1
|
Minty M, Germain A, Sun J, Kaglan G, Servant F, Lelouvier B, Misselis E, Neagoe RM, Rossella M, Cardellini M, Burcelin R, Federici M, Fernandez-Real JM, Blasco-Baque V. Identifying the location-dependent adipose tissue bacterial DNA signatures in obese patients that predict body weight loss. Gut Microbes 2025; 17:2439105. [PMID: 39714075 DOI: 10.1080/19490976.2024.2439105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
Recent sets of evidence have described profiles of 16S rDNA sequences in host tissues, notably in fat pads that are significantly overrepresented and can serve as signatures of metabolic disease. However, these recent and original observations need to be further detailed and functionally defined. Here, using state-of-the-art targeted DNA sequencing and discriminant predictive approaches, we describe, from the longitudinal FLORINASH cohort of patients who underwent bariatric surgery, visceral, and subcutaneous fat pad-specific bacterial 16SrRNA signatures. The corresponding Porphyromonadaceae, Campylobacteraceae, Prevotellaceae, Actimomycetaceae, Veillonellaceae, Anaerivoracaceae, Fusobacteriaceae, and the Clostridium family XI 16SrRNA DNA segment profiles are signatures of the subcutaneous adipose depot while Pseudomonadaceae and Micrococcacecae, 16SrRNA DNA sequence profiles characterize the visceral adipose depot. In addition, we have further identified that a specific pre-bariatric surgery adipose tissue bacterial DNA signature predicts the efficacy of body weight loss in obese patients 5-10 years after the surgery. 16SrRNA signatures discriminate (ROC ~ 1) the patients who did not maintain bodyweight loss and those who did. Second, from the 16SrRNA sequences we infer potential pathways suggestive of catabolic biochemical activities that could be signatures of subcutaneous adipose depots that predict body weight loss.
Collapse
Affiliation(s)
- Matthieu Minty
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Alberic Germain
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Jiuwen Sun
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Gracia Kaglan
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | | | | | - Emiri Misselis
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Radu Mircea Neagoe
- Science and Technology "George Emil Palade" Tîrgu Mures, Second Department of Surgery, Emergency Mureş County Hospital, University of Medicine Pharmacy, Târgu Mureș, Romania
| | - Menghini Rossella
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Marina Cardellini
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Massimo Federici
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - José Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, University Hospital of Girona 'Dr Josep Trueta'
- Institut d'Investigacio Biomedica de Girona IdibGi, CIBER Fisiopatologia de la Obesidad y Nutricion, Girona, Spain
| | - Vincent Blasco-Baque
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| |
Collapse
|
2
|
Hornero-Ramirez H, Morisette A, Marcotte B, Penhoat A, Lecomte B, Panthu B, Lessard Lord J, Thirion F, Van-Den-Berghe L, Blond E, Simon C, Caussy C, Feugier N, Doré J, Sanoner P, Meynier A, Desjardins Y, Pilon G, Marette A, Cani PD, Laville M, Vinoy S, Michalski MC, Nazare JA. Multifunctional dietary approach reduces intestinal inflammation in relation with changes in gut microbiota composition in subjects at cardiometabolic risk: the SINFONI project. Gut Microbes 2025; 17:2438823. [PMID: 39710576 DOI: 10.1080/19490976.2024.2438823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
The development of cardiometabolic (CM) diseases is associated with chronic low-grade inflammation, partly linked to alterations of the gut microbiota (GM) and reduced intestinal integrity. The SINFONI project investigates a multifunctional (MF) nutritional strategy's impact combining different bioactive compounds on inflammation, GM modulation and CM profile. In this randomized crossover-controlled study, 30 subjects at CM-risk consumed MF cereal-products, enriched with polyphenols, fibers, slowly-digestible starch, omega-3 fatty acids or Control cereal-products (without bioactive compounds) for 2 months. Metabolic endotoxemia (lipopolysaccharide (LPS), lipopolysaccharide-binding protein over soluble cluster of differentiation-14 (LBP/sCD14), systemic inflammation and cardiovascular risk markers, intestinal inflammation, CM profile and response to a one-week fructose supplementation, were assessed at fasting and post mixed-meal. GM composition and metabolomic analysis were conducted. Mixed linear models were employed, integrating time (pre/post), treatment (MF/control), and sequence/period. Compared to control, MF intervention reduced intestinal inflammation (fecal calprotectin, p = 0.007) and endotoxemia (fasting LPS, p < 0.05), without alteration of systemic inflammation. MF decreased serum branched-chain amino acids compared to control (p < 0.05) and increased B.ovatus, B.uniformis, A.butyriciproducens and unclassified Christensenellaceae.CAG-74 (p < 0.05). CM markers were unchanged. A 2-month dietary intervention combining multiple bioactive compounds improved intestinal inflammation and induced GM modulation. Such strategy appears as an effective strategy to target low-grade inflammation through multi-target approach.
Collapse
Affiliation(s)
- Hugo Hornero-Ramirez
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Arianne Morisette
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Bruno Marcotte
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Armelle Penhoat
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Béryle Lecomte
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Baptiste Panthu
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | | | | - Laurie Van-Den-Berghe
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Emilie Blond
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Biochemistry Department, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Chantal Simon
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Cyrielle Caussy
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Endocrinology, Diabetes and Nutrition Department, Lyon South Hospital, Civil Hospices of Lyon, Pierre-Bénite, France
| | - Nathalie Feugier
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Joël Doré
- INRAE, MGP, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Sanoner
- iSymrise-Diana Food SAS, R&D, Naturals Food & Beverage, Rennes, France
| | - Alexandra Meynier
- Nutrition Research, Paris-Saclay Tech Center, Mondelez International R&D, Saclay, France
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Québec, Canada
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Québec, Canada
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, (LDRI) Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Louvain Drug Research Institute; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| | - Martine Laville
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Sophie Vinoy
- Nutrition Research, Paris-Saclay Tech Center, Mondelez International R&D, Saclay, France
| | - Marie-Caroline Michalski
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Julie-Anne Nazare
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| |
Collapse
|
3
|
Wu S, Tong C, Liu J. Obesogenic effects of six classes of emerging contaminants. J Environ Sci (China) 2025; 151:252-272. [PMID: 39481937 DOI: 10.1016/j.jes.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 11/03/2024]
Abstract
There is growing concern about the concept that exposure to environmental chemicals may be contributing to the obesity epidemic. However, there is no consensus on the obesogenic effects of emerging contaminants from a toxicological and environmental perspective. The potential human exposure and experimental evidence for obesogenic effects of emerging contaminants need to be systematically discussed. The main objective of this review is to provide recommendations for further subsequent policy development following a critical analysis of the literature for humans and experimental animals exposed to emerging contaminants. This article reviews human exposure to emerging contaminants (with a focus on antimicrobials, preservatives, water and oil repellents, flame retardants, antibiotics and bisphenols) and the impact of emerging contaminants on obesity. These emerging contaminants have been widely detected in human biological samples. Epidemiological studies provide evidence linking exposure to emerging contaminants to the risks of obesity in humans. Studies based on animal models and adipose cells show the obesogenic effects of emerging contaminants and identify modes of action by which contaminants may induce changes in body fat accumulation and lipid metabolic homeostasis. Some knowledge gaps in this area and future directions for further investigation are discussed.
Collapse
Affiliation(s)
- Siying Wu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaoyu Tong
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Zhang L, Yin Y, Jin S. Gut microbial metabolites: The bridge connecting diet and atherosclerosis, and next-generation targets for dietary interventions. Microbiol Res 2025; 292:128037. [PMID: 39752807 DOI: 10.1016/j.micres.2024.128037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Mounting evidence indicates that gut microbial metabolites are central hubs linking the gut microbiota to atherosclerosis (AS). Gut microbiota enriched with pathobiont bacteria responsible for producing metabolites like trimethylamine N-oxide and phenylacetylglutamine are related to an increased risk of cardiovascular events. Furthermore, gut microbiota enriched with bacteria responsible for producing short-chain fatty acids, indole, and its derivatives, such as indole-3-propionic acid, have demonstrated AS-protective effects. This study described AS-related gut microbial composition and how microbial metabolites affect AS. Summary findings revealed gut microbiota and their metabolites-targeted diets could benefit AS treatment. In conclusion, dietary interventions centered on the gut microbiota represent a promising strategy for AS treatment, and understanding diet-microbiota interactions could potentially be devoted to developing novel anti-AS therapies.
Collapse
Affiliation(s)
- Liyin Zhang
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Yao Yin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China.
| |
Collapse
|
5
|
Chu YY, Yang YCSH, Hsu SY, Fan HY, Hwang LD, Nacis JS, Chen YC. Gut microbiome and body composition with sorbitol intake during early lifespan. Nutrition 2025; 130:112614. [PMID: 39571194 DOI: 10.1016/j.nut.2024.112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE The association of sorbitol intake with maintaining healthy body weight through the gut microbiome during early life was investigated. RESEARCH METHODS AND PROCEDURES Sorbitol intake, body mass index (BMI), and fecal samples were collected in the total of 369 pregnant women with their infants (aged 4 months to 5 years) from the Taipei Mother-Infant Nutrition Cohort and 1946 children and adolescents (aged 6-18 years) from the Taiwan Puberty Longitudinal Study. The BMI-z score in sorbitol users was compared to that in sorbitol nonusers using generalized linear mixed model. The beta diversity of microbiome was investigated in both cohorts. The association between the richness of microbes and body composition was analyzed. RESULTS The children and adolescents with high sorbitol intake had lower BMI-z score at 6 to 10 and 11 to 18 years of age (P < 0.01) compared with those without sorbitol intake. The beta diversity of the microbiome differed significantly between the sorbitol users and nonusers. Bifidobacterium was higher in the gut of infants and children whose mothers were sorbitol users than that of infants and children whose mothers were sorbitol nonusers during pregnancy. Several microbes were involved in the regulation of obesity, such as Staphylococcus, Faecalibacterium, and Oscillospiraceae_UCG-005 negatively associated with anthropometric measures. CONCLUSIONS Sorbitol intake was associated with lower child and adolescent BMI. Sorbitol consumption could shape the composition and richness of beneficial microbiota, contributing to the maintenance of ideal body weight and metabolic homeostasis in early life.
Collapse
Affiliation(s)
- Ying-Yueh Chu
- Department of Nutrition and Health Sciences, Chinese Culture University, Taipei, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Shih-Yuan Hsu
- Department of Family Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Yu Fan
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Liang-Dar Hwang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jacus S Nacis
- Department of Science and Technology-Food and Nutrition Research Institute, Taguig City, Philippines
| | - Yang Ching Chen
- Department of Family Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
6
|
Wang X, Tian R, Liang C, Jia Y, Zhao L, Xie Q, Huang F, Yuan H. Biomimetic nanoplatform with microbiome modulation and antioxidant functions ameliorating insulin resistance and pancreatic β-cell dysfunction for T2DM management. Biomaterials 2025; 313:122804. [PMID: 39236631 DOI: 10.1016/j.biomaterials.2024.122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Insulin resistance and pancreatic β-cell dysfunction are the main pathogenesis of type 2 diabetes mellitus (T2DM). However, insulin therapy and diabetes medications do not effectively solve the two problems simultaneously. In this study, a biomimetic oral hydrogen nanogenerator that leverages the benefits of edible plant-derived exosomes and hydrogen therapy was constructed to overcome this dilemma by modulating gut microbiota and ameliorating oxidative stress and inflammatory responses. Hollow mesoporous silica (HMS) nanoparticles encapsulating ammonia borane (A) were used to overcome the inefficiency of H2 delivery in traditional hydrogen therapy, and exosomes originating from ginger (GE) were employed to enhance biocompatibility and regulate intestinal flora. Our study showed that HMS/A@GE not only considerably ameliorated insulin resistance and liver steatosis, but inhibited the dedifferentiation of islet β-cell and enhanced pancreatic β-cell proportion in T2DM model mice. In addition to its antioxidant and anti-inflammatory effects, HMS/A@GE augmented the abundance of Lactobacilli spp. and tryptophan metabolites, such as indole and indole acetic acid, which further activated the AhR/IL-22 pathway to improve intestinal-barrier function and metabolic impairments. This study offers a potentially viable strategy for addressing the current limitations of diabetes treatment by integrating gut-microbiota remodelling with antioxidant therapies.
Collapse
Affiliation(s)
- Xiudan Wang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Rui Tian
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Chenghong Liang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Yifan Jia
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Lingyun Zhao
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Qinyuan Xie
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Fenglian Huang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Zhengzhou University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China; Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, People's Hospital of Henan University, Weiwu Road 7, Zhengzhou, 450003, Henan, PR China.
| |
Collapse
|
7
|
Yang K, Wu YT, He Y, Dai JX, Luo YL, Xie JH, Ding WJ. GLP-1 and IL-6 regulates obesity in the gut and brain. Life Sci 2025; 362:123339. [PMID: 39730038 DOI: 10.1016/j.lfs.2024.123339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/06/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Obesity is a chronic metabolic disease characterized by excessive nutrient intake leading to increased subcutaneous or visceral fat, resulting in pathological and physiological changes. The incidence rate of obesity, an important form of metabolic syndrome, is increasing worldwide. Excess appetite is a key pathogenesis of obesity, and the inflammatory response induced by obesity has received increasing attention. This review focuses on the role of appetite-regulating factor (Glucogan-like peptide 1) and inflammatory factor (Interleukin-6) in the gut and brain in individuals with obesity and draws insights from the current literature.
Collapse
Affiliation(s)
- Kun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Ting Wu
- Chengdu University of Traditional Chinese Medicine, 1166 Luitai Avenue, Chengdu, Sichuan 611137, China
| | - Yan He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin-Xiu Dai
- Chengdu University of Traditional Chinese Medicine, 1166 Luitai Avenue, Chengdu, Sichuan 611137, China
| | - Yu-Lu Luo
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing-Hui Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei-Jun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
Castells-Nobau A, Moreno-Navarrete JM, de la Vega-Correa L, Puig I, Federici M, Sun J, Burcelin R, Guzylack-Piriou L, Gourdy P, Cazals L, Arnoriaga-Rodríguez M, Frühbeck G, Seoane LM, López-Miranda J, Tinahones FJ, Dieguez C, Dumas ME, Pérez-Brocal V, Moya A, Perakakis N, Mingrone G, Bornstein S, Rodriguez Hermosa JI, Castro E, Fernández-Real JM, Mayneris-Perxachs J. Multiomics of the intestine-liver-adipose axis in multiple studies unveils a consistent link of the gut microbiota and the antiviral response with systemic glucose metabolism. Gut 2025; 74:229-245. [PMID: 39358003 DOI: 10.1136/gutjnl-2024-332602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The microbiota is emerging as a key factor in the predisposition to insulin resistance and obesity. OBJECTIVE To understand the interplay among gut microbiota and insulin sensitivity in multiple tissues. DESIGN Integrative multiomics and multitissue approach across six studies, combining euglycaemic clamp measurements (used in four of the six studies) with other measurements of glucose metabolism and insulin resistance (glycated haemoglobin (HbA1c) and fasting glucose). RESULTS Several genera and species from the Proteobacteria phylum were consistently negatively associated with insulin sensitivity in four studies (ADIPOINST, n=15; IRONMET, n=121, FLORINASH, n=67 and FLOROMIDIA, n=24). Transcriptomic analysis of the jejunum, ileum and colon revealed T cell-related signatures positively linked to insulin sensitivity. Proteobacteria in the ileum and colon were positively associated with HbA1c but negatively with the number of T cells. Jejunal deoxycholic acid was negatively associated with insulin sensitivity. Transcriptomics of subcutaneous adipose tissue (ADIPOMIT, n=740) and visceral adipose tissue (VAT) (ADIPOINST, n=29) revealed T cell-related signatures linked to HbA1c and insulin sensitivity, respectively. VAT Proteobacteria were negatively associated with insulin sensitivity. Multiomics and multitissue integration in the ADIPOINST and FLORINASH studies linked faecal Proteobacteria with jejunal and liver deoxycholic acid, as well as jejunal, VAT and liver transcriptomic signatures involved in the actin cytoskeleton, insulin and T cell signalling. Fasting glucose was consistently linked to interferon-induced genes and antiviral responses in the intestine and VAT. Studies in Drosophila melanogaster validated these human insulin sensitivity-associated changes. CONCLUSION These data provide comprehensive insights into the microbiome-gut-adipose-liver axis and its impact on systemic insulin action, suggesting potential therapeutic targets.Cite Now.
Collapse
Affiliation(s)
- Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, Salt, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Maria Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Lisset de la Vega-Correa
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Puig
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, Italy
| | - Jiuwen Sun
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, Salt, Spain
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR), Toulouse, France
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, and Heart Failure', F-31432, Toulouse, France
| | - Remy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR), Toulouse, France
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, and Heart Failure', F-31432, Toulouse, France
| | - Laurence Guzylack-Piriou
- Team "Immunité et ALTernatives aux Antibiotiques (IALTA)", Laboratory of host to pathogens Interactions (IHAP), UMR INRAE 1225 / ENVT, Toulouse, France
| | - Pierre Gourdy
- Department of Diabetology, metabolic Diseases and Nutrition, CHU de Toulouse, Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, UMR1297 I2MC, INSERM, Toulouse 3 University, Toulouse, France
| | - Laurent Cazals
- Department of Diabetology, metabolic Diseases and Nutrition, CHU de Toulouse, Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, UMR1297 I2MC, INSERM, Toulouse 3 University, Toulouse, France
| | - María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Gema Frühbeck
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Luisa Maria Seoane
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Fisiopatología Endocrina Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - José López-Miranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Hospital Universitario Reina Sofía, Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Universidad de Córdoba, Córdoba, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Virgen de la Victoria Hospital, Department of Endocrinology, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Carlos Dieguez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Section of Genomic and Environmental Medicine, National Heart & Lung Institute, Imperial College London, London, UK
- European Genomic Institute for Diabetes, CNRS UMR 8199, INSERM UMR 1283, Institut Pasteur de Lille, Lille University Hospital; University of Lille, Lille, France
- McGill Genome Centre, Mc Gill University, Montréal, Quebec, Canada
| | - Vicente Pérez-Brocal
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Andrés Moya
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia, Spanish National Research Council (CSIC-UVEG), Valencia, Spain
| | - Nikolaos Perakakis
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, Dresden, Germany
| | - Geltrude Mingrone
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefan Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, Dresden, Germany
| | | | - Ernesto Castro
- General and Digestive Surgery Service, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Jose Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, Salt, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Fang H, Rodrigues e-Lacerda R, Barra NG, Kukje Zada D, Robin N, Mehra A, Schertzer JD. Postbiotic Impact on Host Metabolism and Immunity Provides Therapeutic Potential in Metabolic Disease. Endocr Rev 2025; 46:60-79. [PMID: 39235984 PMCID: PMC11720174 DOI: 10.1210/endrev/bnae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/18/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
The gut microbiota influences aspects of metabolic disease, including tissue inflammation, adiposity, blood glucose, insulin, and endocrine control of metabolism. Prebiotics or probiotics are often sought to combat metabolic disease. However, prebiotics lack specificity and can have deleterious bacterial community effects. Probiotics require live bacteria to find a colonization niche sufficient to influence host immunity or metabolism. Postbiotics encompass bacterial-derived components and molecules, which are well-positioned to alter host immunometabolism without relying on colonization efficiency or causing widespread effects on the existing microbiota. Here, we summarize the potential for beneficial and detrimental effects of specific postbiotics related to metabolic disease and the underlying mechanisms of action. Bacterial cell wall components, such as lipopolysaccharides, muropeptides, lipoteichoic acids and flagellin, have context-dependent effects on host metabolism by engaging specific immune responses. Specific types of postbiotics within broad classes of compounds, such as lipopolysaccharides and muropeptides, can have opposing effects on endocrine control of host metabolism, where certain postbiotics are insulin sensitizers and others promote insulin resistance. Bacterial metabolites, such as short-chain fatty acids, bile acids, lactate, glycerol, succinate, ethanolamine, and ethanol, can be substrates for host metabolism. Postbiotics can fuel host metabolic pathways directly or influence endocrine control of metabolism through immunomodulation or mimicking host-derived hormones. The interaction of postbiotics in the host-microbe relationship should be considered during metabolic inflammation and metabolic disease.
Collapse
Affiliation(s)
- Han Fang
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Rodrigo Rodrigues e-Lacerda
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Dana Kukje Zada
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Nazli Robin
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Alina Mehra
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| |
Collapse
|
10
|
Xu Q, Wang W, Li Y, Cui J, Zhu M, Liu Y, Liu Y. The oral-gut microbiota axis: a link in cardiometabolic diseases. NPJ Biofilms Microbiomes 2025; 11:11. [PMID: 39794340 PMCID: PMC11723975 DOI: 10.1038/s41522-025-00646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
The oral-gut microbiota axis plays a crucial role in cardiometabolic health. This review explores the interactions between these microbiomes through enteric, hematogenous, and immune pathways, resulting in disruptions in microbial balance and metabolic processes. These disruptions contribute to systemic inflammation, metabolic disorders, and endothelial dysfunction, which are closely associated with cardiometabolic diseases. Understanding these interactions provides insights for innovative therapeutic strategies to prevent and manage cardiometabolic diseases.
Collapse
Affiliation(s)
- Qian Xu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Wenting Wang
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Yiwen Li
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Jing Cui
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Yanfei Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
- The Second Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
- Key Laboratory of Disease and Syndrome Integration Prevention and Treatment of Vascular Aging, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China.
- Key Laboratory of Disease and Syndrome Integration Prevention and Treatment of Vascular Aging, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China.
| |
Collapse
|
11
|
Meiring S, Aydin Ö, van Baar ACG, van der Vossen EWJ, Rampanelli E, van Grieken NCT, Holleman F, Nieuwdorp M, Bergman JJGHM. From Endoscopic Inspection to Gene-Expression: A Thorough Assessment of the Duodenal Mucosa After Resurfacing-A Prospective Study. Dig Dis Sci 2025:10.1007/s10620-024-08710-4. [PMID: 39779586 DOI: 10.1007/s10620-024-08710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/22/2024] [Indexed: 01/11/2025]
Abstract
AIMS Duodenal Mucosal Resurfacing (DMR) is an endoscopic ablation technique aimed at improving glycemia in patients with type 2 diabetes mellitus (T2DM). Although the exact underlying mechanism is still unclear, it is postulated that the DMR-induced improvements are the result of changes in the duodenal mucosa. For this reason, we assessed macroscopic and microscopic changes in the duodenal mucosa induced by DMR + GLP-1RA. METHODS We included 16 patients with T2DM using basal insulin that received a combination treatment of a single DMR and GLP-1RA. Endoscopic evaluation was performed before the DMR procedure and 3 month after, and duodenal biopsies were obtained. Histological evaluation was performed and L and K cell density was calculated. In addition, gene-expression analysis and Western blotting was performed. RESULTS Endoscopic evaluation at 3 month showed duodenal mucosa with a normal appearance. In line, microscopic histological evaluation showed no signs of villous atrophy or inflammation and unchanged L and K cell density. Unbiased transcriptome profiling and western blotting revealed that PDZK1 expression was higher in responders at baseline and after DMR. GATA6 expression was significantly increased in responders after DMR compared to non-responders. CONCLUSION The absence of macroscopic and microscopic changes after 3 month suggest that improvements in glycemic parameters after DMR do not result from significant histological changes in duodenal mucosa. It is more likely that these improvements result from more subtle changes in enteroendocrine signaling. PDZK1 and GATA6 expression might play a role in DMR; this needs to be confirmed in pre-clinical studies.
Collapse
Affiliation(s)
- S Meiring
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Location AMC, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Ö Aydin
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Location AMC, Amsterdam, The Netherlands
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - A C G van Baar
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Location AMC, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| | - E W J van der Vossen
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centres, Location AMC, Amsterdam, The Netherlands
| | - E Rampanelli
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centres, Location AMC, Amsterdam, The Netherlands
| | - N C T van Grieken
- Department of Pathology, Amsterdam University Medical Centres, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - F Holleman
- Department of Internal Medicine, Amsterdam University Medical Centres, Location AMC, Amsterdam, The Netherlands
| | - M Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centres, Location AMC, Amsterdam, The Netherlands
| | - J J G H M Bergman
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Location AMC, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Lei S, Liu Y. Identifying the Involvement of Gut Microbiota in Retinal Vein Occlusion by Mendelian Randomization and Genetic Correlation Analysis. Transl Vis Sci Technol 2025; 14:5. [PMID: 39786739 PMCID: PMC11725986 DOI: 10.1167/tvst.14.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose Previous researches have suggested an important association between gut microbiota (GM) and vascular pathologies such as atherosclerosis. This study aimed to explore the association between 196 GM taxa and retinal vein occlusion (RVO). Methods This study used Mendelian randomization (MR), linkage disequilibrium score regression (LDSC), and polygenic overlap analysis. Genome-wide association study (GWAS) data associated with 196 GM taxa was obtained from the MiBioGen consortium, involving a large number of European-ancestry participants. GWAS data of RVO was obtained from the FinnGen consortium and another study that also involved European-ancestry participants. Inverse-variance weighted was used as the primary approach for MR estimation. Moreover, LDSC and polygenic overlap analyses were performed to evaluate the genetic correlation between GM taxa and RVO. Results The MR results identified the association of six GM taxa, including class Bacilli, order Lactobacillales, family Streptococcaceae, genus Clostridium innocuum group, genus Family XIII AD3011 group, and genus Subdoligranulum with the development of RVO. In addition, the polygenic overlap analysis supported the genetic association between GM and RVO. Conclusions Our findings confirmed the association between six GM taxa and the development of RVO, thereby highlighting the effects of GM on retinal vascular health. Translational Relevance The results may provide the rationale for developing GM-based strategies for preventing the onset of RVO.
Collapse
Affiliation(s)
- Shizhen Lei
- Department of Ophthalmology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Yani Liu
- Department of Otolaryngology & Head and Neck Surgery, Wuhan No.1 Hospital, Wuhan, Hubei, China
| |
Collapse
|
13
|
Machuca J, Wirkus J, Ead AS, Vahmani P, Matsukuma KE, Mackenzie GG, Oteiza PI. Dietary ω-3 Fatty Acids Mitigate Intestinal Barrier Integrity Alterations in Mice Fed a High-Fat Diet: Implications for Pancreatic Carcinogenesis. J Nutr 2025; 155:197-210. [PMID: 39510504 DOI: 10.1016/j.tjnut.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Although body fatness is a recognized risk factor for pancreatic ductal adenocarcinoma (PDAC), the underlying mechanisms of how fat composition affects pancreatic carcinogenesis are poorly understood. High-fat diets (HFDs) can disrupt intestinal barrier function, potentially accelerating carcinogenesis. Omega-3 (ω-3) polyunsaturated fatty acids (FAs) have anti-inflammatory properties and help preserve intestinal integrity. OBJECTIVE The objective of this study was to evaluate how ω-3 FAs affect the colonic barrier in the context of HFD-induced changes, in a mouse model of PDAC [p48-Cre; LSL-KrasG12D (KC)]. METHODS Male and female KC mice were randomly assigned into 1 of the following 4 groups: 1) a control diet containing ∼11% total calories from fat with an ω-6:ω-3 FA ratio of 10:1 (C), 2) the control diet with high concentrations of ω-3 FA with an ω-6:ω-3 FA ratio of 1:1 (Cω3), 3) an HFD containing 60% total calories from fat with an ω-6:ω-3 FA ratio of approximately 10:1 (HF), and 4) an HFD with high concentrations of ω-3 FA with an ω-6:ω-3 FA ratio of 1:1 (HFω3). RESULTS Consumption of an HFD for 8 wk caused: 1) disruption of tight junction structure and function; 2) decreased goblet cell number; 3) higher colonic Toll-like receptor 4 (TLR4) and NADPH oxidase 1 expression; 4) activation of TLR4-triggered pathways, that is, NF-κB, c-Jun N-terminal kinase; 5) elevated plasma lipopolysaccharide concentrations; and 6) higher pancreatic TLR4 expression, and 7) accelerated acinar-to-ductal metaplasia. All of these events were mitigated in mice fed the HFω3. CONCLUSIONS Our findings support the concept that, in the context of obesity, ω-3 FAs have protective effects during early-stage pancreatic carcinogenesis through the regulation of intestinal permeability and endotoxemia.
Collapse
Affiliation(s)
- Jazmin Machuca
- Department of Nutrition, University of California, Davis, CA, United States
| | - Joanna Wirkus
- Department of Nutrition, University of California, Davis, CA, United States
| | - Aya S Ead
- Department of Nutrition, University of California, Davis, CA, United States
| | - Payam Vahmani
- Department of Animal Science, University of California, Davis, CA, United States
| | - Karen E Matsukuma
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA, United States; University of California Davis Comprehensive Cancer Center, University of California, Sacramento, CA, United States
| | - Gerardo G Mackenzie
- Department of Nutrition, University of California, Davis, CA, United States; University of California Davis Comprehensive Cancer Center, University of California, Sacramento, CA, United States.
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, United States; Department of Environmental Toxicology, University of California, Davis, CA, United States.
| |
Collapse
|
14
|
Balemba OB, Gulbransen BD. A potential link between enteric glia and the pathophysiology of diet-induced obesity and related metabolic diseases. Acta Physiol (Oxf) 2025; 241:e14258. [PMID: 39641235 DOI: 10.1111/apha.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Onesmo B Balemba
- Department of Biological Sciences/WWAMI Medical Ed. Program, University of Idaho, Moscow, Idaho, USA
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
15
|
Granov R, Vedad S, Wang SH, Durham A, Shah D, Pasinetti GM. The Role of the Neural Exposome as a Novel Strategy to Identify and Mitigate Health Inequities in Alzheimer's Disease and Related Dementias. Mol Neurobiol 2025; 62:1205-1224. [PMID: 38967905 PMCID: PMC11711138 DOI: 10.1007/s12035-024-04339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
With the continuous increase of the elderly population, there is an urgency to understand and develop relevant treatments for Alzheimer's disease and related dementias (ADRD). In tandem with this, the prevalence of health inequities continues to rise as disadvantaged communities fail to be included in mainstream research. The neural exposome poses as a relevant mechanistic approach and tool for investigating ADRD onset, progression, and pathology as it accounts for several different factors: exogenous, endogenous, and behavioral. Consequently, through the neural exposome, health inequities can be addressed in ADRD research. In this paper, we address how the neural exposome relates to ADRD by contributing to the discourse through defining how the neural exposome can be developed as a tool in accordance with machine learning. Through this, machine learning can allow for developing a greater insight into the application of transferring and making sense of experimental mouse models exposed to health inequities and potentially relate it to humans. The overall goal moving beyond this paper is to define a multitude of potential factors that can increase the risk of ADRD onset and integrate them to create an interdisciplinary approach to the study of ADRD and subsequently translate the findings to clinical research.
Collapse
Affiliation(s)
- Ravid Granov
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Skyler Vedad
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Shu-Han Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Andrea Durham
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Divyash Shah
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA.
- Geriatrics Research, Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, 10468, USA.
| |
Collapse
|
16
|
Meier DT, de Paula Souza J, Donath MY. Targeting the NLRP3 inflammasome-IL-1β pathway in type 2 diabetes and obesity. Diabetologia 2025; 68:3-16. [PMID: 39496966 DOI: 10.1007/s00125-024-06306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 11/06/2024]
Abstract
Increased activity of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome-IL-1β pathway is observed in obesity and contributes to the development of type 2 diabetes and its complications. In this review, we describe the pathological activation of IL-1β by metabolic stress, ageing and the microbiome and present data on the role of IL-1β in metabolism. We explore the physiological role of the IL-1β pathway in insulin secretion and the relationship between circulating levels of IL-1β and the development of diabetes and associated diseases. We highlight the paradoxical nature of IL-1β as both a friend and a foe in glucose regulation and provide details on clinical translation, including the glucose-lowering effects of IL-1 antagonism and its impact on disease modification. We also discuss the potential role of IL-1β in obesity, Alzheimer's disease, fatigue, gonadal dysfunction and related disorders such as rheumatoid arthritis and gout. Finally, we address the safety of NLRP3 inhibition and IL-1 antagonists and the prospect of using this therapeutic approach for the treatment of type 2 diabetes and its comorbidities.
Collapse
Affiliation(s)
- Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Joyce de Paula Souza
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
17
|
Xia L, Li C, Zhao J, Sun Q, Mao X. Rebalancing immune homeostasis in combating disease: The impact of medicine food homology plants and gut microbiome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156150. [PMID: 39740376 DOI: 10.1016/j.phymed.2024.156150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Gut microbiota plays an important role in multiple human physiological processes and an imbalance in it, including the species, abundance, and metabolites can lead to diseases. These enteric microorganisms modulate immune homeostasis by presenting a myriad of antigenic determinants and microbial metabolites. Medicinal and food homologous (MFH) plants, edible herbal materials for both medicine and food, are important parts of Traditional Chinese Medicine (TCM). MFH plants have drawn much attention due to their strong biological activity and low toxicity. However, the interplay of MFH and gut microbiota in rebalancing the immune homeostasis in combating diseases needs systematic illumination. PURPOSE The review discusses the interaction between MFH and gut microbiota, including the effect of MFH on the major group of gut microbiota and the metabolic effect of gut microbiota on MFH. Moreover, how gut microbiota influences the immune system in terms of innate and adaptive immunity is addressed. Finally, the immunoregulatory mechanisms of MFH in regulation of host pathophysiology via gut microbiota are summarized. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Web of Science, and Google Scholar using relevant keywords. The obtained articles were screened and summarized by the research content of MFH and gut microbiota in immune regulation. RESULTS The review demonstrates the interaction between MFH and gut microbiota in disease prevention and treatment. Not only do the intestinal microorganisms and intestinal mucosa constitute an important immune barrier of the human body, but also lymphoid tissue and diffused immune cells within the mucosa participate in the response of innate immunity and adaptive immunity. MFH modulates immune regulation by affecting intestinal flora, helps maintain the balance of the immune system and interfere with the occurrence and development of a broad category of diseases. CONCLUSION Being absorbed from the gastrointestinal tract, MFH can have profound effects on gut microbiota. In turn, the gut microbiota also actively participate in the bioconversion of complex constituents from MFH, which could further influence their physiological and pharmacological properties. The review deepens the understanding of the relationship among MFH, gut microbiota, immune system, and human diseases and further promotes the progression of additional relevant research.
Collapse
Affiliation(s)
- Lu Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Chuangen Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jia Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Quancai Sun
- Department of Health, Nutrition, and Food sciences, Florida State University, Tallahassee, USA
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
18
|
Guidi L, Martinez-Tellez B, Ortega Santos CP. Obesity, gut bacteria, and the epigenetic control of metabolic disease. NUTRITION IN THE CONTROL OF INFLAMMATION 2025:333-368. [DOI: 10.1016/b978-0-443-18979-1.00013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Ram R, Subramanian A, K. R. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in People Living With HIV Attending Centre of Excellence in HIV Care at a Tertiary Level Teaching Hospital in North India-A Pilot Study. J Int Assoc Provid AIDS Care 2025; 24:23259582241311912. [PMID: 39801172 PMCID: PMC11726528 DOI: 10.1177/23259582241311912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 10/28/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
With the availability of free antiretroviral therapy (ART) across India, HIV in adults has become a chronic disease with prolonged survival. The emergence of various non-communicable diseases in these prolonged survivors is a cause of concern. Metabolic dysfunction-associated steatotic liver disease (MASLD) in adults with HIV infection in India has not been explored to date. In this study, we attempted to assess the existence of MASLD in thirty adults registered at the Centre of Excellence in ART Care at a tertiary teaching hospital in New Delhi. This center provides free first-line, second-line, and third-line ART to patients as well as comprehensive HIV care including counseling, nutritional advice, and inpatient admissions for intercurrent illnesses. A total of 30 subjects were enrolled in the study to assess the occurrence of MASLD among people living with HIV (PLHIV) and its risk factors and to assess hepatic fibrosis in the subjects with MASLD using transient elastography and clinical fibrosis scores. The study population included 13 subjects on ART (43.3%) and 17 ART-naïve subjects (56.6%). All the study subjects underwent ultrasonography (USG) for the identification of the development of MASLD in them. Steatosis was identified as an increase in the echogenicity of the liver seen as an increase in the hepatorenal contrast and was further graded into the 3 grades of fatty liver. Out of the 30 subjects, 16.6% (5 out of 30) were found to have MASLD on USG, with grade 1 fatty changes seen in 4 (13.3%) and grade 2 fatty changes seen in 1 out of 30 subjects (3.3%). A majority (40%) of the subjects were underweight (body mass index [BMI] < 18.5). 22.7% of the male subjects included in the study had MASLD whereas none of the females had fatty changes in the liver on USG. Out of the study subjects, MASLD was detected in 17.6% of ART-naïve subjects while it was detected in 15.4% of subjects on ART. Although no statistically significant association was seen with any of these parameters, a few important trends were observed. These might be statistically significant in a higher power study with a larger sample size. Higher BMI (mean difference [MD] = 3.25, P = .09), waist circumference (MD = 3.84, P = .15), hip circumference (MD = 4.36, P = .14), and older age (MD = 6.56, P = .07) were observed to be associated with MASLD in our study, whereas the biochemical parameters and HIV-related factors were not seen to have any particular trend of association in our study. However, a higher median CD4 count was associated with MASLD as compared to the group without fatty changes on USG. On FibroScan, all 5 subjects with fatty changes in our study were found to have liver stiffness less than 7 kPa which corresponds to F0-F1 stage of fibrosis. Using the nonalcoholic fatty liver disease score, 2 subjects had scores corresponding to F0-F2 stage of fibrosis (as per METAVIR score) while the rest (3 out of 5) had indeterminate values. While on FIB4 scoring, 4 subjects had scores suggesting stage 0-1 fibrosis while 1 had a score suggestive of stage 4-6 fibrosis as per Ishak Fibrosis staging. As PLHIV with known diabetes mellitus, obesity, and hypothyroidism were excluded from our study, the prevalence of MASLD observed in our study underestimates the real prevalence of MASLD in this specific population. No significant association was observed between ART status or ART regimen and MASLD in our study subjects. However, in light of the existing evidence of association of dolutegravir (DTG) with significant weight gain, and the recent inclusion of DTG in the first-line ART regimen nationally in India, robust surveillance and large-scale studies are recommended to study the contribution of DTG to MASLD in PLHIV, if any.
Collapse
Affiliation(s)
- Ragini Ram
- Maulana Azad Medical College, New Delhi, India
| | - Anuradha Subramanian
- Centre of Excellence in HIV Care, Maulana Azad Medical College, New Delhi, India
| | - Rajeshwari K.
- Centre of Excellence in HIV Care, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
20
|
Bokor M, Chiacchiaro E, Phadtare S. Collection and Processing of Samples for Next-Generation Sequencing to Study the Gut Microbiome. Methods Mol Biol 2025; 2866:59-70. [PMID: 39546197 DOI: 10.1007/978-1-0716-4192-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
16S rRNA gene sequencing is commonly used for identification and quantitation of microorganisms in complex biological mixtures, such as the human gut microbiome. The 16S rRNA gene is an excellent target gene for sequencing DNA in a heterogenous sample, as it is a highly conserved part of the transcriptional machinery. Universal PCR primers are used to amplify the conserved regions of 16S. Thus, it is possible to amplify the gene in a wide range of different microorganisms from a single sample. As the 16S rRNA gene consists of both conserved and variable regions, sequencing of the variable regions can be used to differentiate between different bacterial species.
Collapse
Affiliation(s)
- Maxwell Bokor
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Emily Chiacchiaro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Sangita Phadtare
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
21
|
Romo EZ, Hong BV, Agus JK, Jin Y, Kang JW, Zivkovic AM. A low-dose prebiotic fiber supplement reduces lipopolysaccharide-binding protein concentrations in a subgroup of young, healthy adults consuming low-fiber diets. Nutr Res 2025; 133:138-147. [PMID: 39733508 DOI: 10.1016/j.nutres.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/19/2024] [Accepted: 11/30/2024] [Indexed: 12/31/2024]
Abstract
Although the beneficial effects of fiber supplementation on overall health and the gut microbiome are well-known, it is not clear whether fiber supplementation can also alter the concentrations of lipopolysaccharide-binding protein (LBP), a marker of intestinal permeability. A secondary analysis of a previously conducted study was performed. In the randomized-order, placebo-controlled, double-blinded, cross-over study 20 healthy, young participants consuming a low-fiber diet at baseline were administered a daily dose of 12 g of prebiotic fiber compared with a placebo over a period of 4 weeks with a 4-week washout between arms. In this secondary analysis, we hypothesized that the fiber supplement would reduce LBP concentration. We further hypothesized that lecithin cholesterol acyltransferase activity, a measure of high-density lipoprotein functional capacity, would be altered. Fiber supplementation did not significantly alter LBP concentration or lecithin cholesterol acyltransferase activity in the overall cohort. However, in a subgroup of individuals with elevated baseline LBP concentrations, fiber supplementation significantly reduced LBP from 9.27 ± 3.52 to 7.02 ± 2.32 µg/mL (P = .003). Exploratory analyses found positive correlations between microbial genes involved in lipopolysaccharide synthesis and conversely negative correlations with genes involved in antibiotic synthesis and LBP. Positive correlations between LBP and multiple sulfated molecules including sulfated bile acids and perfluorooctanesulfonate, and ibuprofen metabolites were also found. These findings highlight multiple environmental and lifestyle factors such as exposure to industrial chemicals and medication intake, in addition to diet, which may influence the association between the gut microbiome and gut barrier function.
Collapse
Affiliation(s)
- Eduardo Z Romo
- Department of Nutrition, University of California, Davis, CA, USA
| | - Brian V Hong
- Department of Nutrition, University of California, Davis, CA, USA
| | - Joanne K Agus
- Department of Nutrition, University of California, Davis, CA, USA
| | - Yanshan Jin
- Department of Nutrition, University of California, Davis, CA, USA
| | - Jea Woo Kang
- Department of Nutrition, University of California, Davis, CA, USA
| | | |
Collapse
|
22
|
Hu J, Li G, He X, Gao X, Pan D, Dong X, Huang W, Qiu F, Chen LF, Hu X. Brd4 modulates metabolic endotoxemia-induced inflammation by regulating colonic macrophage infiltration in high-fat diet-fed mice. Commun Biol 2024; 7:1708. [PMID: 39733044 DOI: 10.1038/s42003-024-07437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024] Open
Abstract
High-fat diet (HFD) induces low-grade chronic inflammation, contributing to obesity and insulin resistance. However, the precise mechanisms triggering obesity-associated metabolic inflammation remain elusive. In this study, we identified epigenetic factor Brd4 as a key player in this process by regulating the expression of Ccr2/Ccr5 in colonic macrophage. Upon 4-week HFD, myeloid-lineage-specific Brd4 deletion (Brd4-CKO) mice showed reduced colonic inflammation and macrophage infiltration with decreased expression of Ccr2 and Ccr5. Mechanistically, Brd4 was recruited by NF-κB to the enhancer regions of Ccr2 and Ccr5, promoting enhancer RNA expression, which facilitated Ccr2/Ccr5 expression and macrophage migration. Furthermore, decreased infiltration of Ccr2/Ccr5-positive colonic macrophages in Brd4-CKO mice altered gut microbiota composition and reduced intestinal permeability, thereby lowering metabolic endotoxemia. Finally, Brd4-CKO mice subjected to a 4-week LPS infusion exhibited restored susceptibility to HFD-induced obesity and insulin resistance. This study identifies Brd4 as a critical initiator of colonic macrophage-mediated inflammation and metabolic endotoxemia upon HFD, suggesting Brd4 as a potential target for mitigating HFD-induced inflammation, obesity, and its metabolic complications.
Collapse
Affiliation(s)
- Jinfeng Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Guo Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaoxin He
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xuming Gao
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Dun Pan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xingchen Dong
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wentao Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University; Department of Hepato-Pancreato-Biliary Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Funan Qiu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University; Department of Hepato-Pancreato-Biliary Surgery, Fujian Provincial Hospital, Fuzhou, China.
| | - Lin-Feng Chen
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Xiangming Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
23
|
Yarahmadi A, Afkhami H, Javadi A, Kashfi M. Understanding the complex function of gut microbiota: its impact on the pathogenesis of obesity and beyond: a comprehensive review. Diabetol Metab Syndr 2024; 16:308. [PMID: 39710683 DOI: 10.1186/s13098-024-01561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
Obesity is a multifactorial condition influenced by genetic, environmental, and microbiome-related factors. The gut microbiome plays a vital role in maintaining intestinal health, increasing mucus creation, helping the intestinal epithelium mend, and regulating short-chain fatty acid (SCFA) production. These tasks are vital for managing metabolism and maintaining energy balance. Dysbiosis-an imbalance in the microbiome-leads to increased appetite and the rise of metabolic disorders, both fuel obesity and its issues. Furthermore, childhood obesity connects with unique shifts in gut microbiota makeup. For instance, there is a surge in pro-inflammatory bacteria compared to children who are not obese. Considering the intricate nature and variety of the gut microbiota, additional investigations are necessary to clarify its exact involvement in the beginnings and advancement of obesity and related metabolic dilemmas. Currently, therapeutic methods like probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), dietary interventions like Mediterranean and ketogenic diets, and physical activity show potential in adjusting the gut microbiome to fight obesity and aid weight loss. Furthermore, the review underscores the integration of microbial metabolites with pharmacological agents such as orlistat and semaglutide in restoring microbial homeostasis. However, more clinical tests are essential to refine the doses, frequency, and lasting effectiveness of these treatments. This narrative overview compiles the existing knowledge on the multifaceted role of gut microbiota in obesity and much more, showcasing possible treatment strategies for addressing these health challenges.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Ali Javadi
- Department of Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran.
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Mushraf S, Chawla K, Fayaz SMA, Mathew AJ, Reddy GPK, Kappettu Gadahad MR, Shenoy PA, Devi V, Adiga S, Nayak V. Exploring the effects of probiotics on olanzapine-induced metabolic syndrome through the gut microbiota. Gut Pathog 2024; 16:77. [PMID: 39709451 DOI: 10.1186/s13099-024-00664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/07/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Maintaining gut microbial homeostasis is crucial for human health, as imbalances in the gut microbiota (GM) can lead to various diseases, including metabolic syndrome (MS), exacerbated by the use of antipsychotic medications such as olanzapine (OLZ). Understanding the role of the GM in OLZ-induced MS could lead to new therapeutic strategies. This study used metagenomic analysis to explore the impact of OLZ on the GM composition and examined how probiotics can mitigate its adverse effects in a rat model. Changes in weight, blood pressure, and lipid levels, which are key parameters defining MS, were assessed. Additionally, this study investigated serotonin, dopamine, and histopathological changes to explore their possible link with the microbiota-gut-brain axis (MGBA). RESULTS OLZ had an antagonistic effect on serotonin and dopamine receptors, and it was consistently found to alter the composition of the GM, with an increase in the relative abundance (RA) of the Firmicutes/Bacteroidetes phyla ratio and TM7 genera, indicating that the anticommonsal action of OLZ affects appetite and energy expenditure, contributing to obesity, dyslipidemia and increased blood pressure, which are core components of MS. Hepatic steatosis and intestinal damage in OLZ-treated rat tissues further indicate its role in MS. Conversely, the administration of probiotics, either alone or in combination with OLZ, was found to mitigate these OLZ-induced symptoms of MS by altering the GM composition. These alterations included increases in the abundances of the taxa Bacteroidetes, Actinobacteria, Prevotella, Blautia, Bacteroides, Bacteroidales, and Ruminococcaceae and a decrease in Firmicute abundance. These changes helped maintain gut barrier integrity and modulated neurotransmitter levels, suggesting that probiotics can counteract the adverse metabolic effects of OLZ by restoring the GM balance. Moreover, this study highlights the modulation of the MGBA by OLZ as a potential mechanism through which probiotics modulate serotonin and dopamine levels, influencing metabolic health. CONCLUSION These findings emphasise the significant impact of OLZ on the GM and its contribution to MS. These findings suggest that interventions targeting the GM, such as probiotics, could mitigate the metabolic side effects of OLZ. Future research should focus on developing integrative treatment approaches that consider the health of the gut microbiome in managing antipsychotic-induced adverse effects.
Collapse
Affiliation(s)
- Syed Mushraf
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shaik Mohammed Abdul Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Aranjani Jesil Mathew
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gayam Prasanna Kumar Reddy
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Mohandas Rao Kappettu Gadahad
- Division of Anatomy, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmaja A Shenoy
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shalini Adiga
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Veena Nayak
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
25
|
Le Jan D, Siliman Misha M, Destrumelle S, Terceve O, Thorin C, Larcher T, Ledevin M, Desfontis JC, Betti E, Mallem Y. Omega-3 Fatty Acid and Vitamin D Supplementations Partially Reversed Metabolic Disorders and Restored Gut Microbiota in Obese Wistar Rats. BIOLOGY 2024; 13:1070. [PMID: 39765737 PMCID: PMC11673857 DOI: 10.3390/biology13121070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/03/2025]
Abstract
Obesity is a global public health issue linked to various comorbidities in both humans and animals. This study investigated the effects of vitamin D (VD) and omega-3 fatty acids (ω3FA) on obesity, gut dysbiosis, and metabolic alterations in Wistar rats. After 13 weeks on a standard (S) or High-Fat, High-Sugar (HFHS) diet, the rats received VD, ω3FA, a combination (VD/ω3), or a control (C) for another 13 weeks. The HFHS diet led to increased weight gain, abdominal circumference, glucose intolerance, insulin resistance, and gut dysbiosis. VD supplementation improved their fasting blood glucose and reduced liver damage, while ω3FA slowed BMI progression, reduced abdominal fat, liver damage, and intestinal permeability, and modulated the gut microbiota. The combination of VD/ω3 prevented weight gain, decreased abdominal circumference, improved glucose tolerance, and reduced triglycerides. This study demonstrates that VD and ω3FA, alone or combined, offer significant benefits in preventing obesity, gut dysbiosis, and metabolic alterations, with the VD/ω3 combination showing the most promise. Further research is needed to explore the mechanisms behind these effects and their long-term potential in both animal and human obesity management.
Collapse
Affiliation(s)
- Dylan Le Jan
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| | - Mohamed Siliman Misha
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| | - Sandrine Destrumelle
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| | - Olivia Terceve
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| | - Chantal Thorin
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Oniris, UMR 703, PanTher, APEX, 44307 Nantes, France; (C.T.); (T.L.); (M.L.)
| | - Thibaut Larcher
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Oniris, UMR 703, PanTher, APEX, 44307 Nantes, France; (C.T.); (T.L.); (M.L.)
| | - Mireille Ledevin
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Oniris, UMR 703, PanTher, APEX, 44307 Nantes, France; (C.T.); (T.L.); (M.L.)
| | - Jean-Claude Desfontis
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| | - Eric Betti
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| | - Yassine Mallem
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| |
Collapse
|
26
|
Desmond LW, Dawud LM, Kessler LR, Akonom T, Hunter EAH, Holbrook EM, Andersen ND, Sterrett JD, Boateng DA, Stuart BJ, Guerrero L, Gebert MJ, Tsai PS, Langgartner D, Reber SO, Frank MG, Lowry CA. Protective effects of Mycobacterium vaccae ATCC 15483 against "Western"-style diet-induced weight gain and visceral adiposity in adolescent male mice. Brain Behav Immun 2024; 125:249-267. [PMID: 39709061 DOI: 10.1016/j.bbi.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/21/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
The prevalence of noncommunicable inflammatory disease is increasing in modern urban societies, posing significant challenges to public health. Novel prevention and therapeutic strategies are needed to effectively deal with this issue. One promising approach is leveraging microorganisms such as Mycobacterium vaccae ATCC 15483, known for its anti-inflammatory, immunoregulatory, and stress-resilience properties. This study aimed to assess whether weekly subcutaneous administrations of a whole-cell, heat-killed preparation of M. vaccae ATCC 15483 (eleven injections initiated one week before the onset of the diet intervention), relative to vehicle injections, in adolescent male C57BL/6N mice can mitigate inflammation associated with Western-style diet-induced obesity, which is considered a risk factor for a number of metabolic and inflammatory diseases. Our results show that treatment with M. vaccae ATCC 15483 prevented Western-style diet-induced excessive weight gain, visceral adipose tissue accumulation, and elevated plasma leptin concentrations. The Western-style diet, relative to a control diet condition, decreased alpha diversity and altered the community composition of the gut microbiome, increasing the Bacillota to Bacteroidota ratio (formerly referred to as the Firmicutes to Bacteroidetes ratio). Despite the finding that M. vaccae ATCC 15483 prevented Western-style diet-induced excessive weight gain, visceral adipose tissue accumulation, and elevated plasma leptin concentrations, it had no effect on the diversity or community composition of the gut microbiome, suggesting that it acts downstream of the gut microbiome to alter immunometabolic signaling. M. vaccae ATCC 15483 reduced baseline levels of biomarkers of hippocampal neuroinflammation and microglial priming, such as Nfkbia and Nlrp3, and notably decreased anxiety-like defensive behavioral responses. The current findings provide compelling evidence supporting the potential for M. vaccae ATCC 15483 as a promising intervention for prevention or treatment of adverse immunometabolic outcomes linked to the consumption of a Western-style diet and the associated dysbiosis of the gut microbiome.
Collapse
Affiliation(s)
- Luke W Desmond
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lamya'a M Dawud
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lyanna R Kessler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Tyler Akonom
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Elizabeth A H Hunter
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Evan M Holbrook
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Nathan D Andersen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - John D Sterrett
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Dennis A Boateng
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Barbara J Stuart
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lucas Guerrero
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Matthew J Gebert
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Pei-San Tsai
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, D-89081, Ulm, Germany.
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, D-89081, Ulm, Germany.
| | - Matthew G Frank
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
27
|
Wang Z, Zhang L, Liu X, Xu L. The role of reproductive tract microbiota in gynecological health and diseases. J Reprod Immunol 2024; 167:104418. [PMID: 39700680 DOI: 10.1016/j.jri.2024.104418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
The reproductive tract, as a lumen connected to the outside world, its microbial community is influenced by various factors. The changes in its microbiome are closely related to women's health. The destruction of the micro ecological environment will lead to various infections, such as Bacterial vaginosis, sexually transmitted infections, adverse pregnancy outcomes, infertility and tumors. In recent years, with the continuous development and progress of molecular biology, research on reproductive tract microbiota has become a clinical hotspot. The reproductive tract microbiota is closely related to the occurrence and development of female reproductive tract diseases such as vaginitis, pelvic inflammation, PCOS, cervical lesions, and malignant tumors. This article reviews the research on the relationship between vaginal microbiota and female reproductive tract diseases, in order to provide theoretical basis for the prevention and treatment of female reproductive tract diseases.
Collapse
Affiliation(s)
- Zhunan Wang
- Department of gynaecology, Gynecological Diagnosis and Treatment Center, Affliated Hospital of Changchun University of Chinese Medicine, No.2, Shenzhen Street, Changchun city, Jilin Province 130000, China
| | - Liyu Zhang
- Department of gynaecology, Gynecological Diagnosis and Treatment Center, Affliated Hospital of Changchun University of Chinese Medicine, No.2, Shenzhen Street, Changchun city, Jilin Province 130000, China
| | - Xin Liu
- Department of gynaecology and obstetrics, Gynecological Diagnosis and Treatment Center, Affliated Hospital of Changchun University of Chinese Medicine, No.2, Shenzhen Street, Changchun city, Jilin Province 130000, China
| | - Lan Xu
- Department of gynaecology and obstetrics, Gynecological Diagnosis and Treatment Center, Affliated Hospital of Changchun University of Chinese Medicine, No.2, Shenzhen Street, Changchun city, Jilin Province 130000, China.
| |
Collapse
|
28
|
Manfredi JN, Gupta SK, Vyavahare S, Deak F, Lu X, Buddha L, Wankhade U, Lohakare J, Isales C, Fulzele S. Gut microbiota dysbiosis in Alzheimer's disease (AD): Insights from human clinical studies and the mouse AD models. Physiol Behav 2024; 290:114778. [PMID: 39672482 DOI: 10.1016/j.physbeh.2024.114778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/19/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Alzheimer's Disease (AD) is a debilitating neurocognitive disorder with an unclear underlying mechanism. Recent studies have implicated gut microbiota dysbiosis with the onset and progression of AD. The connection between gut microbiota and AD can significantly affect the prevention and treatment of AD patients. This systematic review summarizes primary outcomes of human and mouse AD models concerning gut microbiota alterations. A systematic literature search in February through March 2023 was conducted on PubMed, Embase, and Web of Science. We identified 711 as potential manuscripts of which 672 were excluded because of irrelevance to the identified search criteria. Primary outcomes include microbiota compositions of control and AD models in humans and mice. In total, 39 studies were included (19 mouse and 20 human studies), published between 2017 and 2023. We included studies involving well-established mice models of AD (5xFAD, 3xTg-AD, APP/PS1, Tg2576, and APPPS2) which harbor mutations and genes that drive the formation of Aß plaques. All human studies were included on those with AD or mild cognitive impairment. Among alterations in gut microbiota, most studies found a decreased abundance of the phyla Firmicutes and Bifidobacteria, a genus of the phylum Actinomycetota. An increased abundance of the phyla Bacteroidetes and Proteobacteria were identified in animal and human studies. Studies indicated that gut microbiota alter the pathogenesis of AD through its impact on neuroinflammation and permeability of the gastrointestinal tract. The ensuing increase in blood-brain barrier permeability may accelerate Aβ penetrance and formation of neuritic plaques that align with the amyloid hypothesis of AD pathogenesis. Further studies should assess the relationship between gut microbiota and AD progression and therapy preserving beneficial gut microbiota.
Collapse
Affiliation(s)
- John N Manfredi
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sonu Kumar Gupta
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sagar Vyavahare
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ferenc Deak
- Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA
| | - Xinyun Lu
- Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA
| | - Lasya Buddha
- Arkansas Children's Nutrition Center, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Umesh Wankhade
- Arkansas Children's Nutrition Center, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jayant Lohakare
- College of Agriculture, Food, and Natural Resources, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Carlos Isales
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA; College of Agriculture, Food, and Natural Resources, Prairie View A&M University, Prairie View, TX 77446, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, GA, USA; Department of Orthopedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
29
|
García G, Soto J, Netherland M, Hasan NA, Buchaca E, Martínez D, Carlin M, de Jesus Cano R. Evaluating the Effects of Sugar Shift ® Symbiotic on Microbiome Composition and LPS Regulation: A Double-Blind, Placebo-Controlled Study. Microorganisms 2024; 12:2525. [PMID: 39770729 PMCID: PMC11678924 DOI: 10.3390/microorganisms12122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
(1) Background: This study evaluated the effects of BiotiQuest® Sugar Shift®, a novel probiotic formulation, for its impact on gut microbiome composition and metabolic health in type 2 diabetes mellitus (T2D). T2D is characterized by chronic inflammation and gut microbiome imbalances, yet the therapeutic potential of targeted probiotics remains underexplored. (2) Methods: In a 12-week randomized, double-blind, placebo-controlled trial, 64 adults with T2D received either Sugar Shift or placebo capsules twice daily. Each dose provided 18 billion CFU of eight GRAS-certified bacterial strains and prebiotics. Clinical samples were analyzed for metabolic markers, and microbiome changes were assessed using 16S rRNA sequencing and metagenomics. (3) Results: Sugar Shift significantly reduced serum lipopolysaccharide (LPS) levels, improved insulin sensitivity (lower HOMA-IR scores), and increased short-chain fatty acid (SCFA)-producing genera, including Bifidobacterium, Faecalibacterium, Fusicatenibacter, and Roseburia. Pro-inflammatory taxa like Enterobacteriaceae decreased, with reduced LPS biosynthesis genes and increased SCFA production genes. The Lachnospiraceae:Enterobactericeae ratio emerged as a biomarker of reduced inflammation. (4) Conclusions: These findings demonstrate the potential of Sugar Shift to restore gut homeostasis, reduce inflammation, and improve metabolic health in T2D. Further studies are warranted to explore its long-term efficacy and broader application in metabolic disease management.
Collapse
Affiliation(s)
- Gissel García
- Pathology Department, Clinical Hospital “Hermanos Ameijeiras” (HHA), Calle San Lázaro No 701, Esq.a Belascoaín, Centro Habana, La Habana 10400, Cuba;
| | - Josanne Soto
- Clinical Laboratory Department, Clinical Hospital “Hermanos Ameijeiras” (HHA), Calle San Lázaro No 701, Esq.a Belascoaín, Centro Habana, La Habana 10400, Cuba;
| | | | - Nur A. Hasan
- EzBiome, 704 Quince Orchard Rd, Gaithersburg, MD 20878, USA (N.A.H.)
| | - Emilio Buchaca
- Internal Medicine Department, Clinical Hospital “Hermanos Ameijeiras” (HHA), Calle San Lázaro No 701, Esq.a Belascoaín, Centro Habana, La Habana 10400, Cuba;
| | - Duniesky Martínez
- Research and Development Department, Center for Genetic Engineering and Biotechnology of Sancti Spíritus (CIGBSS), Circunvalante Norte S/N, Olivos 3, Apartado Postal 83, Sancti Spíritus 60200, Cuba;
| | - Martha Carlin
- The BioCollective, LLC, 4800 Dahlia Street, G8, Denver, CO 80216, USA;
| | - Raúl de Jesus Cano
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
30
|
Chudzicka-Strugała I, Kubiak A, Banaszewska B, Wysocka E, Zwozdziak B, Siakowska M, Pawelczyk L, Duleba AJ. Six-month randomized, placebo controlled trial of synbiotic supplementation in women with polycystic ovary syndrome undergoing lifestyle modifications. Arch Gynecol Obstet 2024:10.1007/s00404-024-07833-3. [PMID: 39636391 DOI: 10.1007/s00404-024-07833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE To determine whether long-term administration of synbiotics affects clinical, endocrine and metabolic aspects of polycystic ovary syndrome (PCOS) in overweight and obese subjects undergoing intensive lifestyle modifications. METHODS During six-month trial, all subjects underwent intensive lifestyle modifications (diet and exercise). The subjects were randomized (1:1) to receive synbiotic supplementation (Synbiotic Group) or placebo (Placebo Group). RESULTS Subjects in the Placebo Group and the Synbiotic Group experienced significant reduction of BMI (- 8% and - 11%, respectively; both at P < 0.0001) and body fat percentage (- 11% and - 14%, respectively; both at P < 0.0001). These effects were statistically comparable for both groups. Total testosterone was not significantly changed in the Placebo Group (- 5%, P = 0.41) while it greatly declined in the Synbiotic Group (- 40%; P < 0.0001); the difference between these groups was significant (P = 0.0002). Synbiotic supplementation was superior to placebo in reducing LH (- 21%; P = 0.047), total cholesterol (- 6%; P = 0.002), low-density lipoprotein cholesterol (- 6%; P = 0.044), triglycerides (- 29%; P = 0.049), LPS (- 23%; P = 0.001) and LPS-binding protein (- 21%; P = 0.001). CONCLUSIONS Synbiotic supplementation led to a marked improvement of several key clinical and laboratory aspects of PCOS including an improvement of hyperandrogenism, lipid profile, and markers of endotoxemia. TRIAL REGISTRATION Clinical Trial Registration Number: NCT03325023 (URL, clinicaltrials.gov; date of registration 10/26/2017).
Collapse
Affiliation(s)
| | - Anna Kubiak
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-535, Poznan, Poland
| | - Beata Banaszewska
- Department of Laboratory Diagnostics, Poznan University of Medical Sciences, 60-569, Poznan, Poland
| | - Ewa Wysocka
- Department of Laboratory Diagnostics, Poznan University of Medical Sciences, 60-569, Poznan, Poland
| | - Barbara Zwozdziak
- Department of Medical Microbiology, Poznan University of Medical Sciences, 60-535, Poznan, Poland
| | - Martyna Siakowska
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-535, Poznan, Poland
| | - Leszek Pawelczyk
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-535, Poznan, Poland
| | - Antoni J Duleba
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, 9500 Gilman Drive, 0633, San Diego, CA, 92093-0633, USA.
| |
Collapse
|
31
|
Lv Y, Zheng Y, Su S, Xiao J, Yang J, Xiong L, Guo Y, Zhou X, Guo N, Lei P. CD14 loCD301b + macrophages gathering as a proangiogenic marker in adipose tissues. J Lipid Res 2024; 66:100720. [PMID: 39645040 DOI: 10.1016/j.jlr.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
The role of the monocyte marker CD14 in the regulation of obesity is increasingly recognized. Our observations indicated that Cd14-/- mice exhibited a leaner body shape compared to their wild-type (WT) counterparts. And the loss of CD14 alleviated high-fat diet-induced obesity in mice. In human subjects, CD14 level was tested to be positively correlated with overweight and obesity. However, the relationship between CD14 and the development of obesity remains only partially understood. To investigate the underlying mechanisms, adipose tissues (ATs) from Cd14-/- and WT mice were subjected to deep RNA sequencing. Gene Ontology enrichment analysis revealed a significant enhancement of angiogenesis-related function in the Cd14-/- epididymal adipose tissues compared to WT counterpart, which was accompanied by an upregulation of Cd301b. Subsequent assays confirmed the enhanced angiogenesis and more accumulation of CD301b+ macrophages in Cd14-/- epididymal adipose tissues. Because Igf1 expression has been suggested to be associated with Cd301b expression through pseudotime analysis, we found it was insulin-like growth factor 1 secreted from Cd14-/- macrophages that mediated the angiogenesis enhancement. Collectively, our findings indicate that CD14 deficiency increased the accumulation of CD14loCD301b+ macrophages in ATs, which may serve as a proangiogenic marker, providing novel insights into the relationship between CD14 and obesity development.
Collapse
Affiliation(s)
- Yibing Lv
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yidan Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Su
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Xiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Yang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyun Xiong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyan Guo
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqi Zhou
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nengqiang Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
32
|
Xu M, Taylor MS, Hill BG, Li X, Rouchka EC, McClain CJ, Song M. Intestine epithelial-specific hypoxia-inducible factor-1α overexpression ameliorates western diet-induced MASLD. Hepatol Commun 2024; 8:e0572. [PMID: 39585307 PMCID: PMC11596589 DOI: 10.1097/hc9.0000000000000572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/15/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Intestine epithelial hypoxia-inducible factor-1α (HIF-1α) plays a critical role in maintaining gut barrier function. The aim of this study was to determine whether pharmacological or genetic activation of intestinal HIF-1α ameliorates western diet-induced metabolic dysfunction-associated steatotic liver disease. METHODS Metabolic effects of pharmacological activation of HIF-1α by dimethyloxalylglycine were evaluated in HIF-α luciferase reporter (ODD-luc) mice. Male and/or female intestinal epithelial-specific Hif1α overexpression mice (Hif1αLSL/LSL;VilERcre) and wild-type littermates (Hif1αLSL/LSL) were fed with regular chow diet, high fructose (HFr) or high-fat (60% Kcal) high-fructose diet (HFHFr) for 8 weeks. Metabolic phenotypes were profiled. RESULTS Dimethyloxalylglycine treatment led to increased intestine HIF-α luciferase activity and decreased blood glucose levels in HFr diet-fed male ODD-luc mice. Male Hif1αLSL/LSL;VilERcre mice exhibited markedly improved glucose tolerance compared to Hif1αLSL/LSL mice in response to HFr diet. Eight weeks HFHFr feeding led to obesity in both Hif1αLSL/LSL;VilERcre and Hif1αLSL/LSL mice. However, male Hif1αLSL/LSL;VilERcre mice exhibited markedly attenuated hepatic steatosis along with reduced liver size and liver weight compared to male Hif1αLSL/LSL mice. Moreover, HFHFr-induced systemic inflammatory responses were mitigated in male Hif1αLSL/LSL;VilERcre mice compared to male Hif1αLSL/LSL mice, and those responses were not evident in female mice. Ileum RNA-seq analysis revealed that glycolysis/gluconeogenesis was up in male Hif1αLSL/LSL;VilERcre mice, accompanied by increased epithelial cell proliferation. Moreover, an in vitro study showed that HIF stabilization enhances glycolysis in intestine organoids. CONCLUSIONS Our data provide evidence that pharmacological or genetic activation of intestinal HIF-1α markedly ameliorates western diet-induced metabolic dysfunction-associated steatotic liver disease in a sex-dependent manner. The underlying mechanism is likely attributed to HIF-1α activation-induced upregulation of glycolysis, which, in turn, leads to enhanced epithelial cell proliferation and augmented gut barrier function.
Collapse
Affiliation(s)
- Manman Xu
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Madison S. Taylor
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Bradford G. Hill
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xiaohong Li
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, Louisville, Kentucky, USA
| | - Eric C. Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, Louisville, Kentucky, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Craig J. McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
33
|
Calabrese FM, Genchi VA, Serale N, Celano G, Vacca M, Palma G, Svelto M, Gesualdo L, De Angelis M, Giorgino F, Perrini S. Gut microbiota and fecal volatilome profile inspection in metabolically healthy and unhealthy obesity phenotypes. J Endocrinol Invest 2024; 47:3077-3090. [PMID: 38904913 PMCID: PMC11549234 DOI: 10.1007/s40618-024-02379-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/18/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND People with metabolically healthy (MHO) and metabolically unhealthy obesity (MUO) differ for the presence or absence of cardio-metabolic complications, respectively. OBJECTIVE Based on these differences, we are interested in deepening whether these obesity phenotypes could be linked to changes in microbiota and metabolome profiles. In this respect, the overt role of microbiota taxa composition and relative metabolic profiles is not completely understood. At this aim, biochemical and nutritional parameters, fecal microbiota, metabolome and SCFA compositions were inspected in patients with MHO and MUO under a restrictive diet regimen with a daily intake ranging from 800 to 1200 kcal. METHODS Blood, fecal samples and food questionnaires were collected from healthy controls (HC), and an obese cohort composed of both MHO and MUO patients. Most impacting biochemical/anthropometric variables from an a priori sample stratification were detected by applying a robust statistics approach useful in lowering the background noise. Bacterial taxa and volatile metabolites were assessed by qPCR and gas chromatography coupled with mass spectrometry, respectively. A targeted GC-MS analyses on SCFAs was also performed. RESULTS Instructed to follow a controlled and restricted daily calorie intake, MHO and MUO patients showed differences in metabolic, gut microbial and volatilome signatures. Our data revealed higher quantities of specific pro-inflammatory taxa (i.e., Desulfovibrio and Prevotella genera) and lower quantities of Clostridium coccoides group in MUO subset. Higher abundances in alkane, ketone, aldehyde, and indole VOC classes together with a lower amount of butanoic acid marked the faecal MUO metabolome. CONCLUSIONS Compared to MHO, MUO subset symptom picture is featured by specific differences in gut pro-inflammatory taxa and metabolites that could have a role in the progression to metabolically unhealthy status and developing of obesity-related cardiometabolic diseases. The approach is suitable to better explain the crosstalk existing among dysmetabolism-related inflammation, nutrient intake, lifestyle, and gut dysbiosis.
Collapse
Affiliation(s)
- F M Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - V A Genchi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases - Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - N Serale
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - G Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - M Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - G Palma
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases - Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - M Svelto
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - L Gesualdo
- Nephrology, Dialysis and Transplantation Unit- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - M De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy.
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases - Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy.
| | - S Perrini
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases - Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
34
|
Cao Z, Wang X, Liu H, Yang Z, Zeng Z. Gut microbiota mediate the alleviation effect of Xiehuo-Guzheng granules on β cell dedifferentiation in type 2 diabetes mellitus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156151. [PMID: 39437686 DOI: 10.1016/j.phymed.2024.156151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a worldwide public health problem characterized by a progressive decline in β cell function. In traditional Chinese medicine (TCM) theory, 'fire' and 'healthy qi deficiency' are important pathogeneses of T2DM, and purging 'fire' and reinforcing the 'healthy qi' (Pinyin name: Xiehuo-Guzheng, XHGZ) are important method of treatment. Over the years, we have observed its benefit for diabetes. However, the underlying mechanisms remain unclear. PURPOSE To investigate the mechanism of XHGZ granules against β cell dedifferentiation in T2DM based on gut microbiota. METHODS Rats with T2DM, induced by intraperitoneal injection of streptozotocin after eight weeks of high-fat diet, were randomly allocated to receive XHGZ granules, metformin, or distilled water for eight consecutive weeks. Changes in metabolic parameters, β cell dedifferentiation, inflammatory cytokines, gut microbiota, and microbial metabolites (lipopolysaccharide (LPS) and short-chain fatty acids (SCFAs)), were detected. Furthermore, faecal microbiota transplantation (FMT) was performed to confirm the anti-diabetic effect of XHGZ granule-regulated gut microbiota in pseudo-germ-free T2DM rats. RESULTS XHGZ granules significantly ameliorated hyperglycaemia, improved islet function and pathology, and reduced β cell dedifferentiation and pro-inflammatory cytokines in T2DM rats. 16S rRNA sequencing revealed that XHGZ granules decreased the LPS-containing microbiota (e.g., Colidextribacter, Desulfovibrionaceae, and Morganella) and increased the SCFAs-producing bacteria (e.g., Prevotella, Alloprevotella, and Muribaculaceae) and Lactobacillus_intestinalis. Correspondingly, it strengthened intestinal barrier, lowered LPS, and elevated acetic and butyric acids. Tax4Fun analysis indicated that XHGZ granules restored abnormal metabolism, lipopolysaccharide biosynthesis, and pantothenate and CoA biosynthesis. Moreover, the XHGZ granule-regulated microbiota also exhibited the effects of anti-diabetes, anti-β cell dedifferentiation, and anti-inflammation along with the reduction of LPS and the increase of SCFAs in pseudo-germ-free T2DM rats. CONCLUSION Our results show that XHGZ granules alleviate β cell dedifferentiation via regulating gut microbiota and their metabolites in T2DM, suggesting its potential as a promising complementary treatment for T2DM. As far as we know, there are very few studies on the alleviation of β cell dedifferentiation by TCM, and investigations into the mechanism from the perspective of intestinal flora and microbial metabolites are yet to be reported.
Collapse
Affiliation(s)
- Zebiao Cao
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Postdoctoral Research Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Xianzhe Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huijun Liu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Huangshi Hospital of Traditional Chinese Medicine, Huangshi, Hubei 435000, China
| | - Zhaojun Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Zhili Zeng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Postdoctoral Research Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
35
|
Lv C, Cheng L, Feng W, Xie H, Kou J, Wang L, Shi M, Song X, Wang X, Chen S, Xue L, Zhang C, Li X, Zhao H. Targeting microbiota-immune-synaptic plasticity to explore the effect of tea polyphenols on improving memory in the aged type 2 diabetic rat model. Nutr Neurosci 2024; 27:1422-1438. [PMID: 38622917 DOI: 10.1080/1028415x.2024.2341188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
OBJECTIVES The study aimed to explore whether TP could improve memory in the aged type 2 diabetic rat model by regulating microbiota-immune-synaptic plasticity axis. METHODS The experiment was divided into two parts. Firstly, to investigate the effects of TP on the physiopathology of the aged T2DM model rats, rats were randomly divided into the Normal control group, the aged group, the Aged T2DM model group, the TP 75, 150, 300 mg/kg groups, the 150 mg/kg Piracetam group and the 3 mg/kg Rosiglitazone group. Then, to further verify whether TP improved memory in aged T2DM rat model by regulating intestinal flora, the fecal microbiota transplantation (FMT) from the rats in the 300 mg/kg TP group into the rats in the aged T2DM model group was carried out. Effects on gut microbiota, colonic integrity (epithelial tight junction proteins), and endotoxemia (serum LPS) were examined, along with synaptic structure, synaptic plasticity-related structural proteins and inflammation signaling of the hippocampus in our study. RESULTS Our results demonstrated that TP alleviated memory impairments in the aged T2DM rat model. The specific outcomes were as follows: TP 300 mg/kg corrected the gut dysbacteriosis, alleviated intestinal permeability reduction and peripheral/central inflammation, inhibited the TLR4/NF-κB signaling pathway. Meanwhile, TP improved the synaptic plasticity in the hippocampus of the aged T2DM model rats, whose expressions of SYN, PSD 95, NMDAR1 and GluR1 in hippocampus were significantly up-regulated. Surprisingly, rats of the FMT group displayed the same changes. DISCUSSION TP improves the memory in aged T2DM rat model. The mechanism may be related to the alteration of gut flora, which can inhibit hippocampal TLR4/NF-κB signaling to attenuate neuroinflammation, then improve synaptic plasticity. The study proposes that TP interventions aimed at manipulating the gut microbiota may hold great potential as an effective approach for preventing and treating this disease.
Collapse
Affiliation(s)
- Chenhui Lv
- Department of Nutrition and Food Hygiene, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Le Cheng
- Department of Nutrition and Food Hygiene, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Wenjuan Feng
- Department of Nutrition and Food Hygiene, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Haoran Xie
- Department of Nutrition and Food Hygiene, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jie Kou
- Department of Nutrition and Food Hygiene, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Lili Wang
- Department of Nutrition and Food Hygiene, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mengqian Shi
- Department of Nutrition and Food Hygiene, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xin Song
- Department of Nutrition and Food Hygiene, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xi Wang
- Department of Nutrition and Food Hygiene, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Shuangzhi Chen
- Department of Nutrition and Food Hygiene, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Lushan Xue
- Department of Nutrition and Food Hygiene, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Cheng Zhang
- Department of Nutrition and Food Hygiene, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xuemin Li
- Center for Disease Control and Prevention in Shanxi Province, Taiyuan, People's Republic of China
| | - Haifeng Zhao
- Department of Nutrition and Food Hygiene, Shanxi Medical University, Taiyuan, People's Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, People's Republic of China
| |
Collapse
|
36
|
Huang Q, Ma F, Jin Y, Gao D, Chang M, Sun P. The dynamic distribution of the rectal microbiota in Holstein dairy calves provides a framework for understanding early-life gut health. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:301-312. [PMID: 39640550 PMCID: PMC11617247 DOI: 10.1016/j.aninu.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 12/07/2024]
Abstract
The posterior intestinal microbiota plays a vital role in the growth and health of Holstein dairy calves. However, its establishment and dynamic changes during early development remain unclear. The aim of this study was to investigate microbial colonization and development in the rectum of calves within the first 70 d after birth. Here, 96 rectal content samples were collected from 8 Holstein dairy calves at 12 time points and analyzed using 16S rRNA gene sequencing. The microbial alpha diversity increased with age. The bacterial community displayed a distinct dynamic distribution. The phylum Proteobacteria was replaced by Firmicutes and Bacteroidetes after d 3. The colonization process of bacterial genera in the rectum of neonatal calves can be divided into 2 periods: the colonization period (stage 1: d 1 and stage 2: d 3) and the stable period (stage 3: d 7-14, stage 4: d 21-42, and stage 5: d 49-70). The fermentation pattern and metabolic function changed from propionate fermentation dominated by Shigella to lactic acid fermentation dominated by Lactobacillus, Blautia, and Oscillospira. The stable period was more comprehensive and complete than the colonization period. This study revealed the dynamic changes in the posterior intestinal microbiota of Holstein dairy calves during early development. The transition period (d 7-14) was identified as a key stage for early nutritional intervention, as the abundance of Lactobacillus increased and the abundance of harmful bacteria (such as Proteobacteria and Shigella) decreased. This study provides a framework for understanding early-life gut health and offers theoretical guidance for future research on host-microbe interactions and early nutritional interventions. It is suggested that nutritional interventions based on microbial characteristics at different stages be implemented to improve calf growth performance and immune function, which may contribute to the reduction of diarrhea and other gastrointestinal disorders during dairy production.
Collapse
Affiliation(s)
- Qi Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengtao Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuhang Jin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Duo Gao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meinan Chang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
37
|
Najjar SM, Shively JE. Regulation of lipid storage and inflammation in the liver by CEACAM1. Eur J Clin Invest 2024; 54 Suppl 2:e14338. [PMID: 39674882 DOI: 10.1111/eci.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/11/2024] [Indexed: 12/17/2024]
Abstract
This review focuses on a special aspect of hepatic lipid storage and inflammation that occurs during nutritional excess in obesity. Mounting evidence supports that prolonged excess fatty acid (FA) uptake in the liver is strongly associated with hepatic lipid storage and inflammation and that the two processes are closely linked by a homeostatic mechanism. There is also strong evidence that bacterial lipids may enter the gut by a common mechanism with lipid absorption and that there is a set point to determine when their uptake triggers an inflammatory response in the liver. In fact, the progression from high uptake of FAs in the liver resulting in Metabolic dysfunction-associated steatotic liver disease (MASLD) to the development of the more serious Metabolic dysfunction-associated steatohepatitis (MASH) depends on the degree of inflammation and its progression from an acute to a chronic state. Thus, MASLD/MASH implicates both excess fatty acids and progressive inflammation in the aetiology of liver disease. We start the discussion by introduction of CD36, a major player in FA and lipopolysaccharide (LPS) uptake in the duodenum, liver and adipose tissue. We will then introduce CEACAM1, a major player in the regulation of hepatic de novo lipogenesis and the inflammatory response in the liver, and its dual association with CD36 in enterocytes and hepatocytes. We conclude that CEACAM1 and CD36 together regulate lipid droplet formation and inflammation in the liver.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Biomedical Sciences and the Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - John E Shively
- Department of Immunology and Theranostics, Arthur D. Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
38
|
Joshi DD, Deb L, Kaul K, Somkuwar BG, Rana VS, Singh R. Relevance of Indian Traditional Herbal Brews for Gut Microbiota Balance. Indian J Microbiol 2024; 64:1425-1444. [PMID: 39678955 PMCID: PMC11645388 DOI: 10.1007/s12088-024-01251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/02/2024] [Indexed: 12/17/2024] Open
Abstract
The considerable changes in lifestyle patterns primarily affect the human gut microbiota and result in obesity, diabetes, dyslipidemia, renal complications, etc. though there are few traditional safeguards such as herbal brews to maintain the ecological stability under intestinal dysbiosis. The present article is designed to collect all the scientific facts in a place to decipher the role of the Indian traditional herbal brews used to balance gut health for centuries. Computerized databases, commercial search engines, research papers, articles, and books were used to search by using different keywords to select the most appropriate published articles from 2000 onward to September 2023. A total of 1907 articles were scrutinized, 46 articles were finally selected from the 254 screened, and targeted information was compiled. Interaction of herbal brews to the gut microflora and resulting metabolites act as prebiotics due to antimicrobial, anti-inflammatory, and antioxidant properties, and modulate the pH of the gut. The effect of brews on gut microbiota has a drastic impact on various gut-related diseases and has gained popularity as an alternative to antibiotics against bacteria, fungi, viruses, parasites, and boosting the immune system and strengthening the intestinal barrier. Berberine, kaempferol, piperine, and quercetin have been found in more than one brew discussed in the present article. Practically, these brews balance the gut microbiota, prevent chronic and degenerative diseases, and reduce organ inflammation, though, there is a knowledge gap on the molecular mechanism to explain their efficacy. Indian traditional herbal brews used to reboot and heal the gut microbiota since centuries-old practice with successful history without toxicity. The systematic consumption of these brews under specific dietary prescriptions has a hope of arrays for a healthy human gut microbiome in the present hasty lifestyle with overall health and well-being. Graphical Abstract
Collapse
Affiliation(s)
- Devi Datt Joshi
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, Sector-125, J-1 Block, Noida, UP 201313 India
| | - Lokesh Deb
- Institute of Bioresources and Sustainable Development (IBSD)-Regional Centre, Sikkim, 5th Mile, Tadong, Gangtok, Sikkim 737102 India
| | - Kanak Kaul
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Sector-125, E-2 Block, Noida, UP 201313 India
| | - Bharat G. Somkuwar
- Institute of Bioresources and Sustainable Development (IBSD), Node Mizoram, A-1, C/O P. Lalthangzauva Building, Chawnga Road, Nursery Veng, Aizawl, Mizoram 796005 India
| | - Virendra Singh Rana
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute (IARI), Pusa Campus, New Delhi, 110 012 India
| | - Rajni Singh
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Sector-125, E-2 Block, Noida, UP 201313 India
| |
Collapse
|
39
|
Zhu Y, Yang R, Deng Z, Deng B, Zhao K, Dai C, Wei G, Wang Y, Zheng J, Ren Z, Lv W, Xiao Y, Mei Z, Song T. Adipose Tissue-Resident Sphingomonas Paucimobilis Suppresses Adaptive Thermogenesis by Reducing 15-HETE Production and Inhibiting AMPK Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310236. [PMID: 39476363 DOI: 10.1002/advs.202310236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/26/2024] [Indexed: 12/19/2024]
Abstract
Obesity represents a low-grade chronic inflammation status, which is associated with compromised adaptive thermogenesis. However, the mechanisms underlying the defective activation of thermogenesis in chronic inflammation remain unclear. Here, a chronic inflammatory model is first estabolished by injecting mice with low-dose lipopolysaccharide (LPS) before cold exposure, and then it is verified that LPS treatment can decrease the core body temperature of mice and alter the microbial distribution in epididymal white adipose tissue (eWAT). An adipose tissue-resident bacterium Sphingomonas paucimobilis is identified as a potential inhibitor on the activation of brown fat and browning of inguinal WAT, resulting in defective adaptive thermogenesis. Mechanically, LPS and S. paucimobilis inhibit the production and release of 15-HETE by suppressing its main metabolic enzyme 12 lipoxygenase (12-LOX) and 15- Hydroxyeicosatetraenoic acid (15-HETE) rescues the impaired thermogenesis. Interestingly, 15-HETE directly binds to AMP-activated protein kinase α (AMPKα) and elevates the phosphorylation of AMPK, leading to the activation of uncoupling protein 1 (UCP1) and mitochondrial oxidative phosphorylation (OXPHOS) complexes. Further analysis with human obesity subjects reveals that individuals with high body mass index displayed lower 15-HETE levels. Taken together, this work improves the understanding of how chronic inflammation impairs adaptive thermogenesis and provides novel targets for alleviating obesity.
Collapse
Affiliation(s)
- Yucheng Zhu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruiqi Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhangchao Deng
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bohua Deng
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kun Zhao
- Department of Endocrinology, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Wei
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing, Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - YanJiang Wang
- Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuqing Ren
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wentao Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhinan Mei
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
40
|
Dubey I, K N, G V, Rohilla G, Lalruatmawii, Naxine P, P J, Rachamalla M, Kushwaha S. Exploring the hypothetical links between environmental pollutants, diet, and the gut-testis axis: The potential role of microbes in male reproductive health. Reprod Toxicol 2024; 130:108732. [PMID: 39395506 DOI: 10.1016/j.reprotox.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The gut system, commonly referred to as one of the principal organs of the human "superorganism," is a home to trillions of bacteria and serves an essential physiological function in male reproductive failures or infertility. The interaction of the endocrine-immune system and the microbiome facilitates reproduction as a multi-network system. Some recent studies that link gut microbiota to male infertility are questionable. Is the gut-testis axis (GTA) real, and does it affect male infertility? As a result, this review emphasizes the interconnected links between gut health and male reproductive function via changes in gut microbiota. However, a variety of harmful (endocrine disruptors, heavy metals, pollutants, and antibiotics) and favorable (a healthy diet, supplements, and phytoconstituents) elements promote microbiota by causing dysbiosis and symbiosis, respectively, which eventually modify the activities of male reproductive organs and their hormones. The findings of preclinical and clinical studies on the direct and indirect effects of microbiota changes on testicular functions have revealed a viable strategy for exploring the GTA-axis. Although the GTA axis is poorly understood, it may have potential ties to reproductive issues that can be used for therapeutic purposes in the future.
Collapse
Affiliation(s)
- Itishree Dubey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Nandheeswari K
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Vigneshwaran G
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Gourav Rohilla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Lalruatmawii
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Pratik Naxine
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Jayapradha P
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon SK S7N 5E2, Canada
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India.
| |
Collapse
|
41
|
Sakai K, Okamura T, Toyokuni E, Okada H, Obora A, Kojima T, Hamaguchi M, Fukui M. Metabolic dysfunction-associated steatotic liver disease: A superior predictor for incident type 2 diabetes over traditional criteria - NAGALA study. J Diabetes Investig 2024; 15:1788-1796. [PMID: 39283748 PMCID: PMC11615691 DOI: 10.1111/jdi.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 12/06/2024] Open
Abstract
AIMS/INTRODUCTION The 2023 Delphi consensus recommended the use of new term, metabolic dysfunction-associated steatotic liver disease (MASLD), aiming conceptual shift from the conventional non-alcoholic fatty liver disease (NAFLD). The association between NAFLD and type 2 diabetes mellitus (T2DM) development is well known. This study aimed to examine the correlation between MASLD and T2DM development, comparing their utility as predictors. MATERIALS AND METHODS This retrospective cohort study obtained data from a medical health checkup program conducted at Asahi University Hospital, Japan, between 2004 and 2021. Logistic regression analysis was used to assess the association between MASLD and incident T2DM over 5 years. To compare the predictive utility of NAFLD and MASLD, receiver operating characteristic curves were drawn, followed by area under the curve (AUC) comparisons. RESULTS In total, 15,039 participants (59.6% males; median [interquartile range {IQR}] age, 44 [38, 50] years) were included. Out of 2,682 participants meeting the criteria for MASLD, 234 individuals (8.7%) developed T2DM. Multivariate analysis revealed a significantly elevated risk of T2DM in MASLD compared with the reference healthy group (without steatotic liver disease or cardiometabolic risk), presenting an OR of 127.00 (95% CI 40.40-399.00, P < 0.001). The concordance rate of diagnosis between NAFLD and MASLD was 98.7%. The AUC values were 0.799 for NAFLD and 0.807 for MASLD, respectively. Comparative analysis of the AUC showed a statistical difference between NAFLD and MASLD (P < 0.001). CONCLUSIONS MASLD was shown to be a significant risk factor for incident T2DM, exhibiting a potentially higher predictive capacity than conventional NAFLD.
Collapse
Affiliation(s)
- Kimiko Sakai
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Ema Toyokuni
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Akihiro Obora
- Department of GastroenterologyAsahi University HospitalGifuJapan
| | - Takao Kojima
- Department of GastroenterologyAsahi University HospitalGifuJapan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
42
|
Guraka A, Sreedharan S, Arasaradnam R, Tripathi G, Kermanizadeh A. The Role of the Gut Microbiome in the Development and Progression of Type 2 Diabetes and Liver Disease. Nutr Rev 2024:nuae172. [PMID: 39673297 DOI: 10.1093/nutrit/nuae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) and progressive liver disease are 2 of the most significant global health concerns, and they have alarming and ever-increasing prevalence. A growing body of literature has demonstrated a potential multilateral link between gut microbiome dysbiosis and the development and progression of the above-mentioned conditions. Modulation of gut microbial composition from the norm is due to changes in diet allied with external factors such as age, genetics, and environmental changes. In this comprehensive review, we recapitulate the research to date investigating the links between gut microbiome dysbiosis and T2DM or liver disease, with special attention to the importance of diet. Additionally, we review the most commonly used tools and methodologies of investigating changes in the gut microbiome, highlighting the advantages and limitations of each strategy, before introducing a novel in vitro approach to the problem. Finally, the review offers recommendations for future research in this field that will allow better understanding of how the gut microbiota affects disease progression and of the prospects for intestinal microbiota-based therapeutic options.
Collapse
Affiliation(s)
- Asha Guraka
- University of Derby, College of Science and Engineering, Derby, DE22 1GB, United Kingdom
| | - Sreejesh Sreedharan
- University of Derby, College of Science and Engineering, Derby, DE22 1GB, United Kingdom
| | - Ramesh Arasaradnam
- University of Warwick, Warick Medical School, Warwick, CV4 7AL, United Kingdom
| | - Gyan Tripathi
- Nottingham Trent University, School of Science and Technology, Nottingham, NG18 5BH, United Kingdom
| | - Ali Kermanizadeh
- University of Derby, College of Science and Engineering, Derby, DE22 1GB, United Kingdom
| |
Collapse
|
43
|
Zheng R, Xiang X, Shi Y, Xie J, Xing L, Zhang T, Zhou Z, Zhang D. Gut microbiota and mycobiota change with feeding duration in mice on a high-fat and high-fructose diet. BMC Microbiol 2024; 24:504. [PMID: 39609794 PMCID: PMC11606092 DOI: 10.1186/s12866-024-03663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease (NAFLD), is becoming the most common chronic liver disease. The gut microbiome is regarded to play a crucial role in MAFLD, but the specific changes of gut microbiome, especially fungi, in different stages of MAFLD are not well understood. This study aimed to observe the longitudinal changes of colon bacteria and fungi of mice at different feeding duration of a high-fat and high-fructose diet (HFHFD), and explore the association between the changes and the progression of MAFLD. METHODS Twenty-eight male C57BL6J mice were randomly assigned to the normal diet (ND) group and HFHFD group. At the 8th and 16th weeks, mice were sacrificed to compare the diversity, composition, and co-abundance network of bacteria and fungi in colon contents among groups. RESULTS HFHFD-8W mice exhibited increases in Candida and Dorea, and decreases in Oscillospira and Prevotella in comparison to ND-8W mice, HFHFD-16W mice had increases in Bacteroides, Candida, Desulfovibrio, Dorea, Lactobacillus, and Rhodotorula, and decreases in Akkermansia, Aspergillus, Sterigmatomyces, and Vishniacozyma in comparison to ND-16W mice. And compared to HFHFD-8W mice, HFHFD-16W mice had increases in Desulfovibrio, Lactobacillus, Penicillium, and Rhodotorula, and decreases in Talaromyces and Wallemia. Spearman and GEE correlation analysis revealed that Bacteroides, Candida, Desulfovibrio, and Lactobacillus positively correlated with NAFLD activity score (NAS). CONCLUSION Gut microbiota and mycobiota undergo diverse changes at different stages of MAFLD. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Ruoyi Zheng
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, China
| | - Xingwei Xiang
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Ying Shi
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Junyan Xie
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Lin Xing
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Tao Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Zhijun Zhou
- Medical Animal Center, Xiangya Medical School, Central South University, Changsha, China.
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| |
Collapse
|
44
|
Beldie LA, Dica CC, Moța M, Pirvu BF, Burticală MA, Mitrea A, Clenciu D, Efrem IC, Vladu BE, Timofticiuc DCP, Roșu MM, Gheonea TC, Amzolini AM, Moța E, Vladu IM. The Interactions Between Diet and Gut Microbiota in Preventing Gestational Diabetes Mellitus: A Narrative Review. Nutrients 2024; 16:4131. [PMID: 39683525 DOI: 10.3390/nu16234131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Recent studies have revealed that dysbiosis, defined as alterations in gut microbiota, plays an important role in the development and the progression of many non-communicable diseases, including metabolic disorders, such as type 2 diabetes mellitus and gestational diabetes mellitus (GDM). The high frequency of GDM makes this disorder an important public health issue, which needs to be addressed in order to reduce both the maternal and fetal complications that are frequently associated with this disease. The studies regarding the connections between gut dysbiosis and GDM are still in their early days, with new research continuously emerging. This narrative review seeks to outline the mechanisms through which a healthy diet that protects the gut microbiota is able to prevent the occurrence of GDM, thus providing medical nutritional therapeutic perspectives for the management of GDM.
Collapse
Affiliation(s)
- Luiza-Andreea Beldie
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Cristina-Camelia Dica
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Maria Moța
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Bianca-Florentina Pirvu
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Marilena-Alexandra Burticală
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Adina Mitrea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Diana Clenciu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ion Cristian Efrem
- Department of Medical Semiology, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Beatrice Elena Vladu
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Diana Cristina Protasiewicz Timofticiuc
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Midwives and Nursing, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Maria Magdalena Roșu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Midwives and Nursing, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Theodora Claudia Gheonea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca Maria Amzolini
- Department of Medical Semiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Eugen Moța
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ionela Mihaela Vladu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
45
|
Arrari F, Ortiz-Flores RM, Lhamyani S, Garcia-Fuentes E, Jabri MA, Sebai H, Bermudez-Silva FJ. Protective Effects of Spirulina Against Lipid Micelles and Lipopolysaccharide-Induced Intestinal Epithelium Disruption in Caco-2 Cells: In Silico Molecular Docking Analysis of Phycocyanobilin. Nutrients 2024; 16:4074. [PMID: 39683467 DOI: 10.3390/nu16234074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Damage to intestinal epithelial cells is present in obesity and other diseases because of inflammatory and oxidative processes. This damage compromises the gastrointestinal barrier, killing enterocytes, altering intestinal permeability, and eliciting abnormal immune responses that promote chronic inflammation. Recent evidence shows that spirulina is a potent natural agent with antioxidant and anti-inflammatory properties. OBJECTIVES This study was conducted to evaluate the effect of spirulina aqueous extract (SPAE) on the alterations of the intestinal epithelium induced by lipid micelles (LMs) and/or inflammation induced by lipopolysaccharides (LPSs) in the Caco-2 cell line. METHODS In the current research, we assessed the protective actions of SPAE against cytotoxicity, oxidative stress, inflammation, and epithelial barrier perturbation by using an in vitro model, the intestinal Caco-2 cells, treated with LPSs and/or LMs. We also performed an in silico molecular docking analysis with spirulina's bioactive compound, phycocyanobilin. RESULTS Our results showed that SPAE has no cytotoxic effect on Caco-2 cells. On the contrary, it improved cell viability and exhibited anti-inflammatory and antioxidant actions. SPAE also protected against endoplasmic reticulum stress and tight junction proteins, thus improving the epithelial barrier. The in silico study revealed a strong binding affinity of the phycocyanobilin compound with human SOD and NADPH oxidase and a good binding affinity towards COX-2 and iNOS. CONCLUSIONS Taken together, these findings demonstrate the beneficial actions of SPAE on Caco-2 cells, suggesting it may be useful in preserving the epithelial intestinal barrier in human conditions involving oxidative stress and inflammation such as obesity.
Collapse
Affiliation(s)
- Fatma Arrari
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia
| | - Rodolfo-Matias Ortiz-Flores
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Regional Universitario de Malaga, UGC Endocrinología y Nutricion, 29009 Malaga, Spain
| | - Said Lhamyani
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Regional Universitario de Malaga, UGC Endocrinología y Nutricion, 29009 Malaga, Spain
| | - Eduardo Garcia-Fuentes
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Virgen de la Victoria, UGC de Aparato Digestivo, 29010 Malaga, Spain
| | - Mohamed-Amine Jabri
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia
| | - Francisco-Javier Bermudez-Silva
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Regional Universitario de Malaga, UGC Endocrinología y Nutricion, 29009 Malaga, Spain
| |
Collapse
|
46
|
Huwart SJP, Fayt C, Gangarossa G, Luquet S, Cani PD, Everard A. TLR4-dependent neuroinflammation mediates LPS-driven food-reward alterations during high-fat exposure. J Neuroinflammation 2024; 21:305. [PMID: 39580436 PMCID: PMC11585241 DOI: 10.1186/s12974-024-03297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Obesity has become a global pandemic, marked by significant shifts in both the homeostatic and hedonic/reward aspects of food consumption. While the precise causes are still under investigation, recent studies have identified the role of gut microbes in dysregulating the reward system within the context of obesity. Unravelling these gut-brain connections is crucial for developing effective interventions against eating and metabolic disorders, particularly in the context of obesity. This study explores the causal role of LPS, as a key relay of microbiota component-induced neuroinflammation in the dysregulation of the reward system following exposure to high-fat diet (HFD). METHODS Through a series of behavioural paradigms related to food-reward events and the use of pharmacological agents targeting the dopamine circuit, we investigated the mechanisms associated with the development of reward dysregulation during HFD-feeding in male mice. A Toll-like receptor 4 (TLR4) full knockout model and intraventricular lipopolysaccharide (LPS) diffusion at low doses, which mimics the obesity-associated neuroinflammatory phenotype, were used to investigate the causal roles of gut microbiota-derived components in neuroinflammation and reward dysregulation. RESULTS Our study revealed that short term exposure to HFD (24 h) tended to affect food-seeking behaviour, and this effect became significant after 1 week of HFD. Moreover, we found that deletion of TLR4 induced a partial protection against HFD-induced neuroinflammation and reward dysregulation. Finally, chronic brain diffusion of LPS recapitulated, at least in part, HFD-induced molecular and behavioural dysfunctions within the reward system. CONCLUSIONS These findings highlight a link between the neuroinflammatory processes triggered by the gut microbiota components LPS and the dysregulation of the reward system during HFD-induced obesity through the TLR4 pathway, thus paving the way for future therapeutic approaches.
Collapse
Affiliation(s)
- Sabrina J P Huwart
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, Brussels, B-1200, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium
| | - Clémence Fayt
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, Brussels, B-1200, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, F-75013, France
- Institut Universitaire de France (IUF), Paris, France
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, F-75013, France
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, Brussels, B-1200, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 Box B1.73.11, Brussels, B-1200, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium.
| |
Collapse
|
47
|
Patloka O, Komprda T, Franke G. Review of the Relationships Between Human Gut Microbiome, Diet, and Obesity. Nutrients 2024; 16:3996. [PMID: 39683390 DOI: 10.3390/nu16233996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is a complex disease that increases the risk of other pathologies. Its prevention and long-term weight loss maintenance are problematic. Gut microbiome is considered a potential obesity modulator. The objective of the present study was to summarize recent findings regarding the relationships between obesity, gut microbiota, and diet (vegetable/animal proteins, high-fat diets, restriction of carbohydrates), with an emphasis on dietary fiber and resistant starch. The composition of the human gut microbiome and the methods of its quantification are described. Products of the gut microbiome metabolism, such as short-chain fatty acids and secondary bile acids, and their effects on the gut microbiota, intestinal barrier function and immune homeostasis are discussed in the context of obesity. The importance of dietary fiber and resistant starch is emphasized as far as effects of the host diet on the composition and function of the gut microbiome are concerned. The complex relationships between human gut microbiome and obesity are finally summarized.
Collapse
Affiliation(s)
- Ondřej Patloka
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Tomáš Komprda
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Gabriela Franke
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
48
|
Liu Y, Zhang Y, Zhang J, Ren S, Cao Q, Kong H, Xu Q, Liu R. High-fat diet stimulated butyric acid metabolism dysbiosis, altered microbiota, and aggravated inflammatory response in collagen-induced arthritis rats. Nutr Metab (Lond) 2024; 21:95. [PMID: 39563394 DOI: 10.1186/s12986-024-00869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Research has demonstrated that obesity may be associated with rheumatoid arthritis (RA). In addition, Dysbiosis of intestinal microbiota and their metabolites has been linked to the occurrence and development of RA and obesity. However, the mechanism by which obesity affects RA remains unclear.In this study, we explored the impact of high fat diet(HFD) on collagen-induced arthritis (CIA) rats and revealed its mechanisms based on gut microbiota and metabolomics. METHODS Based on diet and modeling, rats were divided into normal group (Con), CIA model group, HFD group (HFD), and HFD + CIA group (HCIA). The effect of HFD on arthritis in CIA rats were investigated based on the arthritis index (AI), weight, blood lipid levels, and inflammatory cytokines. Moreover, HE staining and micro-CT were performed to evaluated the effect of HFD on the pathology of joints and synovial tissues in CIA rats.16S rRNA amplicon sequencing and liquid chromatography-mass spectrometry (LC-MS) were employed to explore changes in gut microbiota and short-chain fatty acids (SCFAs). RESULTS The AI scores, inflammatory cytokines and bone destruction parameters in the HCIA group were significantly higher than those in the other three groups. The results of 16S rRNA amplicon sequencing and metabolomics showed that compared with the other three groups, the expression of g_Muribaculaceae and butyric acid were reduced in the HCIA group. Spearman and linear correlation analyses revealed a positive correlation between g_Muribaculaceae abundance and butyric acid levels. CONCLUSIONS HFD stimulated butyric acid metabolism dysbiosis, altered microbiota, and aggravated inflammatory response in CIA rats.
Collapse
Affiliation(s)
- Yantong Liu
- Department of Traditional Chinese Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yang Zhang
- Department of Traditional Chinese Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jie Zhang
- Department of Traditional Chinese Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shuang Ren
- Department of Traditional Chinese Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qi Cao
- School of Acupuncture-Moxibustion and Tuina, Liaoning University of Traditional Chinese Medicine, Shenyang, 110001, China
| | - Hongxi Kong
- Department of Traditional Chinese Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qiangqiang Xu
- Department of Traditional Chinese Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ruoshi Liu
- Department of Traditional Chinese Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
49
|
Narum M, Seljeflot I, Bratseth V, Berg TJ, Sveen KA. Intestinal fatty acid binding protein is associated with coronary artery disease in long-term type 1 diabetes-the Dialong study. Cardiovasc Diabetol 2024; 23:419. [PMID: 39563343 PMCID: PMC11575117 DOI: 10.1186/s12933-024-02509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Individuals with type 1 diabetes are at increased risk of accelerated atherosclerosis, causing coronary artery disease (CAD). The underlying mechanisms remain unclear, but new theories proposed are damage of gut mucosa causing leakage and translocation of gut microbiota products into the circulation, leading to inflammatory responses and atherosclerosis. We therefore aimed to study the associations between gut related inflammatory biomarkers and coronary atherosclerosis in individuals with long-term type 1 diabetes. METHODS In this cross-sectional, controlled study of 102 participants with type 1 diabetes and 63 control subjects, we measured circulating levels of intestinal fatty acid binding protein (I-FABP), soluble cluster of differentiation 14 (sCD14), lipopolysaccharide binding protein (LBP) and interleukin 18 (IL-18) by enzyme-linked immunosorbent assay (ELISA), and further gene expression of CD14 and toll-like receptor 4 (TLR4) by real time PCR in circulating leukocytes and peripheral blood mononuclear cells (PBMCs). The participants had either established coronary heart disease (CHD) or underwent computed tomography coronary angiography (CTCA) to assess for coronary atherosclerosis, including total, calcified and soft/mixed plaque volumes. RESULTS In the diabetes group, the levels of I-FABP were significantly higher in participants with established CHD or significant stenosis on CTCA compared to the participants with normal arteries or non-significant stenosis, with median 1.67 ng/ml (interquartile range [IQR] 1.02-2.32) vs. median 1.09 ng/ml (IQR 0.82-1.58), p = 0.003. I-FABP was associated with significant coronary artery stenosis by CTCA (> 50%) or previously established CHD in the adjusted analysis (odds ratio [OR] = 2.32, 95% confidence interval [CI]: 1.09-4.95; p = 0.029). The levels of I-FABP correlated also to total coronary plaque volume (r = 0.22, p < 0.05). This association remained significant after adjusting for age, sex, persistent albuminuria, eGFR, statin treatment, diabetes duration and mean time-weighted variables; HbA1c, LDL-cholesterol and systolic blood pressure (OR = 1.97, 95% CI: 1.28-3.01; p = 0.002). CONCLUSIONS In this cohort of individuals with long-term type 1 diabetes I-FABP associated significantly with coronary artery stenosis, suggesting a potential role of gut mucosa damage in the process of atherosclerosis in type 1 diabetes.
Collapse
Affiliation(s)
- Marte Narum
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ingebjørg Seljeflot
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway
| | - Vibeke Bratseth
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway
| | - Tore Julsrud Berg
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kari Anne Sveen
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
50
|
Javaid A, Omar N, Ahmad R, Mat Zin AA, Che Romli A, Isah Tsamiya R. Paederia foetida Ameliorates Diabetic Cardiomyopathy in Rats Models by Suppressing Apoptosis. PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE 2024; 47:1473-1489. [DOI: 10.47836/pjtas.47.4.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Diabetes mellitus is one of the most prevalent global public health issues associated with a higher risk of cardiovascular diseases, contributing to morbidity and mortality. Research has demonstrated that elevated reactive oxygen species (ROS) generation in diabetes can trigger apoptosis, exacerbating diabetic cardiomyopathy (DCM). This study investigates the cardioprotective effects of Paederia foetida in rats’ models of type 2 diabetes induced by a high-fat diet (HFD) and streptozotocin (STZ) treatment. The diabetic model was established in Sprague Dawley rats by intraperitoneal injection of streptozotocin (STZ, 40 mg/kg). Sprague Dawley rats were treated with varied concentrations of standardized extract of P. foetida (50 mg/kg and 100 mg/kg), administered orally once daily for four weeks. Standardized extract from P. foetida has a range of therapeutic potential, including anti-inflammatory, antioxidant, and anti-diabetic properties. The common metabolic disorder indices and myocardial apoptosis were investigated. The findings from this study demonstrated increased expression of Bcl-2 and decreased expression of Bcl-2 Associated X-protein BAX as indicated by IRS scoring in cardiomyocytes, suggesting that P. foetida has a significant protective effect on diabetic cardiomyopathy by decreasing apoptosis. Increased Bcl-2 and decreased BAX levels may be related to regulating oxidative stress and mitochondrial pathways involving myocardial apoptosis. P. foetida extract could be a potential intervention for attenuating cardiomyopathy in diabetes mellitus.
Collapse
|