with a hydroxyl group for its antioxidant properties and a nitro group for enhanced electron-withdrawing ability, was evaluated for its potential to mitigate these toxic effects. Zebrafish embryos were exposed to BPA and co-treated with various concentrations of DK04. Our results demonstrated that DK04 significantly reduced reactive oxygen species (ROS) generation and lipid peroxidation, increased antioxidant enzyme activities (SOD and CAT), and restored the balance between pro-apoptotic (p53) and anti-apoptotic (bcl2) genes. Furthermore, DK04 treatment improved bone mineralization and chondrogenesis by reversing BPA-induced disruptions in osteogenic markers (runx2, sox9a, bmp6, and mmp13a). The locomotion impairments observed in BPA-exposed embryos were also ameliorated by DK04, indicating its potential neuroprotective effects. These findings suggest that DK04 offers a multifaceted approach to counteract BPA toxicity, making it a promising candidate for therapeutic intervention. This research underscores the importance of developing prophylactic compounds to safeguard health against environmental toxicants like BPA. Future studies should focus on long-term safety and efficacy in mammalian models and explore synergistic effects with other protective agents to broaden the applications of DK04 and contribute to public health benefits.
Collapse
Affiliation(s)
- B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| | - S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Ankit Kumar Bharti
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - L S Dhivya
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
2
|
Xie N, Bai J, Hou Y, Liu J, Zhang Y, Meng X, Wang X. hPSCs-derived brain organoids for disease modeling, toxicity testing and drug evaluation. Exp Neurol 2024; 385:115110. [PMID: 39667657 DOI: 10.1016/j.expneurol.2024.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Due to the differences and variances in genetic background, in vitro and animal models cannot meet the modern medical exploration of real human brain structure and function. Recently, brain organoids generated by human pluripotent stem cells (hPSCs) can mimic the structure and physiological function of human brain, being widely used in medical research. Brain organoids generated from normal hPSCs or patient-derived induced pluripotent stem cells offer a more promising approach for the study of diverse human brain diseases. More importantly, the use of the established brain organoid model for drug evaluation is conducive to shorten the clinical transformation period. Herein, we summarize methods for the identification of brain organoids from cellular diversity, morphology and neuronal activity, brain disease modeling, toxicity testing, and drug evaluation. Based on this, it is hoped that this review will provide new insights into the pathogenesis of brain diseases and drug research and development, promoting the rapid development of brain science.
Collapse
Affiliation(s)
- Na Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jinrong Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ya Hou
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Jia Liu
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
3
|
Wang X, Ma J, Li W, Hou Z, Li H, Li Y, Wang S, Tie Y. BPA Exacerbates Zinc Deficiency-Induced Testicular Tissue Inflammation in Male Mice Through the TNF-α/NF-κB/Caspase8 Signaling Pathway. Biol Trace Elem Res 2024:10.1007/s12011-024-04464-2. [PMID: 39638945 DOI: 10.1007/s12011-024-04464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical that is toxic to reproduction. Zinc (Zn) plays an important role in male reproductive health. Zn deficiency (ZD) can co-exist with BPA. In order to investigate the specific mechanism of reproductive damage caused by BPA exposure in ZD male mice, a mouse model of ZD, BPA exposure, and their combined exposure was established in this study. Forty 4-week-old SPF male ICR mice with an average body weight of 31.7 ± 4.2 g were divided into four groups including normal Zn diet group 30 mg/(kg•d), BPA exposure group 150 mg/(kg•d), zinc deficiency diet group 7.5 mg/(kg•d), and BPA + ZD combined exposure group (BPA 150 mg/(kg•d) + ZD 7.5 mg/(kg•d)). The mice were kept for 8 weeks. The results showed that the testicular tissue structure was disturbed, and semen quality, serum Zn, testicular tissue Zn, and testicular tissue free Zn ions were decreased in the BPA-exposed and ZD groups. The expression of zinc transporters (ZIP7, ZIP8, ZIP13, and ZIP14) in testicular tissue was changed. The expressions of pro-inflammatory cytokines including TNF-α and IL-1β as well as inflammatory pathway-related proteins (IKB-α, p-IKB-α, NF-κB, p-NF-κB, Caspase8, and Caspase3) were increased, while the expressions of anti-inflammatory cytokines (TGF-β and IL-10) were decreased. The changes in the above indexes in the BPA + ZD group were more obvious. Both BPA exposure and ZD can induce testicular tissue inflammation through the TNF-α/NF-κB/Caspase8 signaling pathway, and BPA further aggravates zinc deficiency-induced testicular tissue inflammation and apoptosis damage.
Collapse
Affiliation(s)
- Xinying Wang
- North China University of Science and Technology, Tangshan, 063210, Hebei Province, China.
- Hebei General Hospital, NO.348 Heping West Road, Xinhua District, Shijiazhuang City, P.R. 050051, Hebei Province, China.
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China.
| | - Wen Li
- Hebei Chest Hospital, Shijiazhuang, 050041, Hebei, China
| | - Zhan Hou
- Hebei General Hospital, NO.348 Heping West Road, Xinhua District, Shijiazhuang City, P.R. 050051, Hebei Province, China
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Huanhuan Li
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China
| | - Yuanjing Li
- School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China.
| | - Yanqing Tie
- Hebei General Hospital, NO.348 Heping West Road, Xinhua District, Shijiazhuang City, P.R. 050051, Hebei Province, China.
| |
Collapse
|
4
|
Du Y, Jin W, Yang S, Jia Y, Li X, Li J, Zhang M, Zhang Y. Determination of bisphenol analogues in bottled water using deep eutectic solvent and magnetic multi-walled carbon nanotubes followed by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A 2024; 1738:465479. [PMID: 39500077 DOI: 10.1016/j.chroma.2024.465479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/20/2024] [Accepted: 10/27/2024] [Indexed: 11/25/2024]
Abstract
Bisphenol analogues (BPs) are a class of typical environmental endocrine disruptors (EDCs) that have recently attracted increasing attention with regard to their potential effects on human health. The objective of this study was to develop a method using a magnetic soft material, which consisted of hydrophilic deep eutectic solvent (DES) and magnetic multi-walled carbon nanotubes (MMWCNTs), for the dispersive solid-phase extraction (d-SPE), coupled with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), for the determination of the levels of nine BPs in bottled water. The hydrophilic DES enable the rapid dispersion of MMWCNTs when the material is injected rapidly into the sample solution using a pipette gun. This process can therefore be completed in a relatively short period of time, resulting in an efficient extraction. Under optimal conditions, the limit of detections (LODs) of the method were 0.0003-0.003 μg/L and the limit of quantifications (LOQs) were 0.001-0.01 μg/L. The relative standard deviations (RSDs) of the method were only 2.42-7.59 % for inter-day and 3.71-9.67 % for intra-day. The method demonstrated good reproducibilities and recoveries, rendering it suitable for the determination of BPs in large-volume water samples.
Collapse
Affiliation(s)
- Yu Du
- Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China
| | - Weiyi Jin
- Institute of Health Inspection and Testing, Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, China
| | - Siyu Yang
- Institute of Health Inspection and Testing, Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, China
| | - Yeqing Jia
- Institute of Health Inspection and Testing, Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, China
| | - Xinghua Li
- Institute of Health Inspection and Testing, Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, China
| | - Jianping Li
- Institute of Health Inspection and Testing, Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, China
| | - Mingyue Zhang
- Institute of Health Inspection and Testing, Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, China.
| | - Yi Zhang
- Institute of Health Inspection and Testing, Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, China.
| |
Collapse
|
5
|
Li J, Yu G, Wang L, Zhang W, Ke W, Li Y, Liu D, Xie K, Xu Y, Cha C, Guo G, Zhang J. Enriched environment rescues bisphenol A induced anxiety-like behavior and cognitive impairment by modulating synaptic plasticity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117427. [PMID: 39632333 DOI: 10.1016/j.ecoenv.2024.117427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/24/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Bisphenol A (BPA) is an exogenous endocrine disruptor in the environmental context, garnering attention for its harmful effects on the nervous system function and behavior. Research indicates that being exposed to BPA may result in anxiety-like behavior and impairment in cognitive function. Enriched environment (EE) is beneficial to improve cognitive behavior, but whether EE can improve BPA-induced behavioral impairment is still unclear. This research explored the possible pathways through which EE alleviates anxiety-like behavior and cognitive impairment in mice exposed to BPA. Except for the control mice, all mice received BPA treatment. After BPA treatment, some mice were housed normally, some housed with EE, and some were given NMDA and AMPA receptor agonists. Our research revealed that exposure to BPA results in anxiety-like behavior in open field and elevated-plus maze experiments. Additionally, spatial and learning memory cognitive impairments were observed in Y-maze and water maze tests. Furthermore, exposure to BPA led to a decrease in both the density and maturity of dendritic spines, as well as a reduction in neurite length and branch numbers. PSD-95, GluA1, and NR2A expression were down-regulated, and excitatory synaptic transmission was decreased. However, EE treatment increased dendrite spine density and maturity, up-regulated PSD-95, GluA1and NR2A expression, enhanced excitatory synaptic transmission, and relieved anxiety-like behavior and cognitive impairment in BPA mice. Furthermore, administering NMDA or AMPA receptor agonists to BPA mice led to an increase in dendritic spine density and maturity, a rise in mEPSC amplitude, as well as a restoration of anxiety-like behavior and cognitive deficits induced by BPA. The findings of this study provide proof that EE has a neuroprotective effect in reducing anxiety-related behavior and cognitive decline caused by BPA.
Collapse
Affiliation(s)
- Jiong Li
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Guangyin Yu
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Laijian Wang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Wenjun Zhang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Wenya Ke
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Yifei Li
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Danlei Liu
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Keman Xie
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Yuanyuan Xu
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Caihui Cha
- Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou 510120, China
| | - Guoqing Guo
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Jifeng Zhang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
6
|
Yang D, Zhao D, Chen H, Cai Y, Liu Y, Guo F, Li F, Zhang Y, Xu Z, Xue J, Kannan K. Distribution, bioaccumulation and human exposure risk of bisphenol analogues, bisphenol A diglycidyl ether and its derivatives in the Dongjiang River basin, south China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175969. [PMID: 39222812 DOI: 10.1016/j.scitotenv.2024.175969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Bisphenols, bisphenol A diglycidyl ether (BADGE), and bisphenol F diglycidyl ether (BFDGE) are commonly used as raw materials or additives in the production of several industrial and consumer products. However, information regarding the occurrence and distribution of these industrial chemicals in freshwater ecosystem is limited. In this study, four bisphenols, six BADGEs, and three BFDGEs were determined in abiotic and biotic samples collected from the Dongjiang River basin in southern China. Among the four bisphenols, BPA was widely present in all samples analyzed including surface water (median: 1.81 ng/L), sediment (3.1 ng/g dw), aquatic plants (3.69 ng/g dw), algae (7.57 ng/g dw), zooplankton (6.17 ng/g dw), and fish muscle (5.28 ng/g dw). Among the nine BADGEs and BFDGEs analyzed, BADGE, BADGE•H2O, BADGE·HCl·H2O and BADGE•2H2O was found in all sample types. Although the median concentration of BADGE•2H2O in surface water was below LOQ, this compound was found at median concentrations of 2.61, 3.59, 1.03, 1.69, and 49.8 ng/g dw in sediment, plants, algae, zooplankton, and fish muscle, respectively. Significant positive linear correlations were found among logarithmic transformed concentrations of BPA, BADGE, BADGE•H2O, BADGE•HCl•H2O, and BADGE•2H2O in sediment. The bioconcentration factor (logBCF) values of BADGE, BADGE•H2O, BADGE•HCl, BADGE•HCl•H2O, BADGE•2H2O, and BADGE•2HCl in fish, plants, algae, and zooplankton were > 3.3 L/kg (wet weight), indicating that these chemicals possess moderate bioaccumulation potential. The estimated daily total intake of bisphenols and BADGEs through fish consumption was 75.1 ng/kg bw/day for urban adult residents. The study provides baseline information on the occurrence of bisphenols, BADGEs, and BFDGEs in a freshwater ecosystem.
Collapse
Affiliation(s)
- Danlin Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Daoming Zhao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Honglin Chen
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Fen Guo
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Feilong Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihao Xu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingchuan Xue
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, United States; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, NY 12237, United States
| |
Collapse
|
7
|
Bhoi S, Sarangi P, Pradhan LK, Sahoo PK, Sahoo BS, Aparna S, Raut S, Das SK. Bisphenol F-induced precocious genesis of aggressive neurobehavioral response is associated with heightened monoamine oxidase activity and neurodegeneration in zebrafish brain. Neurotoxicol Teratol 2024; 106:107402. [PMID: 39454971 DOI: 10.1016/j.ntt.2024.107402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
The production and use of plastics and plastics products has increased dramatically in recent decades. Moreover, their unprotected disposal into ambient life sustaining environment poses a significant health risk. Bisphenol F (BPF) an alternative to bisphenol A (BPA) has been extensively employed for making of plastics. Recent reports have documented the neurotoxic potential of BPF through induction of altered neurochemical profile, microglia-astrocyte-mediated neuroinflammation, oxidative stress, transformed neurobehavioral response, cognitive dysfunction, etc. In the present study, our approach was to understand the underlying mechanism of BPF-persuaded genesis of aggressive neurobehavioral response in zebrafish. The basic findings advocated a temporal transformation in native explorative behaviour and progressive induction of aggressive behavioural response in zebrafish following exposure to BPF. Our neurobehavioral findings supported the argument of oxidative stress-mediated neuromorphological transformation in the periventricular grey zone (PGZ) of the zebrafish brain. In line with earlier reports, our findings also showed that heightened monoamine oxidase (MAO) activity and downregulation in tyrosine hydroxylase expression in the zebrafish brain is associated with the precocious genesis of aggressive neurobehavioral response in zebrafish brain. Our findings also shed light on BPF-instigated apoptotic neuronal death as revealed by augmented chromatin condensation and cleaved caspase-3 expression. Further observation showed that the downregulation of NeuN (a marker of post-mitotic mature neuron) expression provided substantial neurotoxicity, leading to neurodegeneration in the PGZ region of the zebrafish brain. These basic findings grossly advocate that BPF acts as a potent neurotoxicant in transmuting native neurobehavioral response through the induction of oxidative stress, heightened MAO activity and neuromorphological transformation in the zebrafish brain.
Collapse
Affiliation(s)
- Suvam Bhoi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Prerana Sarangi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India; Centre of Excellence, Natural Products and Therapeutics Laboratory, Department of Biotechnology and Bioinformatics, Sambalpur University, Odisha 768019, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Bhabani Sankar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India; Institute of Life Sciences, NALCO Nagar, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - Sai Aparna
- Department of Zoology, Ravenshaw University, College Square, Cuttack, Odisha 751003, India
| | - Sangeeta Raut
- Environmental Biotechnology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India; Department of Zoology, Kuntala Kumari Sabat Women's College, Balasore, Odisha 756003, India.
| |
Collapse
|
8
|
Tiwari S, Phoolmala, Goyal S, Yadav RK, Chaturvedi RK. Bisphenol-F and Bisphenol-S (BPF and BPS) Impair the Stemness of Neural Stem Cells and Neuronal Fate Decision in the Hippocampus Leading to Cognitive Dysfunctions. Mol Neurobiol 2024; 61:9347-9368. [PMID: 38635025 DOI: 10.1007/s12035-024-04160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Neurogenesis occurs throughout life in the hippocampus of the brain, and many environmental toxicants inhibit neural stem cell (NSC) function and neuronal generation. Bisphenol-A (BPA), an endocrine disrupter used for surface coating of plastic products causes injury in the developing and adult brain; thus, many countries have banned its usage in plastic consumer products. BPA analogs/alternatives such as bisphenol-F (BPF) and bisphenol-S (BPS) may also cause neurotoxicity; however, their effects on neurogenesis are still not known. We studied the effects of BPF and BPS exposure from gestational day 6 to postnatal day 21 on neurogenesis. We found that exposure to non-cytotoxic concentrations of BPF and BPS significantly decreased the number/size of neurospheres, BrdU+ (proliferating NSC marker) and MAP-2+ (neuronal marker) cells and GFAP+ astrocytes in the hippocampus NSC culture, suggesting reduced NSC stemness and self-renewal and neuronal differentiation and increased gliogenesis. These analogs also reduced the number of BrdU/Sox-2+, BrdU/Dcx+, and BrdU/NeuN+ co-labeled cells in the hippocampus of the rat brain, suggesting decreased NSC proliferation and impaired maturation of newborn neurons. BPF and BPS treatment increases BrdU/cleaved caspase-3+ cells and Bax-2 and cleaved caspase protein levels, leading to increased apoptosis in hippocampal NSCs. Transmission electron microscopy studies suggest that BPF and BPS also caused degeneration of neuronal myelin sheath, altered mitochondrial morphology, and reduced number of synapses in the hippocampus leading to altered cognitive functions. These results suggest that BPF and BPS exposure decreased the NSC pool, inhibited neurogenesis, induced apoptosis of NSCs, caused myelin degeneration/synapse degeneration, and impaired learning and memory in rats.
Collapse
Affiliation(s)
- Saurabh Tiwari
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Phoolmala
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shweta Goyal
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ranjeet Kumar Yadav
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajnish Kumar Chaturvedi
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh (U.P.), India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Khalifa M, Fayed RH, Ahmed YH, Abdelhameed MF, Essa AF, Khalil HMA. Ferulic acid ameliorates bisphenol A (BPA)-induced Alzheimer's disease-like pathology through Akt-ERK crosstalk pathway in male rats. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06697-4. [PMID: 39441400 DOI: 10.1007/s00213-024-06697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES This study investigated the neuroprotective effect of ferulic acid (FA) against bisphenol A (BPA) induced Alzheimer's disease-like pathology in male rats. METHODS Rats were allocated into four groups, control, BPA, BPA + FA, and FA, respectively, for 40 days. Spatial working memory and recognition memory were evaluated. Moreover, the brain levels of oxidative stress biomarkers, proinflammatory cytokines, extracellular signal-regulated kinase (ERK), and phosphorylated serine/threonine protein kinase (p-Akt) were measured. We also determined the brain neuropathological protein levels, including Beta-Amyloid 1-42, total Tau (tTau), and phosphorylated Tau (pTau) proteins. Furthermore, brain levels of Acetylcholinesterase (AChE) and Beta-secretase (BACE) were assessed. Brain histological investigation and immunohistochemistry determination of glial fibrillar acidic protein (GFAP) were also performed. Moreover, docking simulation was adapted to understand the inhibitory role of FA on AChE, BACE-1, and ERK1/2. RESULTS Interestingly, the BPA + FA treated group showed a reversal in the cognitive impairments induced by BPA, which was associated with improved brain redox status. They also exhibited a significant decrease in brain inflammatory cytokines, ERK, and p-Akt levels. Moreover, they revealed a decline in beta-amyloid 1-42 and a significant improvement in tTau expression and pTau protein levels in the brain tissue. Further, the brain levels of AChE and BACE were substantially reduced in BPA + FA rats. The neuroprotective effect of FA was confirmed by restoring the normal architecture of brain tissue, which was associated with decreasing GFAP. CONCLUSION FA could be a potent neuroprotectant agent against AD with a possible prospect for its therapeutic capabilities and nutritional supplement value due to its antioxidant and antiapoptotic properties.
Collapse
Affiliation(s)
- Mhasen Khalifa
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Rabie H Fayed
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Yasmine H Ahmed
- Cytology and Histology Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Ahmed F Essa
- Department of Natural Compounds Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Faculty of Veterinary medicine, King Salman International University, South sinai, Ras Sudr, Egypt
| |
Collapse
|
10
|
Helli B, Navabi SP, Hosseini SA, Sabahi A, Khorsandi L, Amirrajab N, Mahdavinia M, Rahmani S, Dehghani MA. The Protective Effects of Syringic Acid on Bisphenol A-Induced Neurotoxicity Possibly Through AMPK/PGC-1α/Fndc5 and CREB/BDNF Signaling Pathways. Mol Neurobiol 2024; 61:7767-7784. [PMID: 38430353 DOI: 10.1007/s12035-024-04048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Bisphenol A (BPA), an endocrine disruptor, is commonly used to produce epoxy resins and polycarbonate plastics. Continuous exposure to BPA may contribute to the development of diseases in humans and seriously affect their health. Previous research suggests a significant relationship between the increased incidence of neurological diseases and the level of BPA in the living environment. Syringic acid (SA), a natural derivative of gallic acid, has recently considered much attention due to neuromodulator activity and its anti-oxidant, anti-apoptotic, and anti-inflammatory effects. Therefore, in this study, we aimed to investigate the effects of SA on oxidative stress, apoptosis, memory and locomotor disorders, and mitochondrial function, and to identify the mechanisms related to Alzheimer's disease (AD) in the brain of rats receiving high doses of BPA. For this purpose, male Wistar rats received BPA (50, 100, and 200 mg/kg) and SA (50 mg/kg) for 21 days. The results showed that BPA exposure significantly altered the rats' neurobehavioral responses. Additionally, BPA, by increasing the level of ROS, and MDA level, increased the level of oxidative stress while reducing the level of antioxidant enzymes, such as SOD, CAT, GPx, and mitochondrial GSH. The administration of BPA at 200 mg/kg significantly decreased the expression of ERRα, TFAM, irisin, PGC-1α, Bcl-2, and FNDC5, while it increased the expression of TrkB, cytochrome C, caspase 3, and Bax. Moreover, the Western blotting results showed that BPA increased the levels of P-AMPK, GSK3b, p-tau, and Aβ, while it decreased the levels of PKA, P-PKA, Akt, BDNF, CREB, P-CREB, and PI3K. Meanwhile, SA at 50 mg/kg reversed the behavioral, biochemical, and molecular changes induced by high doses of BPA. Overall, BPA could lead to the development of AD by affecting the mitochondria-dependent apoptosis pathway, as well as AMPK/PGC-1α/FNDC5 and CREB/BDNF/TrkB signaling pathways, and finally, by increasing the expression of tau and Aβ proteins. In conclusion, SA, as an antioxidant, significantly reduced the toxicity of BPA.
Collapse
Affiliation(s)
- Bizhan Helli
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Parisa Navabi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Sabahi
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasrin Amirrajab
- Department of Laboratory Sciences' School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sohrab Rahmani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Dehghani
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
11
|
Morsy MM, Ahmad MM, Hassan NH. Maternal exposure to low-dose bisphenol A and its potential neurotoxic impact on male pups: A histological, immunohistochemical, and ultrastructural study. Tissue Cell 2024; 90:102503. [PMID: 39137535 DOI: 10.1016/j.tice.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Bisphenol A (BPA) is a widely used chemical with a harmful effect on animal and human. The neonatal and juvenile period is a highly risky neurodevelopmental period. AIM This study aimed to determine how male albino rat pups' cerebral cortex was altered by low doses of BPA given to mothers and the role of the oxidative stress. METHODS Thirty pregnant rats were randomly split into three equal groups, negative control, and positive control: received 1 cc of corn oil once a day through gastric tube and BPA treated: a dose of 200 µg/kg/day (dissolved in 1 cc corn oil). The male rat pups of each group were sacrificed at 1 week, 3 weeks and 6 weeks. The cerebra were then separated from the brain for histological and biochemical studies. RESULTS Rats administered BPA had raised levels of lipid peroxidation marker (MDA), lower levels of enzymatic antioxidants (SOD and CAT) with decreased body, cerebral weights, and decreased levels of non-enzymatic antioxidant defense (GSH). Histo-pathologically, shrunken pyramidal cells with congested blood vessels appeared. GFAP displayed increased number of positive immune-reactive astrocytes with high statistically significant increase in the area % in BPA treated group when compared to the control groups, on contrary to MBP. Semi-thin and ultra-thin BPA-sections revealed degenerative changes in myelinated axons with tiny nucleus and broken nuclear membranes. Lysosomes, dilated endoplasmic reticulum cisternae with noticeable increase in unmyelinated nerve fibers were also observed. CONCLUSION The structure of the developing cerebral cortex is negatively impacted by BPA due to oxidative stress.
Collapse
Affiliation(s)
- Manal Mohammad Morsy
- Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, 44519, Egypt.
| | - Marwa M Ahmad
- Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, 44519, Egypt.
| | - Nancy Husseiny Hassan
- Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, 44519, Egypt.
| |
Collapse
|
12
|
He B, Xu HM, Li SW, Zhang YF, Tian JW. Emerging regulatory roles of noncoding RNAs induced by bisphenol a (BPA) and its alternatives in human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124447. [PMID: 38942269 DOI: 10.1016/j.envpol.2024.124447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Bisphenols (BPs), including BPA, BPF, BPS, and BPAF, are synthetic phenolic organic compounds and endocrine-disrupting chemicals. These organics have been broadly utilized to produce epoxy resins, polycarbonate plastics, and other products. Mounting evidence has shown that BPs, especially BPA, may enter into the human body and participate in the development of human diseases mediated by nuclear hormone receptors. Moreover, BPA may negatively affect human health at the epigenetic level through processes such as DNA methylation and histone acetylation. Recent studies have demonstrated that, as part of epigenetics, noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and small nucleolar RNAs (snoRNAs), have vital impacts on BP-related diseases, such as reproductive system diseases, nervous system diseases, digestive system diseases, endocrine system diseases, and other diseases. Moreover, based on the bioinformatic analysis, changes in ncRNAs may be relevant to normal activities and functions and BP-induced diseases. Thus, we conducted a meta-analysis to identify more promising ncRNAs as biomarkers and therapeutic targets for BP exposure and relevant human diseases. In this review, we summarize the regulatory functions of ncRNAs induced by BPs in human diseases and latent molecular mechanisms, as well as identify prospective biomarkers and therapeutic targets for BP exposure and upper diseases.
Collapse
Affiliation(s)
- Bo He
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shu-Wei Li
- Department of Neurology, Qingdao Huangdao District Central Hospital, Qingdao 266555, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Jia-Wei Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
13
|
Zhang J, Zhu S, Sun J, Liu Y. Bisphenol S Promotes the Transfer of Antibiotic Resistance Genes via Transformation. Int J Mol Sci 2024; 25:9819. [PMID: 39337307 PMCID: PMC11431945 DOI: 10.3390/ijms25189819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The antibiotic resistance crisis has seriously jeopardized public health and human safety. As one of the ways of horizontal transfer, transformation enables bacteria to acquire exogenous genes naturally. Bisphenol compounds are now widely used in plastics, food, and beverage packaging, and have become a new environmental pollutant. However, their potential relationship with the spread of antibiotic resistance genes (ARGs) in the environment remains largely unexplored. In this study, we aimed to assess whether the ubiquitous bisphenol S (BPS) could promote the transformation of plasmid-borne ARGs. Using plasmid pUC19 carrying the ampicillin resistance gene as an extracellular ARG and model microorganism E. coli DH5α as the recipient, we established a transformation system. Transformation assays revealed that environmentally relevant concentrations of BPS (0.1-10 μg/mL) markedly enhanced the transformation frequency of plasmid-borne ARGs into E. coli DH5α up to 2.02-fold. Fluorescent probes and transcript-level analyses suggest that BPS stimulated increased reactive oxygen species (ROS) production, activated the SOS response, induced membrane damage, and increased membrane fluidity, which weakened the barrier for plasmid transfer, allowing foreign DNA to be more easily absorbed. Moreover, BPS stimulates ATP supply by activating the tricarboxylic acid (TCA) cycle, which promotes flagellar motility and expands the search for foreign DNA. Overall, these findings provide important insight into the role of bisphenol compounds in facilitating the horizontal spread of ARGs and emphasize the need to monitor the residues of these environmental contaminants.
Collapse
Affiliation(s)
- Jiayi Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shuyao Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jingyi Sun
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Jiang C, Guan J, Tang X, Zhang Y, Li X, Li Y, Chen Z, Zhang J, Li JD. Prenatal low-dose Bisphenol A exposure impacts cortical development via cAMP-PKA-CREB pathway in offspring. Front Integr Neurosci 2024; 18:1419607. [PMID: 39170668 PMCID: PMC11335628 DOI: 10.3389/fnint.2024.1419607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Bisphenol A (BPA) is a widely used plasticizer known to cause various disorders. Despite a global reduction in the use of BPA-containing products, prenatal exposure to low-dose BPA, even those below established safety limits, has been linked to neurological and behavioral deficits in childhood. The precise mechanisms underlying these effects remain unclear. In the present study, we observed a significant increase in the number of cortical neurons in offspring born to dams exposed to low-dose BPA during pregnancy. We also found that this prenatal exposure to low-dose BPA led to increased proliferation but reduced migration of cortical neurons. Transcriptomic analysis via RNA sequencing revealed an aberrant activation of the cAMP-PKA-CREB pathway in offspring exposed to BPA. The use of H89, a selective PKA inhibitor, effectively rescued the deficits in both proliferation and migration of cortical neurons. Furthermore, offspring from dams exposed to low-dose BPA exhibited manic-like behaviors, including hyperactivity, anti-depressant-like responses, and reduced anxiety. While H89 normalized hyperactivity, it didn't affect the other behavioral changes. These results suggest that the overactivation of PKA plays a causative role in BPA-induced changes in neuronal development. Our data also indicate that manic-like behaviors induced by prenatal low-dose BPA exposure may be influenced by both altered neuronal development and abnormal PKA signaling in adulthood.
Collapse
Affiliation(s)
- Chu Jiang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Jun Guan
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Xiangrong Tang
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yichun Zhang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Xiangyu Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Yuting Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiheng Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Zhang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Jia-Da Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Changsha, Hunan, China
| |
Collapse
|
15
|
Hajimohammadi S, Rameshrad M, Karimi G. Exploring the therapeutic effects of sulforaphane: an in-depth review on endoplasmic reticulum stress modulation across different disease contexts. Inflammopharmacology 2024; 32:2185-2201. [PMID: 38922526 DOI: 10.1007/s10787-024-01506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
The endoplasmic reticulum (ER) is an intracellular organelle that contributes to the folding of proteins and calcium homeostasis. Numerous elements can disrupt its function, leading to the accumulation of proteins that are unfolded or misfolded in the lumen of the ER, a condition that is known as ER stress. This phenomenon can trigger cell death through the activation of apoptosis and inflammation. Glucoraphanin (GRA) is the predominant glucosinolate found in cruciferous vegetables. Various mechanical and biochemical processes activate the enzyme myrosinase, leading to the hydrolysis of glucoraphanin into the bioactive compound sulforaphane. Sulforaphane is an organosulfur compound that belongs to the isothiocyanate group. It possesses a wide range of activities and has shown remarkable potential as an anti-inflammatory, antioxidant, antitumor, and anti-angiogenic substance. Additionally, sulforaphane is resistant to oxidation, has been demonstrated to have low toxicity, and is considered well-tolerable in individuals. These properties make it a valuable natural dietary supplement for research purposes. Sulforaphane has been demonstrated as a potential candidate drug molecule for managing a range of diseases, primarily because of its potent antioxidant, anti-inflammatory, and anti-apoptotic properties, which can be mediated by modulation of ER stress pathways. This review seeks to cover a wealth of data supporting the broad range of protective functions of sulforaphane, improving various diseases, such as cardiovascular, central nervous system, liver, eye, and reproductive diseases, as well as diabetes, cancer, gastroenteritis, and osteoarthritis, through the amelioration of ER stress in both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Samaneh Hajimohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Science, Mashhad, Iran
| | - Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Research Institute, Mashhad University of Medical Science, Mashhad, Iran.
| |
Collapse
|
16
|
Caglayan MO, Şahin S, Üstündağ Z. An Overview of Aptamer-Based Sensor Platforms for the Detection of Bisphenol-A. Crit Rev Anal Chem 2024; 54:1320-1341. [PMID: 36001397 DOI: 10.1080/10408347.2022.2113359] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Endocrine disruptive compounds are natural or anthropogenic environmental micropollutants that alter the function of the endocrine system ultimately damaging the metabolism. Bisphenol A (BPA) is the most common of these pollutants and it is often used in epoxy coatings and polycarbonates as a plasticizer. Therefore, monitoring BPA levels in different environments is very important and challenging. In recent years, an increasing number of BPA detection methods have been proposed. This article presents a critical review of aptamer-based electrochemical, fluorescence-based, colorimetric, and several other BPA detection platforms published in the last decade. Furthermore, a statistical evaluation has been made using principle component analysis showing analytical performance parameters do not create very different clusters. Comparisons to other BPA detection methods are also presented so that the reader has an overall literature overview.
Collapse
Affiliation(s)
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
17
|
Grazia Mele V, Chioccarelli T, Diano N, Cappetta D, Ferraro B, Telesca M, Moggio M, Porreca V, De Angelis A, Berrino L, Fasano S, Cobellis G, Chianese R, Manfrevola F. Variation of sperm quality and circular RNA content in men exposed to environmental contamination with heavy metals in 'Land of Fires', Italy. Hum Reprod 2024; 39:1628-1644. [PMID: 38885964 PMCID: PMC11291948 DOI: 10.1093/humrep/deae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Indexed: 06/20/2024] Open
Abstract
STUDY QUESTION Can illegal discharge of toxic waste into the environment induce a new condition of morpho-epigenetic pathozoospermia in normozoospermic young men? SUMMARY ANSWER Toxic environmental contaminants promote the onset of a new pathozoospermic condition in young normozoospermic men, consisting of morpho-functional defects and a sperm increase of low-quality circular RNA (circRNA) cargo, tightly linked to contaminant bioaccumulation in seminal plasma. WHAT IS KNOWN ALREADY Epidemiological findings have reported several reproductive anomalies depending on exposure to contaminants discharged into the environment, such as germ cell apoptosis, steroidogenesis defects, oxidative stress induction, blood-testis barrier dysfunctions, and poor sperm quality onset. In this scenario, a vast geographical area located in Campania, Italy, called the 'Land of Fires', has been associated with an excessive illegal discharge of toxic waste into the environment, negatively impacting human health, including male reproductive functions. STUDY DESIGN, SIZE, DURATION Semen samples were obtained from healthy normozoospermic men divided into two experimental groups, consisting of men living in the 'Land of Fires' (LF; n = 80) or not (CTRL; n = 80), with age ranging from 25 to 40 years. The study was carried out following World Health Organization guidelines. PARTICIPANTS/MATERIALS, SETTING, METHODS Quality parameters of semen from CTRL- and LF-normozoospermic men were evaluated by computer-assisted semen analysis; high-quality spermatozoa from CTRL and LF groups (n = 80 for each experimental group) were obtained using a 80-40% discontinuous centrifugation gradient. Seminal plasma was collected following centrifugation and used for the dosage of chemical elements, dioxins and steroid hormones by liquid chromatography with tandem mass spectrometry. Sperm morpho-functional investigations (cellular morphology, acrosome maturation, IZUMO1 fertility marker analysis, plasma membrane lipid state, oxidative stress) were assessed on the purified high-quality spermatozoa fraction by immunochemistry/immunofluorescence and western blot analyses. Sperm circRNA cargo was evaluated by quantitative RT-PCR, and the physical interaction among circRNAs and fused in sarcoma (FUS) protein was detected using an RNA-binding protein immunoprecipitation assay. Protein immunoprecipitation experiments were carried out to demonstrate FUS/p-300 protein interaction in sperm cells. Lastly, in vitro lead (Pb) treatment of high-quality spermatozoa collected from normozoospermic controls was used to investigate a correlation between Pb accumulation and onset of the morpho-epigenetic pathozoospermic phenotype. MAIN RESULTS AND THE ROLE OF CHANCE Several morphological defects were identified in LF-spermatozoa, including: a significant increase (P < 0.05 versus CTRL) in the percentage of spermatozoa characterized by structural defects in sperm head and tail; and a high percentage (P < 0.01) of peanut agglutinin and IZUMO1 null signal cells. In agreement with these data, abnormal steroid hormone levels in LF seminal plasma suggest a premature acrosome reaction onset in LF-spermatozoa. The abnormal immunofluorescence signals of plasma membrane cholesterol complexes/lipid rafts organization (Filipin III and Flotillin-1) and of oxidative stress markers [3-nitrotyrosine and 3-nitrotyrosine and 4-hydroxy-2-nonenal] observed in LF-spermatozoa and associated with a sperm motility reduction (P < 0.01), demonstrated an affected membrane fluidity, potentially impacting sperm motility. Bioaccumulation of heavy metals and dioxins occurring in LF seminal plasma and a direct correlation between Pb and deregulated circRNAs related to high- and low-sperm quality was also revealed. In molecular terms, we demonstrated that Pb bioaccumulation promoted FUS hyperacetylation via physical interaction with p-300 and, in turn, its shuttling from sperm head to tail, significantly enhancing (P < 0.01 versus CTRL) the endogenous backsplicing of sperm low-quality circRNAs in LF-spermatozoa. LIMITATIONS, REASONS FOR CAUTION Participants were interviewed to better understand their area of origin, their eating habits as well as their lifestyles, however any information incorrectly communicated or voluntarily omitted that could potentially compromise experimental group determination cannot be excluded. A possible association between seminal Pb content and other heavy metals in modulating sperm quality should be explored further. Future investigations will be performed in order to identify potential synergistic or anti-synergistic effects of heavy metals on male reproduction. WIDER IMPLICATIONS OF THE FINDINGS Our study provides new findings regarding the effects of environmental contaminants on male reproduction, highlighting how a sperm phenotype classified as normozoospermic may potentially not match with a healthy morpho-functional and epigenetic one. Overall, our results improve the knowledge to allow a proper assessment of sperm quality through circRNAs as biomarkers to select spermatozoa with high morpho-epigenetic quality to use for ART. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by 'Convenzione Azienda Sanitaria Locale (ASL) Caserta, Regione Campania' (ASL CE Prot. N. 1217885/DIR. GE). The authors have no conflict of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Vincenza Grazia Mele
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Nadia Diano
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Bruno Ferraro
- UOSD of Reproductive Pathophysiology, Marcianise Hospital, Caserta, Italy
| | - Marialucia Telesca
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Martina Moggio
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| |
Collapse
|
18
|
Bartkowiak-Wieczorek J, Jaros A, Gajdzińska A, Wojtyła-Buciora P, Szymański I, Szymaniak J, Janusz W, Walczak I, Jonaszka G, Bienert A. The Dual Faces of Oestrogen: The Impact of Exogenous Oestrogen on the Physiological and Pathophysiological Functions of Tissues and Organs. Int J Mol Sci 2024; 25:8167. [PMID: 39125736 PMCID: PMC11311417 DOI: 10.3390/ijms25158167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Oestrogen plays a crucial physiological role in both women and men. It regulates reproductive functions and maintains various non-reproductive tissues through its receptors, such as oestrogen receptor 1/oestrogen receptor α (ESR1/Erα), oestrogen receptor 2/oestrogen receptor β (ESR2/Erβ), and G protein-coupled oestrogen receptor 1 (GPER). This hormone is essential for the proper functioning of women's ovaries and uterus. Oestrogen supports testicular function and spermatogenesis in men and contributes to bone density, cardiovascular health, and metabolic processes in both sexes. Nuclear receptors Er-α and Er-β belong to the group of transcription activators that stimulate cell proliferation. In the environment, compounds similar in structure to the oestrogens compete with endogenous hormones for binding sites to receptors and to disrupt homeostasis. The lack of balance in oestrogen levels can lead to infertility, cancer, immunological disorders, and other conditions. Exogenous endocrine-active compounds, such as bisphenol A (BPA), phthalates, and organic phosphoric acid esters, can disrupt signalling pathways responsible for cell division and apoptosis processes. The metabolism of oestrogen and its structurally similar compounds can produce carcinogenic substances. It can also stimulate the growth of cancer cells by regulating genes crucial for cell proliferation and cell cycle progression, with long-term elevated levels linked to hormone-dependent cancers such as breast cancer. Oestrogens can also affect markers of immunological activation and contribute to the development of autoimmune diseases. Hormone replacement therapy, oral contraception, in vitro fertilisation stimulation, and hormonal stimulation of transgender people can increase the risk of breast cancer. Cortisol, similar in structure to oestrogen, can serve as a biomarker associated with the risk of developing breast cancer. The aim of this review is to analyse the sources of oestrogens and their effects on the endogenous and exogenous process of homeostasis.
Collapse
Affiliation(s)
- Joanna Bartkowiak-Wieczorek
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Agnieszka Jaros
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.J.); (A.B.)
| | - Anna Gajdzińska
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Paulina Wojtyła-Buciora
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
- Department of Social Medicine and Public Health, Calisia University, 62-800 Kalisz, Poland
| | - Igor Szymański
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Julian Szymaniak
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Wojciech Janusz
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Iga Walczak
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Gabriela Jonaszka
- Physiology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.G.); (P.W.-B.); (I.S.); (J.S.); (W.J.); (I.W.); (G.J.)
| | - Agnieszka Bienert
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.J.); (A.B.)
| |
Collapse
|
19
|
Turra BO, Bonotto NCA, Teixeira CF, Chelotti ME, Rodrigues JR, Mastella MH, Azzolin VF, Ribeiro EE, Barbisan F, Cruz IBM. Bisphenol-A induced cyto-genotoxicity on retinal pigment epithelial cells is differentially modulated by a multi-supplement containing guarana, selenium, and L-carnitine. BRAZ J BIOL 2024; 84:e282840. [PMID: 38985071 DOI: 10.1590/1519-6984.282840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/30/2024] [Indexed: 07/11/2024] Open
Abstract
Bisphenol A (BPA) may adversely affect human health by inducing oxidative stress and irreversible damage to cells. Bioactive compounds found in some functional foods, individually or in combination, can attenuate the negative effects of BPA exposure; an example is the multi-supplement containing guarana (Gua), selenium (Se), and L-carnitine (LC) -GSC- which has already demonstrated antioxidant, genoprotective, and immunomodulatory activities. This study aimed to determine the effect of GSC and its constituents on oxidative and genotoxic alterations triggered by BPA exposure in the retinal epithelial cell line. The cells exposed to BPA (0.001, 0.01, 0.1, 1, 3, and 10 µM) to determine the lowest concentration required to induce cyto-genotoxicity. ARPE-19 cells were then concomitantly exposed to the selected BPA concentration, GSC, and its components (Gua, 1.07 mg/mL; Se, 0.178 µg/mL; and LC, 1.43 mg/mL). Flow cytometry, biochemical assays, qRT-PCR, genotoxicity, apoptosis, and cellular proliferation. Based on our results, 10 µM of BPA could induce cyto-genotoxic and oxidative alterations. BPA did not alter the Bcl-2/BAX expression ratio but induced Casp3 and Casp8 overexpression, suggesting that apoptosis was induced mainly via the extrinsic pathway. GSC partially reversed the alterations triggered by BPA in ARPE-19 cells. However, Se had unexpected negative effects on ARPE-19 cells. The multi-supplement GSC may attenuate changes in oxidative and genotoxic markers related to exposure of ARPE-19 cells to BPA. our results revealed that the antioxidant, anti-apoptotic, and genoprotective properties of GSC were not universally shared by its individual, once Se did not exhibit any positive impact.
Collapse
Affiliation(s)
- B O Turra
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Morfologia, Programa de Pós-graduação em Farmacologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - N C A Bonotto
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Morfologia, Programa de Pós-graduação em Farmacologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - C F Teixeira
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Morfologia, Programa de Pós-graduação em Farmacologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - M E Chelotti
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Morfologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - J R Rodrigues
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Morfologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - M H Mastella
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Morfologia, Programa de Pós-graduação em Farmacologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - V F Azzolin
- Fundação Universidade Aberta da Terceira Idade - FUnATI, Laboratório Gerontec, Manaus, AM, Brasil
| | - E E Ribeiro
- Fundação Universidade Aberta da Terceira Idade - FUnATI, Laboratório Gerontec, Manaus, AM, Brasil
| | - F Barbisan
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Patologia, Programa de Pós-graduação em Farmacologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - I B M Cruz
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Patologia, Programa de Pós-graduação em Farmacologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| |
Collapse
|
20
|
Lv L, Li Y, Chen X, Qin Z. Transcriptomic analysis reveals the effects of maternal exposure to bisphenol AF on hypothalamic development in male neonatal mice. J Environ Sci (China) 2024; 141:304-313. [PMID: 38408830 DOI: 10.1016/j.jes.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 02/28/2024]
Abstract
Fragmented data suggest that bisphenol AF (BPAF), a chemical widely used in a variety of products, might have potential impacts on the hypothalamus. Here, we employed male neonatal mice following maternal exposure to explore the effects of low-dose BPAF on hypothalamic development by RNA-sequencing. We found that maternal exposure to approximately 50 µg/(kg·day) BPAF from postanal day (PND) 0 to PND 15 altered the hypothalamic transcriptome, primarily involving the pathways and genes associated with extracellular matrix (ECM) and intercellular adhesion, neuroendocrine regulation, and neurological processes. Further RNA analysis confirmed the changes in the expression levels of concerned genes. Importantly, we further revealed that low-dose BPAF posed a stimulatory impact on pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus and induced the browning of inguinal white adipose tissue. All findings indicate that developmental exposure to low-dose BPAF could interfere with hypothalamic development and thereby lead to alterations in the metabolism. Interestingly, 5000 µg/(kg·day) BPAF caused slighter, non-significant or even inverse alterations than the low dose of 50 µg/(kg·day), displaying a dose-independent effect. Further observations suggest that the the dose-independent effects of BPAF might be associated with oxidative stress and inflammatory responses caused by the high dose. Overall, our study highlights a risk of low-dose BPAF to human neuroendocrine regulation and metabolism.
Collapse
Affiliation(s)
- Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuanyue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Morales-Grahl E, Hilz EN, Gore AC. Regrettable Substitutes and the Brain: What Animal Models and Human Studies Tell Us about the Neurodevelopmental Effects of Bisphenol, Per- and Polyfluoroalkyl Substances, and Phthalate Replacements. Int J Mol Sci 2024; 25:6887. [PMID: 38999997 PMCID: PMC11241431 DOI: 10.3390/ijms25136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
In recent decades, emerging evidence has identified endocrine and neurologic health concerns related to exposure to endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), certain per- and polyfluoroalkyl compounds (PFASs), and phthalates. This has resulted in consumer pressure to remove these chemicals from the market, especially in food-contact materials and personal care products, driving their replacement with structurally or functionally similar substitutes. However, these "new-generation" chemicals may be just as or more harmful than their predecessors and some have not received adequate testing. This review discusses the research on early-life exposures to new-generation bisphenols, PFASs, and phthalates and their links to neurodevelopmental and behavioral alterations in zebrafish, rodents, and humans. As a whole, the evidence suggests that BPA alternatives, especially BPAF, and newer PFASs, such as GenX, can have significant effects on neurodevelopment. The need for further research, especially regarding phthalate replacements and bio-based alternatives, is briefly discussed.
Collapse
Affiliation(s)
- Elena Morales-Grahl
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Emily N Hilz
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
22
|
Yarahmadi A, Heidari S, Sepahvand P, Afkhami H, Kheradjoo H. Microplastics and environmental effects: investigating the effects of microplastics on aquatic habitats and their impact on human health. Front Public Health 2024; 12:1411389. [PMID: 38912266 PMCID: PMC11191580 DOI: 10.3389/fpubh.2024.1411389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
Microplastics (MPs) are particles with a diameter of <5 mm. The disposal of plastic waste into the environment poses a significant and pressing issue concern globally. Growing worry has been expressed in recent years over the impact of MPs on both human health and the entire natural ecosystem. MPs impact the feeding and digestive capabilities of marine organisms, as well as hinder the development of plant roots and leaves. Numerous studies have shown that the majority of individuals consume substantial quantities of MPs either through their dietary intake or by inhaling them. MPs have been identified in various human biological samples, such as lungs, stool, placenta, sputum, breast milk, liver, and blood. MPs can cause various illnesses in humans, depending on how they enter the body. Healthy and sustainable ecosystems depend on the proper functioning of microbiota, however, MPs disrupt the balance of microbiota. Also, due to their high surface area compared to their volume and chemical characteristics, MPs act as pollutant absorbers in different environments. Multiple policies and initiatives exist at both the domestic and global levels to mitigate pollution caused by MPs. Various techniques are currently employed to remove MPs, such as biodegradation, filtration systems, incineration, landfill disposal, and recycling, among others. In this review, we will discuss the sources and types of MPs, the presence of MPs in different environments and food, the impact of MPs on human health and microbiota, mechanisms of pollutant adsorption on MPs, and the methods of removing MPs with algae and microbes.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | | | - Parisa Sepahvand
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
23
|
Chen Z, Li X, Gao J, Liu Y, Zhang N, Guo Y, Wang Z, Dong Z. Reproductive toxic effects of chronic exposure to bisphenol A and its analogues in marine medaka (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106927. [PMID: 38643640 DOI: 10.1016/j.aquatox.2024.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
As awareness of BPA's health risks has increased, many countries and regions have implemented strict controls on its use. Consequently, bisphenol analogues like BPF and BPAF are being increasingly used as substitutes. However, these compounds are also becoming increasingly prevalent in the environment due to production, use and disposal processes. The oceans act as a repository for various pollutants, and recent studies have revealed the extensive presence of bisphenols (BPs, including BPA, BPF, BPAF, etc.) in the marine environment, posing numerous health hazards to marine wildlife. Nevertheless, the reproductive toxicity of these chemicals on marine fish is not comprehensively comprehended yet. Thus, the histological features of the gonads and the gene expression profiles of HPG (Hypothalamic-Pituitary-Gonadal) axis-related genes in marine medaka (Oryzias melastigma) were studied after exposure to single and combined BPs for 70 days. The effects of each exposure group on spawning, embryo fertilization, and hatching in marine medaka were also assessed. Furthermore, the impacts of each exposure group on the genes related to methylation in the F2 and F3 generations were consistently investigated. BPs exposure was found to cause follicular atresia, irregular oocytes, and empty follicles in the ovary; but no significant lesions in the testis were observed. The expression of several HPG axis genes, including cyp19b, 17βhsd, 3βhsd, and fshr, resulted in significant changes compared to the control group. The quantity of eggs laid and fertilization rate decreased in all groups treated with BPs, with the BPAF-treated group showing a notable reduction in the number of eggs laid. Additionally, the hatching rate showed a more significant decline in the BPF-treated group. The analysis of methylated genes in the offspring of bisphenol-treated groups revealed significant changes in the expression of genes including amh, dnmt1, dnmt3ab, mbd2, and mecp2, indicating a potential transgenerational impact of bisphenols on phenotype through epigenetic modifications. Overall, the potential detrimental impact of bisphenol on the reproduction of marine medaka emphasizes the need for caution in considering the use of BPAF and BPF as substitutes.
Collapse
Affiliation(s)
- Zuchun Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Xueyou Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Jiahao Gao
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Yue Liu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Ning Zhang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China.
| |
Collapse
|
24
|
Lombó M, Giommi C, Zarantoniello M, Chemello G. A Pretty Kettle of Fish: A Review on the Current Challenges in Mediterranean Teleost Reproduction. Animals (Basel) 2024; 14:1597. [PMID: 38891644 PMCID: PMC11171123 DOI: 10.3390/ani14111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The Mediterranean region is facing several environmental changes and pollution issues. Teleosts are particularly sensitive to these challenges due to their intricate reproductive biology and reliance on specific environmental cues for successful reproduction. Wild populations struggle with the triad of climate change, environmental contamination, and overfishing, which can deeply affect reproductive success and population dynamics. In farmed species, abiotic factors affecting reproduction are easier to control, whereas finding alternatives to conventional diets for farmed teleosts is crucial for enhancing broodstock health, reproductive success, and the sustainability of the aquaculture sector. Addressing these challenges involves ongoing research into formulating specialized diets, optimizing feeding strategies, and developing alternative and sustainable feed ingredients. To achieve a deeper comprehension of these challenges, studies employing model species have emerged as pivotal tools. These models offer advantages in understanding reproductive mechanisms due to their well-defined physiology, genetic tractability, and ease of manipulation. Yet, while providing invaluable insights, their applicability to diverse species remains constrained by inherent variations across taxa and oversimplification of complex environmental interactions, thus limiting the extrapolation of the scientific findings. Bridging these gaps necessitates multidisciplinary approaches, emphasizing conservation efforts for wild species and tailored nutritional strategies for aquaculture, thereby fostering sustainable teleost reproduction in the Mediterranean.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, 24071 León, Spain
| | - Christian Giommi
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
| | - Giulia Chemello
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| |
Collapse
|
25
|
Yao K, Kang Q, Liu W, Chen D, Wang L, Li S. Chronic exposure to tire rubber-derived contaminant 6PPD-quinone impairs sperm quality and induces the damage of reproductive capacity in male mice. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134165. [PMID: 38574660 DOI: 10.1016/j.jhazmat.2024.134165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
It has been reported that N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), a derivative of the tire antioxidant, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), exhibits acute toxicity towards organisms. However, the possible reproductive toxicity of 6PPD-Q in mammals has rarely been reported. In this study, the effects of 6PPD-Q on the reproductive toxicity of C57Bl/6 male mice were assessed after exposure to 6PPD-Q for 40 days at 4 mg/kg body weight (bw). Exposure to 6PPD-Q not only led to a decrease in testosterone levels but also adversely affected semen quality and in vitro fertilization (IVF) outcomes, thereby indicating impaired male fertility resulting from 6PPD-Q exposure. Additionally, transcriptomic and metabolomic analyses revealed that 6PPD-Q elicited differential expression of genes and metabolites primarily enriched in spermatogenesis, apoptosis, arginine biosynthesis, and sphingolipid metabolism in the testes of mice. In conclusion, our study reveals the toxicity of 6PPD-Q on the reproductive capacity concerning baseline endocrine disorders, sperm quality, germ cell apoptosis, and the sphingolipid signaling pathway in mice. These findings contribute to an enhanced understanding of the health hazards posed by 6PPD-Q to mammals, thereby facilitating the development of more robust safety regulations governing the utilization and disposal of rubber products.
Collapse
Affiliation(s)
- Kezhen Yao
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Quanmin Kang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenbo Liu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, China
| | - Danna Chen
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lefeng Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shun Li
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Jamka M, Kurek S, Makarewicz-Bukowska A, Miśkiewicz-Chotnicka A, Wasiewicz-Gajdzis M, Walkowiak J. No Differences in Urine Bisphenol A Concentrations between Subjects Categorized with Normal Cognitive Function and Mild Cognitive Impairment Based on Montreal Cognitive Assessment Scores. Metabolites 2024; 14:271. [PMID: 38786748 PMCID: PMC11123393 DOI: 10.3390/metabo14050271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
A link between bisphenol A (BPA) exposure and cognitive disorders has been suggested. However, the differences in BPA concentrations between subjects with and without cognitive impairment have not been analysed. Therefore, this observational study aimed to compare urine BPA levels in subjects with normal cognitive function (NCF) and mild cognitive impairment (MCI). A total of 89 MCI subjects and 89 well-matched NCF individuals were included in this study. Cognitive functions were assessed using the Montreal Cognitive Assessment (MOCA) scale. Urine BPA concentrations were evaluated by gas chromatography-mass spectrometry and adjusted for creatinine levels. Moreover, anthropometric parameters, body composition, sociodemographic factors, and physical activity were also assessed. Creatinine-adjusted urine BPA levels did not differ between the NCF and MCI groups (1.8 (1.4-2.7) vs. 2.2 (1.4-3.6) µg/g creatinine, p = 0.1528). However, there were significant differences in MOCA results between groups when the study population was divided into tertiles according to BPA concentrations (p = 0.0325). Nevertheless, multivariate logistic regression demonstrated that only education levels were independently associated with MCI. In conclusion, urine BPA levels are not significantly different between subjects with MCI and NCF, but these findings need to be confirmed in further studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznan, Poland; (M.J.); (S.K.); (A.M.-B.); (A.M.-C.); (M.W.-G.)
| |
Collapse
|
27
|
Mottola F, Palmieri I, Carannante M, Barretta A, Roychoudhury S, Rocco L. Oxidative Stress Biomarkers in Male Infertility: Established Methodologies and Future Perspectives. Genes (Basel) 2024; 15:539. [PMID: 38790168 PMCID: PMC11121722 DOI: 10.3390/genes15050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Male fertility can be affected by oxidative stress (OS), which occurs when an imbalance between the production of reactive oxygen species (ROS) and the body's ability to neutralize them arises. OS can damage cells and influence sperm production. High levels of lipid peroxidation have been linked to reduced sperm motility and decreased fertilization ability. This literature review discusses the most commonly used biomarkers to measure sperm damage caused by ROS, such as the high level of OS in seminal plasma as an indicator of imbalance in antioxidant activity. The investigated biomarkers include 8-hydroxy-2-deoxyguanosine acid (8-OHdG), a marker of DNA damage caused by ROS, and F2 isoprostanoids (8-isoprostanes) produced by lipid peroxidation. Furthermore, this review focuses on recent methodologies including the NGS polymorphisms and differentially expressed gene (DEG) analysis, as well as the epigenetic mechanisms linked to ROS during spermatogenesis along with new methodologies developed to evaluate OS biomarkers. Finally, this review addresses a valuable insight into the mechanisms of male infertility provided by these advances and how they have led to new treatment possibilities. Overall, the use of biomarkers to evaluate OS in male infertility has supplied innovative diagnostic and therapeutic approaches, enhancing our understanding of male infertility mechanisms.
Collapse
Affiliation(s)
- Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | - Ilaria Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | - Maria Carannante
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | - Angela Barretta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | | | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| |
Collapse
|
28
|
Yu Z, Lin Y, Wu L, Wang L, Fan Y, Xu L, Zhang L, Wu W, Tao J, Huan F, Liu W, Wang J, Gao R. Bisphenol F exposure induces depression-like changes: Roles of the kynurenine metabolic pathway along the "liver-brain" axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123356. [PMID: 38266696 DOI: 10.1016/j.envpol.2024.123356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/26/2024]
Abstract
Bisphenol F (BPF), one of the major alternatives of Bisphenol A (BPA), is becoming extensively used in industrial production with great harm to human beings and environment. Recent studies have revealed that environmental exposure is crucial to the initiation and development of depression. Thereby, the aim the present study is to ascertain the correlationship between the BPF exposure and depression occurrence. In the current study, BPF strikingly triggered depression-like changes in mice through the sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST), accompanied by the perturbation of the kynurenine (KYN) metabolic pathway along the "liver-brain" axis. Mechanistically, the neurotransmitters from the tryptophan metabolic pathway were converted to the toxic KYN pathway after BPF treatment. With the ELISA assay, it revealed that the toxic KYN metabolites, including KYN and 3-hydroxykynurenine (3-HK), were strikingly increased in the mouse brains which was ascribed to the enhanced expression of the rate-limiting enzymes Indoleamine 2,3-dioxygenase (IDO1) and Kynurenine 3-monooxygenase (KMO) respectively. Interestingly, the increased brain KYN induced by BPF was also validated partially from the periphery, since the ELISA and western blotting results indicated the significantly increased KYN in the serum and L-type amino acid transporter 1 (LAT1) in the brain, the key transporter responsible for KYN and 3-HK crossing the blood-brain barrier. Intriguingly, the liver-derived KYN metabolic pathway was the important source of the peripheral KYN and 3-HK, as BPF substantially enhanced hepatic IDO1, Tryptophan, 2, 3-dioxygenase (TDO2), and KMO levels indicated by western blotting. This study is the first to delineate previously unrecognized BPF-induced depression by regulating the KYN metabolic pathway along the "liver-brain" axis; therefore, targeting LAT1 or hepatic KYN signaling may provide a potentially unique therapeutic intervention in BPF-induced depression.
Collapse
Affiliation(s)
- Zheng Yu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Yuxin Lin
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Linlin Wu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China; The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Luyao Wang
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Yichun Fan
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Liuting Xu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Linwei Zhang
- Department of Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Weilan Wu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Jingxian Tao
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Fei Huan
- Department of Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Wenwei Liu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Jun Wang
- Department of Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China; China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
| |
Collapse
|
29
|
Wang J, Zhao C, Feng J, Sun P, Zhang Y, Han A, Zhang Y, Ma H. Advances in understanding the reproductive toxicity of endocrine-disrupting chemicals in women. Front Cell Dev Biol 2024; 12:1390247. [PMID: 38606320 PMCID: PMC11007058 DOI: 10.3389/fcell.2024.1390247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Recently, there has been a noticeable increase in disorders of the female reproductive system, accompanied by a rise in adverse pregnancy outcomes. This trend is increasingly being linked to environmental pollution, particularly through the lens of Endocrine Disrupting Chemicals (EDCs). These external agents disrupt natural processes of hormones, including synthesis, metabolism, secretion, transport, binding, as well as elimination. These disruptions can significantly impair human reproductive functions. A wealth of animal studies and epidemiological research indicates that exposure to toxic environmental factors can interfere with the endocrine system's normal functioning, resulting in negative reproductive outcomes. However, the mechanisms of these adverse effects are largely unknown. This work reviews the reproductive toxicity of five major environmental EDCs-Bisphenol A (BPA), Phthalates (PAEs), Triclocarban Triclosan and Disinfection Byproducts (DBPs)-to lay a foundational theoretical basis for further toxicological study of EDCs. Additionally, it aims to spark advancements in the prevention and treatment of female reproductive toxicity caused by these chemicals.
Collapse
Affiliation(s)
- Jinguang Wang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Chunwu Zhao
- Gastrointestinal Surgery Center of Weifang People’s Hospital, Weifang, China
| | - Jie Feng
- Gynecology and Obstetrics Department, Fangzi District People’s Hospital, Weifang, China
| | - Pingping Sun
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Yuhua Zhang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Ailing Han
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Yuemin Zhang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Huagang Ma
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| |
Collapse
|
30
|
Qi T, Jing D, Zhang K, Shi J, Qiu H, Kan C, Han F, Wu C, Sun X. Environmental toxicology of bisphenol A: Mechanistic insights and clinical implications on the neuroendocrine system. Behav Brain Res 2024; 460:114840. [PMID: 38157990 DOI: 10.1016/j.bbr.2023.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol A (BPA) is a widely used environmental estrogen found in a variety of products, including food packaging, canned goods, baby bottle soothers, reusable cups, medical devices, tableware, dental sealants, and other consumer goods. This substance has been found to have detrimental effects on both the environment and human health, particularly on the reproductive, immune, embryonic development, nervous, endocrine, and respiratory systems. This paper aims to provide a comprehensive review of the effects of BPA on the neuroendocrine system, with a primary focus on its impact on the brain, neurons, oligodendrocytes, neural stem cell proliferation, DNA damage, and behavioral development. Additionally, the review explores the clinical implications of BPA, specifically examining its role in the onset and progression of various diseases associated with the neuroendocrine metabolic system. By delving into the mechanistic analysis and clinical implications, this review aims to serve as a valuable resource for studying the impacts of BPA exposure on organisms.
Collapse
Affiliation(s)
- Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Dongqing Jing
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Neurology 1, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chunyan Wu
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
31
|
He X, Yang Z, Wang L, Sun Y, Cao H, Liang Y. NeuTox: A weighted ensemble model for screening potential neuronal cytotoxicity of chemicals based on various types of molecular representations. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133443. [PMID: 38198870 DOI: 10.1016/j.jhazmat.2024.133443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Chemical-induced neurotoxicity has been widely brought into focus in the risk assessment of chemical safety. However, the traditional in vivo animal models to evaluate neurotoxicity are time-consuming and expensive, which cannot completely represent the pathophysiology of neurotoxicity in humans. Cytotoxicity to human neuroblastoma cell line (SH-SY5Y) is commonly used as an alternative to animal testing for the assessment of neurotoxicity, yet it is still not appropriate for high throughput screening of potential neuronal cytotoxicity of chemicals. In this study, we constructed an ensemble prediction model, termed NeuTox, by combining multiple machine learning algorithms with molecular representations based on the weighted score of Particle Swarm Optimization. For the test set, NeuTox shows excellent performance with an accuracy of 0.9064, which are superior to the top-performing individual models. The subsequent experimental verifications reveal that 5,5'-isopropylidenedi-2-biphenylol and 4,4'-cyclo-hexylidenebisphenol exhibited stronger SH-SY5Y-based cytotoxicity compared to bisphenol A, suggesting that NeuTox has good generalization ability in the first-tier assessment of neuronal cytotoxicity of BPA analogs. For ease of use, NeuTox is presented as an online web server that can be freely accessed via http://www.iehneutox-predictor.cn/NeuToxPredict/Predict.
Collapse
Affiliation(s)
- Xuejun He
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zeguo Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yuzhen Sun
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
32
|
Zheng J, Chen S, Lu H, Xia M, Wang S, Li X, Li H, Wang Y, Ge RS, Liu Y. Enhanced inhibition of human and rat aromatase activity by benzene ring substitutions in bisphenol A: QSAR structure-activity relationship and in silico docking analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133252. [PMID: 38128231 DOI: 10.1016/j.jhazmat.2023.133252] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Bisphenol A (BPA) is a widely used plastic material, but its potential endocrine disrupting effect has restricted its use. The BPA alternatives have raised concerns. This study aimed to compare inhibitory potencies of 11 BPA analogues on human and rat placental aromatase (CYP19A1). The inhibitory potency on human CYP19A1 ranged from bisphenol H (IC50, 0.93 μM) to tetramethyl BPA and tetrabromobisphenol S (ineffective at 100 μM) when compared to BPA (IC50, 73.48 μM). Most of them were mixed/competitive inhibitors and inhibited estradiol production in human BeWo cells. Molecular docking analysis showed all BPA analogues bind to steroid active site or in between steroid and heme of CYP19A1 and form a hydrogen bond with catalytic residue Met374. Pharmacophore analysis showed that there were 4 hydrophobic regions for BPA analogues, with bisphenol H occupying 4 regions. Bivariate correlation analysis showed that LogP (lipophilicity) and LogS (water solubility) of BPA analogues were correlated with their IC50 values. Computerized drug metabolism and pharmacokinetics analysis showed that bisphenol H, tetrabromobisphenol A, and tetrachlorobisphenol A had low solubility, which might explain their weaker inhibition on estradiol production on BeWo cells. In conclusion, BPA analogues mostly can inhibit CYP19A1 and the lipophilicity determines their inhibitory strength.
Collapse
Affiliation(s)
- Jingyi Zheng
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Sailing Chen
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Han Lu
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Miaomiao Xia
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Xiaoheng Li
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Huitao Li
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Yiyan Wang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China.
| | - Ren-Shan Ge
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou 325000, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China.
| | - Yi Liu
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
33
|
Zhang Y, Yan C, Xie Q, Wu B, Zhang Y. Exposure to bisphenol A affects transcriptome-wide N6-methyladenine methylation in ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116071. [PMID: 38354435 DOI: 10.1016/j.ecoenv.2024.116071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Bisphenol A (BPA) is an endocrine disruptor of potential reproductive toxicities. Increasingly research elucidated that BPA exposure to the environment would change the epigenetic modifications of transcriptome, but the mechanism by which BPA affects m6A methylation in interfering with female reproductive health remains uncertain. Therefore, this study preliminarily proposed and tested the hypothesis that BPA exposure alters the m6A modification level in transcripts in female ovarian granulosa cells. After BPA was exposed to granulosa cells for 24 h, RNA methylation related regulatory genes (such as METTL3, METTL14, ALKBH5, FTO) and the global m6A levels showed significant differences. Next, we applied MERIP-seq analysis to obtain information on the genome-wide m6A modification changes and identified 1595 differentially methylated mRNA transcripts, and 50 differentially methylated lncRNA transcripts. Further joint analysis of gene common expression showed that 33 genes were hypermethylated and up-regulated, 71 were hypermethylated and down-regulated, 49 were hypomethylated and up-regulated, and 20 were hypomethylated and down-regulated. Enriched Gene Ontology (GO) and biological pathway analysis revealed that these unique genes were mainly enriched in lipid metabolism, cell proliferation, and apoptosis related pathways. Six of these genes (mRNAs IMPA1, MCOLN1, DCTN3, BRCA2, and lncRNAs MALAT1, XIST) were validated using RT-qPCR and IGV software. Through comprehensive analysis of epitranscriptome and protein-protein interaction (PPI) data, lncRNAs MALAT1 and XIST are expected to serve as new markers for BPA interfering with the female reproductive system. In brief, these data show a novel and necessary connection between the damage of BPA exposure on female ovarian granulosa cells and RNA methylation modification.
Collapse
Affiliation(s)
- Yuxia Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Congcong Yan
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qian Xie
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Wu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Yingchun Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
34
|
Sun Y, Sha M, Qin Y, Xiao J, Li W, Li S, Chen S. Bisphenol A induces placental ferroptosis and fetal growth restriction via the YAP/TAZ-ferritinophagy axis. Free Radic Biol Med 2024; 213:524-540. [PMID: 38326183 DOI: 10.1016/j.freeradbiomed.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Exposure to bisphenol A (BPA) during gestation leads to fetal growth restriction (FGR), whereby the underlying mechanisms remain unknown. Here, we found that FGR patients showed higher levels of BPA in the urine, serum, and placenta; meanwhile, trophoblast ferroptosis was observed in FGR placentas, as indicated by accumulated intracellular iron, impaired antioxidant molecules, and increased lipid peroxidation products. To investigate the role of ferroptosis in placental and fetal growth, BPA stimulation was performed both in vivo and in vitro. BPA exposure during gestation was associated with FGR in mice; also, it induces ferroptosis in mouse placentas and human placental trophoblast. Pretreatment with ferroptosis inhibitor ferritin-1 (Fer-1) alleviated BPA-induced oxidative damage and cell death. Notably, BPA reduced the trophoblastic expression of Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which regulated tissue growth and organ size. YAP or TAZ siRNA enhanced BPA-induced ferroptosis, suggesting that trophoblast ferroptosis is dependent on YAP/TAZ downregulation after BPA stimulation. Consistently, the protein levels of YAP/TAZ were also reduced in FGR placentas. Further results revealed that silencing YAP/TAZ promoted BPA-induced ferroptosis through autophagy. Pretreatment with autophagy inhibitor chloroquine (CQ) attenuated BPA-induced trophoblast ferroptosis. Ferritinophagy, an autophagic degradation of ferritin (FTH1), was observed in FGR placentas. Similarly, BPA reduced the protein level of FTH1 in placental trophoblast. Pretreatment with iron chelator desferrioxamine (DFO) and NCOA4 (an autophagy cargo receptor) siRNA weakened the ferroptosis of trophoblast after exposure to BPA, indicating that autophagy mediates ferroptosis in BPA-stimulated trophoblast by degrading ferritin. In summary, ferroptosis was featured in BPA-associated FGR and trophoblast injury; the regulation of ferroptosis involved the YAP/TAZ-autophagy-ferritin axis.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Menghan Sha
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yu Qin
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Juan Xiao
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Li
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shufang Li
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Suhua Chen
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
35
|
Jiang C, Dong W, Gao G, Sun W, Wang Y, Zhan B, Sun Y, Yu J. Maternal oral exposure to low-dose BPA accelerates the onset of puberty by promoting prepubertal Kiss1 expression in the AVPV nucleus of female offspring. Reprod Toxicol 2024; 124:108543. [PMID: 38232916 DOI: 10.1016/j.reprotox.2024.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
As the incidence of precocious puberty has risen in recent years and the age at puberty onset is younger, children may be at increased risk for health consequences associated with the early onset of puberty. Bisphenol A (BPA) is recognized as an endocrine disruptor chemical that is reported to induce precocious puberty. The effect of BPA exposure modes, times, and doses (especially low dose) were controversial. In the present study, we evaluated the potential effects of maternal exposure to low-dose BPA on the hypothalamus, particularly on the arcuate (ARC) nucleus and anteroventral periventricular (AVPV) nucleus during peri-puberty in offspring of BPA-treated rats. Pregnant rats were exposed to corn oil vehicle, 0.05 mg·kg-1·day-1 BPA, or 5 mg·kg-1·day-1 from gestation day 1 (GD1) to postnatal day 21 (PND21) by daily gavage. Body weight (BW), vaginal opening (VO), ovarian follicular luteinization, and relevant hormone concentrations were measured; hypothalamic Kiss1 and GnRH1 levels by western immunoblot analysis were also assessed as indices of puberty onset. During or after exposure, low-dose BPA restricted BW after birth (at PND1 and PND5), and subsequently accelerated puberty onset by promoting the expression of prepubertal Kiss1 and GnRH1 in the AVPV nucleus on PND30, leading to advanced VO, an elevation in LH and FSH concentrations (on PND30). We also noted increased BW on PND30 and PND35. Maternal oral exposure to low-dose BPA altered the BW curve during the neonatal and peripubertal periods, and subsequently accelerated puberty onset by promoting prepubertal Kiss1 expression in the AVPV nucleus.
Collapse
Affiliation(s)
- Chenyan Jiang
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Wenke Dong
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Guanglin Gao
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Wen Sun
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yonghong Wang
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Bowen Zhan
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yanyan Sun
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China.
| | - Jian Yu
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
36
|
Gong Y, Liu P. A Novel Magnetic β-Cyclodextrin-Modified Graphene Oxide and Chitosan Composite as an Adsorbent for Trace Extraction of Four Bisphenol Pollutants from Environmental Water Samples and Food Samples. Molecules 2024; 29:867. [PMID: 38398619 PMCID: PMC10893499 DOI: 10.3390/molecules29040867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, a novel functionalized magnetic composite (MNCGC) for magnetic solid-phase extraction of bisphenols from environmental and food samples was developed, featuring a multistep synthesis with Fe3O4, chitosan, graphene oxide, and β-cyclodextrin, crosslinked by glutaraldehyde. Characterization confirmed its advantageous morphology, intact crystal structure of the magnetic core, specific surface area, and magnetization, enabling efficient adsorption and separation via an external magnetic field. The optimized MSPE-HPLC-FLD method demonstrated excellent sensitivity, linearity, and recovery rates exceeding 80% for bisphenol pollutants, validating the method's effectiveness in enriching and detecting trace levels of bisphenols in complex matrices. This approach offers a new avenue for analyzing multiple bisphenol residues, with successful application to environmental water and food samples, showing high recovery rates.
Collapse
Affiliation(s)
- Yichao Gong
- School of Eco-Environment, Hebei University, Baoding 071000, China
- College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai 054001, China
| | - Pengyan Liu
- School of Eco-Environment, Hebei University, Baoding 071000, China
| |
Collapse
|
37
|
Sun Y, Sha M, Qin Y, Xiao J, Li W, Li S, Chen S. Bisphenol A induces placental ferroptosis and fetal growth restriction via the YAP/TAZ-ferritinophagy axis. Free Radic Biol Med 2024; 211:127-144. [PMID: 38103660 DOI: 10.1016/j.freeradbiomed.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Exposure to bisphenol A (BPA) during gestation leads to fetal growth restriction (FGR), whereby the underlying mechanisms remain unknown. Here, we found that FGR patients showed higher levels of BPA in the urine, serum, and placenta; meanwhile, trophoblast ferroptosis was observed in FGR placentas, as indicated by accumulated intracellular iron, impaired antioxidant molecules, and increased lipid peroxidation products. To investigate the role of ferroptosis in placental and fetal growth, BPA stimulation was performed both in vivo and in vitro. BPA exposure during gestation was associated with FGR in mice; also, it induces ferroptosis in mouse placentas and human placental trophoblast. Pretreatment with ferroptosis inhibitor ferritin-1 (Fer-1) alleviated BPA-induced oxidative damage and cell death. Notably, BPA reduced the trophoblastic expression of Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which regulated tissue growth and organ size. YAP or TAZ siRNA enhanced BPA-induced ferroptosis, suggesting that trophoblast ferroptosis is dependent on YAP/TAZ downregulation after BPA stimulation. Consistently, the protein levels of YAP/TAZ were also reduced in FGR placentas. Further results revealed that silencing YAP/TAZ promoted BPA-induced ferroptosis through autophagy. Pretreatment with autophagy inhibitor chloroquine (CQ) attenuated BPA-induced trophoblast ferroptosis. Ferritinophagy, an autophagic degradation of ferritin (FTH1), was observed in FGR placentas. Similarly, BPA reduced the protein level of FTH1 in placental trophoblast. Pretreatment with iron chelator desferrioxamine (DFO) and NCOA4 (an autophagy cargo receptor) siRNA weakened the ferroptosis of trophoblast after exposure to BPA, indicating that autophagy mediates ferroptosis in BPA-stimulated trophoblast by degrading ferritin. In summary, ferroptosis was featured in BPA-associated FGR and trophoblast injury; the regulation of ferroptosis involved the YAP/TAZ-autophagy-ferritin axis.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Menghan Sha
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yu Qin
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Juan Xiao
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Li
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shufang Li
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Suhua Chen
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
38
|
Dou L, Sun S, Chen L, Lv L, Chen C, Huang Z, Zhang A, He H, Tao H, Yu M, Zhu M, Zhang C, Hao J. The association between prenatal bisphenol F exposure and infant neurodevelopment: The mediating role of placental estradiol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:116009. [PMID: 38277971 DOI: 10.1016/j.ecoenv.2024.116009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND There are limited population studies on the neurodevelopmental effects of bisphenol F (BPF), a substitute for bisphenol A. Furthermore, the role of placental estradiol as a potential mediator linking these two factors remains unclear. OBJECTIVE To examine the association between maternal prenatal BPF exposure and infant neurodevelopment in a prospective cohort study and to explore the mediating effects of placental estradiol between BPF exposure and neurodevelopment in a nested case-control study. METHODS The prospective cohort study included 1077 mother-neonate pairs from the Wuhu city cohort study in China. Maternal BPF was determined using the liquid/liquid extraction and Ultra-performance liquid chromatography tandem mass spectrometry method. Children's neurodevelopment was assessed at ages 3, 6, and 12 months using Ages and Stages Questionnaires. The nested case-control study included 150 neurodevelopmental delay cases and 150 healthy controls. Placental estradiol levels were measured using enzyme-linked immunosorbent assay kits. Generalized estimating equation models and robust Poisson regression models were used to examine the associations between BPF exposure and children's neurodevelopment. In the nested case-control study, causal mediation analysis was conducted to assess the role of placental estradiol as a mediator in multivariate models. RESULTS In the prospective cohort study, the pregnancy-average BPF concentration was positively associated with developmental delays in gross-motor, fine-motor, and problem-solving ( ORtotal ASQ: 1.14(1.05, 1.25), ORgross-motor: 1.22(1.10, 1.36), ORfine-motor: 1.19(1.07, 1.31), ORproblem-solving: 1.11(1.01, 1.23)). After sex-stratified analyses, pregnancy-average BPF concentration was associated with an increased risk of neurodevelopmental delays in the gross-motor (ORgross-motor:1.30(1.12, 1.51)) and fine-motor (ORfine-motor: 1.22(1.06, 1.40)) domains in boys. In the nested case-control study, placental estradiol mediated 16.6% (95%CI: 4.4%, 35.0%) of the effects of prenatal BPF exposure on developmental delay. CONCLUSIONS Our study supports an inverse relationship between prenatal BPF exposure and child neurodevelopment in infancy, particularly in boys. Decreased placental estradiol may be an underlying biological pathway linking prenatal BPF exposure to neurodevelopmental delay in offspring.
Collapse
Affiliation(s)
- Lianjie Dou
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Shu Sun
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Lan Chen
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Lanxing Lv
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Chen Chen
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Zhaohui Huang
- Anhui Provincial Center for Women and Children's Health, Hefei, Anhui Province, China
| | - Anhui Zhang
- Wuhu Maternal and Child Health (MCH) Center, Wuhu, Anhui Province, China
| | - Haiyan He
- Wuhu Maternal and Child Health (MCH) Center, Wuhu, Anhui Province, China
| | - Hong Tao
- Wuhu Maternal and Child Health (MCH) Center, Wuhu, Anhui Province, China
| | - Min Yu
- Wuhu Maternal and Child Health (MCH) Center, Wuhu, Anhui Province, China
| | - Min Zhu
- Wuhu Maternal and Child Health (MCH) Center, Wuhu, Anhui Province, China
| | - Chao Zhang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui Province, China; Department of Health Promotion and Behavioral Sciences, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China.
| | - Jiahu Hao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China; Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui Province, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui Province, China.
| |
Collapse
|
39
|
Chen Y, Zhang H, Yu Y, Wang S, Wang M, Pan C, Fei Q, Li H, Wang Y, Lv J, Ge RS. Comparison of structure-activity relationship for bisphenol analogs in the inhibition of gonadal 3β-hydroxysteroid dehydrogenases among human, rat, and mouse. J Steroid Biochem Mol Biol 2024; 236:106424. [PMID: 37939739 DOI: 10.1016/j.jsbmb.2023.106424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Bisphenol A (BPA) is a widely used plastic material and its potential endocrine disrupting effect has restricted its use and increasing use of BPA alternatives has raised health concerns. However, the effect of bisphenol alternatives on steroidogenesis remains unclear. The objective of this study was to compare inhibitory potencies of 10 BPA alternatives in the inhibition of gonadal 3β-hydroxysteroid dehydrogenase (3β-HSD) in three species (human, rat and mouse). The inhibitory potency for human 3β-HSD2, rat 3β-HSD1, and mouse 3β-HSD6 ranged from bisphenol FL (IC50, 3.32 μM for human, 5.19 μM for rat, and 3.26 μM for mouse) to bisphenol E, F, and thiodiphenol (ineffective at 100 μM). Most BPA alternatives were mixed inhibitors of gonadal 3β-HSD and they dose-dependently inhibited progesterone formation in KGN cells. Molecular docking analysis showed that all BPA analogs bind to steroid and NAD+ active sites. Lipophilicity of BPA alternatives was inversely correlated with IC50 values. In conclusion, BPA alternatives mostly can inhibit gonadal 3β-HSDs and lipophilicity determines their inhibitory strength.
Collapse
Affiliation(s)
- Ya Chen
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, and Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
| | - Huina Zhang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Yu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, and Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Mengyun Wang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chengshuang Pan
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianjin Fei
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huitao Li
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, and Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
| | - Jieqiang Lv
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Ren-Shan Ge
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, and Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
40
|
Zhang W, Zhang L, Liang W, Wang H, Hu F. Neurodevelopment effects of early life bisphenol-A exposure on visual memory: Insights into recovery dynamics. Toxicology 2024; 502:153718. [PMID: 38160929 DOI: 10.1016/j.tox.2023.153718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol A (BPA), a ubiquitous endocrine disruptor, is implicated in the cognitive deficits observed in both children and animals. Especially, BPA-induced spatial memory deterioration during the whole development phase of rodents has been well delineated. However, whether BPA exposure on the different development phases exerts similar effects on the prefrontal cortex (PFC) dependent visual memory is still elusive. Here, we chose two exposure windows, the whole gestation and lactation phases (E0∼P21) and the whole juvenile and adolescent phases (P22∼P60), for exposing rats to BPA. The visual memory of those rats was accessed by object recognition testing in the open field after BPA exposure and a constant recovery interval. The results revealed a substantial decline of visual memory under both exposure conditions, accompanied by an increase in anxiety-like behavior in BPA-exposed rats. Notably, after a 20-day recovery period, those behavioral changes induced by BPA exposure during P22∼60, not E0∼P21, were reversed compared to the control rats. According to morphological analysis of those rats after recovery, we found that the spine density of pyramidal neurons in the PFC were significant decreased in rats with BPA exposure during E0∼P21 and there was no difference between rats with or without BPA exposure during P22∼P60. Additionally, a similar change trend in excitatory receptors expression was observed under both exposure conditions. After an additional 20 days of recovery, the behavioral changes in rats with perinatal BPA exposure reverted to the normal status. Our present findings illuminate the dynamic effects of BPA on PFC-dependent functions across two crucial early developmental stages of life.
Collapse
Affiliation(s)
- Wentai Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Linke Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Weifeng Liang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Huan Wang
- School of Life Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Fan Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China.
| |
Collapse
|
41
|
Wang C, He C, Xu S, Gao Y, Wang K, Liang M, Hu K. Bisphenol A triggers apoptosis in mouse pre-antral follicle granulosa cells via oxidative stress. J Ovarian Res 2024; 17:20. [PMID: 38229135 PMCID: PMC10790560 DOI: 10.1186/s13048-023-01322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA), an endocrine disrupting chemical with weak estrogenic and anti-androgenic activity, is widely present in various environmental media and organisms. It has certain reproductive toxicity and can cause a variety of female reproductive system diseases. Although BPA-stimulated apoptosis of granulosa cells has been widely elaborated, the effect of BPA on mouse pre-antral follicle granulosa cells (mpGCs) has not been well elucidated. RESULTS In this study, the results of live-dead cell staining showed that high concentrations of BPA severely impaired mpGCs growth viability and affected the cell cycle transition of mpGCs. We confirmed that BPA promotes the production of reactive oxygen species (ROS) and facilitates oxidative stress in mpGCs. In addition, immunofluorescence, transmission electron microscopy, and flow cytometry experiments demonstrated that BPA treatment for mpGCs resulted in apoptotic features, such as rounding, cytoplasmic crinkling, and mitochondrial damage. This was accompanied by a large production of ROS and apoptosis-inducing factor (AIF) translocation from the mitochondria to the nucleus. RNA-seq data showed that several apoptosis-related pathways were enriched in the high concentration BPA-treated group compared with the normal group, such as the p53 pathway, MAPK pathway, etc. CONCLUSIONS: These results suggest that cells undergo oxidative stress effects and apoptosis after BPA treatment for mpGCs, which affects normal follicle development. The potential mechanism of BPA-induced female reproductive toxicity was elucidated, while providing a research basis for the prevention and treatment of female reproductive diseases.
Collapse
Affiliation(s)
- Chen Wang
- School of Life Science, Bengbu Medical University, Bengbu, 233030, China
| | - Chaofan He
- School of Life Science, Bengbu Medical University, Bengbu, 233030, China
| | - Shumin Xu
- School of Life Science, Bengbu Medical University, Bengbu, 233030, China
| | - Yuanyuan Gao
- School of Life Science, Bengbu Medical University, Bengbu, 233030, China
| | - Kaixian Wang
- School of Life Science, Bengbu Medical University, Bengbu, 233030, China
| | - Meng Liang
- School of Life Science, Bengbu Medical University, Bengbu, 233030, China.
| | - Ke Hu
- School of Life Science, Bengbu Medical University, Bengbu, 233030, China.
| |
Collapse
|
42
|
Sun W, Xu T, Lin H, Yin Y, Xu S. BPA and low-Se exacerbate apoptosis and autophagy in the chicken bursa of Fabricius by regulating the ROS/AKT/FOXO1 pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168424. [PMID: 37944606 DOI: 10.1016/j.scitotenv.2023.168424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental pollutant that can have harmful effects on human and animal immune systems by inducing oxidative stress. Selenium (Se) deficiency damages immune organ tissues and exhibits synergistic effects on the toxicity of environmental pollutants. However, oxidative stress, cell apoptosis, and autophagy caused by the combination of BPA and low-Se, have not been studied in the bursa of Fabricius of the immune organ of poultry. Therefore, in this study, BPA and/or low-Se broiler models and chicken lymphoma cells (MDCC-MSB-1 cells) models were established to investigate the effects of BPA and/or low-Se on the bursa of Fabricius of poultry. The data showed that BPA and/or low-Se disrupted the normal structure of the bursa of Fabricius, BPA (60 μM) significantly reduced the activity of MDCC-MSB-1 cells and disrupted normal morphology (IC50 = 192.5 ± 1.026 μM). Compared with the Control group, apoptosis and autophagy were increased in the BPA or low-Se groups, and the generation of reactive oxygen species (ROS) was increased. This inhibited the AKT/FOXO1 pathway, leading to mitochondrial fusion/division imbalance (Mfn1, Mfn2, OPA1 were increased, DRP1 was decreased) and dysfunction (CI-NDUFB8, CII-SDHB, CIII-UQCRC2, CIV-MTCO1, CV-ATP5A1, ATP). Furthermore, combined exposure of BPA and low-Se aggravated the above-mentioned changes. Treatment with N-acetylcysteine (NAC) reduced ROS levels and activated the AKT/FOXO1 pathway to further alleviate BPA and low-Se-induced apoptosis and autophagy. Apoptosis induced by low-Se + BPA was exacerbated after 3-Methyladenine (3-MA, autophagy inhibitor) treatment. Together, these results indicated that BPA and low-Se aggravated apoptosis and autophagy of the bursa of Fabricius in chickens by regulating the ROS/AKT/FOXO1 pathway.
Collapse
Affiliation(s)
- Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yilin Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
43
|
Shi J, Hu KL, Li XX, Ge YM, Yu XJ, Zhao J. Bisphenol a downregulates GLUT4 expression by activating aryl hydrocarbon receptor to exacerbate polycystic ovary syndrome. Cell Commun Signal 2024; 22:28. [PMID: 38200540 PMCID: PMC10782693 DOI: 10.1186/s12964-023-01410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA) levels are high in women with polycystic ovary syndrome (PCOS). The mechanism by which BPA induces abnormal glucose metabolism in PCOS patients is largely unknown. METHODS Serum and urine samples were collected from women with and without PCOS (control) at the reproductive medicine center with informed consent. Non-PCOS patients who received in vitro fertilization were recruited for collection of ovarian follicular fluid and granular cells. Wild-type C57BL/6 and AhR -/- mice were used to verify the effects of BPA on PCOS. Real-time PCR, western blotting, and ELISA were conducted to analyze the function of BPA. Chip-qPCR verified the role of AhR in GLUT4 transcription. Flow cytometry was performed to determine glucose uptake. RESULTS A positive correlation was observed between BPA concentration and serum BPA levels in PCOS patients. BPA aggravated the changes in PCOS with abnormal glucose metabolism, impaired fertility, and increased body fat. Mechanistically, we showed that BPA activated AhR and led to decreased glucose transport via GLUT4 downregulation in ovarian granular cells. Therefore, the use of inhibitors or knockout of AhR could effectively rescue BPA-induced metabolic disorders in PCOS mice. CONCLUSIONS Our results revealed that BPA suppressed GLUT4 expression and induced abnormal glucose metabolism by activating AhR, causing insulin resistance, and is thus a potential contributor to the development of PCOS. Therefore, AhR could be a potential new therapeutic target for PCOS. Video Abstract.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Kai-Lun Hu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiao-Xue Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
| | - Yi-Meng Ge
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
| | - Xiao-Jun Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jie Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
44
|
Costa HE, Cairrao E. Effect of bisphenol A on the neurological system: a review update. Arch Toxicol 2024; 98:1-73. [PMID: 37855918 PMCID: PMC10761478 DOI: 10.1007/s00204-023-03614-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) and one of the most produced synthetic compounds worldwide. BPA can be found in epoxy resins and polycarbonate plastics, which are frequently used in food storage and baby bottles. However, BPA can bind mainly to estrogen receptors, interfering with various neurologic functions, its use is a topic of significant concern. Nonetheless, the neurotoxicity of BPA has not been fully understood despite numerous investigations on its disruptive effects. Therefore, this review aims to highlight the most recent studies on the implications of BPA on the neurologic system. Our findings suggest that BPA exposure impairs various structural and molecular brain changes, promoting oxidative stress, changing expression levels of several crucial genes and proteins, destructive effects on neurotransmitters, excitotoxicity and neuroinflammation, damaged blood-brain barrier function, neuronal damage, apoptosis effects, disruption of intracellular Ca2+ homeostasis, increase in reactive oxygen species, promoted apoptosis and intracellular lactate dehydrogenase release, a decrease of axon length, microglial DNA damage, astrogliosis, and significantly reduced myelination. Moreover, BPA exposure increases the risk of developing neurologic diseases, including neurovascular (e.g. stroke) and neurodegenerative (e.g. Alzheimer's and Parkinson's) diseases. Furthermore, epidemiological studies showed that the adverse effects of BPA on neurodevelopment in children contributed to the emergence of serious neurological diseases like attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), depression, emotional problems, anxiety, and cognitive disorders. In summary, BPA exposure compromises human health, promoting the development and progression of neurologic disorders. More research is required to fully understand how BPA-induced neurotoxicity affects human health.
Collapse
Affiliation(s)
- Henrique Eloi Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
45
|
Xia M, Zheng J, Chen S, Tang Y, Wang S, Ji Z, Hao T, Li H, Li L, Ge RS, Liu Y. Bisphenol a alternatives suppress human and rat aromatase activity: QSAR structure-activity relationship and in silico docking analysis. Food Chem Toxicol 2024; 183:114257. [PMID: 38040240 DOI: 10.1016/j.fct.2023.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
The use of alternative substances to replace bisphenol A (BPA) has been encouraged. The objective of this study was to evaluate the effects of BPA and 9 BPA alternatives on human and rat aromatase (CYP19A1) in human and rat placental microsomes. The results revealed that bisphenol A, AP, B, C, E, F, FL, S, and Z, and 4,4'-thiodiphenol (TDP) inhibited human CYP19A1 and bisphenol A, AP, B, C, FL, Z, and TDP inhibited rat CYP19A1. The IC50 values of human CYP19A1 ranged from 3.3 to 172.63 μM and those of rat CYP19A1 ranged from 2.20 to over 100 μM. BPA alternatives were mixed/competitive inhibitors and inhibited estradiol production in BeWo placental cells. Molecular docking analysis showed that BPA alternatives bind to the domain between heme and steroid and form a hydrogen bond with catalytic residue Met374. Pharmacophore analysis showed that there were one hydrogen bond donor, one hydrophobic region, and one ring aromatic hydrophobic region. Bivariate correlation analysis showed that molecular weight, alkyl atom weight, and LogP of BPA alternatives were inversely correlated with their IC50 values. In conclusion, BPA alternatives can inhibit human and rat CYP19A1 and the lipophilicity and the substituted alkyl size determines their inhibitory strength.
Collapse
Affiliation(s)
- Miaomiao Xia
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jingyi Zheng
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Sailin Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yunbing Tang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zhongyao Ji
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ting Hao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Huitao Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Linxi Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, and Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
| | - Ren-Shan Ge
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, and Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
| | - Yi Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
46
|
Suresh S, Vellapandian C. Restoring Impaired Neurogenesis and Alleviating Oxidative Stress by Cyanidin against Bisphenol A-induced Neurotoxicity: In Vivo and In Vitro Evidence. Curr Drug Discov Technol 2024; 21:e250124226256. [PMID: 38279724 DOI: 10.2174/0115701638280481231228064532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Bisphenol A (BPA) is a known neurotoxic compound with potentially harmful effects on the nervous system. Cyanidin (CYN) has shown promise as a neuroprotective agent. OBJECTIVE The current study aims to determine the efficacy of CYN against BPA-induced neuropathology. METHODS In vitro experiments utilized PC12 cells were pre-treated with gradient doses of CYN and further stimulated with 10ng/ml of BPA. DPPH radical scavenging activity, catalase activity, total ROS activity, and nitric oxide radical scavenging activity were done. In vivo assessments employed doublecortin immunohistochemistry of the brain in BPA-exposed Sprague-Dawley rats. Further, In silico molecular docking of CYN with all proteins involved in canonical Wnt signaling was performed using the Autodock v4.2 tool and BIOVIA Discovery Studio Visualizer. RESULTS IC50 values of CYN and ascorbic acid were determined using dose-response curves, and it was found to be 24.68 ± 0.563 μg/ml and 20.69 ± 1.591μg/ml, respectively. BPA-stimulated cells pre-treated with CYN showed comparable catalase activity with cells pre-treated with ascorbic acid (p = 0.0287). The reactive species production by CYN-treated cells was significantly decreased compared to BPA-stimulated cells (p <0.0001). Moreover, CYN significantly inhibited nitric oxide production compared to BPA stimulated and the control cells (p < 0.0001). In vivo CYN positively affected immature neuron quantity, correlating with dosage. During molecular docking analysis, CYN exhibited a binding affinity > -7 Kcal/mol with all the key proteins associated with the Wnt/β- catenin signaling cascade. CONCLUSION Conclusively, our finding suggests that CYN exhibited promise in counteracting BPAinduced oxidative stress, improving compromised neurogenesis in hippocampal and cortical regions, and displaying notable interactions with Wnt signaling proteins. Thereby, CYN could render its neuroprotective potential against BPA-induced neuropathology.
Collapse
Affiliation(s)
- Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603 203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603 203, Tamil Nadu, India
| |
Collapse
|
47
|
Santoro A, Marino M, Vandenberg LN, Szychlinska MA, Lamparelli EP, Scalia F, Della Rocca N, D’Auria R, Pastorino GMG, Della Porta G, Operto FF, Viggiano A, Cappello F, Meccariello R. PLASTAMINATION: Outcomes on the Central Nervous System and Reproduction. Curr Neuropharmacol 2024; 22:1870-1898. [PMID: 38549522 PMCID: PMC11284724 DOI: 10.2174/1570159x22666240216085947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Environmental exposures to non-biodegradable and biodegradable plastics are unavoidable. Microplastics (MPs) and nanoplastics (NPs) from the manufacturing of plastics (primary sources) and the degradation of plastic waste (secondary sources) can enter the food chain directly or indirectly and, passing biological barriers, could target both the brain and the gonads. Hence, the worldwide diffusion of environmental plastic contamination (PLASTAMINATION) in daily life may represent a possible and potentially serious risk to human health. OBJECTIVE This review provides an overview of the effects of non-biodegradable and the more recently introduced biodegradable MPs and NPs on the brain and brain-dependent reproductive functions, summarizing the molecular mechanisms and outcomes on nervous and reproductive organs. Data from in vitro, ex vivo, non-mammalian and mammalian animal models and epidemiological studies have been reviewed and discussed. RESULTS MPs and NPs from non-biodegradable plastics affect organs, tissues and cells from sensitive systems such as the brain and reproductive organs. Both MPs and NPs induce oxidative stress, chronic inflammation, energy metabolism disorders, mitochondrial dysfunction and cytotoxicity, which in turn are responsible for neuroinflammation, dysregulation of synaptic functions, metabolic dysbiosis, poor gamete quality, and neuronal and reproductive toxicity. In spite of this mechanistic knowledge gained from studies of non-biodegradable plastics, relatively little is known about the adverse effects or molecular mechanisms of MPs and NPs from biodegradable plastics. CONCLUSION The neurological and reproductive health risks of MPs/NPs exposure warrant serious consideration, and further studies on biodegradable plastics are recommended.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Marianna Marino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Marta Anna Szychlinska
- Faculty of Medicine and Surgery, Kore University of Enna, Cittadella Universitaria 94100 Enna (EN), Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Federica Scalia
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Natalia Della Rocca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Raffaella D’Auria
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Grazia Maria Giovanna Pastorino
- Child and Adolescence Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of 84100 Salerno, Salerno, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesca Felicia Operto
- Department of Science of Health School of Medicine, University Magna Graecia 88100 Catanzaro, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, 90127, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, 80133 Naples, Italy
| |
Collapse
|
48
|
Peng L, Chen S, Lin H, Wan C, Li X, Xu S, Li S. Bisphenol A exposure exacerbates tracheal inflammatory injury in selenium-deficient chickens by regulating the miR-155/TRAF3/ROS pathway. Int J Biol Macromol 2023; 253:127501. [PMID: 37866585 DOI: 10.1016/j.ijbiomac.2023.127501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor. Excessive BPA intake can damage the structure and function of the respiratory tract. Dietary selenium (Se) deficiency may also cause immune tissue damage. To investigate the potential mechanism of BPA on tracheal damage in selenium-deficient chickens and the role of microRNAs (miRNAs) in this process, we established in vitro and in vivo Se deficiency and BPA exposure models and screened out miR-155 for follow-up experiments. We further predicted and confirmed the targeting relationship between miR-155 and TRAF3 using TargetScan and dual luciferase assays and found that miR-155 was highly expressed and caused inflammatory damage. Further studies showed that BPA exposure increased airway oxidative stress, activated the NF-κB pathway, and caused inflammation and immune damage in selenium-deficient chickens, but down-regulating miR-155 and NAC treatment could reverse this phenomenon. This suggested that these pathways are regulated by the miR-155/TRAF3/ROS axis. In conclusion, BPA exposure aggravates airway inflammation in selenium-deficient chickens by regulating miR-155/TRAF3/ROS. This study revealed the mechanism of BPA exposure combined with Se deficiency in tracheal inflammatory injury in chickens and enriched the theoretical basis of BPA injury in poultry.
Collapse
Affiliation(s)
- Lin Peng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shasha Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chunyan Wan
- National Selenium-rich Product Quality Supervision and Inspection Center, Enshi 445000, PR China
| | - Xiang Li
- National Selenium-rich Product Quality Supervision and Inspection Center, Enshi 445000, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
49
|
Patel RH, Truong VB, Sabry R, Acosta JE, McCahill K, Favetta LA. SMAD signaling pathway is disrupted by BPA via the AMH receptor in bovine granulosa cells†. Biol Reprod 2023; 109:994-1008. [PMID: 37724935 DOI: 10.1093/biolre/ioad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Significant events that determine oocyte competence occur during follicular growth and oocyte maturation. The anti-Mullerian hormone, a positive predictor of fertility, has been shown to be affected by exposure to endocrine disrupting compounds, such as bisphenol A and S. However, the interaction between bisphenols and SMAD proteins, mediators of the anti-Mullerian hormone pathway, has not yet been elucidated. AMH receptor (AMHRII) and downstream SMAD expression was investigated in bovine granulosa cells treated with bisphenol A, bisphenol S, and then competitively with the anti-Mullerian hormone. Here, we show that 24-h bisphenol A exposure in granulosa cells significantly increased SMAD1, SMAD4, and SMAD5 mRNA expression. No significant changes were observed in AMHRII or SMADs protein expression after 24-h treatment. Following 12-h treatments with bisphenol A (alone or with the anti-Mullerian hormone), a significant increase in SMAD1 and SMAD4 mRNA expression was observed, while a significant decrease in SMAD1 and phosphorylated SMAD1 was detected at the protein level. To establish a functional link between bisphenols and the anti-Mullerian hormone signaling pathway, antisense oligonucleotides were utilized to suppress AMHRII expression with or without bisphenol exposure. Initially, transfection conditions were optimized and validated with a 70% knockdown achieved. Our findings show that bisphenol S exerts its effects independently of the anti-Mullerian hormone receptor, while bisphenol A may act directly through the anti-Mullerian hormone signaling pathway providing a potential mechanism by which bisphenols may exert their actions to disrupt follicular development and decrease oocyte competence.
Collapse
Affiliation(s)
- Rushi H Patel
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Vivien B Truong
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Reem Sabry
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Julianna E Acosta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Kiera McCahill
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Laura A Favetta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
50
|
Shen Y, Li X, Wang H, Wang Y, Tao L, Wang P, Zhang H. Bisphenol A induced neuronal apoptosis and enhanced autophagy in vitro through Nrf2/HO-1 and Akt/mTOR pathways. Toxicology 2023; 500:153678. [PMID: 38006930 DOI: 10.1016/j.tox.2023.153678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Bisphenol A (BPA) was traditionally used in epoxy resins and polycarbonate plastics, but it was found to be harmful to human health due to its endocrine-disrupting effects. It can affect various biological functions of human beings and interfere with brain development. However, the neurotoxic mechanisms of BPA on brain development and associated neurodegeneration remain poorly understood. Here, we reported that BPA (100, 250, 500 μM) inhibited cell viability of neural cells PC12, SH-SY5Y and caused dose-dependent cell death. In addition, BPA exposure increased intracellular reactive oxygen species (ROS) and mitochondrial ROS (mtROS) levels, decreased mitochondrial membrane potential, reduced the expression of cytochrome c oxidase IV (COX4), downregulated Bcl-2, and initiated apoptosis. Moreover, BPA treatment resulted in the accumulation of intracellular acidic vacuoles and increased the autophagy marker LC3 II to LC3 I ratio. Furthermore, BPA exposure inhibited Nrf2/ HO-1 and AKT/mTOR pathways and mediated cellular oxidative stress, apoptosis, and excessive autophagy, leading to neuronal degeneration. The interactions between oxidative stress, autophagy, and apoptosis during BPA-induced neurotoxicity remain unclear and require further in vivo confirmation.
Collapse
Affiliation(s)
- Yue Shen
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xinying Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hongyan Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yicheng Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Liqing Tao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China; School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Pingping Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China; School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|