1
|
Mobeen A, Joshi S, Fatima F, Bhargav A, Arif Y, Faruq M, Ramachandran S. NF-κB signaling is the major inflammatory pathway for inducing insulin resistance. 3 Biotech 2025; 15:47. [PMID: 39845928 PMCID: PMC11747027 DOI: 10.1007/s13205-024-04202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Insulin resistance is major factor in the development of metabolic syndrome and type 2 diabetes (T2D). We extracted 430 genes from literature associated with both insulin resistance and inflammation. The highly significant pathways were Toll-like receptor signaling, PI3K-Akt signaling, cytokine-cytokine receptor interaction, pathways in cancer, TNF signaling, and NF-kappa B signaling. Among the 297 common genes in all datasets of various T2D patients' tissues including blood, muscle, liver, pancreas, and adipose tissues, 71% and 60% of these genes were differentially expressed in pancreas (GSE25724) and liver (GSE15653), respectively. A total of 169 genes contain highly conserved motifs for various transcription factors involved in immune response, thereby suggesting coordinated expression. Through co-expression analysis, we obtained three modules. The respective modules had 78, 158, and 55 genes, and TRAF2, HMGA1, and RGS5 as hub genes. Further, we used the BioNSi pathways simulation tool and identified the following five KEGG pathways perturbed in four or more tissues, namely Toll-like receptor signaling pathway, RIG-1-like receptor signaling pathway, pathways in cancer, NF-kappa B signaling pathway, and insulin resistance pathway. The genes NFKBIA and IKBKB are common to all these five pathways. In addition, using the NF-κB computational activation model, we identified that the reversal of NF-κB constitutive activation through overexpression of NFKB1 (P50 homodimer), PPARG, PIAS3 could reduce insulin resistance by almost half of its original value. To conclude, co-expression studies, gene expression network simulation, and NF-κB computational modeling substantiate the causal role of NF-κB pathway in insulin resistance. These results taken together with other published evidence suggests that the TNF-TRAF2-IKBKB-NF-κB axis could be explored as a potential target in combination with available metabolic targets in the management of insulin resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04202-4.
Collapse
Affiliation(s)
- Ahmed Mobeen
- CSIR Institute of Genomics & Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
| | - Sweta Joshi
- Department of Food Technology, SIST, Jamia Hamdard, New Delhi, 110062 India
| | - Firdaus Fatima
- CSIR Institute of Genomics & Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Anasuya Bhargav
- CSIR Institute of Genomics & Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
| | - Yusra Arif
- Centre of Bioinformatics, Institute of Inter Disciplinary Studies, Allahabad University, Allahabad, Uttar Pradesh 211002 India
| | - Mohammed Faruq
- CSIR Institute of Genomics & Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Srinivasan Ramachandran
- CSIR Institute of Genomics & Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
- Manav Rachna International Institute of Research and Studies, Sector 43, Delhi–Surajkund Road, Faridabad, Haryana 121004 India
| |
Collapse
|
2
|
Jeong Y, Oh AR, Jung YH, Gi H, Kim YU, Kim K. Targeting E3 ubiquitin ligases and their adaptors as a therapeutic strategy for metabolic diseases. Exp Mol Med 2023; 55:2097-2104. [PMID: 37779139 PMCID: PMC10618535 DOI: 10.1038/s12276-023-01087-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2023] Open
Abstract
Posttranslational modification of proteins via ubiquitination determines their activation, translocation, dysregulation, or degradation. This process targets a large number of cellular proteins, affecting all biological pathways involved in the cell cycle, development, growth, and differentiation. Thus, aberrant regulation of ubiquitination is likely associated with several diseases, including various types of metabolic diseases. Among the ubiquitin enzymes, E3 ubiquitin ligases are regarded as the most influential ubiquitin enzymes due to their ability to selectively bind and recruit target substrates for ubiquitination. Continued research on the regulatory mechanisms of E3 ligases and their adaptors in metabolic diseases will further stimulate the discovery of new targets and accelerate the development of therapeutic options for metabolic diseases. In this review, based on recent discoveries, we summarize new insights into the roles of E3 ubiquitin ligases and their adaptors in the pathogenesis of metabolic diseases by highlighting recent evidence obtained in both human and animal model studies.
Collapse
Affiliation(s)
- Yelin Jeong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Ah-Reum Oh
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Young Hoon Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - HyunJoon Gi
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Young Un Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea.
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
3
|
Pan Q, Ai W, Chen Y, Kim DM, Shen Z, Yang W, Jiang W, Sun Y, Safe S, Guo S. Reciprocal Regulation of Hepatic TGF-β1 and Foxo1 Controls Gluconeogenesis and Energy Expenditure. Diabetes 2023; 72:1193-1206. [PMID: 37343276 PMCID: PMC10450826 DOI: 10.2337/db23-0180] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Obesity and insulin resistance are risk factors for the pathogenesis of type 2 diabetes (T2D). Here, we report that hepatic TGF-β1 expression positively correlates with obesity and insulin resistance in mice and humans. Hepatic TGF-β1 deficiency decreased blood glucose levels in lean mice and improved glucose and energy dysregulations in diet-induced obese (DIO) mice and diabetic mice. Conversely, overexpression of TGF-β1 in the liver exacerbated metabolic dysfunctions in DIO mice. Mechanistically, hepatic TGF-β1 and Foxo1 are reciprocally regulated: fasting or insulin resistance caused Foxo1 activation, increasing TGF-β1 expression, which, in turn, activated protein kinase A, stimulating Foxo1-S273 phosphorylation to promote Foxo1-mediated gluconeogenesis. Disruption of TGF-β1→Foxo1→TGF-β1 looping by deleting TGF-β1 receptor II in the liver or by blocking Foxo1-S273 phosphorylation ameliorated hyperglycemia and improved energy metabolism in adipose tissues. Taken together, our studies reveal that hepatic TGF-β1→Foxo1→TGF-β1 looping could be a potential therapeutic target for prevention and treatment of obesity and T2D. ARTICLE HIGHLIGHTS Hepatic TGF-β1 levels are increased in obese humans and mice. Hepatic TGF-β1 maintains glucose homeostasis in lean mice and causes glucose and energy dysregulations in obese and diabetic mice. Hepatic TGF-β1 exerts an autocrine effect to promote hepatic gluconeogenesis via cAMP-dependent protein kinase-mediated Foxo1 phosphorylation at serine 273, endocrine effects on brown adipose tissue action, and inguinal white adipose tissue browning (beige fat), causing energy imbalance in obese and insulin-resistant mice. TGF-β1→Foxo1→TGF-β1 looping in hepatocytes plays a critical role in controlling glucose and energy metabolism in health and disease.
Collapse
Affiliation(s)
- Quan Pan
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Weiqi Ai
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Yunmei Chen
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Da Mi Kim
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Zheng Shen
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Wanbao Yang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Wen Jiang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Yuxiang Sun
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX
| | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
4
|
Li S, Li Y, Wang X, Xia Z, Hu R. TRAF2 decreases lipid accumulation in hepatocytes under endoplasmic reticulum stress. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1511-1514. [PMID: 37403454 PMCID: PMC10520476 DOI: 10.3724/abbs.2023094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 07/06/2023] Open
Affiliation(s)
- Siqi Li
- School of MedicineGuizhou UniversityGuiyang550025China
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| | - Yang Li
- College of Life Science and TechnologyKey Laboratory of Molecular Biophysics of MOEand International Research Center for Sensory Biology and Technology of MOSTHuazhong University of Science and TechnologyWuhan430074China
| | - Xiaoxia Wang
- Shanghai Institute of ImmunologyDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Zhixiong Xia
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advance StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Ronggui Hu
- School of MedicineGuizhou UniversityGuiyang550025China
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advance StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| |
Collapse
|
5
|
Andreozzi F, Di Fatta C, Spiga R, Mannino GC, Mancuso E, Averta C, De Caro C, Tallarico M, Leo A, Citraro R, Russo E, De Sarro G, Sesti G. Glucagon induces the hepatic expression of inflammatory markers in vitro and in vivo. Diabetes Obes Metab 2023; 25:556-569. [PMID: 36305474 DOI: 10.1111/dom.14902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 02/02/2023]
Abstract
Glucagon exerts multiple hepatic actions, including stimulation of glycogenolysis/gluconeogenesis. The liver plays a crucial role in chronic inflammation by synthesizing proinflammatory molecules, which are thought to contribute to insulin resistance and hyperglycaemia. Whether glucagon affects hepatic expression of proinflammatory cytokines and acute-phase reactants is unknown. Herein, we report a positive relationship between fasting glucagon levels and circulating interleukin (IL)-1β (r = 0.252, p = .042), IL-6 (r = 0.230, p = .026), fibrinogen (r = 0.193, p = .031), complement component 3 (r = 0.227, p = .024) and high sensitivity C-reactive protein (r = 0.230, p = .012) in individuals without diabetes. In CD1 mice, 4-week continuous treatment with glucagon induced a significant increase in circulating IL-1β (p = .02), and IL-6 (p = .001), which was countered by the contingent administration of the glucagon receptor antagonist, GRA-II. Consistent with these results, we detected a significant increase in the hepatic activation of inflammatory pathways, such as expression of NLRP3 (p < .02), and the phosphorylation of nuclear factor kappaB (NF-κB; p < .02) and STAT3 (p < .01). In HepG2 cells, we found that glucagon dose-dependently stimulated the expression of IL-1β (p < .002), IL-6 (p < .002), fibrinogen (p < .01), complement component 3 (p < .01) and C-reactive protein (p < .01), stimulated the activation of NLRP3 inflammasome (p < .01) and caspase-1 (p < .05), induced the phosphorylation of TRAF2 (p < .01), NF-κB (p < .01) and STAT3 (p < .01). Preincubating cells with GRA-II inhibited the ability of glucagon to induce an inflammatory response. Using HepaRG cells, we confirmed the dose-dependent ability of glucagon to stimulate the expression of NLRP3, the phosphorylation of NF-κB and STAT3, in the absence of GRA-II. These results suggest that glucagon has proinflammatory effects that may participate in the pathogenesis of hyperglycaemia and unfavourable cardiometabolic risk profile.
Collapse
Affiliation(s)
- Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Concetta Di Fatta
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Rosangela Spiga
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Elettra Mancuso
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Carolina Averta
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Carmen De Caro
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Martina Tallarico
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome, Italy
| |
Collapse
|
6
|
Tao L, Ren X, Zhai W, Chen Z. Progress and Prospects of Non-Canonical NF-κB Signaling Pathway in the Regulation of Liver Diseases. Molecules 2022; 27:molecules27134275. [PMID: 35807520 PMCID: PMC9268066 DOI: 10.3390/molecules27134275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Non-canonical nuclear factor kappa B (NF-κB) signaling pathway regulates many physiological and pathological processes, including liver homeostasis and diseases. Recent studies demonstrate that non-canonical NF-κB signaling pathway plays an essential role in hyperglycemia, non-alcoholic fatty liver disease, alcoholic liver disease, liver regeneration, liver injury, autoimmune liver disease, viral hepatitis, and hepatocellular carcinoma. Small-molecule inhibitors targeting to non-canonical NF-κB signaling pathway have been developed and shown promising results in the treatment of liver injuries. Here, the recent advances and future prospects in understanding the roles of the non-canonical NF-κB signaling pathways in the regulation of liver diseases are discussed.
Collapse
Affiliation(s)
- Li Tao
- Emergency Department, 305 Hospital of People’s Liberation Army, Beijing 100017, China; (L.T.); (W.Z.)
| | - Xiaomeng Ren
- College of Pharmaceutical and Biology Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
- Correspondence: (X.R.); (Z.C.); Tel.: +86-45186402029 (Z.C.)
| | - Wenhui Zhai
- Emergency Department, 305 Hospital of People’s Liberation Army, Beijing 100017, China; (L.T.); (W.Z.)
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- Correspondence: (X.R.); (Z.C.); Tel.: +86-45186402029 (Z.C.)
| |
Collapse
|
7
|
Ma X, Rawnsley DR, Kovacs A, Islam M, Murphy JT, Zhao C, Kumari M, Foroughi L, Liu H, Qi K, Diwan A, Hyrc K, Evans S, Satoh T, French BA, Margulies KB, Javaheri A, Razani B, Mann DL, Mani K, Diwan A. TRAF2, an Innate Immune Sensor, Reciprocally Regulates Mitophagy and Inflammation to Maintain Cardiac Myocyte Homeostasis. JACC Basic Transl Sci 2022; 7:223-243. [PMID: 35411325 PMCID: PMC8993766 DOI: 10.1016/j.jacbts.2021.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022]
Abstract
Mitochondria are essential for cardiac myocyte function, but damaged mitochondria trigger cardiac myocyte death. Although mitophagy, a lysosomal degradative pathway to remove damaged mitochondria, is robustly active in cardiac myocytes in the unstressed heart, its mechanisms and physiological role remain poorly defined. We discovered a critical role for TRAF2, an innate immunity effector protein with E3 ubiquitin ligase activity, in facilitating physiological cardiac myocyte mitophagy in the adult heart, to prevent inflammation and cell death, and maintain myocardial homeostasis.
Collapse
Key Words
- AAV9, adeno-associated virus serotype 9
- ER, endoplasmic reticulum
- FS, fractional shortening
- GFP, green fluorescent protein
- IP, intraperitoneal
- LV, left ventricular
- MAM, mitochondria-associated membranes
- MCM, MerCreMer
- MEF, murine embryonic fibroblast
- PINK1, PTEN-induced kinase 1
- RFP, red fluorescent protein
- TLR9, toll-like receptor 9
- TRAF2
- TRAF2, tumor necrosis factor receptor-associated factor-2
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- cTnT, cardiac troponin T
- cell death
- inflammation
- mitophagy
Collapse
Affiliation(s)
- Xiucui Ma
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - David R. Rawnsley
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Attila Kovacs
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Moydul Islam
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John T. Murphy
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Chen Zhao
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Minu Kumari
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Layla Foroughi
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Haiyan Liu
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Kevin Qi
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aaradhya Diwan
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Krzysztof Hyrc
- Alafi Neuroimaging Laboratory, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sarah Evans
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Takashi Satoh
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Brent A. French
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Kenneth B. Margulies
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ali Javaheri
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Babak Razani
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Douglas L. Mann
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kartik Mani
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Abhinav Diwan
- Center for Cardiovascular Research and Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Gissler MC, Stachon P, Wolf D, Marchini T. The Role of Tumor Necrosis Factor Associated Factors (TRAFs) in Vascular Inflammation and Atherosclerosis. Front Cardiovasc Med 2022; 9:826630. [PMID: 35252400 PMCID: PMC8891542 DOI: 10.3389/fcvm.2022.826630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
TNF receptor associated factors (TRAFs) represent a family of cytoplasmic signaling adaptor proteins that regulate, bundle, and transduce inflammatory signals downstream of TNF- (TNF-Rs), interleukin (IL)-1-, Toll-like- (TLRs), and IL-17 receptors. TRAFs play a pivotal role in regulating cell survival and immune cell function and are fundamental regulators of acute and chronic inflammation. Lately, the inhibition of inflammation by anti-cytokine therapy has emerged as novel treatment strategy in patients with atherosclerosis. Likewise, growing evidence from preclinical experiments proposes TRAFs as potent modulators of inflammation in atherosclerosis and vascular inflammation. Yet, TRAFs show a highly complex interplay between different TRAF-family members with partially opposing and overlapping functions that are determined by the level of cellular expression, concomitant signaling events, and the context of the disease. Therefore, inhibition of specific TRAFs may be beneficial in one condition and harmful in others. Here, we carefully discuss the cellular expression and signaling events of TRAFs and evaluate their role in vascular inflammation and atherosclerosis. We also highlight metabolic effects of TRAFs and discuss the development of TRAF-based therapeutics in the future.
Collapse
Affiliation(s)
- Mark Colin Gissler
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter Stachon
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Dennis Wolf
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- *Correspondence: Dennis Wolf
| | - Timoteo Marchini
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
9
|
Ding Z, Zhao Y, Liu J, Ge W, Xu X, Wang S, Zhang J. Dietary Succinoglycan Riclin Improves Glycemia Control in Mice with Type 2 Diabetes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1819-1829. [PMID: 35132858 DOI: 10.1021/acs.jafc.1c06881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Riclin is a typical succinoglycan produced by an agrobacterium isolate. Our previous investigation has revealed that oral riclin restores the islet function in type 1 diabetic mice. However, whether dietary riclin improves glycemic control in type 2 diabetes (T2D) is unknown. Here, we found that dietary riclin (20 and 40 mg/kg) for 4 weeks significantly decreased fasting blood glucose (55 and 67%), improved insulin sensitivity, and decreased insulin resistance in high-fat-diet/streptozocin (HFD/STZ)-induced T2D. Riclin reduced the proportion of T helper 1 cell subsets in diabetic mice, alleviated pancreatic inflammation, and protected islet function. Moreover, dietary riclin enriched the diversity of gut microflora and restored the relative abundance of several bacterial genera in diabetes, including the strains of Clostridium, Parasutterella, Klebsiella, and Bacteroides. In db/db diabetic mice, riclin also improves glycemia control as observed in HFD/STZ-induced T2D mice. These data suggest that riclin has potential to be a functional food to treat T2D.
Collapse
Affiliation(s)
- Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Junhao Liu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Shiming Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
10
|
Ding K, Li X, Ren X, Ding N, Tao L, Dong X, Chen Z. GBP5 promotes liver injury and inflammation by inducing hepatocyte apoptosis. FASEB J 2021; 36:e22119. [PMID: 34958688 DOI: 10.1096/fj.202101448r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Liver injury is the first step in causing fibrosis, cirrhosis, and liver cancer, leading to mortality. However, the drivers of progressive liver injury are still incompletely defined. Here, we identify GBP5 as a major factor causing liver injury and inflammation. We show that the expression of GBP5 is abnormally elevated in the damaged liver, and its expression depends at least partially on the NF-κB-inducing kinase (NIK)/NF-κB2 signaling pathway. Knockout of Gbp5 ameliorates D-galactosamine/lipopolysaccharide (GalN/LPS)-induced liver injury and inflammation. Conversely, liver-specific overexpression of GBP5 induces liver injury and inflammation. Mechanistically, GBP5 induces hepatocyte apoptosis through the activation of both calpain/caspase 12/caspase 3 and TNFα/caspase 8/caspase 3 signaling pathways. Inhibition of either calpain activity or caspase 3 prevents GBP5-induced cell death. Our data demonstrate that GBP5 expression is induced by toxins or the NIK signaling pathway, which promotes both extrinsic and intrinsic apoptosis signaling pathways and further induces liver injury, providing a novel drug target for the treatment of liver injury and inflammation.
Collapse
Affiliation(s)
- Kaixin Ding
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiaomeng Ren
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, China.,Shenyang University of Chemical Technology, Shenyang, China
| | - Na Ding
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Li Tao
- 305 Hospital of People's Liberation Army, Beijing, China
| | - Xue Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
11
|
Iguchi T, Goto K, Watanabe K, Hashimoto K, Suzuki T, Kishino H, Fujimoto K, Mori K. Fluoroquinolones suppress gluconeogenesis by inhibiting fructose 1,6-bisphosphatase in primary monkey hepatocytes. Toxicol In Vitro 2020; 65:104786. [PMID: 32004540 DOI: 10.1016/j.tiv.2020.104786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/08/2020] [Accepted: 01/26/2020] [Indexed: 11/17/2022]
Abstract
Dysglycemia is one of the most serious adverse events associated with the clinical use of certain fluoroquinolones. The purpose of this study was to investigate the effects of the representative fluoroquinolones moxifloxacin and gatifloxacin on hepatic gluconeogenesis using primary monkey hepatocytes. Glucose production was induced after the cells were incubated for 4 h with 10 mM sodium lactate and 1 mM sodium pyruvate as gluconeogenic substrates. Under these conditions, moxifloxacin and gatifloxacin dose-dependently suppressed gluconeogenesis at concentrations of 100 μM or higher. Transcriptome analysis of rate-limiting enzymes involved in hepatic gluconeogenesis revealed that moxifloxacin and gatifloxacin at a concentration of 1000 μM did not affect the expression of key gluconeogenic enzymes such as phosphoenolpyruvate carboxykinase, glucose 6-phosphatase, and fructose 1,6-bisphosphatase. Furthermore, metabolome analysis, in vitro glucose production assay using additional gluconeogenic substrates, and fructose 1,6-bisphosphatase assay using the cell extracts showed that fluoroquinolones enzymatically suppressed hepatic gluconeogenesis by inhibiting fructose 1,6-bisphosphatase. These inhibitory effects may involve in the clinically relevant dysglycemia associated with fluoroquinolones in human.
Collapse
Affiliation(s)
- Takuma Iguchi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Koichi Goto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Kyoko Watanabe
- Biomarker & Translational Research Department, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-0005, Japan.
| | - Kazuyuki Hashimoto
- Biomarker & Translational Research Department, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-0005, Japan.
| | - Takami Suzuki
- Oncology Research Laboratories I, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-0005, Japan.
| | - Hiroyuki Kishino
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Kazunori Fujimoto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Kazuhiko Mori
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| |
Collapse
|
12
|
Hu LF, Feng J, Dai X, Sun Y, Xiong M, Lai L, Zhong S, Yi C, Chen G, Li H, Yang Q, Kuang Q, Long T, Zhan J, Tang T, Ge C, Tan J, Xu M. Oral flavonoid fisetin treatment protects against prolonged high-fat-diet-induced cardiac dysfunction by regulation of multicombined signaling. J Nutr Biochem 2019; 77:108253. [PMID: 31835147 DOI: 10.1016/j.jnutbio.2019.108253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 08/03/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Excess high-fat diet (HFD) intake predisposes the occurrence of obesity-associated heart injury, but the mechanism is elusive. Fisetin (FIS), as a natural flavonoid, has potential activities to alleviate obesity-induced metabolic syndrome. However, the underlying molecular mechanisms of FIS against HFD-induced cardiac injury remain unclear. The present study was to explore the protective effects of FIS on cardiac dysfunction in HFD-fed mice. We found that FIS alleviated HFD-triggered metabolic disorder by reducing body weight, fasting blood glucose and insulin levels, and insulin resistance. Moreover, FIS supplements significantly alleviated dyslipidemia in both mouse hearts and cardiomyocytes stimulated by metabolic stress. FIS treatment abolished HFD-induced inflammatory response in heart tissues through suppressing TNF receptor-1/TNF receptor-associated factor-2 (Tnfr-1/Traf-2) signaling. Furthermore, FIS induced a strong reduction in the expression of fibrosis-related genes, contributing to the inhibition of fibrosis by inactivating transforming growth factor (Tgf)-β1/Smads/Erk1/2 signaling. Collectively, these results demonstrated that FIS could be a promising therapeutic strategy for the treatment of obesity-associated cardiac injury.
Collapse
Affiliation(s)
- Lin-Feng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jing Feng
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Yan Sun
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Mingxin Xiong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Lili Lai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Shaoyu Zhong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Chao Yi
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Geng Chen
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Huanhuan Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Qiufeng Yang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Tingting Long
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jianxia Zhan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Tingting Tang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| |
Collapse
|
13
|
Jia L, Jiang Y, Li X, Chen Z. Purβ promotes hepatic glucose production by increasing Adcy6 transcription. Mol Metab 2019; 31:85-97. [PMID: 31918924 PMCID: PMC6920194 DOI: 10.1016/j.molmet.2019.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/03/2019] [Accepted: 11/10/2019] [Indexed: 02/07/2023] Open
Abstract
Objective Enhanced glucagon signaling and hepatic glucose production (HGP) can account for hyperglycemia in patients with obesity and type 2 diabetes. However, the detailed molecular mechanisms underlying the enhanced HGP in these patients are not fully understood. Here, we identify Purβ as a positive regulator of HGP and study its molecular mechanisms in the regulation of HGP both in vivo and in vitro. Methods Adenovirus-mediated knockdown or overexpression of Purβ was performed in either primary hepatocytes or the livers of db/db mice. Glucose metabolism, insulin sensitivity, and HGP were determined by glucose, insulin, and lactate tolerance tests, respectively. Purβ/ADCY6 protein levels, glucagon signaling (p-CREB/CREB), and insulin signaling (p-Akt/Akt) were measured by immunoblotting. Gene expression was measured by RNA-seq and real-time quantitative polymerase chain reaction. Luciferase reporter and chromatin immunoprecipitation assays were used to study the interaction between Purβ and the Adcy6 promoter. Results Purβ was abnormally elevated in obese mice and was also increased under fasting conditions or via the glucagon signaling pathway, which promoted HGP by increasing Adcy6 expression. Liver-specific knockdown of Purβ in db/db mice significantly ameliorated hyperglycemia and glucose intolerance by suppressing the glucagon/ADCY6/cAMP/PKA/CREB signaling pathway. Consistent with this observation, the knockdown of Purβ also inhibited glucose production in isolated primary hepatocytes by inhibiting the glucagon/ADCY6/cAMP/PKA/CREB signaling pathway, whereas the overexpression of Purβ promoted glucose production by activating this signaling pathway. Mechanistically, Purβ directly binds to the promoter of the Adcy6 gene and thereby promotes its transcription. Conclusions Taken together, these results illustrate a new model in which Purβ functions to regulate the glucagon/ADCY6/cAMP/PKA/CREB signaling pathway to help maintain glucose homeostasis. Purβ was identified as a novel positive regulator of hepatic glucose production. Purβ directly binds to the promoter of the Adcy6 gene, inducing its expression and activating the cAMP/PKA/CREB signaling pathway. Liver-specific knockdown of Purβ in db/db mice significantly ameliorates hyperglycemia and glucose intolerance by suppressing the ADCY6/cAMP/PKA/CREB signaling pathway.
Collapse
Affiliation(s)
- Linna Jia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China; HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yunfeng Jiang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
14
|
Xu M, Liu PP, Li H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol Rev 2019; 99:893-948. [PMID: 30565509 DOI: 10.1152/physrev.00065.2017] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is an evolutionarily conserved system that senses and defends against infection and irritation. Innate immune signaling is a complex cascade that quickly recognizes infectious threats through multiple germline-encoded cell surface or cytoplasmic receptors and transmits signals for the deployment of proper countermeasures through adaptors, kinases, and transcription factors, resulting in the production of cytokines. As the first response of the innate immune system to pathogenic signals, inflammatory responses must be rapid and specific to establish a physical barrier against the spread of infection and must subsequently be terminated once the pathogens have been cleared. Long-lasting and low-grade chronic inflammation is a distinguishing feature of type 2 diabetes and cardiovascular diseases, which are currently major public health problems. Cardiometabolic stress-induced inflammatory responses activate innate immune signaling, which directly contributes to the development of cardiometabolic diseases. Additionally, although the innate immune elements are highly conserved in higher-order jawed vertebrates, lower-grade jawless vertebrates lack several transcription factors and inflammatory cytokine genes downstream of the Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) pathways, suggesting that innate immune signaling components may additionally function in an immune-independent way. Notably, recent studies from our group and others have revealed that innate immune signaling can function as a vital regulator of cardiometabolic homeostasis independent of its immune function. Therefore, further investigation of innate immune signaling in cardiometabolic systems may facilitate the discovery of new strategies to manage the initiation and progression of cardiometabolic disorders, leading to better treatments for these diseases. In this review, we summarize the current progress in innate immune signaling studies and the regulatory function of innate immunity in cardiometabolic diseases. Notably, we highlight the immune-independent effects of innate immune signaling components on the development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Peter P Liu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| |
Collapse
|
15
|
Zeng X, Yang J, Hu O, Huang J, Ran L, Chen M, Zhang Y, Zhou X, Zhu J, Zhang Q, Yi L, Mi M. Dihydromyricetin Ameliorates Nonalcoholic Fatty Liver Disease by Improving Mitochondrial Respiratory Capacity and Redox Homeostasis Through Modulation of SIRT3 Signaling. Antioxid Redox Signal 2019; 30:163-183. [PMID: 29310441 DOI: 10.1089/ars.2017.7172] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: Our previous clinical trial indicated that the flavonoid dihydromyricetin (DHM) could improve hepatic steatosis in patients with nonalcoholic fatty liver disease (NAFLD), altough the potential mechanisms of these effects remained elusive. Here, we investigated the hepatoprotective role of DHM on high-fat diet (HFD)-induced NAFLD. Results: DHM supplementation could effectively ameliorate the development of NAFLD by inhibiting hepatic lipid accumulation both in HFD-fed wild-type mice and in palmitic acid-induced hepatocytes. We reveal for the first time that mitochondrial dysfunction characterized by ATP depletion and augmented oxidative stress could be reversed by DHM treatment. Moreover, DHM enhanced the mitochondrial respiratory capacity by increasing the expression and enzymatic activities of mitochondrial complexes and increased mitochondrial reactive oxygen species scavenging by restoring manganese superoxide dismutase (SOD2) activity. Interestingly, the benefits of DHM were abrogated in SIRT3 knockout (SIRT3KO) mice and in hepatocytes transfected with SIRT3 siRNA or treated with an SIRT3-specific inhibitor. We further showed that DHM could increase SIRT3 expression by activating the adenosine monophosphate-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC1α)/estrogen-related receptor-α (ERRα) signaling pathway. Innovation: Our work indicates that SIRT3 plays a critical role in the DHM-mediated beneficial effects that include ameliorating mitochondrial dysfunction and oxidative stress in a nutritional NAFLD model both in vivo and in vitro.Conclusion: Our results suggest that DHM prevents NAFLD by improving mitochondrial respiratory capacity and redox homeostasis in hepatocytes through a SIRT3-dependent mechanism. These results could provide a foundation to identify new DHM-based preventive and therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Xianglong Zeng
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Jining Yang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Ou Hu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Juan Huang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Li Ran
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Mengting Chen
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Yu Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Xi Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Jundong Zhu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Qianyong Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University , Chongqing, People's Republic of China
| |
Collapse
|
16
|
Wu Y, Pan Q, Yan H, Zhang K, Guo X, Xu Z, Yang W, Qi Y, Guo CA, Hornsby C, Zhang L, Zhou A, Li L, Chen Y, Zhang W, Sun Y, Zheng H, Wondisford F, He L, Guo S. Novel Mechanism of Foxo1 Phosphorylation in Glucagon Signaling in Control of Glucose Homeostasis. Diabetes 2018; 67:2167-2182. [PMID: 30201683 PMCID: PMC6198346 DOI: 10.2337/db18-0674] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022]
Abstract
Dysregulation of hepatic glucose production (HGP) serves as a major underlying mechanism for the pathogenesis of type 2 diabetes. The pancreatic hormone glucagon increases and insulin suppresses HGP, controlling blood glucose homeostasis. The forkhead transcription factor Foxo1 promotes HGP through increasing expression of genes encoding the rate-limiting enzymes responsible for gluconeogenesis. We previously established that insulin suppresses Foxo1 by Akt-mediated phosphorylation of Foxo1 at Ser256 in human hepatocytes. In this study, we found a novel Foxo1 regulatory mechanism by glucagon, which promotes Foxo1 nuclear translocation and stability via cAMP- and protein kinase A-dependent phosphorylation of Foxo1 at Ser276 Replacing Foxo1-S276 with alanine (A) or aspartate (D) to block or mimic phosphorylation, respectively, markedly regulates Foxo1 stability and nuclear localization in human hepatocytes. To establish in vivo function of Foxo1-Ser276 phosphorylation in glucose metabolism, we generated Foxo1-S273A and Foxo1-S273D knock-in (KI) mice. The KI mice displayed impaired blood glucose homeostasis, as well as the basal and glucagon-mediated HGP in hepatocytes. Thus, Foxo1-Ser276 is a new target site identified in the control of Foxo1 bioactivity and associated metabolic diseases.
Collapse
Affiliation(s)
- Yuxin Wu
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Quan Pan
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Hui Yan
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Kebin Zhang
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Xiaoqin Guo
- Department of Endocrinology, Third Military Medical University, Chongqing, China
- Division of Endocrinology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Zihui Xu
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Wanbao Yang
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Yajuan Qi
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Cathy A Guo
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Caitlyn Hornsby
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Lin Zhang
- Department of Chemistry, Cleveland State University, Cleveland, OH
| | - Aimin Zhou
- Department of Chemistry, Cleveland State University, Cleveland, OH
| | - Ling Li
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Yunmei Chen
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Weiping Zhang
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Yuxiang Sun
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Hongting Zheng
- Department of Endocrinology, Third Military Medical University, Chongqing, China
| | - Fred Wondisford
- Division of Endocrinology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Ling He
- Division of Endocrinology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Shaodong Guo
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
17
|
Cai J, Xu M, Zhang X, Li H. Innate Immune Signaling in Nonalcoholic Fatty Liver Disease and Cardiovascular Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:153-184. [PMID: 30230967 DOI: 10.1146/annurev-pathmechdis-012418-013003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The physiological significance of innate immune signaling lies primarily in its role in host defense against invading pathogens. It is becoming increasingly clear that innate immune signaling also modulates the development of metabolic diseases, especially nonalcoholic fatty liver disease and cardiovascular diseases, which are characterized by chronic, low-grade inflammation due to a disarrangement of innate immune signaling. Notably, recent studies indicate that in addition to regulating canonical innate immune-mediated inflammatory responses (or immune-dependent signaling-induced responses), molecules of the innate immune system regulate pathophysiological responses in multiple organs during metabolic disturbances (termed immune-independent signaling-induced responses), including the disruption of metabolic homeostasis, tissue repair, and cell survival. In addition, emerging evidence from the study of immunometabolism indicates that the systemic metabolic status may have profound effects on cellular immune function and phenotypes through the alteration of cell-intrinsic metabolism. We summarize how the innate immune system interacts with metabolic disturbances to trigger immune-dependent and immune-independent pathogenesis in the context of nonalcoholic fatty liver disease, as representative of metabolic diseases, and cardiovascular diseases.
Collapse
Affiliation(s)
- Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; .,Institute of Model Animals of Wuhan University, Wuhan 430072, China.,Basic Medical School, Wuhan University, Wuhan 430071, China.,Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; .,Institute of Model Animals of Wuhan University, Wuhan 430072, China.,Basic Medical School, Wuhan University, Wuhan 430071, China
| | - Xiaojing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; .,Institute of Model Animals of Wuhan University, Wuhan 430072, China.,Basic Medical School, Wuhan University, Wuhan 430071, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; .,Institute of Model Animals of Wuhan University, Wuhan 430072, China.,Basic Medical School, Wuhan University, Wuhan 430071, China
| |
Collapse
|
18
|
Aarts SABM, Reiche ME, den Toom M, Beckers L, Gijbels MJJ, Gerdes N, de Winther MPJ, Lutgens E. Macrophage CD40 plays a minor role in obesity-induced metabolic dysfunction. PLoS One 2018; 13:e0202150. [PMID: 30096208 PMCID: PMC6086432 DOI: 10.1371/journal.pone.0202150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Obesity is a low-grade inflammatory disease that increases the risk for metabolic disorders. CD40-CD40L signaling plays a central role in obesity-induced inflammation. Genetic deficiency of CD40L in diet-induced obesity (DIO) ameliorates adipose tissue inflammation, hepatic steatosis and increases insulin sensitivity. Unexpectedly, absence of CD40 worsened insulin resistance and caused excessive adipose tissue inflammation and hepatosteatosis. To investigate whether deficiency of macrophage CD40 is responsible for the phenotype observed in the CD40-/- mice, we generated CD40flflLysMcre and fed them a standard (SFD) and 54% high fat obesogenic diet (HFD) for 13 weeks. No differences in body weight, adipose tissue weight, adipocyte size, plasma cholesterol or triglyceride levels could be observed between CD40flflLysMcre and wild type (WT) mice. CD40flflLysMcre displayed no changes in glucose tolerance or insulin resistance, but had higher plasma adiponectin levels when fed a SFD. Liver weights, liver cholesterol and triglyceride levels, as well as the degree of hepatosteatosis were not affected by absence of macrophage CD40. CD40flflLysMcre mice displayed a minor increase in adipose tissue leukocyte infiltration on SFD and HFD, which did not result in differences in adipose tissue cytokine levels. We here show that loss of macrophage CD40 signaling does not affect obesity induced metabolic dysregulation and indicates that CD40-deficiency on other cell-types than the macrophage is responsible for the metabolic dysregulation, adipose tissue inflammation and hepatosteatosis that are observed in CD40-/- mice.
Collapse
Affiliation(s)
- Suzanne A B M Aarts
- Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Department of Medical Biochemistry, Amsterdam, The Netherlands
| | - Myrthe E Reiche
- Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Department of Medical Biochemistry, Amsterdam, The Netherlands
| | - Myrthe den Toom
- Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Department of Medical Biochemistry, Amsterdam, The Netherlands
| | - Linda Beckers
- Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Department of Medical Biochemistry, Amsterdam, The Netherlands
| | - Marion J J Gijbels
- Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Department of Medical Biochemistry, Amsterdam, The Netherlands.,Department of Biochemistry, University of Maastricht, Maastricht, The Netherlands
| | - Norbert Gerdes
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University (LMU), Munich, Germany.,Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Menno P J de Winther
- Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Department of Medical Biochemistry, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University (LMU), Munich, Germany
| | - Esther Lutgens
- Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Department of Medical Biochemistry, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University (LMU), Munich, Germany
| |
Collapse
|
19
|
Adak M, Das D, Niyogi S, Nagalakshmi C, Ray D, Chakrabarti P. Inflammasome activation in Kupffer cells confers a protective response in nonalcoholic steatohepatitis through pigment epithelium-derived factor expression. FASEB J 2018; 32:fj201800190. [PMID: 29897812 DOI: 10.1096/fj.201800190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Hepatocellular death or ballooning distinguishes the transition of simple steatosis to irreversible nonalcoholic steatohepatitis (NASH). However, the molecular mechanism of hepatocellular apoptosis in NASH is largely unclear, and discovery of endogenous mediators that could prevent or inhibit cell death is thereby critical in intercepting NASH progression. Here, we identified pigment epithelium-derived factor (PEDF), a secreted, moonlighting hepatokine as 1 hepatoprotective agent in mice with diet-induced NASH. Hepatic PEDF expression is induced by IL-1β, which is derived from inflammasome activation in liver-resident Kupffer cells, an effect that is negatively regulated by TNF-α and predominantly secreted by monocyte-derived, recruited, hepatic macrophages. Mechanistically, reciprocal and opposing roles for IL-1β and TNF-α in PEDF expression are mediated by differential activation of NF-κB. Although augmented TNF-α production leads to temporal reduction of PEDF expression in NASH, PEDF conversely abrogates TNF-α-mediated hepatocyte death by modulating the extrinsic apoptosis pathway. Thus, our study highlights PEDF as a functionally important hepatokine in NASH progression by linking inflammasome activation and hepatocellular death.-Adak, M., Das, D., Niyogi, S., Nagalakshmi, C., Ray, D., Chakrabarti, P. Inflammasome activation in Kupffer cells confers a protective response in nonalcoholic steatohepatitis through pigment epithelium-derived factor expression.
Collapse
Affiliation(s)
- Moumita Adak
- Division of Cell Biology and Physiology, Council of Scientific and Industrial Research (CSIR), Indian Institute of Chemical Biology, Kolkata, India
| | - Debajyoti Das
- Division of Cell Biology and Physiology, Council of Scientific and Industrial Research (CSIR), Indian Institute of Chemical Biology, Kolkata, India
| | - Sougata Niyogi
- Division of Cell Biology and Physiology, Council of Scientific and Industrial Research (CSIR), Indian Institute of Chemical Biology, Kolkata, India
| | - Challa Nagalakshmi
- National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Dipika Ray
- Division of Cell Biology and Physiology, Council of Scientific and Industrial Research (CSIR), Indian Institute of Chemical Biology, Kolkata, India
| | - Partha Chakrabarti
- Division of Cell Biology and Physiology, Council of Scientific and Industrial Research (CSIR), Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
20
|
Abstract
Heart diseases are major causes of mortality. Cardiac hypertrophy, myocardial infarction (MI), viral cardiomyopathy, ischemic and reperfusion (I/R) heart injury finally lead to heart failure and death. Insulin and IGF1 signal pathways play key roles in normal cardiomyocyte growth and physiological cardiac hypertrophy while inflammatory signal pathway is associated with pathological cardiac hypertrophy, MI, viral cardiomyopathy, I/R heart injury, and heart failure. Adapter proteins are the major family proteins, which transduce signals from insulin, IGF1, or cytokine receptors to the downstream pathways and have been shown to regulate variety of heart diseases. Here, we summarized the recent advances in understanding the physiological and pathological roles of adapter proteins in heart failure.
Collapse
Affiliation(s)
- Li Tao
- Cardiovascular Center, 305 Hospital of People's Liberation Army, Beijing, 100017, China
| | - Linna Jia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Yuntian Li
- Cardiovascular Center, 305 Hospital of People's Liberation Army, Beijing, 100017, China
| | - Chengyun Song
- Cardiovascular Center, 305 Hospital of People's Liberation Army, Beijing, 100017, China.
| | - Zheng Chen
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, 130024, Jilin, China.
| |
Collapse
|
21
|
Lalani AI, Zhu S, Gokhale S, Jin J, Xie P. TRAF molecules in inflammation and inflammatory diseases. ACTA ACUST UNITED AC 2017. [PMID: 29527458 DOI: 10.1007/s40495-017-0117-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose of Review This review presents an overview of the current knowledge of TRAF molecules in inflammation with an emphasis on available human evidence and direct in vivo evidence of mouse models that demonstrate the contribution of TRAF molecules in the pathogenesis of inflammatory diseases. Recent Findings The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic proteins was initially identified as signaling adaptors that bind directly to the intracellular domains of receptors of the TNF-R superfamily. It is now appreciated that TRAF molecules are widely employed in signaling by a variety of adaptive and innate immune receptors as well as cytokine receptors. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Most of these signaling pathways have been linked to inflammation, and therefore TRAF molecules were expected to regulate inflammation and inflammatory responses since their discovery in 1990s. However, direct in vivo evidence of TRAFs in inflammation and especially in inflammatory diseases had been lacking for many years, partly due to the difficulty imposed by early lethality of TRAF2-/-, TRAF3-/-, and TRAF6-/- mice. With the creation of conditional knockout and lineage-specific transgenic mice of different TRAF molecules, our understanding about TRAFs in inflammation and inflammatory responses has rapidly advanced during the past decade. Summary Increasing evidence indicates that TRAF molecules are versatile and indispensable regulators of inflammation and inflammatory responses and that aberrant expression or function of TRAFs contributes to the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Almin I Lalani
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Department of Pharmacology, Anhui Medical University, Meishan Road 81st, Shushan District, Hefei, Anhui province, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Member, Rutgers Cancer Institute of New Jersey
| |
Collapse
|
22
|
Zhang Y, Huang Z, Li H. Insights into innate immune signalling in controlling cardiac remodelling. Cardiovasc Res 2017; 113:1538-1550. [PMID: 29088374 DOI: 10.1093/cvr/cvx130] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/29/2017] [Indexed: 01/03/2025] Open
Abstract
Canonical innate immune signalling involves complex cascades: multiple germline-encoded pattern recognition receptors rapidly recognize pathogen-associated or damage-associated molecular patterns to induce the production of cytokines, which bind to their corresponding receptors to orchestrate subsequent host defense phases. Inflammation is a healthy response to pathogenic signals, which are typically rapid and specific, and they terminate once the threat has passed. However, excessive activation or suppression of innate immune or inflammatory responses can lead to considerable human suffering, such as cardiac remodelling. Interestingly, recent studies have revealed that innate immune molecules in the parenchymal cells of the heart influence cardiac homeostasis not only by directly regulating innate immune responses but also through reprogrammed signalling pathways, which are independent of conventional innate immune signalling. Elucidating 'innate immune signalling reprogramming' events will help us better understand the functions of innate immune molecules and, moreover, the pathogenesis of cardiac diseases.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang District, Wuhan 430060, People's Republic of China
- Institute of Model Animal of Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
- Medical Research Institute, School of Medicine, Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
| | - Zan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang District, Wuhan 430060, People's Republic of China
- Institute of Model Animal of Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
- Medical Research Institute, School of Medicine, Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
- College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang District, Wuhan 430060, People's Republic of China
- Institute of Model Animal of Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
- Medical Research Institute, School of Medicine, Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
| |
Collapse
|
23
|
Zhang Y, Zhang XJ, Wang PX, Zhang P, Li H. Reprogramming Innate Immune Signaling in Cardiometabolic Disease. Hypertension 2017; 69:747-760. [PMID: 28320852 DOI: 10.1161/hypertensionaha.116.08192] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yaxing Zhang
- From the Department of Cardiology, Renmin Hospital (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), School of Basic Medical Sciences (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Institute of Model Animal (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), and Medical Research Institute, School of Medicine (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Wuhan University, P.R. China
| | - Xiao-Jing Zhang
- From the Department of Cardiology, Renmin Hospital (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), School of Basic Medical Sciences (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Institute of Model Animal (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), and Medical Research Institute, School of Medicine (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Wuhan University, P.R. China
| | - Pi-Xiao Wang
- From the Department of Cardiology, Renmin Hospital (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), School of Basic Medical Sciences (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Institute of Model Animal (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), and Medical Research Institute, School of Medicine (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Wuhan University, P.R. China
| | - Peng Zhang
- From the Department of Cardiology, Renmin Hospital (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), School of Basic Medical Sciences (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Institute of Model Animal (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), and Medical Research Institute, School of Medicine (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Wuhan University, P.R. China
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), School of Basic Medical Sciences (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Institute of Model Animal (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), and Medical Research Institute, School of Medicine (Y.Z., X.-J.Z., P.-X.W., P.Z., H.L.), Wuhan University, P.R. China.
| |
Collapse
|
24
|
The innate immune signaling in cancer and cardiometabolic diseases: Friends or foes? Cancer Lett 2017; 387:46-60. [DOI: 10.1016/j.canlet.2016.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/03/2016] [Accepted: 06/05/2016] [Indexed: 12/16/2022]
|
25
|
Ren X, Li X, Jia L, Chen D, Hou H, Rui L, Zhao Y, Chen Z. A small-molecule inhibitor of NF-κB-inducing kinase (NIK) protects liver from toxin-induced inflammation, oxidative stress, and injury. FASEB J 2017; 31:711-718. [PMID: 27871061 DOI: 10.1096/fj.201600840r] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/24/2016] [Indexed: 11/11/2022]
Abstract
Potent and selective chemical probes are valuable tools for discovery of novel treatments for human diseases. NF-κB-inducing kinase (NIK) is a key trigger in the development of liver injury and fibrosis. Whether inhibition of NIK activity by chemical probes ameliorates liver inflammation and injury is largely unknown. In this study, a small-molecule inhibitor of NIK, B022, was found to be a potent and selective chemical probe for liver inflammation and injury. B022 inhibited the NIK signaling pathway, including NIK-induced p100-to-p52 processing and inflammatory gene expression, both in vitro and in vivo Furthermore, in vivo administration of B022 protected against not only NIK but also CCl4-induced liver inflammation and injury. Our data suggest that inhibition of NIK is a novel strategy for treatment of liver inflammation, oxidative stress, and injury.-Ren, X., Li, X., Jia, L., Chen, D., Hou, H., Rui, L., Zhao, Y., Chen, Z. A small-molecule inhibitor of NF-κB-inducing kinase (NIK) protects liver from toxin-induced inflammation, oxidative stress, and injury.
Collapse
Affiliation(s)
- Xiaomeng Ren
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Xinzhi Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Linna Jia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Deheng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Meteria Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hai Hou
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; and
| | - Liangyou Rui
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yujun Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Meteria Medica, Chinese Academy of Sciences, Shanghai, China;
| | - Zheng Chen
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China;
| |
Collapse
|
26
|
Zheng T, Hao X, Wang Q, Chen L, Jin S, Bian F. Entada phaseoloides extract suppresses hepatic gluconeogenesis via activation of the AMPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:691-699. [PMID: 27742409 DOI: 10.1016/j.jep.2016.10.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/09/2016] [Accepted: 10/10/2016] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seed of Entada phaseoloides (L.) Merr. (Entada phaseoloides) has been long used as a folk medicine for the treatment of Diabetes mellitus by Chinese ethnic minorities. Recent reports have demonstrated that total saponins from Entada phaseoloides (TSEP) could reduce fasting blood glucose in type 2 diabetic rats. However, the mechanism has not been fully elucidated. The aim of this study was to explore the underlying mechanisms of TSEP on type 2 Diabetes mellitus (T2DM). MATERIALS AND METHODS Primary mouse hepatocytes and HepG2 cells were used to investigate the effects of TSEP on gluconeogenesis. After treatment with TSEP, glucose production, genes expression levels of Glucose-6-phosphatase (G6pase) and Phosphoenoylpyruvate carboxykinase (Pepck) were detected. The efficacy and underlying mechanism of TSEP on AMP-activated protein kinase (AMPK) signaling pathway were determinated. RESULTS TSEP significantly inhibited glucose production and the gluconeogenic gene expression. Treatment with TSEP elevated the phosphorylation of AMPK, which in turn promoted the phosphorylation of acetyl coenzyme A (ACC) and Akt/glycogen synthase kinase 3β (GSK3β), respectively. Furthermore, TSEP reduced lipid accumulation and improved insulin sensitivity in hepatocytes. CONCLUSION These findings provide evidence that TSEP exerts an antidiabetic effect by suppressing hepatic gluconeogenesis via the AMPK signaling pathway.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xincai Hao
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qibin Wang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Li Chen
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Si Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Fang Bian
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; The Affiliated Hospital of Xiangyang Central Hospital of Hubei College of Arts and Sciences, Xiangyang, China.
| |
Collapse
|
27
|
Sun C, Jiang L, Liu Y, Shen H, Weiss SJ, Zhou Y, Rui L. Adipose Snail1 Regulates Lipolysis and Lipid Partitioning by Suppressing Adipose Triacylglycerol Lipase Expression. Cell Rep 2016; 17:2015-2027. [PMID: 27851965 PMCID: PMC5131732 DOI: 10.1016/j.celrep.2016.10.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/25/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022] Open
Abstract
Lipolysis provides metabolic fuel; however, aberrant adipose lipolysis results in ectopic lipid accumulation and lipotoxicity. While adipose triacylglycerol lipase (ATGL) catalyzes the first step of lipolysis, its regulation is not fully understood. Here, we demonstrate that adipocyte Snail1 suppresses both ATGL expression and lipolysis. Adipose Snail1 levels are higher in fed mice than in fasted mice and higher in obese mice as opposed to lean mice. Insulin increases Snail1 levels in both murine and human adipocytes, wherein Snail1 binds to the ATGL promoter to repress its expression. Importantly, adipocyte-specific deletion of Snail1 increases adipose ATGL expression and lipolysis, resulting in decreased fat mass and increased liver fat content in mice fed either a normal chow diet or a high-fat diet. Thus, we have identified a Snail1-ATGL axis that regulates adipose lipolysis and fatty acid release, thereby governing lipid partitioning between adipose and non-adipose tissues.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- Adipocytes, White/pathology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Animals
- Cell Size/drug effects
- Diet, High-Fat
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Epigenesis, Genetic/drug effects
- Fatty Liver/metabolism
- Fatty Liver/pathology
- Gene Deletion
- Humans
- Insulin/pharmacology
- Lipase/genetics
- Lipase/metabolism
- Lipolysis/drug effects
- Liver/drug effects
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/metabolism
- Obesity/pathology
- Organ Specificity
- Promoter Regions, Genetic/genetics
- Snail Family Transcription Factors/metabolism
Collapse
Affiliation(s)
- Chengxin Sun
- School of Life Sciences, University of Northeast Normal University, Changchun 130024, China; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lin Jiang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yan Liu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hong Shen
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stephen J Weiss
- Life Sciences Institute, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yifa Zhou
- School of Life Sciences, University of Northeast Normal University, Changchun 130024, China.
| | - Liangyou Rui
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
28
|
Chen Z. Adapter proteins regulate insulin resistance and lipid metabolism in obesity. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1058-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Tumor necrosis factor receptor-associated factor 5 (Traf5) acts as an essential negative regulator of hepatic steatosis. J Hepatol 2016; 65:125-136. [PMID: 27032381 DOI: 10.1016/j.jhep.2016.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Obesity-related metabolic inflammation, insulin resistance (IR), and excessive fat accumulation are linked phenomena that promote the progression of nonalcoholic fatty liver disease (NAFLD). Previous research has indicated that CD40-TRAF5 signaling protects against obesity-related metabolic disorders; however, the precise roles and underlying mechanisms of TRAF5 in obesity-induced pathological processes have not been fully elucidated. METHODS TRAF5 expression was evaluated in the livers of NAFLD patients, high-fat diet (HFD)-induced or genetically (ob/ob) induced obese mice, and in palmitate-treated hepatocytes. Gain- or loss-of-function approaches were used to investigate the specific roles and mechanisms of hepatic Traf5 under obesity-related pathological conditions. RESULTS TRAF5 expression was decreased in the fatty livers of both NAFLD patients and obese mice, and in palmitate-treated hepatocytes in vitro. Traf5 overexpression significantly suppressed nonalcoholic steatohepatitis (NASH)-like phenotypes in mice after HFD treatment for 24weeks and inhibited the progression of NAFLD in ob/ob mice. Conversely, Traf5 deficiency resulted in the deterioration of metabolic disorders induced by HFD. Investigations of the underlying mechanisms revealed that Traf5 regulates hepatic steatosis by targeting Jnk signaling. Specifically, Jnk1 rather than Jnk2 is responsible for the function of Traf5 in metabolic disorders, as evidenced by the fact that Jnk1 ablation markedly ameliorates the detrimental effects of Traf5 deficiency on obesity, inflammation, IR, hepatic steatosis and fibrosis. CONCLUSIONS Traf5 negatively regulates NAFLD/NASH and related metabolic dysfunctions by blocking Jnk1 activity, which represents a potential therapeutic target for obesity-related metabolic disorders. LAY SUMMARY Lipid accumulation in the liver induces degradation of Traf5. Increasing Traf5 ameliorates nonalcoholic fatty liver by blocking Jnk1 activity.
Collapse
|
30
|
Xiang M, Wang PX, Wang AB, Zhang XJ, Zhang Y, Zhang P, Mei FH, Chen MH, Li H. Targeting hepatic TRAF1-ASK1 signaling to improve inflammation, insulin resistance, and hepatic steatosis. J Hepatol 2016; 64:1365-77. [PMID: 26860405 DOI: 10.1016/j.jhep.2016.02.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Tumor necrosis factor receptor-associated factor 1 (TRAF1) is an important adapter protein that is largely implicated in molecular events regulating immunity/inflammation and cell death. Although inflammation is closely related to and forms a vicious circle with insulin dysfunction and hepatic lipid accumulation, the role of TRAF1 in hepatic steatosis and the related metabolic disorders remains unclear. METHODS The participation of TRAF1 in the initiation and progression of hepatic steatosis was evaluated in high fat diet (HFD)-induced and genetic obesity. Mice with global TRAF1 knockout or liver-specific TRAF1 overexpression were employed to investigate the role of TRAF1 in insulin resistance, inflammation, and hepatic steatosis based on various phenotypic examinations. Molecular mechanisms underlying TRAF1-regulated hepatic steatosis were further explored in vivo and in vitro. RESULTS TRAF1 expression was significantly upregulated in the livers of NAFLD patients and obese mice and in palmitate-treated hepatocytes. In response to HFD administration or in ob/ob mice, TRAF1 deficiency was hepatoprotective, whereas the overexpression of TRAF1 in hepatocytes contributed to the pathological development of insulin resistance, inflammatory response and hepatic steatosis. Mechanistically, hepatocyte TRAF1 promotes hepatic steatosis through enhancing the activation of ASK1-mediated P38/JNK cascades, as evidenced by the fact that ASK1 inhibition abolished the exacerbated effect of TRAF1 on insulin dysfunction, inflammation, and hepatic lipid accumulation. CONCLUSIONS TRAF1 functions as a positive regulator of insulin resistance, inflammation, and hepatic steatosis dependent on the activation of ASK1-P38/JNK axis.
Collapse
Affiliation(s)
- Mei Xiang
- Department of Cardiology, The Central Hospital of Wuhan, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Pi-Xiao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Ai-Bing Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xiao-Jing Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Yaxing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Peng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Fang-Hua Mei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Man-Hua Chen
- Department of Cardiology, The Central Hospital of Wuhan, Wuhan, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China.
| |
Collapse
|
31
|
Qin W, Li X, Xie L, Li S, Liu J, Jia L, Dong X, Ren X, Xiao J, Yang C, Zhou Y, Chen Z. A long non-coding RNA, APOA4-AS, regulates APOA4 expression depending on HuR in mice. Nucleic Acids Res 2016; 44:6423-33. [PMID: 27131369 PMCID: PMC5291254 DOI: 10.1093/nar/gkw341] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/18/2016] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to be critical biomarkers or therapeutic targets for human diseases. However, only a small number of lncRNAs were screened and characterized. Here, we identified 15 lncRNAs, which are associated with fatty liver disease. Among them, APOA4-AS is shown to be a concordant regulator of Apolipoprotein A-IV (APOA4) expression. APOA4-AS has a similar expression pattern with APOA4 gene. The expressions of APOA4-AS and APOA4 are both abnormally elevated in the liver of ob/ob mice and patients with fatty liver disease. Knockdown of APOA4-AS reduces APOA4 expression both in vitro and in vivo and leads to decreased levels of plasma triglyceride and total cholesterol in ob/ob mice. Mechanistically, APOA4-AS directly interacts with mRNA stabilizing protein HuR and stabilizes APOA4 mRNA. Deletion of HuR dramatically reduces both APOA4-AS and APOA4 transcripts. This study uncovers an anti-sense lncRNA (APOA4-AS), which is co-expressed with APOA4, and concordantly and specifically regulates APOA4 expression both in vitro and in vivo with the involvement of HuR.
Collapse
Affiliation(s)
- Wangshu Qin
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xinzhi Li
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Liwei Xie
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai 200065, China
| | - Sha Li
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jianan Liu
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Linna Jia
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xue Dong
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiaomeng Ren
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Junjie Xiao
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Changqing Yang
- China and Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zheng Chen
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
32
|
Wang PX, Zhang XJ, Luo P, Jiang X, Zhang P, Guo J, Zhao GN, Zhu X, Zhang Y, Yang S, Li H. Hepatocyte TRAF3 promotes liver steatosis and systemic insulin resistance through targeting TAK1-dependent signalling. Nat Commun 2016; 7:10592. [PMID: 26882989 PMCID: PMC4757796 DOI: 10.1038/ncomms10592] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, insulin resistance and a systemic pro-inflammatory response. Here we show that tumour necrosis factor receptor-associated factor 3 (TRAF3) is upregulated in mouse and human livers with hepatic steatosis. After 24 weeks on a high-fat diet (HFD), obesity, insulin resistance, hepatic steatosis and inflammatory responses are significantly ameliorated in liver-specific TRAF3-knockout mice, but exacerbated in transgenic mice overexpressing TRAF3 in hepatocytes. The detrimental effects of TRAF3 on hepatic steatosis and related pathologies are confirmed in ob/ob mice. We further show that in response to HFD, hepatocyte TRAF3 binds to TGF-β-activated kinase 1 (TAK1) to induce TAK1 ubiquitination and subsequent autophosphorylation, thereby enhancing the activation of downstream IKKβ-NF-κB and MKK-JNK-IRS1(307) signalling cascades, while disrupting AKT-GSK3β/FOXO1 signalling. The TRAF3-TAK1 interaction and TAK1 ubiquitination are indispensable for TRAF3-regulated hepatic steatosis. In conclusion, hepatocyte TRAF3 promotes HFD-induced or genetic hepatic steatosis in a TAK1-dependent manner.
Collapse
Affiliation(s)
- Pi-Xiao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Pengcheng Luo
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Huangshi Central Hospital, Hubei Polytechnic University, Huangshi 435000, China
| | - Xi Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Peng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Junhong Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Guang-Nian Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Xueyong Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Sijun Yang
- Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| |
Collapse
|
33
|
Chen Z, Canet MJ, Sheng L, Jiang L, Xiong Y, Yin L, Rui L. Hepatocyte TRAF3 promotes insulin resistance and type 2 diabetes in mice with obesity. Mol Metab 2015; 4:951-60. [PMID: 26909311 PMCID: PMC4731737 DOI: 10.1016/j.molmet.2015.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 09/18/2015] [Accepted: 09/25/2015] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Metabolic inflammation is believed to promote insulin resistance and type 2 diabetes progression in obesity. TRAF3, a cytoplasmic signaling protein, has been known to mediate/modulate cytokine signaling in immune cells. The goal is to define the metabolic function of hepatic TRAF3 in the setting of obesity. METHODS Hepatocyte-specific TRAF3 knockout mice were generated using the loxp/albumin-cre system. Liver TRAF3 was deleted in adult obese mice via Cre adenoviral infection. Both high fat diet-induced and genetic obesity were examined. TRAF3 levels and insulin signaling were measured by immunoblotting. Insulin sensitivity, hepatic glucose production, and glucose metabolism were examined by glucose, insulin, and pyruvate tolerance tests. Hepatic steatosis was examined by Oil red O staining of liver sections and measuring liver triacylglycerol levels. RESULTS Liver TRAF3 levels were lower in the fasted states in normal mice, and were aberrantly higher in obese mice and in mice with streptozotocin-induced hyperglycemia. Glucose directly increased TRAF3 levels in primary hepatocytes. Hepatocyte-specific deletion of TRAF3 decreased hyperinsulinemia, insulin resistance, glucose intolerance, and hepatic steatosis in mice with either high fat diet-induced obesity or genetic obesity (ob/ob); conversely, in lean mice, adenovirus-mediated overexpression of TRAF3 in the liver induced hyperinsulinemia, insulin resistance, and glucose intolerance. Deletion of TRAF3 enhanced the ability of insulin to stimulate phosphorylation of Akt in hepatocytes, whereas overexpression of TRAF3 suppressed insulin signaling. CONCLUSIONS Glucose increases the levels of hepatic TRAF3. TRAF3 in turn promotes hyperglycemia through increasing hepatic glucose production, thus forming a glucose-TRAF3 reinforcement loop in the liver. This positive feedback loop may drive the progression of type 2 diabetes and nonalcoholic fatty liver disease in obesity.
Collapse
Key Words
- DKO, hepatocyte TRAF3 and leptin double knockout
- Diabetes
- GFP, green fluorescent protein
- GTT, glucose
- Gluconeogenesis
- HFD, high fat diet
- HKO, hepatocyte-specific TRAF3 knockout
- ITT, insulin
- Inflammation
- Insulin
- LD, lipid droplet
- LTT, lactate tolerance test
- Liver
- NAFLD, nonalcoholic fatty liver disease
- Obesity
- PTT, pyruvate
- TRAF3
- TRAF3, TNF receptor-associated factor 3
Collapse
Affiliation(s)
- Zheng Chen
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-0622, USA; School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Mark J Canet
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-0622, USA
| | - Liang Sheng
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-0622, USA
| | - Lin Jiang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-0622, USA
| | - Yi Xiong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-0622, USA
| | - Lei Yin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-0622, USA
| | - Liangyou Rui
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-0622, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-0622, USA
| |
Collapse
|
34
|
Zhang XJ, Zhang P, Li H. Interferon regulatory factor signalings in cardiometabolic diseases. Hypertension 2015; 66:222-47. [PMID: 26077571 DOI: 10.1161/hypertensionaha.115.04898] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/14/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Xiao-Jing Zhang
- From the Department of Cardiology, Renmin Hospital (X.-J.Z., P.Z., H.L.) and Cardiovascular Research Institute (X.-J.Z., P.Z., H.L.), Wuhan University, Wuhan, China; and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China (X.-J.Z.)
| | - Peng Zhang
- From the Department of Cardiology, Renmin Hospital (X.-J.Z., P.Z., H.L.) and Cardiovascular Research Institute (X.-J.Z., P.Z., H.L.), Wuhan University, Wuhan, China; and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China (X.-J.Z.)
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital (X.-J.Z., P.Z., H.L.) and Cardiovascular Research Institute (X.-J.Z., P.Z., H.L.), Wuhan University, Wuhan, China; and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China (X.-J.Z.).
| |
Collapse
|
35
|
Zheng T, Yang X, Wu D, Xing S, Bian F, Li W, Chi J, Bai X, Wu G, Chen X, Zhang Y, Jin S. Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/Akt/GSK3β pathway. Br J Pharmacol 2015; 172:3284-301. [PMID: 25754463 DOI: 10.1111/bph.13120] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent reports have suggested that salidroside could protect cardiomyocytes from oxidative injury and stimulate glucose uptake in skeletal muscle cells by activating AMP-activated protein kinase (AMPK). The aim of this study was to evaluate the therapeutic effects of salidroside on diabetic mice and to explore the underlying mechanisms. EXPERIMENTAL APPROACH The therapeutic effects of salidroside on type 2 diabetes were investigated. Increasing doses of salidroside (25, 50 and 100 mg·kg(-1) ·day(-1)) were administered p.o. to db/db mice for 8 weeks. Biochemical analysis and histopathological examinations were conducted to evaluate the therapeutic effects of salidroside. Primary cultured mouse hepatocytes were used to further explore the underlying mechanisms in vitro. KEY RESULTS Salidroside dramatically reduced blood glucose and serum insulin levels and alleviated insulin resistance. Hypolipidaemic effects and amelioration of liver steatosis were observed after salidroside administration. In vitro, salidroside dose-dependently induced an increase in the phosphorylations of AMPK and PI3K/Akt, as well as glycogen synthase kinase 3β (GSK3β) in hepatocytes. Furthermore, salidroside-stimulated AMPK activation was found to suppress the expression of PEPCK and glucose-6-phosphatase. Salidroside-induced AMPK activation also resulted in phosphorylation of acetyl CoA carboxylase, which can reduce lipid accumulation in peripheral tissues. In isolated mitochondria, salidroside inhibited respiratory chain complex I and disturbed oxidation/phosphorylation coupling and moderately depolarized the mitochondrial membrane potential, resulting in a transient increase in the AMP/ATP ratio. CONCLUSIONS AND IMPLICATIONS Salidroside exerts an antidiabetic effect by improving the cellular metabolic flux through the activation of a mitochondria-related AMPK/PI3K/Akt/GSK3β pathway.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Dan Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Shasha Xing
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Fang Bian
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Wenjing Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Jiangyang Chi
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Xiangli Bai
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Guangjie Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Xiaoqian Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Yonghui Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Si Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Natural Medicinal Chemistry, Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China.,Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
36
|
Chen Z, Shen H, Sun C, Yin L, Tang F, Zheng P, Liu Y, Brink R, Rui L. Myeloid cell TRAF3 promotes metabolic inflammation, insulin resistance, and hepatic steatosis in obesity. Am J Physiol Endocrinol Metab 2015; 308:E460-9. [PMID: 25628422 PMCID: PMC4360016 DOI: 10.1152/ajpendo.00470.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myeloid cells, particularly macrophages, mediate metabolic inflammation, thus promoting insulin resistance and metabolic disease progression in obesity. Numerous cytokines, toxic metabolites, damage-associated molecular patterns, and pathogen-associated molecular patterns are involved in activating macrophages via their cognate receptors in obesity. TRAF3 (TNF receptor-associated factor 3) is a common signaling molecule for these ligands/receptors and negatively regulates the proinflammatory NF-κB and MAPK pathways, but its metabolic activity is unknown. We here show that myeloid cell TRAF3 is required for metabolic inflammation and metabolic disease progression in obesity. Myeloid cell-specific deletion of TRAF3 significantly attenuated insulin resistance, hyperglycemia, hyperinsulinemia, glucose intolerance, and hepatic steatosis in mice with either genetic (ob/ob) or high-fat diet (HFD)-induced obesity. Myeloid cell-specific deletion of TRAF3 had the opposite effects on metabolic inflammation between obese and lean mice. It decreased the expression of proinflammatory cytokines in the liver and adipose tissue of obese mice and largely prevented HFD-induced inflammation in these metabolic tissues; by contrast, in lean mice, it increased the expression of proinflammatory cytokines in the liver and adipose tissue. These data suggest that, in obesity progression, myeloid TRAF3 functionally switches its activity from anti-inflammatory to proinflammatory modes, thereby coupling overnutrition to metabolic inflammation, insulin resistance, and metabolic disease.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Hong Shen
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Chengxin Sun
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Fei Tang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Pan Zheng
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Yang Liu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Robert Brink
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Liangyou Rui
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan; and
| |
Collapse
|
37
|
Abstract
The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
38
|
Gruben N, Shiri-Sverdlov R, Koonen DPY, Hofker MH. Nonalcoholic fatty liver disease: A main driver of insulin resistance or a dangerous liaison? Biochim Biophys Acta Mol Basis Dis 2014; 1842:2329-2343. [PMID: 25128743 DOI: 10.1016/j.bbadis.2014.08.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/02/2014] [Accepted: 08/07/2014] [Indexed: 12/17/2022]
Abstract
Insulin resistance is one of the key components of the metabolic syndrome and it eventually leads to the development of type 2 diabetes, making it one of the biggest medical problems of modern society. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are tightly associated with insulin resistance. While it is fairly clear that insulin resistance causes hepatic steatosis, it is not known if NAFLD causes insulin resistance. Hepatic inflammation and lipid accumulation are believed to be the main drivers of hepatic insulin resistance in NAFLD. Here we give an overview of the evidence linking hepatic lipid accumulation to the development of insulin resistance, including the accumulation of triacylglycerol and lipid metabolites, such as diacylglycerol and ceramides. In particular, we discuss the role of obesity in this relation by reviewing the current evidence in terms of the reported changes in body weight and/or adipose tissue mass. We further discuss whether the activation or inhibition of inflammatory pathways, Kupffer cells and other immune cells influences the development of insulin resistance. We show that, in contrast to what is commonly believed, neither hepatic steatosis nor hepatic inflammation is sufficient to cause insulin resistance. Many studies show that obesity cannot be ignored as an underlying factor in this relationship and NAFLD is therefore less likely to be one of the main drivers of insulin resistance.
Collapse
Affiliation(s)
- Nanda Gruben
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Ronit Shiri-Sverdlov
- Maastricht University, Department of Molecular Genetics, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | - Debby P Y Koonen
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Marten H Hofker
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
39
|
Nigro M, Santos AT, Barthem CS, Louzada RAN, Fortunato RS, Ketzer LA, Carvalho DP, de Meis L. A change in liver metabolism but not in brown adipose tissue thermogenesis is an early event in ovariectomy-induced obesity in rats. Endocrinology 2014; 155:2881-91. [PMID: 24914935 DOI: 10.1210/en.2013-1385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Menopause is associated with increased visceral adiposity and disrupted glucose homeostasis, but the underlying molecular mechanisms related to these metabolic changes are still elusive. Brown adipose tissue (BAT) plays a key role in energy expenditure that may be regulated by sexual steroids, and alterations in glucose homeostasis could precede increased weight gain after ovariectomy. Thus, the aim of this work was to evaluate the metabolic pathways in both the BAT and the liver that may be disrupted early after ovariectomy. Ovariectomized (OVX) rats had increased food efficiency as early as 12 days after ovariectomy, which could not be explained by differences in feces content. Analysis of isolated BAT mitochondria function revealed no differences in citrate synthase activity, uncoupling protein 1 expression, oxygen consumption, ATP synthesis, or heat production in OVX rats. The addition of GDP and BSA to inhibit uncoupling protein 1 decreased oxygen consumption in BAT mitochondria equally in both groups. Liver analysis revealed increased triglyceride content accompanied by decreased levels of phosphorylated AMP-activated protein kinase and phosphorylated acetyl-CoA carboxylase in OVX animals. The elevated expression of gluconeogenic enzymes in OVX and OVX + estradiol rats was not associated with alterations in glucose tolerance test or in serum insulin but was coincident with higher glucose disposal during the pyruvate tolerance test. Although estradiol treatment prevented the ovariectomy-induced increase in body weight and hepatic triglyceride and cholesterol accumulation, it was not able to prevent increased gluconeogenesis. In conclusion, the disrupted liver glucose homeostasis after ovariectomy is neither caused by estradiol deficiency nor is related to increased body mass.
Collapse
Affiliation(s)
- Mariana Nigro
- Laboratório de Bioenergética (M.N., A.T.S., C.S.B., L.A.K., L.d.M.), Instituto de Bioquímica Médica, Laboratório de Radiobiologia Molecular (R.S.F.) and Laboratório de Fisiologia Endócrina Doris Rosenthal (R.A.N.L., D.P.C.), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chiang YTA, Ip W, Shao W, Song ZE, Chernoff J, Jin T. Activation of cAMP signaling attenuates impaired hepatic glucose disposal in aged male p21-activated protein kinase-1 knockout mice. Endocrinology 2014; 155:2122-32. [PMID: 24684301 DOI: 10.1210/en.2013-1743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
p21-activated protein kinase-1 (Pak1) plays a role in insulin secretion and glucagon-like peptide-1 (GLP-1) production. Pak1(-/-) mice were found to carry a defect in ip pyruvate tolerance test (IPPTT), leading us to speculate whether Pak1 represses hepatic gluconeogenesis. We show here that the defect in IPPTT became more severe in aged Pak1(-/-) mice. In primary hepatocytes, 2,2'-dihydroxy-1,1'-dinaphthyldisulfide, a potent inhibitor of group I Paks, reduced basal glucose production (GP), attenuated forskolin- or glucagon-stimulated GP, and attenuated the stimulation of forskolin on the expression of Pck1 and G6pc. In addition, the capacity of primary hepatocytes isolated from Pak1(-/-) mice in GP at the basal level is significantly lower than that of the control littermates. These in vitro observations imply that the direct effect of Paks in hepatocytes is the stimulation of gluconeogenesis and that the impairment in IPPTT in Pak1(-/-) mice is due to the lack of Pak1 elsewhere. Consecutive ip injection of forskolin for 2 weeks increased gut proglucagon expression, associated with improved IPPTT in aged Pak1(-/-) mice and wild-type controls. In addition, administration of the DPP-IV (dipeptidyl peptidase-4) inhibitor sitagliptin for 1 week reversed the defect in IPPTT in aged Pak1(-/-) mice, associated with increased plasma GLP-1 levels. Our observations indicate a potential role of Pak1 in the gut/pancreas/liver axis in controlling glucose disposal and affirmed the therapeutic application of GLP-1 and DPP-IV inhibitors in attenuating hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Yu-Ting Alex Chiang
- Division of Advanced Diagnostics (Y.-t.A.C., W.I., W.S., Z.E.S., T.J.), Toronto General Research Institute, University Health Network, Toronto, Canada M5G 1L7; Department of Physiology (Y.-t.A.C., T.J.), University of Toronto, Toronto, Canada M5S 1A8; and Institute of Medical Science (W.I., T.J.), University of Toronto, Canada; and Fox Chase Cancer Center (J.C.), Philadelphia, Pennsylvania 19111
| | | | | | | | | | | |
Collapse
|
41
|
Chen Z, Morris DL, Jiang L, Liu Y, Rui L. SH2B1 in β-cells regulates glucose metabolism by promoting β-cell survival and islet expansion. Diabetes 2014; 63:585-95. [PMID: 24150605 PMCID: PMC3900537 DOI: 10.2337/db13-0666] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IGF-1 and insulin promote β-cell expansion by inhibiting β-cell death and stimulating β-cell proliferation, and the phosphatidylinositol (PI) 3-kinase/Akt pathway mediates insulin and IGF-1 action. Impaired β-cell expansion is a risk factor for type 2 diabetes. Here, we identified SH2B1, which is highly expressed in β-cells, as a novel regulator of β-cell expansion. Silencing of SH2B1 in INS-1 832/13 β-cells attenuated insulin- and IGF-1-stimulated activation of the PI 3-kinase/Akt pathway and increased streptozotocin (STZ)-induced apoptosis; conversely, overexpression of SH2B1 had the opposite effects. Activation of the PI 3-kinase/Akt pathway in β-cells was impaired in pancreas-specific SH2B1 knockout (PKO) mice fed a high-fat diet (HFD). HFD-fed PKO mice also had increased β-cell apoptosis, decreased β-cell proliferation, decreased β-cell mass, decreased pancreatic insulin content, impaired insulin secretion, and exacerbated glucose intolerance. Furthermore, PKO mice were more susceptible to STZ-induced β-cell destruction, insulin deficiency, and hyperglycemia. These data indicate that SH2B1 in β-cells is an important prosurvival and proproliferative protein and promotes compensatory β-cell expansion in the insulin-resistant state and in response to β-cell stress.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - David L. Morris
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Lin Jiang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Yong Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liangyou Rui
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
- Corresponding author: Liangyou Rui,
| |
Collapse
|
42
|
TRAF6-mediated ubiquitination of APPL1 enhances hepatic actions of insulin by promoting the membrane translocation of Akt. Biochem J 2013; 455:207-16. [DOI: 10.1042/bj20130760] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The adaptor protein APPL1 undergoes ubiquitination upon insulin stimulation in a TRAF6-dependent manner. Abrogation of APPL1 ubiquitination blocks insulin-evoked membrane localization of the APPL1–Akt complex, leading to impaired insulin actions on Akt activation and suppression of hepatic glucose production.
Collapse
|
43
|
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of intracellular proteins were originally identified as signaling adaptors that bind directly to the cytoplasmic regions of receptors of the TNF-R superfamily. The past decade has witnessed rapid expansion of receptor families identified to employ TRAFs for signaling. These include Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), T cell receptor, IL-1 receptor family, IL-17 receptors, IFN receptors and TGFβ receptors. In addition to their role as adaptor proteins, most TRAFs also act as E3 ubiquitin ligases to activate downstream signaling events. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Compelling evidence obtained from germ-line and cell-specific TRAF-deficient mice demonstrates that each TRAF plays indispensable and non-redundant physiological roles, regulating innate and adaptive immunity, embryonic development, tissue homeostasis, stress response, and bone metabolism. Notably, mounting evidence implicates TRAFs in the pathogenesis of human diseases such as cancers and autoimmune diseases, which has sparked new appreciation and interest in TRAF research. This review presents an overview of the current knowledge of TRAFs, with an emphasis on recent findings concerning TRAF molecules in signaling and in human diseases.
Collapse
Affiliation(s)
- Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Nelson Labs Room B336, Piscataway, New Jersey 08854.
| |
Collapse
|
44
|
The role of the unfolded protein response in diabetes mellitus. Semin Immunopathol 2013; 35:333-50. [PMID: 23529219 DOI: 10.1007/s00281-013-0369-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/13/2013] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) plays a key role in the synthesis and modification of secretory and membrane proteins in all eukaryotic cells. Under normal conditions, these proteins are correctly folded and assembled in the ER. However, when cells are exposed to environmental factors such as overproduction of ER proteins, viral infections, or glucose deprivation, the secretory and membrane proteins can accumulate in unfolded or misfolded forms in the lumen of the ER, and consequently, cause stress in the ER. To maintain cellular homeostasis, cells induce several responses to ER stress. In mammalian cells, ER stress responses are induced by a diversity of signal pathways. There are three ER-located transmembrane proteins that play important roles in mammalian ER stress responses: activating transcription factor 6, inositol-requiring protein 1, and protein kinase RNA-like endoplasmic reticulum kinase. ER stress is linked to various diseases, including diabetes. This review highlights the particular importance of ER stress-responsive molecules in insulin biosynthesis, glyconeogenesis, insulin resistance, glucose intolerance, and pancreatic β-cell apoptosis. An understanding of the pathogenic mechanism of diabetes from the aspect of ER stress is crucial in formulating therapeutic strategies.
Collapse
|
45
|
Wang YY, Chen CJ, Lin SY, Chuang YH, Sheu WHH, Tung KC. Hyperglycemia is associated with enhanced gluconeogenesis in a rat model of permanent cerebral ischemia. Mol Cell Endocrinol 2013; 367:50-6. [PMID: 23279876 DOI: 10.1016/j.mce.2012.12.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 12/25/2022]
Abstract
Hyperglycemia is common after acute stroke. In the acute phase of stroke (within 24h), rats with permanent cerebral ischemia developed higher fasting blood glucose and insulin levels in association with up-regulation of hepatic gluconeogenic gene expression, including phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase. In addition, hepatic gluconeogenesis-associated positive regulators, such as FoxO1, CAATT/enhancer-binding proteins (C/EBPs), and cAMP responsive element-binding protein (CREB), were up-regulated. For insulin signaling transduction, phosphorylation of insulin receptor (IR), insulin receptor substrate-1 (IRS1) at the tyrosine residue, Akt, and AMP-activated protein kinase (AMPK), were attenuated in the liver, while negative regulators of insulin action, including phosphorylation of p38, c-Jun N-terminal kinase (JNK), and insulin receptor substrate-1 (IRS1) at the serine residue, were increased. In addition, the brains of rats with stroke exhibited a reduction in phosphorylation of IRS1 at the tyrosine residue and Akt. Circulating cortisol, glucagon, C-reactive protein (CRP), monocyte chemoattractant protein 1 (MCP-1), and resistin levels were elevated, but adiponectin was reduced. Our data suggest that cerebral ischemic insults might modify intracellular and extracellular environments, favoring hepatic gluconeogenesis and the consequences of hyperglycemia.
Collapse
Affiliation(s)
- Ya-Yu Wang
- Division of Family Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
46
|
Zhou Y, Rui L. Lipocalin 13 regulation of glucose and lipid metabolism in obesity. VITAMINS AND HORMONES 2013; 91:369-83. [PMID: 23374724 DOI: 10.1016/b978-0-12-407766-9.00015-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lipocalin (LCN) family members are small secreted proteins that bind to small hydrophobic molecules via their characteristic central β-barrels. A couple of LCN family members, including major urinary protein 1, retinol-binding protein 4, LCN2, and LCN13, have been reported to regulate insulin sensitivity and nutrient metabolism. LCN13 is expressed by multiple tissues, including the liver, pancreas, epididymis, and skeletal muscle, and is secreted into the bloodstream in mice. Obesity is associated with a downregulation of LCN13 expression and lower levels of circulating LCN13. LCN13 therapies overcome LCN13 deficiency in mice with either genetic or dietary obesity, leading to an improvement in hyperglycemia, hyperinsulinemia, insulin resistance, glucose intolerance, and hepatic steatosis. In hepatocytes, LCN13 directly suppresses hepatic gluconeogenesis and lipogenesis but increases fatty acid β oxidation. LCN13 also enhances insulin sensitivity in adipocytes. The potential mechanisms of the antidiabetes and antisteatosis actions of LCN13 are discussed.
Collapse
Affiliation(s)
- Yingjiang Zhou
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|