1
|
Fang YJ, Lee WY, Lin CL, Cheah YC, Hsieh HH, Chen CH, Tsai FJ, Tien N, Lim YP. Association of antipsychotic drugs on type 2 diabetes mellitus risk in patients with schizophrenia: a population-based cohort and in vitro glucose homeostasis-related gene expression study. BMC Psychiatry 2024; 24:751. [PMID: 39472855 PMCID: PMC11524027 DOI: 10.1186/s12888-024-06222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and its related complications are associated with schizophrenia. However, the relationship between antipsychotic medications (APs) and T2DM risk remains unclear. In this population-based, retrospective cohort study across the country, we investigated schizophrenia and the effect of APs on the risk of T2DM, and glucose homeostasis-related gene expression. METHODS We used information from the Longitudinal Health Insurance Database of Taiwan for individuals newly diagnosed with schizophrenia (N = 4,606) and a disease-free control cohort (N = 4,606). The differences in rates of development of T2DM between the two cohorts were assessed using a Cox proportional hazards regression model. The effects of APs on the expression of glucose homeostasis-related genes in liver and muscle cell lines were assessed using quantitative real-time PCR. RESULTS After controlling potential associated confounding factors, the risk of T2DM was higher in the case group than that in the control group [adjusted hazard ratio (aHR), 1.80, p < 0.001]. Moreover, the likelihood of T2DM incidence in patients with schizophrenia without AP treatment (aHR, 2.83) was significantly higher than that in non-schizophrenia controls and those treated with APs (aHR ≤ 0.60). In an in vitro model, most APs did not affect the expression of hepatic gluconeogenesis genes but upregulated those beneficial for glucose homeostasis in muscle cells. CONCLUSION This study demonstrates the impact of schizophrenia and APs and the risk of developing T2DM in Asian populations. Unmeasured confounding risk factors for T2DM may not have been included in the study. These findings may help psychiatric practitioners identify patients at risk of developing T2DM.
Collapse
Affiliation(s)
- Yi-Jen Fang
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung-Hsing University, Taichung, Taiwan
- Digestive Disease Center, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Wan-Yi Lee
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- Department of Pharmacy, College of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist, Taichung City, 406040, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Cun Cheah
- Department of Pharmacy, College of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist, Taichung City, 406040, Taiwan
| | - Hui-Hsia Hsieh
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- Department of Pharmacy, College of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist, Taichung City, 406040, Taiwan
| | - Chi-Hua Chen
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist, Taichung City, 406040, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
2
|
Jamshed L, Jamshed S, Frank RA, Hewitt LM, Thomas PJ, Holloway AC. Assessing Receptor Activation in 2D and 3D Cultured Hepatocytes: Responses to a Single Compound and a Complex Mixture. TOXICS 2024; 12:631. [PMID: 39330559 PMCID: PMC11436198 DOI: 10.3390/toxics12090631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024]
Abstract
Responding to global standards and legislative updates in Canada, including Bill S-5 (2023), toxicity testing is shifting towards more ethical, in vitro methods. Traditional two-dimensional (2D) monolayer cell cultures, limited in replicating the complex in vivo environment, have prompted the development of more relevant three-dimensional (3D) spheroidal hepatocyte cultures. This study introduces the first 3D spheroid model for McA-RH7777 cells, assessing xenobiotic receptor activation, cellular signaling, and toxicity against dexamethasone and naphthenic acid (NA)-fraction components; NAFCs. Our findings reveal that 3D McA-RH7777 spheroids demonstrate enhanced sensitivity and more uniform dose-response patterns in gene expression related to xenobiotic metabolism (AhR and PPAR) for both single compounds and complex mixtures. Specifically, 3D cultures showed significant gene expression changes upon dexamethasone exposure and exhibited varying degrees of sensitivity and resistance to the apoptotic effects induced by NAFCs, in comparison to 2D cultures. The optimization of 3D culture conditions enhances the model's physiological relevance and enables the identification of genomic signatures under varied exposures. This study highlights the potential of 3D spheroid cultures in providing a more accurate representation of the liver's microenvironment and advancing our understanding of cellular mechanisms in toxicity testing.
Collapse
Affiliation(s)
- Laiba Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada; (L.J.); (S.J.)
| | - Shanza Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada; (L.J.); (S.J.)
| | - Richard A. Frank
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada; (R.A.F.); (L.M.H.)
| | - L. Mark Hewitt
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada; (R.A.F.); (L.M.H.)
| | - Philippe J. Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON K1S 5B6, Canada;
| | - Alison C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada; (L.J.); (S.J.)
| |
Collapse
|
3
|
Machi JF, Altilio I, Qi Y, Morales AA, Silvestre DH, Hernandez DR, Da Costa-Santos N, Santana AG, Neghabi M, Nategh P, Castro TL, Werneck-de-Castro JP, Ranji M, Evangelista FS, Vazquez-Padron RI, Bernal-Mizrachi E, Rodrigues CO. Endothelial c-Myc knockout disrupts metabolic homeostasis and triggers the development of obesity. Front Cell Dev Biol 2024; 12:1407097. [PMID: 39100099 PMCID: PMC11294153 DOI: 10.3389/fcell.2024.1407097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction: Obesity is a major risk factor associated with multiple pathological conditions including diabetes and cardiovascular disease. Endothelial dysfunction is an early predictor of obesity. However, little is known regarding how early endothelial changes trigger obesity. In the present work we report a novel endothelial-mediated mechanism essential for regulation of metabolic homeostasis, driven by c-Myc. Methods: We used conditional knockout (EC-Myc KO) and overexpression (EC-Myc OE) mouse models to investigate the endothelial-specific role of c-Myc in metabolic homeostasis during aging and high-fat diet exposure. Body weight and metabolic parameters were collected over time and tissue samples collected at endpoint for biochemical, pathology and RNA-sequencing analysis. Animals exposed to high-fat diet were also evaluated for cardiac dysfunction. Results: In the present study we demonstrate that EC-Myc KO triggers endothelial dysfunction, which precedes progressive increase in body weight during aging, under normal dietary conditions. At endpoint, EC-Myc KO animals showed significant increase in white adipose tissue mass relative to control littermates, which was associated with sex-specific changes in whole body metabolism and increase in systemic leptin. Overexpression of endothelial c-Myc attenuated diet-induced obesity and visceral fat accumulation and prevented the development of glucose intolerance and cardiac dysfunction. Transcriptome analysis of skeletal muscle suggests that the protective effects promoted by endothelial c-Myc overexpression are associated with the expression of genes known to increase weight loss, energy expenditure and glucose tolerance. Conclusion: Our results show a novel important role for endothelial c-Myc in regulating metabolic homeostasis and suggests its potential targeting in preventing obesity and associated complications such as diabetes type-2 and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Jacqueline F. Machi
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Isabella Altilio
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Yue Qi
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Alejo A. Morales
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Diego H. Silvestre
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Diana R. Hernandez
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nicolas Da Costa-Santos
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Aline G. Santana
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Mehrnoosh Neghabi
- Department of Electrical Engineering and Computer Science, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Parisa Nategh
- Department of Electrical Engineering and Computer Science, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Thiago L. Castro
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - João P. Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Mahsa Ranji
- Department of Electrical Engineering and Computer Science, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, United States
| | | | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Claudia O. Rodrigues
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
4
|
Meng X, Wang L, Du YC, Cheng D, Zeng T. PPARβ/δ as a promising molecular drug target for liver diseases: A focused review. Clin Res Hepatol Gastroenterol 2024; 48:102343. [PMID: 38641250 DOI: 10.1016/j.clinre.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Various liver diseases pose great threats to humans. Although the etiologies of these liver diseases are quite diverse, they share similar pathologic phenotypes and molecular mechanisms such as oxidative stress, lipid and glucose metabolism disturbance, hepatic Kupffer cell (KC) proinflammatory polarization and inflammation, insulin resistance, and hepatic stellate cell (HSC) activation and proliferation. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is expressed in various types of liver cells with relatively higher expression in KCs and HSCs. Accumulating evidence has revealed the versatile functions of PPARβ/δ such as controlling lipid homeostasis, inhibiting inflammation, regulating glucose metabolism, and restoring insulin sensitivity, suggesting that PPARβ/δ may serve as a potential molecular drug target for various liver diseases. This article aims to provide a concise review of the structure, expression pattern and biological functions of PPARβ/δ in the liver and its roles in various liver diseases, and to discuss potential future research perspectives.
Collapse
Affiliation(s)
- Xin Meng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lin Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yan-Chao Du
- Jinan Institute for Product Quality Inspection, Jinan, Shandong 250102, China
| | - Dong Cheng
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Chasseigneaux S, Cochois-Guégan V, Lecorgne L, Lochus M, Nicolic S, Blugeon C, Jourdren L, Gomez-Zepeda D, Tenzer S, Sanquer S, Nivet-Antoine V, Menet MC, Laplanche JL, Declèves X, Cisternino S, Saubaméa B. Fasting upregulates the monocarboxylate transporter MCT1 at the rat blood-brain barrier through PPAR δ activation. Fluids Barriers CNS 2024; 21:33. [PMID: 38589879 PMCID: PMC11003008 DOI: 10.1186/s12987-024-00526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) is pivotal for the maintenance of brain homeostasis and it strictly regulates the cerebral transport of a wide range of endogenous compounds and drugs. While fasting is increasingly recognized as a potential therapeutic intervention in neurology and psychiatry, its impact upon the BBB has not been studied. This study was designed to assess the global impact of fasting upon the repertoire of BBB transporters. METHODS We used a combination of in vivo and in vitro experiments to assess the response of the brain endothelium in male rats that were fed ad libitum or fasted for one to three days. Brain endothelial cells were acutely purified and transcriptionaly profiled using RNA-Seq. Isolated brain microvessels were used to assess the protein expression of selected BBB transporters through western blot. The molecular mechanisms involved in the adaptation to fasting were investigated in primary cultured rat brain endothelial cells. MCT1 activity was probed by in situ brain perfusion. RESULTS Fasting did not change the expression of the main drug efflux ATP-binding cassette transporters or P-glycoprotein activity at the BBB but modulated a restrictive set of solute carrier transporters. These included the ketone bodies transporter MCT1, which is pivotal for the brain adaptation to fasting. Our findings in vivo suggested that PPAR δ, a major lipid sensor, was selectively activated in brain endothelial cells in response to fasting. This was confirmed in vitro where pharmacological agonists and free fatty acids selectively activated PPAR δ, resulting in the upregulation of MCT1 expression. Moreover, dosing rats with a specific PPAR δ antagonist blocked the upregulation of MCT1 expression and activity induced by fasting. CONCLUSIONS Altogether, our study shows that fasting affects a selected set of BBB transporters which does not include the main drug efflux transporters. Moreover, we describe a previously unknown selective adaptive response of the brain vasculature to fasting which involves PPAR δ and is responsible for the up-regulation of MCT1 expression and activity. Our study opens new perspectives for the metabolic manipulation of the BBB in the healthy or diseased brain.
Collapse
Affiliation(s)
- Stéphanie Chasseigneaux
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Véronique Cochois-Guégan
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Lucas Lecorgne
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Murielle Lochus
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Sophie Nicolic
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Corinne Blugeon
- Département de biologie, GenomiqueENS, Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Laurent Jourdren
- Département de biologie, GenomiqueENS, Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - David Gomez-Zepeda
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON Mainz), A Hemlholtz Institute of the DKFZ, Mainz, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division 191, 69120, Heidelberg, Germany
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Stefan Tenzer
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON Mainz), A Hemlholtz Institute of the DKFZ, Mainz, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division 191, 69120, Heidelberg, Germany
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | | | - Valérie Nivet-Antoine
- AP-HP Biochimie générale, Hôpital Necker Enfants Malades, Université Paris Cité, Inserm, Innovations Thérapeutiques en Hémostase, Paris, France
| | - Marie-Claude Menet
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, 91400, Orsay, France
| | - Jean-Louis Laplanche
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Xavier Declèves
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Salvatore Cisternino
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Bruno Saubaméa
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France.
| |
Collapse
|
6
|
Yen IW, Lin SY, Lin MW, Lee CN, Kuo CH, Chen SC, Tai YY, Kuo CH, Kuo HC, Lin HH, Juan HC, Lin CH, Fan KC, Wang CY, Li HY. The association between plasma angiopoietin-like protein 4, glucose and lipid metabolism during pregnancy, placental function, and risk of delivering large-for-gestational-age neonates. Clin Chim Acta 2024; 554:117775. [PMID: 38220135 DOI: 10.1016/j.cca.2024.117775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Large-for-gestational-age (LGA) neonates have increased risk of adverse pregnancy outcomes and adult metabolic diseases. We aimed to investigate the relationship between plasma angiopoietin-like protein 4 (ANGPTL4), a protein involved in lipid and glucose metabolism during pregnancy, placental function, growth factors, and the risk of LGA. METHODS We conducted a prospective cohort study and recruited women with singleton pregnancies at the National Taiwan University Hospital between 2013 and 2018. First trimester maternal plasma ANGPTL4 concentrations were measured. RESULTS Among 353 pregnant women recruited, the LGA group had higher first trimester plasma ANGPTL4 concentrations than the appropriate-for-gestational-age group. Plasma ANGPTL4 was associated with hemoglobin A1c, post-load plasma glucose, plasma triglyceride, plasma free fatty acid concentrations, plasma growth hormone variant (GH-V), and birth weight, but was not associated with cord blood growth factors. After adjusting for age, body mass index, hemoglobin A1c, and plasma triglyceride concentrations, plasma ANGPTL4 concentrations were significantly associated with LGA risk, and its predictive performance, as measured by the area under the receiver operating characteristic curve, outperformed traditional risk factors for LGA. CONCLUSIONS Plasma ANGPTL4 is associated with glucose and lipid metabolism during pregnancy, plasma GH-V, and birth weight, and is an early biomarker for predicting the risk of LGA.
Collapse
Affiliation(s)
- I-Weng Yen
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu County, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Wei Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu County, Taiwan
| | - Chien-Nan Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Heng Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | | | - Yi-Yun Tai
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Heng-Huei Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsien-Chia Juan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hung Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, Taiwan
| | - Kang-Chih Fan
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu County, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yuan Wang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, Taiwan
| | - Hung-Yuan Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, Taiwan.
| |
Collapse
|
7
|
Colosimo S, Mitra SK, Chaudhury T, Marchesini G. Insulin resistance and metabolic flexibility as drivers of liver and cardiac disease in T2DM. Diabetes Res Clin Pract 2023; 206:111016. [PMID: 37979728 DOI: 10.1016/j.diabres.2023.111016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Metabolic flexibility refers to the ability of tissues to adapt their use of energy sources according to substrate availability and energy demands. This review aims to disentangle the emerging mechanisms through which altered metabolic flexibility and insulin resistance promote NAFLD and heart disease progression. Insulin resistance and metabolic inflexibility are central drivers of hepatic and cardiac diseases in individuals with type 2 diabetes. Both play a critical role in the complex interaction between glucose and lipid metabolism. Disruption of metabolic flexibility results in hyperglycemia and abnormal lipid metabolism, leading to increased accumulation of fat in the liver, contributing to the development and progression of NAFLD. Similarly, insulin resistance affects cardiac glucose metabolism, leading to altered utilization of energy substrates and impaired cardiac function, and influence cardiac lipid metabolism, further exacerbating the progression of heart failure. Regular physical activity promotes metabolic flexibility by increasing energy expenditure and enabling efficient switching between different energy substrates. On the contrary, weight loss achieved through calorie restriction ameliorates insulin sensitivity without improving flexibility. Strategies that mimic the effects of physical exercise, such as pharmacological interventions or targeted lifestyle modifications, show promise in effectively treating both diabetes and NAFLD, finally reducing the risk of advanced liver disease.
Collapse
Affiliation(s)
- Santo Colosimo
- School of Nutrition Science, University of Milan, Milan, Italy
| | - Sandip Kumar Mitra
- Diabetes and Endocrinology Unit, Apollo Gleneagles Hospital, Kolkata, West Bengal, India
| | - Tirthankar Chaudhury
- Diabetes and Endocrinology Unit, Apollo Gleneagles Hospital, Kolkata, West Bengal, India
| | - Giulio Marchesini
- IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant'Orsola, Bologna, Italy.
| |
Collapse
|
8
|
Witz A, Effertz D, Goebel N, Schwab M, Franke UFW, Torzewski M. Pro-Calcifying Role of Enzymatically Modified LDL (eLDL) in Aortic Valve Sclerosis via Induction of IL-6 and IL-33. Biomolecules 2023; 13:1091. [PMID: 37509127 PMCID: PMC10377083 DOI: 10.3390/biom13071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
One of the contributors to atherogenesis is enzymatically modified LDL (eLDL). eLDL was detected in all stages of aortic valve sclerosis and was demonstrated to trigger the activation of p38 mitogen-activated protein kinase (p38 MAPK), which has been identified as a pro-inflammatory protein in atherosclerosis. In this study, we investigated the influence of eLDL on IL-6 and IL-33 induction, and also the impact of eLDL on calcification in aortic valve stenosis (AS). eLDL upregulated phosphate-induced calcification in valvular interstitial cells (VICs)/myofibroblasts isolated from diseased aortic valves, as demonstrated by alizarin red staining. Functional studies demonstrated activation of p38 MAPK as well as an altered gene expression of osteogenic genes known to be involved in vascular calcification. In parallel with the activation of p38 MAPK, eLDL also induced upregulation of the cytokines IL-6 and IL-33. The results suggest a pro-calcifying role of eLDL in AS via induction of IL-6 and IL-33.
Collapse
Affiliation(s)
- Annemarie Witz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Denise Effertz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Nora Goebel
- Department of Cardiovascular Surgery, Robert-Bosch-Hospital, 70376 Stuttgart, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- Department of Clinical Pharmacology, University of Tuebingen, 72076 Tuebingen, Germany
- Department of Biochemistry and Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany
| | - Ulrich F W Franke
- Department of Cardiovascular Surgery, Robert-Bosch-Hospital, 70376 Stuttgart, Germany
| | - Michael Torzewski
- Department of Laboratory Medicine and Hospital Hygiene, Robert-Bosch-Hospital, 70376 Stuttgart, Germany
| |
Collapse
|
9
|
Leone P, Solimando AG, Prete M, Malerba E, Susca N, Derakhshani A, Ditonno P, Terragna C, Cavo M, Silvestris N, Racanelli V. Unraveling the Role of Peroxisome Proliferator-Activated Receptor β/Δ (PPAR β/Δ) in Angiogenesis Associated with Multiple Myeloma. Cells 2023; 12:cells12071011. [PMID: 37048084 PMCID: PMC10093382 DOI: 10.3390/cells12071011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Growing evidence suggests a role for peroxisome proliferator-activated receptor β/δ (PPAR β/δ) in the angiogenesis, growth, and metastasis of solid tumors, but little is known about its role in multiple myeloma (MM). Angiogenesis in the bone marrow (BM) is characteristic of disease transition from monoclonal gammopathy of undetermined significance (MGUS) to MM. We examined the expression and function of PPAR β/δ in endothelial cells (EC) from the BM of MGUS (MGEC) and MM (MMEC) patients and showed that PPAR β/δ was expressed at higher levels in MMEC than in MGEC and that the overexpression depended on myeloma plasma cells. The interaction between myeloma plasma cells and MMEC promoted the release of the PPAR β/δ ligand prostaglandin I2 (PGI2) by MMEC, leading to the activation of PPAR β/δ. We also demonstrated that PPAR β/δ was a strong stimulator of angiogenesis in vitro and that PPAR β/δ inhibition by a specific antagonist greatly impaired the angiogenic functions of MMEC. These findings define PGI2-PPAR β/δ signaling in EC as a potential target of anti-angiogenic therapy. They also sustain the use of PPAR β/δ inhibitors in association with conventional drugs as a new therapeutic approach in MM.
Collapse
|
10
|
Son Y, Lorenz WW, Paton CM. Linoleic acid-induced ANGPTL4 inhibits C2C12 skeletal muscle differentiation by suppressing Wnt/β-catenin. J Nutr Biochem 2023; 116:109324. [PMID: 36963729 DOI: 10.1016/j.jnutbio.2023.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/15/2023] [Accepted: 03/16/2023] [Indexed: 03/26/2023]
Abstract
Skeletal muscle differentiation is an essential process in embryonic development as well as regeneration and repair throughout the lifespan. It is well-known that dietary fat intake impacts biological and physiological function in skeletal muscle, however, understanding of the contribution of nutritional factors in skeletal muscle differentiation is limited. Therefore, the objective of the current study was to evaluate the effects of free fatty acids (FFAs) on skeletal muscle differentiation in vitro. We used C2C12 murine myoblasts and treated them with various FFAs, which revealed a unique response of angiopoietin-like protein-4 (ANGPTL4) with linoleic acid (LA) treatment that was associated with reduced differentiation. LA significantly inhibited myotube formation and lowered the protein expression of myogenic regulatory factors, including MyoD and MyoG and increased Pax7 during cell differentiation. Next, recombinant ANGPTL4 protein or siRNA knockdown of ANGPTL4 was employed to examine its role in skeletal muscle differentiation, and we confirmed that ANGPTL4 knockdown at day 2 and -6 of differentiation restored myotube formation in the presence of LA. RNA-sequencing analysis revealed that ANGPTL4-mediated inhibition of skeletal muscle differentiation at day 2 as well as LA at day 2 or -6 led to a reduction in Wnt/β-catenin signaling pathways. We confirmed that LA reduced Wnt11 and Axin2 while increasing expression of the Wnt inhibitor, Dkk2. ANGPTL4 knockdown increased β-catenin protein in the nucleus in response to LA and increased Axin2 and Wnt11 expression. Taken together, these results demonstrate that LA induced ANGPTL4 inhibits C2C12 differentiation by suppressing Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yura Son
- Department of Nutritional Sciences
| | - W Walter Lorenz
- Georgia Genomics and Bioinformatics Core and Institute of Bioinformatics
| | - Chad M Paton
- Department of Nutritional Sciences; Department of Food Science & Technology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
11
|
Górecka M, Krzemiński K, Mikulski T, Ziemba AW. ANGPTL4, IL-6 and TNF-α as regulators of lipid metabolism during a marathon run. Sci Rep 2022; 12:19940. [PMID: 36402848 PMCID: PMC9675781 DOI: 10.1038/s41598-022-17439-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to reveal whether marathon running influences regulators of lipid metabolism i.e. angiopoietin-like protein 4 (ANGPTL4), interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α). Plasma concentration of ANGPTL4, IL-6, TNF-α and lipids were determined in samples collected from 11 male runners before the marathon, immediately after the run and at 90 min of recovery. Plasma ANGPTL4 increased during exercise from 55.5 ± 13.4 to 78.1 ± 15.0 ng/ml (P < 0.001). This was accompanied by a significant increase in IL-6, TNF-α, free fatty acids (FFA) and glycerol (Gly) and a decrease in triacylglycerols (TG). After 90 min of recovery ANGPTL4 and TG did not differ from the exercise values, while plasma IL-6, TNF-α, FFA and Gly concentration were significantly lower. The exercise-induced increase in plasma concentration of ANGPTL4 correlated positively with the rise in plasma IL-6, TNF-α, FFA and Gly and negatively with the duration of the run. The increase in plasma IL-6 and TNF-α correlated positively with the rise in Gly. Summarizing, marathon running induced an increase in plasma ANGPTL4 and the value was higher in faster runners. The increase in plasma FFA, IL-6 and TNF-α concentration during a marathon run may be involved in plasma ANGPTL4 release, which could be a compensatory mechanism against FFA-induced lipotoxicity and oxidative stress. All of the analyzed cytokines may stimulate lipolysis during exercise.
Collapse
Affiliation(s)
- Monika Górecka
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Krzysztof Krzemiński
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Tomasz Mikulski
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Andrzej Wojciech Ziemba
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
12
|
Zamboni M, Mazzali G, Brunelli A, Saatchi T, Urbani S, Giani A, Rossi AP, Zoico E, Fantin F. The Role of Crosstalk between Adipose Cells and Myocytes in the Pathogenesis of Sarcopenic Obesity in the Elderly. Cells 2022; 11:3361. [PMID: 36359757 PMCID: PMC9655977 DOI: 10.3390/cells11213361] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2023] Open
Abstract
As a result of aging, body composition changes, with a decline in muscle mass and an increase in adipose tissue (AT), which reallocates from subcutaneous to visceral depots and stores ectopically in the liver, heart and muscles. Furthermore, with aging, muscle and AT, both of which have recognized endocrine activity, become dysfunctional and contribute, in the case of positive energy balance, to the development of sarcopenic obesity (SO). SO is defined as the co-existence of excess adiposity and low muscle mass and function, and its prevalence increases with age. SO is strongly associated with greater morbidity and mortality. The pathogenesis of SO is complex and multifactorial. This review focuses mainly on the role of crosstalk between age-related dysfunctional adipose and muscle cells as one of the mechanisms leading to SO. A better understanding of this mechanisms may be useful for development of prevention strategies and treatments aimed at reducing the occurrence of SO.
Collapse
Affiliation(s)
- Mauro Zamboni
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Gloria Mazzali
- Geriatrics Division, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Anna Brunelli
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Tanaz Saatchi
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Silvia Urbani
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Anna Giani
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Andrea P. Rossi
- Geriatrics Division, Department of Medicine, AULSS2, Ospedale Ca’Foncello, 31100 Treviso, Italy
| | - Elena Zoico
- Geriatrics Division, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Francesco Fantin
- Geriatrics Division, Department of Medicine, University of Verona, 37126 Verona, Italy
| |
Collapse
|
13
|
Son Y, Paton CM. A Review of free fatty acid-induced cell signaling, angiopoietin-like protein 4, and skeletal muscle differentiation. Front Physiol 2022; 13:987977. [PMID: 36148297 PMCID: PMC9485487 DOI: 10.3389/fphys.2022.987977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Postnatal skeletal muscle differentiation from quiescent satellite cells is a highly regulated process, although our understanding of the contribution of nutritional factors in myogenesis is limited. Free fatty acids (FFAs) are known to cause detrimental effects to differentiated skeletal muscle cells by increasing oxidative stress which leads to muscle wasting and insulin resistance in skeletal muscle. In addition, FFAs are thought to act as inhibitors of skeletal muscle differentiation. However, the precise molecular mechanisms underlying the effects of FFAs on skeletal muscle differentiation remains to be elucidated. There is a clear relationship between dietary FFAs and their ability to suppress myogenesis and we propose the hypothesis that the FFA-mediated increase in angiopoietin-like protein 4 (ANGPTL4) may play a role in the inhibition of differentiation. This review discusses the role of FFAs in skeletal muscle differentiation to-date and proposes potential mechanisms of FFA-induced ANGPTL4 mediated inhibition of skeletal muscle differentiation.
Collapse
Affiliation(s)
- Yura Son
- Department Nutritional Sciences, Athens, GA, United States
| | - Chad M. Paton
- Department Nutritional Sciences, Athens, GA, United States
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States
- *Correspondence: Chad M. Paton,
| |
Collapse
|
14
|
Ramanathan R, Ali AH, Ibdah JA. Mitochondrial Dysfunction Plays Central Role in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23137280. [PMID: 35806284 PMCID: PMC9267060 DOI: 10.3390/ijms23137280] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global pandemic that affects one-quarter of the world’s population. NAFLD includes a spectrum of progressive liver disease from steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis and can be complicated by hepatocellular carcinoma. It is strongly associated with metabolic syndromes, obesity, and type 2 diabetes, and it has been shown that metabolic dysregulation is central to its pathogenesis. Recently, it has been suggested that metabolic- (dysfunction) associated fatty liver disease (MAFLD) is a more appropriate term to describe the disease than NAFLD, which puts increased emphasis on the important role of metabolic dysfunction in its pathogenesis. There is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Impaired mitochondrial fatty acid oxidation and, more recently, a reduction in mitochondrial quality, have been suggested to play a major role in NAFLD development and progression. In this review, we provide an overview of our current understanding of NAFLD and highlight how mitochondrial dysfunction contributes to its pathogenesis in both animal models and human subjects. Further we discuss evidence that the modification of mitochondrial function modulates NAFLD and that targeting mitochondria is a promising new avenue for drug development to treat NAFLD/NASH.
Collapse
Affiliation(s)
- Raghu Ramanathan
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Ahmad Hassan Ali
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Jamal A. Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
- Correspondence: ; Tel.: +573-882-7349; Fax: +573-884-4595
| |
Collapse
|
15
|
Renzini A, D’Onghia M, Coletti D, Moresi V. Histone Deacetylases as Modulators of the Crosstalk Between Skeletal Muscle and Other Organs. Front Physiol 2022; 13:706003. [PMID: 35250605 PMCID: PMC8895239 DOI: 10.3389/fphys.2022.706003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle plays a major role in controlling body mass and metabolism: it is the most abundant tissue of the body and a major source of humoral factors; in addition, it is primarily responsible for glucose uptake and storage, as well as for protein metabolism. Muscle acts as a metabolic hub, in a crosstalk with other organs and tissues, such as the liver, the brain, and fat tissue. Cytokines, adipokines, and myokines are pivotal mediators of such crosstalk. Many of these circulating factors modulate histone deacetylase (HDAC) expression and/or activity. HDACs form a numerous family of enzymes, divided into four classes based on their homology to their orthologs in yeast. Eleven family members are considered classic HDACs, with a highly conserved deacetylase domain, and fall into Classes I, II, and IV, while class III members are named Sirtuins and are structurally and mechanistically distinct from the members of the other classes. HDACs are key regulators of skeletal muscle metabolism, both in physiological conditions and following metabolic stress, participating in the highly dynamic adaptative responses of the muscle to external stimuli. In turn, HDAC expression and activity are closely regulated by the metabolic demands of the skeletal muscle. For instance, NAD+ levels link Class III (Sirtuin) enzymatic activity to the energy status of the cell, and starvation or exercise affect Class II HDAC stability and intracellular localization. SUMOylation or phosphorylation of Class II HDACs are modulated by circulating factors, thus establishing a bidirectional link between HDAC activity and endocrine, paracrine, and autocrine factors. Indeed, besides being targets of adipo-myokines, HDACs affect the synthesis of myokines by skeletal muscle, altering the composition of the humoral milieu and ultimately contributing to the muscle functioning as an endocrine organ. In this review, we discuss recent findings on the interplay between HDACs and circulating factors, in relation to skeletal muscle metabolism and its adaptative response to energy demand. We believe that enhancing knowledge on the specific functions of HDACs may have clinical implications leading to the use of improved HDAC inhibitors for the treatment of metabolic syndromes or aging.
Collapse
Affiliation(s)
- Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Marco D’Onghia
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
- Institute of Nanotechnology (Nanotec), National Research Council, Rome, Italy
| |
Collapse
|
16
|
Sabaratnam R, Wojtaszewski JFP, Højlund K. Factors mediating exercise-induced organ crosstalk. Acta Physiol (Oxf) 2022; 234:e13766. [PMID: 34981891 DOI: 10.1111/apha.13766] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 10/11/2021] [Accepted: 01/01/2022] [Indexed: 12/21/2022]
Abstract
Exercise activates a plethora of metabolic and signalling pathways in skeletal muscle and other organs causing numerous systemic beneficial metabolic effects. Thus, regular exercise may ameliorate and prevent the development of several chronic metabolic diseases. Skeletal muscle is recognized as an important endocrine organ regulating systemic adaptations to exercise. Skeletal muscle may mediate crosstalk with other organs through the release of exercise-induced cytokines, peptides and proteins, termed myokines, into the circulation. Importantly, other tissues such as the liver and adipose tissue may also release cytokines and peptides in response to exercise. Hence, exercise-released molecules are collectively called exerkines. Moreover, extracellular vesicles (EVs), in the form of exosomes or microvesicles, may carry some of the signals involved in tissue crosstalk. This review focuses on the role of factors potentially mediating crosstalk between muscle and other tissues in response to exercise.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Steno Diabetes Center Odense Odense University Hospital Odense C Denmark
- Section of Molecular Diabetes & Metabolism, Department of Clinical Research & Department of Molecular Medicine University of Southern Denmark Odense C Denmark
| | - Jørgen F. P. Wojtaszewski
- Section of Molecular Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense Odense University Hospital Odense C Denmark
- Section of Molecular Diabetes & Metabolism, Department of Clinical Research & Department of Molecular Medicine University of Southern Denmark Odense C Denmark
| |
Collapse
|
17
|
Li CH, Zhang DH, Jiang LD, Qi Y, Guo LH. Binding and activity of bisphenol analogues to human peroxisome proliferator-activated receptor β/δ. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112849. [PMID: 34627044 DOI: 10.1016/j.ecoenv.2021.112849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Several studies have indicated metabolic function disruption effects of bisphenol analogues through peroxisome proliferator-activated receptor (PPAR) alpha and gamma pathways. In the present study, we found for the first time that PPARβ/δ might be a novel cellular target of bisphenol analogues. By using the fluorescence competitive binding assay, we found seven bisphenol analogues could bind to PPARβ/δ directly, among which tetrabromobisphenol A (TBBPA, 18.38-fold) and tetrachlorobisphenol A (TCBPA, 12.06-fold) exhibited stronger binding affinity than bisphenol A (BPA). In PPARβ/δ-mediated luciferase reporter gene assay, the seven bisphenol analogues showed transcriptional activity toward PPARβ/δ. Bisphenol AF (BPAF), bisphenol F (BPF) and bisphenol B (BPB) even showed higher transcriptional activity than BPA, while TBBPA and TCBPA showed comparable activity with BPA. Moreover, in human liver HL-7702 cells, the bisphenol analogues promoted the expression of two PPARβ/δ target genes PDK4 and ANGPTL4. Molecular docking simulation indicated the binding potency of bisphenol analogues to PPARβ/δ might depend on halogenation and hydrophobicity and the transcriptional activity might depend on their binding affinity and hydrogen bond interactions. Overall, the PPARβ/δ pathway may provide a new mechanism for the metabolic function disruption of bisphenol analogues, and TBBPA and TCBPA might exert higher metabolic disruption effects than BPA via PPARβ/δ pathway.
Collapse
Affiliation(s)
- Chuan-Hai Li
- School of Public Health, Qingdao University, 308 Ningxia Street, Qingdao, Shandong 266071, China
| | - Dong-Hui Zhang
- School of Public Health, Qingdao University, 308 Ningxia Street, Qingdao, Shandong 266071, China
| | - Li-Dan Jiang
- School of Public Health, Qingdao University, 308 Ningxia Street, Qingdao, Shandong 266071, China
| | - Yuan Qi
- School of Public Health, Qingdao University, 308 Ningxia Street, Qingdao, Shandong 266071, China
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
18
|
Role and mechanism of the action of angiopoietin-like protein ANGPTL4 in plasma lipid metabolism. J Lipid Res 2021; 62:100150. [PMID: 34801488 PMCID: PMC8666355 DOI: 10.1016/j.jlr.2021.100150] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022] Open
Abstract
Triglycerides are carried in the bloodstream as the components of very low-density lipoproteins and chylomicrons. These circulating triglycerides are primarily hydrolyzed in muscle and adipose tissue by the enzyme lipoprotein lipase (LPL). The activity of LPL is regulated by numerous mechanisms, including by three members of the angiopoietin-like protein family: ANGPTL3, ANGPTL4, and ANGPTL8. In this review, we discuss the recent literature concerning the role and mechanism of action of ANGPTL4 in lipid metabolism. ANGPTL4 is a fasting- and lipid-induced factor secreted by numerous cells, including adipocytes, hepatocytes, (cardio)myocytes, and macrophages. In adipocytes, ANGPTL4 mediates the fasting-induced repression of LPL activity by promoting the unfolding of LPL, leading to the cleavage and subsequent degradation of LPL. The inhibition of LPL by ANGPTL4 is opposed by ANGPTL8, which keeps the LPL active after feeding. In macrophages and (cardio)myocytes, ANGPTL4 functions as a lipid-inducible feedback regulator of LPL-mediated lipid uptake. In comparison, in hepatocytes, ANGPTL4 functions as a local inhibitor of hepatic lipase and possibly as an endocrine inhibitor of LPL in extra-hepatic tissues. At the genetic level, loss-of-function mutations in ANGPTL4 are associated with lower plasma triglycerides and higher plasma HDL-C levels, and a reduced risk of coronary artery disease, suggesting that ANGPTL4 is a viable pharmacological target for reducing cardiovascular risk. Whole-body targeting of ANGPTL4 is contraindicated because of severe pathological complications, whereas liver-specific inactivation of ANGPTL4, either as monotherapy or coupled to anti-ANGPTL3 therapies might be a suitable strategy for lowering plasma triglycerides in selected patient groups. In conclusion, the tissue-specific targeting of ANGPTL4 appears to be a viable pharmacological approach to reduce circulating triglycerides.
Collapse
|
19
|
Ishida N, Yamada H, Hirose M. Euphausia pacifica (North Pacific Krill): Review of Chemical Features and Potential Benefits of 8-HEPE against Metabolic Syndrome, Dyslipidemia, NAFLD, and Atherosclerosis. Nutrients 2021; 13:nu13113765. [PMID: 34836021 PMCID: PMC8618228 DOI: 10.3390/nu13113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Marine n-3 fatty acids are well known to have health benefits. Recently, krill oil, which contains phospholipids, has been in the spotlight as an n-3 PUFA-containing oil. Euphausia pacifica (E. pacifica), also called North Pacific krill, is a small, red crustacean similar to shrimp that flourishes in the North Pacific Ocean. E. pacifica oil contains 8-hydroxyeicosapentaenoic acid (8-HEPE) at a level more than 10 times higher than Euphausia superba oil. 8-HEPE can activate the transcription of peroxisome proliferator-activated receptor alpha (PPARα), PPARγ, and PPARδ to levels 10, 5, and 3 times greater than eicosapentaenoic acid, respectively. 8-HEPE has beneficial effects against metabolic syndrome (reduction in body weight gain, visceral fat area, amount of gonadal white adipose tissue, and gonadal adipocyte cell size), dyslipidemia (reduction in serum triacylglycerol and low-density lipoprotein cholesterol and induction of serum high-density lipoprotein cholesterol), atherosclerosis, and nonalcoholic fatty liver disease (reduction in triglyceride accumulation and hepatic steatosis in the liver) in mice. Further studies should focus on the beneficial effects of North Pacific krill oil products and 8-HEPE on human health.
Collapse
Affiliation(s)
- Nanae Ishida
- Department of Pathophysiology and Pharmacology, School of Pharmaceutical Sciences, Iwate Medical University, Iwate 028-3694, Japan;
| | - Hidetoshi Yamada
- Faculty of Life & Environmental Science, Teikyo University of Science, Tokyo 120-0045, Japan;
| | - Masamichi Hirose
- Department of Pathophysiology and Pharmacology, School of Pharmaceutical Sciences, Iwate Medical University, Iwate 028-3694, Japan;
- Correspondence: ; Tel.: +81-19-651-5110
| |
Collapse
|
20
|
Oleic and palmitic acids induce hepatic angiopoietin-like 4 expression predominantly via PPAR- γ in Larimichthys crocea. Br J Nutr 2021; 129:1657-1666. [PMID: 34556193 DOI: 10.1017/s000711452100386x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Angiopoietin-like 4 (ANGPTL4) is a potent regulator of TAG metabolism, but knowledge of the mechanisms underlying ANGPTL4 transcription in response to fatty acids is still limited in teleost. In the current study, we explored the molecular characterisation of ANGPTL4 and regulatory mechanisms of ANGPTL4 in response to fatty acids in large yellow croaker (Larimichthys crocea). Here, croaker angptl4 contained a 1416 bp open reading frame encoding a protein of 471 amino acids with highly conserved 12-amino acid consensus motif. Angptl4 was widely expressed in croaker, with the highest expression in the liver. In vitro, oleic and palmitic acids (OA and PA) treatments strongly increased angptl4 mRNA expression in croaker hepatocytes. Moreover, angptl4 expression was positively regulated by PPAR family (PPAR-α, β and γ), and expression of PPARγ was also significantly increased in response to OA and PA. Moreover, inhibition of PPARγ abrogated OA- or PA-induced angptl4 mRNA expression. Beyond that, PA might increase angptl4 expression partly via the insulin signalling. Overall, the expression of ANGPTL4 is strongly upregulated by OA and PA via PPARγ in the liver of croaker, which contributes to improve the understanding of the regulatory mechanisms of ANGPTL4 in fish.
Collapse
|
21
|
Langlois A, Forterre A, Pinget M, Bouzakri K. Impact of moderate exercise on fatty acid oxidation in pancreatic β-cells and skeletal muscle. J Endocrinol Invest 2021; 44:1815-1825. [PMID: 33844166 PMCID: PMC8357749 DOI: 10.1007/s40618-021-01551-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Fatty acids (FA) play a crucial role in glycaemia regulation in healthy and metabolic disorders conditions through various mechanisms. FA oxidation is one of the processes involved in lipid metabolism and can be modulated by exercise. Nowadays, physical activity is known to be an effective strategy for the prevention and treatment of Type 2 Diabetes. Moreover, its intensity, its duration, the sex-gender, the prandial state, exerkines… are as many parameters that can influence glycaemic control. However, the widely debated question is to determine the best type of exercise for patients with metabolic disorders. In this review, we will discuss the impact of exercise intensity, especially moderate activity, on glycaemic control by focussing on FA oxidation in pancreatic β-cells and skeletal muscle. Finally, thanks to all the recent data, we will determine whether moderate physical activity is a good therapeutic strategy and if FA oxidation represents a target of interest to treat diabetic, obese and insulin-resistant patients.
Collapse
Affiliation(s)
- A Langlois
- Centre Européen D'étude du Diabète, Unité Mixte de Recherche de L'Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
| | - A Forterre
- Centre Européen D'étude du Diabète, Unité Mixte de Recherche de L'Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
| | - M Pinget
- Centre Européen D'étude du Diabète, Unité Mixte de Recherche de L'Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
| | - K Bouzakri
- Centre Européen D'étude du Diabète, Unité Mixte de Recherche de L'Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France.
| |
Collapse
|
22
|
Shang R, Rodrigues B. Lipoprotein Lipase and Its Delivery of Fatty Acids to the Heart. Biomolecules 2021; 11:biom11071016. [PMID: 34356640 PMCID: PMC8301904 DOI: 10.3390/biom11071016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
Ninety percent of plasma fatty acids (FAs) are contained within lipoprotein-triglyceride, and lipoprotein lipase (LPL) is robustly expressed in the heart. Hence, LPL-mediated lipolysis of lipoproteins is suggested to be a key source of FAs for cardiac use. Lipoprotein clearance by LPL occurs at the apical surface of the endothelial cell lining of the coronary lumen. In the heart, the majority of LPL is produced in cardiomyocytes and subsequently is translocated to the apical luminal surface. Here, vascular LPL hydrolyzes lipoprotein-triglyceride to provide the heart with FAs for ATP generation. This article presents an overview of cardiac LPL, explains how the enzyme works, describes key molecules that regulate its activity and outlines how changes in LPL are brought about by physiological and pathological states such as fasting and diabetes, respectively.
Collapse
|
23
|
Tong Z, Peng J, Lan H, Sai W, Li Y, Xie J, Tan Y, Zhang W, Zhong M, Wang Z. Cross-talk between ANGPTL4 gene SNP Rs1044250 and weight management is a risk factor of metabolic syndrome. J Transl Med 2021; 19:72. [PMID: 33593372 PMCID: PMC7885568 DOI: 10.1186/s12967-021-02739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background The prevalence of metabolic syndrome (Mets) is closely related to an increased incidence of cardiovascular events. Angiopoietin-like protein 4 (ANGPTL4) is contributory to the regulation of lipid metabolism, herein, may provide a target for gene-aimed therapy of Mets. This observational case control study was designed to elucidate the relationship between ANGPTL4 gene single nucleotide polymorphism (SNP) rs1044250 and the onset of Mets, and to explore the interaction between SNP rs1044250 and weight management on Mets. Methods We have recruited 1018 Mets cases and 1029 controls in this study. The SNP rs1044250 was genotyped with blood samples, base-line information and Mets-related indicators were collected. A 5-year follow-up survey was carried out to track the lifestyle interventions and changes in Mets-related indicators. Results ANGPTL4 gene SNP rs1044250 is an independent risk factor for increased waist circumference (OR 1.618, 95% CI [1.119–2.340]; p = 0.011), elevated blood pressure (OR 1.323, 95% CI [1.002–1.747]; p = 0.048), and Mets (OR 1.875, 95% CI [1.363–2.580]; p < 0.001). The follow-up survey shows that rs1044250 CC genotype patients with weight gain have an increased number of Mets components (M [Q1, Q3]: CC 1 (0, 1), CT + TT 0 [− 1, 1]; p = 0.021); The interaction between SNP rs1044250 and weight management is a risk factor for increased systolic blood pressure (β = 0.075, p < 0.001) and increased diastolic blood pressure (β = 0.097, p < 0.001), the synergistic effect of weight management and SNP rs1044250 is negative (S < 1). Conclusion ANGPTL4 gene SNP rs1044250 is an independent risk factor for increased waist circumference and elevated blood pressure, therefore, for Mets. However, patients with wild type SNP 1044250 are more likely to have Mets when the body weight is increased, mainly due to elevated blood pressure.
Collapse
Affiliation(s)
- Zhoujie Tong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jie Peng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University; Shandong Key Laboratory of Cardiovascular Proteomics, Jinan, 250012, Shandong, China
| | - Hongtao Lan
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University; Shandong Key Laboratory of Cardiovascular Proteomics, Jinan, 250012, Shandong, China
| | - Wenwen Sai
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yulin Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jiaying Xie
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yanmin Tan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Zhihao Wang
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University; Shandong Key Laboratory of Cardiovascular Proteomics, Jinan, 250012, Shandong, China.
| |
Collapse
|
24
|
Hepatokines as a Molecular Transducer of Exercise. J Clin Med 2021; 10:jcm10030385. [PMID: 33498410 PMCID: PMC7864203 DOI: 10.3390/jcm10030385] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023] Open
Abstract
Exercise has health benefits and prevents a range of chronic diseases caused by physiological and biological changes in the whole body. Generally, the metabolic regulation of skeletal muscle through exercise is known to have a protective effect on the pathogenesis of metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D), and cardiovascular disease (CVD). Besides this, the importance of the liver as an endocrine organ is a hot research topic. Hepatocytes also secrete many hepatokines in response to nutritional conditions and/or physical activity. In particular, certain hepatokines play a major role in the regulation of whole-body metabolic homeostasis. In this review, we summarize the recent research findings on the exercise-mediated regulation of hepatokines, including fibroblast growth factor 21, fetuin-A, angiopoietin-like protein 4, and follistatin. These hepatokines serve as molecular transducers of the metabolic benefits of physical activity in chronic metabolic diseases, including NAFLD, T2D, and CVDs, in various tissues.
Collapse
|
25
|
Matsumoto Y, Sugioka Y, Tada M, Okano T, Mamoto K, Inui K, Habu D, Koike T. Change in skeletal muscle mass is associated with lipid profiles in female rheumatoid arthritis patients -TOMORROW study. Clin Nutr 2020; 40:4500-4506. [PMID: 33413913 DOI: 10.1016/j.clnu.2020.12.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/11/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND & AIMS To examine the relationship between changes in skeletal muscle mass and lipid metabolism and glycometabolism in patients with rheumatoid arthritis (RA). METHODS Data were analyzed from 148 female RA patients and 145 age-matched non-RA (control) female subjects from a prospective cohort study (TOMORROW; TOtal Management Of Risk factors in Rheumatoid arthritis patients to lOWer morbidity and mortality study). Appendicular skeletal muscle mass (ASM) was assessed using dual-energy x-ray absorptiometry and skeletal muscle mass index (SMI) was calculated as ASM divided by the square of height. The reference value for SMI in Asian women, 5.4 kg/m2, was used to define low SMI. Data were assessed using cross-sectional (2010 baseline data) and longitudinal (change in value from 2010 to 2013) methods from the retrospective cohort. RESULTS At baseline in RA patients, the low SMI group showed significantly higher low-density lipoprotein cholesterol (LDL-chol) (p = 0.015), apolipoprotein (Apo)B (p = 0.046), and ApoB-to-A1 (ApoB/A1) (p = 0.025) than the normal SMI group. In multiple regression analysis of RA patients, sequential changes from 2010 to 2013 (Δ) in SMI and ApoB and ApoC2 showed significant negative relationships (β = -0.19, -0.18, respectively) even after adjusting for age, RA duration, exercise habits, medication for RA, disease severity, activities of daily living (ADL) and body fat mass. No significant relation was evident between ΔSMI and various glycometabolism parameters in RA patients. CONCLUSIONS Skeletal muscle mass might be related to lipid metabolism in RA patients. This relationship is independent of factors such as disease severity and body fat mass.
Collapse
Affiliation(s)
- Yoshinari Matsumoto
- Search Institute for Bone and Arthritis Disease (SINBAD), Shirahama Foundation for Health and Welfare, Wakayama, Japan; Department of Medical Nutrition, Osaka City University, Graduate School of Human Life Science, Osaka, Japan
| | - Yuko Sugioka
- Center for Senile Degenerative Disorders (CSDD), Osaka City University Medical School, Osaka, Japan
| | - Masahiro Tada
- Osaka City General Hospital, Department of Orthopaedic Surgery, Osaka, Japan
| | - Tadashi Okano
- Osaka City University Medical School, Department of Orthopaedic Surgery, Osaka, Japan
| | - Kenji Mamoto
- Osaka City University Medical School, Department of Orthopaedic Surgery, Osaka, Japan
| | - Kentaro Inui
- Osaka City University Medical School, Department of Orthopaedic Surgery, Osaka, Japan
| | - Daiki Habu
- Department of Medical Nutrition, Osaka City University, Graduate School of Human Life Science, Osaka, Japan
| | - Tatsuya Koike
- Search Institute for Bone and Arthritis Disease (SINBAD), Shirahama Foundation for Health and Welfare, Wakayama, Japan; Center for Senile Degenerative Disorders (CSDD), Osaka City University Medical School, Osaka, Japan.
| |
Collapse
|
26
|
Skeletal Muscle Angiopoietin-Like Protein 4 and Glucose Metabolism in Older Adults after Exercise and Weight Loss. Metabolites 2020; 10:metabo10090354. [PMID: 32878157 PMCID: PMC7570075 DOI: 10.3390/metabo10090354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4) is an adipokine that plays an important role in energy homoeostasis and lipid and lipoprotein metabolism. This study was designed to determine the effect of an exercise plus weight loss intervention on ANGPTL4 expression and its relationship with metabolic health. Thirty-five obese sedentary men (n = 18) and postmenopausal women (n = 17), (X ± SEM, age: 61 ± 1 years, BMI: 31.3 ± 0.7 kg/m2, VO2max: 21.7 ± 0.9 L/kg/min) completed a 6 month program of 3×/week aerobic exercise and 1×/week dietary instruction to induce weight loss (AEX + WL). Participants underwent vastus lateralis muscle biopsies, a hyperinsulinemic–euglycemic clamp, oral glucose tolerance tests and body composition testing. Basal skeletal muscle ANGPTL4 mRNA was lower in men than women (p < 0.01). Peroxisome proliferator-activated receptor (PPAR) alpha (PPARα) mRNA expression was higher in men than women (p < 0.05). There were no significance changes in serum or skeletal muscle ANGPTL4 (basal or insulin-stimulated) or muscle PPARα mRNA expression after AEX + WL. Muscle mRNA ANGPTL4 is correlated with serum ANGPTL4 (r = 0.41, p < 0.05), body fat (r = 0.64, p < 0.0001), and glucose utilization (r = 0.38, p < 0.05). AEX + WL does not change basal or insulin-stimulated skeletal muscle ANGPTL4 mRNA expression, suggesting other factors contribute to improved insulin sensitivity after the loss of body fat and improved fitness.
Collapse
|
27
|
The Emerging Role of PPAR Beta/Delta in Tumor Angiogenesis. PPAR Res 2020; 2020:3608315. [PMID: 32855630 PMCID: PMC7443046 DOI: 10.1155/2020/3608315] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
PPARs are ligand-activated transcriptional factors that belong to the nuclear receptor superfamily. Among them, PPAR alpha and PPAR gamma are prone to exert an antiangiogenic effect, whereas PPAR beta/delta has an opposite effect in physiological and pathological conditions. Angiogenesis has been known as a hallmark of cancer, and our recent works also demonstrate that vascular-specific PPAR beta/delta overexpression promotes tumor angiogenesis and progression in vivo. In this review, we will mainly focus on the role of PPAR beta/delta in tumor angiogenesis linked to the tumor microenvironment to further facilitate tumor progression and metastasis. Moreover, the crosstalk between PPAR beta/delta and its downstream key signal molecules involved in tumor angiogenesis will also be discussed, and the network of interplay between them will further be established in the review.
Collapse
|
28
|
Gonzalez-Gil AM, Elizondo-Montemayor L. The Role of Exercise in the Interplay between Myokines, Hepatokines, Osteokines, Adipokines, and Modulation of Inflammation for Energy Substrate Redistribution and Fat Mass Loss: A Review. Nutrients 2020; 12:E1899. [PMID: 32604889 PMCID: PMC7353393 DOI: 10.3390/nu12061899] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Exercise is an effective strategy for preventing and treating obesity and its related cardiometabolic disorders, resulting in significant loss of body fat mass, white adipose tissue browning, redistribution of energy substrates, optimization of global energy expenditure, enhancement of hypothalamic circuits that control appetite-satiety and energy expenditure, and decreased systemic inflammation and insulin resistance. Novel exercise-inducible soluble factors, including myokines, hepatokines, and osteokines, and immune cytokines and adipokines are hypothesized to play an important role in the body's response to exercise. To our knowledge, no review has provided a comprehensive integrative overview of these novel molecular players and the mechanisms involved in the redistribution of metabolic fuel during and after exercise, the loss of weight and fat mass, and reduced inflammation. In this review, we explain the potential role of these exercise-inducible factors, namely myokines, such as irisin, IL-6, IL-15, METRNL, BAIBA, and myostatin, and hepatokines, in particular selenoprotein P, fetuin A, FGF21, ANGPTL4, and follistatin. We also describe the function of osteokines, specifically osteocalcin, and of adipokines such as leptin, adiponectin, and resistin. We also emphasize an integrative overview of the pleiotropic mechanisms, the metabolic pathways, and the inter-organ crosstalk involved in energy expenditure, fat mass loss, reduced inflammation, and healthy weight induced by exercise.
Collapse
Affiliation(s)
- Adrian M. Gonzalez-Gil
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey N.L. 64710, Mexico;
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Ave. Morones Prieto 300, Monterrey N.L. 64710, Mexico
| | - Leticia Elizondo-Montemayor
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey N.L. 64710, Mexico;
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Ave. Morones Prieto 300, Monterrey N.L. 64710, Mexico
- Tecnologico de Monterrey, Cardiovascular and Metabolomics Research Group, Hospital Zambrano Hellion, San Pedro Garza Garcia P.C. 66278, Mexico
| |
Collapse
|
29
|
Lai N, Fealy CE, Kummitha CM, Cabras S, Kirwan JP, Hoppel CL. Mitochondrial Utilization of Competing Fuels Is Altered in Insulin Resistant Skeletal Muscle of Non-obese Rats (Goto-Kakizaki). Front Physiol 2020; 11:677. [PMID: 32612543 PMCID: PMC7308651 DOI: 10.3389/fphys.2020.00677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Aim Insulin-resistant skeletal muscle is characterized by metabolic inflexibility with associated alterations in substrate selection, mediated by peroxisome-proliferator activated receptor δ (PPARδ). Although it is established that PPARδ contributes to the alteration of energy metabolism, it is not clear whether it plays a role in mitochondrial fuel competition. While nutrient overload may impair metabolic flexibility by fuel congestion within mitochondria, in absence of obesity defects at a mitochondrial level have not yet been excluded. We sought to determine whether reduced PPARδ content in insulin-resistant rat skeletal muscle of a non-obese rat model of T2DM (Goto-Kakizaki, GK) ameliorate the inhibitory effect of fatty acid (i.e., palmitoylcarnitine) on mitochondrial carbohydrate oxidization (i.e., pyruvate) in muscle fibers. Methods Bioenergetic function was characterized in oxidative soleus (S) and glycolytic white gastrocnemius (WG) muscles with measurement of respiration rates in permeabilized fibers in the presence of complex I, II, IV, and fatty acid substrates. Mitochondrial content was measured by citrate synthase (CS) and succinate dehydrogenase activity (SDH). Western blot was used to determine protein expression of PPARδ, PDK isoform 2 and 4. Results CS and SDH activity, key markers of mitochondrial content, were reduced by ∼10-30% in diabetic vs. control, and the effect was evident in both oxidative and glycolytic muscles. PPARδ (p < 0.01), PDK2 (p < 0.01), and PDK4 (p = 0.06) protein content was reduced in GK animals compared to Wistar rats (N = 6 per group). Ex vivo respiration rates in permeabilized muscle fibers determined in the presence of complex I, II, IV, and fatty acid substrates, suggested unaltered mitochondrial bioenergetic function in T2DM muscle. Respiration in the presence of pyruvate was higher compared to palmitoylcarnitine in both animal groups and fiber types. Moreover, respiration rates in the presence of both palmitoylcarnitine and pyruvate were reduced by 25 ± 6% (S), 37 ± 6% (WG) and 63 ± 6% (S), 57 ± 8% (WG) compared to pyruvate for both controls and GK, respectively. The inhibitory effect of palmitoylcarnitine on respiration was significantly greater in GK than controls (p < 10-3). Conclusion With competing fuels, the presence of fatty acids diminishes mitochondria ability to utilize carbohydrate derived substrates in insulin-resistant muscle despite reduced PPARδ content.
Collapse
Affiliation(s)
- Nicola Lai
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, United States.,Biomedical Engineering Institute, Old Dominion University, Norfolk, VA, United States.,Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Center for Mitochondrial Disease, Case Western Reserve University, Cleveland, OH, United States
| | - Ciarán E Fealy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Chinna M Kummitha
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Silvia Cabras
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States.,Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Charles L Hoppel
- Center for Mitochondrial Disease, Case Western Reserve University, Cleveland, OH, United States.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States.,Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
30
|
Yang J, Li X, Xu D. Research Progress on the Involvement of ANGPTL4 and Loss-of-Function Variants in Lipid Metabolism and Coronary Heart Disease: Is the "Prime Time" of ANGPTL4-Targeted Therapy for Coronary Heart Disease Approaching? Cardiovasc Drugs Ther 2020; 35:467-477. [PMID: 32500296 DOI: 10.1007/s10557-020-07001-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Multiple genetic studies have confirmed the definitive link among the loss-of-function variants of angiogenin-like protein 4 (ANGPTL4), significantly decreased plasma triglyceride (TG) levels, and reduced risk of coronary heart disease (CHD). The potential therapeutic effect of ANGPTL4 on dyslipidemia and CHD has been widely studied. OBJECTIVE This review provides a detailed introduction to the research progress on the involvement of ANGPTL4 in lipid metabolism and atherosclerosis and evaluates the efficacy and safety of ANGPTL4 as a therapeutic target for CHD. RELEVANT FINDINGS By inhibiting lipoprotein lipase (LPL) activity, ANGPTL4 plays a vital role in the regulation of lipid metabolism and energy balance. However, the role of ANGPTL4 in regulating lipid metabolism is tissue-specific. ANGPTL4 acts as a locally released LPL inhibitor in the heart, skeletal muscle and small intestine, while ANGPTL4 derived from liver and adipose tissue mainly acts as an endocrine factor that regulates systemic lipid metabolism. As a multifunctional protein, ANGPTL4 also inhibits the formation of foam cells in macrophages, exerting an anti-atherogenic role. The function of ANGPTL4 in endothelial cells is still uncertain. The safety of ANGPTL4 monoclonal antibodies requires further evaluation due to their potential adverse effects. CONCLUSION The biological characteristics of ANGPTL4 are much more complex than those demonstrated by genetic studies. Future studies must elucidate how to effectively reduce the risk of CHD while avoiding potential atherogenic effects and other complications before the "prime time" of ANGPTL4-targeted therapy arrives.
Collapse
Affiliation(s)
- Jingmin Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiao Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Danyan Xu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China.
| |
Collapse
|
31
|
Ruppert PMM, Michielsen CCJR, Hazebroek EJ, Pirayesh A, Olivecrona G, Afman LA, Kersten S. Fasting induces ANGPTL4 and reduces LPL activity in human adipose tissue. Mol Metab 2020; 40:101033. [PMID: 32504883 PMCID: PMC7334813 DOI: 10.1016/j.molmet.2020.101033] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Studies in mice have shown that the decrease in lipoprotein lipase (LPL) activity in adipose tissue upon fasting is mediated by induction of the inhibitor ANGPTL4. Here, we aimed to validate this concept in humans by determining the effect of a prolonged fast on ANGPTL4 and LPL gene and protein expression in human subcutaneous adipose tissue. Methods Twenty-three volunteers ate a standardized meal at 18.00 h and fasted until 20.00 h the next day. Blood was drawn and periumbilical adipose tissue biopsies were collected 2 h and 26 h after the meal. Results Consistent with previous mouse data, LPL activity in human adipose tissue was significantly decreased by fasting (−60%), concurrent with increased ANGPTL4 mRNA (+90%) and decreased ANGPTL8 mRNA (−94%). ANGPTL4 protein levels in adipose tissue were also significantly increased by fasting (+46%), whereas LPL mRNA and protein levels remained unchanged. In agreement with the adipose tissue data, plasma ANGPTL4 levels increased upon fasting (+100%), whereas plasma ANGPTL8 decreased (−79%). Insulin, levels of which significantly decreased upon fasting, downregulated ANGPTL4 mRNA and protein in primary human adipocytes. By contrast, cortisol, levels of which significantly increased upon fasting, upregulated ANGPTL4 mRNA and protein in primary human adipocytes as did fatty acids. Conclusion ANGPTL4 levels in human adipose tissue are increased by fasting, likely via increased plasma cortisol and free fatty acids and decreased plasma insulin, resulting in decreased LPL activity. This clinical trial was registered with identifier NCT03757767. 24-h fast in humans reduces LPL activity in subcutaneous adipose tissue. 24-h fast in humans increases adipose ANGPTL4 mRNA, protein, and plasma ANGPTL4 levels. Cortisol, fatty acids, and insulin regulate ANGPTL4 in vitro. ANGPTL4 mediates the reduction in adipose LPL activity during fasting. 24-h fast in humans decreases adipose ANGPTL8 mRNA and plasma ANGPTL8 levels.
Collapse
Affiliation(s)
- Philip M M Ruppert
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Charlotte C J R Michielsen
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Eric J Hazebroek
- Department of Bariatric Surgery, Rijnstate Hospital/Vitalys Clinic, Arnhem, the Netherlands; Nutrition and Disease Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Ali Pirayesh
- Amsterdam Plastic Surgery, Amsterdam, the Netherlands
| | - Gunilla Olivecrona
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Lydia A Afman
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
32
|
Chen YQ, Pottanat TG, Siegel RW, Ehsani M, Qian YW, Zhen EY, Regmi A, Roell WC, Guo H, Luo MJ, Gimeno RE, Van't Hooft F, Konrad RJ. Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids. J Lipid Res 2020; 61:1203-1220. [PMID: 32487544 PMCID: PMC7397750 DOI: 10.1194/jlr.ra120000781] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/09/2020] [Indexed: 12/11/2022] Open
Abstract
Angiopoietin-like protein (ANGPTL)8 has been implicated in metabolic syndrome and reported to regulate adipose FA uptake through unknown mechanisms. Here, we studied how complex formation of ANGPTL8 with ANGPTL3 or ANGPTL4 varies with feeding to regulate LPL. In human serum, ANGPTL3/8 and ANGPTL4/8 complexes both increased postprandially, correlated negatively with HDL, and correlated positively with all other metabolic syndrome markers. ANGPTL3/8 also correlated positively with LDL-C and blocked LPL-facilitated hepatocyte VLDL-C uptake. LPL-inhibitory activity of ANGPTL3/8 was >100-fold more potent than that of ANGPTL3, and LPL-inhibitory activity of ANGPTL4/8 was >100-fold less potent than that of ANGPTL4. Quantitative analyses of inhibitory activities and competition experiments among the complexes suggested a model in which localized ANGPTL4/8 blocks the LPL-inhibitory activity of both circulating ANGPTL3/8 and localized ANGPTL4, allowing lipid sequestration into fat rather than muscle during the fed state. Supporting this model, insulin increased ANGPTL3/8 secretion from hepatocytes and ANGPTL4/8 secretion from adipocytes. These results suggest that low ANGPTL8 levels during fasting enable ANGPTL4-mediated LPL inhibition in fat tissue to minimize adipose FA uptake. During feeding, increased ANGPTL8 increases ANGPTL3 inhibition of LPL in muscle via circulating ANGPTL3/8, while decreasing ANGPTL4 inhibition of LPL in adipose tissue through localized ANGPTL4/8, thereby increasing FA uptake into adipose tissue. Excessive caloric intake may shift this system toward the latter conditions, possibly predisposing to metabolic syndrome.
Collapse
Affiliation(s)
- Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Thomas G Pottanat
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Robert W Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Mariam Ehsani
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Yue-Wei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Eugene Y Zhen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Ajit Regmi
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - William C Roell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Haihong Guo
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - M Jane Luo
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Ferdinand Van't Hooft
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet Karolinska University Hospital Solna, Stockholm, Sweden
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| |
Collapse
|
33
|
Hjelholt AJ, Søndergaard E, Pedersen SB, Møller N, Jessen N, Jørgensen JOL. Growth hormone upregulates ANGPTL4 mRNA and suppresses lipoprotein lipase via fatty acids: Randomized experiments in human individuals. Metabolism 2020; 105:154188. [PMID: 32084431 DOI: 10.1016/j.metabol.2020.154188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Lipoprotein lipase (LPL) catalyzes the hydrolysis of circulating triglycerides into free fatty acids (FFA) and thereby promotes FFA uptake in peripheral tissues. LPL is negatively regulated by angiopoietin-like protein 4 (ANGPTL4) presumably by an FFA-dependent mechanism. Growth hormone (GH) suppresses LPL activity, but it is unknown whether this is mediated by FFA and ANGPTL4. Therefore, we investigated the concerted effect of GH on ANGPTL4 and LPL in the presence and absence of lipolysis in two in vivo studies in human subjects. METHODS In a randomized, placebo-controlled, cross-over study, nine obese men were examined after injection of 1) a GH bolus, and 2) a GH-receptor antagonist followed by four adipose tissue biopsies obtained over a 5-h period. In a second study, nine hypopituitary men were examined in a 2 × 2 factorial design including GH and acipimox (an anti-lipolytic agent), with biopsies from adipose tissue and skeletal muscle obtained during a basal period and a subsequent hyperinsulinemic-euglycemic clamp. The mRNA expression of ANGPTL4 and LPL as well as LPL activity were analyzed in the biopsies. RESULTS In both studies, GH increased serum FFA levels, upregulated ANGPTL4 mRNA expression and suppressed LPL activity. In study 2, acipimox completely suppressed FFA levels and antagonized the effects of GH on ANGPTL4 and LPL. CONCLUSIONS These human in vivo studies demonstrate that GH upregulates ANGPTL4 mRNA and suppresses LPL activity via an FFA-dependent mechanism.
Collapse
Affiliation(s)
- Astrid Johannesson Hjelholt
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and internal medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark.
| | - Esben Søndergaard
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and internal medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 2., 8200 Aarhus N, Denmark
| | - Steen Bønløkke Pedersen
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and internal medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 2., 8200 Aarhus N, Denmark
| | - Niels Møller
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and internal medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 2., 8200 Aarhus N, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Wilh, Meyers Allé 4, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, Vennelyst Boulevard 4, 8000 Aarhus C, Denmark
| | - Jens Otto L Jørgensen
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and internal medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| |
Collapse
|
34
|
Ruscica M, Zimetti F, Adorni MP, Sirtori CR, Lupo MG, Ferri N. Pharmacological aspects of ANGPTL3 and ANGPTL4 inhibitors: New therapeutic approaches for the treatment of atherogenic dyslipidemia. Pharmacol Res 2020; 153:104653. [PMID: 31931117 DOI: 10.1016/j.phrs.2020.104653] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022]
Abstract
Among the determinants of atherosclerotic cardiovascular disease (ASCVD), genetic and experimental evidence has provided data on a major role of angiopoietin-like proteins 3 and 4 (ANGPTL3 and ANGPTL4) in regulating the activity of lipoprotein lipase (LPL), antagonizing the hydrolysis of triglycerides (TG). Indeed, beyond low-density lipoprotein cholesterol (LDL-C), ASCVD risk is also dependent on a cluster of metabolic abnormalities characterized by elevated fasting and post-prandial levels of TG-rich lipoproteins and their remnants. In a head-to-head comparison between murine models for ANGPTL3 and ANGPTL4, the former was found to be a better pharmacological target for the treatment of hypertriglyceridemia. In humans, loss-of-function mutations of ANGPTL3 are associated with a marked reduction of plasma levels of VLDL, low-density lipoprotein (LDL) and high-density lipoprotein (HDL). Carriers of loss-of-function mutations of ANGPTL4 show instead lower TG-rich lipoproteins and a modest but significant increase of HDL. The relevance of ANGPTL3 and ANGPTL4 as new therapeutic targets is proven by the development of monoclonal antibodies or antisense oligonucleotides. Studies in animal models, including non-human primates, have demonstrated that short-term treatment with monoclonal antibodies against ANGPTL3 and ANGPTL4 induces activation of LPL and a marked reduction of plasma TG-rich-lipoproteins, apparently without any major side effects. Inhibition of both targets also partially reduces LDL-C, independent of the LDL receptor. Similar evidence has been observed with the antisense oligonucleotide ANGPTL3-LRX. The genetic studies have paved the way for the development of new ANGPTL3 and 4 antagonists for the treatment of atherogenic dyslipidemias. Conclusive data of phase 2 and 3 clinical trials are still needed in order to define their safety and efficacy profile.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Dipartimento di Science Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - Francesca Zimetti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Maria Pia Adorni
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Cesare R Sirtori
- Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Maria Giovanna Lupo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padua, Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padua, Italy
| |
Collapse
|
35
|
Capozzi ME, Savage SR, McCollum GW, Hammer SS, Ramos CJ, Yang R, Bretz CA, Penn JS. The peroxisome proliferator-activated receptor-β/δ antagonist GSK0660 mitigates retinal cell inflammation and leukostasis. Exp Eye Res 2020; 190:107885. [PMID: 31758977 PMCID: PMC7426872 DOI: 10.1016/j.exer.2019.107885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022]
Abstract
Diabetic retinopathy (DR) is triggered by retinal cell damage stimulated by the diabetic milieu, including increased levels of intraocular free fatty acids. Free fatty acids may serve as an initiator of inflammatory cytokine release from Müller cells, and the resulting cytokines are potent stimulators of retinal endothelial pathology, such as leukostasis, vascular permeability, and basement membrane thickening. Our previous studies have elucidated a role for peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in promoting several steps in the pathologic cascade in DR, including angiogenesis and expression of inflammatory mediators. Furthermore, PPARβ/δ is a known target of lipid signaling, suggesting a potential role for this transcription factor in fatty acid-induced retinal inflammation. Therefore, we hypothesized that PPARβ/δ stimulates both the induction of inflammatory mediators by Müller cells as well the paracrine induction of leukostasis in endothelial cells (EC) by Müller cell inflammatory products. To test this, we used the PPARβ/δ inhibitor, GSK0660, in primary human Müller cells (HMC), human retinal microvascular endothelial cells (HRMEC) and mouse retina. We found that palmitic acid (PA) activation of PPARβ/δ in HMC leads to the production of pro-angiogenic and/or inflammatory cytokines that may constitute DR-relevant upstream paracrine inflammatory signals to EC and other retinal cells. Downstream, EC transduce these signals and increase their synthesis and release of chemokines such as CCL8 and CXCL10 that regulate leukostasis and other cellular events related to vascular inflammation in DR. Our results indicate that PPARβ/δ inhibition mitigates these upstream (MC) as well as downstream (EC) inflammatory signaling events elicited by metabolic stimuli and inflammatory cytokines. Therefore, our data suggest that PPARβ/δ inhibition is a potential therapeutic strategy against early DR pathology.
Collapse
Affiliation(s)
- Megan E Capozzi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, USA.
| | - Sara R Savage
- Department of Pharmacology, Vanderbilt University, USA
| | - Gary W McCollum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, USA
| | - Sandra S Hammer
- Department of Cell and Developmental Biology, Vanderbilt University, USA
| | - Carla J Ramos
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, USA
| | - Rong Yang
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, USA
| | - Colin A Bretz
- Department of Cell and Developmental Biology, Vanderbilt University, USA
| | - John S Penn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, USA; Department of Pharmacology, Vanderbilt University, USA; Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, USA; Department of Cell and Developmental Biology, Vanderbilt University, USA
| |
Collapse
|
36
|
Muroya S, Ogasawara H, Nohara K, Oe M, Ojima K, Hojito M. Coordinated alteration of mRNA-microRNA transcriptomes associated with exosomes and fatty acid metabolism in adipose tissue and skeletal muscle in grazing cattle. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1824-1836. [PMID: 32054170 PMCID: PMC7649083 DOI: 10.5713/ajas.19.0682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023]
Abstract
Objective On the hypothesis that grazing of cattle prompts organs to secrete or internalize circulating microRNAs (c-miRNAs) in parallel with changes in energy metabolism, we aimed to clarify biological events in adipose, skeletal muscle, and liver tissues in grazing Japanese Shorthorn (JSH) steers by a transcriptomic approach. Methods The subcutaneous fat (SCF), biceps femoris muscle (BFM), and liver in JSH steers after three months of grazing or housing were analyzed using microarray and quantitative polymerase chain reaction (qPCR), followed by gene ontology (GO) and functional annotation analyses. Results The results of transcriptomics indicated that SCF was highly responsive to grazing compared to BFM and liver tissues. The ‘Exosome’, ‘Carbohydrate metabolism’ and ‘Lipid metabolism’ were extracted as the relevant GO terms in SCF and BFM, and/or liver from the >1.5-fold-altered mRNAs in grazing steers. The qPCR analyses showed a trend of upregulated gene expression related to exosome secretion and internalization (charged multivesicular body protein 4A, vacuolar protein sorting-associated protein 4B, vesicle associated membrane protein 7, caveolin 1) in the BFM and SCF, as well as upregulation of lipolysis-associated mRNAs (carnitine palmitoyltransferase 1A, hormone-sensitive lipase, perilipin 1, adipose triglyceride lipase, fatty acid binding protein 4) and most of the microRNAs (miRNAs) in SCF. Moreover, gene expression related to fatty acid uptake and inter-organ signaling (solute carrier family 27 member 4 and angiopoietin-like 4) was upregulated in BFM, suggesting activation of SCF-BFM organ crosstalk for energy metabolism. Meanwhile, expression of plasma exosomal miR-16a, miR-19b, miR-21-5p, and miR-142-5p was reduced. According to bioinformatic analyses, the c-miRNA target genes are associated with the terms ‘Endosome’, ‘Caveola’, ‘Endocytosis’, ‘Carbohydrate metabolism’, and with pathways related to environmental information processing and the endocrine system. Conclusion Exosome and fatty acid metabolism-related gene expression was altered in SCF of grazing cattle, which could be regulated by miRNA such as miR-142-5p. These changes occurred coordinately in both the SCF and BFM, suggesting involvement of exosome in the SCF-BFM organ crosstalk to modulate energy metabolism.
Collapse
Affiliation(s)
- Susumu Muroya
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba, Ibaraki 300-1207, Japan
| | - Hideki Ogasawara
- Field Science Center, School of Veterinary Medicine, Kitasato University, Yakumo, Hokkaido 049-3121, Japan
| | - Kana Nohara
- Field Science Center, School of Veterinary Medicine, Kitasato University, Yakumo, Hokkaido 049-3121, Japan
| | - Mika Oe
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba, Ibaraki 300-1207, Japan
| | - Koichi Ojima
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba, Ibaraki 300-1207, Japan
| | - Masayuki Hojito
- Field Science Center, School of Veterinary Medicine, Kitasato University, Yakumo, Hokkaido 049-3121, Japan
| |
Collapse
|
37
|
Wagner KD, Du S, Martin L, Leccia N, Michiels JF, Wagner N. Vascular PPARβ/δ Promotes Tumor Angiogenesis and Progression. Cells 2019; 8:cells8121623. [PMID: 31842402 PMCID: PMC6952835 DOI: 10.3390/cells8121623] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 01/20/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors, which function as transcription factors. Among them, PPARβ/δ is highly expressed in endothelial cells. Pharmacological activation with PPARβ/δ agonists had been shown to increase their angiogenic properties. PPARβ/δ has been suggested to be involved in the regulation of the angiogenic switch in tumor progression. However, until now, it is not clear to what extent the expression of PPARβ/δ in tumor endothelium influences tumor progression and metastasis formation. We addressed this question using transgenic mice with an inducible conditional vascular-specific overexpression of PPARβ/δ. Following specific over-expression of PPARβ/δ in endothelial cells, we induced syngenic tumors. We observed an enhanced tumor growth, a higher vessel density, and enhanced metastasis formation in the tumors of animals with vessel-specific overexpression of PPARβ/δ. In order to identify molecular downstream targets of PPARβ/δ in the tumor endothelium, we sorted endothelial cells from the tumors and performed RNA sequencing. We identified platelet-derived growth factor receptor beta (Pdgfrb), platelet-derived growth factor subunit B (Pdgfb), and the tyrosinkinase KIT (c-Kit) as new PPARβ/δ -dependent molecules. We show here that PPARβ/δ activation, regardless of its action on different cancer cell types, leads to a higher tumor vascularization which favors tumor growth and metastasis formation.
Collapse
Affiliation(s)
- Kay-Dietrich Wagner
- Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France; (K.-D.W.); (S.D.); (L.M.)
| | - Siyue Du
- Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France; (K.-D.W.); (S.D.); (L.M.)
| | - Luc Martin
- Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France; (K.-D.W.); (S.D.); (L.M.)
| | - Nathalie Leccia
- Department of Pathology, CHU Nice, 06107 Nice, France; (N.L.); (J.-F.M.)
| | | | - Nicole Wagner
- Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France; (K.-D.W.); (S.D.); (L.M.)
- Correspondence: ; Tel.: +33-493-377665
| |
Collapse
|
38
|
Legrand N, Bretscher CL, Zielke S, Wilke B, Daude M, Fritz B, Diederich WE, Adhikary T. PPARβ/δ recruits NCOR and regulates transcription reinitiation of ANGPTL4. Nucleic Acids Res 2019; 47:9573-9591. [PMID: 31428774 PMCID: PMC6765110 DOI: 10.1093/nar/gkz685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/20/2019] [Accepted: 07/28/2019] [Indexed: 12/24/2022] Open
Abstract
In the absence of ligands, the nuclear receptor PPARβ/δ recruits the NCOR and SMRT corepressors, which form complexes with HDAC3, to canonical target genes. Agonistic ligands cause dissociation of corepressors and enable enhanced transcription. Vice versa, synthetic inverse agonists augment corepressor recruitment and repression. Both basal repression of the target gene ANGPTL4 and reinforced repression elicited by inverse agonists are partially insensitive to HDAC inhibition. This raises the question how PPARβ/δ represses transcription mechanistically. We show that the PPARβ/δ inverse agonist PT-S264 impairs transcription initiation by decreasing recruitment of activating Mediator subunits, RNA polymerase II, and TFIIB, but not of TFIIA, to the ANGPTL4 promoter. Mass spectrometry identifies NCOR as the main PT-S264-dependent interactor of PPARβ/δ. Reconstitution of knockout cells with PPARβ/δ mutants deficient in basal repression results in diminished recruitment of NCOR, SMRT, and HDAC3 to PPAR target genes, while occupancy by RNA polymerase II is increased. PT-S264 restores binding of NCOR, SMRT, and HDAC3 to the mutants, resulting in reduced polymerase II occupancy. Our findings corroborate deacetylase-dependent and -independent repressive functions of HDAC3-containing complexes, which act in parallel to downregulate transcription.
Collapse
Affiliation(s)
- Nathalie Legrand
- Department of Medicine, Institute for Molecular Biology and Tumour Research, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Clemens L Bretscher
- Department of Medicine, Institute for Molecular Biology and Tumour Research, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Svenja Zielke
- Department of Medicine, Institute for Molecular Biology and Tumour Research, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Bernhard Wilke
- Department of Medicine, Institute for Molecular Biology and Tumour Research, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany.,Department of Medicine, Institute for Medical Bioinformatics and Biostatistics, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Michael Daude
- Core Facility Medicinal Chemistry, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Barbara Fritz
- Centre for Human Genetics, Universitätsklinikum Giessen und Marburg GmbH, Baldingerstrasse, 35043 Marburg, Germany
| | - Wibke E Diederich
- Core Facility Medicinal Chemistry, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany.,Department of Pharmacy, Institute for Pharmaceutical Chemistry, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Till Adhikary
- Department of Medicine, Institute for Molecular Biology and Tumour Research, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany.,Department of Medicine, Institute for Medical Bioinformatics and Biostatistics, Centre for Tumour Biology and Immunology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| |
Collapse
|
39
|
Effect of mountain ultra-marathon running on plasma angiopoietin-like protein 4 and lipid profile in healthy trained men. Eur J Appl Physiol 2019; 120:117-125. [PMID: 31707478 PMCID: PMC6969869 DOI: 10.1007/s00421-019-04256-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Purpose Angiopoietin-like protein 4 (ANGPTL4) regulates lipid metabolism by inhibiting lipoprotein lipase activity and stimulating lipolysis in adipose tissue. The aim of this study was to find out whether the mountain ultra-marathon running influences plasma ANGPTL4 and whether it is related to plasma lipid changes. Methods Ten healthy men (age 31 ± 1.1 years) completed a 100-km ultra-marathon running. Plasma ANGPTL4, free fatty acids (FFA), triacylglycerols (TG), glycerol (Gly), total cholesterol (TC), low (LDL-C) and high (HDL-C) density lipoprotein-cholesterol were determined before, immediately after the run and after 90 min of recovery. Results Plasma ANGPTL4 increased during exercise from 68.0 ± 16.5 to 101.2 ± 18.1 ng/ml (p < 0.001). This was accompanied by significant increases in plasma FFA, Gly, HDL-C and decreases in plasma TG concentrations (p < 0.01). After 90 min of recovery, plasma ANGPTL4 and TG did not differ significantly from the exercise values, while plasma FFA, Gly, TC and HDL-C were significantly lower than immediately after the run. TC/HDL-C and TG/HDL-C molar ratios were significantly reduced. The exercise-induced changes in plasma ANGPTL4 correlated positively with those of FFA (r = 0.73; p < 0.02), and HDL-C (r = 0.69; p < 0.05). Positive correlation was found also between plasma ANGPTL4 and FFA concentrations after 90 min of recovery (r = 0.77; p < 0.01). Conclusions The present data suggest that increase in plasma FFA during mountain ultra-marathon run may be involved in plasma ANGPTL4 release and that increase in ANGPTL4 secretion may be a compensatory mechanism against fatty acid-induced oxidative stress. Increase in plasma HDL-C observed immediately after the run may be due to the protective effect of ANGPTL4 on HDL.
Collapse
|
40
|
Basu D, Huggins LA, Scerbo D, Obunike J, Mullick AE, Rothenberg PL, Di Prospero NA, Eckel RH, Goldberg IJ. Mechanism of Increased LDL (Low-Density Lipoprotein) and Decreased Triglycerides With SGLT2 (Sodium-Glucose Cotransporter 2) Inhibition. Arterioscler Thromb Vasc Biol 2019; 38:2207-2216. [PMID: 30354257 DOI: 10.1161/atvbaha.118.311339] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Objective- SGLT2 (sodium-glucose cotransporter 2) inhibition in humans leads to increased levels of LDL (low-density lipoprotein) cholesterol and decreased levels of plasma triglyceride. Recent studies, however, have shown this therapy to lower cardiovascular mortality. In this study, we aimed to determine how SGLT2 inhibition alters circulating lipoproteins. Approach and Results- We used a mouse model expressing human CETP (cholesteryl ester transfer protein) and human ApoB100 (apolipoprotein B100) to determine how SGLT2 inhibition alters plasma lipoprotein metabolism. The mice were fed a high-fat diet and then were made partially insulin deficient using streptozotocin. SGLT2 was inhibited using a specific antisense oligonucleotide or canagliflozin, a clinically available oral SGLT2 inhibitor. Inhibition of SGLT2 increased circulating levels of LDL cholesterol and reduced plasma triglyceride levels. SGLT2 inhibition was associated with increased LpL (lipoprotein lipase) activity in the postheparin plasma, decreased postprandial lipemia, and faster clearance of radiolabeled VLDL (very-LDL) from circulation. Additionally, SGLT2 inhibition delayed turnover of labeled LDL from circulation. Conclusions- Our studies in diabetic CETP-ApoB100 transgenic mice recapitulate many of the changes in circulating lipids found with SGLT2 inhibition therapy in humans and suggest that the increased LDL cholesterol found with this therapy is because of reduced clearance of LDL from the circulation and greater lipolysis of triglyceride-rich lipoproteins. Most prominent effects of SGLT2 inhibition in the current mouse model were seen with antisense oligonucleotides-mediated knockdown of SGLT2.
Collapse
Affiliation(s)
- Debapriya Basu
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| | - Lesley-Ann Huggins
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| | - Diego Scerbo
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| | - Joseph Obunike
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| | - Adam E Mullick
- Cardiovascular Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA (A.E.M.)
| | - Paul L Rothenberg
- Cardiovascular and Metabolism Clinical Development, Janssen Research & Development, LLC, Raritan, NJ (P.L.R., N.A.D.P.)
| | - Nicholas A Di Prospero
- Cardiovascular and Metabolism Clinical Development, Janssen Research & Development, LLC, Raritan, NJ (P.L.R., N.A.D.P.)
| | - Robert H Eckel
- Division of Endocrinology, University of Colorado, Anschutz Campus, Denver (R.H.E.)
| | - Ira J Goldberg
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| |
Collapse
|
41
|
Abstract
The health-promoting effects of physical activity to prevent and treat metabolic disorders are numerous. However, the underlying molecular mechanisms are not yet completely deciphered. In recent years, studies have referred to the liver as an endocrine organ, since it releases specific proteins called hepatokines. Some of these hepatokines are involved in whole body metabolic homeostasis and are theorized to participate in the development of metabolic disease. In this regard, the present review describes the role of Fibroblast Growth Factor 21, Fetuin-A, Angiopoietin-like protein 4, and Follistatin in metabolic disease and their production in response to acute exercise. Also, we discuss the potential role of hepatokines in mediating the beneficial effects of regular exercise and the future challenges to the discovery of new exercise-induced hepatokines.
Collapse
Affiliation(s)
- Gaël Ennequin
- PEPITE EA4267, EPSI, Université de Bourgogne Franche-Comté , Besançon , France
| | - Pascal Sirvent
- Université Clermont Auvergne, Laboratoire des Adaptations Métaboliques à l'Exercice en conditions Physiologiques et Pathologiques (AME2P), CRNH Auvergne, Clermont-Ferrand , France
| | - Martin Whitham
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham , United Kingdom
| |
Collapse
|
42
|
ANGPTL-4 is Associated with Obesity and Lipid Profile in Children and Adolescents. Nutrients 2019; 11:nu11061340. [PMID: 31207920 PMCID: PMC6628529 DOI: 10.3390/nu11061340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL-4) regulates lipidic metabolism and affects energy homeostasis. However, its function in children with obesity remains unknown. We investigated plasma ANGPTL-4 levels in children and its relationship with body mass index (BMI) and different lipidic parameters such as free fatty acids (FFA). Plasma ANGPTL-4 levels were analyzed in two different cohorts. In the first cohort (n = 150, age 3–17 years), which included children with normal weight or obesity, we performed a cross-sectional study. In the second cohort, which included only children with obesity (n = 20, age 5–18 years) followed up for two years after an intervention for weight loss, in which we performed a longitudinal study measuring ANGPTL-4 before and after BMI-loss. In the cross-sectional study, circulating ANGPTL-4 levels were lower in children with obesity than in those with normal weight. Moreover, ANGPTL-4 presented a negative correlation with BMI, waist circumference, weight, insulin, homeostasis model assessment of insulin resistance index (HOMA index), triglycerides, and leptin, and a positive correlation with FFA and vitamin-D. In the longitudinal study, the percent change in plasma ANGPTL-4 was correlated with the percent change in FFA, total-cholesterol and high-density lipoprotein cholesterol. This study reveals a significant association of ANGPTL-4 with pediatric obesity and plasma lipid profile.
Collapse
|
43
|
Kharazmi-Khorassani S, Kharazmi-Khorassani J, Rastegar-Moghadam A, Samadi S, Ghazizadeh H, Tayefi M, Ferns GA, Ghayour-Mobarhan M, Avan A, Esmaily H. Association of a genetic variant in the angiopoietin-like protein 4 gene with metabolic syndrome. BMC MEDICAL GENETICS 2019; 20:97. [PMID: 31164103 PMCID: PMC6549319 DOI: 10.1186/s12881-019-0825-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/16/2019] [Indexed: 02/08/2023]
Abstract
Background Metabolic syndrome (MetS) is characterized by a clustering of cardiovascular risk factors that include: abdominal obesity, dyslipidemia, hypertension and glucose intolerance. Angiopoietin-like protein 4 (ANGPTL4) is a circulating peptide that is an inhibitor of lipoprotein lipase, a key enzyme in lipid metabolism. The objective of this study was to investigate the association of ANGPTL4 gene variants (E40K) with fasting serum triglyceride levels and with cardiovascular risk factors, that included the presence of MetS in 817 subjects recruited from the Mashhad stroke and heart Atherosclerosis Disorders (MASHAD) cohort Study. Method ANGPTL4 genotypes were determined using a TaqMan genotyping based real time PCR method. The association of the genetic variant with the risk of metabolic syndrome and its relationship with lipid profile were determined. Result The frequency of GG, GA and AA genotypes were 96.9, 2.7 and 0.4% in individuals with MetS, and 78.8, 20.8, 0.4%, in those without MetS. The GA genotype of the rs116843064 polymorphism was associated with a lower risk for MetS (e.g., OR in Codominant genetic model: 0.14, 95% CI: (0.06–0.33), p < 0.0001). Subject with an A allele had a higher risk for MetS (OR: 6.72, 95% CI: (3.05–14.82), p < 0.0001). There was a significant difference in fasted lipid profiles across the genotypes for ANGPTL4. Carriers of the AG genotype had higher levels of serum HDL-cholesterol (HDL-C) and lower TG, compared to the GG homozygotes genotype. Conclusion The G allele at the rs116843064 polymorphic locus of the ANGPTL4 gene was associated with a lower prevalence of MetS.
Collapse
Affiliation(s)
| | | | - Azam Rastegar-Moghadam
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Samadi
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Ghazizadeh
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Tayefi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Ghayour-Mobarhan
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Habibollah Esmaily
- Social Determinants of Health Research, Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
Lee EH, Kim S, Choi MS, Park SM, Moon KS, Yoon S, Oh JH. Inhibition of PPARα target genes during cyclosporine A-induced nephrotoxicity and hepatotoxicity. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0022-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Garneau L, Aguer C. Role of myokines in the development of skeletal muscle insulin resistance and related metabolic defects in type 2 diabetes. DIABETES & METABOLISM 2019; 45:505-516. [PMID: 30844447 DOI: 10.1016/j.diabet.2019.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/04/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Due to its mass, skeletal muscle is the major site of glucose uptake and an important tissue in the development of type 2 diabetes (T2D). Muscles of patients with T2D are affected with insulin resistance and mitochondrial dysfunction, which result in impaired glucose and fatty acid metabolism. A well-established method of managing the muscle metabolic defects occurring in T2D is physical exercise. During exercise, muscles contract and secrete factors called myokines which can act in an autocrine/paracrine fashion to improve muscle energy metabolism. In patients with T2D, plasma levels as well as muscle levels (mRNA and protein) of some myokines are upregulated, while others are downregulated. The signalling pathways of certain myokines are also altered in skeletal muscle of patients with T2D. Taken together, these findings suggest that myokine secretion is an important factor contributing to the development of muscle metabolic defects during T2D. It is also of interest considering that lack of physical activity is closely linked to the occurrence of this disease. The causal relationships between sedentary behavior, factors secreted by skeletal muscle at rest and during contraction and the development of T2D remain to be elucidated. Many myokines shown to influence muscle energy metabolism still have not been characterized in the context of T2D in skeletal muscle specifically. The purpose of this review is to highlight what is known and what remains to be determined regarding myokine secretion in patients with T2D to uncover potential therapeutic targets for the management of this disease.
Collapse
Affiliation(s)
- L Garneau
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON, K1H 8M5, Canada; Institut du Savoir Montfort - recherche, Ottawa, ON, K1K 0T2, Canada
| | - C Aguer
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON, K1H 8M5, Canada; Institut du Savoir Montfort - recherche, Ottawa, ON, K1K 0T2, Canada.
| |
Collapse
|
46
|
Effects of Angiopoietin-Like 3 on Triglyceride Regulation, Glucose Homeostasis, and Diabetes. DISEASE MARKERS 2019; 2019:6578327. [PMID: 30944669 PMCID: PMC6421734 DOI: 10.1155/2019/6578327] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022]
Abstract
Angiopoietin-like 3 (ANGPTL3) is a regulator of plasma triglyceride (TRG) levels due to its inhibitory action on the activity of lipoprotein lipase (LPL). ANGPTL3 is proteolytically cleaved by proprotein convertases to generate an active N-terminal domain, which forms a complex with ANGPTL8 orchestrating LPL inhibition. ANGPTL3-4-8 mouse model studies indicate that these three ANGPTL family members play a significant role in partitioning the circulating TRG to specific tissues according to nutritional states. Recent data indicate a positive correlation of ANGPTL3 with plasma glucose, insulin, and homeostatic model assessment of insulin resistance (HOMA-IR) in insulin-resistant states. The aim of this review is to critically present the metabolic effects of ANGPTL3, focusing on the possible mechanisms involved in the dysregulation of carbohydrate homeostasis by this protein. Heterozygous and homozygous carriers of ANGPTL3 loss-of-function mutations have reduced risk for type 2 diabetes mellitus. Suggested mechanisms for the implication of ANGPTL3 in carbohydrate metabolism include the (i) increment of free fatty acids (FFAs) owing to the enhancement of lipolysis in adipose tissue, which can induce peripheral as well as hepatic insulin resistance; (ii) promotion of FFA flux to white adipose tissue during feeding, leading to the attenuation of de novo lipogenesis and decreased glucose uptake and insulin sensitivity; (iii) induction of hypothalamic LPL activity in mice, which is highly expressed throughout the brain and is associated with enhanced brain lipid sensing, reduction of food intake, and inhibition of glucose production (however, the effects of ANGPTL3 on hypothalamic LPL in humans need more clarification); and (iv) upregulation of ANGPTL4 expression (owing to the plasma FFA increase), which possibly enhances insulin resistance due to the selective inhibition of LPL in white adipose tissue leading to ectopic lipid accumulation and insulin resistance. Future trials will reveal if ANGPTL3 inhibition could be considered an alternative therapeutic target for dyslipidemia and dysglycemia.
Collapse
|
47
|
Yang X, Cheng Y, Su G. A review of the multifunctionality of angiopoietin-like 4 in eye disease. Biosci Rep 2018; 38:BSR20180557. [PMID: 30049845 PMCID: PMC6137252 DOI: 10.1042/bsr20180557] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/02/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4) is a multifunctional cytokine regulating vascular permeability, angiogenesis, and inflammation. Dysregulations in these responses contribute to the pathogenesis of ischemic retinopathies such as diabetic retinopathy (DR), age-related macular degeneration (AMD), retinal vein occlusion, and sickle cell retinopathy (SCR). However, the role of ANGPTL4 in these diseases remains controversial. Here, we summarize the functional mechanisms of ANGPTL4 in several diseases. We highlight original studies that provide detailed data about the mechanisms of action for ANGPTL4, its applications as a diagnostic or prognostic biomarker, and its use as a potential therapeutic target. Taken together, the discussions in this review will help us gain a better understanding of the molecular mechanisms by which ANGPTL4 functions in eye disease and will provide directions for future research.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
48
|
Enzyme-modified non-oxidized LDL (ELDL) induces human coronary artery smooth muscle cell transformation to a migratory and osteoblast-like phenotype. Sci Rep 2018; 8:11954. [PMID: 30097618 PMCID: PMC6086911 DOI: 10.1038/s41598-018-30073-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/11/2018] [Indexed: 12/29/2022] Open
Abstract
Enzyme modified non-oxidative LDL (ELDL) is effectively taken up by vascular smooth muscle cells (SMC) and mediates transition into foam cells and produces phenotypic changes in SMC function. Our data show that incubation of human coronary artery SMC (HCASMC) with low concentration of ELDL (10 μg/ml) results in significantly enhanced foam cell formation compared to oxidized LDL (200 μg/ml; p < 0.01) or native LDL (200 μg/ml; p < 0.01). Bioinformatic network analysis identified activation of p38 MAPK, NFkB, ERK as top canonical pathways relevant for biological processes linked to cell migration and osteoblastic differentiation in ELDL-treated cells. Functional studies confirmed increased migration of HCASMC upon stimulation with ELDL (10 μg/ml) or Angiopoietin like protein 4, (ANGPTL4, 5 μg/ml), and gain in osteoblastic gene profile with significant increase in mRNA levels for DMP-1, ALPL, RUNX2, OPN/SPP1, osterix/SP7, BMP and reduction in mRNA for MGP and ENPP1. Enhanced calcification of HCASMC by ELDL was demonstrated by Alizarin Red staining. In summary, ELDL is highly potent in inducing foam cells in HCASMC and mediates a phenotypic switch with enhanced migration and osteoblastic gene profile. These results point to the potential of ELDL to induce migratory and osteoblastic effects in human smooth muscle cells with potential implications for migration and calcification of SMCs in human atherosclerosis.
Collapse
|
49
|
van der Kolk BW, Vink RG, Jocken JWE, Roumans NJT, Goossens GH, Mariman ECM, van Baak MA, Blaak EE. Effect of diet-induced weight loss on angiopoietin-like protein 4 and adipose tissue lipid metabolism in overweight and obese humans. Physiol Rep 2018; 6:e13735. [PMID: 29998530 PMCID: PMC6041698 DOI: 10.14814/phy2.13735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/16/2018] [Accepted: 05/19/2018] [Indexed: 12/11/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4) plays a role in lipid partitioning by inhibiting lipoprotein lipase (LPL)-dependent plasma clearance of triacylglycerol in adipose tissue. We investigated the effects of diet-induced weight loss on plasma ANGPTL4 concentrations in relation to in vivo adipose tissue LPL activity and lipolysis and adipose tissue ANGPTL4 release in overweight/obese participants. Sixteen individuals (BMI: 28-35 kg/m2 ; 10 women) were randomized to a dietary intervention composed of either a low-calorie diet (1250 kcal/day) for 12 weeks (n = 9) or a very low-calorie diet (500 kcal/day) for 5 weeks, followed by a 4-week weight stable period. Before and after the intervention, we measured arteriovenous concentration differences in combination with adipose tissue blood flow before and after intake of a high-fat mixed meal with [U-13 C]-palmitate to assess in vivo adipose tissue LPL activity and lipolysis. The intervention significantly reduced body weight (-8.6 ± 0.6 kg, P < 0.001). Plasma ANGPTL4 concentrations were unaffected. Significant postprandial adipose tissue ANGPTL4 release into the circulation was observed (P < 0.01). No association was observed between plasma ANGPTL4 and in vivo LPL activity. After intervention, fasting and postprandial plasma ANGPTL4 concentrations were positively associated with adipose tissue nonesterified FA (NEFA) and glycerol release, reflecting in vivo adipose tissue lipolysis (fasting NEFA: P = 0.039 and postprandial NEFA: P = 0.003). In conclusion, plasma ANGPTL4 is unaffected by weight loss and is secreted from human adipose tissue after a high-fat meal in overweight/obese participants. Plasma ANGPTL4 concentrations were not related to in vivo adipose tissue LPL activity, but were positively associated with in vivo adipose tissue lipolysis after weight loss.
Collapse
Affiliation(s)
- Birgitta W. van der Kolk
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Roel G. Vink
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Johan W. E. Jocken
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Nadia J. T. Roumans
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Gijs H. Goossens
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Edwin C. M. Mariman
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Marleen A. van Baak
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Ellen E. Blaak
- Department of Human BiologyNUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| |
Collapse
|
50
|
Knuiman P, Hopman MTE, Hangelbroek R, Mensink M. Plasma cytokine responses to resistance exercise with different nutrient availability on a concurrent exercise day in trained healthy males. Physiol Rep 2018; 6:e13708. [PMID: 29870157 PMCID: PMC5987829 DOI: 10.14814/phy2.13708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/21/2022] Open
Abstract
Carbohydrate availability is proposed as a potential regulator of cytokine responses. We aimed to evaluate the effect of a preresistance exercise carbohydrate meal versus fat meal on plasma cytokine responses to resistance exercise after an endurance exercise earlier that day. Thirteen young, healthy, recreationally active males performed two experimental days with endurance exercise in the morning and resistance exercise in the afternoon. Either a carbohydrate (110 g carbohydrate, 52 g protein, 9 g fat; ~750 kcal) or an isocaloric fat meal (20 gr carbohydrate, 52 g protein, 51 g fat) was provided 2 h before resistance exercise. Blood was taken at baseline and at regular time intervals to measure circulating plasma cytokine levels (e.g. IL-6, IL-8, IL-10, IL-15, TNFα, ANGPTL4, decorin and MCP-1). Plasma glucose and insulin were higher in the postprandial period before the start of the resistance exercise on the carbohydrate condition, while free fatty acids were reduced. At 2 h postresistance exercise, IL-6 concentrations were higher in the fat condition compared to the carbohydrate condition (P < 0.05). In addition, in both conditions IL-6 levels were higher at all time points compared with baseline (P < 0.05). The pattern of increase in plasma IL-8 and IL-10 did not differ significantly between conditions (P > 0.05). There were no differences between conditions on TNFα levels and levels remain constant when compared with baseline (P > 0.05). ANGPTL4, IL-15, Decorin and MCP-1 showed no differences between the fat and carbohydrate condition (P > 0.05). The composition of the pre-exercise meal did in general not influence cytokine responses in the postresistance exercise period, except postresistance exercise circulating plasma IL-6 levels being higher in the fat condition compared with carbohydrate. Our findings support the view that pre-exercise carbohydrate availability does not have a major impact on acute responses of circulating plasma cytokines in humans.
Collapse
Affiliation(s)
- Pim Knuiman
- Division of Human NutritionWageningen University & ResearchWageningenThe Netherlands
| | - Maria T. E. Hopman
- Division of Human NutritionWageningen University & ResearchWageningenThe Netherlands
- Department of PhysiologyRadboud University Medical CentreNijmegenThe Netherlands
| | - Roland Hangelbroek
- Division of Human NutritionWageningen University & ResearchWageningenThe Netherlands
| | - Marco Mensink
- Division of Human NutritionWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|