1
|
Perez-Leighton C, Kerr B, Scherer PE, Baudrand R, Cortés V. The interplay between leptin, glucocorticoids, and GLP1 regulates food intake and feeding behaviour. Biol Rev Camb Philos Soc 2024; 99:653-674. [PMID: 38072002 DOI: 10.1111/brv.13039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 05/09/2024]
Abstract
Nutritional, endocrine, and neurological signals converge in multiple brain centres to control feeding behaviour and food intake as part of the allostatic regulation of energy balance. Among the several neuroendocrine systems involved, the leptin, glucocorticoid, and glucagon-like peptide 1 (GLP1) systems have been extensively researched. Leptin is at the top hierarchical level since its complete absence is sufficient to trigger severe hyperphagia. Glucocorticoids are key regulators of the energy balance adaptation to stress and their sustained excess leads to excessive adiposity and metabolic perturbations. GLP1 participates in metabolic adaptation to food intake, regulating insulin secretion and satiety by parallel central and peripheral signalling systems. Herein, we review the brain and peripheral targets of these three hormone systems that integrate to regulate food intake, feeding behaviour, and metabolic homeostasis. We examine the functional relationships between leptin, glucocorticoids, and GLP1 at the central and peripheral levels, including the cross-regulation of their circulating levels and their cooperative or antagonistic actions at different brain centres. The pathophysiological roles of these neuroendocrine systems in dysregulated intake are explored in the two extremes of body adiposity - obesity and lipodystrophy - and eating behaviour disorders.
Collapse
Affiliation(s)
- Claudio Perez-Leighton
- Departmento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina-CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Carmen Sylva 2444, Providencia, Santiago, Chile
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - René Baudrand
- Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
- Centro Translacional de Endocrinología (CETREN), Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Víctor Cortés
- Departmento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| |
Collapse
|
2
|
Aranäs C, Blid Sköldheden S, Jerlhag E. Antismoking agents do not contribute synergistically to semaglutide's ability to reduce alcohol intake in rats. Front Pharmacol 2023; 14:1180512. [PMID: 37719854 PMCID: PMC10500129 DOI: 10.3389/fphar.2023.1180512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Preclinical studies have identified glucagon-like peptide-1 receptor (GLP-1R) agonists, and the antismoking agents varenicline and bupropion as tentative agents for treatment of alcohol use disorder (AUD). Combining different medications is a recent approach that has gained attention regarding heterogenous and difficult-to-treat diseases, like AUD. Successfully, this approach has been tested for the combination of varenicline and bupropion as it prevents relapse to alcohol drinking in rats. However, studies assessing the effects of the combination of semaglutide, an FDA-approved GLP-1R agonist for diabetes type II, and varenicline or bupropion to reduce alcohol intake in male and female rats remains to be conducted. Another approach to influence treatment outcome is to combine a medication with feeding interventions like high fat diet (HFD). While HFD reduces alcohol intake, the ability of the combination of HFD and semaglutide to alter alcohol drinking is unknown and thus the subject for a pilot study. Therefore, three intermittent alcohol drinking experiments were conducted to elucidate the effectiveness of these treatment combinations. We show that semaglutide, bupropion or HFD reduces alcohol intake in male as well as female rats. While various studies reveal beneficial effects of combinatorial pharmacotherapies for the treatment of AUD, we herein do not report any additive effects on alcohol intake by adding either varenicline or bupropion to semaglutide treatment. Neither does HFD exposure alter the ability of semaglutide to reduce alcohol intake. Although no additive effects by the combinatorial treatments are found, these findings collectively provide insight into possible monotherapeutical treatments for AUD.
Collapse
Affiliation(s)
| | | | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Activation of glucagon-like peptide-1 receptors reduces the acquisition of aggression-like behaviors in male mice. Transl Psychiatry 2022; 12:445. [PMID: 36229445 PMCID: PMC9561171 DOI: 10.1038/s41398-022-02209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Aggression is a complex social behavior, which is provoked in the defense of limited resources including food and mates. Recent advances show that the gut-brain hormone ghrelin modulates aggressive behaviors. As the gut-brain hormone glucagon-like peptide-1 (GLP-1) reduces food intake and sexual behaviors its potential role in aggressive behaviors is likely. Therefore, we investigated a tentative link between GLP-1 and aggressive behaviors by combining preclinical and human genetic-association studies. The influence of acute or repeated injections of a GLP-1 receptor (GLP-1R) agonist, exendin-4 (Ex4), on aggressive behaviors was assessed in male mice exposed to the resident-intruder paradigm. Besides, possible mechanisms participating in the ability of Ex4 to reduce aggressive behaviors were evaluated. Associations of polymorphisms in GLP-1R genes and overt aggression in males of the CATSS cohort were assessed. In male mice, repeated, but not acute, Ex4 treatment dose-dependently reduced aggressive behaviors. Neurochemical and western blot studies further revealed that putative serotonergic and noradrenergic signaling in nucleus accumbens, specifically the shell compartment, may participate in the interaction between Ex4 and aggression. As high-fat diet (HFD) impairs the responsiveness to GLP-1 on various behaviors the possibility that HFD blunts the ability of Ex4 to reduce aggressive behaviors was explored. Indeed, the levels of aggression was similar in vehicle and Ex4 treated mice consuming HFD. In humans, there were no associations between polymorphisms of the GLP-1R genes and overt aggression. Overall, GLP-1 signaling suppresses acquisition of aggressive behaviors via central neurotransmission and additional studies exploring this link are warranted.
Collapse
|
4
|
Hoffman S, Alvares D, Adeli K. GLP-1 attenuates intestinal fat absorption and chylomicron production via vagal afferent nerves originating in the portal vein. Mol Metab 2022; 65:101590. [PMID: 36067913 PMCID: PMC9486018 DOI: 10.1016/j.molmet.2022.101590] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022] Open
Abstract
Background/Objective GLP-1R agonists have been shown to reduce fasting and postprandial plasma lipids, both of which are independent risk factors for the development of cardiovascular disease. However, how endogenous GLP-1 – which is rapidly degraded – modulates intestinal and hepatic lipid metabolism is less clear. A vagal gut-brain-axis originating in the portal vein has been proposed as a possible mechanism for GLP-1’s anti-lipemic effects. Here we sought to examine the relationship between vagal GLP-1 signalling and intestinal lipid absorption and lipoprotein production. Methods Syrian golden hamsters or C57BL/6 mice received portal vein injections of GLP-1(7-36), and postprandial and fasting plasma TG, TRL TG, or VLDL TG were examined. These experiments were repeated during sympathetic blockade, and under a variety of pharmacological or surgical deafferentation techniques. In addition, hamsters received nodose ganglia injections of a GLP-1R agonist or antagonist to further probe the vagal pathway. Peripheral studies were repeated in a novel GLP-1R KO hamster model and in our diet-induced hamster models of insulin resistance. Results GLP-1(7-36) site-specifically reduced postprandial and fasting plasma lipids in both hamsters and mice. These inhibitory effects of GLP-1 were investigated via pharmacological and surgical denervation experiments and found to be dependent on intact afferent vagal signalling cascades and efferent changes in sympathetic tone. Furthermore, GLP-1R agonism in the nodose ganglia resulted in markedly reduced postprandial plasma TG and TRL TG, and fasting VLDL TG and this nodose GLP-1R activity was essential for portal GLP-1s effect. Notably, portal and nodose ganglia GLP-1 effects were lost in GLP-1R KO hamsters and following diet-induced insulin resistance. Conclusion Our data demonstrates for the first time that portal GLP-1 modulates postprandial and fasting lipids via a complex vagal gut–brain–liver axis. Importantly, loss or interference with this signalling axis via surgical, pharmacological, or dietary intervention resulted in the loss of portal GLP-1s anti-lipemic effects. This supports emerging evidence that native GLP-1 works primarily through a vagal neuroendocrine mechanism.
Collapse
Affiliation(s)
- Simon Hoffman
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| | - Danielle Alvares
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
5
|
Lebrun LJ, Moreira S, Tavernier A, Niot I. Postprandial consequences of lipid absorption in the onset of obesity: Role of intestinal CD36. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159154. [DOI: 10.1016/j.bbalip.2022.159154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
6
|
Kovacs P, Hajnal A. Short-term high-fat diet consumption increases body weight and body adiposity and alters brain stem taste information processing in rats. Chem Senses 2022; 47:6673811. [PMID: 35997757 DOI: 10.1093/chemse/bjac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diet-induced obesity is known to develop whether exposed to a high-energy diet (HED) or a high-fat diet (HFD). However, it is still not clear whether the elevated energy content or the macronutrient imbalance is the key factor in early disease progression. Therefore, this study compared the short-term effects of 2 widely used rodent obesogenic diets, an HFD with 60 kcal% fat content and a carbohydrate-based HED, on the body weight, body fat content, glucose tolerance, and neuronal taste responses in rats. We found that only HFD induced an early significant body weight increase compared with the control normal diet (ND) group, starting on week 4, and resulting in a significantly elevated body adiposity compared with both the ND and HED groups. Oral glucose tolerance test revealed no difference across groups. Subsequently, we also found that HFD resulted in a significant body weight gain even under energy-restricted (isocaloric to ND) conditions. In vivo electrophysiological recordings revealed that only the ad libitum HFD and not the isocaloric-HFD altered the brain stem gustatory neural responses to oral taste stimulation. In conclusion, this study showed that increased fat intake might result in significant body weight gain even under isocaloric and metabolically healthy conditions and demonstrated changes in central taste processing in an early stage of dietary obesity. A better understanding of these initial physiological changes may offer new drug targets for preventing obesity.
Collapse
Affiliation(s)
- Peter Kovacs
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
7
|
Cook TM, Gavini CK, Jesse J, Aubert G, Gornick E, Bonomo R, Gautron L, Layden BT, Mansuy-Aubert V. Vagal neuron expression of the microbiota-derived metabolite receptor, free fatty acid receptor (FFAR3), is necessary for normal feeding behavior. Mol Metab 2021; 54:101350. [PMID: 34626852 PMCID: PMC8567301 DOI: 10.1016/j.molmet.2021.101350] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Objective The vagus nerve provides a direct line of communication between the gut and the brain for proper regulation of energy balance and glucose homeostasis. Short-chain fatty acids (SCFAs) produced via gut microbiota fermentation of dietary fiber have been proposed to regulate host metabolism and feeding behavior via the vagus nerve, but the molecular mechanisms have not yet been elucidated. We sought to identify the G-protein-coupled receptors within vagal neurons that mediate the physiological and therapeutic benefits of SCFAs. Methods SCFA, particularly propionate, signaling occurs via free fatty acid receptor 3 (FFAR3), that we found expressed in vagal sensory neurons innervating throughout the gut. The lack of cell-specific animal models has impeded our understanding of gut/brain communication; therefore, we generated a mouse model for cre-recombinase-driven deletion of Ffar3. We comprehensively characterized the feeding behavior of control and vagal-FFAR3 knockout (KO) mice in response to various conditions including fasting/refeeding, western diet (WD) feeding, and propionate supplementation. We also utilized ex vivo organotypic vagal cultures to investigate the signaling pathways downstream of propionate FFAR3 activation. Results Vagal-FFAR3KO led to increased meal size in males and females, and increased food intake during fasting/refeeding and WD challenges. In addition, the anorectic effect of propionate supplementation was lost in vagal-FFAR3KO mice. Sequencing approaches combining ex vivo and in vivo experiments revealed that the cross-talk of FFAR3 signaling with cholecystokinin (CCK) and leptin receptor pathways leads to alterations in food intake. Conclusion Altogether, our data demonstrate that FFAR3 expressed in vagal neurons regulates feeding behavior and mediates propionate-induced decrease in food intake. Lack of vagal FFAR3 increases food intake. Anorectic effect of propionate is lost when FFAR3 is absent from vagal neurons. FFAR3 signaling cross-talks with cholecystokinin (CCK) and leptin receptor pathways to alter food intake.
Collapse
Affiliation(s)
- Tyler M Cook
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood IL, 60153, USA
| | - Chaitanya K Gavini
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood IL, 60153, USA
| | - Jason Jesse
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood IL, 60153, USA
| | - Gregory Aubert
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood IL, 60153, USA; Department of Internal Medicine, Division of Cardiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Emily Gornick
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood IL, 60153, USA
| | - Raiza Bonomo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood IL, 60153, USA
| | - Laurent Gautron
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, 75390, TX, USA
| | - Brian T Layden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Virginie Mansuy-Aubert
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood IL, 60153, USA.
| |
Collapse
|
8
|
Drucker DJ. GLP-1 physiology informs the pharmacotherapy of obesity. Mol Metab 2021; 57:101351. [PMID: 34626851 PMCID: PMC8859548 DOI: 10.1016/j.molmet.2021.101351] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonists (GLP1RA) augment glucose-dependent insulin release and reduce glucagon secretion and gastric emptying, enabling their successful development for the treatment of type 2 diabetes (T2D). These agents also inhibit food intake and reduce body weight, fostering investigation of GLP1RA for the treatment of obesity. SCOPE OF REVIEW Here I discuss the physiology of Glucagon-like peptide-1 (GLP-1) action in the control of food intake in animals and humans, highlighting the importance of gut vs. brain-derived GLP-1 for the control of feeding and body weight. The widespread distribution and function of multiple GLP-1 receptor (GLP1R) populations in the central and autonomic nervous system are outlined, and the importance of pathways controlling energy expenditure in preclinical studies vs. reduction of food intake in both animals and humans is highlighted. The relative contributions of vagal afferent pathways vs. GLP1R+ populations in the central nervous system for the physiological reduction of food intake and the anorectic response to GLP1RA are compared and reviewed. Key data enabling the development of two GLP1RA for obesity therapy (liraglutide 3 mg daily and semaglutide 2.4 mg once weekly) are discussed. Finally, emerging data potentially supporting the combination of GLP-1 with additional peptide epitopes in unimolecular multi-agonists, as well as in fixed-dose combination therapies, are highlighted. MAJOR CONCLUSIONS The actions of GLP-1 to reduce food intake and body weight are highly conserved in obese animals and humans, in both adolescents and adults. The well-defined mechanisms of GLP-1 action through a single G protein-coupled receptor, together with the extensive safety database of GLP1RA in people with T2D, provide reassurance surrounding the long-term use of these agents in people with obesity and multiple co-morbidities. GLP1RA may also be effective in conditions associated with obesity, such as cardiovascular disease and non-alcoholic steatohepatitis (NASH). Progressive improvements in the efficacy of GLP1RA suggest that GLP-1-based therapies may soon rival bariatric surgery as viable options for the treatment of obesity and its complications.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
9
|
Smith KR, Moran TH. Gastrointestinal peptides in eating-related disorders. Physiol Behav 2021; 238:113456. [PMID: 33989649 PMCID: PMC8462672 DOI: 10.1016/j.physbeh.2021.113456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Food intake is tightly controlled by homeostatic signals sensitive to metabolic need for the regulation of body weight. This review focuses on the peripherally-secreted gastrointestinal peptides (i.e., ghrelin, cholecystokinin, glucagon-like peptide 1, and peptide tyrosine tyrosine) that contribute to the control of appetite and discusses how these peptides or the signals arising from their release are disrupted in eating-related disorders across the weight spectrum, namely anorexia nervosa, bulimia nervosa, and obesity, and whether they are normalized following weight restoration or weight loss treatment. Further, the role of gut peptides in the pathogenesis and treatment response in human weight conditions as identified by rodent models are discussed. Lastly, we review the incretin- and hormone-based pharmacotherapies available for the treatment of obesity and eating-related disorders.
Collapse
Affiliation(s)
- Kimberly R Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
10
|
Duca FA, Waise TMZ, Peppler WT, Lam TKT. The metabolic impact of small intestinal nutrient sensing. Nat Commun 2021; 12:903. [PMID: 33568676 PMCID: PMC7876101 DOI: 10.1038/s41467-021-21235-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract maintains energy and glucose homeostasis, in part through nutrient-sensing and subsequent signaling to the brain and other tissues. In this review, we highlight the role of small intestinal nutrient-sensing in metabolic homeostasis, and link high-fat feeding, obesity, and diabetes with perturbations in these gut-brain signaling pathways. We identify how lipids, carbohydrates, and proteins, initiate gut peptide release from the enteroendocrine cells through small intestinal sensing pathways, and how these peptides regulate food intake, glucose tolerance, and hepatic glucose production. Lastly, we highlight how the gut microbiota impact small intestinal nutrient-sensing in normal physiology, and in disease, pharmacological and surgical settings. Emerging evidence indicates that the molecular mechanisms of small intestinal nutrient sensing in metabolic homeostasis have physiological and pathological impact as well as therapeutic potential in obesity and diabetes. The gastrointestinal tract participates in maintaining metabolic homeostasis in part through nutrient-sensing and subsequent gut-brain signalling. Here the authors review the role of small intestinal nutrient-sensing in regulation of energy intake and systemic glucose metabolism, and link high-fat diet, obesity and diabetes with perturbations in these pathways.
Collapse
Affiliation(s)
- Frank A Duca
- BIO5 Institute, University of Arizona, Tucson, AZ, USA. .,School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA.
| | - T M Zaved Waise
- Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Willem T Peppler
- Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, UHN, Toronto, Canada. .,Department of Physiology, University of Toronto, Toronto, Canada. .,Department of Medicine, University of Toronto, Toronto, Canada. .,Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
11
|
Malbert CH, Chauvin A, Horowitz M, Jones KL. Glucose Sensing Mediated by Portal Glucagon-Like Peptide 1 Receptor Is Markedly Impaired in Insulin-Resistant Obese Animals. Diabetes 2021; 70:99-110. [PMID: 33067312 DOI: 10.2337/db20-0361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023]
Abstract
The glucose portal sensor informs the brain of changes in glucose inflow through vagal afferents that require an activated glucagon-like peptide 1 receptor (GLP-1r). The GLP-1 system is known to be impaired in insulin-resistant conditions, and we sought to understand the consequences of GLP-1 resistance on glucose portal signaling. GLP-1-dependent portal glucose signaling was identified, in vivo, using a novel 68Ga-labeled GLP-1r positron-emitting probe that supplied a quantitative in situ tridimensional representation of the portal sensor with specific reference to the receptor density expressed in binding potential units. It also served as a map for single-neuron electrophysiology driven by an image-based abdominal navigation. We determined that in insulin-resistant animals, portal vagal afferents failed to inhibit their spiking activity during glucose infusion, a GLP-1r-dependent function. This reflected a reduction in portal GLP-1r binding potential, particularly between the splenic vein and the entrance of the liver. We propose that insulin resistance, through a reduction in GLP-1r density, leads to functional portal desensitization with a consequent suppression of vagal sensitivity to portal glucose.
Collapse
Affiliation(s)
| | - Alain Chauvin
- UEPR Unit, Department of Animal Physiology, INRAE, Saint-Gilles, France
| | - Michael Horowitz
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Karen L Jones
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
12
|
Li X, Wang H. Multiple organs involved in the pathogenesis of non-alcoholic fatty liver disease. Cell Biosci 2020; 10:140. [PMID: 33372630 PMCID: PMC7720519 DOI: 10.1186/s13578-020-00507-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the leading cause of chronic liver disease worldwide and the anticipated health burden is huge. There are limited therapeutic approaches for NAFLD now. It’s imperative to get a better understanding of the disease pathogenesis if new treatments are to be discovered. As the hepatic manifestation of metabolic syndrome, this disease involves complex interactions between different organs and regulatory pathways. It’s increasingly clear that brain, gut and adipose tissue all contribute to NAFLD pathogenesis and development, in view of their roles in energy homeostasis. In the present review, we try to summarize currently available data regarding NAFLD pathogenesis and to lay a particular emphasis on the inter-organ crosstalk evidence.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China. .,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, China.
| |
Collapse
|
13
|
Malbert CH, Chauvin A, Horowitz M, Jones KL. Pancreatic GLP-1r binding potential is reduced in insulin-resistant pigs. BMJ Open Diabetes Res Care 2020; 8:8/2/e001540. [PMID: 33132211 PMCID: PMC7607594 DOI: 10.1136/bmjdrc-2020-001540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The insulinotropic capacity of exogenous glucagon like peptide-1 (GLP-1) is reduced in type 2 diabetes and the insulin-resistant obese. We have tested the hypothesis that this response is the consequence of a reduced pancreatic GLP-1 receptor (GLP-1r) density in insulin-resistant obese animals. RESEARCH DESIGN AND METHODS GLP-1r density was measured in lean and insulin-resistant adult miniature pigs after the administration of a 68Ga-labeled GLP-1r agonist. The effect of hyperinsulinemia on GLP-1r was assessed using sequential positron emission tomography (PET), both in the fasted state and during a clamp. The impact of tissue perfusion, which could account for changes in GLP-1r agonist uptake, was also investigated using 68Ga-DOTA imaging. RESULTS GLP-1r binding potential in the obese pancreas was reduced by 75% compared with lean animals. Similar reductions were evident for fat tissue, but not for the duodenum. In the lean group, induced hyperinsulinemia reduced pancreatic GLP-1r density to a level comparable with that of the obese group. The reduction in blood to tissue transfer of the GLP-1r ligand paralleled that of tissue perfusion estimated using 68Ga-DOTA. CONCLUSIONS These observations establish that a reduction in abdominal tissue perfusion and a lower GLP-1r density account for the diminished insulinotropic effect of GLP-1 agonists in type 2 diabetes.
Collapse
Affiliation(s)
| | - Alain Chauvin
- UEPR Unit, Department of Animal Physiology, INRAE, Saint-Gilles, France
| | - Michael Horowitz
- Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Karen L Jones
- Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Al Helaili A, Park SJ, Beyak MJ. Chronic high fat diet impairs glucagon like peptide-1 sensitivity in vagal afferents. Biochem Biophys Res Commun 2020; 533:110-117. [PMID: 32943186 DOI: 10.1016/j.bbrc.2020.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022]
Abstract
Dysfunction of the gut-brain axis is one of the potential contributors to the pathophysiology of obesity and is therefore a potential target for treatment. Vagal afferents innervating the gut play an important role in controlling energy homeostasis. There is an increasing evidence for the role of vagal afferents in mediating the anorexigenic effects of glucagon-like peptide-1 (GLP-1), an important satiety and incretin hormone. This study aimed to examine the effect of chronic high fat diet on GLP-1 sensitivity in vagal afferents. C57/BL6 mice were fed either a high-fat or low-fat diet for 6-8 weeks. To evaluate gastrointestinal afferent sensitivity and nodose neurons' response to GLP-1, extracellular afferent recordings and patch clamp were performed, respectively. Exendin-4 (Ex-4) was used as an agonist of the GLP-1 receptor. C-Fos Expression was examined as an indication of afferent input to the nucleus tractus solitarius (NTS). Food intake was monitored in real-time before and after Ex-4 treatment to monitor the consequence of the high fat diet on the satiating effect of GLP-1. In high fat fed (HFF) mice, GLP-1 caused lower activation of intestinal afferent nerves, and failed to potentiate mechanosensitive nerve responses compared to low fat fed (LFF). GLP-1 increased excitability in LFF and this effect was reduced in HFF neurons. Consistent with these findings on vagal afferent nerves, GLP-1 receptor stimulation given systemically, had a reduced satiating effect in HFF compared to LFF mice, and neuronal activation in the NTS was also reduced. The present study demonstrated chronic high fat diet impaired vagal afferent responses to GLP-1, resulting in impaired satiety signaling. GLP-1 sensitivity may account for the impairment of satiety signaling in obesity and thus a therapeutic target for obesity treatment.
Collapse
Affiliation(s)
- Alaa Al Helaili
- Mohammed Al Mana College for Medical Sciences, Abdulrazaq Bin Hammam Street, Al Safa, Dammam 34222, Saudi Arabia
| | - Sung Jin Park
- Gastrointestinal Disease Research Unit, Queen's University, Kingston, ON, K7L2V7, Canada
| | - Michael J Beyak
- Gastrointestinal Disease Research Unit, Queen's University, Kingston, ON, K7L2V7, Canada.
| |
Collapse
|
15
|
Krieger JP. Intestinal glucagon-like peptide-1 effects on food intake: Physiological relevance and emerging mechanisms. Peptides 2020; 131:170342. [PMID: 32522585 DOI: 10.1016/j.peptides.2020.170342] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/01/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
The gut-brain hormone glucagon-like peptide-1 (GLP-1) has received immense attention over the last couple of decades for its widespread metabolic effects. Notably, intestinal GLP-1 has been recognized as an endogenous satiation signal. Yet, the underlying mechanisms and the pathophysiological relevance of intestinal GLP-1 in obesity remain unclear. This review first recapitulates early findings indicating that intestinal GLP-1 is an endogenous satiation signal, whose eating effects are primarily mediated by vagal afferents. Second, on the basis of recent findings challenging a paracrine action of intestinal GLP-1, a new model for the mediation of GLP-1 effects on eating by two discrete vagal afferent subsets will be proposed. The central mechanisms processing the vagal anorexigenic signals need however to be further delineated. Finally, the idea that intestinal GLP-1 secretion and/or effects on eating are altered in obesity and play a pathophysiological role in the development of obesity will be discussed. In summary, despite the successful therapeutic use of GLP-1 receptor agonists as anti-obesity drugs, the eating effects of intestinal GLP-1 still remain to be elucidated. Specifically, the findings presented here call for a further evaluation of the vago-central neuronal substrates activated by intestinal GLP-1 and for further investigation of its pathophysiological role in obesity.
Collapse
Affiliation(s)
- Jean-Philippe Krieger
- Department of Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
16
|
Buckley MM, O'Brien R, Brosnan E, Ross RP, Stanton C, Buckley JM, O'Malley D. Glucagon-Like Peptide-1 Secreting L-Cells Coupled to Sensory Nerves Translate Microbial Signals to the Host Rat Nervous System. Front Cell Neurosci 2020; 14:95. [PMID: 32425756 PMCID: PMC7203556 DOI: 10.3389/fncel.2020.00095] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
An intact gut epithelium preserves the immunological exclusion of “non-self” entities in the external environment of the gut lumen. Nonetheless, information flows continuously across this interface, with the host immune, endocrine, and neural systems all involved in monitoring the luminal environment of the gut. Both pathogenic and commensal gastrointestinal (GI) bacteria can modulate centrally-regulated behaviors and brain neurochemistry and, although the vagus nerve has been implicated in the microbiota-gut-brain signaling axis, the cellular and molecular machinery that facilitates this communication is unclear. Studies were carried out in healthy Sprague–Dawley rats to understand cross-barrier communication in the absence of disease. A novel colonic-nerve electrophysiological technique was used to examine gut-to-brain vagal signaling by bacterial products. Calcium imaging and immunofluorescent labeling were used to explore the activation of colonic submucosal neurons by bacterial products. The findings demonstrate that the neuromodulatory molecule, glucagon-like peptide-1 (GLP-1), secreted by colonic enteroendocrine L-cells in response to the bacterial metabolite, indole, stimulated colonic vagal afferent activity. At a local level indole modified the sensitivity of submucosal neurons to GLP-1. These findings elucidate a cellular mechanism by which sensory L-cells act as cross-barrier signal transducers between microbial products in the gut lumen and the host peripheral nervous system.
Collapse
Affiliation(s)
- Maria M Buckley
- Department of Physiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Rebecca O'Brien
- Department of Physiology, University College Cork, Cork, Ireland
| | - Eilish Brosnan
- Department of Physiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,College of Science, Engineering and Food Science, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Cork, Ireland
| | - Julliette M Buckley
- Department of Surgery, University College Cork, Cork, Ireland.,Mater Private Hospital, Cork, Ireland
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Volcko KL, Carroll QE, Brakey DJ, Daniels D. High-fat diet alters fluid intake without reducing sensitivity to glucagon-like peptide-1 receptor agonist effects. Physiol Behav 2020; 221:112910. [PMID: 32283107 DOI: 10.1016/j.physbeh.2020.112910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
Abstract
Rats that are maintained on a high-fat diet (HFD) differ from controls in many ways, but how HFD maintenance affects water intake and drinking behavior has not been well studied. This is unfortunate because diet and obesity may influence fluid balance in humans through a mechanism that is poorly understood. We therefore tested the hypothesis that HFD maintenance affects water intake in rats. Water intake and drinking behavior are, in part, controlled by the actions of glucagon-like peptide-1 (GLP-1), a peptide which is well studied for its hypophagic effects. Previous studies have shown that HFD maintenance impairs the ability of GLP-1 receptor agonists to suppress food intake when the drug is administered peripherally, but not centrally. The effects of GLP-1 on fluid intake are thought to rely more on central receptor activation; therefore, a secondary aim of these experiments was to shed additional light on the location of GLP-1 responsive cells that mediate feeding vs drinking behavior. We maintained male Sprague-Dawley rats on HFD or low-fat diet (LFD) for six weeks and measured body weight, food intake, water intake, and drinking behavior. We then tested the relative contributions of diet and body weight on food intake and water intake after peripheral and central injections of GLP-1 receptor agonist Exendin-4 (Ex4). We found that HFD maintenance reduced the amount of water consumed, when intake was corrected for body weight. Consistent with other reports, rats on HFD showed a smaller suppression of food intake when given Ex4 peripherally, but not centrally. Water intake suppression when given Ex4 did not differ by diet or body weight regardless of injection site, however, adding support to the hypothesis that only central GLP-1 receptors are involved in water intake.
Collapse
Affiliation(s)
- K Linnea Volcko
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260 USA; Behavioral Neuroscience Program, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
| | - Quinn E Carroll
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260 USA; Behavioral Neuroscience Program, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
| | - Destiny J Brakey
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260 USA; Behavioral Neuroscience Program, University at Buffalo, State University of New York, Buffalo, NY 14260 USA
| | - Derek Daniels
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260 USA; Behavioral Neuroscience Program, University at Buffalo, State University of New York, Buffalo, NY 14260 USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260 USA.
| |
Collapse
|
18
|
Hira T, Pinyo J, Hara H. What Is GLP-1 Really Doing in Obesity? Trends Endocrinol Metab 2020; 31:71-80. [PMID: 31636017 DOI: 10.1016/j.tem.2019.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/28/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone released in response to meal ingestion and enhances insulin secretion from pancreatic β cells. In several human studies, GLP-1 secretory responses to oral glucose load or a meal were decreased in subjects with obesity, glucose intolerance, or diabetes compared with those in healthy subjects. However, the results of meta-analysis and cohort studies do not necessarily support this concept. Results from animal studies are also inconsistent; in multiple studies, GLP-1 secretory responses to a meal were repeatedly higher in diet-induced obese rats than in control rats. Thus, the postprandial GLP-1 response is not necessarily decreased but rather enhanced during obesity development, which is likely to play a protective role against glucose intolerance.
Collapse
Affiliation(s)
- Tohru Hira
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan; Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| | - Jukkrapong Pinyo
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hiroshi Hara
- Department of Food Science and Human Nutrition, Fuji Women's University, Ishikari, Hokkaido, Japan
| |
Collapse
|
19
|
Singh A, Zapata RC, Pezeshki A, Workentine ML, Chelikani PK. Host genetics and diet composition interact to modulate gut microbiota and predisposition to metabolic syndrome in spontaneously hypertensive stroke-prone rats. FASEB J 2019; 33:6748-6766. [PMID: 30821497 DOI: 10.1096/fj.201801627rrr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolic syndrome encompasses obesity, glucose intolerance, hypertension, and dyslipidemia; however, the interactions between diet and host physiology that predispose to metabolic syndrome are incompletely understood. Here, we explored the effects of a high-fat diet (HFD) on energy balance, gut microbiota, and risk factors of metabolic syndrome in spontaneously hypertensive stroke-prone (SHRSP) and Wistar-Kyoto (WKY) rats. We found that the SHRSP rats were hypertensive, hyperphagic, less sensitive to hypophagic effects of exendin-4, and expended more energy with diminished sensitivity to sympathetic blockade compared to WKY rats. Notably, key thermogenic markers in brown and retroperitoneal adipose tissues and skeletal muscle were up-regulated in SHRSP than WKY rats. Although HFD promoted weight gain, adiposity, glucose intolerance, hypertriglyceridemia, hepatic lipidosis, and hyperleptinemia in both SHRSP and WKY rats, the SHRSP rats weighed less but had comparable percent adiposity to WKY rats, which supports the use of HFD-fed SHRSP rats as a unique model for studying the metabolically obese normal weight (MONW) phenotype in humans. Despite distinct strain differences in gut microbiota composition, diet had a preponderant impact on gut flora with some of the taxa being strongly associated with key metabolic parameters. Together, we provide evidence that interactions between host genetics and diet modulate gut microbiota and predispose SHRSP rats to develop metabolic syndrome.-Singh, A., Zapata, R. C., Pezeshki, A., Workentine, M. L., Chelikani, P. K. Host genetics and diet composition interact to modulate gut microbiota and predisposition to metabolic syndrome in spontaneously hypertensive stroke-prone rats.
Collapse
Affiliation(s)
- Arashdeep Singh
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rizaldy C Zapata
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Matthew L Workentine
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Prasanth K Chelikani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Gastrointestinal Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
20
|
Clyburn C, Browning KN. Role of astroglia in diet-induced central neuroplasticity. J Neurophysiol 2019; 121:1195-1206. [PMID: 30699056 DOI: 10.1152/jn.00823.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Obesity, characterized by increased adiposity that develops when energy intake outweighs expenditure, is rapidly becoming a serious health crisis that affects millions of people worldwide and is associated with severe comorbid disorders including hypertension, cardiovascular disease, and type II diabetes. Obesity is also associated with the dysregulation of central neurocircuits involved in the control of autonomic, metabolic, and cognitive functions. Systemic inflammation associated with diet-induced obesity (DIO) has been proposed to be responsible for the development of these comorbidities as well as the dysregulation of central neurocircuits. A growing body of evidence suggests, however, that exposure to a high-fat diet (HFD) may cause neuroinflammation and astroglial activation even before systemic inflammation develops, which may be sufficient to cause dysregulation of central neurocircuits involved in energy homeostasis before the development of obesity. The purpose of this review is to summarize the current literature exploring astroglial-dependent modulation of central circuits following exposure to HFD and DIO, including not only dysregulation of neurocircuits involved in energy homeostasis and feeding behavior, but also the dysregulation of learning, memory, mood, and reward pathways.
Collapse
Affiliation(s)
- Courtney Clyburn
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
21
|
Zhou L, Cai X, Luo Y, Zhang F, Ji L. Baseline Triglyceride Level Affected the Efficacy of Vildagliptin in Treating Type 2 Diabetes: A Post Hoc Analysis of the VISION Study. J Diabetes Res 2019; 2019:9347132. [PMID: 31485457 PMCID: PMC6702809 DOI: 10.1155/2019/9347132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/05/2019] [Indexed: 12/03/2022] Open
Abstract
Identifying factors that may impact vildagliptin's efficacy could contribute to individualized treatment for patients with type 2 diabetes. In the current study, we aimed to assess the correlation between patient baseline triglyceride (TG) and efficacy of vildagliptin in Chinese patients with type 2 diabetes in a post hoc analysis of the VISION study. TG-based subgroup analysis was performed to evaluate baseline TG's impact on the decrease of glycated hemoglobin (HbA1c) in patients receiving vildagliptin plus low-dose metformin (VLDM) vs. high-dose metformin (HDM). Additionally, multivariate linear regression was performed to assess the association between baseline TG and HbA1c reduction at weeks 12 and 24 for patients receiving VLDM vs. HDM. For patients receiving VLDM, baseline TG ≤ 2.03 mmol/L was associated with significantly greater HbA1c reduction vs. TG > 2.03 mmol/L at week 12, but not at week 24. Additionally, multivariate linear regression analysis revealed a significant independent association and an association short of statistical significance between patient baseline TG and the HbA1c-reducing efficacy of VLDM at weeks 12 (P < 0.001) and 24 (P = 0.082), respectively, while such association was absent for HDM. Collectively, baseline TG was an independent predictive factor for the efficacy of a dipeptidyl peptidase-IV in treating type 2 diabetes during its initial use.
Collapse
Affiliation(s)
- Lingli Zhou
- Peking University People's Hospital, 11 Xizhimen Street, Xicheng District, Beijing 100044, China
| | - Xiaoling Cai
- Peking University People's Hospital, 11 Xizhimen Street, Xicheng District, Beijing 100044, China
| | - Yingying Luo
- Peking University People's Hospital, 11 Xizhimen Street, Xicheng District, Beijing 100044, China
| | - Fang Zhang
- Peking University People's Hospital, 11 Xizhimen Street, Xicheng District, Beijing 100044, China
| | - Linong Ji
- Peking University People's Hospital, 11 Xizhimen Street, Xicheng District, Beijing 100044, China
| |
Collapse
|
22
|
Wolak M, Staszewska T, Juszczak M, Gałdyszyńska M, Bojanowska E. Anti-inflammatory and pro-healing impacts of exendin-4 treatment in Zucker diabetic rats: Effects on skin wound fibroblasts. Eur J Pharmacol 2018; 842:262-269. [PMID: 30391742 DOI: 10.1016/j.ejphar.2018.10.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023]
Abstract
Using male Zucker diabetic fatty (ZDF) rats implanted subcutaneously with polyethylene mesh pieces stimulating granulation tissue development, we investigated the effects of the in vivo and in vitro treatment with exendin-4, a glucagon-like peptide-1 agonist displaying a variety of antidiabetic actions, on the markers of metabolism, inflammation, and healing in addition to skin wound fibroblast/myofibroblast activities. Exendin-4 at increasing doses of 3-10 μg/kg or 0.9% saline was injected daily to ZDF rats pre-implanted with the mesh for 3 weeks. Then, fibroblasts/myofibroblasts isolated from the granulation tissue in both groups were further exposed in vitro to exendin-4 at concentrations of 0-100 nmol/l. After a 3-week administration period, cumulative food and water intake and body weight were reduced significantly. The serum and fibroblast culture medium C-reactive protein (CRP) concentrations and matrix metalloprotease-9/tissue matrix metalloproteinase inhibitor-1 (MMP-9/TIMP-1) ratio in the fibroblast culture medium were diminished significantly in the exendin-4 pretreated group, indicating the increased expression of anti-inflammatory and pro-healing biomarkers. In vivo exendin-4 treatment also increased the number of living fibroblasts/myofibroblasts in cell cultures. The subsequent in vitro exposure to exendin-4 significantly increased metabolic activity and total collagen content in fibroblast/myofibroblast colonies derived from exendin-4-pretreated rats but reduced the number of viable cells. A cytotoxic effect was noted at the highest exendin-4 concentrations used. To conclude, the treatment of diabetic rats with exendin-4 had beneficial effects on systemic and tissue metabolic, inflammatory, and healing markers and on fibroblast functions crucial for wound repair but showed some cytotoxicity on these cells.
Collapse
Affiliation(s)
- Monika Wolak
- Department of Behavioral Pathophysiology, Medical University of Łódź, 60 Narutowicza Street, 90-136 Łódź, Poland
| | - Teresa Staszewska
- Department of Behavioral Pathophysiology, Medical University of Łódź, 60 Narutowicza Street, 90-136 Łódź, Poland
| | - Marlena Juszczak
- Department of Pathophysiology and Experimental Neuroendocrinology, Medical University of Łódź, 60 Narutowicza Street, 90-136 Łódź, Poland
| | - Małgorzata Gałdyszyńska
- Department of Neuropeptide Research, Medical University of Łódź, 60 Narutowicza Street, 90-136 Łódź, Poland
| | - Ewa Bojanowska
- Department of Behavioral Pathophysiology, Medical University of Łódź, 60 Narutowicza Street, 90-136 Łódź, Poland.
| |
Collapse
|
23
|
Coveleskie K, Kilpatrick LA, Gupta A, Stains J, Connolly L, Labus JS, Sanmiguel C, Mayer EA. The effect of the GLP-1 analogue Exenatide on functional connectivity within an NTS-based network in women with and without obesity. Obes Sci Pract 2017; 3:434-445. [PMID: 29259802 PMCID: PMC5729499 DOI: 10.1002/osp4.124] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/05/2023] Open
Abstract
Objective The differential effect of GLP-1 agonist Exenatide on functional connectivity of the nucleus tractus solitaries (NTS), a key region associated with homeostasis, and on appetite-related behaviours was investigated in women with normal weight compared with women with obesity. Methods Following an 8-h fast, 19 female subjects (11 lean, 8 obese) participated in a 2-d double blind crossover study. Subjects underwent functional magnetic resonance imaging at fast and 30-min post subcutaneous injection of 5 μg of Exenatide or placebo. Functional connectivity was examined with the NTS. Drug-induced functional connectivity changes within and between groups and correlations with appetite measures were examined in a region of interest approach focusing on the thalamus and hypothalamus. Results Women with obesity reported less hunger after drug injection. Exenatide administration increased functional connectivity of the left NTS with the left thalamus and hypothalamus in the obese group only and increased the correlation between NTS functional connectivity and hunger scores in all subjects, but more so in the obese. Conclusions Obesity can impact the effects of Exenatide on brain connectivity, specifically in the NTS and is linked to changes in appetite control. This has implications for the use of GLP-1 analogues in therapeutic interventions.
Collapse
Affiliation(s)
- K. Coveleskie
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
| | - L. A. Kilpatrick
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUCLALos AngelesCAUSA
- David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesCAUSA
| | - A. Gupta
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUCLALos AngelesCAUSA
- David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesCAUSA
| | - J. Stains
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
| | - L. Connolly
- David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesCAUSA
| | - J. S. Labus
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUCLALos AngelesCAUSA
- David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesCAUSA
| | - C. Sanmiguel
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUCLALos AngelesCAUSA
- David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesCAUSA
| | - E. A. Mayer
- G Oppenheimer Center for Neurobiology of Stress and Resilience, Ingestive Behavior & Obesity ProgramUCLALos AngelesCAUSA
- Vatche and Tamar Manoukin Division of Digestive DiseasesUCLALos AngelesCAUSA
- Ahmanson‐Lovelace Brain Mapping CenterUCLALos AngelesCAUSA
- David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesCAUSA
| |
Collapse
|
24
|
Mella R, Schmidt CB, Romagnoli PP, Teske JA, Perez-Leighton C. The Food Environment, Preference, and Experience Modulate the Effects of Exendin-4 on Food Intake and Reward. Obesity (Silver Spring) 2017; 25:1844-1851. [PMID: 29086500 DOI: 10.1002/oby.21939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The obesogenic food environment facilitates access to multiple palatable foods. Exendin-4 (EX4) is a glucagon-like peptide 1 receptor (GLP1R) agonist that inhibits food intake and has been proposed as an obesity therapy. This study tested whether the composition of the food environment and experience with palatable foods modulate the effects of EX4 on food intake and reward. METHODS Mice fed a cafeteria (CAF) or control diet were tested for the anorectic effects of EX4 when simultaneously offered foods of varying individual preference and in a conditioned place preference (CPP) test for chocolate. Plasma glucagon-like peptide 1 (GLP1) and hypothalamic GLP1R mRNA were analyzed post mortem. RESULTS Mice fed a CAF diet developed individual food preference patterns. Offering mice either novel or highly preferred foods decreased the potency of EX4 to inhibit food intake compared to low preference foods or chow. Compared to the control diet, CAF diet intake blocked the decrease in chocolate CPP caused by EX4 and decreased the expression of hypothalamic GLP1R mRNA without altering the plasma GLP1 concentration. CONCLUSIONS The composition of the food environment, food preference, and experience modulate the ability of EX4 to inhibit food intake and reward. These data highlight the significance of modeling the complexity of the human food environment in preclinical obesity studies.
Collapse
Affiliation(s)
- Ricardo Mella
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Camila B Schmidt
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Pierre-Paul Romagnoli
- Department of Mathematics, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Jennifer A Teske
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
- Minnesota Obesity Center, University of Minnesota, Saint Paul, Minnesota, USA
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
- Minneapolis Veterans Affairs Health Care System, Minneapolis, Minnesota, USA
| | - Claudio Perez-Leighton
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
25
|
McMenamin CA, Travagli RA, Browning KN. Inhibitory neurotransmission regulates vagal efferent activity and gastric motility. Exp Biol Med (Maywood) 2017; 241:1343-50. [PMID: 27302177 DOI: 10.1177/1535370216654228] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The gastrointestinal tract receives extrinsic innervation from both the sympathetic and parasympathetic nervous systems, which regulate and modulate the function of the intrinsic (enteric) nervous system. The stomach and upper gastrointestinal tract in particular are heavily influenced by the parasympathetic nervous system, supplied by the vagus nerve, and disruption of vagal sensory or motor functions results in disorganized motility patterns, disrupted receptive relaxation and accommodation, and delayed gastric emptying, amongst others. Studies from several laboratories have shown that the activity of vagal efferent motoneurons innervating the upper GI tract is inhibited tonically by GABAergic synaptic inputs from the adjacent nucleus tractus solitarius. Disruption of this influential central GABA input impacts vagal efferent output, hence gastric functions, significantly. The purpose of this review is to describe the development, physiology, and pathophysiology of this functionally dominant inhibitory synapse and its role in regulating vagally determined gastric functions.
Collapse
Affiliation(s)
- Caitlin A McMenamin
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
26
|
Grasset E, Puel A, Charpentier J, Collet X, Christensen JE, Tercé F, Burcelin R. A Specific Gut Microbiota Dysbiosis of Type 2 Diabetic Mice Induces GLP-1 Resistance through an Enteric NO-Dependent and Gut-Brain Axis Mechanism. Cell Metab 2017; 25:1075-1090.e5. [PMID: 28467926 DOI: 10.1016/j.cmet.2017.04.013] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/01/2017] [Accepted: 04/13/2017] [Indexed: 12/22/2022]
Abstract
Glucagon-like peptide-1 (GLP-1)-based therapies control glycemia in type 2 diabetic (T2D) patients. However, in some patients the treatment must be discontinued, defining a state of GLP-1 resistance. In animal models we identified a specific set of ileum bacteria impairing the GLP-1-activated gut-brain axis for the control of insulin secretion and gastric emptying. Using prediction algorithms, we identified bacterial pathways related to amino acid metabolism and transport system modules associated to GLP-1 resistance. The conventionalization of germ-free mice demonstrated their role in enteric neuron biology and the gut-brain-periphery axis. Altogether, insulin secretion and gastric emptying require functional GLP-1 receptor and neuronal nitric oxide synthase in the enteric nervous system within a eubiotic gut microbiota environment. Our data open a novel route to improve GLP-1-based therapies.
Collapse
Affiliation(s)
- Estelle Grasset
- Institut National de la Santé et de la Recherche Médicale (INSERM), 31024 Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure, F-31432 Toulouse, Cedex 4, France
| | - Anthony Puel
- Institut National de la Santé et de la Recherche Médicale (INSERM), 31024 Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure, F-31432 Toulouse, Cedex 4, France
| | - Julie Charpentier
- Institut National de la Santé et de la Recherche Médicale (INSERM), 31024 Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure, F-31432 Toulouse, Cedex 4, France
| | - Xavier Collet
- Institut National de la Santé et de la Recherche Médicale (INSERM), 31024 Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure, F-31432 Toulouse, Cedex 4, France
| | - Jeffrey E Christensen
- Institut National de la Santé et de la Recherche Médicale (INSERM), 31024 Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure, F-31432 Toulouse, Cedex 4, France
| | - François Tercé
- Institut National de la Santé et de la Recherche Médicale (INSERM), 31024 Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure, F-31432 Toulouse, Cedex 4, France
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), 31024 Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure, F-31432 Toulouse, Cedex 4, France.
| |
Collapse
|
27
|
Page AJ, Kentish SJ. Plasticity of gastrointestinal vagal afferent satiety signals. Neurogastroenterol Motil 2017; 29. [PMID: 27781333 DOI: 10.1111/nmo.12973] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022]
Abstract
The vagal link between the gastrointestinal tract and the central nervous system (CNS) has numerous vital functions for maintaining homeostasis. The regulation of energy balance is one which is attracting more and more attention due to the potential for exploiting peripheral hormonal targets as treatments for conditions such as obesity. While physiologically, this system is well tuned and demonstrated to be effective in the regulation of both local function and promoting/terminating food intake the neural connection represents a susceptible pathway for disruption in various disease states. Numerous studies have revealed that obesity in particularly is associated with an array of modifications in vagal afferent function from changes in expression of signaling molecules to altered activation mechanics. In general, these changes in vagal afferent function in obesity further promote food intake instead of the more desirable reduction in food intake. It is essential to gain a comprehensive understanding of the mechanisms responsible for these detrimental effects before we can establish more effective pharmacotherapies or lifestyle strategies for the treatment of obesity and the maintenance of weight loss.
Collapse
Affiliation(s)
- A J Page
- Centre for Nutrition and Gastrointestinal Disease, Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia.,Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - S J Kentish
- Centre for Nutrition and Gastrointestinal Disease, Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia.,Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,School of Medicine, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
28
|
Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev 2017; 97:411-463. [PMID: 28003328 PMCID: PMC6151490 DOI: 10.1152/physrev.00031.2014] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.
Collapse
Affiliation(s)
- Robert E Steinert
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Lori Asarian
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christoph Beglinger
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Nori Geary
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
29
|
Bauer PV, Hamr SC, Duca FA. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota. Cell Mol Life Sci 2016; 73:737-55. [PMID: 26542800 PMCID: PMC11108299 DOI: 10.1007/s00018-015-2083-z] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
Abstract
Despite significant progress in understanding the homeostatic regulation of energy balance, successful therapeutic options for curbing obesity remain elusive. One potential target for the treatment of obesity is via manipulation of the gut-brain axis, a complex bidirectional communication system that is crucial in maintaining energy homeostasis. Indeed, ingested nutrients induce secretion of gut peptides that act either via paracrine signaling through vagal and non-vagal neuronal relays, or in an endocrine fashion via entry into circulation, to ultimately signal to the central nervous system where appropriate responses are generated. We review here the current hypotheses of nutrient sensing mechanisms of enteroendocrine cells, including the release of gut peptides, mainly cholecystokinin, glucagon-like peptide-1, and peptide YY, and subsequent gut-to-brain signaling pathways promoting a reduction of food intake and an increase in energy expenditure. Furthermore, this review highlights recent research suggesting this energy regulating gut-brain axis can be influenced by gut microbiota, potentially contributing to the development of obesity.
Collapse
Affiliation(s)
- Paige V Bauer
- Department of Medicine, Toronto General Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sophie C Hamr
- Department of Medicine, Toronto General Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Frank A Duca
- Department of Medicine, Toronto General Research Institute, UHN, Toronto, ON, M5G 1L7, Canada.
- MaRS Centre, Toronto Medical Discovery Tower, Room 10-701H, 101 College Street, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
30
|
Impact of Diet Composition in Adult Offspring is Dependent on Maternal Diet during Pregnancy and Lactation in Rats. Nutrients 2016; 8:nu8010046. [PMID: 26784224 PMCID: PMC4728659 DOI: 10.3390/nu8010046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 12/25/2022] Open
Abstract
The Thrifty Phenotype Hypothesis proposes that the fetus takes cues from the maternal environment to predict its postnatal environment. A mismatch between the predicted and actual environments precipitates an increased risk of chronic disease. Our objective was to determine if, following a high fat, high sucrose (HFS) diet challenge in adulthood, re-matching offspring to their maternal gestational diet would improve metabolic health more so than if there was no previous exposure to that diet. Animals re-matched to a high prebiotic fiber diet (HF) had lower body weight and adiposity than animals re-matched to a high protein (HP) or control (C) diet and also had increased levels of the satiety hormones GLP-1 and PYY (p < 0.05). Control animals, whether maintained throughout the study on AIN-93M, or continued on HFS rather than reverting back to AIN-93M, did not differ from each other in body weight or adiposity. Overall, the HF diet was associated with the most beneficial metabolic phenotype (body fat, glucose control, satiety hormones). The HP diet, as per our previous work, had detrimental effects on body weight and adiposity. Findings in control rats suggest that the obesogenic potential of the powdered AIN-93 diet warrants investigation.
Collapse
|
31
|
Posovszky C, Wabitsch M. Regulation of appetite, satiation, and body weight by enteroendocrine cells. Part 2: therapeutic potential of enteroendocrine cells in the treatment of obesity. Horm Res Paediatr 2015; 83:11-8. [PMID: 25592084 DOI: 10.1159/000369555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/28/2014] [Indexed: 11/19/2022] Open
Abstract
Obesity is an epidemic and medical issue. Investigating the pathways regulating appetite, food intake, and body weight is crucial to find strategies for the prevention and treatment of obesity. In the context of therapeutic strategies, we focus here on the potential of enteroendocrine cells (EECs) and their secreted hormones in the regulation of body weight. We review the role of the enteroendocrine system during weight loss after lifestyle intervention or after bariatric surgery. We discuss the therapeutic potential of EECs and their hormones as targets for new treatment strategies. In fact, targeting nutrient receptors of EECs with a nutritional approach, pharmaceutical agents or prebiotics delivered to the lumen may provide a promising new approach.
Collapse
Affiliation(s)
- Carsten Posovszky
- University Outpatient Clinic for Pediatric Gastroenterology and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | |
Collapse
|
32
|
Krieger JP, Langhans W, Lee SJ. Vagal mediation of GLP-1's effects on food intake and glycemia. Physiol Behav 2015; 152:372-80. [DOI: 10.1016/j.physbeh.2015.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 12/17/2022]
|
33
|
Duca FA, Katebzadeh S, Covasa M. Impaired GLP-1 signaling contributes to reduced sensitivity to duodenal nutrients in obesity-prone rats during high-fat feeding. Obesity (Silver Spring) 2015; 23:2260-8. [PMID: 26530935 DOI: 10.1002/oby.21231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Increased consumption of a high-fat (HF) diet is a salient contributor to obesity; however, how diminished satiation signaling contributes to overconsumption and obesity development remains poorly understood. METHODS Using obese-prone (OP) and obese-resistant (OR) rats, we tested feeding responses to intragastric liquid meal replacement, prior and after HF feeding. Next, chow- and HF-fed OP and OR rats were tested for sensitivity to intraduodenal glucose, intralipid, and meal replacement loads. To examine the role of glucagon-like peptide-1 (GLP-1) and vagal signaling, animals were treated with exendin-9, GLP-1 receptor antagonist, prior to meal replacement infusion, and Fos-like immunoreactivity (Fos-Li) in the dorsal hindbrain was examined after infusion. RESULTS OP and OR rats reduced chow intake equally following gastric liquid meal; however, after 2 weeks of HF feeding, intragastric meal replacement reduced food intake less in OP than OR. Similarly, HF feeding, but not chow, diminished the suppressive effects of intraduodenal meal replacement, glucose, and intralipid in OP compared to OR. This effect was associated with lower Fos-Li expression in the dorsal hindbrain of OP rats. Finally, exendin-9 failed to attenuate reduction of food intake by meal replacement in OP rats during HF feeding. CONCLUSIONS Susceptibility to obesity coupled with HF feeding results in rapid impairments in nutrient-induced satiation through blunted responses in endogenous GLP-1 and hindbrain vagal afferent signaling.
Collapse
Affiliation(s)
- Frank A Duca
- Toronto General Research Institute and Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Shahbaz Katebzadeh
- College of Dental Medicine, Western University of the Health Sciences, Pomona, California, USA
| | - Mihai Covasa
- College of Osteopathic Medicine, Department of Basic Medical Sciences, Western University of the Health Sciences, Pomona, California, USA
- Department of Health and Human Development, University "Stefan Cel Mare" Suceava, Suceava, Romania
| |
Collapse
|
34
|
Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 2015; 4:1339-68. [PMID: 25428846 DOI: 10.1002/cphy.c130055] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | | |
Collapse
|
35
|
Ratner C, Madsen AN, Kristensen LV, Skov LJ, Pedersen KS, Mortensen OH, Knudsen GM, Raun K, Holst B. Impaired oxidative capacity due to decreased CPT1b levels as a contributing factor to fat accumulation in obesity. Am J Physiol Regul Integr Comp Physiol 2015; 308:R973-82. [DOI: 10.1152/ajpregu.00219.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 03/09/2015] [Indexed: 02/05/2023]
Abstract
To characterize mechanisms responsible for fat accumulation we used a selectively bred obesity-prone (OP) and obesity-resistant (OR) rat model where the rats were fed a Western diet for 76 days. Body composition was assessed by magnetic resonance imaging scans, and as expected, the OP rats developed a higher degree of fat accumulation compared with OR rats. Indirect calorimetry showed that the OP rats had higher respiratory exchange ratio (RER) compared with OR rats, indicating an impaired ability to oxidize fat. The OP rats had lower expression of carnitine palmitoyltransferase 1b in intra-abdominal fat, and higher expression of stearoyl-CoA desaturase 1 in subcutaneous fat compared with OR rats, which could explain the higher fat accumulation and RER values. Basal metabolic parameters were also examined in juvenile OP and OR rats before and during the introduction of the Western diet. Juvenile OP rats likewise had higher RER values, indicating that this trait may be a primary and contributing factor to their obese phenotype. When the adult obese rats were exposed to the orexigenic and adipogenic hormone ghrelin, we observed increased RER values in both OP and OR rats, while OR rats were more sensitive to the orexigenic effects of ghrelin as well as ghrelin-induced attenuation of activity and energy expenditure. Thus increased fat accumulation characterizing obesity may be caused by impaired oxidative capacity due to decreased carnitine palmitoyltransferase 1b levels in the white adipose tissue, whereas ghrelin sensitivity did not seem to be a contributing factor.
Collapse
Affiliation(s)
- Cecilia Ratner
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, The Novo Nordisk Foundation Center for basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Nygaard Madsen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, The Novo Nordisk Foundation Center for basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Line Vildbrad Kristensen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, The Novo Nordisk Foundation Center for basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Louise Julie Skov
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, The Novo Nordisk Foundation Center for basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Seide Pedersen
- Department of Biomedical Sciences, Cellular and Metabolic Research Section, Symbion, Copenhagen, Denmark
| | - Ole Hartvig Mortensen
- Department of Biomedical Sciences, Cellular and Metabolic Research Section, Symbion, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; and
| | - Kirsten Raun
- Novo Nordisk Diabetes Research Unit, Novo Nordisk A/S, Maaloev, Denmark
| | - Birgitte Holst
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, The Novo Nordisk Foundation Center for basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Protein kinase Cβ mediates downregulated expression of glucagon-like peptide-1 receptor in hypertensive rat renal arteries. J Hypertens 2015; 33:784-90; discussion 790. [DOI: 10.1097/hjh.0000000000000480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Kentish SJ, Page AJ. The role of gastrointestinal vagal afferent fibres in obesity. J Physiol 2014; 593:775-86. [PMID: 25433079 DOI: 10.1113/jphysiol.2014.278226] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/21/2014] [Indexed: 12/16/2022] Open
Abstract
Gastrointestinal (GI) vagal afferents are a key mediatory of food intake. Through a balance of responses to chemical and mechanical stimuli food intake can be tightly controlled via the ascending satiety signals initiated in the GI tract. However, vagal responses to both mechanical and chemical stimuli are modified in diet-induced obesity (DIO). Much of the research to date whilst in relatively isolated/controlled circumstances indicates a shift between a balance of orexigenic and anorexigenic vagal signals to blunted anorexigenic and potentiated orexigenic capacity. Although the mechanism responsible for the DIO shift in GI vagal afferent signalling is unknown, one possible contributing factor is the gut microbiota. Nevertheless, whatever the mechanism, the observed changes in gastrointestinal vagal afferent signalling may underlie the pathophysiological changes in food consumption that are pivotal for the development and maintenance of obesity.
Collapse
Affiliation(s)
- Stephen J Kentish
- Discipline of Medicine, University of Adelaide, Frome Road, Adelaide, SA, 5005, Australia; Royal Adelaide Hospital, North Terrace, Adelaide, SA, 5000, Australia
| | | |
Collapse
|
38
|
Duca FA, Swartz TD, Covasa M. Effect of diet on preference and intake of sucrose in obese prone and resistant rats. PLoS One 2014; 9:e111232. [PMID: 25329959 PMCID: PMC4203826 DOI: 10.1371/journal.pone.0111232] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/29/2014] [Indexed: 01/03/2023] Open
Abstract
Increased orosensory stimulation from palatable diets and decreased feedback from gut signals have been proposed as contributing factors to obesity development. Whether altered taste functions associated with obesity are common traits or acquired deficits to environmental factors, such as a high-energy (HE)-diet, however, is not clear. To address this, we examined preference and sensitivity of increasing concentrations of sucrose solutions in rats prone (OP) and resistant (OR) to obesity during chow and HE feeding and measured lingual gene expression of the sweet taste receptor T1R3. When chow-fed, OP rats exhibited reduced preference and acceptance of dilute sucrose solutions, sham-fed less sucrose compared to OR rats, and had reduced lingual T1R3 gene expression. HE-feeding abrogated differences in sucrose preference and intake and lingual T1R3 expression between phenotypes. Despite similar sucrose intakes however, OP rats consumed significantly more total calories during 48-h two-bottle testing compared to OR rats. The results demonstrate that OP rats have an innate deficit for sweet taste detection, as illustrated by a reduction in sensitivity to sweets and reduced T1R3 gene expression; however their hyperphagia and subsequent obesity during HE-feeding is most likely not due to altered consumption of sweets.
Collapse
Affiliation(s)
- Frank A. Duca
- UMR 1319 MICALIS, Institut National de la Recherche Agronomique, Centre de Recherche de Jouy-, Jouy-en-Josas, France
- AgroParisTech, Jouy-en-Josas, France
| | - Timothy D. Swartz
- UMR 1319 MICALIS, Institut National de la Recherche Agronomique, Centre de Recherche de Jouy-, Jouy-en-Josas, France
- AgroParisTech, Jouy-en-Josas, France
| | - Mihai Covasa
- UMR 1319 MICALIS, Institut National de la Recherche Agronomique, Centre de Recherche de Jouy-, Jouy-en-Josas, France
- AgroParisTech, Jouy-en-Josas, France
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California, United States of America
- Department of Human Health and Development, University of Suceava, Suceava, Romania
- * E-mail:
| |
Collapse
|
39
|
Sakai T, Kusakabe T, Ebihara K, Aotani D, Yamamoto-Kataoka S, Zhao M, Gumbilai VMJ, Ebihara C, Aizawa-Abe M, Yamamoto Y, Noguchi M, Fujikura J, Hosoda K, Inagaki N, Nakao K. Leptin restores the insulinotropic effect of exenatide in a mouse model of type 2 diabetes with increased adiposity induced by streptozotocin and high-fat diet. Am J Physiol Endocrinol Metab 2014; 307:E712-9. [PMID: 25159327 DOI: 10.1152/ajpendo.00272.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Leptin may reduce pancreatic lipid deposition, which increases with progression of obesity and can impair β-cell function. The insulinotropic effect of glucagon-like peptide-1 (GLP-1) and the efficacy of GLP-1 receptor agonist are reduced associated with impaired β-cell function. In this study, we examined whether leptin could restore the efficacy of exenatide, a GLP-1 receptor agonist, in type 2 diabetes with increased adiposity. We chronically administered leptin (500 μg·kg⁻¹·day⁻¹) and/or exenatide (20 μg·kg⁻¹·day⁻¹) for 2 wk in a mouse model of type 2 diabetes with increased adiposity induced by streptozotocin and high-fat diet (STZ/HFD mice). The STZ/HFD mice exhibited hyperglycemia, overweight, increased pancreatic triglyceride level, and reduced glucose-stimulated insulin secretion (GSIS); moreover, the insulinotropic effect of exenatide was reduced. However, leptin significantly reduced pancreatic triglyceride level, and adding leptin to exenatide (LEP/EX) remarkably enhanced GSIS. These results suggested that the leptin treatment restored the insulinotropic effect of exenatide in the mice. In addition, LEP/EX reduced food intake, body weight, and triglyceride levels in the skeletal muscle and liver, and corrected hyperglycemia to a greater extent than either monotherapy. The pair-feeding experiment indicated that the marked reduction of pancreatic triglyceride level and enhancement of GSIS by LEP/EX occurred via mechanisms other than calorie restriction. These results suggest that leptin treatment may restore the insulinotropic effect of exenatide associated with the reduction of pancreatic lipid deposition in type 2 diabetes with increased adiposity. Combination therapy with leptin and exenatide could be an effective treatment for patients with type 2 diabetes with increased adiposity.
Collapse
Affiliation(s)
- Takeru Sakai
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan; Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toru Kusakabe
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan;
| | - Ken Ebihara
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan; and
| | - Daisuke Aotani
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sachiko Yamamoto-Kataoka
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mingming Zhao
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Chihiro Ebihara
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Megumi Aizawa-Abe
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan; and
| | - Yuji Yamamoto
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michio Noguchi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junji Fujikura
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kiminori Hosoda
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Human Health Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
40
|
De Toro-Martín J, Fernández-Millán E, Lizárraga-Mollinedo E, López-Oliva E, Serradas P, Escrivá F, Alvarez C. Predominant role of GIP in the development of a metabolic syndrome-like phenotype in female Wistar rats submitted to forced catch-up growth. Endocrinology 2014; 155:3769-80. [PMID: 25032669 DOI: 10.1210/en.2013-2043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Catch-up growth has been associated with the appearance of metabolic dysfunctions such as obesity and type 2 diabetes in adulthood. Because the entero-insular axis is critical to glucose homeostasis control, we explored the relevance of the incretins glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) in the development of these pathologies. Offspring of rat dams fed ad libitum (control [C]) or 65% food-restricted during pregnancy and suckling time (undernourished [U]) were weaned onto a high-fat (HF) diet (CHF and UHF, respectively) to drive catch-up growth. Both male and female UHF rats showed an obese phenotype characterized by hyperphagy, visceral fat accumulation, and adipocyte hypertrophy. High-fat diet induced deterioration of glucose tolerance in a sex-dependent manner. Female UHF rats experienced much more severe glucose intolerance than males, which was not compensated by insulin hypersecretion, suggesting insulin resistance, as shown by homeostatic model assessment of insulin resistance values. Moreover, female, but not male, UHF rats displayed enhanced GIP but not GLP-1 secretion during oral glucose tolerance test. Administration of the GIP receptor antagonist (Pro3)GIP to UHF female rats over 21 days markedly reduced visceral fat mass and adipocyte hypertrophy without variations in food intake or body weight. These changes were accompanied by improvement of glucose tolerance and insulin sensitivity. In conclusion, the exacerbated production and secretion of GIP after the catch-up growth seems to represent the stimulus for insulin hypersecretion and insulin resistance, ultimately resulting in derangement of glucose homeostasis. Overall, these data evidence the role of GIP as a critical link between catch-up growth and the development of metabolic disturbances.
Collapse
Affiliation(s)
- J De Toro-Martín
- Departments of Biochemistry and Molecular Biology II (J.D.T.-M., E.L.-M., F.E., C.A.) and Physiology (E.L.-O.), Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (E.F.-M., E.L.-M., F.E., C.A.), Instituto de Salud Carlos III, 28029 Madrid, Spain; and Inserm Unité Mixte de Recherche S 1138 (P.S.), Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, F-75006 Paris, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Duca FA, Lam TKT. Gut microbiota, nutrient sensing and energy balance. Diabetes Obes Metab 2014; 16 Suppl 1:68-76. [PMID: 25200299 DOI: 10.1111/dom.12340] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/22/2014] [Indexed: 01/08/2023]
Abstract
The gastrointestinal (GI) tract is a highly specialized sensory organ that provides crucial negative feedback during a meal, partly via a gut-brain axis. More specifically, enteroendocrine cells located throughout the GI tract are able to sense and respond to specific nutrients, releasing gut peptides that act in a paracrine, autocrine or endocrine fashion to regulate energy balance, thus controlling both food intake and possibly energy expenditure. Furthermore, the gut microbiota has been shown to provide a substantial metabolic and physiological contribution to the host, and metabolic disease such as obesity has been associated with aberrant gut microbiota and microbiome. Interestingly, recent evidence suggests that the gut microbiota can impact the gut-brain axis controlling energy balance, at both the level of intestinal nutrient-sensing mechanisms, as well as potentially at the sites of integration in the central nervous system. A better understanding of the intricate relationship between the gut microbiota and host energy-regulating pathways is crucial for uncovering the mechanisms responsible for the development of metabolic diseases and for possible therapeutic strategies.
Collapse
Affiliation(s)
- F A Duca
- Toronto General Research Institute and Department of Medicine, University Health Network, Toronto, Canada
| | | |
Collapse
|
42
|
Yang Y, Moghadam AA, Cordner ZA, Liang NC, Moran TH. Long term exendin-4 treatment reduces food intake and body weight and alters expression of brain homeostatic and reward markers. Endocrinology 2014; 155:3473-83. [PMID: 24949661 PMCID: PMC4138563 DOI: 10.1210/en.2014-1052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Repeated administration of the long-acting glucagon-like peptide 1 receptor agonist exendin-4 (EX-4) has been shown to reduce food intake and body weight and do so without a rebound increase in food intake after treatment termination. The current study examines the neural mechanisms underlying these actions. After 6 weeks of maintenance on a standard chow or a high-fat (HF) diet, male Sprague Dawley rats were treated with EX-4 (3.2 μg/kg, i.p., twice a day) or vehicle for 9 consecutive days. Food intake and body weight (BW) were monitored daily. Expression of the genes for the hypothalamic arcuate nucleus (ARC) peptides proopiomelanocortin (POMC), neuropeptide Y (NPY), and agouti gene-related protein was determined. Expression of the dopamine precursor tyrosine hydroxylase (TH) gene in the ventral tegmental area and genes for dopamine receptors 1 (D1R) and dopamine receptor 2 in the nucleus accumbens were also determined. Pair-fed groups were included to control for the effects of reduced food intake and BW. Treatment with EX-4 significantly decreased food intake and BW over the 9-day period in both the standard chow and HF groups. HF feeding decreased POMC without changing NPY/agouti gene-related protein gene expression in the ARC. Treatment with EX-4 increased POMC and decreased NPY expression independent of the reduction of food intake and BW. Mesolimbic TH and D1R gene expression were decreased significantly in chronic HF diet-fed rats, and these changes were reversed in both EX-4 and pair-fed conditions. These results suggest a role for increased POMC and decreased NPY expression in the ARC in the effects of EX-4 on food intake and BW. Our findings also suggest that EX-4 induced the recovery of mesolimbic TH and D1R expression in HF diet-fed rats may be secondary to HF intake reduction and/or weight loss.
Collapse
Affiliation(s)
- Yan Yang
- Department of Endocrinology (Y.Y.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Psychiatry and Behavioral Sciences (Y.Y., A.A.M., Z.A.C., T.H.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; and Department of Psychology (N.C.L.), University of Illinois-Urbana Champaign, Champaign, Illinois 61820
| | | | | | | | | |
Collapse
|
43
|
Azzout-Marniche D, Chaumontet C, Nadkarni NA, Piedcoq J, Fromentin G, Tomé D, Even PC. Food intake and energy expenditure are increased in high-fat-sensitive but not in high-carbohydrate-sensitive obesity-prone rats. Am J Physiol Regul Integr Comp Physiol 2014; 307:R299-309. [DOI: 10.1152/ajpregu.00065.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Obesity-prone (OP) rodents are used as models of human obesity predisposition. The goal of the present study was to identify preexisting defects in energy expenditure components in OP rats. Two studies were performed. In the first one, male Wistar rats ( n = 48) were fed a high-carbohydrate diet (HCD) for 3 wk and then a high-fat diet (HFD) for the next 3 wk. This study showed that adiposity gain under HCD was 2.9-fold larger in carbohydrate-sensitive (CS) than in carbohydrate-resistant (CR) rats, confirming the concept of “carbohydrate-sensitive” rats. Energy expenditure (EE), respiratory quotient (RQ), caloric intake (CI), and locomotor activity measured during HFD identified no differences in EE and RQ between fat-resistant (FR) and fat-sensitive (FS) rats, and indicated that obesity developed in FS rats only as the result of a larger CI not fully compensated by a parallel increase in EE. A specific pattern of spontaneous activity, characterized by reduced activity burst intensity, was identified in FS rats but not in CS ones. This mirrors a previous observation that under HCD, CS but not FS rats, exhibited bursts of activity of reduced intensity. In a second study, rats were fed a HFD for 3 wk, and the components of energy expenditure were examined by indirect calorimetry in 10 FR and 10 FS rats. This study confirmed that a low basal EE, reduced thermic effect of feeding, defective postprandial energy partitioning, or a defective substrate utilization by the working muscle are not involved in the FS phenotype.
Collapse
Affiliation(s)
- Dalila Azzout-Marniche
- Institut National de la Recherche Agronomique, Centre de Recherche en Nutrition Humaine d'Ile-de-France (CRNH-IdF), UMR 914 Nutrition Physiology and Ingestive Behavior, Paris, France; and
- AgroParisTech, CRNH-IdF, UMR 914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Catherine Chaumontet
- Institut National de la Recherche Agronomique, Centre de Recherche en Nutrition Humaine d'Ile-de-France (CRNH-IdF), UMR 914 Nutrition Physiology and Ingestive Behavior, Paris, France; and
- AgroParisTech, CRNH-IdF, UMR 914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Nachiket A. Nadkarni
- Institut National de la Recherche Agronomique, Centre de Recherche en Nutrition Humaine d'Ile-de-France (CRNH-IdF), UMR 914 Nutrition Physiology and Ingestive Behavior, Paris, France; and
- AgroParisTech, CRNH-IdF, UMR 914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Julien Piedcoq
- Institut National de la Recherche Agronomique, Centre de Recherche en Nutrition Humaine d'Ile-de-France (CRNH-IdF), UMR 914 Nutrition Physiology and Ingestive Behavior, Paris, France; and
- AgroParisTech, CRNH-IdF, UMR 914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Gilles Fromentin
- Institut National de la Recherche Agronomique, Centre de Recherche en Nutrition Humaine d'Ile-de-France (CRNH-IdF), UMR 914 Nutrition Physiology and Ingestive Behavior, Paris, France; and
- AgroParisTech, CRNH-IdF, UMR 914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Daniel Tomé
- Institut National de la Recherche Agronomique, Centre de Recherche en Nutrition Humaine d'Ile-de-France (CRNH-IdF), UMR 914 Nutrition Physiology and Ingestive Behavior, Paris, France; and
- AgroParisTech, CRNH-IdF, UMR 914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Patrick C. Even
- Institut National de la Recherche Agronomique, Centre de Recherche en Nutrition Humaine d'Ile-de-France (CRNH-IdF), UMR 914 Nutrition Physiology and Ingestive Behavior, Paris, France; and
- AgroParisTech, CRNH-IdF, UMR 914 Nutrition Physiology and Ingestive Behavior, Paris, France
| |
Collapse
|
44
|
Liu C, Bookout AL, Lee S, Sun K, Jia L, Lee C, Udit S, Deng Y, Scherer PE, Mangelsdorf DJ, Gautron L, Elmquist JK. PPARγ in vagal neurons regulates high-fat diet induced thermogenesis. Cell Metab 2014; 19:722-30. [PMID: 24703703 PMCID: PMC4046333 DOI: 10.1016/j.cmet.2014.01.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/05/2013] [Accepted: 01/29/2014] [Indexed: 12/26/2022]
Abstract
The vagus nerve innervates visceral organs providing a link between key metabolic cues and the CNS. However, it is not clear whether vagal neurons can directly respond to changing lipid levels and whether altered "lipid sensing" by the vagus nerve regulates energy balance. In this study, we systematically profiled the expression of all known nuclear receptors in laser-captured nodose ganglion (NG) neurons. In particular, we found PPARγ expression was reduced by high-fat-diet feeding. Deletion of PPARγ in Phox2b neurons promoted HFD-induced thermogenesis that involved the reprograming of white adipocyte into a brown-like adipocyte cell fate. Finally, we showed that PPARγ in NG neurons regulates genes necessary for lipid metabolism and those that are important for synaptic transmission. Collectively, our findings provide insights into how vagal afferents survey peripheral metabolic cues and suggest that the reduction of PPARγ in NG neurons may serve as a protective mechanism against diet-induced weight gain.
Collapse
Affiliation(s)
- Chen Liu
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Angie L Bookout
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Syann Lee
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kai Sun
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lin Jia
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Charlotte Lee
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Swalpa Udit
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - David J Mangelsdorf
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Laurent Gautron
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Joel K Elmquist
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
45
|
Duca FA, Sakar Y, Covasa M. The modulatory role of high fat feeding on gastrointestinal signals in obesity. J Nutr Biochem 2014; 24:1663-77. [PMID: 24041374 DOI: 10.1016/j.jnutbio.2013.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/13/2013] [Accepted: 05/28/2013] [Indexed: 01/03/2023]
Abstract
The gastrointestinal (GI) tract is a specialized sensory system that detects and responds to constant changes in nutrient- and bacterial-derived intestinal signals, thus contributing to controls of food intake. Chronic exposure to dietary fat causes morphological, physiological and metabolic changes leading to disruptions in the regulatory feeding pathways promoting more efficient fat absorption and utilization, blunted satiation signals and excess adiposity. Accumulating evidence demonstrates that impaired gastrointestinal signals following long-term high fat consumption are, at least partially, responsible for increased caloric intake. This review focuses on the role of dietary fat in modulating oral and post-oral chemosensory signaling elements responsible for lipid detection and responses, including changes in sensitivity to satiation signals, such as GLP-1, PYY and CCK and their impact on food intake and weight gain. Furthermore, the influence of the gut microbiota on mechanisms controlling energy regulation in the face of excessive fat exposure will be explored. The profound influence of dietary fats on altering complex regulatory feeding pathways can result in dysregulation of body weight and development of obesity, while restoration or manipulation of satiation signaling may prove an effective tool in prevention and treatment of obesity.
Collapse
Affiliation(s)
- Frank A Duca
- INRA, UMR 1319 Micalis, F-78352 Jouy-en-Josas, France; AgroParis Tech, UMR 1319, F-78352 Jouy-en-Josas, France; University Pierre and Marie Curie, 75006 Paris, France
| | | | | |
Collapse
|
46
|
Plasticity of gastro-intestinal vagal afferent endings. Physiol Behav 2014; 136:170-8. [PMID: 24657740 DOI: 10.1016/j.physbeh.2014.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/06/2014] [Accepted: 03/10/2014] [Indexed: 12/15/2022]
Abstract
Vagal afferents are a vital link between the peripheral tissue and central nervous system (CNS). There is an abundance of vagal afferents present within the proximal gastrointestinal tract which are responsible for monitoring and controlling gastrointestinal function. Whilst essential for maintaining homeostasis there is a vast amount of literature emerging which describes remarkable plasticity of vagal afferents in response to endogenous as well as exogenous stimuli. This plasticity for the most part is vital in maintaining healthy processes; however, there are increased reports of vagal plasticity being disrupted in pathological states, such as obesity. Many of the disruptions, observed in obesity, have the potential to reduce vagal afferent satiety signalling which could ultimately perpetuate the obese state. Understanding how plasticity occurs within vagal afferents will open a whole new understanding of gut function as well as identify new treatment options for obesity.
Collapse
|
47
|
Impact of high-fat feeding on basic helix-loop-helix transcription factors controlling enteroendocrine cell differentiation. Int J Obes (Lond) 2014; 38:1440-8. [PMID: 24480860 DOI: 10.1038/ijo.2014.20] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/03/2013] [Accepted: 01/17/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Gut hormones secreted by enteroendocrine cells (EECs) play a major role in energy regulation. Differentiation of EEC is controlled by the expression of basic helix-loop-helix (bHLH) transcription factors. High-fat (HF) feeding alters gut hormone levels; however, the impact of HF feeding on bHLH transcription factors in mediating EEC differentiation and subsequent gut hormone secretion and expression is not known. METHODS Outbred Sprague-Dawley rats were maintained on chow or HF diet for 12 weeks. Gene and protein expression of intestinal bHLH transcription factors, combined with immunofluorescence studies, were analyzed for both groups in the small intestine and colon. Gut permeability, intestinal lipid and carbohydrate transporters as well as circulating levels and intestinal protein expression of gut peptides were determined. RESULTS We showed that HF feeding resulted in hyperphagia and increased adiposity. HF-fed animals exhibited decreased expression of bHLH transcription factors controlling EEC differentiation (MATH1, NGN3, NEUROD1) and increased expression of bHLH factors modulating enterocyte expression. Furthermore, HF-fed animals had decreased number of total EECs and L-cells. This was accompanied by increased gut permeability and expression of lipid and carbohydrate transporters, and a decrease in circulating and intestinal gut hormone levels. CONCLUSIONS Taken together, our results demonstrate that HF feeding caused decreased secretory lineage (that is, EECs) differentiation through downregulation of bHLH transcription factors, resulting in reduced EEC number and gut hormone levels. Thus, impaired EEC differentiation pathways by HF feeding may promote hyperphagia and subsequent obesity.
Collapse
|
48
|
Duca FA, Zhong L, Covasa M. Reduced CCK signaling in obese-prone rats fed a high fat diet. Horm Behav 2013; 64:812-7. [PMID: 24100196 DOI: 10.1016/j.yhbeh.2013.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/26/2013] [Accepted: 09/29/2013] [Indexed: 11/23/2022]
Abstract
Deficits in satiation signaling during obesogenic feeding have been proposed to play a role in hyperphagia and weight gain in animals prone to become obese. However, whether this impaired signaling is due to high fat (HF) feeding or to their obese phenotype is still unknown. Therefore, in the current study, we examined the effects of CCK-8 (0.5, 1.0, 2.0, and 4.0 μg/kg) on suppression of food intake of HF-fed obese prone (OP) and resistant (OR) rats. Additionally, we determined the role of endogenous CCK in lipid-induced satiation by measuring plasma CCK levels following a lipid gavage, and tested the effect of pretreatment with devazepide, a CCK-1R antagonist on intragastric lipid-induced satiation. Finally, we examined CCK-1R mRNA levels in the nodose ganglia. We show that OP rats have reduced feeding responses to the low doses of exogenous CCK-8 compared to OR rats. Furthermore, OP rats exhibit deficits in endogenous CCK signaling, as pretreatment with devazepide failed to abolish the reduction in food intake following lipid gavage. These effects were associated with reduced plasma CCK after intragastric lipid in OP but not OR rats. Furthermore, HF feeding resulted in downregulation of CCK-1Rs in the nodose ganglia of OP rats. Collectively, these results demonstrate that HF feeding leads to impairments in lipid-induced CCK satiation signaling in obese-prone rats, potentially contributing to hyperphagia and weight gain.
Collapse
Affiliation(s)
- Frank A Duca
- UMR1913-MICALIS, INRA, Domaine de Vilvert, Jouy-en-Josas 78352, France; UMR1913-MICALIS, AgroParisTech, Domaine de Vilvert, Jouy-en-Josas, 78352, France; Doctoral School of Physiology and Pathophysiology, University Pierre and Marie Currie, 15 rue de l'Ecole de Médecine, Paris 75006, France
| | | | | |
Collapse
|