1
|
Valentini A, Cardillo C, Della Morte D, Tesauro M. The Role of Perivascular Adipose Tissue in the Pathogenesis of Endothelial Dysfunction in Cardiovascular Diseases and Type 2 Diabetes Mellitus. Biomedicines 2023; 11:3006. [PMID: 38002006 PMCID: PMC10669084 DOI: 10.3390/biomedicines11113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases (CVDs) and type 2 diabetes mellitus (T2DM) are two of the four major chronic non-communicable diseases (NCDs) representing the leading cause of death worldwide. Several studies demonstrate that endothelial dysfunction (ED) plays a central role in the pathogenesis of these chronic diseases. Although it is well known that systemic chronic inflammation and oxidative stress are primarily involved in the development of ED, recent studies have shown that perivascular adipose tissue (PVAT) is implicated in its pathogenesis, also contributing to the progression of atherosclerosis and to insulin resistance (IR). In this review, we describe the relationship between PVAT and ED, and we also analyse the role of PVAT in the pathogenesis of CVDs and T2DM, further assessing its potential therapeutic target with the aim of restoring normal ED and reducing global cardiovascular risk.
Collapse
Affiliation(s)
- Alessia Valentini
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (A.V.); (D.D.M.)
| | - Carmine Cardillo
- Department of Aging, Policlinico A. Gemelli IRCCS, 00168 Roma, Italy;
- Department of Translational Medicine and Surgery, Catholic University, 00168 Rome, Italy
| | - David Della Morte
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (A.V.); (D.D.M.)
| | - Manfredi Tesauro
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (A.V.); (D.D.M.)
| |
Collapse
|
2
|
Banecki KMRM, Dora KA. Endothelin-1 in Health and Disease. Int J Mol Sci 2023; 24:11295. [PMID: 37511055 PMCID: PMC10379484 DOI: 10.3390/ijms241411295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Discovered almost 40 years ago, the potent vasoconstrictor peptide endothelin-1 (ET-1) has a wide range of roles both physiologically and pathologically. In recent years, there has been a focus on the contribution of ET-1 to disease. This has led to the development of various ET receptor antagonists, some of which are approved for the treatment of pulmonary arterial hypertension, while clinical trials for other diseases have been numerous yet, for the most part, unsuccessful. However, given the vast physiological impact of ET-1, it is both surprising and disappointing that therapeutics targeting the ET-1 pathway remain limited. Strategies aimed at the pathways influencing the synthesis and release of ET-1 could provide new therapeutic avenues, yet research using cultured cells in vitro has had little follow up in intact ex vivo and in vivo preparations. This article summarises what is currently known about the synthesis, storage and release of ET-1 as well as the role of ET-1 in several diseases including cardiovascular diseases, COVID-19 and chronic pain. Unravelling the ET-1 pathway and identifying therapeutic targets has the potential to treat many diseases whether through disease prevention, slowing disease progression or reversing pathology.
Collapse
Affiliation(s)
| | - Kim A Dora
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
3
|
Joseph JJ, Kluwe B, Zhao S, Kline D, Nedungadi D, Brock G, Hsueh WA, Golden SH. The association of aldosterone and endothelin-1 with incident diabetes among African Americans: The Jackson Heart Study. ENDOCRINE AND METABOLIC SCIENCE 2023; 11:100128. [PMID: 37475850 PMCID: PMC10358435 DOI: 10.1016/j.endmts.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Introduction African Americans (AAs) have the highest prevalence of hypertension among United States racial/ethnic groups. Regulators of blood pressure, such as aldosterone and endothelin-1, impact glucose regulation. The relationship between these factors and incident diabetes is not well elucidated among AAs. Methods Among 3914 AA participants without prevalent diabetes in the Jackson Heart Study, linear regression models were used to examine cross-sectional associations of exposures (aldosterone, endothelin-1, and a combined aldosterone-endothelin-1 score [2-8]) with glycemic measures (fasting plasma glucose [FPG], HbA1c, homeostatic model assessments of beta cell function [HOMA-β] and insulin resistance [HOMA-IR]). Longitudinal associations of exposures with incident diabetes were examined using Cox proportional hazard models. Models were adjusted for age, sex, education, occupation, systolic blood pressure, smoking, physical activity, dietary intake, alcohol use and adiponectin. Results Aldosterone and the combined aldosterone-endothelin score were positively associated with FPG, HOMA-IR, and HOMA-β (all p < 0.05). Endothelin-1 was negatively associated with FPG but positively associated with HOMA-β (both p < 0.05). Only the aldosterone-endothelin score was positively associated with HbA1c (p < 0.01). A 1-SD higher serum aldosterone and endothelin-1 was associated with a 22 % and 14 % higher risk of incident diabetes, respectively, while a 1-point higher aldosterone-endothelin score was associated with a 13 % higher risk of incident diabetes after adjustment for diabetes risk factors (all p < 0.01). Conclusions Aldosterone and endothelin-1, factors integral in blood pressure regulation, may play a significant role in the development of diabetes among AAs.
Collapse
Affiliation(s)
- Joshua J. Joseph
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Bjorn Kluwe
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Songzhu Zhao
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - David Kline
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Divya Nedungadi
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Guy Brock
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Willa A. Hsueh
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Sherita H. Golden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Columbus, OH, USA
| |
Collapse
|
4
|
Sujana C, Salomaa V, Kee F, Seissler J, Jousilahti P, Neville C, Then C, Koenig W, Kuulasmaa K, Reinikainen J, Blankenberg S, Zeller T, Herder C, Mansmann U, Peters A, Thorand B. Associations of the vasoactive peptides CT-proET-1 and MR-proADM with incident type 2 diabetes: results from the BiomarCaRE Consortium. Cardiovasc Diabetol 2022; 21:99. [PMID: 35681200 PMCID: PMC9185875 DOI: 10.1186/s12933-022-01513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/28/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Endothelin-1 (ET-1) and adrenomedullin (ADM) are commonly known as vasoactive peptides that regulate vascular homeostasis. Less recognised is the fact that both peptides could affect glucose metabolism. Here, we investigated whether ET-1 and ADM, measured as C-terminal-proET-1 (CT-proET-1) and mid-regional-proADM (MR-proADM), respectively, were associated with incident type 2 diabetes. METHODS Based on the population-based Biomarkers for Cardiovascular Risk Assessment in Europe (BiomarCaRE) Consortium data, we performed a prospective cohort study to examine associations of CT-proET-1 and MR-proADM with incident type 2 diabetes in 12,006 participants. During a median follow-up time of 13.8 years, 862 participants developed type 2 diabetes. The associations were examined in Cox proportional hazard models. Additionally, we performed two-sample Mendelian randomisation analyses using published data. RESULTS CT-proET-1 and MR-proADM were positively associated with incident type 2 diabetes. The multivariable hazard ratios (HRs) [95% confidence intervals (CI)] were 1.10 [1.03; 1.18], P = 0.008 per 1-SD increase of CT-proET-1 and 1.11 [1.02; 1.21], P = 0.016 per 1-SD increase of log MR-proADM, respectively. We observed a stronger association of MR-proADM with incident type 2 diabetes in obese than in non-obese individuals (P-interaction with BMI < 0.001). The HRs [95%CIs] were 1.19 [1.05; 1.34], P = 0.005 and 1.02 [0.90; 1.15], P = 0.741 in obese and non-obese individuals, respectively. Our Mendelian randomisation analyses yielded a significant association of CT-proET-1, but not of MR-proADM with type 2 diabetes risk. CONCLUSIONS Higher concentrations of CT-proET-1 and MR-proADM are associated with incident type 2 diabetes, but our Mendelian randomisation analysis suggests a probable causal link for CT-proET-1 only. The association of MR-proADM seems to be modified by body composition.
Collapse
Affiliation(s)
- Chaterina Sujana
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Pettenkofer School of Public Health, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Neuherberg, Germany
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Frank Kee
- Centre for Public Health, Queens University of Belfast, Belfast, Northern Ireland, UK
| | - Jochen Seissler
- Diabetes Zentrum, Medizinische Klinik Und Poliklinik IV, Klinikum Der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Charlotte Neville
- Centre for Public Health, Queens University of Belfast, Belfast, Northern Ireland, UK
| | - Cornelia Then
- Diabetes Zentrum, Medizinische Klinik Und Poliklinik IV, Klinikum Der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Koenig
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- German Centre for Cardiovascular Research (DZHK E.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Kari Kuulasmaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jaakko Reinikainen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Stefan Blankenberg
- Department for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK E.V.), Partner site Hamburg, Lübeck, Kiel, Hamburg, Germany
| | - Tanja Zeller
- Department for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK E.V.), Partner site Hamburg, Lübeck, Kiel, Hamburg, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Neuherberg, Germany
| | - Ulrich Mansmann
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Pettenkofer School of Public Health, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK E.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Neuherberg, Germany.
| |
Collapse
|
5
|
Lien CC, Yin WH, Yang DM, Chen LK, Chen CW, Liu SY, Kwok CF, Ho LT, Juan CC. Endothelin-1 induces lipolysis through activation of the GC/cGMP/Ca 2+/ERK/CaMKIII pathway in 3T3-L1 adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159071. [PMID: 34748972 DOI: 10.1016/j.bbalip.2021.159071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/24/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
Endothelin-1 (ET-1) is a potent vasoconstrictive peptide produced and secreted mainly by endothelial cells. Recent studies indicate that ET-1 can regulate lipid metabolism, which may increase the risk of insulin resistance. Our previous studies revealed that ET-1 induced lipolysis in adipocytes, but the underlying mechanisms were unclear. 3T3-L1 adipocytes were used to investigate the effect of ET-1 on lipolysis and the underlying mechanisms. Glycerol levels in the incubation medium and hormone-sensitive lipase (HSL) phosphorylation were used as indices for lipolysis. ET-1 significantly increased HSL phosphorylation and lipolysis, which were completely inhibited by ERK inhibitor (PD98059) and guanylyl cyclase (GC) inhibitor (LY83583). LY83583 reduced ET-1-induced ERK phosphorylation. A Ca2+-free medium and PLC inhibitor caused significant decreases in ET-1-induced lipolysis as well as ERK and HSL phosphorylation, and IP3 receptor activator (D-IP3) increased lipolysis. ET-1 increased cGMP production, which was not affected by depletion of extracellular Ca2+. On the other hand, LY83583 diminished the ET-1-induced Ca2+ influx. Transient receptor potential vanilloid-1 (TRPV-1) antagonist and shRNA partially inhibited ET-1-induced lipolysis. ET-1-induced lipolysis was completely suppressed by CaMKIII inhibitor (NH-125). These results indicate that ET-1 stimulates extracellular Ca2+ entry and activates the intracellular PLC/IP3/Ca2+ pathway through a cGMP-dependent pathway. The increased cytosolic Ca2+ that results from ET-1 treatment stimulates ERK and HSL phosphorylation, which subsequently induces lipolysis. ET-1 induces HSL phosphorylation and lipolysis via the GC/cGMP/Ca2+/ERK/CaMKIII signaling pathway in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Chih-Chan Lien
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Life Science, College of Science, Chinese Culture University, Taipei, Taiwan
| | - Wei-Hsian Yin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Cardiology, Cheng-Hsin General Hospital, Taipei, Taiwan; Heart Center, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - De-Ming Yang
- Institute of Biophotonics, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Luen-Kui Chen
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Wei Chen
- College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Shui-Yu Liu
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Fai Kwok
- Division of Metabolism, Cheng-Hsin General Hospital, Taipei, Taiwan; Division of Endocrinology and Metabolism, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Low-Tone Ho
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Endocrinology and Metabolism, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Chang Juan
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
6
|
Wood N, Straw S, Scalabrin M, Roberts LD, Witte KK, Bowen TS. Skeletal muscle atrophy in heart failure with diabetes: from molecular mechanisms to clinical evidence. ESC Heart Fail 2021; 8:3-15. [PMID: 33225593 PMCID: PMC7835554 DOI: 10.1002/ehf2.13121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022] Open
Abstract
Two highly prevalent and growing global diseases impacted by skeletal muscle atrophy are chronic heart failure (HF) and type 2 diabetes mellitus (DM). The presence of either condition increases the likelihood of developing the other, with recent studies revealing a large and relatively poorly characterized clinical population of patients with coexistent HF and DM (HFDM). HFDM results in worse symptoms and poorer clinical outcomes compared with DM or HF alone, and cardiovascular-focused disease-modifying agents have proven less effective in HFDM indicating a key role of the periphery. This review combines current clinical knowledge and basic biological mechanisms to address the critical emergence of skeletal muscle atrophy in patients with HFDM as a key driver of symptoms. We discuss how the degree of skeletal muscle wasting in patients with HFDM is likely underpinned by a variety of mechanisms that include mitochondrial dysfunction, insulin resistance, inflammation, and lipotoxicity. Given many atrophic triggers (e.g. ubiquitin proteasome/autophagy/calpain activity and supressed IGF1-Akt-mTORC1 signalling) are linked to increased production of reactive oxygen species, we speculate that a higher pro-oxidative state in HFDM could be a unifying mechanism that promotes accelerated fibre atrophy. Overall, our proposal is that patients with HFDM represent a unique clinical population, prompting a review of treatment strategies including further focus on elucidating potential mechanisms and therapeutic targets of muscle atrophy in these distinct patients.
Collapse
Affiliation(s)
- Nathanael Wood
- Faculty of Biomedical SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Sam Straw
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | | - Lee D. Roberts
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Klaus K. Witte
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | |
Collapse
|
7
|
Feng L, Wang S, Chen F, Zhang C, Wang Q, Zhao Y, Zhang Z. Hepatic Knockdown of Endothelin Type A Receptor (ETAR) Ameliorates Hepatic Insulin Resistance and Hyperglycemia Through Suppressing p66Shc-Mediated Mitochondrial Fragmentation in High-Fat Diet-Fed Mice. Diabetes Metab Syndr Obes 2021; 14:963-981. [PMID: 33688230 PMCID: PMC7936928 DOI: 10.2147/dmso.s299570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/23/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Emerging evidence from animal studies and clinical trials indicates that systemic inhibition of endothelin1 (ET1) signaling by endothelin receptor antagonists improves pathological features of diabetes and its complications. It is indicated that endothelin type A receptor (ETAR) plays a major role in ET1-mediated pathophysiological actions including diabetic pathology. However, the effects as well as the mechanistic targets of hepatic ET1/ETAR signaling inhibition on the pathology of metabolic diseases remain unclear. This study aimed to investigate the beneficial effects as well as the underlying mechanisms of hepatic ETAR knockdown on metabolism abnormalities in high-fat diet (HFD)-fed mice. METHODS Mice were fed a HFD to induce insulin resistance and metabolism abnormalities. L02 cells were treated with ET1 to assess the action of ET1/ETAR signaling in vitro. Liver-selective knockdown of ETAR was achieved by tail vein injection of adeno-associated virus 8 (AAV8). Systemic and peripheral metabolism abnormalities were determined in vivo and in vitro. Mitochondrial fragmentation was observed by transmission electron microscope (TEM) and mitoTracker red staining. RESULTS Here we provided in vivo and in vitro evidence to demonstrate that liver-selective knockdown of ETAR effectively ameliorated hepatic insulin resistance and hyperglycemia in HFD-fed mice. Mechanistically, hepatic ETAR knockdown alleviated mitochondrial fragmentation and dysfunction via inactivating 66-kDa Src homology 2 domain-containing protein (p66Shc) to recover mitochondrial dynamics, which was mediated by inhibiting protein kinase Cδ (PKCδ), in the livers of HFD-fed mice. Ultimately, hepatic ETAR knockdown attenuated mitochondria-derived oxidative stress and related liver injuries in HFD-fed mice. These ETAR knockdown-mediated actions were confirmed in ET1-treated L02 cells. CONCLUSION This study defined an ameliorative role of hepatic ETAR knockdown in HFD-induced metabolism abnormalities by alleviating p66Shc-mediated mitochondrial fragmentation and consequent oxidative stress-related disorders and indicated that hepatic ETAR knockdown may be a promising therapeutic strategy for metabolic diseases.
Collapse
Affiliation(s)
- Li Feng
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People’s Republic of China
| | - Songhua Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People’s Republic of China
| | - Feng Chen
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People’s Republic of China
| | - Cheng Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People’s Republic of China
| | - Qiao Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People’s Republic of China
| | - Yuting Zhao
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People’s Republic of China
| | - Zifeng Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People’s Republic of China
- Correspondence: Zifeng Zhang 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, People’s Republic of ChinaTel + 86 516 83403729 Email
| |
Collapse
|
8
|
Jenkins HN, Rivera-Gonzalez O, Gibert Y, Speed JS. Endothelin-1 in the pathophysiology of obesity and insulin resistance. Obes Rev 2020; 21:e13086. [PMID: 32627269 PMCID: PMC7669671 DOI: 10.1111/obr.13086] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/07/2020] [Accepted: 05/23/2020] [Indexed: 12/29/2022]
Abstract
The association between plasma endothelin-1 (ET-1) and obesity has been documented for decades, yet the contribution of ET-1 to risk factors associated with obesity is not fully understood. In 1994, one of first papers to document this association also noted a positive correlation between plasma insulin and ET-1, suggesting a potential contribution of ET-1 to the development of insulin resistance. Both endogenous receptors for ET-1, ETA and ETB are present in all insulin-sensitive tissues including adipose, liver and muscle, and ET-1 actions within these tissues suggest that ET-1 may be playing a role in the pathogenesis of insulin resistance. Further, antagonists for ET-1 receptors are clinically approved making these sites attractive therapeutic targets. This review focuses on known mechanisms through which ET-1 affects plasma lipid profiles and insulin signalling in these metabolically important tissues and also identifies gaps in our understanding of ET-1 in obesity-related pathophysiology.
Collapse
Affiliation(s)
- Haley N. Jenkins
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39047
| | - Osvaldo Rivera-Gonzalez
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39047
| | - Yann Gibert
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39047
| | - Joshua S. Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39047
| |
Collapse
|
9
|
Taylor FC, Dunstan DW, Homer AR, Dempsey PC, Kingwell BA, Climie RE, Owen N, Cohen ND, Larsen RN, Grace M, Eikelis N, Wheeler MJ, Townsend MK, Maniar N, Green DJ. Acute effects of interrupting prolonged sitting on vascular function in type 2 diabetes. Am J Physiol Heart Circ Physiol 2020; 320:H393-H403. [PMID: 33164575 DOI: 10.1152/ajpheart.00422.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In healthy and overweight/obese adults, interrupting prolonged sitting with activity bouts mitigates impairment in vascular function. However, it is unknown whether these benefits extend to those with type 2 diabetes (T2D), nor whether an optimal frequency of activity interruptions exist. We examined the acute effects on vascular function in T2D of interrupting prolonged sitting with simple resistance activities (SRA) at different frequencies. In a randomized crossover trial, 24 adults with T2D (35-70 yr) completed three 7-h conditions: 1) uninterrupted sitting (SIT), 2) sitting with 3-min bouts of SRA every 30 min (SRA3), and 3) sitting with 6 min bouts of SRA every 60 min (SRA6). Femoral artery flow-mediated dilation (FMD), resting shear rate, blood flow, and endothelin-1 were measured at 0, 1, 3.5, 4.5, and 6.5-7 h. Mean femoral artery FMD over 7 h was significantly higher in SRA3 (4.1 ± 0.3%) compared with SIT (3.7 ± 0.3%, P = 0.04) but not in SRA6. Mean resting femoral shear rate over 7 h was increased significantly for SRA3 (45.3 ± 4.1/s, P < 0.001) and SRA6 (46.2 ± 4.1/s, P < 0.001) relative to SIT (33.1 ± 4.1/s). Endothelin-1 concentrations were not statistically different between conditions. Interrupting sitting with activity breaks every 30 min, but not 60 min, significantly increased mean femoral artery FMD over 7 h, relative to SIT. Our findings suggest that more frequent and shorter breaks may be more beneficial than longer, less frequent breaks for vascular health in those with T2D.NEW & NOTEWORTHY This is the first trial to examine both the effects of interrupting prolonged sitting on vascular function in type 2 diabetes and the effects of the frequency and duration of interruptions. Brief, simple resistance activity bouts every 30 min, but not every 60 min, increased mean femoral artery flow-mediated dilation over 7 h, relative to uninterrupted sitting. With further supporting evidence, these initial findings can have important implications for cardiovascular health in type 2 diabetes.
Collapse
Affiliation(s)
- Frances C Taylor
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - David W Dunstan
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia.,School of Sport Science, Exercise and Health, University of Western Australia, Perth, Australia
| | - Ashleigh R Homer
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Paddy C Dempsey
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.,Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, United Kingdom
| | - Bronwyn A Kingwell
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,CSL Limited, Bio21, Parkville, Victoria, Australia
| | - Rachel E Climie
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Neville Owen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Centre for Urban Transitions, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Neale D Cohen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Robyn N Larsen
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| | - Megan Grace
- School of Clinical Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Nina Eikelis
- Iverson Health Innovation Research Institute and School of Health Science, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Michael J Wheeler
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,School of Sport Science, Exercise and Health, University of Western Australia, Perth, Australia
| | | | - Nirav Maniar
- School of Behavioural and Health Sciences, Australian Catholic University, Australia
| | - Daniel J Green
- School of Sport Science, Exercise and Health, University of Western Australia, Perth, Australia
| |
Collapse
|
10
|
Sujana C, Seissler J, Jordan J, Rathmann W, Koenig W, Roden M, Mansmann U, Herder C, Peters A, Thorand B, Then C. Associations of cardiac stress biomarkers with incident type 2 diabetes and changes in glucose metabolism: KORA F4/FF4 study. Cardiovasc Diabetol 2020; 19:178. [PMID: 33066780 PMCID: PMC7566143 DOI: 10.1186/s12933-020-01117-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/12/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND High N-terminal pro-brain-type natriuretic peptide levels have been associated with a lower risk of type 2 diabetes mellitus (T2D). However, less is known about other cardiac stress biomarkers in this context. Here we evaluated the association of mid-regional pro-atrial natriuretic peptide (MR-proANP), C-terminal pro-arginine vasopressin (copeptin), C-terminal pro-endothelin-1 (CT-proET-1) and mid-regional pro-adrenomedullin (MR-proADM) with incident T2D and changes in glucose metabolism. METHODS We performed a prospective cohort study using data from the population-based KORA F4/FF4 study. 1773 participants (52.3% women) with MR-proANP measurements and 960 (52.7% women) with copeptin, CT-proET-1 and MR-proADM measurements were included. We examined associations of circulating plasma levels of MR-proANP, copeptin, CT-proET-1 and MR-proADM with incident T2D, the combined endpoint of incident prediabetes/T2D and with fasting and 2 h-glucose, fasting insulin, HOMA-IR, HOMA-B and HbA1c at follow-up. Logistic and linear regression models adjusted for age, sex, waist circumference, height, hypertension, total/HDL cholesterol ratio, triglycerides, smoking, physical activity and parental history of diabetes were used to compute effect estimates. RESULTS During a median follow-up time of 6.4 years (25th and 75th percentiles: 6.0 and 6.6, respectively), 119 out of the 1773 participants and 72 out of the 960 participants developed T2D. MR-proANP was inversely associated with incident T2D (odds ratio [95% confidence interval]: 0.75 [0.58; 0.96] per 1-SD increase of log MR-proANP). Copeptin was positively associated with incident prediabetes/T2D (1.29 [1.02; 1.63] per 1-SD increase of log copeptin). Elevated levels of CT-proET-1 were associated with increased HOMA-B at follow-up, while elevated MR-proADM levels were associated with increased fasting insulin, HOMA-IR and HOMA-B at follow-up. These associations were independent of previously described diabetes risk factors. CONCLUSIONS High plasma concentrations of MR-proANP contributed to a lower risk of incident T2D, whereas high plasma concentrations of copeptin were associated with an increased risk of incident prediabetes/T2D. Furthermore, high plasma concentrations of CT-proET-1 and MR-proADM were associated with increased insulin resistance. Our study provides evidence that biomarkers implicated in cardiac stress are associated with incident T2D and changes in glucose metabolism.
Collapse
Affiliation(s)
- Chaterina Sujana
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Centre for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.,Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Ludwig-Maximilians-Universität, Munich, Germany.,Pettenkofer School of Public Health, Munich, Germany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR) and University of Cologne, Cologne, Germany
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Mansmann
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Ludwig-Maximilians-Universität, Munich, Germany.,Pettenkofer School of Public Health, Munich, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Centre for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Centre for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany. .,German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.
| | - Cornelia Then
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
11
|
Jurrissen TJ, Grunewald ZI, Woodford ML, Winn NC, Ball JR, Smith TN, Wheeler AA, Rawlings AL, Staveley-O'Carroll KF, Ji Y, Fay WP, Paradis P, Schiffrin EL, Vieira-Potter VJ, Fadel PJ, Martinez-Lemus LA, Padilla J. Overproduction of endothelin-1 impairs glucose tolerance but does not promote visceral adipose tissue inflammation or limit metabolic adaptations to exercise. Am J Physiol Endocrinol Metab 2019; 317:E548-E558. [PMID: 31310581 PMCID: PMC6766607 DOI: 10.1152/ajpendo.00178.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelin-1 (ET-1) is a potent vasoconstrictor and proinflammatory peptide that is upregulated in obesity. Herein, we tested the hypothesis that ET-1 signaling promotes visceral adipose tissue (AT) inflammation and disrupts glucose homeostasis. We also tested if reduced ET-1 is a required mechanism by which exercise ameliorates AT inflammation and improves glycemic control in obesity. We found that 1) diet-induced obesity, AT inflammation, and glycemic dysregulation were not accompanied by significantly increased levels of ET-1 in AT or circulation in wild-type mice and that endothelial overexpression of ET-1 and consequently increased ET-1 levels did not cause AT inflammation yet impaired glucose tolerance; 2) reduced AT inflammation and improved glucose tolerance with voluntary wheel running was not associated with decreased levels of ET-1 in AT or circulation in obese mice nor did endothelial overexpression of ET-1 impede such exercise-induced metabolic adaptations; 3) chronic pharmacological blockade of ET-1 receptors did not suppress AT inflammation in obese mice but improved glucose tolerance; and 4) in a cohort of human subjects with a wide range of body mass indexes, ET-1 levels in AT, or circulation were not correlated with markers of inflammation in AT. In aggregate, we conclude that ET-1 signaling is not implicated in the development of visceral AT inflammation but promotes glucose intolerance, thus representing an important therapeutic target for glycemic dysregulation in conditions characterized by hyperendothelinemia. Furthermore, we show that the salutary effects of exercise on AT and systemic metabolic function are not contingent on the suppression of ET-1 signaling.
Collapse
Affiliation(s)
- Thomas J Jurrissen
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Zachary I Grunewald
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Nathan C Winn
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - James R Ball
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Thomas N Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Andrew A Wheeler
- Department of Surgery, University of Missouri, Columbia, Missouri
| | | | | | - Yan Ji
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, University of Missouri, Columbia, Missouri
| | - William P Fay
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, University of Missouri, Columbia, Missouri
- Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri
| | - Pierre Paradis
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | | | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
12
|
Schinzari F, Tesauro M, Cardillo C. Increased endothelin-1-mediated vasoconstrictor tone in human obesity: effects of gut hormones. Physiol Res 2018; 67:S69-S81. [PMID: 29947529 DOI: 10.33549/physiolres.933821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The heavy impact of obesity on the development and progression of cardiovascular disease has sparked sustained efforts to uncover the mechanisms linking excess adiposity to vascular dysfunction. Impaired vasodilator reactivity has been recognized as an early hemodynamic abnormality in obese patients, but also increased vasoconstrictor tone importantly contributes to their vascular damage. In particular, upregulation of the endothelin (ET)-1 system, consistently reported in these patients, might accelerate atherosclerosis and its complication, given the pro-inflammatory and mitogenic properties of ET-1. In recent years, a number of gut hormones, in addition to their role as modulators of food intake, energy balance, glucose and lipid metabolism, and insulin secretion and action, have demonstrated favorable vascular actions. They increase the bioavailability of vasodilator mediators like nitric oxide, but they have also been shown to inhibit the ET-1 system. These features make gut hormones promising tools for targeting both the metabolic and cardiovascular complications of obesity, a view supported by recent large-scale clinical trials indicating that novel drugs for type 2 diabetes with cardiovascular potential may translate into clinically significant advantages. Therefore, there is real hope that better understanding of the properties of gut-derived substances might provide more effective therapies for the obesity-related cardiometabolic syndrome.
Collapse
Affiliation(s)
- F Schinzari
- Policlinico A. Gemelli, Rome, Italy, Istituto di Patologia Speciale Medica e Semeiotica Medica, Universita Cattolica del Sacro Cuore, Rome, Italy.
| | | | | |
Collapse
|
13
|
Polak J, Punjabi NM, Shimoda LA. Blockade of Endothelin-1 Receptor Type B Ameliorates Glucose Intolerance and Insulin Resistance in a Mouse Model of Obstructive Sleep Apnea. Front Endocrinol (Lausanne) 2018; 9:280. [PMID: 29896159 PMCID: PMC5986958 DOI: 10.3389/fendo.2018.00280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/11/2018] [Indexed: 01/17/2023] Open
Abstract
Obstructive sleep apnea (OSA) is associated with insulin resistance (IR) and glucose intolerance. Elevated endothelin-1 (ET-1) levels have been observed in OSA patients and in mice exposed to intermittent hypoxia (IH). We examined whether pharmacological blockade of type A and type B ET-1 receptors (ETA and ETB) would ameliorate glucose intolerance and IR in mice exposed to IH. Subcutaneously implanted pumps delivered BQ-123 (ETA antagonist; 200 nmol/kg/day), BQ-788 (ETB antagonist; 200 nmol/kg/day) or vehicle (saline or propyleneglycol [PG]) for 14 days in C57BL6/J mice (10/group). During treatment, mice were exposed to IH (decreasing the FiO2 from 20.9% to 6%, 60/h) or intermittent air (IA). After IH or IA exposure, insulin (0.5 IU/kg) or glucose (1 mg/kg) was injected intraperitoneally and plasma glucose determined after injection and area under glucose curve (AUC) was calculated. Fourteen-day IH increased fasting glucose levels (122 ± 7 vs. 157 ± 8 mg/dL, PG: 118 ± 6 vs. 139 ± 8; both p < 0.05) and impaired glucose tolerance (AUCglucose: 19,249 ± 1105 vs. 29,124 ± 1444, PG AUCglucose: 18,066 ± 947 vs. 25,135 ± 797; both p < 0.05) in vehicle-treated animals. IH-induced impairments in glucose tolerance were partially ameliorated with BQ-788 treatment (AUCglucose: 21,969 ± 662; p < 0.05). Fourteen-day IH also induced IR (AUCglucose: 7185 ± 401 vs. 8699 ± 401; p < 0.05). Treatment with BQ-788 decreased IR under IA (AUCglucose: 5281 ± 401, p < 0.05) and reduced worsening of IR with IH (AUCglucose: 7302 ± 401, p < 0.05). There was no effect of BQ-123 on IH-induced impairments in glucose tolerance or IR. Our results suggest that ET-1 plays a role in IH-induced impairments in glucose homeostasis.
Collapse
Affiliation(s)
- Jan Polak
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Naresh M. Punjabi
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
14
|
Horinouchi T, Mazaki Y, Terada K, Miwa S. [Molecular mechanism for ET-1-induced insulin resistance in skeletal muscle cells]. Nihon Yakurigaku Zasshi 2018; 151:140-147. [PMID: 29628461 DOI: 10.1254/fpj.151.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Insulin resistance is a condition where the sensitivity to insulin of the tissues expressing insulin receptor (InsR) is decreased due to a functional disturbance of InsR-mediated intracellular signaling. Insulin promotes the entry of glucose into the tissues and skeletal muscle is the most important tissue responsible for the insulin's action of decreasing blood glucose levels. Endothelin-1 (ET-1), a potent vasoconstrictor and pro-inflammatory peptide, induces insulin resistance through a direct action on skeletal muscle. However, the signaling pathways of ET-1-induced insulin resistance in skeletal muscle remain unclear. Here we show molecular mechanism underlying the inhibitory effect of ET-1 on insulin-stimulated Akt phosphorylation and glucose uptake in myotubes of rat L6 skeletal muscle cell line. mRNA expression levels of differentiation marker genes, MyoD and myogenin, were increased during L6 myoblasts differentiation into myotubes. Some of myotubes possessed the ability to spontaneously contract. In myotubes, insulin promoted Akt phosphorylation at Thr308 and Ser473, and [3H]-labelled 2-deoxy-D-glucose ([3H]2-DG) uptake. The insulin-facilitated Akt phosphorylation and [3H]2-DG uptake were inhibited by ET-1. The inhibitory effect of ET-1 was counteracted by blockade of ET type A receptor (ETAR), inhibition of Gq/11 protein, and siRNA knockdown of G protein-coupled receptor kinase 2 (GRK2). The exogenously overexpressed GRK2 directly bound to endogenous Akt and their association was facilitated by ET-1. In summary, activation of ETAR with ET-1 inhibits insulin-induced Akt phosphorylation and [3H]2-DG uptake in a Gq/11 protein- and GRK2-dependent manner in skeletal muscle. These findings indicate that ETAR and GRK2 are potential targets for insulin resistance.
Collapse
Affiliation(s)
- Takahiro Horinouchi
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University
| | - Yuichi Mazaki
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University
| | - Koji Terada
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| | - Soichi Miwa
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University
| |
Collapse
|
15
|
Sourdon J, Lager F, Viel T, Balvay D, Moorhouse R, Bennana E, Renault G, Tharaux PL, Dhaun N, Tavitian B. Cardiac Metabolic Deregulation Induced by the Tyrosine Kinase Receptor Inhibitor Sunitinib is rescued by Endothelin Receptor Antagonism. Theranostics 2017; 7:2757-2774. [PMID: 28824714 PMCID: PMC5562214 DOI: 10.7150/thno.19551] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
The growing field of cardio-oncology addresses the side effects of cancer treatment on the cardiovascular system. Here, we explored the cardiotoxicity of the antiangiogenic therapy, sunitinib, in the mouse heart from a diagnostic and therapeutic perspective. We showed that sunitinib induces an anaerobic switch of cellular metabolism within the myocardium which is associated with the development of myocardial fibrosis and reduced left ventricular ejection fraction as demonstrated by echocardiography. The capacity of positron emission tomography with [18F]fluorodeoxyglucose to detect the changes in cardiac metabolism caused by sunitinib was dependent on fasting status and duration of treatment. Pan proteomic analysis in the myocardium showed that sunitinib induced (i) an early metabolic switch with enhanced glycolysis and reduced oxidative phosphorylation, and (ii) a metabolic failure to use glucose as energy substrate, similar to the insulin resistance found in type 2 diabetes. Co-administration of the endothelin receptor antagonist, macitentan, to sunitinib-treated animals prevented both metabolic defects, restored glucose uptake and cardiac function, and prevented myocardial fibrosis. These results support the endothelin system in mediating the cardiotoxic effects of sunitinib and endothelin receptor antagonism as a potential therapeutic approach to prevent cardiotoxicity. Furthermore, metabolic and functional imaging can monitor the cardiotoxic effects and the benefits of endothelin antagonism in a theranostic approach.
Collapse
Affiliation(s)
- Joevin Sourdon
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
| | - Franck Lager
- Institut Cochin, Université Paris Descartes, INSERM U1016, Paris 75014, France
| | - Thomas Viel
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
| | - Daniel Balvay
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
| | - Rebecca Moorhouse
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Evangeline Bennana
- Institut Cochin, Université Paris Descartes, INSERM U1016, Paris 75014, France
- 3P5 proteomics facility, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Gilles Renault
- Institut Cochin, Université Paris Descartes, INSERM U1016, Paris 75014, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
| | - Neeraj Dhaun
- University/British Heart Foundation Centre of Research Excellence, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Bertrand Tavitian
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
- Service de Radiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
16
|
Chanon S, Durand C, Vieille-Marchiset A, Robert M, Dibner C, Simon C, Lefai E. Glucose Uptake Measurement and Response to Insulin Stimulation in In Vitro Cultured Human Primary Myotubes. J Vis Exp 2017. [PMID: 28671646 DOI: 10.3791/55743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Skeletal muscle is the largest glucose deposit in mammals and largely contributes to glucose homeostasis. Assessment of insulin sensitivity of muscle cells is of major relevance for all studies dedicated to exploring muscle glucose metabolism and characterizing metabolic alterations. In muscle cells, glucose transporter type 4 (GLUT4) proteins translocate to the plasma membrane in response to insulin, thus allowing massive entry of glucose into the cell. The ability of muscle cells to respond to insulin by increasing the rate of glucose uptake is one of the standard readouts to quantify muscle cell sensitivity to insulin. Human primary myotubes are a suitable in vitro model, as the cells maintain many features of the donor phenotype, including insulin sensitivity. This in vitro model is also suitable for the test of any compounds that could impact insulin responsiveness. Measurements of the glucose uptake rate in differentiated myotubes reflect insulin sensitivity. In this method, human primary muscle cells are cultured in vitro to obtain differentiated myotubes, and glucose uptake rates with and without insulin stimulation are measured. We provide a detailed protocol to quantify passive and active glucose transport rates using radiolabeled [3H] 2-deoxy-D-Glucose ([3H]2dG). Calculation methods are provided to quantify active basal and insulin-stimulated rates, as well as stimulation fold.
Collapse
Affiliation(s)
| | | | | | - Maud Robert
- Department of digestive and bariatric surgery, Obesity Integrated Center, University Hospital of Edouard Herriot, Hospices Civils de Lyon, Lyon 1 University
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Clinical Medicine, Faculty of Medicine, University of Geneva
| | - Chantal Simon
- CarMeN Laboratory, INSERM U1060, INRA 1397, University of Lyon
| | - Etienne Lefai
- CarMeN Laboratory, INSERM U1060, INRA 1397, University of Lyon;
| |
Collapse
|
17
|
Olausson J, Daka B, Hellgren MI, Larsson CA, Petzold M, Lindblad U, Jansson PA. Endothelin-1 as a predictor of impaired glucose tolerance and type 2 diabetes--A longitudinal study in the Vara-Skövde Cohort. Diabetes Res Clin Pract 2016; 113:33-7. [PMID: 26972958 DOI: 10.1016/j.diabres.2016.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/19/2016] [Accepted: 01/22/2016] [Indexed: 11/25/2022]
Abstract
We addressed whether endothelin-1, a marker of endothelial dysfunction, predicts impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) in a population study in south-western Sweden. Follow-up after 9.7 years showed an association between circulating endothelin-1 levels at baseline and development of IGT/T2DM in women but not in men.
Collapse
Affiliation(s)
- Josefin Olausson
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Bledar Daka
- Institute of Medicine, Department of Public Health and Community Medicine/Primary Health Care, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Margareta I Hellgren
- Institute of Medicine, Department of Public Health and Community Medicine/Primary Health Care, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Charlotte A Larsson
- Institute of Medicine, Department of Public Health and Community Medicine/Primary Health Care, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Social Medicine and Global Health, Department of Clinical Sciences, Malmö, Lund University, Sweden.
| | - Max Petzold
- Institute of Medicine, Department of Public Health and Community Medicine/Primary Health Care, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Ulf Lindblad
- Institute of Medicine, Department of Public Health and Community Medicine/Primary Health Care, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Per-Anders Jansson
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
18
|
Lien CC, Jiang JL, Jian DY, Kwok CF, Ho LT, Juan CC. Chronic endothelin-1 infusion causes adipocyte hyperplasia in rats. Obesity (Silver Spring) 2016; 24:643-53. [PMID: 26833777 DOI: 10.1002/oby.21394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/10/2015] [Accepted: 10/03/2015] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the regulatory mechanism of endothelin-1 (ET-1), an endothelium-derived vasoconstrictor, on adipogenesis in vitro and in vivo. METHODS 3T3-L1 preadipocytes were used to explore the mechanisms mediating ET-1 actions on preadipocyte proliferation and adipocyte differentiation. To investigate the in vivo effect of ET-1, male Sprague-Dawley rats were infused with ET-1 or saline for 4 weeks via intraperitoneally implanted osmotic pumps, and the fat pad weight and adipocyte size of adipose tissues were measured. RESULTS ET-1 stimulated preadipocyte proliferation and increased the cell number at the mitotic clonal expansion stage of adipocyte differentiation via the endothelin A receptor (ETAR) and activation of the protein kinase C (PKC) pathway. ET-1, via ETAR, inhibited adipocyte differentiation partially through an ERK-dependent pathway. Furthermore, no significant difference in the body weight and fat pad weight was observed in either ET-1- or saline-infused rats. Compared with saline-infused rats, the adipocyte cell number was significantly increased but the adipocyte size was significantly decreased in ET-1-infused rats. CONCLUSIONS Chronic ET-1 infusion increased the number of small adipocytes without the change of white adipose tissue mass in rats, which were associated with ET-1-stimulated preadipocyte proliferation, but not ET-1-suppressed adipocyte differentiation.
Collapse
Affiliation(s)
- Chih-Chan Lien
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Ling Jiang
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Deng-Yuan Jian
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Nephrology, Wen-Lin Hemodialysis Unit, Taipei, Taiwan
| | - Ching-Fai Kwok
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Low-Tone Ho
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Chang Juan
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
19
|
Horinouchi T, Hoshi A, Harada T, Higa T, Karki S, Terada K, Higashi T, Mai Y, Nepal P, Mazaki Y, Miwa S. Endothelin-1 suppresses insulin-stimulated Akt phosphorylation and glucose uptake via GPCR kinase 2 in skeletal muscle cells. Br J Pharmacol 2016; 173:1018-32. [PMID: 26660861 DOI: 10.1111/bph.13406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/24/2015] [Accepted: 12/03/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Endothelin-1 (ET-1) reduces insulin-stimulated glucose uptake in skeletal muscle, inducing insulin resistance. Here, we have determined the molecular mechanisms underlying negative regulation by ET-1 of insulin signalling. EXPERIMENTAL APPROACH We used the rat L6 skeletal muscle cells fully differentiated into myotubes. Changes in the phosphorylation of Akt was assessed by Western blotting. Effects of ET-1 on insulin-stimulated glucose uptake was assessed with [(3) H]-2-deoxy-d-glucose ([(3) H]2-DG). The C-terminus region of GPCR kinase 2 (GRK2-ct), a dominant negative GRK2, was overexpressed in L6 cells using adenovirus-mediated gene transfer. GRK2 expression was suppressed by transfection of the corresponding short-interfering RNA (siRNA). KEY RESULTS In L6 myotubes, insulin elicited sustained Akt phosphorylation at Thr(308) and Ser(473) , which was suppressed by ET-1. The inhibitory effects of ET-1 were prevented by treatment with a selective ETA receptor antagonist and a Gq protein inhibitor, overexpression of GRK2-ct and knockdown of GRK2. Insulin increased [(3) H]2-DG uptake rate in a concentration-dependent manner. ET-1 noncompetitively antagonized insulin-stimulated [(3) H]2-DG uptake. Blockade of ETA receptors, overexpression of GRK2-ct and knockdown of GRK2 prevented the ET-1-induced suppression of insulin-stimulated [(3) H]2-DG uptake. In L6 myotubes overexpressing FLAG-tagged GRK2, ET-1 facilitated the interaction of endogenous Akt with FLAG-GRK2. CONCLUSIONS AND IMPLICATIONS Activation of ETA receptors with ET-1 suppressed insulin-induced Akt phosphorylation at Thr(308) and Ser(473) and [(3) H]2-DG uptake in a GRK2-dependent manner in skeletal muscle cells. These findings suggest that ETA receptors and GRK2 are potential targets for overcoming insulin resistance.
Collapse
Affiliation(s)
- Takahiro Horinouchi
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Akimasa Hoshi
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Takuya Harada
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Tsunaki Higa
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Sarita Karki
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Koji Terada
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Tsunehito Higashi
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Yosuke Mai
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Prabha Nepal
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Yuichi Mazaki
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Soichi Miwa
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| |
Collapse
|
20
|
Sánchez A, Martínez P, Muñoz M, Benedito S, García-Sacristán A, Hernández M, Prieto D. Endothelin-1 contributes to endothelial dysfunction and enhanced vasoconstriction through augmented superoxide production in penile arteries from insulin-resistant obese rats: role of ET(A) and ET(B) receptors. Br J Pharmacol 2015; 171:5682-95. [PMID: 25091502 DOI: 10.1111/bph.12870] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/21/2014] [Accepted: 07/26/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE We assessed whether endothelin-1 (ET-1) inhibits NO and contributes to endothelial dysfunction in penile arteries in a model of insulin resistance-associated erectile dysfunction (ED). EXPERIMENTAL APPROACH Vascular function was assessed in penile arteries, from obese (OZR) and lean (LZR) Zucker rats, mounted in microvascular myographs. Changes in basal and stimulated levels of superoxide (O2 (-) ) were detected by lucigenin-enhanced chemiluminescence and ET receptor expression was determined by immunohistochemistry. KEY RESULTS ET-1 stimulated acute O2 (-) production that was blunted by tempol and the NADPH oxidase inhibitor, apocynin, but markedly enhanced in obese animals. ET-1 inhibited the vasorelaxant effects of ACh and of the NO donor S-nitroso-N-acetyl-DL-penicillamine in arteries from both LZR and OZR. Selective ETA (BQ123) or ETB receptor (BQ788) antagonists reduced both basal and ET-1-stimulated superoxide generation and reversed ET-1-induced inhibition of NO-mediated relaxations in OZR, while only BQ-123 antagonized ET-1 actions in LZR. ET-1-induced vasoconstriction was markedly enhanced by NO synthase blockade and reduced by endothelium removal and apocynin. In endothelium-denuded penile arteries, apocynin blunted augmented ET-1-induced contractions in OZR. Both ETA and ETB receptors were expressed in smooth muscle and the endothelial layer and up-regulated in arteries from OZR. CONCLUSIONS AND IMPLICATIONS ET-1 stimulates ETA -mediated NADPH oxidase-dependent ROS generation, which inhibits endothelial NO bioavailability and contributes to ET-1-induced contraction in healthy penile arteries. Enhanced vascular expression of ETB receptors contributes to augmented ROS production, endothelial dysfunction and increased vasoconstriction in erectile tissue from insulin-resistant obese rats. Hence, antagonism of ETB receptors might improve the ED associated with insulin-resistant states.
Collapse
Affiliation(s)
- A Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Chai SP, Fong JC. Synergistic induction of insulin resistance by endothelin-1 and cAMP in 3T3-L1 adipocytes. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2048-55. [PMID: 26143144 DOI: 10.1016/j.bbadis.2015.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/30/2015] [Accepted: 06/25/2015] [Indexed: 12/27/2022]
Abstract
Both endothelin-1 (ET-1) and cAMP are implicated for inducing insulin resistance. Since we have shown previously that there is a crosstalk between ET-1 and cAMP signaling pathways in regulating glucose uptake in 3T3-L1 adipocytes, we extended our investigation in this study on whether they may have a synergistic effect on inducing insulin resistance. Our results showed that it was indeed the case. Insulin-stimulated glucose uptake, phosphorylation of PKB, IRS-1-associated PI3K, and IRS-1 tyrosine phosphorylation were all inhibited by ET-1 and 8-bromo cAMP in a synergistic manner. IRS-1 protein levels were similarly decreased by ET-1 and 8-bromo cAMP, attributable to suppressed mRNA expression. In addition, after correction for the loss in IRS-1 protein, the inhibition of insulin-stimulated IRS-1 tyrosine phosphorylation or IRS-1-associated PI3K was mainly caused by cAMP. Moreover, whereas IRS-2 protein levels were increased by cAMP or ET-1 plus cAMP, insulin-stimulated IRS-2-associated PI3K activities were abolished by both treatments. Furthermore, ET-1 and β-adrenergic agonists had similar synergistic inhibition on insulin-stimulated glucose uptake. In conclusion, we have shown that ET-1 and cAMP may synergistically induce insulin resistance in adipocytes via inhibiting IRS-1 expression as well as insulin-stimulated IRS-1/IRS-2 activities.
Collapse
Affiliation(s)
- Shin-Pei Chai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | - Jim C Fong
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan, ROC.
| |
Collapse
|
22
|
Martínez-Barquero V, de Marco G, Martínez-Hervas S, Rentero P, Galan-Chilet I, Blesa S, Morchon D, Morcillo S, Rojo G, Ascaso JF, Real JT, Martín-Escudero JC, Chaves FJ. Polymorphisms in endothelin system genes, arsenic levels and obesity risk. PLoS One 2015; 10:e0118471. [PMID: 25799405 PMCID: PMC4370725 DOI: 10.1371/journal.pone.0118471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/18/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/OBJECTIVES Obesity has been linked to morbidity and mortality through increased risk for many chronic diseases. Endothelin (EDN) system has been related to endothelial function but it can be involved in lipid metabolism regulation: Receptor type A (EDNRA) activates lipolysis in adipocytes, the two endothelin receptors mediate arsenic-stimulated adipocyte dysfunction, and endothelin system can regulate adiposity by modulating adiponectin activity in different situations and, therefore, influence obesity development. The aim of the present study was to analyze if single nucleotide polymorphisms (SNPs) in the EDN system could be associated with human obesity. SUBJECTS/METHODS We analyzed two samples of general-population-based studies from two different regions of Spain: the VALCAR Study, 468 subjects from the area of Valencia, and the Hortega Study, 1502 subjects from the area of Valladolid. Eighteen SNPs throughout five genes were analyzed using SNPlex. RESULTS We found associations for two polymorphisms of the EDNRB gene which codifies for EDN receptor type B. Genotypes AG and AA of the rs5351 were associated with a lower risk for obesity in the VALCAR sample (p=0.048, OR=0.63) and in the Hortega sample (p=0.001, OR=0.62). Moreover, in the rs3759475 polymorphism, genotypes CT and TT were also associated with lower risk for obesity in the Hortega sample (p=0.0037, OR=0.66) and in the VALCAR sample we found the same tendency (p=0.12, OR=0.70). Furthermore, upon studying the pooled population, we found a stronger association with obesity (p=0.0001, OR=0.61 and p=0.0008, OR=0.66 for rs5351 and rs3759475, respectively). Regarding plasma arsenic levels, we have found a positive association for the two SNPs studied with obesity risk in individuals with higher arsenic levels in plasma: rs5351 (p=0.0054, OR=0.51) and rs3759475 (p=0.009, OR=0.53). CONCLUSIONS Our results support the hypothesis that polymorphisms of the EDNRB gene may influence the susceptibility to obesity and can interact with plasma arsenic levels.
Collapse
Affiliation(s)
- Vanesa Martínez-Barquero
- Department of Medicine, University of Valencia, Valencia, Spain
- Genotyping and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - Griselda de Marco
- Genotyping and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - Sergio Martínez-Hervas
- Department of Medicine, University of Valencia, Valencia, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
- Service of Endocrinology and Nutrition, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Pilar Rentero
- Genotyping and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - Inmaculada Galan-Chilet
- Genotyping and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - Sebastian Blesa
- Genotyping and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - David Morchon
- Internal Medicine, Rio Hortega Hospital, University of Valladolid, Valladolid, Spain
| | - Sonsoles Morcillo
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
- Service of Endocrinology and Nutrition, Hospital Regional Universitario, Málaga, Spain, Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Gemma Rojo
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
- Service of Endocrinology and Nutrition, Hospital Regional Universitario, Málaga, Spain, Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Juan Francisco Ascaso
- Department of Medicine, University of Valencia, Valencia, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
- Service of Endocrinology and Nutrition, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - José Tomás Real
- Department of Medicine, University of Valencia, Valencia, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
- Service of Endocrinology and Nutrition, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | - Felipe Javier Chaves
- Genotyping and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
- * E-mail:
| |
Collapse
|
23
|
Paneni F, Costantino S, Cosentino F. Role of oxidative stress in endothelial insulin resistance. World J Diabetes 2015; 6:326-332. [PMID: 25789114 PMCID: PMC4360426 DOI: 10.4239/wjd.v6.i2.326] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/11/2014] [Accepted: 12/31/2014] [Indexed: 02/05/2023] Open
Abstract
The International Diabetes Federation estimates that 316 million people are currently affected by impaired glucose tolerance (IGT). Most importantly, recent forecasts anticipate a dramatic IGT increase with more that 470 million people affected by the year 2035. Impaired insulin sensitivity is major feature of obesity and diabetes and is strongly linked with adverse cardiometabolic phenotypes. However, the etiologic pathway linking impaired glucose tolerance and cardiovascular disease remains to be deciphered. Although insulin resistance has been attributed to inflammatory programs starting in adipose tissue, emerging evidence indicates that endothelial dysfunction may represent the upstream event preceding peripheral impairment of insulin sensitivity. Indeed, suppression of reactive oxygen species-dependent pathways in the endothelium has shown to restore insulin delivery to peripheral organs by preserving nitric oxide (NO) availability. Here we describe emerging theories concerning endothelial insulin resistance, with particular emphasis on the role oxidative stress. Complex molecular circuits including endothelial nitric oxide synthase, prostacyclin synthase, mitochondrial adaptor p66Shc, nicotinamide adenine dinucleotide phosphate-oxidase oxidase and nuclear factor kappa-B are discussed. Moreover, the review provides insights on the effectiveness of available compounds (i.e., ruboxistaurin, sildenafil, endothelin receptor antagonists, NO donors) in restoring endothelial insulin signalling. Taken together, these aspects may significantly contribute to design novel therapeutic approaches to restore glucose homeostasis in patients with obesity and diabetes.
Collapse
|
24
|
Sun YH, Yang XL, Li F, Song LJ, Li J. Effect of anti- Helicobacter pylori treatment on early diabetic kidney disease. Shijie Huaren Xiaohua Zazhi 2015; 23:1202-1207. [DOI: 10.11569/wcjd.v23.i7.1202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the effect of anti-Helicobacter pylori (H. pylori) therapy on chronic kidney disease (CKD) associated with type 2 diabetes mellitus (T2DM).
METHODS: Seventy-five T2DM patients with newly diagnosed CKD and H. pylori infection were randomly divided into an anti-H. pylori therapy group (n = 39) and a control group (n = 36). All of the patients received routine treatment for three months. Patients in the anti-H. pylori group were additionally given anti-H. pylori therapy. Clinical indices including fasting blood glucose (FBG), 2-h plasma glucose (2-h PG), hemoglobin A1c (HbA1c), systolic blood pressure (SBP), diastolic blood pressure (DBP), cholesterol (TC), triglyceride (TG), urinary albumin/creatitine ratio (UAlb/Cr), C-reactive protein (CRP), tumor necrosis factor α (TNF-α), plasma endothelin 1 (ET-1), and homocysteine (HCY) were recorded before and three months after treatment.
RESULTS: No significant differences were observed in all clinical indices between the two groups before treatment (P > 0.05). The eradication rate of H. pylori in the anti-H. pylori group was significantly higher than that in the control group three months after treatment (P < 0.01). There were no differences in FBG, 2-h PG, SBP, DBP, HbA1c, TG, or TC between before and after treatment (P > 0.05). At three months after treatment, UAlb/Cr, CRP, ET-1, TNF-α and HCY decreased significantly in both groups (P < 0.05), and changes were statistically significant different between the two groups (P < 0.05).
CONCLUSION: Anti-H. pylori therapy is beneficial for T2DM patients with CKD, because it can help control UAlb/Cr, CRP, ET-1, TNF-α, and HCY and even play an important role in postponing CKD.
Collapse
|
25
|
Gurkan E, Tarkun I, Sahin T, Cetinarslan B, Canturk Z. Evaluation of exenatide versus insulin glargine for the impact on endothelial functions and cardiovascular risk markers. Diabetes Res Clin Pract 2014; 106:567-75. [PMID: 25458329 DOI: 10.1016/j.diabres.2014.09.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/17/2014] [Accepted: 09/14/2014] [Indexed: 12/11/2022]
Abstract
AIMS To demonstrate the efficacy of exenatide versus insulin glargine on endothelial functions and cardiovascular risk markers. METHODS Thirty-four insulin and incretin-naive patients with type 2 diabetes mellitus (body mass index 25-45 kg/m(2)) who received metformin for at least two months were randomized to exenatide or insulin glargine treatment arms and followed-up for 26 weeks. Measurements of endothelial functions were done by ultrasonography, cardiovascular risk markers by serum enzyme-linked immunosorbent assay, and total body fat mass by bioimpedance. RESULTS Levels of high sensitivity-C-reactive protein and endothelin-1 decreased (27.5% and 18.75%, respectively) in the exenatide arm. However, in the insulin glargine arm, fibrinogen, monocyte chemoattractant protein-1, leptin and endothelin-1 levels (13.4, 30.2, 47.5, and 80%, respectively) increased. Post-treatment flow mediated dilatation and endothelium independent vascular responses were significantly higher in both arms (p=0.0001, p=0.0001). Positive correlation was observed between the changes in body weight and endothelium-independent vasodilatation, leptin, plasminogen activator inhibitor type 1 and endothelin-1 in both arms (r=0.376, r=0.507, r=0.490, r=0.362, respectively). CONCLUSIONS Insulin glargine improved endothelial functions, without leading to positive changes in cardiovascular risk markers. Exenatide treatment of 26 weeks resulted in reduced body weight and improvement in certain cardiovascular risk markers and endothelial functions.
Collapse
Affiliation(s)
- Eren Gurkan
- Department of Endocrinology and Metabolism, Kocaeli University Faculty of Medicine, Kocaeli, Turkey.
| | - Ilhan Tarkun
- Department of Endocrinology and Metabolism, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Tayfun Sahin
- Department of Cardiology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Berrin Cetinarslan
- Department of Endocrinology and Metabolism, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Zeynep Canturk
- Department of Endocrinology and Metabolism, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| |
Collapse
|
26
|
Selective endothelin ETA and dual ETA/ETB receptor blockade improve endothelium-dependent vasodilatation in patients with type 2 diabetes and coronary artery disease. Life Sci 2014; 118:435-9. [DOI: 10.1016/j.lfs.2014.02.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/10/2014] [Accepted: 02/18/2014] [Indexed: 11/17/2022]
|
27
|
Endothelin-1 activates extracellular signal-regulated kinases 1/2 via transactivation of platelet-derived growth factor receptor in rat L6 myoblasts. Life Sci 2014; 104:24-31. [DOI: 10.1016/j.lfs.2014.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/29/2014] [Accepted: 04/03/2014] [Indexed: 12/30/2022]
|
28
|
Matsumoto T, Lopes RAM, Taguchi K, Kobayashi T, Tostes RC. Linking the beneficial effects of current therapeutic approaches in diabetes to the vascular endothelin system. Life Sci 2014; 118:129-35. [PMID: 24418002 DOI: 10.1016/j.lfs.2013.12.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/04/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022]
Abstract
The rising epidemic of diabetes worldwide is of significant concern. Although the ultimate objective is to prevent the development and find a cure for the disease, prevention and treatment of diabetic complications is very important. Vascular complications in diabetes, or diabetic vasculopathy, include macro- and microvascular dysfunction and represent the principal cause of morbidity and mortality in diabetic patients. Endothelial dysfunction plays a pivotal role in the development and progression of diabetic vasculopathy. Endothelin-1 (ET-1), an endothelial cell-derived peptide, is a potent vasoconstrictor with mitogenic, pro-oxidative and pro-inflammatory properties that are particularly relevant to the pathophysiology of diabetic vasculopathy. Overproduction of ET-1 is reported in patients and animal models of diabetes and the functional effects of ET-1 and its receptors are also greatly altered in diabetic conditions. The current therapeutic approaches in diabetes include glucose lowering, sensitization to insulin, reduction of fatty acids and vasculoprotective therapies. However, whether and how these therapeutic approaches affect the ET-1 system remain poorly understood. Accordingly, in the present review, we will focus on experimental and clinical evidence that indicates a role for ET-1 in diabetic vasculopathy and on the effects of current therapeutic approaches in diabetes on the vascular ET-1 system.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Rheure A M Lopes
- Department of Pharmacology, Medical School of Ribeirao Preto, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900, Brazil
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Rita C Tostes
- Department of Pharmacology, Medical School of Ribeirao Preto, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900, Brazil
| |
Collapse
|
29
|
Mezghenna K, Leroy J, Azay-Milhau J, Tousch D, Castex F, Gervais S, Delgado-Betancourt V, Gross R, Lajoix AD. Counteracting neuronal nitric oxide synthase proteasomal degradation improves glucose transport in insulin-resistant skeletal muscle from Zucker fa/fa rats. Diabetologia 2014; 57:177-86. [PMID: 24186360 DOI: 10.1007/s00125-013-3084-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/30/2013] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS Insulin-mediated glucose transport and utilisation are decreased in skeletal muscle from type 2 diabetic and glucose-intolerant individuals because of alterations in insulin receptor signalling, GLUT4 translocation to the plasma membrane and microvascular blood flow. Catalytic activity of the muscle-specific isoform of neuronal nitric oxide synthase (nNOS) also participates in the regulation of glucose transport and appears to be decreased in a relevant animal model of drastic insulin resistance, the obese Zucker fa/fa rat. Our objective was to determine the molecular mechanisms involved in this defect. METHODS Isolated rat muscles and primary cultures of myocytes were used for western blot analysis of protein expression, immunohistochemistry, glucose uptake measurements and GLUT4 translocation assays. RESULTS nNOS expression was reduced in skeletal muscle from fa/fa rats. This was caused by increased ubiquitination of the enzyme and subsequent degradation by the ubiquitin proteasome pathway. The degradation occurred through a greater interaction of nNOS with the chaperone heat-shock protein 70 and the co-chaperone, carboxyl terminus of Hsc70-interacting protein (CHIP). In addition, an alteration in nNOS sarcolemmal localisation was observed. We confirmed the implication of nNOS breakdown in defective insulin-induced glucose transport by demonstrating that blockade of proteasomal degradation or overexpression of nNOS improved basal and/or insulin-stimulated glucose uptake and GLUT4 translocation in primary cultures of insulin-resistant myocytes. CONCLUSIONS/INTERPRETATION Recovery of nNOS in insulin-resistant muscles should be considered a potential new approach to address insulin resistance.
Collapse
Affiliation(s)
- Karima Mezghenna
- Centre for Pharmacology and Innovation in Diabetes, University Montpellier 1, EA 7288, 15 Avenue Charles Flahault, BP 14491, 34093, Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jiang LQ, Franck N, Egan B, Sjögren RJO, Katayama M, Duque-Guimaraes D, Arner P, Zierath JR, Krook A. Autocrine role of interleukin-13 on skeletal muscle glucose metabolism in type 2 diabetic patients involves microRNA let-7. Am J Physiol Endocrinol Metab 2013; 305:E1359-66. [PMID: 24105413 DOI: 10.1152/ajpendo.00236.2013] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Low-grade inflammation associated with type 2 diabetes (T2DM) is postulated to exacerbate insulin resistance. We report that serum levels, as well as IL-13 secreted from cultured skeletal muscle, are reduced in T2DM vs. normal glucose-tolerant (NGT) subjects. IL-13 exposure increases skeletal muscle glucose uptake, oxidation, and glycogen synthesis via an Akt-dependent mechanism. Expression of microRNA let-7a and let-7d, which are direct translational repressors of the IL-13 gene, was increased in skeletal muscle from T2DM patients. Overexpression of let-7a and let-7d in cultured myotubes reduced IL-13 secretion. Furthermore, basal glycogen synthesis was reduced in cultured myotubes exposed to an IL-13-neutralizing antibody. Thus, IL-13 is synthesized and released by skeletal muscle through a mechanism involving let-7, and this effect is attenuated in skeletal muscle from insulin-resistant T2DM patients. In conclusion, IL-13 plays an autocrine role in skeletal muscle to increase glucose uptake and metabolism, suggesting a role in glucose homeostasis in metabolic disease.
Collapse
Affiliation(s)
- Lake Q Jiang
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gliemann L, Schmidt JF, Olesen J, Biensø RS, Peronard SL, Grandjean SU, Mortensen SP, Nyberg M, Bangsbo J, Pilegaard H, Hellsten Y. Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. J Physiol 2013; 591:5047-59. [PMID: 23878368 DOI: 10.1113/jphysiol.2013.258061] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ageing is thought to be associated with decreased vascular function partly due to oxidative stress. Resveratrol is a polyphenol, which in animal studies has been shown to decrease atherosclerosis, and improve cardiovascular health and physical capacity, in part through its effects on Sirtuin 1 signalling and through an improved antioxidant capacity. We tested the hypothesis that resveratrol supplementation enhances training-induced improvements in cardiovascular health parameters in aged men. Twenty-seven healthy physically inactive aged men (age: 65 ± 1 years; body mass index: 25.4 ± 0.7 kg m(-2); mean arterial pressure (MAP): 95.8 ± 2.2 mmHg; maximal oxygen uptake: 2488 ± 72 ml O2 min(-1)) were randomized into 8 weeks of either daily intake of either 250 mg trans-resveratrol (n = 14) or of placebo (n = 13) concomitant with high-intensity exercise training. Exercise training led to a 45% greater (P < 0.05) increase in maximal oxygen uptake in the placebo group than in the resveratrol group and to a decrease in MAP in the placebo group only (-4.8 ± 1.7 mmHg; P < 0.05). The interstitial level of vasodilator prostacyclin was lower in the resveratrol than in the placebo group after training (980 ± 90 vs. 1174 ± 121 pg ml(-1); P < 0.02) and muscle thromboxane synthase was higher in the resveratrol group after training (P < 0.05). Resveratrol administration also abolished the positive effects of exercise on low-density lipoprotein, total cholesterol/high-density lipoprotein ratio and triglyceride concentrations in blood (P < 0.05). Resveratrol did not alter the effect of exercise training on the atherosclerosis marker vascular cell adhesion molecule 1 (VCAM-1). Sirtuin 1 protein levels were not affected by resveratrol supplementation. These findings indicate that, whereas exercise training effectively improves several cardiovascular health parameters in aged men, concomitant resveratrol supplementation can blunt these effects.
Collapse
Affiliation(s)
- Lasse Gliemann
- L. Gliemann, Universitetsparken 13, 2nd Floor, 2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kelc R, Trapecar M, Vogrin M, Cencic A. Skeletal muscle-derived cell cultures as potent models in regenerative medicine research. Muscle Nerve 2013; 47:477-82. [PMID: 23460453 DOI: 10.1002/mus.23688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 11/08/2022]
Abstract
Cell cultures have been used extensively by many scientists in recent decades to study various cell and tissue mechanisms. The use of cell cultures has many advantages over use of in vivo experimental models, but there are also limitations. As skeletal muscle-derived cell cultures become more commonly utilized in studies of muscle regeneration processes the question of their relevance in experimentation is highlighted with regard to in vivo experimental models. This article reviews studies that have been performed simultaneously in in vivo and in vitro experiments on skeletal muscle and assesses the correlation of results. Although they seem to correlate, no such studies on humans have been performed so far.
Collapse
Affiliation(s)
- Robi Kelc
- Department of Orthopaedic Surgery, University Medical Center Maribor, Ljubljanska Ulica 5, Maribor, SI-2000, Slovenia.
| | | | | | | |
Collapse
|
33
|
Nyberg M, Mortensen SP, Hellsten Y. Physical activity opposes the age-related increase in skeletal muscle and plasma endothelin-1 levels and normalizes plasma endothelin-1 levels in individuals with essential hypertension. Acta Physiol (Oxf) 2013; 207:524-35. [PMID: 23227981 DOI: 10.1111/apha.12048] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/22/2012] [Accepted: 12/05/2012] [Indexed: 01/02/2023]
Abstract
AIMS Endothelin-1 has potent constrictor and proliferative activity in vascular smooth muscle, and essential hypertension and aging are associated with increased endothelin-1-mediated vasoconstrictor tone. The aim of this study was to investigate the effect of physical activity, hypertension and age on endothelin-1 levels in plasma and skeletal muscle and endothelin receptors in skeletal muscle in human subjects. METHODS In study 1, normotensive (46 ± 1 years, n = 11) and hypertensive (47 ± 1 years, n = 10) subjects were studied before and after 8 weeks of aerobic exercise training. In study 2, young (23 ± 1 years, n = 8), older lifelong sedentary (66 ± 2 years, n = 8) and older lifelong endurance-trained (62 ± 2 years, n = 8) subjects were studied in a cross-sectional design. RESULTS Skeletal muscle and plasma endothelin-1 levels were increased with age and plasma endothelin-1 levels were higher in hypertensive than normotensive individuals. Eight weeks of exercise training normalized plasma endothelin-1 levels in the hypertensive subjects and increased the protein expression of the ET(A) receptor in skeletal muscle of normotensive subjects. Similarly, individuals that had performed lifelong physical activity had similar plasma and muscle endothelin-1 levels as the young controls and had higher ET(A) receptor levels. CONCLUSION Our findings suggest that aerobic exercise training opposes the age-related increase in skeletal muscle and plasma endothelin-1 levels and normalizes plasma endothelin-1 levels in individuals with essential hypertension. This effect may explain some of the beneficial effects of training on the cardiovascular system in older and hypertensive subjects.
Collapse
Affiliation(s)
| | - S. P. Mortensen
- Copenhagen Muscle Research Centre; University of Copenhagen; Copenhagen; Denmark
| | | |
Collapse
|
34
|
Eringa EC, Serne EH, Meijer RI, Schalkwijk CG, Houben AJHM, Stehouwer CDA, Smulders YM, van Hinsbergh VWM. Endothelial dysfunction in (pre)diabetes: characteristics, causative mechanisms and pathogenic role in type 2 diabetes. Rev Endocr Metab Disord 2013; 14:39-48. [PMID: 23417760 DOI: 10.1007/s11154-013-9239-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endothelial dysfunction associated with diabetes and cardiovascular disease is characterized by changes in vasoregulation, enhanced generation of reactive oxygen intermediates, inflammatory activation, and altered barrier function. These endothelial alterations contribute to excess cardiovascular disease in diabetes, but may also play a role in the pathogenesis of diabetes, especially type 2. The mechanisms underlying endothelial dysfunction in diabetes differ between type 1 (T1D) and type 2 diabetes (T2D): hyperglycemia contributes to endothelial dysfunction in all individuals with diabetes, whereas the causative mechanisms in T2D also include impaired insulin signaling in endothelial cells, dyslipidemia and altered secretion of bioactive substances (adipokines) by adipose tissue. The close association of so-called perivascular adipose tissue with arteries and arterioles facilitates the exposure of vascular endothelium to adipokines, particularly if inflammation activates the adipose tissue. Glucose and adipokines activate specific intracellular signaling pathways in endothelium, which in concert result in endothelial dysfunction in diabetes. Here, we review the characteristics of endothelial dysfunction in diabetes, the causative mechanisms involved and the role of endothelial dysfunction(s) in the pathogenesis of T2D. Finally, we will discuss the therapeutic potential of endothelial dysfunction in T2D.
Collapse
Affiliation(s)
- Etto C Eringa
- Departments of Physiology, VU University Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Jiang LQ, Duque-Guimaraes DE, Machado UF, Zierath JR, Krook A. Altered response of skeletal muscle to IL-6 in type 2 diabetic patients. Diabetes 2013; 62:355-61. [PMID: 23086036 PMCID: PMC3554367 DOI: 10.2337/db11-1790] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Interleukin-6 (IL-6) has a dual role in modulating insulin sensitivity, with evidence for this cytokine as both an enhancer and inhibitor of insulin action. We determined the effect of IL-6 exposure on glucose and lipid metabolism in cultured myotubes established from people with normal glucose tolerance or type 2 diabetes. Acute IL-6 exposure increased glycogen synthesis, glucose uptake, and signal transducer and activator of transcription 3 (STAT3) phosphorylation in cultured myotubes from normal glucose tolerant subjects. However, in type 2 diabetic patients, IL-6 was without effect on glucose metabolism and STAT3 signaling, concomitant with increased suppressor of cytokine signaling 3 (SOCS3) expression. IL-6 increased fatty acid oxidation in myotubes from type 2 diabetic and normal glucose tolerant subjects. Expression of IL-6, IL-6 receptor (IL-6R), or glycoprotein 130, as well as IL-6 secretion, was unaltered between cultured myotubes from normal glucose tolerant or type 2 diabetic subjects. Circulating serum IL-6 concentration was unaltered between normal glucose tolerant and type 2 diabetic subjects. In summary, skeletal muscle cells from type 2 diabetic patients display selective IL-6 resistance for glucose rather than lipid metabolism. In conclusion, IL-6 appears to play a differential role in regulating metabolism in type 2 diabetic patients compared with normal glucose tolerant subjects.
Collapse
Affiliation(s)
- Lake Q. Jiang
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Daniella E. Duque-Guimaraes
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ubiratan F. Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juleen R. Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Corresponding author: Anna Krook,
| |
Collapse
|
36
|
Premilovac D, Bradley EA, Ng HL, Richards SM, Rattigan S, Keske MA. Muscle insulin resistance resulting from impaired microvascular insulin sensitivity in Sprague Dawley rats. Cardiovasc Res 2013; 98:28-36. [DOI: 10.1093/cvr/cvt015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Seissler J, Feghelm N, Then C, Meisinger C, Herder C, Koenig W, Peters A, Roden M, Lechner A, Kowall B, Rathmann W. Vasoregulatory peptides pro-endothelin-1 and pro-adrenomedullin are associated with metabolic syndrome in the population-based KORA F4 study. Eur J Endocrinol 2012; 167:847-53. [PMID: 23002189 DOI: 10.1530/eje-12-0472] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Metabolic alterations and endothelial dysfunction are interrelated processes in type 2 diabetes (T2D) and metabolic syndrome (MetS) that often develop in parallel. We assessed the association of vasoactive precursor peptides (VPPs) with MetS and T2D. DESIGN AND METHODS Plasma levels of C-terminal pro-endothelin-1 (CT-proET-1) and midregional pro-adrenomedullin (MR-proADM) were measured by novel sensitive assays in 1590 participants of the population-based KORA F4 study. The association of the VPPs with T2D, MetS defined by IDF criteria, the components of MetS, and insulin resistance (IR) was assessed in logistic regression models. RESULTS Elevated levels of CT-proET-1 and MR-proADM were associated with T2D, MetS, and IR in age- and sex-adjusted models. After adjustment for age, sex, former vascular complications, lifestyle factors, high-sensitive C-reactive protein, and serum creatinine, significant associations with MetS were found for MR-proADM (OR=5.94, 95% CI 3.78-9.33) and CT-proET-1 (OR=5.18, 95% CI 3.48-7.71) (top quartile vs bottom quartile). CT-proET-1 and MR-proADM were strongly associated with all components of MetS as defined by IDF criteria. After multivariable adjustment, association of CT-proET-1 and MR-proADM with pathological glucose tolerance and T2D disappeared and a borderline association with IR was found only for CT-proET-1 (OR=1.34, 95% CI 0.96-1.87). CONCLUSIONS We here demonstrate for the first time that plasma levels of both MR-proADM and CT-proET-1 levels are related to MetS and its components, thus suggesting that they possibly have a role as a surrogate biomarker for the disease and its complications.
Collapse
Affiliation(s)
- Jochen Seissler
- Diabetes Zentrum, Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Ziemssenstrasse 1, 80336 München, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pernow J, Shemyakin A, Böhm F. New perspectives on endothelin-1 in atherosclerosis and diabetes mellitus. Life Sci 2012; 91:507-16. [PMID: 22483688 DOI: 10.1016/j.lfs.2012.03.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/20/2012] [Accepted: 03/12/2012] [Indexed: 11/26/2022]
Abstract
Endothelin-1 (ET-1) is a vasoconstrictor, proinflammatory and proliferative endothelial cell-derived peptide that is of significant importance in the regulation of vascular function. It is involved in the development of endothelial dysfunction including important interactions with nitric oxide. The expression and functional effects of ET-1 and its receptors are markedly altered during development of cardiovascular disease. Increased production of ET-1 and its receptors mediate many pathophysiological events contributing to the development of atherosclerosis and vascular complications in diabetes mellitus. The present review focuses on the pathophysiological role of ET-1 and the potential importance of ET receptors as a therapeutic target for treatment of these conditions.
Collapse
Affiliation(s)
- John Pernow
- Karolinska Institutet, Cardiology Unit, Department of Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| | | | | |
Collapse
|
39
|
Zhang Y, Li L, Hua Y, Nunn JM, Dong F, Yanagisawa M, Ren J. Cardiac-specific knockout of ET(A) receptor mitigates low ambient temperature-induced cardiac hypertrophy and contractile dysfunction. J Mol Cell Biol 2012; 4:97-107. [PMID: 22442497 DOI: 10.1093/jmcb/mjs002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cold exposure is associated with oxidative stress and cardiac dysfunction. The endothelin (ET) system, which plays a key role in myocardial homeostasis, may participate in cold exposure-induced cardiovascular dysfunction. This study was designed to examine the role of ET-1 in cold stress-induced cardiac geometric and contractile responses. Wild-type (WT) and ET(A) receptor knockout (ETAKO) mice were assigned to normal or cold exposure (4°C) environment for 2 and 5 weeks prior to evaluation of cardiac geometry, contractile, and intracellular Ca(2+) properties. Levels of the temperature sensor transient receptor potential vanilloid (TRPV1), mitochondrial proteins for biogenesis and oxidative phosphorylation, including UCP2, HSP90, and PGC1α were evaluated. Cold stress triggered cardiac hypertrophy, depressed myocardial contractile capacity, including fractional shortening, peak shortening, and maximal velocity of shortening/relengthening, reduced intracellular Ca(2+) release, prolonged intracellular Ca(2+) decay and relengthening duration, generation of ROS and superoxide, as well as apoptosis, the effects of which were blunted by ETAKO. Western blotting revealed downregulated TRPV1 and PGC1α as well as upregulated UCP2 and activation of GSK3β, GATA4, and CREB in cold-stressed WT mouse hearts, which were obliterated by ETAKO. Levels of HSP90, an essential regulator for thermotolerance, were unchanged. The TRPV1 agonist SA13353 attenuated whereas TRPV1 antagonist capsazepine mimicked cold stress- or ET-1-induced cardiac anomalies. The GSK3β inhibitor SB216763 ablated cold stress-induced cardiac contractile (but not remodeling) changes and ET-1-induced TRPV1 downregulation. These data suggest that ETAKO protects against cold exposure-induced cardiac remodeling and dysfunction mediated through TRPV1 and mitochondrial function.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | |
Collapse
|