1
|
Giardini E, Moore D, Sadlier D, Godson C, Brennan E. The dual role of lipids in chronic kidney disease: Pathogenic culprits and therapeutic allies. Atherosclerosis 2024:118615. [PMID: 39370307 DOI: 10.1016/j.atherosclerosis.2024.118615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Chronic kidney disease (CKD) is a significant health burden, with rising incidence and prevalence, attributed in part to increasing obesity and diabetes rates. Lipid accumulation in the kidney parenchyma and chronic, low-grade inflammation are believed to significantly contribute to the development and progression of CKD. The effect of dysregulated kidney lipid metabolism in CKD progression, including altered cholesterol and fatty acid metabolism contribute to glomerular and tubular cell injury through the activation of oxidative stress and inflammatory signalling cascades. In contrast, classes of endogenous specialized pro-resolving lipid mediators (SPMs) have been described that act to limit the inflammatory response and promote the resolution of inflammation. This review highlights our current understanding of how lipids can cause damage within the kidney, and classes of protective lipid metabolites that offer therapeutic benefits.
Collapse
Affiliation(s)
- Elena Giardini
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Dean Moore
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Denise Sadlier
- Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Chen Y, Chen M, Zhu W, Zhang Y, Liu P, Li P. Morroniside attenuates podocytes lipid deposition in diabetic nephropathy: A network pharmacology, molecular docking and experimental validation study. Int Immunopharmacol 2024; 138:112560. [PMID: 38959541 DOI: 10.1016/j.intimp.2024.112560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Dysregulation of lipid metabolism is a key factor influencing the progression of diabetic nephropathy (DN). Morroniside (MOR) is a major active compound isolated from the traditional Chinese herb Cornus officinalis, our previous research found that it can improve the lipid deposition of renal tubular epithelial cells. The purpose of this study is to explore whether MOR can improve podocyte lipid deposition and its mechanism of reducing DN. METHODS Initially, we used network pharmacology and bioinformatics techniques to predict the relationship between renal lipid metabolism of MOR and DN. Subsequently, the binding activity of MOR with lipid-related proteins was studied by molecular docking to determine how MOR acts through these proteins. After determining the target of MOR, animal experiments and cell tests were carried out to verify it. RESULTS Using network pharmacology, bioinformatics, and molecular docking, target proteins for MOR treatment of DN were predicted and screened, including PGC-1α, LXRs, ABCA1, PPARY, CD36, and nephrin. It is particularly noted that MOR effectively binds to PGC-1α, while LXRs, ABCA1, PPARY and CD36 are downstream molecules of PGC-1α. Silencing the PGC-1α gene significantly reduced the therapeutic effects of MOR. Conversely, in groups without PGC-1α knockdown, MOR was able to increase the expression levels of PGC-1α and influence the expression of downstream proteins. Furthermore, through in vivo and in vitro experiments, utilizing techniques such as lipid droplet staining, PAS, MASSON staining, immunofluorescence, and Western blot, we found that MOR effectively elevated the expression levels of the podocyte protein nephrin and lipid metabolism-regulating proteins PGC-1α, PPARY, and ABCA1, while significantly inhibiting the expression of the lipid accumulation promoter CD36. CONCLUSION MOR can regulate the cholesterol efflux in podocytes via the PGC-1α/LXRs/ABCA1 signaling pathway, and control cholesterol intake via the PGC-1α/PPARY/CD36 signaling pathway, thereby ameliorating lipid deposition in DN.
Collapse
Affiliation(s)
- Yao Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Ming Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yonggang Zhang
- First People's Hospital of Qiqihaer City, Heilongjiang Province, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
3
|
Duara J, Torres M, Gurumani M, Molina David J, Njeim R, Kim JJ, Mitrofanova A, Ge M, Sloan A, Müller-Deile J, Schiffer M, Merscher S, Fornoni A. Oxysterol-binding protein-like 7 deficiency leads to ER stress-mediated apoptosis in podocytes and proteinuria. Am J Physiol Renal Physiol 2024; 327:F340-F350. [PMID: 38961844 PMCID: PMC11460532 DOI: 10.1152/ajprenal.00319.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with renal lipid dysmetabolism among a variety of other pathways. We recently demonstrated that oxysterol-binding protein-like 7 (OSBPL7) modulates the expression and function of ATP-binding cassette subfamily A member 1 (ABCA1) in podocytes, a specialized type of cell essential for kidney filtration. Drugs that target OSBPL7 lead to improved renal outcomes in several experimental models of CKD. However, the role of OSBPL7 in podocyte injury remains unclear. Using mouse models and cellular assays, we investigated the influence of OSBPL7 deficiency on podocytes. We demonstrated that reduced renal OSBPL7 levels as observed in two different models of experimental CKD are linked to increased podocyte apoptosis, primarily mediated by heightened endoplasmic reticulum (ER) stress. Although as expected, the absence of OSBPL7 also resulted in lipid dysregulation (increased lipid droplets and triglycerides content), OSBPL7 deficiency-related lipid dysmetabolism did not contribute to podocyte injury. Similarly, we demonstrated that the decreased autophagic flux we observed in OSBPL7-deficient podocytes was not the mechanistic link between OSBPL7 deficiency and apoptosis. In a complementary zebrafish model, osbpl7 knockdown was sufficient to induce proteinuria and morphological damage to the glomerulus, underscoring its physiological relevance. Our study sheds new light on the mechanistic link between OSBPL7 deficiency and podocyte injury in glomerular diseases associated with CKD, and it strengthens the role of OSBPL7 as a novel therapeutic target.NEW & NOTEWORTHY OSBPL7 and ER stress comprise a central mechanism in glomerular injury. This study highlights a crucial link between OSBPL7 deficiency and ER stress in CKD. OSBPL7 deficiency causes ER stress, leading to podocyte apoptosis. There is a selective effect on lipid homeostasis in that OSBPL7 deficiency affects lipid homeostasis, altering cellular triglyceride but not cholesterol content. The interaction of ER stress and apoptosis supports that ER stress, not reduced autophagy, is the main driver of apoptosis in OSBPL7-deficient podocytes.
Collapse
Affiliation(s)
- Joanne Duara
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Maria Torres
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Boston University, Boston, Massachusetts, United States
| | - Margaret Gurumani
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Boston University, Boston, Massachusetts, United States
| | - Judith Molina David
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Rachel Njeim
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Jin-Ju Kim
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alla Mitrofanova
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Mengyuan Ge
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alexis Sloan
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Janina Müller-Deile
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Mount Desert Island Biological Laboratories, Salisbury Cove, Maine, United States
| | - Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
4
|
Wu M, Yoon CY, Park J, Kim G, Nam BY, Kim S, Park JT, Han SH, Kang SW, Yoo TH. The role of PCSK9 in glomerular lipid accumulation and renal injury in diabetic kidney disease. Diabetologia 2024; 67:1980-1997. [PMID: 38879617 DOI: 10.1007/s00125-024-06191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/25/2024] [Indexed: 09/19/2024]
Abstract
AIMS/HYPOTHESIS Glomerular lipid accumulation is a defining feature of diabetic kidney disease (DKD); however, the precise underlying mechanism requires further elucidation. Recent evidence suggests a role for proprotein convertase subtilisin/kexin type 9 (PCSK9) in intracellular lipid homeostasis. Although PCSK9 is present in kidneys, its role within kidney cells and relevance to renal diseases remain largely unexplored. Therefore, we investigated the role of intracellular PCSK9 in regulating lipid accumulation and homeostasis in the glomeruli and podocytes under diabetic conditions. Furthermore, we aimed to identify the pathophysiological mechanisms responsible for the podocyte injury that is associated with intracellular PCSK9-induced lipid accumulation in DKD. METHODS In this study, glomeruli were isolated from human kidney biopsy tissues, and glomerular gene-expression analysis was performed. Also, db/db and db/m mice were used to perform glomerular gene-expression profiling. We generated DKD models using a high-fat diet and low-dose intraperitoneal streptozocin injection in C57BL/6 and Pcsk9 knockout (KO) mice. We analysed cholesterol and triacylglycerol levels within the kidney cortex. Lipid droplets were evaluated using BODIPY staining. We induced upregulation and downregulation of PCSK9 expression in conditionally immortalised mouse podocytes using lentivirus and siRNA transfection techniques, respectively, under diabetic conditions. RESULTS A significant reduction in transcription level of PCSK9 was observed in glomeruli of individuals with DKD. PCSK9 expression was also reduced in podocytes of animals under diabetic conditions. We observed significantly higher lipid accumulation in kidney tissues of Pcsk9 KO DKD mice compared with wild-type (WT) DKD mice. Additionally, Pcsk9 KO mouse models of DKD exhibited a significant reduction in mitochondria number vs WT models, coupled with a significant increase in mitochondrial size. Moreover, albuminuria and podocyte foot process effacement were observed in WT and Pcsk9 KO DKD mice, with KO DKD mice displaying more pronounced manifestations. Immortalised mouse podocytes exposed to diabetic stimuli exhibited heightened intracellular lipid accumulation, mitochondrial injury and apoptosis, which were ameliorated by Pcsk9 overexpression and aggravated by Pcsk9 knockdown in mouse podocytes. CONCLUSIONS/INTERPRETATION The downregulation of PCSK9 in podocytes is associated with lipid accumulation, which leads to mitochondrial dysfunction, cell apoptosis and renal injury. This study sheds new light on the potential involvement of PCSK9 in the pathophysiology of glomerular lipid accumulation and podocyte injury in DKD.
Collapse
Affiliation(s)
- Meiyan Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Chang-Yun Yoon
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Jimin Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Gyuri Kim
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Bo Young Nam
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Seonghun Kim
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea.
| |
Collapse
|
5
|
Bi D, Van Hal A, Aschmann D, Shen M, Zhang H, Su L, Arias-Alpizar G, Kros A, Barz M, Bussmann J. Deconvolving Passive and Active Targeting of Liposomes Bearing LDL Receptor Binding Peptides Using the Zebrafish Embryo Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310781. [PMID: 38488770 DOI: 10.1002/smll.202310781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Indexed: 08/09/2024]
Abstract
Improving target versus off-target ratio in nanomedicine remains a major challenge for increasing drug bioavailability and reducing toxicity. Active targeting using ligands on nanoparticle surfaces is a key approach but has limited clinical success. A potential issue is the integration of targeting ligands also changes the physicochemical properties of nanoparticles (passive targeting). Direct studies to understand the mechanisms of active targeting and off-targeting in vivo are limited by the lack of suitable tools. Here, the biodistribution of a representative active targeting liposome is analyzed, modified with an apolipoprotein E (ApoE) peptide that binds to the low-density lipoprotein receptor (LDLR), using zebrafish embryos. The ApoE liposomes demonstrated the expected liver targeting effect but also accumulated in the kidney glomerulus. The ldlra-/- zebrafish is developed to explore the LDLR-specificity of ApoE liposomes. Interestingly, liver targeting depends on the LDLR-specific interaction, while glomerular accumulation is independent of LDLR and peptide sequence. It is found that cationic charges of peptides and the size of liposomes govern glomerular targeting. Increasing the size of ApoE liposomes can avoid this off-targeting. Taken together, the study shows the potential of the zebrafish embryo model for understanding active and passive targeting mechanisms, that can be used to optimize the design of nanoparticles.
Collapse
Affiliation(s)
- Dongdong Bi
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Anneke Van Hal
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Dennis Aschmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333, The Netherlands
| | - Mengjie Shen
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333, The Netherlands
| | - Heyang Zhang
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Lu Su
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Gabriela Arias-Alpizar
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333, The Netherlands
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Jeroen Bussmann
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| |
Collapse
|
6
|
Wang Y, Liu T, Wu Y, Wang L, Ding S, Hou B, Zhao H, Liu W, Li P. Lipid homeostasis in diabetic kidney disease. Int J Biol Sci 2024; 20:3710-3724. [PMID: 39113692 PMCID: PMC11302873 DOI: 10.7150/ijbs.95216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Lipid homeostasis is crucial for proper cellular and systemic functions. A growing number of studies confirm the importance of lipid homeostasis in diabetic kidney disease (DKD). Lipotoxicity caused by imbalance in renal lipid homeostasis can further exasperate renal injury. Large lipid deposits and lipid droplet accumulation are present in the kidneys of DKD patients. Autophagy plays a critical role in DKD lipid homeostasis and is involved in the regulation of lipid content. Inhibition or reduction of autophagy can lead to lipid accumulation, which in turn further affects autophagy. Lipophagy selectively recognizes and degrades lipids and helps to regulate cellular lipid metabolism and maintain intracellular lipid homeostasis. Therefore, we provide a systematic review of fatty acid, cholesterol, and sphingolipid metabolism, and discuss the responses of different renal intrinsic cells to imbalances in lipid homeostasis. Finally, we discuss the mechanism by which autophagy, especially lipophagy, maintains lipid homeostasis to support the development of new DKD drugs targeting lipid homeostasis.
Collapse
Affiliation(s)
- Ying Wang
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lin Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Shaowei Ding
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Baoluo Hou
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hailing Zhao
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Weijing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| |
Collapse
|
7
|
Fang Z, Liu R, Xie J, He JC. Molecular mechanism of renal lipid accumulation in diabetic kidney disease. J Cell Mol Med 2024; 28:e18364. [PMID: 38837668 PMCID: PMC11151220 DOI: 10.1111/jcmm.18364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of end stage renal disease with unmet clinical demands for treatment. Lipids are essential for cell survival; however, renal cells have limited capability to metabolize overloaded lipids. Dyslipidaemia is common in DKD patients and renal ectopic lipid accumulation is associated with disease progression. Unveiling the molecular mechanism involved in renal lipid regulation is crucial for exploring potential therapeutic targets. In this review, we focused on the mechanism underlying cholesterol, oxysterol and fatty acid metabolism disorder in the context of DKD. Specific regulators of lipid accumulation in different kidney compartment and TREM2 macrophages, a lipid-related macrophages in DKD, were discussed. The role of sodium-glucose transporter 2 inhibitors in improving renal lipid accumulation was summarized.
Collapse
Affiliation(s)
- Zhengying Fang
- Department of Nephrology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Barbara T. Murphy Division of Nephrology, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ruijie Liu
- Barbara T. Murphy Division of Nephrology, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jingyuan Xie
- Department of Nephrology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - John Cijiang He
- Barbara T. Murphy Division of Nephrology, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Renal SectionJames J Peters Veterans Affair Medical CenterBronxNew YorkUSA
| |
Collapse
|
8
|
Njeim R, Merscher S, Fornoni A. Mechanisms and implications of podocyte autophagy in chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F877-F893. [PMID: 38601984 PMCID: PMC11386983 DOI: 10.1152/ajprenal.00415.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Autophagy is a protective mechanism through which cells degrade and recycle proteins and organelles to maintain cellular homeostasis and integrity. An accumulating body of evidence underscores the significant impact of dysregulated autophagy on podocyte injury in chronic kidney disease (CKD). In this review, we provide a comprehensive overview of the diverse types of autophagy and their regulation in cellular homeostasis, with a specific emphasis on podocytes. Furthermore, we discuss recent findings that focus on the functional role of different types of autophagy during podocyte injury in chronic kidney disease. The intricate interplay between different types of autophagy and podocyte health requires further research, which is critical for understanding the pathogenesis of CKD and developing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
9
|
Zuo FW, Liu ZY, Wang MW, Du JY, Ding PZ, Zhang HR, Tang W, Sun Y, Wang XJ, Zhang Y, Xie YS, Wu JC, Liu M, Wang ZY, Yi F. CCDC92 promotes podocyte injury by regulating PA28α/ABCA1/cholesterol efflux axis in type 2 diabetic mice. Acta Pharmacol Sin 2024; 45:1019-1031. [PMID: 38228909 PMCID: PMC11053164 DOI: 10.1038/s41401-023-01213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024] Open
Abstract
Podocyte lipotoxicity mediated by impaired cellular cholesterol efflux plays a crucial role in the development of diabetic kidney disease (DKD), and the identification of potential therapeutic targets that regulate podocyte cholesterol homeostasis has clinical significance. Coiled-coil domain containing 92 (CCDC92) is a novel molecule related to metabolic disorders and insulin resistance. However, whether the expression level of CCDC92 is changed in kidney parenchymal cells and the role of CCDC92 in podocytes remain unclear. In this study, we found that Ccdc92 was significantly induced in glomeruli from type 2 diabetic mice, especially in podocytes. Importantly, upregulation of Ccdc92 in glomeruli was positively correlated with an increased urine albumin-to-creatinine ratio (UACR) and podocyte loss. Functionally, podocyte-specific deletion of Ccdc92 attenuated proteinuria, glomerular expansion and podocyte injury in mice with DKD. We further demonstrated that Ccdc92 contributed to lipid accumulation by inhibiting cholesterol efflux, finally promoting podocyte injury. Mechanistically, Ccdc92 promoted the degradation of ABCA1 by regulating PA28α-mediated proteasome activity and then reduced cholesterol efflux. Thus, our studies indicate that Ccdc92 contributes to podocyte injury by regulating the PA28α/ABCA1/cholesterol efflux axis in DKD.
Collapse
Affiliation(s)
- Fu-Wen Zuo
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Zhi-Yong Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Jun-Yao Du
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Peng-Zhong Ding
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hao-Ran Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Wei Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yu Sun
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Xiao-Jie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yu-Sheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Ji-Chao Wu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| | - Zi-Ying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
10
|
Chavez E, Goncalves S, Rheault MN, Fornoni A. Alport Syndrome. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:170-179. [PMID: 39004457 DOI: 10.1053/j.akdh.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 07/16/2024]
Abstract
Alport syndrome (AS) is characterized by progressive kidney failure, hematuria, sensorineural hearing loss, and ocular abnormalities. Pathogenic variants in the COL4A3-5 genes result in a defective deposition of the collagen IV α3α4α5 protomers in the basement membranes of the glomerulus in the kidney, the cochlea in the ear and the cornea, lens capsule and retina in the eye. The presence of a large variety of COL4A3-5 gene(s) pathogenetic variants irrespective of the mode of inheritance (X-linked, autosomal recessive, autosomal dominant, or digenic) with and without syndromic features is better defined as the "Alport spectrum disorder", and represents the most common cause of genetic kidney disease and the second most common cause of genetic kidney failure. The clinical course and prognosis of individuals with AS is highly variable. It is influenced by gender, mode of inheritance, affected gene(s), type of genetic mutation, and genetic modifiers. This review article will discuss the epidemiology, classification, pathogenesis, diagnosis, clinical course with genotype-phenotype correlations, and current and upcoming treatment of patients with AS. It will also review current recommendations with respect to when to evaluate for hearing loss or ophthalmologic abnormalities.
Collapse
Affiliation(s)
- Efren Chavez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL.
| | - Stefania Goncalves
- Department of Otolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, University of Miami Ear Institute, Miami, FL
| | - Michelle N Rheault
- Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, MN
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL.
| |
Collapse
|
11
|
Koehler S, Hengel FE, Dumoulin B, Damashek L, Holzman LB, Susztak K, Huber TB. The 14th International Podocyte Conference 2023: from podocyte biology to glomerular medicine. Kidney Int 2024; 105:935-952. [PMID: 38447880 DOI: 10.1016/j.kint.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024]
Abstract
The 14th International Podocyte Conference took place in Philadelphia, Pennsylvania, USA from May 23 to 26, 2023. It commenced with an early-career researchers' meeting on May 23, providing young scientists with a platform to present and discuss their research findings. Throughout the main conference, 29 speakers across 9 sessions shared their insights on podocyte biology, glomerular medicine, novel technologic advancements, and translational approaches. Additionally, the event featured 3 keynote lectures addressing engineered chimeric antigen receptor T cell- and mRNA-based therapies and the use of biobanks for enhanced disease comprehension. Furthermore, 4 brief oral abstract sessions allowed scientists to present their findings to a broad audience. The program also included a panel discussion addressing the challenges of conducting human research within the American Black community. Remarkably, after a 5-year hiatus from in-person conferences, the 14th International Podocyte Conference successfully convened scientists from around the globe, fostering the presentation and discussion of crucial research findings, as summarized in this review. Furthermore, to ensure continuous and sustainable education, research, translation, and trial medicine related to podocyte and glomerular diseases for the benefit of patients, the International Society of Glomerular Disease was officially launched during the conference.
Collapse
Affiliation(s)
- Sybille Koehler
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Felicitas E Hengel
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bernhard Dumoulin
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laurel Damashek
- International Society of Glomerular Disease, Florence, Massachusetts, USA
| | - Lawrence B Holzman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tobias B Huber
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; International Society of Glomerular Disease, Florence, Massachusetts, USA.
| |
Collapse
|
12
|
Han YZ, Du BX, Zhu XY, Wang YZY, Zheng HJ, Liu WJ. Lipid metabolism disorder in diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1336402. [PMID: 38742197 PMCID: PMC11089115 DOI: 10.3389/fendo.2024.1336402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetic kidney disease (DKD), a significant complication associated with diabetes mellitus, presents limited treatment options. The progression of DKD is marked by substantial lipid disturbances, including alterations in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Altered lipid metabolism serves as a crucial pathogenic mechanism in DKD, potentially intertwined with cellular ferroptosis, lipophagy, lipid metabolism reprogramming, and immune modulation of gut microbiota (thus impacting the liver-kidney axis). The elucidation of these mechanisms opens new potential therapeutic pathways for DKD management. This research explores the link between lipid metabolism disruptions and DKD onset.
Collapse
Affiliation(s)
- Yi-Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing-Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang-Zhi-Yuan Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hui-Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
王 影, 周 明, 朱 倩, 张 翠, 王 林, 李 曙, 胡 泽. [HIF-1α activation induces cholesterol homeostasis dysfunction to accelerate progression of diabetic nephropathy in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1782-1788. [PMID: 37933655 PMCID: PMC10630203 DOI: 10.12122/j.issn.1673-4254.2023.10.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE To investigate the effect of hypoxia inducible factor-1α (HIF-1α) activation on cholesterol homeostasis dysfunction in diabetic nephropathy (DN). METHODS Rat models of type 1 diabetes established by intraperitoneal STZ injection were treated with intraperitoneal injection of Lificiguat (YC-1, a HIF-1α inhibitor). Human proximal tubular cell line HK-2 was incubated with cobalt chloride (CoCl2, 100 μmol/L) in the presence or absence of 30 mmol/L glucose for 24 h. Renal injury of the rats was assessed by measuring 24-h urinary total protein level and PAS staining of the renal tubules. Cholesterol deposition in rat kidneys and HK-2 cells were observed using a quantitative assay of total cholesterol and Filipin staining, and HIF-1α protein expression was detected using Western blotting, immunohistochemistry or immunofluorescence assay; the expressions of cholesterol metabolism-related proteins HMGCR, LDLr, CXCL16 and profibrogenic factors including TGF-β1 and CTGF were also analyzed. RESULTS The diabetic rats showed significantly increased 24-h urinary protein level (P<0.001), obvious renal tubular injury, and increased renal cholesterol content (P<0.05) with significantly increased HIF-1α expression in the renal tubular (P<0.01). YC-1 treatment significantly ameliorated tubulointerstitial injury in the diabetic rats as shown by decreased 24-h urinary total protein (P<0.05) and reduced damage area of the tubules, and effectively decreased renal cholesterol levels and renal expression of HIF-1α (P<0.05). In HK-2 cells, CoCl2 stimulation in the presence of high glucose effectively activated HIF-1α expression (P<0.0001), aggravated cholesterol accumulation (P<0.05), and increased the expressions of HMGCR, LDLr, CXCL16, TGF-β1, and CTGF (P<0.05 or 0.01). Consistent with the in vitro study, YC-1 treatment also significantly decreased the expressions of cholesterol metabolism-related proteins and the profibrogenic factors in the renal tubules of the diabetic rats. CONCLUSION HIF-1α activation induces cholesterol homeostasis dysregulation possibly by upregulating the de novo synthesis and uptake of cholesterol, thereby aggravating tubulointerstitial injury in DN.
Collapse
Affiliation(s)
- 影 王
- 皖南医学院基础医学院病理生理学教研室,安徽 芜湖 241002Department of Pathophysiology, School of Preclinical Medicine, Wannan Medical College, Wuhu 241002, China
- 皖南医学院临床医学院,安徽 芜湖 241002School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 明俊 周
- 皖南医学院临床医学院,安徽 芜湖 241002School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 倩文 朱
- 皖南医学院基础医学院病理生理学教研室,安徽 芜湖 241002Department of Pathophysiology, School of Preclinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 翠 张
- 皖南医学院基础医学院病理生理学教研室,安徽 芜湖 241002Department of Pathophysiology, School of Preclinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 林 王
- 皖南医学院基础医学院病理生理学教研室,安徽 芜湖 241002Department of Pathophysiology, School of Preclinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 曙 李
- 皖南医学院基础医学院病理生理学教研室,安徽 芜湖 241002Department of Pathophysiology, School of Preclinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 泽波 胡
- 皖南医学院基础医学院病理生理学教研室,安徽 芜湖 241002Department of Pathophysiology, School of Preclinical Medicine, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
14
|
Mitrofanova A, Merscher S, Fornoni A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease. Nat Rev Nephrol 2023; 19:629-645. [PMID: 37500941 DOI: 10.1038/s41581-023-00741-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Chronic kidney disease (CKD) is a global health problem with rising incidence and prevalence. Among several pathogenetic mechanisms responsible for disease progression, lipid accumulation in the kidney parenchyma might drive inflammation and fibrosis, as has been described in fatty liver diseases. Lipids and their metabolites have several important structural and functional roles, as they are constituents of cell and organelle membranes, serve as signalling molecules and are used for energy production. However, although lipids can be stored in lipid droplets to maintain lipid homeostasis, lipid accumulation can become pathogenic. Understanding the mechanisms linking kidney parenchymal lipid accumulation to CKD of metabolic or non-metabolic origin is challenging, owing to the tremendous variety of lipid species and their functional diversity across different parenchymal cells. Nonetheless, multiple research reports have begun to emphasize the effect of dysregulated kidney lipid metabolism in CKD progression. For example, altered cholesterol and fatty acid metabolism contribute to glomerular and tubular cell injury. Newly developed lipid-targeting agents are being tested in clinical trials in CKD, raising expectations for further therapeutic development in this field.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA.
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
15
|
Keller MP, Hudkins KL, Shalev A, Bhatnagar S, Kebede MA, Merrins MJ, Davis DB, Alpers CE, Kimple ME, Attie AD. What the BTBR/J mouse has taught us about diabetes and diabetic complications. iScience 2023; 26:107036. [PMID: 37360692 PMCID: PMC10285641 DOI: 10.1016/j.isci.2023.107036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Human and mouse genetics have delivered numerous diabetogenic loci, but it is mainly through the use of animal models that the pathophysiological basis for their contribution to diabetes has been investigated. More than 20 years ago, we serendipidously identified a mouse strain that could serve as a model of obesity-prone type 2 diabetes, the BTBR (Black and Tan Brachyury) mouse (BTBR T+ Itpr3tf/J, 2018) carrying the Lepob mutation. We went on to discover that the BTBR-Lepob mouse is an excellent model of diabetic nephropathy and is now widely used by nephrologists in academia and the pharmaceutical industry. In this review, we describe the motivation for developing this animal model, the many genes identified and the insights about diabetes and diabetes complications derived from >100 studies conducted in this remarkable animal model.
Collapse
Affiliation(s)
- Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kelly L. Hudkins
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Anath Shalev
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Melkam A. Kebede
- School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Charles E. Alpers
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Michelle E. Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
16
|
Ito M, Ducasa GM, Molina JD, Santos JV, Mallela SK, Kim JJ, Ge M, Mitrofanova A, Sloan A, Merscher S, Mimura I, Fornoni A. ABCA1 deficiency contributes to podocyte pyroptosis priming via the APE1/IRF1 axis in diabetic kidney disease. Sci Rep 2023; 13:9616. [PMID: 37316538 PMCID: PMC10267156 DOI: 10.1038/s41598-023-35499-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
Decreased ATP Binding Cassette Transporter A1 (ABCA1) expression and caspase-4-mediated noncanonical inflammasome contribution have been described in podocytes in diabetic kidney disease (DKD). To investigate a link between these pathways, we evaluated pyroptosis-related mediators in human podocytes with stable knockdown of ABCA1 (siABCA1) and found that mRNA levels of IRF1, caspase-4, GSDMD, caspase-1 and IL1β were significantly increased in siABCA1 compared to control podocytes and that protein levels of caspase-4, GSDMD and IL1β were equally increased. IRF1 knockdown in siABCA1 podocytes prevented increases in caspase-4, GSDMD and IL1β. Whereas TLR4 inhibition did not decrease mRNA levels of IRF1 and caspase-4, APE1 protein expression increased in siABCA1 podocytes and an APE1 redox inhibitor abrogated siABCA1-induced expression of IRF1 and caspase-4. RELA knockdown also offset the pyroptosis priming, but ChIP did not demonstrate increased binding of NFκB to IRF1 promoter in siABCA1 podocytes. Finally, the APE1/IRF1/Casp1 axis was investigated in vivo. APE1 IF staining and mRNA levels of IRF1 and caspase 11 were increased in glomeruli of BTBR ob/ob compared to wildtype. In conclusion, ABCA1 deficiency in podocytes caused APE1 accumulation, which reduces transcription factors to increase the expression of IRF1 and IRF1 target inflammasome-related genes, leading to pyroptosispriming.
Collapse
Affiliation(s)
- Marie Ito
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Gloria Michelle Ducasa
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Judith David Molina
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Javier Varona Santos
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Shamroop Kumar Mallela
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jin Ju Kim
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Mengyuan Ge
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Alla Mitrofanova
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Alexis Sloan
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Sandra Merscher
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Imari Mimura
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Alessia Fornoni
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
17
|
Ge M, Molina J, Kim JJ, Mallela SK, Ahmad A, Varona Santos J, Al-Ali H, Mitrofanova A, Sharma K, Fontanesi F, Merscher S, Fornoni A. Empagliflozin reduces podocyte lipotoxicity in experimental Alport syndrome. eLife 2023; 12:e83353. [PMID: 37129368 PMCID: PMC10185338 DOI: 10.7554/elife.83353] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/26/2023] [Indexed: 05/03/2023] Open
Abstract
Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are anti-hyperglycemic agents that prevent glucose reabsorption in proximal tubular cells. SGLT2i improves renal outcomes in both diabetic and non-diabetic patients, indicating it may have beneficial effects beyond glycemic control. Here, we demonstrate that SGLT2i affects energy metabolism and podocyte lipotoxicity in experimental Alport syndrome (AS). In vitro, we found that the SGLT2 protein was expressed in human and mouse podocytes to a similar extent in tubular cells. Newly established immortalized podocytes from Col4a3 knockout mice (AS podocytes) accumulate lipid droplets along with increased apoptosis when compared to wild-type podocytes. Treatment with SGLT2i empagliflozin reduces lipid droplet accumulation and apoptosis in AS podocytes. Empagliflozin inhibits the utilization of glucose/pyruvate as a metabolic substrate in AS podocytes but not in AS tubular cells. In vivo, we demonstrate that empagliflozin reduces albuminuria and prolongs the survival of AS mice. Empagliflozin-treated AS mice show decreased serum blood urea nitrogen and creatinine levels in association with reduced triglyceride and cholesterol ester content in kidney cortices when compared to AS mice. Lipid accumulation in kidney cortices correlates with a decline in renal function. In summary, empagliflozin reduces podocyte lipotoxicity and improves kidney function in experimental AS in association with the energy substrates switch from glucose to fatty acids in podocytes.
Collapse
Affiliation(s)
- Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Judith Molina
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Shamroop K Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Anis Ahmad
- Department of Radiation Oncology, University of Miami Miller School of MedicineMiamiUnited States
| | - Javier Varona Santos
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Hassan Al-Ali
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Kumar Sharma
- Center for Precision Medicine, School of Medicine, University of Texas Health San AntonioSan AntonioUnited States
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of MiamiMiamiUnited States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| |
Collapse
|
18
|
Njeim R, Alkhansa S, Fornoni A. Unraveling the Crosstalk between Lipids and NADPH Oxidases in Diabetic Kidney Disease. Pharmaceutics 2023; 15:pharmaceutics15051360. [PMID: 37242602 DOI: 10.3390/pharmaceutics15051360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of end-stage renal disease. Abnormal lipid metabolism and intrarenal accumulation of lipids have been shown to be strongly correlated with the development and progression of diabetic kidney disease (DKD). Cholesterol, phospholipids, triglycerides, fatty acids, and sphingolipids are among the lipids that are altered in DKD, and their renal accumulation has been linked to the pathogenesis of the disease. In addition, NADPH oxidase-induced production of reactive oxygen species (ROS) plays a critical role in the development of DKD. Several types of lipids have been found to be tightly linked to NADPH oxidase-induced ROS production. This review aims to explore the interplay between lipids and NADPH oxidases in order to provide new insights into the pathogenesis of DKD and identify more effective targeted therapies for the disease.
Collapse
Affiliation(s)
- Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sahar Alkhansa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- AUB Diabetes, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
19
|
Ohashi M, Tamura A, Yui N. Exploring Receptor Binding Affinities and Hepatic Cell Association of N-Acetyl-d-Galactosamine-Modified β-Cyclodextrin-Based Polyrotaxanes for Liver-Targeted Therapies. Biomacromolecules 2023; 24:2327-2341. [PMID: 37036902 DOI: 10.1021/acs.biomac.3c00194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Acid-degradable polyrotaxanes (PRXs) containing threading β-cyclodextrins (β-CDs) are promising candidates for therapeutic applications of β-CDs in metabolic diseases with cholesterol overload or imbalance. To improve cellular uptake specificity and efficiency of PRXs in hepatocytes, N-acetyl-d-galactosamine (GalNAc)-modified PRXs were developed to facilitate asialoglycoprotein receptor (ASGR)-mediated endocytosis. Binding affinity studies revealed that the dissociation constant (KD) values between recombinant ASGR and GalNAc-PRXs decreased with an increase in the number of modified GalNAc units. Additionally, the KD values for GalNAc-PRXs were smaller than those for GalNAc-modified β-CD and amylose, suggesting that the PRX backbone structure improves the binding affinity with ASGR. However, the intracellular uptake levels of GalNAc-PRXs in HepG2 cells increased with a decrease in the number of modified GalNAc units, which was opposite to the trend observed in the binding affinity study. We found that GalNAc-PRXs had a large number of GalNAc units localized in recycling endosomes, resulting in the low intracellular uptake. The cholesterol-reducing abilities of GalNAc-PRXs were assessed using cholesterol-overloaded HepG2 cells. GalNAc-PRXs with a small number of GalNAc units were demonstrated to show superior cholesterol-reducing effects compared to previously designed acid-degradable PRX and clinically tested β-CD derivatives. Thus, we conclude that GalNAc modification is a promising molecular design for the therapeutic application of β-CD-threaded PRXs in various metabolic diseases with cholesterol overload or imbalance in the liver.
Collapse
Affiliation(s)
- Moe Ohashi
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
20
|
Drexler Y, Molina J, Elfassy T, Ma R, Christoffersen C, Kurano M, Yatomi Y, Mariani LH, Contreras G, Merscher S, Fornoni A. Identification of Glomerular and Plasma Apolipoprotein M as Novel Biomarkers in Glomerular Disease. Kidney Int Rep 2023; 8:884-897. [PMID: 37069998 PMCID: PMC10105063 DOI: 10.1016/j.ekir.2023.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Dysregulation of sphingolipid and cholesterol metabolism contributes to the pathogenesis of glomerular diseases (GDs). Apolipoprotein M (ApoM) promotes cholesterol efflux and modulates the bioactive sphingolipid sphingosine-1-phosphate (S1P). Glomerular ApoM expression is decreased in patients with focal segmental glomerulosclerosis (FSGS). We hypothesized that glomerular ApoM deficiency occurs in GD and that ApoM expression and plasma ApoM correlate with outcomes. Methods Patients with GD from the Nephrotic Syndrome Study Network (NEPTUNE) were studied. We compared glomerular mRNA expression of ApoM (gApoM), sphingosine kinase 1 (SPHK1), and S1P receptors 1 to 5 (S1PR1-5) in patients (n = 84) and controls (n = 6). We used correlation analyses to determine associations between gApoM, baseline plasma ApoM (pApoM), and urine ApoM (uApoM/Cr). We used linear regression to determine whether gApoM, pApoM, and uApoM/Cr were associated with baseline estimated glomerular filtration rate (eGFR) and proteinuria. Using Cox models, we determined whether gApoM, pApoM, and uApoM/Cr were associated with complete remission (CR) and the composite of end-stage kidney disease (ESKD) or ≥40% eGFR decline. Results gApoM was reduced (P < 0.01) and SPHK1 and S1PR1 to 5 expression was increased (P < 0.05) in patients versus controls, consistent with ApoM/S1P pathway modulation. gApoM positively correlated with pApoM in the overall cohort (r = 0.34, P < 0.01) and in the FSGS (r = 0.48, P < 0.05) and minimal change disease (MCD) (r = 0.75, P < 0.05) subgroups. Every unit decrease in gApoM and pApoM (log2) was associated with a 9.77 ml/min per 1.73 m2 (95% confidence interval [CI]: 3.96-15.57) and 13.26 ml/min per 1.73 m2 (95% CI: 3.57-22.96) lower baseline eGFR, respectively (P < 0.01). From Cox models adjusted for age, sex, or race, pApoM was a significant predictor of CR (hazard ratio [HR]: 1.85; 95% CI: 1.06-3.23). Conclusions pApoM is a potential noninvasive biomarker of gApoM deficiency and strongly associates with clinical outcomes in GD.
Collapse
Affiliation(s)
- Yelena Drexler
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Judith Molina
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Tali Elfassy
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ruixuan Ma
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Christina Christoffersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Laura H. Mariani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gabriel Contreras
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
21
|
Zhang J, Wu Y, Zhang J, Zhang R, Wang Y, Liu F. ABCA1 deficiency-mediated glomerular cholesterol accumulation exacerbates glomerular endothelial injury and dysfunction in diabetic kidney disease. Metabolism 2023; 139:155377. [PMID: 36521550 DOI: 10.1016/j.metabol.2022.155377] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hyperglycemia and dyslipidemia are two major characteristics of diabetes. In this study, the effects of glomerular cholesterol accumulation primarily due to ABCA1 deficiency on glomerular endothelial injury in diabetic kidney disease (DKD) and the possible mechanisms were investigated. METHODS The effects of ABCA1 deficiency on glomerular lipid deposition and kidney injury were examined in a type 2 diabetic mouse model with ABCA1 deficiency in glomerular endothelial cells (DM-ABCA1-/- mice) and human renal glomerular endothelial cells (HRGECs) cultured in high glucose and high cholesterol conditions, which simulated type 2 diabetes in vitro. RESULTS ABCA1 deficiency in glomerular endothelial cells exacerbated renal lipid deposition and kidney injuries in type 2 diabetic mice and manifested as increased creatinine levels, more severe proteinuria, mesangial matrix expansion and fusion of foot processes, and more pronounced renal inflammatory injury and cell death. In HRGECs cultured under high glucose and high cholesterol conditions, ABCA1 deficiency increased the deposition of cellular cholesterol, contributed to inflammation and apoptosis, damaged the endothelial glycocalyx barrier, and induced endoplasmic reticulum stress (ERS). Conversely, ABCA1 overexpression enhancing cholesterol efflux or inhibition of ERS in vitro, significantly protected against glomerular endothelial injury stimulated by high glucose and high cholesterol. CONCLUSIONS These findings establish a pathogenic role of ABCA1 deficiency in glomerular endothelium injury and dysfunction and imply that ABCA1 may represent a potential effective therapeutic target for early diabetic kidney disease.
Collapse
Affiliation(s)
- Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yucheng Wu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Rui Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yiting Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
22
|
Gurumani M, Mallela SK, Varona J, Merscher S, Fornoni A, Al-Ali H. A Robust Phenotypic Screening Assay Utilizing Human Podocytes to Identify Agents that Modulate Lipid Droplets. Methods Mol Biol 2023; 2625:163-174. [PMID: 36653642 DOI: 10.1007/978-1-0716-2966-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lipid droplets (LDs), initially thought to be mere lipid storage structures, are highly dynamic organelles with complex functions that control cell fate and behavior. In recent years, their relevance as therapeutic targets for a wide array of human diseases has been well established. Consequently, efforts to develop tools to study them have intensified, including assays that can accurately track LD levels in clinically relevant cell-based models. We previously reported that LD accumulation destines podocytes for lipotoxicity and cell death in renal diseases of metabolic and nonmetabolic origin. We also showed that LD accumulation in those cells serves as both a marker for disease progression and as a therapeutic target. Here, we describe a robust phenotypic screening method, using differentiated human podocytes, for identifying small-molecule compounds that rescue podocytes from LD accumulation and lipotoxicity under cellular stress. Major assay advances include 1) the use of a solvatochromic dye to improve LD staining, reduce background noise, and improve detection accuracy, 2) use of confocal imaging to reduce vertical overlap of LDs and enable accurate counting, 3) combining membrane and cytoskeleton stains to improve cell segmentation in confocal mode, and 4) use of an optimized spot detection algorithm that requires minimal configuration per individual run. The assay is robust and yields a Z-factor that is consistently >0.5.
Collapse
Affiliation(s)
- Margaret Gurumani
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Florida, USA.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Florida, USA
| | - Shamroop Kumar Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Florida, USA.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Florida, USA
| | - Javier Varona
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Florida, USA.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Florida, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Florida, USA.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Florida, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Florida, USA.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Florida, USA
| | - Hassan Al-Ali
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Florida, USA. .,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Florida, USA. .,Department of Neurological Surgery, University of Miami Miller School of Medicine, Florida, USA. .,The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Florida, USA. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Florida, USA.
| |
Collapse
|
23
|
Das O, Kundu J, Ghosh A, Gautam A, Ghosh S, Chakraborty M, Masid A, Gauri SS, Mitra D, Dutta M, Mukherjee B, Sinha S, Bhaumik M. AUF-1 knockdown in mice undermines gut microbial butyrate-driven hypocholesterolemia through AUF-1-Dicer-1-mir-122 hierarchy. Front Cell Infect Microbiol 2022; 12:1011386. [PMID: 36601302 PMCID: PMC9806232 DOI: 10.3389/fcimb.2022.1011386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction and objective Cholesterol homeostasis is a culmination of cellular synthesis, efflux, and catabolism to important physiological entities where short chain fatty acid, butyrate embodied as a key player. This discourse probes the mechanistic molecular details of butyrate action in maintaining host-cholesterol balance. Methods Hepatic mir-122 being the most indispensable regulator of cholesterol metabolic enzymes, we studied upstream players of mir-122 biogenesis in the presence and absence of butyrate in Huh7 cells and mice model. We synthesized unique self-transfecting GMO (guanidinium-morpholino-oligo) linked PMO (Phosphorodiamidate-Morpholino Oligo)-based antisense cell-penetrating reagent to selectively knock down the key player in butyrate mediated cholesterol regulation. Results We showed that butyrate treatment caused upregulation of RNA-binding protein, AUF1 resulting in RNase-III nuclease, Dicer1 instability, and significant diminution of mir-122. We proved the importance of AUF1 and sequential downstream players in AUF1-knock-down mice. Injection of GMO-PMO of AUF1 in mouse caused near absence of AUF1 coupled with increased Dicer1 and mir-122, and reduced serum cholesterol regardless of butyrate treatment indicating that butyrate acts through AUF1. Conclusion The roster of intracellular players was as follows: AUF1-Dicer1-mir-122 for triggering butyrate driven hypocholesterolemia. To our knowledge this is the first report linking AUF-1 with cholesterol biogenesis.
Collapse
Affiliation(s)
- Oishika Das
- Department of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Jayanta Kundu
- School of Applied and Interdisciplinary Sciences, Indian Associations for Cultivation of Science, Kolkata, India
| | - Atanu Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Associations for Cultivation of Science, Kolkata, India
| | - Anupam Gautam
- Department of Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany,International Max Planck Research School “From Molecules to Organisms”, Max Planck Institute for Biology Tübingen, Tübingen, Germany,Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| | - Souradeepa Ghosh
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Mainak Chakraborty
- Department of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Aaheli Masid
- Department of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Samiran Sona Gauri
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Debmalya Mitra
- Department of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Moumita Dutta
- Department of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Associations for Cultivation of Science, Kolkata, India
| | - Moumita Bhaumik
- Department of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India,*Correspondence: Moumita Bhaumik,
| |
Collapse
|
24
|
Hagmann H, Khayyat NH, Oezel C, Papadakis A, Kuczkowski A, Benzing T, Gulbins E, Dryer S, Brinkkoetter PT. Paraoxonase 2 (PON2) Deficiency Reproduces Lipid Alterations of Diabetic and Inflammatory Glomerular Disease and Affects TRPC6 Signaling. Cells 2022; 11:cells11223625. [PMID: 36429053 PMCID: PMC9688324 DOI: 10.3390/cells11223625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes and inflammatory diseases are associated with an altered cellular lipid composition due to lipid peroxidation. The pathogenic potential of these lipid alterations in glomerular kidney diseases remains largely obscure as suitable cell culture and animal models are lacking. In glomerular disease, a loss of terminally differentiated glomerular epithelial cells called podocytes refers to irreversible damage. Podocytes are characterized by a complex ramified cellular architecture and highly active transmembrane signaling. Alterations in lipid composition in states of disease have been described in podocytes but the pathophysiologic mechanisms mediating podocyte damage are unclear. In this study, we employ a genetic deletion of the anti-oxidative, lipid-modifying paraoxonase 2 enzyme (PON2) as a model to study altered cellular lipid composition and its effects on cellular signaling in glomerular disease. PON2 deficiency reproduces features of an altered lipid composition of glomerular disease, characterized by an increase in ceramides and cholesterol. PON2 knockout mice are more susceptible to glomerular damage in models of aggravated oxidative stress such as adriamycin-induced nephropathy. Voltage clamp experiments in cultured podocytes reveal a largely increased TRPC6 conductance after a membrane stretch in PON2 deficiency. Correspondingly, a concomitant knockout of TRPC6 and PON2 partially rescues the aggravated glomerular phenotype of a PON2 knockout in the adriamycin model. This study establishes PON2 deficiency as a model to investigate the pathophysiologic mechanisms of podocyte dysfunction related to alterations in the lipid composition, as seen in diabetic and inflammatory glomerular disease. Expanding the knowledge on these routes and options of intervention could lead to novel treatment strategies for glomerular disease.
Collapse
Affiliation(s)
- Henning Hagmann
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
- Correspondence:
| | | | - Cem Oezel
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Antonios Papadakis
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Alexander Kuczkowski
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), 50931 Cologne, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Stuart Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX 77204, USA
| | - Paul T. Brinkkoetter
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
| |
Collapse
|
25
|
Zuzda K, Grycuk W, Małyszko J, Małyszko J. Kidney and lipids: novel potential therapeutic targets for dyslipidemia in kidney disease? Expert Opin Ther Targets 2022; 26:995-1009. [PMID: 36548906 DOI: 10.1080/14728222.2022.2161887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Altered lipid distribution and metabolism may lead to the development and/or progression of chronic kidney disease (CKD). Dyslipidemia is a major risk factor for CKD and increases the risk of cardiovascular events and mortality. Therefore, lipid-lowering treatments may decrease cardiovascular risk and prevent death. AREAS COVERED Key players involved in regulating lipid accumulation in the kidney; contribution of lipids to CKD progression, lipotoxicity, and mitochondrial dysfunction in kidney disease; recent therapeutic approaches for dyslipidemia. EXPERT OPINION The precise mechanisms for regulating lipid metabolism, particularly in kidney disease, are poorly understood. Guidelines for lipid-lowering therapy for CKD are controversial. Several hypolipemic therapies are available, but compared to others, statin therapy is the most common. No clinical trial has evaluated the efficacy of proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) in preventing cardiovascular events or improving kidney function among patients with CKD or kidney transplant recipients. Attractive alternatives, such as PCSK9-small interfering RNA (siRNA) molecules or evinacumab are available. Additionally, several promising agents, such as cyclodextrins and the FXR/TGR5 dual agonist, INT-767, can improve renal lipid metabolism disorders and delay CKD progression. Drugs targeting mitochondrial dysfunction could be an option for the treatment of dyslipidemia and lipotoxicity, particularly in renal diseases.
Collapse
Affiliation(s)
- Konrad Zuzda
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Bialystok, Poland
| | - Wiktoria Grycuk
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Bialystok, Poland
| | - Jacek Małyszko
- 1st Department of Nephrology and Transplantology, Medical University of Bialystok, Bialystok, Poland
| | - Jolanta Małyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Bialystok, Poland
| |
Collapse
|
26
|
The Contribution of Lipotoxicity to Diabetic Kidney Disease. Cells 2022; 11:cells11203236. [PMID: 36291104 PMCID: PMC9601125 DOI: 10.3390/cells11203236] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Lipotoxicity is a fundamental pathophysiologic mechanism in diabetes and non-alcoholic fatty liver disease and is now increasingly recognized in diabetic kidney disease (DKD) pathogenesis. This review highlights lipotoxicity pathways in the podocyte and proximal tubule cell, which are arguably the two most critical sites in the nephron for DKD. The discussion focuses on membrane transporters and lipid droplets, which represent potential therapeutic targets, as well as current and developing pharmacologic approaches to reduce renal lipotoxicity.
Collapse
|
27
|
Tamura A, Nishida K, Zhang S, Kang TW, Tonegawa A, Yui N. Cografting of Zwitterionic Sulfobetaines and Cationic Amines on β-Cyclodextrin-Threaded Polyrotaxanes Facilitates Cellular Association and Tissue Accumulation with High Biocompatibility. ACS Biomater Sci Eng 2022; 8:2463-2476. [PMID: 35536230 DOI: 10.1021/acsbiomaterials.2c00324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Cyclodextrins (β-CDs) and β-CD-containing polymers have attracted considerable attention as potential candidates for the treatment of cholesterol-related metabolic and intractable diseases. We have advocated the use of β-CD-threaded acid-degradable polyrotaxanes (PRXs) as intracellular delivery carriers for β-CDs. As unmodified PRXs are insoluble in aqueous solutions, chemical modification of PRXs is an essential process to improve their solubility and impart novel functionalities. In this study, we investigated the effect of the modification of zwitterionic sulfobetaines on PRXs due to their excellent solubility, biocompatibility, and bioinert properties. Sulfobetaine-modified PRXs were synthesized by converting the tertiary amino groups of precursor 2-(N,N-dimethylamino)ethyl carbamate-modified PRXs (DMAE-PRXs) using 1,3-propanesultone. The resulting sulfobetaine-modified PRXs showed high solubility in aqueous solutions and no cytotoxicity, while their intracellular uptake levels were low. To further improve this system, we designed PRXs cografted with zwitterionic sulfobetaine and cationic DMAE groups via partial betainization of the DMAE groups. Consequently, the interaction with proteins, intracellular uptake levels, and liver accumulation of partly betainized PRXs were found to be higher than those of completely betainized PRXs. Additionally, partly betainized PRXs showed no toxicity in vitro or in vivo despite the presence of residual cationic DMAE groups. Furthermore, partly betainized PRXs ameliorated the abnormal free cholesterol accumulation in Niemann-Pick type C disease patient-derived cells at lower concentrations than β-CD derivatives and previously designed PRXs. Overall, the cografting of sulfobetaines and amines on PRXs is a promising chemical modification for therapeutic applications due to the high cholesterol-reducing ability and biocompatibility of such modified PRXs. In addition, modification with both zwitterionic and cationic groups can be used for the design of various polymeric materials exhibiting both bioinert and bioactive characteristics.
Collapse
Affiliation(s)
- Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Kei Nishida
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Shunyao Zhang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Tae Woong Kang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Asato Tonegawa
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
28
|
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther 2022; 7:182. [PMID: 35680856 PMCID: PMC9184651 DOI: 10.1038/s41392-022-01036-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a chronic renal dysfunction syndrome that is characterized by nephron loss, inflammation, myofibroblasts activation, and extracellular matrix (ECM) deposition. Lipotoxicity and oxidative stress are the driving force for the loss of nephron including tubules, glomerulus, and endothelium. NLRP3 inflammasome signaling, MAPK signaling, PI3K/Akt signaling, and RAAS signaling involves in lipotoxicity. The upregulated Nox expression and the decreased Nrf2 expression result in oxidative stress directly. The injured renal resident cells release proinflammatory cytokines and chemokines to recruit immune cells such as macrophages from bone marrow. NF-κB signaling, NLRP3 inflammasome signaling, JAK-STAT signaling, Toll-like receptor signaling, and cGAS-STING signaling are major signaling pathways that mediate inflammation in inflammatory cells including immune cells and injured renal resident cells. The inflammatory cells produce and secret a great number of profibrotic cytokines such as TGF-β1, Wnt ligands, and angiotensin II. TGF-β signaling, Wnt signaling, RAAS signaling, and Notch signaling evoke the activation of myofibroblasts and promote the generation of ECM. The potential therapies targeted to these signaling pathways are also introduced here. In this review, we update the key signaling pathways of lipotoxicity, oxidative stress, inflammation, and myofibroblasts activation in kidneys with chronic injury, and the targeted drugs based on the latest studies. Unifying these pathways and the targeted therapies will be instrumental to advance further basic and clinical investigation in CKD.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ben Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
29
|
Chavez E, Rodriguez J, Drexler Y, Fornoni A. Novel Therapies for Alport Syndrome. Front Med (Lausanne) 2022; 9:848389. [PMID: 35547199 PMCID: PMC9081811 DOI: 10.3389/fmed.2022.848389] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Alport syndrome (AS) is a hereditary kidney disease associated with proteinuria, hematuria and progressive kidney failure. It is characterized by a defective glomerular basement membrane caused by mutations in type IV collagen genes COL4A3/A4/A5 which result in defective type IV collagen α3, α4, or α5 chains, respectively. Alport syndrome has three different patterns of inheritance: X-linked, autosomal and digenic. In a study of CKD of unknown etiology type IV collagen gene mutations accounted for the majority of the cases of hereditary glomerulopathies which suggests that AS is often underrecognized. The natural history and prognosis in patients with AS is variable and is determined by genetics and environmental factors. At present, no preventive or curative therapies exist for AS. Current treatment includes the use of renin-angiotensin-aldosterone system inhibitors which slow progression of kidney disease and prolong life expectancy. Ramipril was found in retrospective studies to delay the onset of ESKD and was recently demonstrated to be safe and effective in children and adolescents, supporting that early initiation of Renin Angiotensin Aldosterone System (RAAS) blockade is very important. Mineralocorticoid receptor blockers might be favorable for patients who develop "aldosterone breakthrough." While the DAPA-CKD trial suggests a beneficial effect of SGLT2 inhibitors in CKD of non-metabolic origin, only a handful of patients had Alport in this cohort, and therefore conclusions can't be extrapolated for the treatment of AS with SGLT2 inhibitors. Advances in our understanding on the pathogenesis of Alport syndrome has culminated in the development of innovative therapeutic approaches that are currently under investigation. We will provide a brief overview of novel therapeutic targets to prevent progression of kidney disease in AS. Our review will include bardoxolone methyl, an oral NRf2 activator; lademirsen, an anti-miRNA-21 molecule; sparsentan, dual endothelin type A receptor (ETAR) and angiotensin 1 receptor inhibitor; atrasentan, oral selective ETAR inhibitor; lipid-modifying agents, including cholesterol efflux transporter ATP-binding cassette A1 (ABCA1) inducers, discoidin domain receptor 1 (DDR1) inhibitors and osteopontin blocking agents; the antimalarial drug hydroxychloroquine; the antiglycemic drug metformin and the active vitamin D analog paricalcitol. Future genomic therapeutic strategies such as chaperone therapy, genome editing and stem cell therapy will also be discussed.
Collapse
Affiliation(s)
- Efren Chavez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juanly Rodriguez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yelena Drexler
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
30
|
Hu J, Zhu Z, Chen Z, Yang Q, Liang W, Ding G. Alteration in Rab11-mediated endocytic trafficking of LDL receptor contributes to angiotensin II-induced cholesterol accumulation and injury in podocytes. Cell Prolif 2022; 55:e13229. [PMID: 35567428 PMCID: PMC9201372 DOI: 10.1111/cpr.13229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Objectives Exposure of podocytes to angiotensin II (Ang II) enhances the abundance of the cell surface glycoprotein, low‐density lipoprotein receptor (LDLR) and promotes significant changes in the cellular cholesterol content. Recent investigation provides evidence that the small GTPase Rab11 is involved in the regulation of LDLR, but the exact mechanisms remain unknown. In this study, the role of Rab11 in post‐transcriptional regulation of LDLR was evaluated to investigate potential mechanisms of podocyte cholesterol dysregulation in chronic kidney disease. Materials and Methods Cholesterol content, LDLR and Rab11 expression were assessed in podocytes from Ang II‐infused mice. In vitro, the intracellular localization of LDLR was detected under different conditions. Rab11 expression was modulated and we then explored the effect of anti‐lipid cytotoxicity by detecting LDLR expression and trafficking, cholesterol content and apoptosis in podocytes. Results Cholesterol accumulation, upregulated expression of LDLR and Rab11 were discovered in podocytes from Ang II‐infused mice. Ang II enhanced the co‐precipitation of LDLR with Rab11 and accelerated the endocytic recycling of LDLR to the plasma membrane. Additionally, silencing Rab11 promoted lysosomal degradation of LDLR and alleviated Ang II‐induced cholesterol accumulation and apoptosis in podocytes. Conversely, overexpression of Rab11 or inhibition of lysosomal degradation up‐regulated the abundance of LDLR and aggravated podocyte cholesterol deposition. Conclusions Rab11 triggers the endocytic trafficking and recycling of LDLR; overactivation of this pathway contributes to Ang II‐induced podocyte cholesterol accumulation and injury.
Collapse
Affiliation(s)
- Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Qian Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
31
|
Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci (Lond) 2022; 136:493-520. [PMID: 35415751 PMCID: PMC9008595 DOI: 10.1042/cs20210625] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Albuminuria is the hallmark of both primary and secondary proteinuric glomerulopathies, including focal segmental glomerulosclerosis (FSGS), obesity-related nephropathy, and diabetic nephropathy (DN). Moreover, albuminuria is an important feature of all chronic kidney diseases (CKDs). Podocytes play a key role in maintaining the permselectivity of the glomerular filtration barrier (GFB) and injury of the podocyte, leading to foot process (FP) effacement and podocyte loss, the unifying underlying mechanism of proteinuric glomerulopathies. The metabolic insult of hyperglycemia is of paramount importance in the pathogenesis of DN, while insults leading to podocyte damage are poorly defined in other proteinuric glomerulopathies. However, shared mechanisms of podocyte damage have been identified. Herein, we will review the role of haemodynamic and oxidative stress, inflammation, lipotoxicity, endocannabinoid (EC) hypertone, and both mitochondrial and autophagic dysfunction in the pathogenesis of the podocyte damage, focussing particularly on their role in the pathogenesis of DN. Gaining a better insight into the mechanisms of podocyte injury may provide novel targets for treatment. Moreover, novel strategies for boosting podocyte repair may open the way to podocyte regenerative medicine.
Collapse
|
32
|
Lu J, Chen PP, Zhang JX, Li XQ, Wang GH, Yuan BY, Huang SJ, Liu XQ, Jiang TT, Wang MY, Liu WT, Ruan XZ, Liu BC, Ma KL. GPR43 activation-mediated lipotoxicity contributes to podocyte injury in diabetic nephropathy by modulating the ERK/EGR1 pathway. Int J Biol Sci 2022; 18:96-111. [PMID: 34975320 PMCID: PMC8692141 DOI: 10.7150/ijbs.64665] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Background: G-protein-coupled receptor 43 (GPR43) is a posttranscriptional regulator involved in cholesterol metabolism. This study aimed to investigate the possible roles of GPR43 activation in podocyte lipotoxicity in diabetic nephropathy (DN) and explore the potential mechanisms. Methods: The experiments were conducted by using diabetic GPR43-knockout mice and a podocyte cell culture model. Lipid deposition and free cholesterol levels in kidney tissues were measured by BODIPY staining and quantitative cholesterol assays, respectively. The protein expression of GPR43, LC3II, p62, beclin1, low-density lipoprotein receptor (LDLR) and early growth response protein 1 (EGR1) in kidney tissues and podocytes was measured by real-time PCR, immunofluorescent staining and Western blotting. Results: There were increased LDL cholesterol levels in plasma and cholesterol accumulation in the kidneys of diabetic mice. However, GPR43 gene knockout inhibited these changes. An in vitro study further demonstrated that acetate treatment induced cholesterol accumulation in high glucose-stimulated podocytes, which was correlated with increased cholesterol uptake mediated by LDLR and reduced cholesterol autophagic degradation, as characterized by the inhibition of LC3 maturation, p62 degradation and autophagosome formation. Gene knockdown or pharmacological inhibition of GPR43 prevented these effects on podocytes. Furthermore, GPR43 activation increased extracellular regulated protein kinases 1/2 (ERK1/2) activity and EGR1 expression in podocytes, which resulted in an increase in cholesterol influx and autophagy inhibition. In contrast, after GPR43 deletion, these changes in podocytes were improved, as shown by the in vivo and in vitro results. Conclusion: GPR43 activation-mediated lipotoxicity contributes to podocyte injury in DN by modulating the ERK/EGR1 pathway.
Collapse
Affiliation(s)
- Jian Lu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Pei Pei Chen
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jia Xiu Zhang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xue Qi Li
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Gui Hua Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ben Yin Yuan
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Si Jia Huang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiao Qi Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ting Ting Jiang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Meng Ying Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wen Tao Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiong Zhong Ruan
- John Moorhead Research Laboratory, Department of Renal Medicine, University College London (UCL) Medical School, Royal Free Campus, London, NW3 2PF, UK
| | - Bi Cheng Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Kun Ling Ma
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| |
Collapse
|
33
|
Li Y, Gong W, Liu J, Chen X, Suo Y, Yang H, Gao X. Angiopoietin-like protein 4 promotes hyperlipidemia-induced renal injury by down-regulating the expression of ACTN4. Biochem Biophys Res Commun 2022; 595:69-75. [PMID: 35101665 DOI: 10.1016/j.bbrc.2022.01.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/05/2022] [Accepted: 01/15/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE The molecular mechanism of in hyperlipidemia-induced renal injury has not been elucidated. Angiogenin-like protein 4 (ANGPTL4) is a key regulator of lipid metabolism. The role of ANGPTL4 hyperlipidemia-induced renal injury has not been reported. METHODS Wild type C57 mice and gene angptl4 knockout mice were fed with 60% high fat diet or normal diet respectively. The serum lipid, urinary albumin and renal pathology were tested at the 9th, 13th, 17th and 21st week with high fat diet. RESULTS Elevated blood lipids in the wild-type mice with high-fat diet were found at 9th week. At the 17th week, the level of urinary albumin in high-fat fed wild type mice were significantly higher than which with normal diet, correspondingly, segmental fusion of podocyte foot process in kidney could be observed in these hyperlipidemia mice. IHC showed that the expression of ANGPTL4 in glomeruli of high-fat fed wild type mice began significant elevated since the 9th week. When given high fat diet, compared to the wild type, the gene angptl4 knockout mice showed significantly alleviated the levels of hyperlipidemia, proteinuria and effacement of podocyte foot process. Finally, the expression of ACTN4 showed remarkably lower in glomeruli podocyte of wild type mice fed high fat diet than that of wild type mice with normal diet at each time-point (P < 0.01). Differently, the expression of ACTN4 in gene angptl4 knockout mice did not happen significantly weaken when given the same dose of high fat diet. CONCLUSION ANGPTL4 could play a role in hyperlipidemic-induced renal injury via down-regulating the expression of ACTN4 in kidney podocyte.
Collapse
Affiliation(s)
- Yue Li
- Nephrology Department, Guangzhou Women and Children's Medical Center, Guangzhou, 510000, China
| | - Wangqiu Gong
- Nephrology Department, Guangzhou Women and Children's Medical Center, Guangzhou, 510000, China
| | - Jing Liu
- Pediatric Department, Gansu Province People's Hospital, Lanzhou City, 730000, China
| | - Xingxing Chen
- Pediatric Department, Gansu Province People's Hospital, Lanzhou City, 730000, China
| | - Yanhong Suo
- Pediatric Department, Gansu Province People's Hospital, Lanzhou City, 730000, China
| | - Huabing Yang
- Nephrology Department, Guangzhou Women and Children's Medical Center, Guangzhou, 510000, China
| | - Xia Gao
- Nephrology Department, Guangzhou Women and Children's Medical Center, Guangzhou, 510000, China.
| |
Collapse
|
34
|
Pressly JD, Gurumani MZ, Varona Santos JT, Fornoni A, Merscher S, Al-Ali H. Adaptive and maladaptive roles of lipid droplets in health and disease. Am J Physiol Cell Physiol 2022; 322:C468-C481. [PMID: 35108119 PMCID: PMC8917915 DOI: 10.1152/ajpcell.00239.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Advances in the understanding of lipid droplet biology have revealed essential roles for these organelles in mediating proper cellular homeostasis and stress response. Lipid droplets were initially thought to play a passive role in energy storage. However, recent studies demonstrate that they have substantially broader functions, including protection from reactive oxygen species, endoplasmic reticulum stress, and lipotoxicity. Dysregulation of lipid droplet homeostasis is associated with various pathologies spanning neurological, metabolic, cardiovascular, oncological, and renal diseases. This review provides an overview of the current understanding of lipid droplet biology in both health and disease.
Collapse
Affiliation(s)
- Jeffrey D. Pressly
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Margaret Z. Gurumani
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Javier T. Varona Santos
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Alessia Fornoni
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Sandra Merscher
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Hassan Al-Ali
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida,3Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida,4The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida,5Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
35
|
Pan X. Cholesterol Metabolism in Chronic Kidney Disease: Physiology, Pathologic Mechanisms, and Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:119-143. [PMID: 35503178 PMCID: PMC11106795 DOI: 10.1007/978-981-19-0394-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High plasma levels of lipids and/or lipoproteins are risk factors for atherosclerosis, nonalcoholic fatty liver disease (NAFLD), obesity, and diabetes. These four conditions have also been identified as risk factors leading to the development of chronic kidney disease (CKD). Although many pathways that generate high plasma levels of these factors have been identified, most clinical and physiologic dysfunction results from aberrant assembly and secretion of lipoproteins. The results of several published studies suggest that elevated levels of low-density lipoprotein (LDL)-cholesterol are a risk factor for atherosclerosis, myocardial infarction, coronary artery calcification associated with type 2 diabetes, and NAFLD. Cholesterol metabolism has also been identified as an important pathway contributing to the development of CKD; clinical treatments designed to alter various steps of the cholesterol synthesis and metabolism pathway are currently under study. Cholesterol synthesis and catabolism contribute to a multistep process with pathways that are regulated at the cellular level in renal tissue. Cholesterol metabolism may also be regulated by the balance between the influx and efflux of cholesterol molecules that are capable of crossing the membrane of renal proximal tubular epithelial cells and podocytes. Cellular accumulation of cholesterol can result in lipotoxicity and ultimately kidney dysfunction and failure. Thus, further research focused on cholesterol metabolism pathways will be necessary to improve our understanding of the impact of cholesterol restriction, which is currently a primary intervention recommended for patients with dyslipidemia.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA.
| |
Collapse
|
36
|
Li C, Su F, Zhang L, Liu F, Fan W, Li Z, Ma J. Identifying Potential Diagnostic Genes for Diabetic Nephropathy Based on Hypoxia and Immune Status. J Inflamm Res 2021; 14:6871-6891. [PMID: 34934337 PMCID: PMC8684433 DOI: 10.2147/jir.s341032] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Background The prognosis of diabetic nephropathy is poor, and early diagnosis of diabetic nephropathy is challenging. Fortunately, searching for DN-specific markers based on machine algorithms can facilitate diagnosis. Methods xCell model and CIBERSORT algorithm were used to analyze the relationship between immune cells and DN, and WGCNA analysis was used to evaluate the regulatory relationship between hypoxia gene and DN-related immune cells. Lasso regression and ROC regression were used to detect the ability of core genes to diagnose DN, the PPI network of core genes with high diagnostic ability was constructed, and the interaction between core genes was discussed. Results There were 519 differentially expressed genes in renal tubules and 493 differentially expressed genes in glomeruli. Immune and hypoxia responses are involved in the regulation of renal glomerulus and renal tubules. We found that there are 16 hypoxia-related genes involved in the regulation of hypoxia response. Seventeen hypoxia-related genes in renal tubules are involved in regulating hypoxia response on the proteasome signal pathway. Lasso and ROC regression were used to screen anoxic core genes. Further, we found that TGFBR3, APOLD1, CPEB1, and KDR are important in diagnosing DN glomerulopathy, respectively, PSMB8, PSMB9, RHOA, VCAM1, and CDKN1B, which have high specificity for renal tubulopathy in DN. Conclusion Hypoxia and immune reactions are involved in the progression of DN. T cells are the central immune response cells. TGFBR3, APOLD1, CPEB1, and KDR have higher diagnostic accuracy in the diagnosis of DN. PSMB8, PSMB9, RHOA, VCAM1, and CDKN1B have higher diagnostic accuracy in DN diagnosis.
Collapse
Affiliation(s)
- Changyan Li
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Feng Su
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Le Zhang
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - Fang Liu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Wenxing Fan
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Zhen Li
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - JingYuan Ma
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| |
Collapse
|
37
|
Sun Y, Cui S, Hou Y, Yi F. The Updates of Podocyte Lipid Metabolism in Proteinuric Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:438-451. [PMID: 34901191 DOI: 10.1159/000518132] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Podocytes, functionally specialized and terminally differentiated glomerular visceral epithelial cells, are critical for maintaining the structure and function of the glomerular filtration barrier. Podocyte injury is considered as the most important early event contributing to proteinuric kidney diseases such as obesity-related renal disease, diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, and minimal change disease. Although considerable advances have been made in the understanding of mechanisms that trigger podocyte injury, cell-specific and effective treatments are not clinically available. SUMMARY Emerging evidence has indicated that the disorder of podocyte lipid metabolism is closely associated with various proteinuric kidney diseases. Excessive lipid accumulation in podocytes leads to cellular dysfunction which is defined as lipotoxicity, a phenomenon characterized by mitochondrial oxidative stress, actin cytoskeleton remodeling, insulin resistance, and inflammatory response that can eventually result in podocyte hypertrophy, detachment, and death. In this review, we summarize recent advances in the understanding of lipids in podocyte biological function and the regulatory mechanisms leading to podocyte lipid accumulation in proteinuric kidney disease. KEY MESSAGES Targeting podocyte lipid metabolism may represent a novel therapeutic strategy for patients with proteinuric kidney disease.
Collapse
Affiliation(s)
- Yu Sun
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Sijia Cui
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yunfeng Hou
- Intensive Care Unit, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
38
|
Song Y, Liu J, Zhao K, Gao L, Zhao J. Cholesterol-induced toxicity: An integrated view of the role of cholesterol in multiple diseases. Cell Metab 2021; 33:1911-1925. [PMID: 34562355 DOI: 10.1016/j.cmet.2021.09.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
High levels of cholesterol are generally considered to be associated with atherosclerosis. In the past two decades, however, a number of studies have shown that excess cholesterol accumulation in various tissues and organs plays a critical role in the pathogenesis of multiple diseases. Here, we summarize the effects of excess cholesterol on disease pathogenesis, including liver diseases, diabetes, chronic kidney disease, Alzheimer's disease, osteoporosis, osteoarthritis, pituitary-thyroid axis dysfunction, immune disorders, and COVID-19, while proposing that excess cholesterol-induced toxicity is ubiquitous. We believe this concept will help broaden the appreciation of the toxic effect of excess cholesterol, and thus potentially expand the therapeutic use of cholesterol-lowering medications.
Collapse
Affiliation(s)
- Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Junjun Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Ke Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China.
| |
Collapse
|
39
|
Rodríguez-Rodríguez AE, Donate-Correa J, Luis-Lima S, Díaz-Martín L, Rodríguez-González C, Pérez-Pérez JA, Acosta-González NG, Fumero C, Navarro-Díaz M, López-Álvarez D, Villacampa-Jiménez J, Navarro-González JA, Ortiz A, Porrini E. Obesity and metabolic syndrome induce hyperfiltration, glomerulomegaly, and albuminuria in obese ovariectomized female mice and obese male mice. Menopause 2021; 28:1296-1306. [PMID: 34581293 DOI: 10.1097/gme.0000000000001842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Obese patients with metabolic syndrome have a high risk of chronic kidney disease. The prevalence of obesity, metabolic syndrome, and insulin resistance increase in women after menopause, as does the risk of chronic kidney disease. This may indicate an interaction between obesity, metabolic syndrome, and menopause in the induction of renal damage. However, the pathogenesis of kidney disease in postmenopausal obese women is poorly understood. METHODS We investigated the interaction of an obesogenic diet and menopause on renal dysfunction in ovariectomized and non-ovariectomized lean (n = 8 and 17) and obese (n = 12 and 20) female mice. Obese (n = 12) and lean (n = 10) male mice were also studied. Glucose metabolism, insulin resistance, and kidney function were evaluated with gold standards procedures. Changes in kidney histology and lipid deposition were analyzed. Females had a lower number of glomeruli than males at baseline. RESULTS Only female ovariectomized obese animals developed insulin resistance, hyperglycemia, and kidney damage, evidenced as glomerulomegaly, glomerular hyperfiltration, and increased urinary albumin excretion, despite a similar increase in weight than obese non-ovariectomized female mice. Male obese mice developed hyperglycemia, insulin resistance, and hyperfiltration without major renal histological changes. Males on high fat diet showed higher renal lipid content and females on high fat diet (ovariectomized or non-ovariectomized) showed higher total cholesterol content than males. CONCLUSIONS In mice, there is a clear interplay between obesity, metabolic syndrome, and menopause in the induction of kidney damage.
Collapse
Affiliation(s)
- Ana Elena Rodríguez-Rodríguez
- Research Unit, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
- Fundacion General de la Universidad, University of La Laguna, Tenerife, Spain
| | - Javier Donate-Correa
- Research Unit, Hospital Universitario de Nuestra Señora de La Candelaria, La Laguna, Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
| | - Sergio Luis-Lima
- Department of Nephology and Hypertension, IIS-Fundación Jimenez Díaz, UAM, Madrid, Spain
| | - Laura Díaz-Martín
- Research Unit, Hospital Universitario de Canarias, FIISC (Fundación Canaria Investigación Sanitaria de Canarias), La Laguna, Tenerife, Spain
| | | | | | | | - Cecilia Fumero
- Research Unit, Hospital Universitario de Canarias, FIISC (Fundación Canaria Investigación Sanitaria de Canarias), La Laguna, Tenerife, Spain
| | | | | | | | | | - Alberto Ortiz
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- Department of Nephology and Hypertension, IIS-Fundación Jimenez Díaz, UAM, Madrid, Spain
| | - Esteban Porrini
- Research Unit, Hospital Universitario de Canarias, University of La Laguna, Faculty of Medicine, Tenerife, Spain
- ITB (Instituto Tecnologías Biomédicas), University of La Laguna, Tenerife, Spain
| |
Collapse
|
40
|
Ohashi M, Tamura A, Yui N. Terminal Structure of Triethylene Glycol-Tethered Chains on β-Cyclodextrin-Threaded Polyrotaxanes Dominates Temperature Responsivity and Biointeractions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11102-11114. [PMID: 34478294 DOI: 10.1021/acs.langmuir.1c01894] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pharmacological and biomedical applications of cyclodextrin (CD)-threaded polyrotaxanes (PRXs) have gained increasing attention. We had previously investigated the therapeutic effects of oligo(ethylene glycol) (OEG)-modified β-CD PRXs in congenital metabolic disorders. Although the chemical modification of PRXs is crucial for these applications, the influences of the chemical structure of OEG modified on PRXs were not completely understood. The current study focuses on the terminal group structures of triethylene glycol (TEG)-tethered chains, wherein three series of TEG-tethered PRXs (TEG-PRXs) with various TEG terminal group structures (hydroxy, methoxy, and ethoxy) were synthesized to investigate their physicochemical properties and biointeractions. The methoxy and ethoxy-terminated TEG-PRXs exhibited temperature-dependent phase transitions in phosphate buffer saline and formed coacervate droplets above their cloud points. A comprehensive analysis revealed that the hydrophobicity of the terminal group structures of the TEG-tethered chains played a dominant role in exhibiting temperature-dependent phase transition. Furthermore, the hydrophobicity of the terminal group structures of TEG-tethered chains on PRXs also affected the interactions with lipids and proteins, with the hydrophobic ethoxy-terminated TEG-tethered chains showing the highest interactions. However, in normal human skin fibroblasts, the moderately hydrophobic methoxy-terminated TEG-modified PRXs showed the highest intracellular uptake levels. As a result, we concluded that methoxy-terminated TEG is a suitable chemical modification for the biomedical applications of PRXs due to the negligible temperature responsivity around physiological temperature and significant intracellular uptake levels. The findings of this study shall contribute significantly to the rational design of PRXs and CD-based materials for future pharmacological and biomedical applications.
Collapse
Affiliation(s)
- Moe Ohashi
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
41
|
Use of Lipid-Modifying Agents for the Treatment of Glomerular Diseases. J Pers Med 2021; 11:jpm11080820. [PMID: 34442464 PMCID: PMC8401447 DOI: 10.3390/jpm11080820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023] Open
Abstract
Although dyslipidemia is associated with chronic kidney disease (CKD), it is more common in nephrotic syndrome (NS), and guidelines for the management of hyperlipidemia in NS are largely opinion-based. In addition to the role of circulating lipids, an increasing number of studies suggest that intrarenal lipids contribute to the progression of glomerular diseases, indicating that proteinuric kidney diseases may be a form of "fatty kidney disease" and that reducing intracellular lipids could represent a new therapeutic approach to slow the progression of CKD. In this review, we summarize recent progress made in the utilization of lipid-modifying agents to lower renal parenchymal lipid accumulation and to prevent or reduce kidney injury. The agents mentioned in this review are categorized according to their specific targets, but they may also regulate other lipid-relevant pathways.
Collapse
|
42
|
Wright MB, Varona Santos J, Kemmer C, Maugeais C, Carralot JP, Roever S, Molina J, Ducasa GM, Mitrofanova A, Sloan A, Ahmad A, Pedigo C, Ge M, Pressly J, Barisoni L, Mendez A, Sgrignani J, Cavalli A, Merscher S, Prunotto M, Fornoni A. Compounds targeting OSBPL7 increase ABCA1-dependent cholesterol efflux preserving kidney function in two models of kidney disease. Nat Commun 2021; 12:4662. [PMID: 34341345 PMCID: PMC8329197 DOI: 10.1038/s41467-021-24890-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/06/2021] [Indexed: 02/08/2023] Open
Abstract
Impaired cellular cholesterol efflux is a key factor in the progression of renal, cardiovascular, and autoimmune diseases. Here we describe a class of 5-arylnicotinamide compounds, identified through phenotypic drug discovery, that upregulate ABCA1-dependent cholesterol efflux by targeting Oxysterol Binding Protein Like 7 (OSBPL7). OSBPL7 was identified as the molecular target of these compounds through a chemical biology approach, employing a photoactivatable 5-arylnicotinamide derivative in a cellular cross-linking/immunoprecipitation assay. Further evaluation of two compounds (Cpd A and Cpd G) showed that they induced ABCA1 and cholesterol efflux from podocytes in vitro and normalized proteinuria and prevented renal function decline in mouse models of proteinuric kidney disease: Adriamycin-induced nephropathy and Alport Syndrome. In conclusion, we show that small molecule drugs targeting OSBPL7 reveal an alternative mechanism to upregulate ABCA1, and may represent a promising new therapeutic strategy for the treatment of renal diseases and other disorders of cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Matthew B Wright
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Javier Varona Santos
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Christian Kemmer
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Cyrille Maugeais
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jean-Philippe Carralot
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Stephan Roever
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Judith Molina
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - G Michelle Ducasa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alexis Sloan
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Anis Ahmad
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Christopher Pedigo
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jeffrey Pressly
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Laura Barisoni
- Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Armando Mendez
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Marco Prunotto
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA.
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
43
|
Zhang S, Tamura A, Yui N. Weakly acidic carboxy group-grafted β-cyclodextrin-threaded acid-degradable polyrotaxanes for modulating protein interaction and cellular internalization. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:494-510. [PMID: 34248421 PMCID: PMC8245098 DOI: 10.1080/14686996.2021.1935315] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 05/13/2023]
Abstract
To improve the therapeutic potential of β-cyclodextrin (β-CD)-threaded acid-degradable polyrotaxanes (β-CD PRXs) in cholesterol-related metabolic disorders, we investigated the effect of carboxylation of β-CD PRXs on intracellular uptake. In this study, we established a synthetic method for the modification of carboxylalkyl carbamates on β-CD PRXs without degradation and synthesized three series of carboxyalkyl carbamate group-modified β-CD PRXs with different alkyl spacer lengths. The modification of carboxymethyl carbamate (CMC), carboxyethyl carbamate (CEC), and carboxypropyl carbamate (CPC) on the β-CD PRXs slightly reduced the interaction of the PRXs with the lipid layer model compared with the modification of 2-(2-hydroxyethoxy)ethyl carbamate (HEE-PRX), which was used in our previous studies. However, all the carboxylated β-CD PRXs showed a significantly stronger interaction with a protein model compared with HEE-PRX. The carboxylated β-CD PRXs showed significantly high intracellular uptake, through macrophage scavenger receptor A (MSR-A)-mediated endocytosis, in MSR-A-positive RAW 264.7 cells compared with HEE-PRX. Interestingly, the carboxylated β-CD PRXs also showed significantly higher intracellular uptake even in MSR-A-negative cells compared with HEE-PRX. Carboxylated β-CD PRXs are considered to strongly interact with other membrane proteins, resulting in high intracellular uptake. The length of the alkyl spacer affected the intracellular uptake levels of carboxylated PRXs, however, this relationship was varied for different cell types. Furthermore, none of the carboxylated β-CD PRXs exhibited cytotoxicity in the RAW 264.7 and NIH/3T3 cells. Altogether, carboxylation of β-CD PRXs is a promising chemical modification approach for their therapeutic application because carboxylated β-CD PRXs exhibit high cellular internalization efficiency in MSR-A-negative cells and negligible toxicity.
Collapse
Affiliation(s)
- Shunyao Zhang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
44
|
Sharma I, Liao Y, Zheng X, Kanwar YS. New Pandemic: Obesity and Associated Nephropathy. Front Med (Lausanne) 2021; 8:673556. [PMID: 34268323 PMCID: PMC8275856 DOI: 10.3389/fmed.2021.673556] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Incidence of obesity related renal disorders have increased 10-folds in recent years. One of the consequences of obesity is an increased glomerular filtration rate (GFR) that leads to the enlargement of the renal glomerulus, i.e., glomerulomegaly. This heightened hyper-filtration in the setting of type 2 diabetes irreparably damages the kidney and leads to progression of end stage renal disease (ESRD). The patients suffering from type 2 diabetes have progressive proteinuria, and eventually one third of them develop chronic kidney disease (CKD) and ESRD. For ameliorating the progression of CKD, inhibitors of renin angiotensin aldosterone system (RAAS) seemed to be effective, but on a short-term basis only. Long term and stable treatment strategies like weight loss via restricted or hypo-caloric diet or bariatric surgery have yielded better promising results in terms of amelioration of proteinuria and maintenance of normal GFR. Body mass index (BMI) is considered as a traditional marker for the onset of obesity, but apparently, it is not a reliable indicator, and thus there is a need for more precise evaluation of regional fat distribution and amount of muscle mass. With respect to the pathogenesis, recent investigations have suggested perturbation in fatty acid and cholesterol metabolism as the critical mediators in ectopic renal lipid accumulation associated with inflammation, increased generation of ROS, RAAS activation and consequential tubulo-interstitial injury. This review summarizes the renewed approaches for the obesity assessment and evaluation of the pathogenesis of CKD, altered renal hemodynamics and potential therapeutic targets.
Collapse
Affiliation(s)
- Isha Sharma
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States
| | - Yingjun Liao
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States.,Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Zheng
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States.,Department of Urology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
45
|
Mitrofanova A, Burke G, Merscher S, Fornoni A. New insights into renal lipid dysmetabolism in diabetic kidney disease. World J Diabetes 2021; 12:524-540. [PMID: 33995842 PMCID: PMC8107981 DOI: 10.4239/wjd.v12.i5.524] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Lipid dysmetabolism is one of the main features of diabetes mellitus and manifests by dyslipidemia as well as the ectopic accumulation of lipids in various tissues and organs, including the kidney. Research suggests that impaired cholesterol metabolism, increased lipid uptake or synthesis, increased fatty acid oxidation, lipid droplet accumulation and an imbalance in biologically active sphingolipids (such as ceramide, ceramide-1-phosphate and sphingosine-1-phosphate) contribute to the development of diabetic kidney disease (DKD). Currently, the literature suggests that both quality and quantity of lipids are associated with DKD and contribute to increased reactive oxygen species production, oxidative stress, inflammation, or cell death. Therefore, control of renal lipid dysmetabolism is a very important therapeutic goal, which needs to be archived. This article will review some of the recent advances leading to a better understanding of the mechanisms of dyslipidemia and the role of particular lipids and sphingolipids in DKD.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | - George Burke
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | - Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| |
Collapse
|
46
|
Wang Q, Zhao B, Zhang J, Sun J, Wang S, Zhang X, Xu Y, Wang R. Faster lipid β-oxidation rate by acetyl-CoA carboxylase 2 inhibition alleviates high-glucose-induced insulin resistance via SIRT1/PGC-1α in human podocytes. J Biochem Mol Toxicol 2021; 35:e22797. [PMID: 33957017 DOI: 10.1002/jbt.22797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Diabetic nephropathy (DN) is becoming a research hotspot in recent years because the prevalence is high and the prognosis is poor. Lipid accumulation in podocytes induced by hyperglycemia has been shown to be a driving mechanism underlying the development of DN. However, the mechanism of lipotoxicity remains unclear. Increasing evidence shows that acetyl-CoA carboxylase 2 (ACC2) plays a crucial role in the metabolism of fatty acid, but its effect in podocyte injury of DN is still unclear. In this study, we investigated whether ACC2 could be a therapeutic target of lipid deposition induced by hyperglycemia in the human podocytes. Our results showed that high glucose (HG) triggered significant lipid deposition with a reduced β-oxidation rate. It also contributed to the downregulation of phosphorylated ACC2 (p-ACC2), which is an inactive form of ACC2. Knockdown of ACC2 by sh-RNA reduced lipid deposition induced by HG. Additionally, ACC2-shRNA restored the expression of glucose transporter 4 (GLUT4) on the cell surface, which was downregulated in HG and normalized in the insulin signaling pathway. We verified that ACC2-shRNA alleviated cell injury, apoptosis, and restored the cytoskeleton disturbed by HG. Mechanistically, SIRT1/PGC-1α is close related to the insulin metabolism pathway. ACC2-shRNA could restore the expression of SIRT1/PGC-1α, which was downregulated in HG. Rescue experiment revealed that inhibition of SIRT1 by EX-527 counteracted the effect of ACC2-shRNA. Taken together, our data suggest that podocyte injury mediated by HG-induced insulin resistance and lipotoxicity could be alleviated by ACC2 inhibition via SIRT1/PGC-1α.
Collapse
Affiliation(s)
- Qinglian Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Zhao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jie Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jingshu Sun
- Department of Nephrology, Weifang people's hospital, Weifang, Shandong, China
| | - Simeng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyu Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ying Xu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
47
|
Wu M, Yang Z, Zhang C, Shi Y, Han W, Song S, Mu L, Du C, Shi Y. Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy. Metabolism 2021; 118:154748. [PMID: 33675822 DOI: 10.1016/j.metabol.2021.154748] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Nucleotide leukin-rich polypeptide 3 (NLRP3) inflammasome is documented as a potent target for treating metabolic diseases and inflammatory disorders. Our recent work demonstrated that inhibition of NLRP3 inflammasome activation inhibits renal inflammation and fibrosis in diabetic nephropathy. This study was to investigate the effect of NLRP3 inflammasome on podocyte injury and the underlying mechanism in diabetic nephropathy. METHODS In vivo, db/db mice were treated with MCC950, a NLRP3 inflammasome specific inhibitor. NLRP3 knockout (NKO) mice were induced to diabetes by intraperitoneal injections of streptozotocin (STZ). We assessed renal function, albuminuria, podocyte injury and glomerular lipid accumulation in diabetic mice. In vitro, apoptosis, cytoskeleton change, lipid accumulation, NF-κB p65 activation and reactive oxygen species (ROS) generation were evaluated in podocytes interfered with NLRP3 siRNA or MCC950 under high glucose (HG) conditions. In addition, the effect and mechanism of IL-1β on lipid accumulation was explored in podocytes exposed to normal glucose (NG) or HG. RESULTS MCC950 treatment improved renal function, attenuated albuminuria, mesangial expansion, podocyte loss, as well as glomerular lipid accumulation in db/db mice. The diabetes-induced podocyte loss and glomerular lipid accumulation were reversed in NLRP3 knockout mice. The increased expression of sterol regulatory element-binding protein1 (SREBP1) and SREBP2, and decreased expression of ATP-binding cassette A1 (ABCA1) in podocytes were reversed by MCC950 treatment or NLRP3 knockout in diabetic mice. In vitro, NLRP3 siRNA or MCC950 treatment markedly inhibited HG-induced apoptosis, cytoskeleton change, lipid accumulation, NF-κB p65 activation, and mitochondrial ROS production in cultured podocytes. In addition, BAY11-7082 or tempol treatment inhibited HG-induced lipid accumulation in podocytes. Moreover, exposure of IL-1β to podocytes induced lipid accumulation, NF-κB p65 activation and mitochondrial ROS generation. CONCLUSION Inhibition of NLRP3 inflammasome protects against podocyte damage through suppression of lipid accumulation in diabetic nephropathy. IL-1β/ROS/NF-κB p65 mediates diabetes-associated lipid accumulation in podocytes. The suppression of NLRP3 inflammasome activation may be an effective therapeutic approach to diabetic nephropathy.
Collapse
Affiliation(s)
- Ming Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang 050017, China
| | - Zhifen Yang
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China
| | - Chengyu Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yu Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China
| | - Weixia Han
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China
| | - Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang 050017, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Lin Mu
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang 050017, China
| | - Chunyang Du
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang 050017, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang 050017, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
48
|
Moon S, Tsay JJ, Lampert H, Md Dom ZI, Kostic AD, Smiles A, Niewczas MA. Circulating short and medium chain fatty acids are associated with normoalbuminuria in type 1 diabetes of long duration. Sci Rep 2021; 11:8592. [PMID: 33883567 PMCID: PMC8060327 DOI: 10.1038/s41598-021-87585-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/30/2021] [Indexed: 11/08/2022] Open
Abstract
A substantial number of subjects with Type 1 Diabetes (T1D) of long duration never develop albuminuria or renal function impairment, yet the underlying protective mechanisms remain unknown. Therefore, our study included 308 Joslin Kidney Study subjects who had T1D of long duration (median: 24 years), maintained normal renal function and had either normoalbuminuria or a broad range of albuminuria within the 2 years preceding the metabolomic determinations. Serum samples were subjected to global metabolomic profiling. 352 metabolites were detected in at least 80% of the study population. In the logistic analyses adjusted for multiple testing (Bonferroni corrected α = 0.000028), we identified 38 metabolites associated with persistent normoalbuminuria independently from clinical covariates. Protective metabolites were enriched in Medium Chain Fatty Acids (MCFAs) and in Short Chain Fatty Acids (SCFAs) and particularly involved odd-numbered and dicarboxylate Fatty Acids. One quartile change of nonanoate, the top protective MCFA, was associated with high odds of having persistent normoalbuminuria (OR (95% CI) 0.14 (0.09, 0.23); p < 10-12). Multivariable Random Forest analysis concordantly indicated to MCFAs as effective classifiers. Associations of the relevant Fatty Acids with albuminuria seemed to parallel associations with tubular biomarkers. Our findings suggest that MCFAs and SCFAs contribute to the metabolic processes underlying protection against albuminuria development in T1D that are independent from mechanisms associated with changes in renal function.
Collapse
Affiliation(s)
- Salina Moon
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA
| | - John J Tsay
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Medicine, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Heather Lampert
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Family Medicine, Brown University, Providence, RI, USA
| | - Zaipul I Md Dom
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Aleksandar D Kostic
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Adam Smiles
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA
| | - Monika A Niewczas
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Ossoli A, Strazzella A, Rottoli D, Zanchi C, Locatelli M, Zoja C, Simonelli S, Veglia F, Barbaras R, Tupin C, Dasseux JL, Calabresi L. CER-001 ameliorates lipid profile and kidney disease in a mouse model of familial LCAT deficiency. Metabolism 2021; 116:154464. [PMID: 33309714 DOI: 10.1016/j.metabol.2020.154464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/25/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE CER-001 is an HDL mimetic that has been tested in different pathological conditions, but never with LCAT deficiency. This study was designed to investigate whether the absence of LCAT affects the catabolic fate of CER-001, and to evaluate the effects of CER-001 on kidney disease associated with LCAT deficiency. METHODS Lcat-/- and wild-type mice received CER-001 (2.5, 5, 10 mg/kg) intravenously for 2 weeks. The plasma lipid/ lipoprotein profile and HDL subclasses were analyzed. In a second set of experiments, Lcat-/- mice were injected with LpX to induce renal disease and treated with CER-001 and then the plasma lipid profile, lipid accumulation in the kidney, albuminuria and glomerular podocyte markers were evaluated. RESULTS In Lcat-/- mice a decrease in total cholesterol and triglycerides, and an increase in HDL-c was observed after CER-001 treatment. While in wild-type mice CER-001 entered the classical HDL remodeling pathway, in the absence of LCAT it disappeared from the plasma shortly after injection and ended up in the kidney. In a mouse model of renal disease in LCAT deficiency, treatment with CER-001 at 10 mg/kg for one month had beneficial effects not only on the lipid profile, but also on renal disease, by limiting albuminuria and podocyte dysfunction. CONCLUSIONS Treatment with CER-001 ameliorates the dyslipidemia typically associated with LCAT deficiency and more importantly limits renal damage in a mouse model of renal disease in LCAT deficiency. The present results provide a rationale for using CER-001 in FLD patients.
Collapse
Affiliation(s)
- Alice Ossoli
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Arianna Strazzella
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Daniela Rottoli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Cristina Zanchi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Monica Locatelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Sara Simonelli
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | - Laura Calabresi
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
50
|
Kim JJ, Wilbon SS, Fornoni A. Podocyte Lipotoxicity in CKD. KIDNEY360 2021; 2:755-762. [PMID: 35373048 PMCID: PMC8791311 DOI: 10.34067/kid.0006152020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
CKD represents the ninth most common cause of death in the United States but, despite this large health burden, treatment options for affected patients remain limited. To remedy this, several relevant pathways have been identified that may lead to novel therapeutic options. Among them, altered renal lipid metabolism, first described in 1982, has been recognized as a common pathway in clinical and experimental CKD of both metabolic and nonmetabolic origin. This observation has led many researchers to investigate the cause of this renal parenchyma lipid accumulation and its downstream effect on renal structure and function. Among key cellular components of the kidney parenchyma, podocytes are terminally differentiated cells that cannot be easily replaced when lost. Clinical and experimental evidence supports a role of reduced podocyte number in the progression of CKD. Given the importance of the podocytes in the maintenance of the glomerular filtration barrier and the accumulation of TG and cholesterol-rich lipid droplets in the podocyte and glomerulus in kidney diseases that cause CKD, understanding the upstream cause and downstream consequences of lipid accumulation in podocytes may lead to novel therapeutic opportunities. In this review, we hope to consolidate our understanding of the causes and consequences of dysregulated renal lipid metabolism in CKD development and progression, with a major focus on podocytes.
Collapse
|