1
|
Cuadrado A, Cazalla E, Bach A, Bathish B, Naidu SD, DeNicola GM, Dinkova-Kostova AT, Fernández-Ginés R, Grochot-Przeczek A, Hayes JD, Kensler TW, León R, Liby KT, López MG, Manda G, Shivakumar AK, Hakomäki H, Moerland JA, Motohashi H, Rojo AI, Sykiotis GP, Taguchi K, Valverde ÁM, Yamamoto M, Levonen AL. Health position paper and redox perspectives - Bench to bedside transition for pharmacological regulation of NRF2 in noncommunicable diseases. Redox Biol 2025; 81:103569. [PMID: 40059038 DOI: 10.1016/j.redox.2025.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-activated transcription factor regulating cellular defense against oxidative stress, thereby playing a pivotal role in maintaining cellular homeostasis. Its dysregulation is implicated in the progression of a wide array of human diseases, making NRF2 a compelling target for therapeutic interventions. However, challenges persist in drug discovery and safe targeting of NRF2, as unresolved questions remain especially regarding its context-specific role in diseases and off-target effects. This comprehensive review discusses the dualistic role of NRF2 in disease pathophysiology, covering its protective and/or destructive roles in autoimmune, respiratory, cardiovascular, and metabolic diseases, as well as diseases of the digestive system and cancer. Additionally, we also review the development of drugs that either activate or inhibit NRF2, discuss main barriers in translating NRF2-based therapies from bench to bedside, and consider the ways to monitor NRF2 activation in vivo.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Eduardo Cazalla
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Gina M DeNicola
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Raquel Fernández-Ginés
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), 28007, Madrid, Spain
| | - Karen T Liby
- Indiana University School of Medicine, Department of Medicine, W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Manuela G López
- Department of Pharmacology, School of Medicine, Universidad Autónoma Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain; Instituto Teófilo Hernando, Madrid, Spain
| | - Gina Manda
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | | | - Henriikka Hakomäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jessica A Moerland
- Indiana University School of Medicine, Department of Medicine, W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Graduate School of Medicine Tohoku University, Sendai, Japan; Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Keiko Taguchi
- Laboratory of Food Chemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan; Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas "Sols-Morreale" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
2
|
Chen C, Han X, Xu N, Shen W, Wang G, Jiao J, Kong W, Yu J, Fu J, Pi J. Nrf2 deficiency aggravates hepatic cadmium accumulation, inflammatory response and subsequent injury induced by chronic cadmium exposure in mice. Toxicol Appl Pharmacol 2025; 497:117263. [PMID: 39938575 DOI: 10.1016/j.taap.2025.117263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/08/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Prolonged cadmium (Cd) exposure leads to Cd accumulation and oxidative damage in the liver. Nuclear factor erythroid-derived 2-like 2 (NRF2) plays a vital role in preventing acute hepatic toxicity of Cd. However, the participation of NRF2 in chronic liver injury, especially in the context of chronic Cd exposure, has rarely been investigated. Here, we explored the involvement of NRF2 in Cd-induced liver injury using Nrf2 knockout (Nrf2-KO) mice chronically exposed to Cd in drinking water (100 or 200 ppm) for up to 24 weeks. We found that absence of Nrf2 exacerbated the Cd-induced liver fibrosis, as evaluated by Masson's trichrome staining and increased expression of fibrosis-associated proteins. Mechanistic investigations using the liver tissues from the animals with 100 ppm Cd exposure for 16 weeks, in which no obvious hepatic fibrosis was observed in both genotypes, revealed that there were diminished expressions of antioxidant and detoxification genes and elevated Cd levels in the blood and liver of Nrf2-KO mice compared with those in wild-type (Nrf2-WT) under basal and/or Cd-exposed conditions. Notably, a bulk RNA-seq of the liver tissues showed lowered mRNA levels of genes related to xenobiotic and glutathione metabolic processes, but elevated mRNA expression of leukocyte migration pathway and adaptive immune pathway in Nrf2-KO mice relative to Nrf2-WT controls, either under basal or Cd-exposed conditions. Our findings demonstrated that Nrf2-KO mice are vulnerable to chronic Cd exposure-induced liver fibrosis, which is partially attributed to a compromised NRF2-mediated antioxidant response, lowered metallothionein expression and subsequent Cd accumulation and inflammatory response in the tissues.
Collapse
Affiliation(s)
- Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Xue Han
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Hangtou Hesha Community Health Service Center, Pudong New Area, Shanghai 201317, PR China
| | - Ning Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Wei Shen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Gang Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Experimental and Teaching Center, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Junying Jiao
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Weiwei Kong
- Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiaxin Yu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Jingqi Fu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
3
|
Xia X, Zhang Q, Fang X, Li L, Yang G, Xu X, Yang M. Nuclear factor erythroid 2-related factor 2 ameliorates disordered glucose and lipid metabolism in liver: Involvement of gasdermin D in regulating pyroptosis. Clin Transl Med 2025; 15:e70233. [PMID: 39995148 PMCID: PMC11850759 DOI: 10.1002/ctm2.70233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The epidemic of metabolic dysfunction-associated fatty liver disease linked to excessive high-fat diet (HFD) consumption has sparked widespread public concern. Nuclear factor erythroid 2-related factor 2 (NRF2) has been reported to improve glucose/lipid metabolism, liver lipid degeneration and alleviate HFD-induced inflammation. However, its pathways and mechanisms of action are not fully understood. METHODS To confirm the effect of NRF2 on glucose/lipid metabolism in the liver, Nrf2-/- mice as well as liver-specific Nrf2 knockout mice, and AAV-TBG-Nrf2 were employed. The hyperinsulinemic-euglycemic clamp was utilized to determine the effect of NRF2 on glucose metabolism. To elucidate the effect of NRF2 on pyroptosis, we performed western blots, immunofluorescence, quantitative real-time PCR, and Flow cytometry experiments. Finally, chromatin immunoprecipitation-seq and dual-luciferase reporter assay was used to underscore the transcriptional regulatory effect of NRF2 on Gsdmd. RESULTS We found that overexpression of Nrf2 inhibited the expression of inflammatory cytokines and pyroptosis markers, including cle-Caspase1, NLRP3 and the N-terminus of gasdermin D (N-GSDMD) both in vivo and in vitro, while Nrf2 deficiency was the opposite. Specifically, with NRF2 expression up-regulated, GSDMD expression decreased and Gsdmd overexpression partially reversed the effect of Nrf2 overexpression on pro-inflammatory phenotype. Mechanistically, we demonstrate that NRF2 binds to the Gsdmd promoter at the -2110 - 1130 bp site, inhibiting the GSDMD expression and thereby improving glucose/lipid metabolism and liver steatosis. CONCLUSION Our data indicate that NRF2 is an effective inhibitor of pyroptosis and has a multi-target effect in the treatment of obesity-related metabolic diseases. KEY POINTS MAFLD is associated with increased hepatocytes NRF2 expression. NRF2 alleviates MAFLD by suppressing pyroptosis. NRF2 directly inhibits GSDMD expression to regulate pyroptosis. Targeting the NRF2-pyroptosis (GSDMD) axis offers a potential therapeutic strategy for MAFLD.
Collapse
Affiliation(s)
- Xuyun Xia
- Department of Endocrinology, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Qin Zhang
- Department of Endocrinology, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Xia Fang
- Department of Endocrinology, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Xiaohui Xu
- Department of Endocrinology, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
- College of StomatologyChongqing Medical UniversityChongqingChina
| | - Mengliu Yang
- Department of Endocrinology, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
4
|
Li J, Sun S, Li Y, Tian M, Li X, Ren S, Huang Z, Wang Y, Du S. Nrf2 signaling pathway studies in Drosophila melanogaster: parallel roles in human health and insect environmental responses. Xenobiotica 2025:1-14. [PMID: 39932394 DOI: 10.1080/00498254.2025.2465239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
The Nrf2 signalling pathway is crucial for cellular defense against oxidative stress and xenobiotic toxicity, highlighting its importance in both human health and environmental responses.This review focuses on the dual role of Drosophila melanogaster in Nrf2 research: we utilised the PubMed database to collect and summarised research articles on fruit fly Nrf2 studies published in the past decade, using keywords such as 'Nrf2', 'CncC', and 'Drosophila'.We found that Drosophila melanogaster, as a classical model organism for studying human diseases such as neurodegenerative disorders, cancers, and diabetes, and as an insect model for investigating xenobiotic responses and pesticide resistance, is particularly well-suited for exploring the diverse and complex functions of Nrf2 pathway.Additionally, Natural products such as curcumin and quercetin can modulate Nrf2 activity for cytoprotection. Utilising D. melanogaster's genetic tools and short life cycles, researchers can discover new therapeutics and study their mechanisms.This twofold exploration not only advances our understanding of Nrf2 in human health but also provides insights into pest control strategies through enhanced insect resistance mechanisms. Continued research in this area is essential for developing innovative treatments and effective pest management approaches.
Collapse
Affiliation(s)
- Jingyi Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shushen Sun
- Department of Gastroenterology, Tianjin University Jinnan Hospital (Tianjin Jinnan Hospital), Tianjin, China
| | - Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Mengzhe Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xinyi Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Suxia Ren
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zengyi Huang
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shaoshan Du
- Department of Gastroenterology, Tianjin University Jinnan Hospital (Tianjin Jinnan Hospital), Tianjin, China
| |
Collapse
|
5
|
Rojo AI, Buttari B, Cadenas S, Carlos AR, Cuadrado A, Falcão AS, López MG, Georgiev MI, Grochot-Przeczek A, Gumeni S, Jimenez-Villegas J, Horbanczuk JO, Konu O, Lastres-Becker I, Levonen AL, Maksimova V, Michaeloudes C, Mihaylova LV, Mickael ME, Milisav I, Miova B, Rada P, Santos M, Seabra MC, Strac DS, Tenreiro S, Trougakos IP, Dinkova-Kostova AT. Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases. Redox Biol 2025; 79:103464. [PMID: 39709790 PMCID: PMC11733061 DOI: 10.1016/j.redox.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE). The products of these genes participate in numerous functions including biotransformation and redox homeostasis, lipid and iron metabolism, inflammation, proteostasis, as well as mitochondrial dynamics and energetics. Thus, it is possible that a single pharmacological NRF2 modulator might mitigate the effect of the main hallmarks of NCDs, including oxidative, proteostatic, inflammatory and/or metabolic stress. Research on model organisms has provided tremendous knowledge of the molecular mechanisms by which NRF2 affects NCDs pathogenesis. This review is a comprehensive summary of the most commonly used model organisms of NCDs in which NRF2 has been genetically or pharmacologically modulated, paving the way for drug development to combat NCDs. We discuss the validity and use of these models and identify future challenges.
Collapse
Affiliation(s)
- Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain.
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Ana Rita Carlos
- CE3C-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Ana Sofia Falcão
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - José Jimenez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Jarosław Olav Horbanczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; Department of Neuroscience, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Isabel Lastres-Becker
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000, Stip, Macedonia
| | | | - Liliya V Mihaylova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Michel Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia; Laboratory of oxidative stress research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde (E2S), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10 000, Zagreb, Croatia
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Jin X, Chen L, Yang Y, Tan R, Jiang C. Adverse Effects of Nrf2 in Different Organs and the Related Diseases. Antioxid Redox Signal 2024. [PMID: 39723588 DOI: 10.1089/ars.2024.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Significance: Under normal physiological conditions, Nrf2 undergoes ubiquitination and subsequent proteasome degradation to maintain its basal activity. Oxidative stress can trigger Nrf2 activation, prompting its translocation to the nucleus where it functions as a transcription factor, activating various antioxidant pathways, and conferring antioxidant properties. Recent Advances: While extensive research has shown Nrf2's protective role in various diseases, emerging evidence suggests that Nrf2 activation can also produce harmful effects. Critical Issues: This review examines the pathological contexts in which Nrf2 assumes different roles, emphasizing the mechanisms and conditions that result in adverse outcomes. Future Directions: Persistent Nrf2 activation may have deleterious consequences, necessitating further investigation into the specific conditions and mechanisms through which Nrf2 exerts its harmful effects. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Xuemei Jin
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China
| | - Long Chen
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Yuelan Yang
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
- Department of Nephrology, The First Clinical College of Guangdong Medical University, Zhanjiang, China
| | - Rongshao Tan
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Chunjie Jiang
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Zhang SH, Zhang HJ, Jia YZ, Wang ZY, You ZH, Lian CY, Wang L. Melatonin prevents glyphosate-induced hepatic lipid accumulation in roosters via activating Nrf2 pathway. Int Immunopharmacol 2024; 142:113180. [PMID: 39305889 DOI: 10.1016/j.intimp.2024.113180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Glyphosate (GLY) is a widely used herbicide with well-defined hepatotoxic effects, in which oxidative stress has been shown to be involved in the pathogenesis of hepatotoxicity. Melatonin (MET), an effective free radical scavenger, has been revealed to alleviate drug-induced liver damage by inhibiting oxidative stress. METHODS In this study, a rooster model with primary chicken embryo hepatocytes was applied to elucidate the therapeutic effects of MET against GLY-induced hepatic damage and the potential mechanism. Histopathological examinations, biochemical tests and immunoblotting analysis were used to monitor the protective effects of MET on GLY-induced hepatic lipid accumulation. Molecular docking analysis was used to reveal the key reason of MET-improved hepatic lipid deposition. RESULTS Data firstly showed that MET administration markedly improved GLY-induced hepatic injury, as evidenced by normalized liver enzymes and alleviated pathological changes of liver tissues. Moreover, MET supplementation alleviated GLY-induced hepatic lipid accumulation, which was correlated with improved serum and hepatic lipid profiles and normalized expression of lipolysis- and lipogenesis-related proteins. Notably, MET significantly inhibited vital enzymes involved in stimulating oxidative stress. Moreover, MET enhanced GLY-inhibited Nrf2 nuclear transcription and increased the expressions of its downstream target genes HO1 and NQO1. Further studies revealed that MET may interact with Nrf2 to enhance nuclear translocation of Nrf2. CONCLUSION Collectively, our results provide the first direct evidence that MET is a novel regulator of Nrf2, highlighting that Nrf2 may be a potential therapeutic target for GLY-induced lipotoxic liver injury.
Collapse
Affiliation(s)
- Shu-Hui Zhang
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province 271017, China
| | - Hai-Jing Zhang
- New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Ji'nan City 250101, Shandong Province, China
| | - Yan-Zhan Jia
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province 271017, China
| | - Zhen-Yong Wang
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province 271017, China
| | - Zhao-Hong You
- Zaozhuang University School of Food Science and Pharmaceutical Engineering, No.1, Beian Road, Shizhong District, Zaozhuang City, Shandong Province 277160, China
| | - Cai-Yu Lian
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province 271017, China.
| | - Lin Wang
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province 271017, China.
| |
Collapse
|
8
|
Ayala-Cosme EG, Yang D, Vences K, Davis LO, Borgini M. State-of-the-Art Nrf2 Inhibitors: Therapeutic Opportunities in Non-Cancer Diseases. ChemMedChem 2024; 19:e202400377. [PMID: 39083752 DOI: 10.1002/cmdc.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Nuclear factor erythroid 2-related factor (Nrf2) is a cytoprotective transcription factor that induces the transcription of genes responsible for the cell's response to oxidative stress. While Nrf2 activation has led to the development of clinically relevant therapeutics, the oncogenic role of Nrf2 in the proliferation of cancer cells has underscored the complex nature of Nrf2 and the necessity for the development of Nrf2 inhibitors. Although the application of Nrf2 inhibitors appears limited as anticancer agents, recent studies have begun to pinpoint the impairment of autophagy in diseases as a cellular marker that shifts Nrf2 from a protective to a deleterious state. Therefore, the cytoplasmic accumulation of Nrf2 can lead to the accumulation of lipid hydroperoxides and, ultimately, to ferroptosis. However, some studies aimed at elucidating the role of Nrf2 in non-cancer diseases have yielded conflicting results, attributed to differences in approaches used to inhibit or activate Nrf2, as well as variations in in vitro and/or in vivo disease models. Overall, these results highlight the necessity for a deeper evaluation of Nrf2's role in diseases, especially chronic diseases. In this review, we discuss diseases where Nrf2 inhibition holds potential for beneficial therapeutic effects and summarize recently reported Nrf2 inhibitors exploiting medicinal chemistry approaches suitable for targeting transcription factors like Nrf2.
Collapse
Affiliation(s)
- Emil G Ayala-Cosme
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| | - Deborah Yang
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| | - Kyara Vences
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| | - Lindsey O Davis
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| | - Matteo Borgini
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| |
Collapse
|
9
|
Kim E, Choi S, Kim SY, Jang SJ, Lee S, Kim H, Jang JH, Seo HH, Lee JH, Choi SS, Moh SH. Wound healing effect of polydeoxyribonucleotide derived from Hibiscus sabdariffa callus via Nrf2 signaling in human keratinocytes. Biochem Biophys Res Commun 2024; 728:150335. [PMID: 38996695 DOI: 10.1016/j.bbrc.2024.150335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
There has been a growing interest in skin recovery in both the medical and cosmetics fields, leading to an increasing number of studies reporting diverse materials being utilized for this purpose. Among them, polydeoxyribonucleotide (PDRN) is known for its efficacy in skin repair processes, while Hibiscus sabdariffa (HS) is recognized for its antioxidant, hypolipidemic, and wound healing properties, including its positive impact on mammalian skin and cells. We hypothesized that these characteristics may have a germane relationship during the healing process. Consequently, we induced calli from HS and then extracted PDRN for use in treating human keratinocytes. PDRN (5 μg/mL) had considerable wound healing effects and wrinkle improvement effects. To confirm its function at the molecular level, we performed real-time polymerase chain reaction, western blotting, and immunocytochemistry. Furthermore, genes related to wound healing (MMP9, Nrf2, KGF, VEGF, SOD2, and AQP3) were significantly upregulated. Additionally, the protein expression of MMP9, AQP3, and CAT, which are closely related to wound healing and antioxidant cascades, was considerably enhanced. Based on cellular morphology and molecular-level evidence, we propose that PDRN from calli of HS can improve wound healing in human keratinocytes. Furthermore, its potential to serve as a novel material in cosmetic products is demonstrated.
Collapse
Affiliation(s)
- Euihyun Kim
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sunmee Choi
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Soo-Yun Kim
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sung Joo Jang
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sak Lee
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Hyein Kim
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Ji Hyeon Jang
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Hyo Hyun Seo
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Jeong Hun Lee
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sung Soo Choi
- Daesang Holdings, Jung-gu, Seoul, 04513, Republic of Korea.
| | - Sang Hyun Moh
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| |
Collapse
|
10
|
Zhang J, Lv W, Zhang G, Zeng M, Cao W, Su J, Cao K, Liu J. Nuclear Factor Erythroid 2 Related Factor 2 and Mitochondria Form a Mutually Regulating Circuit in the Prevention and Treatment of Metabolic Syndrome. Antioxid Redox Signal 2024; 41:744-768. [PMID: 38183629 DOI: 10.1089/ars.2023.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Significance: Metabolic syndrome (MetS) has become a major global public health problem and there is an urgent need to elucidate its pathogenesis and find more effective targets and modalities for intervention. Recent Advances: Oxidative stress and inflammation are two of the major causes of MetS-related symptoms such as insulin resistance and obesity. Nuclear factor erythroid 2 related factor 2 (Nrf2) is one of the important systems responding to oxidative stress and inflammation. As cells undergo stress, cysteines within Kelch-like ECH-associated protein 1 (Keap1) are oxidized or electrophilically modified, allowing Nrf2 to escape ubiquitination and be translocated from the cytoplasm to the nucleus, facilitating the initiation of the antioxidant transcriptional program. Meanwhile, a growing body of evidence points out a specific modulation of mitochondrial homeostasis by Nrf2. After nuclear translocation, Nrf2 activates downstream genes involved in various aspects of mitochondrial homeostasis, including mitochondrial biogenesis and dynamics, mitophagy, aerobic respiration, and energy metabolism. In turn, mitochondria reciprocally activate Nrf2 by releasing reactive oxygen species and regulating antioxidant enzymes. Critical Issues: In this review, we first summarize the interactions between Nrf2 and mitochondria in the modulation of oxidative stress and inflammation to ameliorate MetS, then propose that Nrf2 and mitochondria form a mutually regulating circuit critical to maintaining homeostasis during MetS. Future Directions: Targeting the Nrf2-mitochondrial circuit may be a promising strategy to ameliorate MetS, such as obesity, diabetes, and cardiovascular diseases.
Collapse
Affiliation(s)
- Jiawei Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Guanfei Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mengqi Zeng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wenli Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiacan Su
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
11
|
Hasani M, Abbasi-Oshaghi E, Khomari F, Kiani B, Mirzaei F, Alipourfard I, Khodadadi I, Tayebinia H, Babaei M, Alizadeh-Fanalou S, Bahreini E. Enhanced Insulin Secretion Through Upregulation of Transcription Factors by Hydroalcoholic Extract of Securigera securidaca Seeds in Diabetic Animal Model. Endocrinol Diabetes Metab 2024; 7:e515. [PMID: 39238175 PMCID: PMC11377490 DOI: 10.1002/edm2.515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 09/07/2024] Open
Abstract
AIM In previous studies, the researchers observed an increase in insulin secretion in STZ-treated diabetic rats following treatment with the hydroalcoholic extract of Securigera securidaca (HESS) seeds. This study focuses on the relationship between the antioxidant properties of HESS with changes in diabetic pancreatic tissue and the gene expression of factors that impact insulin secretion. METHODS In this controlled experimental study, three varying doses of HESS were administered to three groups of diabetic rats induced by STZ. Oxidative stress indicators like total antioxidant capacity (TAC), total oxidant status (TOS) and malondialdehyde were assessed in both pancreatic and liver tissues. Pancreatic histology was studied post-haematoxylin staining. Insulin and FGF21 levels in the blood were measured using the ELISA method. The expression of Nrf2 and FGF21 genes in the pancreas and liver, along with MafA and PDX-1 genes in the pancreas, was quantified using real-time PCR. RESULTS The administration of HESS in varying doses led to a dose-dependent rise in blood insulin levels and a decrease in blood glucose levels and oxidative stress. By reducing oxidative stress, HESS treatment lowered the heightened levels of NRF2 and FGF21 in the liver and pancreas of diabetic rats, improving pancreatic tissue health. As oxidative stress decreased, the expression of MafA and PDX1 genes in the pancreas approached levels seen in healthy rats. CONCLUSION HESS elicits an increase in insulin secretion through the mitigation of oxidative stress and tissue damage, as well as the modulation of gene expression related to the insulin transcription factors PDX-1 and MafA.
Collapse
Affiliation(s)
- Maryam Hasani
- Department of Biochemistry, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Abbasi-Oshaghi
- Department of Biochemistry, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Khomari
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahar Kiani
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mirzaei
- Department of Anatomical Sciences, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | | | - Iraj Khodadadi
- Department of Biochemistry, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heydar Tayebinia
- Department of Biochemistry, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Babaei
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Elham Bahreini
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Trusz GJ. Fibroblast growth factor 21. Differentiation 2024; 139:100793. [PMID: 38991938 DOI: 10.1016/j.diff.2024.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Fibroblast growth factor 21 (FGF21) belongs to the FGF19 subfamily and acts systemically, playing a key role in inter-organ crosstalk. Ranging from metabolism, reproduction, and immunity, FGF21 is a pleiotropic hormone which contributes to various physiological processes. Although most of its production across species stems from hepatic tissues, expression of FGF21 in mice has also been identified in adipose tissue, thymus, heart, pancreas, and skeletal muscle. Elevated FGF21 levels are affiliated with various diseases and conditions, such as obesity, type 2 diabetes, preeclampsia, as well as cancer. Murine knockout models are viable and show modest weight gain, while overexpression and gain-of-function models display resistance to weight gain, altered bone volume, and enhanced immunity. In addition, FGF21-based therapies are at the forefront of biopharmaceutical strategies aimed at treating metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Guillaume J Trusz
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
13
|
Chartoumpekis DV, Chen I, Salvatore SR, Schopfer FJ, Freeman BA, Khoo NKH. Adipocyte-specific Nrf2 deletion negates nitro-oleic acid benefits on glucose tolerance in diet-induced obesity. Nitric Oxide 2024; 149:75-84. [PMID: 38879114 DOI: 10.1016/j.niox.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
Obesity is commonly linked with white adipose tissue (WAT) dysfunction, setting off inflammation and oxidative stress, both key contributors to the cardiometabolic complications associated with obesity. To improve metabolic and cardiovascular health, countering these inflammatory and oxidative signaling processes is crucial. Offering potential in this context, the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by nitro-fatty acids (NO2-FA) promote diverse anti-inflammatory signaling and counteract oxidative stress. Additionally, we previously highlighted that nitro-oleic acid (NO2-OA) preferentially accumulates in WAT and provides protection against already established high fat diet (HFD)-mediated impaired glucose tolerance. The precise mechanism accounting for these protective effects remained largely unexplored until now. Herein, we reveal that protective effects of improved glucose tolerance by NO2-OA is absent when Nrf2 is specifically ablated in adipocytes (ANKO mice). NO2-OA treatment did not alter body weight between ANKO and littermate controls (Nrf2fl/fl) mice on both the HFD and low-fat diet (LFD). As expected, at day 76 (before NO2-OA treatment) and notably at day 125 (daily treatment of 15 mg/kg NO2-OA for 48 days), both HFD-fed Nrf2fl/fl and ANKO mice exhibited increased fat mass and reduced lean mass compared to LFD controls. However, throughout the NO2-OA treatment, no distinction was observed between Nrf2fl/fl and ANKO in the HFD-fed mice as well as in the Nrf2fl/fl mice fed a LFD. Glucose tolerance tests revealed impaired glucose tolerance in HFD-fed Nrf2fl/fl and ANKO compared to LFD-fed Nrf2fl/fl mice. Notably, NO2-OA treatment improved glucose tolerance in HFD-fed Nrf2fl/fl but did not yield the same improvement in ANKO mice at days 15, 30, and 55 of treatment. Unraveling the pathways linked to NO2-OA's protective effects in obesity-mediated impairment in glucose tolerance is pivotal within the realm of precision medicine, crucially propelling future applications and refining novel drug-based strategies.
Collapse
Affiliation(s)
- D V Chartoumpekis
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, CH-1011, Lausanne, Switzerland
| | - I Chen
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - S R Salvatore
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - F J Schopfer
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, 15261, USA
| | - B A Freeman
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - N K H Khoo
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
14
|
Di Veroli B, Bentanachs R, Roglans N, Alegret M, Giona L, Profumo E, Berry A, Saso L, Laguna JC, Buttari B. Sex Differences Affect the NRF2 Signaling Pathway in the Early Phase of Liver Steatosis: A High-Fat-Diet-Fed Rat Model Supplemented with Liquid Fructose. Cells 2024; 13:1247. [PMID: 39120278 PMCID: PMC11312139 DOI: 10.3390/cells13151247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Sex differences may play a role in the etiopathogenesis and severity of metabolic dysfunction-associated steatotic liver disease (MASLD), a disorder characterized by excessive fat accumulation associated with increased inflammation and oxidative stress. We previously observed the development of steatosis specifically in female rats fed a high-fat diet enriched with liquid fructose (HFHFr) for 12 weeks. The aim of this study was to better characterize the observed sex differences by focusing on the antioxidant and cytoprotective pathways related to the KEAP1/NRF2 axis. The KEAP1/NRF2 signaling pathway, autophagy process (LC3B and LAMP2), and endoplasmic reticulum stress response (XBP1) were analyzed in liver homogenates in male and female rats that were fed a 12-week HFHFr diet. In females, the HFHFr diet resulted in the initial activation of the KEAP1/NRF2 pathway, which was not followed by the modulation of downstream molecular targets; this was possibly due to the increase in KEAP1 levels preventing the nuclear translocation of NRF2 despite its cytosolic increase. Interestingly, while in both sexes the HFHFr diet resulted in an increase in the levels of LC3BII/LC3BI, a marker of autophagosome formation, only males showed a significant upregulation of LAMP2 and XBP1s; this did not occur in females, suggesting impaired autophagic flux in this sex. Overall, our results suggest that males are characterized by a greater ability to cope with an HFHFr metabolic stimulus mainly through an autophagic-mediated proteostatic process while in females, this is impaired. This might depend at least in part upon the fine modulation of the cytoprotective and antioxidant KEAP1/NRF2 pathway resulting in sex differences in the occurrence and severity of MASLD. These results should be considered to design effective therapeutics for MASLD.
Collapse
Affiliation(s)
- Benedetta Di Veroli
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.D.V.); (E.P.)
| | - Roger Bentanachs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (R.B.); (N.R.); (J.C.L.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Núria Roglans
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (R.B.); (N.R.); (J.C.L.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Marta Alegret
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (R.B.); (N.R.); (J.C.L.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Letizia Giona
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (L.G.); (A.B.)
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.D.V.); (E.P.)
| | - Alessandra Berry
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (L.G.); (A.B.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy;
| | - Juan Carlos Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (R.B.); (N.R.); (J.C.L.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.D.V.); (E.P.)
| |
Collapse
|
15
|
Xiao JL, Liu HY, Sun CC, Tang CF. Regulation of Keap1-Nrf2 signaling in health and diseases. Mol Biol Rep 2024; 51:809. [PMID: 39001962 DOI: 10.1007/s11033-024-09771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) functions as a central regulator in modulating the activities of diverse antioxidant enzymes, maintaining cellular redox balance, and responding to oxidative stress (OS). Kelch-like ECH-associated protein 1 (Keap1) serves as a principal negative modulator in controlling the expression of detoxification and antioxidant genes. It is widely accepted that OS plays a pivotal role in the pathogenesis of various diseases. When OS occurs, leading to inflammatory infiltration of neutrophils, increased secretion of proteases, and the generation of large quantities of reactive oxygen radicals (ROS). These ROS can oxidize or disrupt DNA, lipids, and proteins either directly or indirectly. They also cause gene mutations, lipid peroxidation, and protein denaturation, all of which can result in disease. The Keap1-Nrf2 signaling pathway regulates the balance between oxidants and antioxidants in vivo, maintains the stability of the intracellular environment, and promotes cell growth and repair. However, the antioxidant properties of the Keap1-Nrf2 signaling pathway are reduced in disease. This review overviews the mechanisms of OS generation, the biological properties of Keap1-Nrf2, and the regulatory role of its pathway in health and disease, to explore therapeutic strategies for the Keap1-Nrf2 signaling pathway in different diseases.
Collapse
Affiliation(s)
- Jiang-Ling Xiao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan, 410012, China
| | - Heng-Yuan Liu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan, 410012, China
| | - Chen-Chen Sun
- Institute of Physical Education, Hunan First Normal University, Changsha, Hunan, 410205, China.
| | - Chang-Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan, 410012, China.
| |
Collapse
|
16
|
Wakabayashi N, Yagishita Y, Joshi T, Kensler TW. Dual Deletion of Keap1 and Rbpjκ Genes in Liver Leads to Hepatomegaly and Hypercholesterolemia. Int J Mol Sci 2024; 25:4712. [PMID: 38731931 PMCID: PMC11083431 DOI: 10.3390/ijms25094712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The hepatic deletion of Rbpjκ (RbpjF/F::AlbCre) in the mouse leads to exhibition of the Alagille syndrome phenotype during early postnatal liver development with hyperlipidemia and cholestasis due to attenuated disruption of NOTCH signaling. Given the roles of NRF2 signaling in the regulation of lipid metabolism and bile ductal formation, it was anticipated that these symptoms could be alleviated by enhancing NRF2 signaling in the RbpjF/F::AlbCre mouse by hepatic deletion of Keap1 in compound Keap1F/F::RbpjF/F::AlbCre mice. Unexpectedly, these mice developed higher hepatic and plasma cholesterol levels with more severe cholestatic liver damage during the pre-weaning period than in the RbpjF/F::AlbCre mice. In addition, hypercholesterolemia and hepatic damage were sustained throughout the growth period unlike in the RbpjF/F::AlbCre mouse. These enhanced abnormalities in lipid metabolism appear to be due to NRF2-dependent changes in gene expression related to cholesterol synthetic and subsequent bile acid production pathways. Notably, the hepatic expression of Cyp1A7 and Abcb11 genes involved in bile acid homeostasis was significantly reduced in Keap1F/F::RbpjF/F::AlbCre compared to RbpjF/F::AlbCre mice. The accumulation of liver cholesterol and the weakened capacity for bile excretion during the 3 pre-weaning weeks in the Keap1F/F::RbpjF/F::AlbCre mice may aggravate hepatocellular damage level caused by both excessive cholesterol and residual bile acid toxicity in hepatocytes. These results indicate that a tuned balance of NOTCH and NRF2 signaling is of biological importance for early liver development after birth.
Collapse
Affiliation(s)
- Nobunao Wakabayashi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
| | - Yoko Yagishita
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
- Division of Endocrinology, Columbia University, New York, NY 10032, USA
| | - Tanvi Joshi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
| | - Thomas W. Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
| |
Collapse
|
17
|
Supruniuk E, Baczewska M, Żebrowska E, Maciejczyk M, Lauko KK, Dajnowicz-Brzezik P, Milewska P, Knapp P, Zalewska A, Chabowski A. Redox Biomarkers and Matrix Remodeling Molecules in Ovarian Cancer. Antioxidants (Basel) 2024; 13:200. [PMID: 38397798 PMCID: PMC10885995 DOI: 10.3390/antiox13020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Ovarian cancer (OC) has emerged as the leading cause of death due to gynecological malignancies among women. Oxidative stress and metalloproteinases (MMPs) have been shown to influence signaling pathways and afflict the progression of carcinogenesis. Therefore, the assessment of matrix-remodeling and oxidative stress intensity can determine the degree of cellular injury and often the severity of redox-mediated chemoresistance. The study group comprised 27 patients with serous OC of which 18% were classified as Federation of Gynecology and Obstetrics (FIGO) stages I/II, while the rest were diagnosed grades III/IV. The control group comprised of 15 ovarian tissue samples. The results were compared with genetic data from The Cancer Genome Atlas. Nitro-oxidative stress, inflammation and apoptosis biomarkers were measured colorimetrically/fluorometrically or via real-time PCR in the primary ovarian tumor and healthy tissue. Stratification of patients according to FIGO stages revealed that high-grade carcinoma exhibited substantial alterations in redox balance, including the accumulation of protein glycoxidation and lipid peroxidation products. TCGA data demonstrated only limited prognostic usefulness of the studied genes. In conclusion, high-grade serous OC is associated with enhanced tissue oxidative/nitrosative stress and macromolecule damage that could not be overridden by the simultaneously augmented measures of antioxidant defense. Therefore, it can be assumed that tumor cells acquire adaptive mechanisms that enable them to withstand the potential toxic effects of elevated reactive oxygen species.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland; (E.Ż.); (P.D.-B.); (A.C.)
| | - Marta Baczewska
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A Street, 15-276 Bialystok, Poland; (M.B.); (P.K.)
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland; (E.Ż.); (P.D.-B.); (A.C.)
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland;
| | - Kamil Klaudiusz Lauko
- Students’ Scientific Club ‘Biochemistry of Civilization Diseases’ at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland;
| | - Patrycja Dajnowicz-Brzezik
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland; (E.Ż.); (P.D.-B.); (A.C.)
| | - Patrycja Milewska
- Biobank, Medical University of Bialystok, Waszyngtona 13 Street, 15-269 Bialystok, Poland;
| | - Paweł Knapp
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A Street, 15-276 Bialystok, Poland; (M.B.); (P.K.)
- University Oncology Center, University Clinical Hospital in Bialystok, Marii Skłodowskiej-Curie 24A Street, 15-276 Bialystok, Poland
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland; (E.Ż.); (P.D.-B.); (A.C.)
| |
Collapse
|
18
|
Pei E, Wang H, Li Z, Xie X, Cai L, Lin M. Endoplasmic reticulum stress inhibitor may substitute for sleeve gastrectomy to alleviate metabolic dysfunction-associated steatotic liver disease. Clin Res Hepatol Gastroenterol 2023; 47:102229. [PMID: 37865225 DOI: 10.1016/j.clinre.2023.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming the most common form of chronic liver disease worldwide. We explored the potential mechanisms responsible for the protective role of sleeve gastrectomy (SG) on MASLD in a high-fat diet (HFD) rat model. METHODS Rats were fed with HFD for 12 weeks to generate MASLD model that were subjected to SG or sham surgery. The endoplasmic reticulum stress (ERS) inhibitor 4-phenylbutyric acid (4-PBA) was injected intraperitoneally every day for 4 weeks after surgery to identify the impact of ERS. RESULTS The MASLD rat model was generated successfully, as indicated by significant upregulation of metabolic parameters. Fibroblast growth factor 21 (FGF21) and ERS-related proteins were increased in HFD rats, while expression of fibroblast growth factor receptor 1 was decreased as expected. An HFD also induced swelling and blurring of the endoplasmic reticulum and mitochondria in hepatocytes, and the above transformation could be relieved by SG and 4-PBA. SG and an ERS inhibitor both inhibited MASLD, but their combined treatment had no additional benefit. CONCLUSIONS Dysfunction of the FGF21 signaling pathway and hepatic steatosis and inflammation could be induced by an HFD, potentially causing MASLD. Bariatric surgery and ERS inhibition could alleviate MASLD by relieving ERS-mediated impairment of FGF21 signal transduction. These findings provide a new insight into the use of ERS inhibitors to treat MASLD, especially in patients who prefer to avoid surgery.
Collapse
Affiliation(s)
- Erli Pei
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Wang
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhihong Li
- Department of General Surgery, Zhoupu Hospital, Shanghai, China
| | - Xiaoyun Xie
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Cai
- Department of Science and Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Moubin Lin
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
19
|
Yu J, Qiu J, Zhang Z, Cui X, Guo W, Sheng M, Gao M, Wang D, Xu L, Ma X. Redox Biology in Adipose Tissue Physiology and Obesity. Adv Biol (Weinh) 2023; 7:e2200234. [PMID: 36658733 DOI: 10.1002/adbi.202200234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Indexed: 01/21/2023]
Abstract
Reactive oxygen species (ROS), a by-product of mitochondrial oxidative phosphorylation and cellular metabolism, is vital for cellular survival, proliferation, damage, and senescence. In recent years, studies have shown that ROS levels and redox status in adipose tissue are strongly associated with obesity and metabolic diseases. Although it was previously considered that excessive production of ROS and impairment of antioxidant capability leads to oxidative stress and potentially contributes to increased adiposity, it has become increasingly evident that an adequate amount of ROS is vital for adipocyte differentiation and thermogenesis. In this review, by providing a systematic overview of the recent understanding of the key factors of redox systems, endogenous mechanisms for redox homeostasis, advanced techniques for dynamic redox monitoring, as well as exogenous stimuli for redox production in adipose tissues and obesity, the importance of redox biology in metabolic health is emphasized.
Collapse
Affiliation(s)
- Jian Yu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, 201499, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Zhe Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Xiangdi Cui
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Wenxiu Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Maozheng Sheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Mingyuan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Xinran Ma
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, 201499, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, P. R. China
| |
Collapse
|
20
|
You YL, Lee JY, Choi HS. S chisandra chinensis-derived gomisin C suppreses lipid accumulation by JAK2-STAT signaling in adipocyte. Food Sci Biotechnol 2023; 32:1225-1233. [PMID: 37362811 PMCID: PMC10290005 DOI: 10.1007/s10068-023-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/23/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Gomisin C is a lignan isolated from the fruit of Schisandra chinensis. The current study aimed to investigate the effect of gomisin C on lipid accumulation in adipocytes and its underlying mechanism. Gomisin C effectively inhibited lipid accumulation by downregulating adipogenic factors such as PPARγ and C/EBPα. Gomisin C-mediated suppression of lipid accumulation occurred in the early adipogenic stage; C/EBPβ was downregulated by 55%, while KLF2 was upregulated by 1.5-fold. Gomisin C significantly reduced the production of reactive oxygen species but upregulated antioxidant enzymes, including catalase, SOD1, and Gpx at the mRNA level. Gomisin C regulated NRF2-KEAP1 pathway by increasing NRF2 and decreasing KEAP1, in protein abundance. Furthermore, gomisin C suppressed the JAK2-STAT signaling pathway by decreasing phosphorylation. Taken together, gomisin C reduced early adipogenesis and ROS production by inhibiting the JAK2-STAT signaling pathway but activating the NRF2-KEAP1 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01263-8.
Collapse
Affiliation(s)
- Ye-Lim You
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| | - Ji-Yeon Lee
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| |
Collapse
|
21
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Fibroblast growth factor 21 in metabolic syndrome. Front Endocrinol (Lausanne) 2023; 14:1220426. [PMID: 37576954 PMCID: PMC10414186 DOI: 10.3389/fendo.2023.1220426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Metabolic syndrome is a complex metabolic disorder that often clinically manifests as obesity, insulin resistance/diabetes, hyperlipidemia, and hypertension. With the development of social and economic systems, the incidence of metabolic syndrome is increasing, bringing a heavy medical burden. However, there is still a lack of effective prevention and treatment strategies. Fibroblast growth factor 21 (FGF21) is a member of the human FGF superfamily and is a key protein involved in the maintenance of metabolic homeostasis, including reducing fat mass and lowering hyperglycemia, insulin resistance and dyslipidemia. Here, we review the current regulatory mechanisms of FGF21, summarize its role in obesity, diabetes, hyperlipidemia, and hypertension, and discuss the possibility of FGF21 as a potential target for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
22
|
Sheykhsaran E, Abbasi A, Ebrahimzadeh Leylabadlo H, Sadeghi J, Mehri S, Naeimi Mazraeh F, Feizi H, Bannazadeh Baghi H. Gut microbiota and obesity: an overview of microbiota to microbial-based therapies. Postgrad Med J 2023; 99:384-402. [PMID: 35140178 DOI: 10.1136/postgradmedj-2021-141311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/15/2022] [Indexed: 12/14/2022]
Abstract
The increasing prevalence of obesity and overweight is a significant public concern throughout the world. Obesity is a complex disorder involving an excessive amount of body fat. It is not just a cosmetic concern. It is a medical challenge that increases the risk of other diseases and health circumstances, such as diabetes, heart disease, high blood pressure and certain cancers. Environmental and genetic factors are involved in obesity as a significant metabolic disorder along with diabetes. Gut microbiota (GM) has a high potential for energy harvesting from the diet. In the current review, we aim to consider the role of GM, gut dysbiosis and significant therapies to treat obesity. Dietary modifications, probiotics, prebiotics, synbiotics compounds, using faecal microbiota transplant, and other microbial-based therapies are the strategies to intervene in obesity reducing improvement. Each of these factors serves through various mechanisms including a variety of receptors and compounds to control body weight. Trial and animal investigations have indicated that GM can affect both sides of the energy-balancing equation; first, as an influencing factor for energy utilisation from the diet and also as an influencing factor that regulates the host genes and energy storage and expenditure. All the investigated articles declare the clear and inevitable role of GM in obesity. Overall, obesity and obesity-relevant metabolic disorders are characterised by specific modifications in the human microbiota's composition and functions. The emerging therapeutic methods display positive and promising effects; however, further research must be done to update and complete existing knowledge.
Collapse
Affiliation(s)
- Elham Sheykhsaran
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Sciences and Technology Research Institute, Faculty of Nutrition Sciences and food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Javid Sadeghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Mehri
- Department of Biochemistry and structural Biology, University of Alabama, Birmingham, Alabama, USA
| | - Fariba Naeimi Mazraeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Thiruvengadam R, Venkidasamy B, Samynathan R, Govindasamy R, Thiruvengadam M, Kim JH. Association of nanoparticles and Nrf2 with various oxidative stress-mediated diseases. Chem Biol Interact 2023; 380:110535. [PMID: 37187268 DOI: 10.1016/j.cbi.2023.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regultes the cellular antioxidant defense system at the posttranscriptional level. During oxidative stress, Nrf2 is released from its negative regulator Kelch-like ECH-associated protein 1 (Keap1) and binds to antioxidant response element (ARE) to transcribe antioxidative metabolizing/detoxifying genes. Various transcription factors like aryl hydrocarbon receptor (AhR) and nuclear factor kappa light chain enhancer of activated B cells (NF-kB) and epigenetic modification including DNA methylation and histone methylation might also regulate the expression of Nrf2. Despite its protective role, Keap1/Nrf2/ARE signaling is considered as a pharmacological target due to its involvement in various pathophysiological conditions such as diabetes, cardiovascular disease, cancer, neurodegenerative diseases, hepatotoxicity and kidney disorders. Recently, nanomaterials have received a lot of attention due to their unique physiochemical properties and are also used in various biological applications, for example, biosensors, drug delivery systems, cancer therapy, etc. In this review, we will be discussing the functions of nanoparticles and Nrf2 as a combined therapy or sensitizing agent and their significance in various diseases such as diabetes, cancer and oxidative stress-mediated diseases.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Rajakumar Govindasamy
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
24
|
Yu W, Xie D, Yamamoto T, Koyama H, Cheng J. Mechanistic insights of soluble uric acid-induced insulin resistance: Insulin signaling and beyond. Rev Endocr Metab Disord 2023; 24:327-343. [PMID: 36715824 DOI: 10.1007/s11154-023-09787-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
Hyperuricemia is a metabolic disease caused by purine nucleotide metabolism disorder. The prevalence of hyperuricemia is increasing worldwide, with a growing trend in the younger populations. Although numerous studies have indicated that hyperuricemia may be an independent risk factor for insulin resistance, the causal relationship between the two is controversial. There are few reviews, however, focusing on the relationship between uric acid (UA) and insulin resistance from experimental studies. In this review, we summarized the experimental models related to soluble UA-induced insulin resistance in pancreas and peripheral tissues, including skeletal muscles, adipose tissue, liver, heart/cardiomyocytes, vascular endothelial cells and macrophages. In addition, we summarized the research advances about the key mechanism of UA-induced insulin resistance. Moreover, we attempt to identify novel targets for the treatment of hyperuricemia-related insulin resistance. Lastly, we hope that the present review will encourage further researches to solve the chicken-and-egg dilemma between UA and insulin resistance, and provide strategies for the pathogenesis and treatment of hyperuricemia related metabolic diseases.
Collapse
Affiliation(s)
- Wei Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - De Xie
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Tetsuya Yamamoto
- Health Evaluation Center, Osaka Gyoumeikan Hospital, Osaka, Japan
| | - Hidenori Koyama
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Jidong Cheng
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo Medical University, Nishinomiya, Hyogo, Japan.
- Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, Fujian, China.
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
25
|
Zhu Y, Qi Z, Ding S. Exercise-Induced Adipose Tissue Thermogenesis and Browning: How to Explain the Conflicting Findings? Int J Mol Sci 2022; 23:13142. [PMID: 36361929 PMCID: PMC9657384 DOI: 10.3390/ijms232113142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
Brown adipose tissue (BAT) has been widely studied in targeting against metabolic diseases such as obesity, type 2 diabetes and insulin resistance due to its role in nutrient metabolism and energy regulation. Whether exercise promotes adipose tissue thermogenesis and browning remains controversial. The results from human and rodent studies contradict each other. In our opinion, fat thermogenesis or browning promoted by exercise should not be a biomarker of health benefits, but an adaptation under the stress between body temperature regulation and energy supply and expenditure of multiple organs. In this review, we discuss some factors that may contribute to conflicting experimental results, such as different thermoneutral zones, gender, training experience and the heterogeneity of fat depots. In addition, we explain that a redox state in cells potentially causes thermogenesis heterogeneity and different oxidation states of UCP1, which has led to the discrepancies noted in previous studies. We describe a network by which exercise orchestrates the browning and thermogenesis of adipose tissue with total energy expenditure through multiple organs (muscle, brain, liver and adipose tissue) and multiple pathways (nerve, endocrine and metabolic products), providing a possible interpretation for the conflicting findings.
Collapse
Affiliation(s)
- Yupeng Zhu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
- Sino-French Joint Research Center of Sport Science, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Shuzhe Ding
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- Sino-French Joint Research Center of Sport Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
26
|
Xia Y, Zhai X, Qiu Y, Lu X, Jiao Y. The Nrf2 in Obesity: A Friend or Foe? Antioxidants (Basel) 2022; 11:antiox11102067. [PMID: 36290791 PMCID: PMC9598341 DOI: 10.3390/antiox11102067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity and its complications have become serious global health concerns recently and increasing work has been carried out to explicate the underlying mechanism of the disease development. The recognized correlations suggest oxidative stress and inflammation in expanding adipose tissue with excessive fat accumulation play important roles in the pathogenesis of obesity, as well as its associated metabolic syndromes. In adipose tissue, obesity-mediated insulin resistance strongly correlates with increased oxidative stress and inflammation. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been described as a key modulator of antioxidant signaling, which regulates the transcription of various genes coding antioxidant enzymes and cytoprotective proteins. Furthermore, an increasing number of studies have demonstrated that Nrf2 is a pivotal target of obesity and its related metabolic disorders. However, its effects are controversial and even contradictory. This review aims to clarify the complicated interplay among Nrf2, oxidative stress, lipid metabolism, insulin signaling and chronic inflammation in obesity. Elucidating the implications of Nrf2 modulation on obesity would provide novel insights for potential therapeutic approaches in obesity and its comorbidities.
Collapse
|
27
|
Chartoumpekis DV, Ziros PG, Habeos IG, Sykiotis GP. Emerging roles of Keap1/Nrf2 signaling in the thyroid gland and perspectives for bench-to-bedside translation. Free Radic Biol Med 2022; 190:276-283. [PMID: 35988853 DOI: 10.1016/j.freeradbiomed.2022.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 12/14/2022]
Abstract
The signaling pathway centered on the transcription factor nuclear erythroid factor 2-like 2 (Nrf2) has emerged during the last 15 years as a target for the prevention and treatment of diseases broadly related with oxidative stress such as cancer, neurodegenerative and metabolic diseases. The roles of Nrf2 are expanding beyond general cytoprotection, and they encompass its crosstalk with other pathways as well as tissue-specific functions. The thyroid gland relies on reactive oxygen species for its main physiological function, the synthesis and secretion of thyroid hormones. A few years ago, Nrf2 was characterized as a central regulator of the antioxidant response in the thyroid, as well as of the transcription and processing of thyroglobulin, the major thyroidal protein that serves as the substrate for thyroid hormone synthesis. Herein, we summarize the current knowledge about the roles of Nrf2 in thyroid physiology, pathophysiology and disease. We focus specifically on the most recent publications in the field, and we discuss the implications for the preclinical and clinical use of Nrf2 modulators.
Collapse
Affiliation(s)
- Dionysios V Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, CH-1011, Lausanne, Switzerland
| | - Panos G Ziros
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, CH-1011, Lausanne, Switzerland
| | - Ioannis G Habeos
- Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, GR-26504, Patras, Greece
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, CH-1011, Lausanne, Switzerland.
| |
Collapse
|
28
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
29
|
Herrema H, Guan D, Choi JW, Feng X, Salazar Hernandez MA, Faruk F, Auen T, Boudett E, Tao R, Chun H, Ozcan U. FKBP11 rewires UPR signaling to promote glucose homeostasis in type 2 diabetes and obesity. Cell Metab 2022; 34:1004-1022.e8. [PMID: 35793654 DOI: 10.1016/j.cmet.2022.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/21/2021] [Accepted: 06/11/2022] [Indexed: 12/12/2022]
Abstract
Chronic endoplasmic reticulum (ER) stress and sustained activation of unfolded protein response (UPR) signaling contribute to the development of type 2 diabetes in obesity. UPR signaling is a complex signaling pathway, which is still being explored in many different cellular processes. Here, we demonstrate that FK506-binding protein 11 (FKBP11), which is transcriptionally regulated by XBP1s, is severely reduced in the livers of obese mice. Restoring hepatic FKBP11 expression in obese mice initiates an atypical UPR signaling pathway marked by rewiring of PERK signaling toward NRF2, away from the eIF2α-ATF4 axis of the UPR. This alteration in UPR signaling establishes glucose homeostasis without changing hepatic ER stress, food consumption, or body weight. We conclude that ER stress during obesity can be beneficially rewired to promote glucose homeostasis. These findings may uncover possible new avenues in the development of novel approaches to treat diseases marked by ER stress.
Collapse
Affiliation(s)
- Hilde Herrema
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA.
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Jae Won Choi
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Xudong Feng
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | | | - Farhana Faruk
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Thomas Auen
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Eliza Boudett
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Rongya Tao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Hyonho Chun
- Department of Mathematics and Statistics, Boston University, Boston, MA 02130, USA
| | - Umut Ozcan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA.
| |
Collapse
|
30
|
Wu YK, Ren ZN, Zhu SL, Wu YZ, Wang G, Zhang H, Chen W, He Z, Ye XL, Zhai QX. Sulforaphane ameliorates non-alcoholic fatty liver disease in mice by promoting FGF21/FGFR1 signaling pathway. Acta Pharmacol Sin 2022; 43:1473-1483. [PMID: 34654875 PMCID: PMC9159986 DOI: 10.1038/s41401-021-00786-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023]
Abstract
Most studies regarding the beneficial effect of sulforaphane (SFN) on non-alcoholic fatty liver disease (NAFLD) have focused on nuclear factor E2-related factor 2 (Nrf2). But the molecular mechanisms underlying the beneficial effect of SFN in the treatment of NAFLD remain controversial. Fibroblast growth factor (FGF) 21 is a member of the FGF family expressed mainly in liver but also in adipose tissue, muscle and pancreas, which functions as an endocrine factor and has been considered as a promising therapeutic candidate for the treatment of NAFLD. In the present study we investigated whether FGF21 was involved in the therapeutic effect of SFN against NAFLD. C57BL/6J mice were fed a high-fat diet (HFD) for 12 weeks to generate NAFLD and continued on the HFD for additional 6 weeks with or without SFN treatment. We showed that administration of SFN (0.56 g/kg) significantly ameliorated hepatic steatosis and inflammation in NAFLD mice, along with the improved glucose tolerance and insulin sensitivity, through suppressing the expression of proteins responsible for hepatic lipogenesis, while enhancing proteins for hepatic lipolysis and fatty acids oxidation. SFN administration significantly increased hepatic expression of FGFR1 and fibroblast growth factor 21 (FGF21) in NAFLD mice, along with decreased phosphorylation of p38 MAPK (the downstream of FGF21). HepG2 cells were treated in vitro with FFAs (palmitic acid and oleic acid) followed by different concentrations of SFN. We showed that the effects of SFN on FGF21 and FGFR1 protein expression were replicated in FFAs-treated HepG2 cells. Moreover, the increased FGFR1 protein occurred earlier than increased FGF21 protein. Interestingly, the rapid effect of SFN on FGFR1 protein was not regulated by the FGFR1 gene transcription. Knockdown of FGFR1 and p38 genes weakened SFN-reduced lipid deposition in FFAs-treated HepG2 cells. SFN administration in combination with rmFGF21 (1.5 mg/kg, i.p., every other day) for 3 weeks further suppressed hepatic steatosis in NAFLD mice. In conclusion, SFN ameliorates lipid metabolism disorders in NAFLD mice by upregulating FGF21/FGFR1 pathway. Our results verify that SFN may become a promising intervention to treat or relieve NAFLD.
Collapse
Affiliation(s)
- Yi-kuan Wu
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Zheng-nan Ren
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Sheng-long Zhu
- grid.258151.a0000 0001 0708 1323School of Medicine, Jiangnan University, Wuxi, 214122 China
| | - Yun-zhou Wu
- grid.412243.20000 0004 1760 1136College of Life Science, Northeast Agricultural University, Harbin, 150038 China
| | - Gang Wang
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Hao Zhang
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122 China
| | - Wei Chen
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122 China
| | - Zhao He
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, 250012 China
| | - Xian-long Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000 China
| | - Qi-xiao Zhai
- grid.258151.a0000 0001 0708 1323State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
31
|
Miyata S, Kodaka M, Kikuchi A, Matsunaga Y, Shoji K, Kuan YC, Iwase M, Takeda K, Katsuta R, Ishigami K, Matsumoto Y, Suzuki T, Yamamoto Y, Sato R, Inoue J. Sulforaphane suppresses the activity of sterol regulatory element-binding proteins (SREBPs) by promoting SREBP precursor degradation. Sci Rep 2022; 12:8715. [PMID: 35610278 PMCID: PMC9130306 DOI: 10.1038/s41598-022-12347-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/09/2022] [Indexed: 12/26/2022] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate various genes involved in cholesterol and fatty acid synthesis. In this study, we describe that naturally occurring isothiocyanate sulforaphane (SFaN) impairs fatty acid synthase promoter activity and reduces SREBP target gene (e.g., fatty acid synthase and acetyl-CoA carboxylase 1) expression in human hepatoma Huh-7 cells. SFaN reduced SREBP proteins by promoting the degradation of the SREBP precursor. Amino acids 595–784 of SREBP-1a were essential for SFaN-mediated SREBP-1a degradation. We also found that such SREBP-1 degradation occurs independently of the SREBP cleavage-activating protein and the Keap1-Nrf2 pathway. This study identifies SFaN as an SREBP inhibitor and provides evidence that SFaN could have major potential as a pharmaceutical preparation against hepatic steatosis and obesity.
Collapse
Affiliation(s)
- Shingo Miyata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Manami Kodaka
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Akito Kikuchi
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Yuki Matsunaga
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Kenta Shoji
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Yen-Chou Kuan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.,Department of Horticulture and Landscape Architecture, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Masamori Iwase
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Keita Takeda
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Ryo Katsuta
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Ken Ishigami
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Yu Matsumoto
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Tsukasa Suzuki
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Yuji Yamamoto
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Ryuichiro Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
| | - Jun Inoue
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan.
| |
Collapse
|
32
|
Kim MJ, Jeon JH. Recent Advances in Understanding Nrf2 Agonism and Its Potential Clinical Application to Metabolic and Inflammatory Diseases. Int J Mol Sci 2022; 23:ijms23052846. [PMID: 35269986 PMCID: PMC8910922 DOI: 10.3390/ijms23052846] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a major component of cell damage and cell fat, and as such, it occupies a central position in the pathogenesis of metabolic disease. Nuclear factor-erythroid-derived 2-related factor 2 (Nrf2), a key transcription factor that coordinates expression of genes encoding antioxidant and detoxifying enzymes, is regulated primarily by Kelch-like ECH-associated protein 1 (Keap1). However, involvement of the Keap1–Nrf2 pathway in tissue and organism homeostasis goes far beyond protection from cellular stress. In this review, we focus on evidence for Nrf2 pathway dysfunction during development of several metabolic/inflammatory disorders, including diabetes and diabetic complications, obesity, inflammatory bowel disease, and autoimmune diseases. We also review the beneficial role of current molecular Nrf2 agonists and summarize their use in ongoing clinical trials. We conclude that Nrf2 is a promising target for regulation of numerous diseases associated with oxidative stress and inflammation. However, more studies are needed to explore the role of Nrf2 in the pathogenesis of metabolic/inflammatory diseases and to review safety implications before therapeutic use in clinical practice.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Endocrinology in Internal Medicine, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
- Correspondence: ; Tel.: +82-(53)-200-3182; Fax: +82-(53)-200-3155
| |
Collapse
|
33
|
Çakır I, Lining Pan P, Hadley CK, El-Gamal A, Fadel A, Elsayegh D, Mohamed O, Rizk NM, Ghamari-Langroudi M. Sulforaphane reduces obesity by reversing leptin resistance. eLife 2022; 11:67368. [PMID: 35323110 PMCID: PMC8947770 DOI: 10.7554/elife.67368] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 01/21/2022] [Indexed: 12/11/2022] Open
Abstract
The ascending prevalence of obesity in recent decades is commonly associated with soaring morbidity and mortality rates, resulting in increased health-care costs and decreased quality of life. A systemic state of stress characterized by low-grade inflammation and pathological formation of reactive oxygen species (ROS) usually manifests in obesity. The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) is the master regulator of the redox homeostasis and plays a critical role in the resolution of inflammation. Here, we show that the natural isothiocyanate and potent NRF2 activator sulforaphane reverses diet-induced obesity through a predominantly, but not exclusively, NRF2-dependent mechanism that requires a functional leptin receptor signaling and hyperleptinemia. Sulforaphane does not reduce the body weight or food intake of lean mice but induces an anorectic response when coadministered with exogenous leptin. Leptin-deficient Lepob/ob mice and leptin receptor mutant Leprdb/db mice display resistance to the weight-reducing effect of sulforaphane, supporting the conclusion that the antiobesity effect of sulforaphane requires functional leptin receptor signaling. Furthermore, our results suggest the skeletal muscle as the most notable site of action of sulforaphane whose peripheral NRF2 action signals to alleviate leptin resistance. Transcriptional profiling of six major metabolically relevant tissues highlights that sulforaphane suppresses fatty acid synthesis while promoting ribosome biogenesis, reducing ROS accumulation, and resolving inflammation, therefore representing a unique transcriptional program that leads to protection from obesity. Our findings argue for clinical evaluation of sulforaphane for weight loss and obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Işın Çakır
- Life Sciences Institute, University of Michigan
- Department of Molecular Physiology & Biophysics, Vanderbilt University
| | | | - Colleen K Hadley
- Life Sciences Institute, University of Michigan
- College of Literature, Science, and the Arts, University of Michigan
| | - Abdulrahman El-Gamal
- Biomedical Sciences Department, College of Health Sciences, Qu- Health, Qatar University
| | - Amina Fadel
- Biomedical Research Center, Qatar University
| | | | | | - Nasser M Rizk
- Biomedical Sciences Department, College of Health Sciences, Qu- Health, Qatar University
- Biomedical Research Center, Qatar University
| | - Masoud Ghamari-Langroudi
- Department of Molecular Physiology & Biophysics, Vanderbilt University
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University
| |
Collapse
|
34
|
Muri J, Corak B, Matsushita M, Baes M, Kopf M. Peroxisomes Are Critical for the Development and Maintenance of B1 and Marginal Zone B Cells but Dispensable for Follicular B Cells and T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:839-850. [PMID: 35074867 DOI: 10.4049/jimmunol.2100518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022]
Abstract
Antioxidant systems maintain cellular redox (oxidation-reduction) homeostasis. In contrast with other key redox pathways, such as the thioredoxin system, glutathione, and NF-E2-related factor 2 (Nrf2), little is known about the function of the redox-sensitive organelle "peroxisome" in immune cells. In this study, we show that the absence of peroxisomes in conditional Pex5-deficient mice strikingly results in impaired homeostatic maintenance of innate-like B cells, namely, B1 and marginal zone B cells, which translates into a defective Ab response to Streptococcus pneumoniae Surprisingly, however, follicular B2 cell development, homeostatic maintenance, germinal center reactions, Ab production, class switching, and B cell memory formation were unaffected in Pex5-deficient animals. Similarly, T cell development and responses to viral infections also remained unaltered in the absence of Pex5 Thus, this study highlights the differential requirement of peroxisomes in distinct lymphocyte subtypes and may provide a rationale for specifically targeting peroxisomal metabolism in innate-like B cells in certain forms of B cell malignancies involving B1 cells.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland; and
| | - Basak Corak
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland; and
| | - Mai Matsushita
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland; and
| | - Myriam Baes
- Lab of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland; and
| |
Collapse
|
35
|
Endocrine Fibroblast Growth Factors in Relation to Stress Signaling. Cells 2022; 11:cells11030505. [PMID: 35159314 PMCID: PMC8834311 DOI: 10.3390/cells11030505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
Fibroblast growth factors (FGFs) play important roles in various growth signaling processes, including proliferation, development, and differentiation. Endocrine FGFs, i.e., atypical FGFs, including FGF15/19, FGF21, and FGF23, function as endocrine hormones that regulate energy metabolism. Nutritional status is known to regulate the expression of endocrine FGFs through nuclear hormone receptors. The increased expression of endocrine FGFs regulates energy metabolism processes, such as fatty acid metabolism and glucose metabolism. Recently, a relationship was found between the FGF19 subfamily and stress signaling during stresses such as endoplasmic reticulum stress and oxidative stress. This review focuses on endocrine FGFs and the recent progress in FGF studies in relation to stress signaling. In addition, the relevance of the stress-FGF pathway to disease and human health is discussed.
Collapse
|
36
|
Maleki V, Foroumandi E, Hajizadeh-Sharafabad F, Kheirouri S, Alizadeh M. The effect of resveratrol on advanced glycation end products in diabetes mellitus: a systematic review. Arch Physiol Biochem 2022; 128:253-260. [PMID: 32125189 DOI: 10.1080/13813455.2019.1673434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Advanced glycation end products (AGEs) lead to chronic oxidative stress and inflammation, which in turn augment diabetes complications. Resveratrol plays a potential role in relation to diabetes due to improving of hyperglycemia, oxidative stress, and inflammation. The aim of this review was to evaluate the scientific literature to identify the impacts of resveratrol on the accumulation of AGEs. The literature was searched in the online databases, viz. PubMed, SCOPUS, Embase, ProQuest, and Google Scholar until May 2019. From a total of 338 retrieved articles, 10 papers were eligible for the present analysis. Except one clinical trial, all studies were conducted on animals. All the included studies, except one, showed inhibitory effects of resveratrol on the accumulation of AGE or receptor for AGEs. The findings indicate that resveratrol is a potential protective agent against the accumulation of AGEs. There is, however, the need for future studies to investigate this effect on human.
Collapse
Affiliation(s)
- Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Foroumandi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Hajizadeh-Sharafabad
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Gutiérrez-Cuevas J, Galicia-Moreno M, Monroy-Ramírez HC, Sandoval-Rodriguez A, García-Bañuelos J, Santos A, Armendariz-Borunda J. The Role of NRF2 in Obesity-Associated Cardiovascular Risk Factors. Antioxidants (Basel) 2022; 11:235. [PMID: 35204118 PMCID: PMC8868420 DOI: 10.3390/antiox11020235] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
The raising prevalence of obesity is associated with an increased risk for cardiovascular diseases (CVDs), particularly coronary artery disease (CAD), and heart failure, including atrial fibrillation, ventricular arrhythmias and sudden death. Obesity contributes directly to incident cardiovascular risk factors, including hyperglycemia or diabetes, dyslipidemia, and hypertension, which are involved in atherosclerosis, including structural and functional cardiac alterations, which lead to cardiac dysfunction. CVDs are the main cause of morbidity and mortality worldwide. In obesity, visceral and epicardial adipose tissue generate inflammatory cytokines and reactive oxygen species (ROS), which induce oxidative stress and contribute to the pathogenesis of CVDs. Nuclear factor erythroid 2-related factor 2 (NRF2; encoded by Nfe2l2 gene) protects against oxidative stress and electrophilic stress. NRF2 participates in the regulation of cell inflammatory responses and lipid metabolism, including the expression of over 1000 genes in the cell under normal and stressed environments. NRF2 is downregulated in diabetes, hypertension, and inflammation. Nfe2l2 knockout mice develop structural and functional cardiac alterations, and NRF2 deficiency in macrophages increases atherosclerosis. Given the endothelial and cardiac protective effects of NRF2 in experimental models, its activation using pharmacological or natural products is a promising therapeutic approach for obesity and CVDs. This review provides a comprehensive summary of the current knowledge on the role of NRF2 in obesity-associated cardiovascular risk factors.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Marina Galicia-Moreno
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Hugo Christian Monroy-Ramírez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Jesús García-Bañuelos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Arturo Santos
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Campus Guadalajara, Zapopan 45201, JAL, Mexico;
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Campus Guadalajara, Zapopan 45201, JAL, Mexico;
| |
Collapse
|
38
|
Li ML, Chen SH, Lee CN, Yao HT. Citrus depressa Hayata Peel Ameliorates Nonalcoholic Fatty Liver and Modulates the Hepatic Drug-metabolizing Enzymes and Transporters in Rats Fed a High-fat Diet. Food Funct 2022; 13:3353-3367. [DOI: 10.1039/d1fo03597e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Citrus depressa Hayata is a small, green citrus fruit native to Taiwan and Japan. The citrus peel contains polymethoxylated flavones, including nobiletin and tangeretin, and might have strong antioxidant and...
Collapse
|
39
|
Yu W, Chen C, Zhuang W, Wang W, Liu W, Zhao H, Lv J, Xie D, Wang Q, He F, Xu C, Chen B, Yamamoto T, Koyama H, Cheng J. Silencing TXNIP ameliorates high uric acid-induced insulin resistance via the IRS2/AKT and Nrf2/HO-1 pathways in macrophages. Free Radic Biol Med 2022; 178:42-53. [PMID: 34848368 DOI: 10.1016/j.freeradbiomed.2021.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023]
Abstract
Insulin resistance (IR) promotes atherosclerosis and increases the risk of diabetes and cardiovascular diseases. Our previous studies have demonstrated that high uric acid (HUA) increased oxidative stress, leading to IR in cardiomyocytes and pancreatic β cells. However, whether HUA can induce IR in monocytes/macrophages, which play critical roles in all stages of atherosclerosis, is unclear. Recent findings revealed that thioredoxin-interacting protein (TXNIP) negatively regulates insulin signaling; however, the roles and mechanisms of TXNIP in HUA-induced IR remain unclear. Therefore, in this study, we investigated the function of TXNIP in macrophages treated with UA. Transcriptomic profiling revealed TXNIP as one of the most upregulated genes, and subsequent RT-PCR and Western blot analyses confirmed that TXNIP was upregulated by HUA. HUA treatment significantly increased mitochondrial reactive oxygen species (MtROS) levels and decreased insulin-stimulated glucose uptake. Silencing TXNIP by RNA interference significantly diminished HUA-induced oxidative stress and IR. Mechanistically, silencing TXNIP reversed the inhibition of the phosphorylation of insulin receptor substrate 2 (IRS2)/protein kinase B (AKT) pathway induced by HUA. Additional study revealed that HUA induced the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling pathway, but silencing TXNIP abolished it. Moreover, Nrf2 inhibitor (ML385) ameliorated HUA-induced IR independent of IRS2/AKT signaling. Probenecid, a well-known UA-lowering drug, significantly suppressed the activation of TXNIP and Nrf2/HO-1 signaling. Furthermore, RNA-seq revealed that activation of the TXNIP-related redox pathway may be a key regulator in patients with asymptomatic hyperuricemia. These data suggest that silencing TXNIP could ameliorate HUA-induced IR via the IRS2/AKT and Nrf2/HO-1 pathways in macrophages. Additionally, TXNIP might be a promising therapeutic target for preventing and treating oxidative stress and IR induced by HUA.
Collapse
Affiliation(s)
- Wei Yu
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine Xiamen University, Xiamen, China
| | - Chunjuan Chen
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wanling Zhuang
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wei Wang
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine Xiamen University, Xiamen, China
| | - Weidong Liu
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine Xiamen University, Xiamen, China
| | - Hairong Zhao
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine Xiamen University, Xiamen, China
| | - Jiaming Lv
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine Xiamen University, Xiamen, China
| | - De Xie
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine Xiamen University, Xiamen, China
| | - Qiang Wang
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine Xiamen University, Xiamen, China
| | - Furong He
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine Xiamen University, Xiamen, China
| | - Chenxi Xu
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine Xiamen University, Xiamen, China
| | - Bingyang Chen
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine Xiamen University, Xiamen, China
| | - Tetsuya Yamamoto
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hidenori Koyama
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Jidong Cheng
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine Xiamen University, Xiamen, China
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, Fujian, China
| |
Collapse
|
40
|
Çakır I, Hadley CK, Pan PL, Bagchi RA, Ghamari-Langroudi M, Porter DT, Wang Q, Litt MJ, Jana S, Hagen S, Lee P, White A, Lin JD, McKinsey TA, Cone RD. Histone deacetylase 6 inhibition restores leptin sensitivity and reduces obesity. Nat Metab 2022; 4:44-59. [PMID: 35039672 PMCID: PMC8892841 DOI: 10.1038/s42255-021-00515-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/07/2021] [Indexed: 01/05/2023]
Abstract
The adipose tissue-derived hormone leptin can drive decreases in food intake while increasing energy expenditure. In diet-induced obesity, circulating leptin levels rise proportionally to adiposity. Despite this hyperleptinemia, rodents and humans with obesity maintain increased adiposity and are resistant to leptin's actions. Here we show that inhibitors of the cytosolic enzyme histone deacetylase 6 (HDAC6) act as potent leptin sensitizers and anti-obesity agents in diet-induced obese mice. Specifically, HDAC6 inhibitors, such as tubastatin A, reduce food intake, fat mass, hepatic steatosis and improve systemic glucose homeostasis in an HDAC6-dependent manner. Mechanistically, peripheral, but not central, inhibition of HDAC6 confers central leptin sensitivity. Additionally, the anti-obesity effect of tubastatin A is attenuated in animals with a defective central leptin-melanocortin circuitry, including db/db and MC4R knockout mice. Our results suggest the existence of an HDAC6-regulated adipokine that serves as a leptin-sensitizing agent and reveals HDAC6 as a potential target for the treatment of obesity.
Collapse
Affiliation(s)
- Işın Çakır
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Colleen K Hadley
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Pauline Lining Pan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Rushita A Bagchi
- Department of Medicine, Division of Cardiology and the Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Masoud Ghamari-Langroudi
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | - Qiuyu Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Michael J Litt
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Somnath Jana
- Chemical Synthesis Core, Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
| | - Susan Hagen
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Pil Lee
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Andrew White
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Jiandie D Lin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Cell & Developmental Biology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology and the Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
41
|
Dexamethasone Administration in Mice Leads to Less Body Weight Gain over Time, Lower Serum Glucose, and Higher Insulin Levels Independently of NRF2. Antioxidants (Basel) 2021; 11:antiox11010004. [PMID: 35052508 PMCID: PMC8773000 DOI: 10.3390/antiox11010004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoids are used widely on a long-term basis in autoimmune and inflammatory diseases. Their adverse effects include the development of hyperglycemia and osteoporosis, whose molecular mechanisms have been only partially studied in preclinical models. Both these glucocorticoid-induced pathologies have been shown to be mediated at least in part by oxidative stress. The transcription factor nuclear erythroid factor 2-like 2 (NRF2) is a central regulator of antioxidant and cytoprotective responses. Thus, we hypothesized that NRF2 may play a role in glucocorticoid-induced metabolic disease and osteoporosis. To this end, WT and Nrf2 knockout (Nrf2KO) mice of both genders were treated with 2 mg/kg dexamethasone or vehicle 3 times per week for 13 weeks. Dexamethasone treatment led to less weight gain during the treatment period without affecting food consumption, as well as to lower glucose levels and high insulin levels compared to vehicle-treated mice. Dexamethasone also reduced cortical bone volume and density. All these effects of dexamethasone were similar between male and female mice, as well as between WT and Nrf2KO mice. Hepatic NRF2 signaling and gluconeogenic gene expression were not affected by dexamethasone. A 2-day dexamethasone treatment was also sufficient to increase insulin levels without affecting body weight and glucose levels. Hence, dexamethasone induces hyperinsulinemia, which potentially leads to decreased glucose levels, as well as osteoporosis, both independently of NRF2.
Collapse
|
42
|
Rice BB, Ngo Tenlep SY, Tolaymat O, Alvi AT, Slone FR, Crosby CL, Howard SS, Hermanns CL, Montessorie NP, Swanson HI, Pearson KJ. Lack of Offspring Nrf2 Does Not Exacerbate the Detrimental Metabolic Outcomes Caused by In Utero PCB126 Exposure. Front Endocrinol (Lausanne) 2021; 12:777831. [PMID: 34975753 PMCID: PMC8716916 DOI: 10.3389/fendo.2021.777831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Human environmental exposures to toxicants, such as polychlorinated biphenyls (PCBs), increase oxidative stress and disease susceptibility. Such exposures during pregnancy and/or nursing have been demonstrated to adversely affect offspring health outcomes. Nuclear factor erythroid-2-related factor 2 (Nrf2) regulates the antioxidant response and is involved in the detoxification of coplanar PCBs, like PCB126. The purpose of this study was to investigate glucose tolerance and body composition in PCB-exposed offspring expressing or lacking Nrf2. We hypothesized that offspring lacking Nrf2 expression would be more susceptible to the long-term health detriments associated with perinatal PCB exposure. During gestation, whole-body Nrf2 heterozygous (Het) and whole-body Nrf2 knockout (KO) mice were exposed to vehicle or PCB126. Shortly after birth, litters were cross-fostered to unexposed dams to prevent PCB exposure during nursing. Offspring were weaned, and their body weight, body composition, and glucose tolerance were recorded. At two months of age, PCB exposure resulted in a significant reduction in the average body weight of offspring born to Nrf2 Het dams (p < 0.001) that primarily arose from the decrease in average lean body mass in offspring (p < 0.001). There were no differences in average body weight of PCB-exposed offspring born to Nrf2 KO dams (p > 0.05), and this was because offspring of Nrf2 KO dams exposed to PCB126 during pregnancy experienced a significant elevation in fat mass (p = 0.002) that offset the significant reduction in average lean mass (p < 0.001). Regardless, the lack of Nrf2 expression in the offspring themselves did not enhance the differences observed. After an oral glucose challenge, PCB-exposed offspring exhibited significant impairments in glucose disposal and uptake (p < 0.05). Offspring born to Nrf2 Het dams exhibited these impairments at 30 min and 120 min, while offspring born to Nrf2 KO dams exhibited these impairments at zero, 15, 30, 60 and 120 min after the glucose challenge. Again, the interactions between offspring genotype and PCB exposure were not significant. These findings were largely consistent as the offspring reached four months of age and demonstrate that the lack of offspring Nrf2 expression does not worsen the metabolic derangements caused by in utero PCB exposure as we expected. Future directions will focus on understanding how the observed maternal Nrf2 genotypic differences can influence offspring metabolic responses to in utero PCB exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Kevin J. Pearson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
43
|
Dhar R, Rana MN, Zhang L, Li Y, Li N, Hu Z, Yan C, Wang X, Zheng X, Liu H, Cui H, Li Z, Tang H. Phosphodiesterase 4B is required for NLRP3 inflammasome activation by positive feedback with Nrf2 in the early phase of LPS- induced acute lung injury. Free Radic Biol Med 2021; 176:378-391. [PMID: 34644617 DOI: 10.1016/j.freeradbiomed.2021.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022]
Abstract
Acute lung injury (ALI) is associated with overproduction of inflammatory mediators in lung tissue. Previous studies have revealed that inflammation induces activation of phosphodiesterase 4B (PDE4B) accompanied by the production of inflammatory mediators, but the detailed mechanism remains unclear. Here, we focused on the NOD-, LRR- and pyrin domain-containing protein 3(NLRP3) inflammasome complexes to study the crosstalk between PDE4B and NF-E2-related factor 2 (Nrf2). We used global knockout PDE4B or Nrf2 mice to prepare LPS induced acute lung injury model by intratracheally administration, and LPS primed bone marrow-derived macrophages (BMDMs), following overexpression of PDE4B or Nrf2, luciferase activity analysis, and chIP-qPCR analyses. We found that deficiency of PDE4B could potently attenuate the lung histopathological changes, suppress the secretion of pro-inflammatory mediators such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, IL-18, and cleaved caspase-1, 8, and GSDMD accompanied with defective activation of the ROS/Nrf2/NLRP3. Meanwhile deficiency of Nrf2 showed the similar results. Furtherly, overexpression by PDE4B or Nrf2 plasmid transfection in MH-S cells could enhance the Nrf2 or PDE4B expression. Luciferase analysis suggested that Nrf2 activated PDE4B promoter activity, while PDE4B could increase Nrf2 substrate ARE activity in MH-S cells in dose dependent manners. ChIP-qPCR analyses showed that Nrf2 bound to the PDE4B promoter region at ̴ 1532 to ̴1199 position in macrophages. Altogether, deficiency of PDE4B inhibit the inflammasome activation and pyroptosis in LPS stimulated lung injury model and macrophages by regulating ROS/Nrf2/NLRP3 activation. The study provides new insight that PDE4B is required for NLRP3 inflammasome activation by positive feedback with Nrf2.
Collapse
Affiliation(s)
- Rana Dhar
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Mohammad Nasiruddin Rana
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lejun Zhang
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yajun Li
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ning Li
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhengqiang Hu
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chungunag Yan
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing 210009, China
| | - Xuefeng Wang
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, China
| | - Xuyang Zheng
- Department of Pediatrics, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Hongyun Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huashun Cui
- Department of Acupuncture and Moxibustion, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China.
| | - Zigang Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, China.
| | - Huifang Tang
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
44
|
A Role of Stress Sensor Nrf2 in Stimulating Thermogenesis and Energy Expenditure. Biomedicines 2021; 9:biomedicines9091196. [PMID: 34572382 PMCID: PMC8472024 DOI: 10.3390/biomedicines9091196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
During chronic cold stress, thermogenic adipocytes generate heat through uncoupling of mitochondrial respiration from ATP synthesis. Recent discovery of various dietary phytochemicals, endogenous metabolites, synthetic compounds, and their molecular targets for stimulating thermogenesis has provided promising strategies to treat or prevent obesity and its associated metabolic diseases. Nuclear factor E2 p45-related factor 2 (Nrf2) is a stress response protein that plays an important role in obesity and metabolisms. However, both Nrf2 activation and Nrf2 inhibition can suppress obesity and metabolic diseases. Here, we summarized and discussed conflicting findings of Nrf2 activities accounting for part of the variance in thermogenesis and energy metabolism. We also discussed the utility of Nrf2-activating mechanisms for their potential applications in stimulating energy expenditure to prevent obesity and improve metabolic deficits.
Collapse
|
45
|
Mateus Brandão LE, Espes D, Westholm JO, Martikainen T, Westerlund N, Lampola L, Popa A, Vogel H, Schürmann A, Dickson SL, Benedict C, Cedernaes J. Acute sleep loss alters circulating fibroblast growth factor 21 levels in humans: A randomised crossover trial. J Sleep Res 2021; 31:e13472. [PMID: 34476847 DOI: 10.1111/jsr.13472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/14/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022]
Abstract
The hormone fibroblast growth factor 21 (FGF21) modulates tissue metabolism and circulates at higher levels in metabolic conditions associated with chronic sleep-wake disruption, such as type 2 diabetes and obesity. In the present study, we investigated whether acute sleep loss impacts circulating levels of FGF21 and tissue-specific production, and response pathways linked to FGF21. A total of 15 healthy normal-weight young men participated in a randomised crossover study with two conditions, sleep loss versus an 8.5-hr sleep window. The evening before each intervention, fasting blood was collected. Fasting, post-intervention morning skeletal muscle and adipose tissue samples underwent quantitative polymerase chain reaction and DNA methylation analyses, and serum FGF21 levels were measured before and after an oral glucose tolerance test. Serum levels of FGF21 were higher after sleep loss compared with sleep, both under fasting conditions and following glucose intake (~27%-30%, p = 0.023). Fasting circulating levels of fibroblast activation protein, a protein which can degrade circulating FGF21, were not altered by sleep loss, whereas DNA methylation in the FGF21 promoter region increased only in adipose tissue. However, even though specifically the muscle exhibited transcriptional changes indicating adverse alterations to redox and metabolic homeostasis, no tissue-based changes were observed in expression of FGF21, its receptors, or selected signalling targets, in response to sleep loss. In summary, we found that acute sleep loss resulted in increased circulating levels of FGF21 in healthy young men, which may occur independent of a tissue-based stress response in metabolic peripheral tissues. Further studies may decipher whether changes in FGF21 signalling after sleep loss modulate metabolic outcomes associated with sleep or circadian disruption.
Collapse
Affiliation(s)
| | - Daniel Espes
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jakub Orzechowski Westholm
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | | | | | - Lauri Lampola
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Alexandru Popa
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, , The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Suzanne L Dickson
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | - Jonathan Cedernaes
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
46
|
Hartwick Bjorkman S, Oliveira Pereira R. The Interplay Between Mitochondrial Reactive Oxygen Species, Endoplasmic Reticulum Stress, and Nrf2 Signaling in Cardiometabolic Health. Antioxid Redox Signal 2021; 35:252-269. [PMID: 33599550 PMCID: PMC8262388 DOI: 10.1089/ars.2020.8220] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Mitochondria-derived reactive oxygen species (mtROS) are by-products of normal physiology that may disrupt cellular redox homeostasis on a regular basis. Nonetheless, failure to resolve sustained mitochondrial stress to mitigate high levels of mtROS might contribute to the etiology of numerous pathological conditions, such as obesity, insulin resistance, and cardiovascular disease (CVD). Recent Advances: Notably, recent studies have demonstrated that moderate mitochondrial stress might result in the induction of different stress response pathways that ultimately improve the organism's ability to deal with subsequent stress, a process termed mitohormesis. mtROS have been shown to play a key role in regulating this adaptation. Critical Issue: mtROS regulate the convergence of different signaling pathways that, when disturbed, might impair cardiometabolic health. Conversely, mtROS seem to be required to mediate activation of prosurvival pathways, contributing to improved cardiometabolic fitness. In the present review, we will primarily focus on the role of mtROS in the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway and examine the role of endoplasmic reticulum (ER) stress in coordinating the convergence of ER stress and oxidative stress signaling through activation of Nrf2 and activating transcription factor 4 (ATF4). Future Directions: The mechanisms underlying cardiometabolic protection in response to mitochondrial stress have only started to be investigated. Integrated understanding of how mtROS and ER stress cooperatively promote activation of prosurvival pathways might shed mechanistic insight into the role of mitohormesis in mediating cardiometabolic protection and might inform future therapeutic avenues for the treatment of metabolic diseases contributing to CVD. Antioxid. Redox Signal. 35, 252-269.
Collapse
Affiliation(s)
- Sarah Hartwick Bjorkman
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Renata Oliveira Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
47
|
Chang WC, Wu JSB, Shen SC. Vescalagin from Pink Wax Apple ( Syzygium samarangense (Blume) Merrill and Perry) Protects Pancreatic β-Cells against Methylglyoxal-Induced Inflammation in Rats. PLANTS 2021; 10:plants10071448. [PMID: 34371651 PMCID: PMC8309315 DOI: 10.3390/plants10071448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022]
Abstract
Methylglyoxal (MG) is the primary precursor of advanced glycation end products involved in the pathogenesis of inflammation and diabetes. A previous study in our laboratory found anti-inflammatory and anti-hyperglycemic effects of the polyphenol vescalagin (VES) in rats with MG-induced carbohydrate metabolic disorder. The present study further investigated the occurrence of inflammation in pancreatic β-cells in MG-induced diabetic rats and the mechanism by which VES prevents it. The results showed that VES downregulates the protein expression levels of advanced glycation end product receptors and CCAAT/enhancer binding protein-β and upregulates the protein expression levels of pancreatic duodenal homeobox-1, nuclear factor erythroid 2-related factor 2 and glyoxalase I from the pancreatic cells. The results also revealed that VES elevates glutathione and antioxidant enzyme contents and then downregulates c-Jun N-terminal kinase and p38 mitogen-activated protein kinases pathways to protect pancreatic β-cells in MG-administered rats.
Collapse
Affiliation(s)
- Wen-Chang Chang
- Department of Food Science, National Chiayi University, Chiayi 600355, Taiwan;
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - James Swi-Bea Wu
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Szu-Chuan Shen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei 10610, Taiwan
- Correspondence: ; Tel.: +886-2-77491437; Fax: +886-2-23639635
| |
Collapse
|
48
|
Korac B, Kalezic A, Pekovic-Vaughan V, Korac A, Jankovic A. Redox changes in obesity, metabolic syndrome, and diabetes. Redox Biol 2021; 42:101887. [PMID: 33579666 PMCID: PMC8113039 DOI: 10.1016/j.redox.2021.101887] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
"Life is an instantaneous encounter of circulating matter and flowing energy" (Jean Giaja, Serbian physiologist), is one of the most elegant definitions not only of life but the relationship of redox biology and metabolism. Their evolutionary liaison has created inseparable yet dynamic homeostasis in health, which, when disrupted, leads to disease. This interconnection is even more pertinent today, in an era of increasing metabolic diseases of epidemic proportions such as obesity, metabolic syndrome, and diabetes. Despite great advances in understanding the molecular mechanisms of redox and metabolic regulation, we face significant challenges in preventing, diagnosing, and treating metabolic diseases. The etiological association and temporal overlap of these syndromes present significant challenges for the discrimination of appropriate clinical biomarkers for diagnosis, treatment, and outcome prediction. These multifactorial, multiorgan metabolic syndromes with complex etiopathogenic mechanisms are accompanied by disturbed redox equilibrium in target tissues and circulation. Free radicals and reactive species are considered both a causal factor and a consequence of disease status. Thus, determining the subtypes and levels of free radicals and reactive species, oxidatively damaged biomolecules (lipids, proteins, and nucleic acids) and antioxidant defense components as well as redox-sensitive transcription factors and fluxes of redox-dependent metabolic pathways will help define existing and establish novel redox biomarkers for stratifying metabolic diseases. This review aims to discuss diverse redox/metabolic aspects in obesity, metabolic syndrome, and diabetes, with the imperative to help establish a platform for emerging and future redox-metabolic biomarkers research in precision medicine. Future research warrants detailed investigations into the status of redox biomarkers in healthy subjects and patients, including the use of emerging 'omic' profiling technologies (e.g., redox proteomes, lipidomes, metabolomes, and transcriptomes), taking into account the influence of lifestyle (diet, physical activity, sleep, work patterns) as well as circadian ~24h fluctuations in circulatory factors and metabolites.
Collapse
Affiliation(s)
- Bato Korac
- Department of Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia; Center for Electron Microscopy, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia.
| | - Andjelika Kalezic
- Department of Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, L7 8TX, Liverpool, UK
| | - Aleksandra Korac
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia.
| |
Collapse
|
49
|
Saxena A, Mathur N, Tiwari P, Mathur SK. Whole transcriptome RNA-seq reveals key regulatory factors involved in type 2 diabetes pathology in peripheral fat of Asian Indians. Sci Rep 2021; 11:10632. [PMID: 34017037 PMCID: PMC8137704 DOI: 10.1038/s41598-021-90148-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/06/2021] [Indexed: 01/04/2023] Open
Abstract
The prevalence of Type 2 Diabetes has reached an epidemic proportion particularly in south Asian countries. We have earlier shown that the anatomical fat distribution, termed 'thin fat phenotype' in this population indeed plays a major role for their T2D-predisposition it is indeed the sick fat or adiposopathy, which is the root cause of metabolic syndrome and diabetes and affects both-peripheral, as well as visceral adipose tissue compartments. In present study, we have attempted to unravel the altered regulatory mechanisms at the level of transcription factors, and miRNAs those may likely accounts to T2D pathophysiology in femoral subcutaneous adipose tissue. We prioritized transcription factors and protein kinases as likely upstream regulators of obtained differentially expressed genes in this RNA-seq study. An inferred network of these upstream regulators was then derived and the role of TFs and miRNAs in T2D pathophysiology was explored. In conclusions, this RNS-Seq study finds that peripheral subcutaneous adipose tissue among Asian Indians show pathology characterized by altered lipid, glucose and protein metabolism, adipogenesis defect and inflammation. A network of regulatory transcription factors, protein kinases and microRNAs have been imputed which converge on the process of adipogenesis. As the majority of these genes also showed altered expression in diabetics and some of them are also circulatory, therefore they deserve further investigation for potential clinical diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Aditya Saxena
- Department of Computer Engineering and Applications, Institute of Engineering and Technology, GLA University, Mathura, 281406, India
| | - Nitish Mathur
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur, 302004, India
| | - Pradeep Tiwari
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur, 302004, India
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, 303007, India
| | - Sandeep Kumar Mathur
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur, 302004, India.
| |
Collapse
|
50
|
Redox regulation of the insulin signalling pathway. Redox Biol 2021; 42:101964. [PMID: 33893069 PMCID: PMC8113030 DOI: 10.1016/j.redox.2021.101964] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
The peptide hormone insulin is a key regulator of energy metabolism, proliferation and survival. Binding of insulin to its receptor activates the PI3K/AKT signalling pathway, which mediates fundamental cellular responses. Oxidants, in particular H2O2, have been recognised as insulin-mimetics. Treatment of cells with insulin leads to increased intracellular H2O2 levels affecting the activity of downstream signalling components, thereby amplifying insulin-mediated signal transduction. Specific molecular targets of insulin-stimulated H2O2 include phosphatases and kinases, whose activity can be altered via redox modifications of critical cysteine residues. Over the past decades, several of these redox-sensitive cysteines have been identified and their impact on insulin signalling evaluated. The aim of this review is to summarise the current knowledge on the redox regulation of the insulin signalling pathway.
Collapse
|