1
|
Zhu X, Zeng C, Yu B. White adipose tissue in metabolic associated fatty liver disease. Clin Res Hepatol Gastroenterol 2024; 48:102336. [PMID: 38604293 DOI: 10.1016/j.clinre.2024.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Metabolic associated fatty liver disease (MAFLD) is a prevalent chronic liver condition globally, currently lacking universally recognized therapeutic drugs, thereby increasing the risk of cirrhosis and hepatocellular carcinoma. Research has reported an association between white adipose tissue and MAFLD. SCOPE OF REVIEW White adipose tissue (WAT) is involved in lipid metabolism and can contribute to the progression of MAFLD by mediating insulin resistance, inflammation, exosomes, autophagy, and other processes. This review aims to elucidate the mechanisms through which WAT plays a role in the development of MAFLD. MAJOR CONCLUSIONS WAT participates in the occurrence and progression of MAFLD by mediating insulin resistance, inflammation, autophagy, and exosome secretion. Fibrosis and restricted expansion of adipose tissue can lead to the release of more free fatty acids (FFA), exacerbating the progression of MAFLD. WAT-secreted TNF-α and IL-1β, through the promotion of JNK/JKK/p38MAPK expression, interfere with insulin receptor serine and tyrosine phosphorylation, worsening insulin resistance. Adiponectin, by inhibiting the TLR-4-NF-κB pathway and suppressing M2 to M1 transformation, further inhibits the secretion of IL-6, IL-1β, and TNF-α, improving insulin resistance in MAFLD patients. Various gene expressions within WAT, such as MBPAT7, Nrf2, and Ube4A, can ameliorate insulin resistance in MAFLD patients. Autophagy-related gene Atg7 promotes the expression of fibrosis-related genes, worsening MAFLD. Non-pharmacological treatments, including diabetes-related medications and exercise, can improve MAFLD.
Collapse
Affiliation(s)
- Xiaoqin Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China.
| |
Collapse
|
2
|
Peng C, Chen J, Wu R, Jiang H, Li J. Unraveling the complex roles of macrophages in obese adipose tissue: an overview. Front Med 2024; 18:205-236. [PMID: 38165533 DOI: 10.1007/s11684-023-1033-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/15/2023] [Indexed: 01/03/2024]
Abstract
Macrophages, a heterogeneous population of innate immune cells, exhibit remarkable plasticity and play pivotal roles in coordinating immune responses and maintaining tissue homeostasis within the context of metabolic diseases. The activation of inflammatory macrophages in obese adipose tissue leads to detrimental effects, inducing insulin resistance through increased inflammation, impaired thermogenesis, and adipose tissue fibrosis. Meanwhile, adipose tissue macrophages also play a beneficial role in maintaining adipose tissue homeostasis by regulating angiogenesis, facilitating the clearance of dead adipocytes, and promoting mitochondrial transfer. Exploring the heterogeneity of macrophages in obese adipose tissue is crucial for unraveling the pathogenesis of obesity and holds significant potential for targeted therapeutic interventions. Recently, the dual effects and some potential regulatory mechanisms of macrophages in adipose tissue have been elucidated using single-cell technology. In this review, we present a comprehensive overview of the intricate activation mechanisms and diverse functions of macrophages in adipose tissue during obesity, as well as explore the potential of drug delivery systems targeting macrophages, aiming to enhance the understanding of current regulatory mechanisms that may be potentially targeted for treating obesity or metabolic diseases.
Collapse
Affiliation(s)
- Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rui Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
3
|
Liu Y, Liu Z, Liang J, Sun C. ILC2s control obesity by regulating energy homeostasis and browning of white fat. Int Immunopharmacol 2023; 120:110272. [PMID: 37210911 DOI: 10.1016/j.intimp.2023.110272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/23/2023]
Abstract
Innate lymphoid cells (ILCs) have been a hot topic in recent research, they are widely distributed in vivo and play an important role in different tissues. The important role of group 2 innate lymphoid cells (ILC2s) in the conversion of white fat into beige fat has attracted widespread attention. Studies have shown that ILC2s regulate adipocyte differentiation and lipid metabolism. This article reviews the types and functions of ILCs, focusing on the relationship between differentiation, development and function of ILC2s, and elaborates on the relationship between peripheral ILC2s and browning of white fat and body energy homeostasis. This has important implications for the future treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yuexia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zunhai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Juntong Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Ranea-Robles P, Galino J, Espinosa L, Schlüter A, Ruiz M, Calingasan NY, Villarroya F, Naudí A, Pamplona R, Ferrer I, Beal MF, Portero-Otín M, Fourcade S, Pujol A. Modulation of mitochondrial and inflammatory homeostasis through RIP140 is neuroprotective in an adrenoleukodystrophy mouse model. Neuropathol Appl Neurobiol 2021; 48:e12747. [PMID: 34237158 DOI: 10.1111/nan.12747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/12/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022]
Abstract
AIMS Mitochondrial dysfunction and inflammation are at the core of axonal degeneration in several multifactorial neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. The transcriptional coregulator RIP140/NRIP1 (receptor-interacting protein 140) modulates these functions in liver and adipose tissue, but its role in the nervous system remains unexplored. Here, we investigated the impact of RIP140 in the Abcd1- mouse model of X-linked adrenoleukodystrophy (X-ALD), a genetic model of chronic axonopathy involving the convergence of redox imbalance, bioenergetic failure, and chronic inflammation. METHODS AND RESULTS We provide evidence that RIP140 is modulated through a redox-dependent mechanism driven by very long-chain fatty acids (VLCFAs), the levels of which are increased in X-ALD. Genetic inactivation of RIP140 prevented mitochondrial depletion and dysfunction, bioenergetic failure, inflammatory dysregulation, axonal degeneration and associated locomotor disabilities in vivo in X-ALD mouse models. CONCLUSIONS Together, these findings show that aberrant overactivation of RIP140 promotes neurodegeneration in X-ALD, underscoring its potential as a therapeutic target for X-ALD and other neurodegenerative disorders that present with metabolic and inflammatory dyshomeostasis.
Collapse
Affiliation(s)
- Pablo Ranea-Robles
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, ISCIII, Madrid, Spain.,Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jorge Galino
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, ISCIII, Madrid, Spain
| | - Lluís Espinosa
- Institut Municipal d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, ISCIII, Madrid, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, ISCIII, Madrid, Spain
| | - Noel Ylagan Calingasan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine and Institut de Biomedicina, University of Barcelona, Barcelona, Catalonia, Spain.,Fisiopatología de la Obesidad y Nutrición, CIBER, Madrid, Spain
| | - Alba Naudí
- Experimental Medicine Department, University of Lleida-IRBLleida, Lleida, Spain
| | - Reinald Pamplona
- Experimental Medicine Department, University of Lleida-IRBLleida, Lleida, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Neuropathology, Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - M Flint Beal
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Manuel Portero-Otín
- Experimental Medicine Department, University of Lleida-IRBLleida, Lleida, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, ISCIII, Madrid, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,CIBERER U759, Center for Biomedical Research on Rare Diseases, ISCIII, Madrid, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
5
|
Lin YW, Nhieu J, Wei CW, Lin YL, Kagechika H, Wei LN. Regulation of exosome secretion by cellular retinoic acid binding protein 1 contributes to systemic anti-inflammation. Cell Commun Signal 2021; 19:69. [PMID: 34193153 PMCID: PMC8247179 DOI: 10.1186/s12964-021-00751-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/14/2021] [Indexed: 11/24/2022] Open
Abstract
Background Intercellular communications are important for maintaining normal physiological processes. An important intercellular communication is mediated by the exchange of membrane-enclosed extracellular vesicles. Among various vesicles, exosomes can be detected in a wide variety of biological systems, but the regulation and biological implication of exosome secretion/uptake remains largely unclear. Methods Cellular retinoic acid (RA) binding protein 1 (Crabp1) knockout (CKO) mice were used for in vivo studies. Extracellular exosomes were monitored in CKO mice and relevant cell cultures including embryonic stem cell (CJ7), macrophage (Raw 264.7) and hippocampal cell (HT22) using Western blot and flow cytometry. Receptor Interacting Protein 140 (RIP140) was depleted by Crispr/Cas9-mediated gene editing. Anti-inflammatory maker was analyzed using qRT-PCR. Clinical relevance was accessed by mining multiple clinical datasets. Results This study uncovers Crabp1 as a negative regulator of exosome secretion from neurons. Specifically, RIP140, a pro-inflammatory regulator, can be transferred from neurons, via Crabp1-regulated exosome secretion, into macrophages to promote their inflammatory polarization. Consistently, CKO mice, defected in the negative control of exosome secretion, have significantly elevated RIP140-containing exosomes in their blood and cerebrospinal fluid, and exhibit an increased vulnerability to systemic inflammation. Clinical relevance of this pathway is supported by patients’ data of multiple inflammatory diseases. Further, the action of Crabp1 in regulating exosome secretion involves its ligand and is mediated by its downstream target, the MAPK signaling pathway. Conclusions This study presents the first evidence for the regulation of exosome secretion, which mediates intercellular communication, by RA-Crabp1 signaling. This novel mechanism can contribute to the control of systemic inflammation by transferring an inflammatory regulator, RIP140, between cells. This represents a new mechanism of vitamin A action that can modulate the homeostasis of system-wide innate immunity without involving gene regulation.![]() Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00751-w.
Collapse
Affiliation(s)
- Yi-Wei Lin
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Jennifer Nhieu
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Chin-Wen Wei
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Yu-Lung Lin
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA
| | - Hiroyuki Kagechika
- Institute of Biomaterials and, Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 01-0062, Japan
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Xie Z, Cheng Y, Zhang Q, Hao H, Yin Y, Zang L, Wang X, Mu Y. Anti-obesity effect and mechanism of mesenchymal stem cells influence on obese mice. Open Life Sci 2021; 16:653-666. [PMID: 34222665 PMCID: PMC8234810 DOI: 10.1515/biol-2021-0061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be obtained from almost all tissues and present promising therapeutic effects for metabolic diseases. Human adipose-derived MSCs (hASCs) have recently been widely studied due to their easy access and low immunity. Thus, we intended to figure out the effects and potential mechanism of hASCs on obesity in high-fat-diet (HFD)-induced obese mice. Following 16 weeks of being fed HFD, hASCs were intravenously injected. Two weeks later, body weight, body composition, and energy expenditure were evaluated. Additionally, the phenotypes of macrophages infiltrating adipose tissue were analyzed. The results revealed that hASCs administration significantly reduced adipose tissue weight, adipocyte size, and fat mass and exerted beneficial effects in serum lipid profile. This anti-obesity effect was mediated by the increased O2 consumption, CO2 production, and energy expenditure, which was further evidenced by the upregulation of uncoupling protein-1 (UCP-1) and metabolism-associated genes. Furthermore, hASCs infusion increased the amount of alternatively activated (M2) macrophages in adipose tissue, and the expression of pro-inflammatory cytokines-related genes was reduced. Taken together, these results indicated that hASCs suppressed obesity by increasing UCP-1 expression and enhancing energy expenditure, and this effect might be due to the increased M2 macrophages.
Collapse
Affiliation(s)
- Zongyan Xie
- Department of Clinical Pharmacology, Beijing Luhe Hospital Affiliated to Capital Medical University, 82 Xinhua South Road, Beijing 101149, People's Republic of China
| | - Yu Cheng
- Department of Endocrinology, The First Medical Center of PLA General Hospital, 28 Fuxing Road, Beijing 100853, People's Republic of China
| | - Qi Zhang
- Department of Endocrinology, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| | - Haojie Hao
- Department of Molecular Biology, Institute of Basic Medicine, The First Medical Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Yaqi Yin
- Department of Endocrinology, The First Medical Center of PLA General Hospital, 28 Fuxing Road, Beijing 100853, People's Republic of China
| | - Li Zang
- Department of Endocrinology, The First Medical Center of PLA General Hospital, 28 Fuxing Road, Beijing 100853, People's Republic of China
| | - Xuhong Wang
- Department of Clinical Pharmacology, Beijing Luhe Hospital Affiliated to Capital Medical University, 82 Xinhua South Road, Beijing 101149, People's Republic of China
| | - Yiming Mu
- Department of Endocrinology, The First Medical Center of PLA General Hospital, 28 Fuxing Road, Beijing 100853, People's Republic of China
| |
Collapse
|
7
|
Jeong H, Lee C, Cheng C, Chou HC, Yang H, Bae H. Targeting of adipose tissue macrophages by bee venom phospholipase A2 attenuates high-fat diet-induced obesity. Int J Obes (Lond) 2021; 45:1656-1667. [PMID: 33947969 PMCID: PMC8310798 DOI: 10.1038/s41366-021-00823-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/24/2021] [Accepted: 04/08/2021] [Indexed: 12/26/2022]
Abstract
Background/objectives Adipose tissue macrophages (ATMs) exist in either the M1 or M2 form. The anti-inflammatory M2 ATMs accumulate in lean individuals, whereas the pro-inflammatory M1 ATMs accumulate in obese individuals. Bee venom phospholipase A2 (bvPLA2), a major component in honeybee (Apis mellifera) venom, exerts potent anti-inflammatory effects via interactions with regulatory T cells (Treg) and macrophages. This study investigated the effects of bvPLA2 on a high-fat diet (HFD)-induced obesity in mice. Subjects/methods For in vivo experiments, male C57BL/6, CD206-deficient, and Treg-depleted mice models were fed either a normal diet 41.86 kJ (ND, 10 kcal% fat) or high-fat diet 251.16 kJ (HFD, 60 kcal% fat). Each group was i.p. injected with PBS or bvPLA2 (0.5 mg/kg) every 3 days for 11 weeks. Body weight and food intake were measured weekly. Histological changes in the white adipose tissue (WAT), liver, and kidney as well as the immune phenotypes of the WAT were examined. Immune cells, cytokines, and lipid profiles were also evaluated. The direct effects of bvPLA2 on 3T3-L1 pre-adipocytes and bone marrow-derived macrophages were measured in vitro. Results bvPLA2 markedly decreased bodyweight in HFD-fed mice. bvPLA2 treatment also decreased lipid accumulation in the liver and reduced kidney inflammation in the mice. It was confirmed that bvPLA2 exerted immunomodulatory effects through the CD206 receptor. In addition, bvPLA2 decreased M1 ATM and alleviated the M1/M2 imbalance in vivo. However, bvPLA2 did not directly inhibit adipogenesis in the 3T3-L1 adipose cells in vitro. Conclusions bvPLA2 is a potential therapeutic strategy for the management of obesity by regulating adipose tissue macrophage homeostasis.
Collapse
Affiliation(s)
- Hyunju Jeong
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chanju Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chenyu Cheng
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hung Chun Chou
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - HyeJin Yang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Zhang Y, Song L, Dong H, Kim DS, Sun Z, Boger H, Wang Q, Wang H. Spinophilin-deficient mice are protected from diet-induced obesity and insulin resistance. Am J Physiol Endocrinol Metab 2020; 319:E354-E362. [PMID: 32603260 PMCID: PMC7473908 DOI: 10.1152/ajpendo.00114.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Browning of white adipose tissue (WAT) has been shown to reduce obesity and obesity-related complications, suggesting that factors that promote WAT browning may have applications in the development of therapeutic strategies for treating obesity. Here, we show that ablation of spinophilin (SPL), a ubiquitously expressed, multidomain scaffolding protein, increases metabolism and improves energy balance. Male and female SPL knockout (KO) and wild-type (WT) littermate controls were fed a chow diet or a high-fat diet (HFD). Body weight, hepatic steatosis, glucose and insulin tolerance, physical activity, and expression of browning genes in adipose tissues were measured and compared. Male SPL knockout (KO) mice fed a chow diet were significantly leaner, had lower body weights, and exhibited better glucose tolerance and insulin sensitivity than wild-type (WT) littermate controls. When fed an HFD, SPL KO mice were protected from increased body fat, weight gain, hepatic steatosis, hyperinsulinemia, and insulin resistance. Physical activity of SPL KO mice was markedly increased compared with WT controls. Furthermore, expression of the brown adipocyte marker, uncoupling protein-1 (UCP-1), and the mitochondrial activity markers, cd137 and c-idea, were significantly increased in visceral WAT (vWAT) of SPL KO mice, suggesting that SPL knockout protected the mice from HFD-induced obesity and its metabolic complications, at least in part, by promoting the browning of white adipocytes in vWAT. Our data identify a critical role of SPL in regulating glucose homeostasis, obesity, and adipocyte browning. These results suggest SPL may serve as a drug target for obesity and diabetes.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- College of Life Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Lili Song
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Huansheng Dong
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- College of Life Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Do-Sung Kim
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Zhen Sun
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Heather Boger
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
9
|
Qian SW, Wu MY, Wang YN, Zhao YX, Zou Y, Pan JB, Tang Y, Liu Y, Guo L, Tang QQ. BMP4 facilitates beige fat biogenesis via regulating adipose tissue macrophages. J Mol Cell Biol 2020; 11:14-25. [PMID: 29462349 DOI: 10.1093/jmcb/mjy011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/15/2018] [Indexed: 12/21/2022] Open
Abstract
Thermogenic beige fat improves metabolism and prevents obesity. Emerging evidence shows that the activation of M2 macrophages stimulates beige adipogenesis, whereas the activation of M1 macrophages, which play a major role in inflammation, impedes beige adipogenesis. Thus, the identification of factors that regulate adipose tissue macrophages (ATMs) will help clarify the mechanism involved in beiging. Here, we found that one of the secreted proteins in adipose tissue, namely, BMP4, alters the ATM profile in subcutaneous adipose tissue by activating M2 and inhibiting M1 macrophages. Mechanistically, the BMP4-stimulated p38/MAPK/STAT6/PI3K-AKT signalling pathway is involved. Meanwhile, BMP4 improved the potency of M2 macrophages to induce beige fat biogenesis. Considering that the overexpression of BMP4 in adipose tissue promotes the beiging of subcutaneous adipose tissue and improves insulin sensitivity, these findings provide evidence that BMP4 acts as an activator of beige fat by targeting immuno-metabolic pathways.
Collapse
Affiliation(s)
- Shu-Wen Qian
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meng-Yuan Wu
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yi-Na Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Ya-Xin Zhao
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Ying Zou
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Jia-Bao Pan
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yan Tang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Liang Guo
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
10
|
Chait A, den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front Cardiovasc Med 2020; 7:22. [PMID: 32158768 PMCID: PMC7052117 DOI: 10.3389/fcvm.2020.00022] [Citation(s) in RCA: 655] [Impact Index Per Article: 163.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue plays essential roles in maintaining lipid and glucose homeostasis. To date several types of adipose tissue have been identified, namely white, brown, and beige, that reside in various specific anatomical locations throughout the body. The cellular composition, secretome, and location of these adipose depots define their function in health and metabolic disease. In obesity, adipose tissue becomes dysfunctional, promoting a pro-inflammatory, hyperlipidemic and insulin resistant environment that contributes to type 2 diabetes mellitus (T2DM). Concurrently, similar features that result from adipose tissue dysfunction also promote cardiovascular disease (CVD) by mechanisms that can be augmented by T2DM. The mechanisms by which dysfunctional adipose tissue simultaneously promote T2DM and CVD, focusing on adipose tissue depot-specific adipokines, inflammatory profiles, and metabolism, will be the focus of this review. The impact that various T2DM and CVD treatment strategies have on adipose tissue function and body weight also will be discussed.
Collapse
Affiliation(s)
- Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Laura J den Hartigh
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
11
|
circNrxn2 Promoted WAT Browning via Sponging miR-103 to Relieve Its Inhibition of FGF10 in HFD Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:551-562. [PMID: 31362242 PMCID: PMC6661467 DOI: 10.1016/j.omtn.2019.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/23/2019] [Accepted: 06/22/2019] [Indexed: 12/22/2022]
Abstract
The accumulation of excess white adipose tissue (WAT) has harmful consequences on metabolic health. WAT browning confers beneficial effects on adiposity, insulin resistance, and hyperlipidemia. In this study, it was found out that circNrxn2 sponged miR-103 and enhanced FGF10 levels in HFD mice WAT. We discovered that circNrxn2 promoted WAT browning and mitochondria functions. Furthermore, circNrxn2 also increased M2 macrophage polarization in HFD mouse adipose tissue, and the PPARγ signaling pathway participated in these biological processes. Moreover, eliminating adipose tissue macrophages (ATMs) by clodronate-crippled circNrxn2 promoted WAT browning, and the simulation co-culture of macrophages and adipocytes results suggested that circNrxn2 promoted WAT browning through increasing M2 macrophage polarization. Our finding revealed that circNrxn2 acted as an endogenous miR-103 sponge, blocked miR-103 effects, and relieved its inhibition of FGF10 expression to promote WAT browning through increasing M2 macrophage polarization. This study provides a good therapeutic strategy for treating obesity and improving obesity-related metabolic disorders.
Collapse
|
12
|
Cheng H, Qi T, Zhang X, Kong Q, Min X, Mao Q, Cao X, Liu L, Ding Z. Deficiency of heat shock protein A12A promotes browning of white adipose tissues in mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1451-1459. [DOI: 10.1016/j.bbadis.2019.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/30/2019] [Accepted: 02/19/2019] [Indexed: 02/08/2023]
|
13
|
Perivascular adipose tissue dysfunction aggravates adventitial remodeling in obese mini pigs via NLRP3 inflammasome/IL-1 signaling pathway. Acta Pharmacol Sin 2019; 40:46-54. [PMID: 30002491 DOI: 10.1038/s41401-018-0068-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/11/2018] [Indexed: 01/03/2023] Open
Abstract
Perivascular adipose tissue (PVAT), a special type of adipose tissue, closely surrounds vascular adventitia and produces numerous bioactive substances to maintain vascular homeostasis. PVAT dysfunction has a crucial role in regulating vascular remodeling, but the exact mechanisms remain unclear. In this study, we investigated whether and how obesity-induced PVAT dysfunction affected adventitia remodeling in early vascular injury stages. Mini pigs were fed a high sugar and fat diet for 6 months to induce metabolic syndrome and obesity. In the mini pigs, left carotid vascular injury was then generated using balloon dilation. Compared with normal mini pigs, obese mini pigs displayed significantly enhanced vascular injury-induced adventitial responses, evidenced by adventitia fibroblast (AF) proliferation and differentiation, and adventitia fibrosis, as well as exacerbated PVAT dysfunction characterized by increased accumulation of resident macrophages, particularly the M1 pro-inflammatory phenotype, increased expression of leptin and decreased expression of adiponectin, and production of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Primary AFs cultured in PVAT-conditioned medium from obese mini pigs also showed significantly increased proliferation and differentiation. We further revealed that activated nod-like receptor protein 3 (NLRP3) inflammasome and its downstream products, i.e., IL-1 family members such as IL-1β and IL-18 were upregulated in the PVAT of obese mini pigs; PVAT dysfunction was also demonstrated in preadipocytes treated with palmitic acid. Finally, we showed that pretreatment with IL-1 receptor (IL-1R) antagonist or IL-1R knockdown blocked AF proliferation and differentiation in AFs cultured in PVAT-conditioned medium. These results demonstrate that obesity-induced PVAT dysfunction aggravates adventitial remodeling after early vascular injury with elevated AF proliferation and differentiation via activating the NLRP3/IL-1 signaling pathway.
Collapse
|
14
|
Wang X, Ping FF, Bakht S, Ling J, Hassan W. Immunometabolism features of metabolic deregulation and cancer. J Cell Mol Med 2018; 23:694-701. [PMID: 30450768 PMCID: PMC6349168 DOI: 10.1111/jcmm.13977] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
Immunometabolism is a branch dealing at the interface of immune functionalities and metabolic regulations. Considered as a bidirectional trafficking, metabolic contents and their precursors bring a considerable change in immune cells signal transductions which as a result affect the metabolic organs and states as an implication. Lipid metabolic ingredients form a major chunk of daily diet and have a proven contribution in immune cells induction, which then undergo metabolic pathway shuffling inside their ownself. Lipid metabolic states activate relevant metabolic pathways inside immune cells that in turn prime appropriate responses to outside environment in various states including lipid metabolic disorders itself and cancers as an extension. Although data on Immunometabolism are still growing, but scientific community need to adjust and readjust according to recent data on given subject. This review attempts to provide current important data on Immunometabolism and consequently its metabolic ramifications. Incumbent data on various lipid metabolic deregulations like obesity, metabolic syndrome, obese asthma and atherosclerosis are analysed. Further, metabolic repercussions on cancers and its immune modalities are also analysed.
Collapse
Affiliation(s)
- Xue Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Feng-Feng Ping
- Wuxi People's Hospital, Nanjing Medical University, Wuxi, China
| | - Sahar Bakht
- Faculty of Pharmacy and alternative medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore, Pakistan
| |
Collapse
|
15
|
Villarroya F, Cereijo R, Villarroya J, Gavaldà-Navarro A, Giralt M. Toward an Understanding of How Immune Cells Control Brown and Beige Adipobiology. Cell Metab 2018; 27:954-961. [PMID: 29719233 DOI: 10.1016/j.cmet.2018.04.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022]
Abstract
Immune cells were recently found to have an unexpected involvement in controlling the thermogenic activity of brown and beige adipose tissue. Here, we review how macrophages, eosinophils, type 2 innate lymphoid cells, and T lymphocytes are linked to this process. In particular, the recruitment of alternatively activated macrophages and eosinophils is associated with brown fat activation and white fat browning. Conversely, pro-inflammatory immune cell recruitment represses the thermogenic activity of brown and beige adipose tissues via cytokines that inhibit noradrenergic signaling. Macrophages also influence the noradrenergic tone by degrading norepinephrine locally and by inhibiting sympathetic innervation over time.
Collapse
Affiliation(s)
- Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Catalonia, Spain.
| | - Rubén Cereijo
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Catalonia, Spain
| | - Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Catalonia, Spain; Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Catalonia, Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Catalonia, Spain
| |
Collapse
|
16
|
Liu M, Liu H, Liang F, Song XQ, Hu PA. Neuropeptide Y promotes adipogenic differentiation in primary cultured human adipose-derived stem cells. Endocr J 2018; 65:43-52. [PMID: 28954935 DOI: 10.1507/endocrj.ej17-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neuropeptide Y (NPY) is an important neurotransmitter in the control of energy metabolism. Several studies have shown that obesity is associated with increased levels of NPY in the hypothalamus. We hypothesized that the release of NPY has coordinated and integrated effects on energy metabolism in different tissues, such as adipocyte tissue, resulting in increased energy storage and decreased energy expenditure. Whether NPY has role in the molecular mechanism of human adipocyte tissue remains unclear. We established the model of human adipose derived stem cells (hADSCs) from human adipose tissue and differentiated it into adipocytes in the presence of NPY at different concentrations (10-15-10-6 mmol/L). We then assessed hADSCs proliferation and differentiation by quantifying lipid accumulation and examining the expression levels of related adipocyte markers after differentiation. Furthermore, the specific markers of white adipocyte tissue (WAT) in hADSCs were also analyzed. The results showed that low doses of NPY stimulated hADSCs proliferation (p < 0.05), while high doses of NPY inhibited hADSCs proliferation (p < 0.05). NPY significantly promoted lipid accumulation and increased the size of lipid droplets during human adipogenic differentiation; the levels of adipocyte markers PPAR-γ and C/EBPα were also increased. At the same time, NPY also increased the levels of WAT markers Cidec and RIP140 after adipocyte differentiation. The results suggested high dose NPY inhibits the proliferation of hADSCs while promotes adipocyte differentiation and increases the expression of WAT markers. This may be the reason why increased levels of NPY can lead to a rise in body weight.
Collapse
Affiliation(s)
- Min Liu
- Department of Clinical Nutrition, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Hong Liu
- Department of Clinical Nutrition, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Fang Liang
- Department of Endocrinology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Xiao-Qin Song
- Department of Endocrinology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Ping-An Hu
- Department of Endocrinology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
17
|
Glyburide and retinoic acid synergize to promote wound healing by anti-inflammation and RIP140 degradation. Sci Rep 2018; 8:834. [PMID: 29339732 PMCID: PMC5770422 DOI: 10.1038/s41598-017-18785-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/17/2017] [Indexed: 11/13/2022] Open
Abstract
Chronic inflammation underlies the development of metabolic diseases and individuals with metabolic disease often also suffer from delayed wound healing due to prolonged inflammation. Resolving inflammation provides a therapeutic strategy in treating metabolic diseases. We previously showed that during an anti-inflammatory response when macrophages were alternatively (M2) polarized, retinoic acid (RA) dramatically activated arginase 1 gene (Arg1), a gene crucial for wound healing. Here we report that a widely used sulfonylurea drug for type 2 diabetes mellitus (T2DM), glyburide, enhances the anti-inflammatory response and synergizes with RA to promote wound healing. Our data also delineate the mechanism underlying glyburide’s anti-inflammatory effect, which is to stimulate the degradation of a pro-inflammatory regulator, Receptor Interacting Protein 140 (RIP140), by activating Ca2+/calmodulin-dependent protein kinase II (CamKII) that triggers specific ubiquitination of RIP140 for degradation. By stimulating RIP140 degradation, glyburide enhances M2 polarization and anti-inflammation. Using a high-fat diet induced obesity mouse model to monitor wound healing effects, we provide a proof-of-concept for a therapeutic strategy that combining glyburide and RA can significantly improve wound healing. Mechanistically, this study uncovers a new mechanism of action of glyburide and a new pathway modulating RIP140 protein degradation that is mediated by CamKII signaling.
Collapse
|
18
|
Lin YL, Tsai HC, Liu PY, Benneyworth M, Wei LN. Receptor-interacting protein 140 as a co-repressor of Heat Shock Factor 1 regulates neuronal stress response. Cell Death Dis 2017; 8:3203. [PMID: 29233969 PMCID: PMC5870597 DOI: 10.1038/s41419-017-0008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/23/2017] [Accepted: 09/29/2017] [Indexed: 12/15/2022]
Abstract
Heat shock response (HSR) is a highly conserved transcriptional program that protects organisms against various stressful conditions. However, the molecular mechanisms modulating HSR, especially the suppression of HSR, is poorly understood. Here, we found that RIP140, a wide-spectrum cofactor of nuclear hormone receptors, acts as a co-repressor of heat shock factor 1 (HSF1) to suppress HSR in healthy neurons. When neurons are stressed such as by heat shock or sodium arsenite (As), cells engage specific proteosome-mediated degradation to reduce RIP140 level, thereby relieving the suppression and activating HSR. RIP140 degradation requires specific Tyr-phosphorylation by Syk that is activated in stressful conditions. Lowering RIP140 level protects hippocampal neurons from As stress, significantly it increases neuron survival and improves spine density. Reducing hippocampal RIP140 in the mouse rescues chronic As-induced spatial learning deficits. This is the first study elucidating RIP140-mediated suppression of HSF1-activated HSR in neurons and brain. Importantly, degradation of RIP140 in stressed neurons relieves this suppression, allowing neurons to efficiently and timely engage HSR programs and recover. Therefore, stimulating RIP140 degradation to activate anti-stress program provides a potential preventive or therapeutic strategy for neurodegeneration diseases.
Collapse
Affiliation(s)
- Yu-Lung Lin
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hong-Chieh Tsai
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan, ROC.,Department of Neurosurgery, Chang-Gung Memorial Hospital and University, Tao-Yuan, Taiwan, ROC
| | - Pei-Yao Liu
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael Benneyworth
- Departments of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
19
|
High-Fat Diet Changes Fungal Microbiomes and Interkingdom Relationships in the Murine Gut. mSphere 2017; 2:mSphere00351-17. [PMID: 29034327 PMCID: PMC5636226 DOI: 10.1128/msphere.00351-17] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023] Open
Abstract
Recent research shows that gut microbes are involved in the development of obesity, a growing health problem in developed countries that is linked to increased risk for cardiovascular disease. However, studies showing links between microbes and metabolism have been limited to the analysis of bacteria and have ignored the potential contribution of fungi in metabolic health. This study provides evidence that ingestion of a high-fat diet is associated with changes to the fungal (and bacterial) microbiome in a mouse model. In addition, we find that interkingdom structural and functional relationships exist between fungi and bacteria within the gut and that these are perturbed by high-fat diet. Dietary fat intake and shifts in gut bacterial community composition are associated with the development of obesity. To date, characterization of microbiota in lean versus obese subjects has been dominated by studies of gut bacteria. Fungi, recently shown to affect gut inflammation, have received little study for their role in obesity. We sought to determine the effects of high-fat diet on fungal and bacterial community structures in a mouse model using the internal transcribed spacer region 2 (ITS2) of fungal ribosomal DNA (rDNA) and the 16S rRNA genes of bacteria. Mice fed a high-fat diet had significantly different abundances of 19 bacterial and 6 fungal taxa than did mice fed standard chow, with high-fat diet causing similar magnitudes of change in overall fungal and bacterial microbiome structures. We observed strong and complex diet-specific coabundance relationships between intra- and interkingdom microbial pairs and dramatic reductions in the number of coabundance correlations in mice fed a high-fat diet compared to those fed standard chow. Furthermore, predicted microbiome functional modules related to metabolism were significantly less abundant in high-fat-diet-fed than in standard-chow-fed mice. These results suggest a role for fungi and interkingdom interactions in the association between gut microbiomes and obesity. IMPORTANCE Recent research shows that gut microbes are involved in the development of obesity, a growing health problem in developed countries that is linked to increased risk for cardiovascular disease. However, studies showing links between microbes and metabolism have been limited to the analysis of bacteria and have ignored the potential contribution of fungi in metabolic health. This study provides evidence that ingestion of a high-fat diet is associated with changes to the fungal (and bacterial) microbiome in a mouse model. In addition, we find that interkingdom structural and functional relationships exist between fungi and bacteria within the gut and that these are perturbed by high-fat diet.
Collapse
|
20
|
Pepping JK, Vandanmagsar B, Fernandez-Kim SO, Zhang J, Mynatt RL, Bruce-Keller AJ. Myeloid-specific deletion of NOX2 prevents the metabolic and neurologic consequences of high fat diet. PLoS One 2017; 12:e0181500. [PMID: 28771483 PMCID: PMC5542654 DOI: 10.1371/journal.pone.0181500] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022] Open
Abstract
High fat diet-induced obesity is associated with inflammatory and oxidative signaling in macrophages that likely participates in metabolic and physiologic impairment. One key factor that could drive pathologic changes in macrophages is the pro-inflammatory, pro-oxidant enzyme NADPH oxidase. However, NADPH oxidase is a pleiotropic enzyme with both pathologic and physiologic functions, ruling out indiscriminant NADPH oxidase inhibition as a viable therapy. To determine if targeted inhibition of monocyte/macrophage NADPH oxidase could mitigate obesity pathology, we generated mice that lack the NADPH oxidase catalytic subunit NOX2 in myeloid lineage cells. C57Bl/6 control (NOX2-FL) and myeloid-deficient NOX2 (mNOX2-KO) mice were given high fat diet for 16 weeks, and subject to comprehensive metabolic, behavioral, and biochemical analyses. Data show that mNOX2-KO mice had lower body weight, delayed adiposity, attenuated visceral inflammation, and decreased macrophage infiltration and cell injury in visceral adipose relative to control NOX2-FL mice. Moreover, the effects of high fat diet on glucose regulation and circulating lipids were attenuated in mNOX2-KO mice. Finally, memory was impaired and markers of brain injury increased in NOX2-FL, but not mNOX2-KO mice. Collectively, these data indicate that NOX2 signaling in macrophages participates in the pathogenesis of obesity, and reinforce a key role for macrophage inflammation in diet-induced metabolic and neurologic decline. Development of macrophage/immune-specific NOX-based therapies could thus potentially be used to preserve metabolic and neurologic function in the context of obesity.
Collapse
Affiliation(s)
- Jennifer K. Pepping
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Bolormaa Vandanmagsar
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Sun-Ok Fernandez-Kim
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Jingying Zhang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Randall L. Mynatt
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
| | - Annadora J. Bruce-Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States of America
- * E-mail:
| |
Collapse
|
21
|
Lin YW, Wei LN. Innate immunity orchestrates adipose tissue homeostasis. Horm Mol Biol Clin Investig 2017; 31:hmbci-2017-0013. [PMID: 28672736 DOI: 10.1515/hmbci-2017-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023]
Abstract
Obesity is strongly associated with multiple diseases including insulin resistance, type 2 diabetes, cardiovascular diseases, fatty liver disease, neurodegenerative diseases and cancers, etc. Adipose tissue (AT), mainly brown AT (BAT) and white AT (WAT), is an important metabolic and endocrine organ that maintains whole-body homeostasis. BAT contributes to non-shivering thermogenesis in a cold environment; WAT stores energy and produces adipokines that fine-tune metabolic and inflammatory responses. Obesity is often characterized by over-expansion and inflammation of WAT where inflammatory cells/mediators are abundant, especially pro-inflammatory (M1) macrophages, resulting in chronic low-grade inflammation and leading to insulin resistance and metabolic complications. Macrophages constitute the major component of innate immunity and can be activated as a M1 or M2 (anti-inflammatory) phenotype in response to environmental stimuli. Polarized M1 macrophage causes AT inflammation, whereas polarized M2 macrophage promotes WAT remodeling into the BAT phenotype, also known as WAT browning/beiging, which enhances insulin sensitivity and metabolic health. This review will discuss the regulation of AT homeostasis in relation to innate immunity.
Collapse
Affiliation(s)
- Yi-Wei Lin
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, 612 Jackson Hall, 321 Church St. SE., Minneapolis, MN 55455, USA, Phone: 612-625-9402, Fax: 612-625-8408
| |
Collapse
|
22
|
Yi ZJ, Gong JP, Zhang W. Transcriptional co-regulator RIP140: An important mediator of the inflammatory response and its associated diseases (Review). Mol Med Rep 2017; 16:994-1000. [PMID: 28586037 DOI: 10.3892/mmr.2017.6683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
The inflammatory response is a physiological process that is essential for maintaining homeostasis of the immune system. Inflammation is classified into acute inflammation and chronic inflammation, both of which pose a risk to human health. However, specific regulatory mechanisms of the inflammatory response remain to be elucidated. Receptor interacting protein (RIP) 140 is a nuclear receptor that affects an extensive array of biological and pathological processes in the body, including energy metabolism, inflammation and tumorigenesis. RIP140‑mediated macrophage polarization is important in regulating the inflammatory response. Overexpression of RIP140 in macrophages results in M1‑like polarization and expansion during the inflammatory response. Conversely, decreased expression of RIP140 in macrophages reduces the number of M1‑like macrophages and increases the number of alternatively polarized cells, which collectively promote endotoxin tolerance (ET) and relieve inflammation. This review summarizes the role of RIP140 in acute and chronic inflammatory diseases, with a focus on insulin resistance, atherosclerosis, sepsis and ET.
Collapse
Affiliation(s)
- Zhu-Jun Yi
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, Sichuan 400010, P.R. China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, Sichuan 400010, P.R. China
| | - Wei Zhang
- Department of Hepatobiliary Surgery, The People's Hospital of Jianyang, Jianyang, Sichuan 641400, P.R. China
| |
Collapse
|
23
|
Zou R, Xue J, Huang Q, Dai Z, Xu Y. Involvement of receptor-interacting protein 140 in palmitate-stimulated macrophage infiltration of pancreatic beta cells. Exp Ther Med 2017; 14:483-494. [PMID: 28672957 PMCID: PMC5488400 DOI: 10.3892/etm.2017.4544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/06/2017] [Indexed: 02/06/2023] Open
Abstract
Receptor-interacting protein 140 (RIP140) in macrophages stimulates the nuclear factor-κB subunit RelA to activate tumor necrosis factor (TNF)-α and interleukin (IL)-6 transcription. However, under lipotoxic conditions, the involvement of RIP140 in the infiltration of beta cells by macrophages remains unknown. In the present study, murine RAW264.7 macrophages were transfected with a RIP140 overexpression plasmid or siRNA prior to macrophage activation with 500 µM palmitate. Palmitate-free conditioned media was then collected and added to murine insulinoma MIN6 cells. Significant decreases were observed in cell viability (P<0.01), glucose-stimulated insulin secretion (P<0.01) and levels of peroxisome proliferator-activated receptor-γ coactivator-1α (P<0.05), phosphoenolpyruvate carboxykinase and proliferating cell nuclear antigen mRNA (P<0.01) in MIN6 cells. In addition, conditioned media from palmitate-treated and RIP140-upregulated macrophages significantly increased the levels of uncoupling protein-2 (P<0.01), inducible nitric oxide synthase 1 (P<0.01) and pancreatic and duodenal homeobox 1 (P<0.05) mRNA and levels of activated Jun N-terminal kinase (JNK) (P<0.01) and extracellular signal-regulated kinase (ERK) 1/2 (P<0.01). In turn, the conditioned media was found to be significantly enriched in TNF-α and IL-6 (both P<0.05). These results were the opposite of those obtained from MIN6 cells treated with conditioned media from palmitate-treated and RIP140-knockdown macrophages. MIN6 cells were transfected with RIP140 overexpression plasmid or siRNA prior to treatment with 500 µM palmitate and supernatant was collected for use in macrophage chemotaxis assays. In the palmitate-activated and RIP140-overexpressing MIN6 cells, TNF-α and IL-6 secretion increased significantly (both P<0.05) and macrophage chemotaxis towards MIN6 cells was enhanced. By contrast, downregulating RIP140 in MIN6 cells had the opposite effect. These data suggest that RIP140 in macrophages mediates the transcription of inflammatory cytokines when concentration of palmitate is high. Macrophage RIP140 may also impair beta cell function by activating the JNK and ERK1/2 signaling pathways and promoting specific gene transcription. Furthermore, expression of RIP140 in pancreatic beta cells may stimulate macrophage chemotaxis, thus triggering local low-grade inflammation.
Collapse
Affiliation(s)
- Runmei Zou
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Junli Xue
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Qi Huang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
24
|
Lee B, Iwaniec UT, Turner RT, Lin YW, Clarke BL, Gingery A, Wei LN. RIP140 in monocytes/macrophages regulates osteoclast differentiation and bone homeostasis. JCI Insight 2017; 2:e90517. [PMID: 28405613 DOI: 10.1172/jci.insight.90517] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Osteolytic bone diseases, such as osteoporosis, are characterized by diminished bone quality and increased fracture risk. The therapeutic challenge remains to maintain bone homeostasis with a balance between osteoclast-mediated resorption and osteoblast-mediated formation. Osteoclasts are formed by the fusion of monocyte/macrophage-derived precursors. Here we report, to our knowledge for the first time, that receptor-interacting protein 140 (RIP140) expression in osteoclast precursors and its protein regulation are crucial for osteoclast differentiation, activity, and coupled bone formation. In mice, monocyte/macrophage-specific knockdown of RIP140 (mϕRIP140KD) resulted in a cancellous osteopenic phenotype with significantly increased bone resorption and reduced bone formation. Osteoclast precursors isolated from mϕRIP140KD mice had significantly increased differentiation potential. Furthermore, conditioned media from mϕRIP140KD primary osteoclast cultures significantly suppressed osteoblast differentiation. This suppressive activity was effectively and rapidly terminated by specific Syk-stimulated RIP140 protein degradation. Mechanistic analysis revealed that RIP140 functions primarily by inhibiting osteoclast differentiation through forming a transcription-suppressor complex with testicular receptor 4 (TR4) to repress osteoclastogenic genes. These data reveal that monocyte/macrophage RIP140/TR4 complexes may serve as a critical transcription regulatory complex maintaining homeostasis of osteoclast differentiation, activity, and coupling with osteoblast formation. Accordingly, we propose a potentially novel therapeutic strategy, specifically targeting osteoclast precursor RIP140 protein in osteolytic bone diseases.
Collapse
Affiliation(s)
- Bomi Lee
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Yi-Wei Lin
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Bart L Clarke
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Anne Gingery
- Division of Orthopedic Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
25
|
Nautiyal J. Transcriptional coregulator RIP140: an essential regulator of physiology. J Mol Endocrinol 2017; 58:R147-R158. [PMID: 28073818 DOI: 10.1530/jme-16-0156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022]
Abstract
Transcriptional coregulators drive gene regulatory decisions in the transcriptional space. Although transcription factors including all nuclear receptors provide a docking platform for coregulators to bind, these proteins bring enzymatic capabilities to the gene regulatory sites. RIP140 is a transcriptional coregulator essential for several physiological processes, and aberrations in its function may lead to diseased states. Unlike several other coregulators that are known either for their coactivating or corepressing roles, in gene regulation, RIP140 is capable of acting both as a coactivator and a corepressor. The role of RIP140 in female reproductive axis and recent findings of its role in carcinogenesis and adipose biology have been summarised.
Collapse
Affiliation(s)
- Jaya Nautiyal
- Institute of Reproductive and Developmental BiologyFaculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
26
|
Peppler WT, Miotto PM, Holloway GP, Wright DC. CL 316, 243 mediated reductions in blood glucose are enhanced in RIP140 -/- mice independent of alterations in lipolysis. Biochem Biophys Res Commun 2017; 486:486-491. [PMID: 28322782 DOI: 10.1016/j.bbrc.2017.03.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 01/11/2023]
Abstract
The β-3 adrenergic agonist CL 316, 243 acutely lowers blood glucose through a mechanism thought to involve fatty-acid induced insulin release. The purpose of this study was to determine if ablation of the nuclear receptor, receptor-inactivating protein 140 (RIP140), altered this response. Here, we used a single injection of CL 316, 243 (1 mg/kg) and found that whole body RIP140-/- mice had a greater decline in blood glucose over 2 h. This occurred alongside increased hexokinase II (HKII) protein content in adipose tissue and skeletal muscle, but independent of changes in circulating insulin or indices of lipolysis. These data indicate that RIP140 has a unique role in the acute effect of β-3 adrenergic receptor activation using CL 316, 243.
Collapse
Affiliation(s)
- Willem T Peppler
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Paula M Miotto
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
27
|
Common and distinct regulation of human and mouse brown and beige adipose tissues: a promising therapeutic target for obesity. Protein Cell 2017; 8:446-454. [PMID: 28220393 PMCID: PMC5445025 DOI: 10.1007/s13238-017-0378-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/26/2017] [Indexed: 01/03/2023] Open
Abstract
Obesity, which underlies various metabolic and cardiovascular diseases, is a growing public health challenge for which established therapies are inadequate. Given the current obesity epidemic, there is a pressing need for more novel therapeutic strategies that will help adult individuals to manage their weight. One promising therapeutic intervention for reducing obesity is to enhance energy expenditure. Investigations into human brown fat and the recently discovered beige/brite fat have galvanized intense research efforts during the past decade because of their pivotal roles in energy dissipation. In this review, we summarize the evolution of human brown adipose tissue (hBAT) research and discuss new in vivo methodologies for evaluating energy expenditure in patients. We highlight the differences between human and mouse BAT by integrating and comparing their cellular morphology, function, and gene expression profiles. Although great advances in hBAT biology have been achieved in the past decade, more cellular models are needed to acquire a better understanding of adipose-specific processes and molecular mechanisms. Thus, this review also describes the development of a human brown fat cell line, which could provide promising mechanistic insights into hBAT function, signal transduction, and development. Finally, we focus on the therapeutic potential and current limitations of hBAT as an anti-glycemic, anti-lipidemic, and weight loss-inducing ‘metabolic panacea’.
Collapse
|
28
|
Gut microbiota from metabolic disease-resistant, macrophage-specific RIP140 knockdown mice improves metabolic phenotype and gastrointestinal integrity. Sci Rep 2016; 6:38599. [PMID: 27929078 PMCID: PMC5144013 DOI: 10.1038/srep38599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023] Open
Abstract
While fecal microbiota transplantation (FMT) presents an attractive therapeutic strategy, it remains unclear how to choose the microbiota repertoire that most effectively transfers benefit to recipients. We identified a beneficial taxonomic repertoire in a transgenic mouse model (RIP140mϕKD) which resists the development of high fat diet (HFD)-induced metabolic diseases due to enhanced anti-inflammation engineered by lowering receptor interacting protein (RIP140) expression in macrophage. We confirmed using FMT from HFD-fed RIP140mϕKD to wild type (WT) mice that recipient mice acquired the microbiota repertoire of donor mice. Importantly, FMT from RIP140mϕKD to WT not only effectively transferred the beneficial taxonomic repertoire to WT recipients, but also enabled recipient animals acquiring the anti-inflammatory status of RIP140mϕKD donor animals and avoid HFD-induced insulin resistance, which is associated with significantly improved intestinal integrity. We conclude that FMT can transfer not only microbiota but also the donors' intestinal innate immune status and improved intestinal integrity.
Collapse
|
29
|
Yamazaki T, Okawa S, Takahashi M. The effects on weight loss and gene expression in adipose and hepatic tissues of very-low carbohydrate and low-fat isoenergetic diets in diet-induced obese mice. Nutr Metab (Lond) 2016; 13:78. [PMID: 27826354 PMCID: PMC5100287 DOI: 10.1186/s12986-016-0139-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
Background Obesity is caused by excessive fat or carbohydrate intake. The improvement of obesity is an important issue, especially in Western societies. Both low-carbohydrate diet (LCD) and low-fat diet (LFD) are used to achieve weight loss in humans. To clarify the mechanisms underlying LCD-induced weight loss, especially in early stage, we compared the gene expression in liver, white adipose tissue (WAT) and brown adipose tissue (BAT) of a very-low carbohydrate diet (VLCD)- and LFD-fed diet-induced obese (DIO) mice. Methods DIO male ddY mice were divided into high-fat diet (HFD), and isoenergetic VLCD and LFD groups. Pair-feeding was performed in the VLCD and LFD groups. Three weeks later, the body, liver, WAT and BAT were weighed and the serum and hepatic lipids, the mRNA expression levels in each tissue, and energy metabolism were analyzed. Results The caloric intake of the VLCD-fed mice was initially reduced but was subsequently restored. The total energy intake was similar in the VLCD- and LFD-fed mice. There was a similar decrease in the BW of the VLCD- and LFD-fed mice. The VLCD-fed mice had elevated levels of serum fibroblast growth factor 21 (FGF21) and ketone bodies, which are known to increase energy expenditure. The browning of WAT was observed to a greater extent in the VLCD-fed mice. Moreover, in the VLCD-fed mice, BAT activation was observed, the weight of the BAT was decreased, and the expression of G-protein-coupled receptor 120, type 2 iodothyronine deiodinase, and FGF21 in BAT was extremely increased. Although the energy expenditure of the VLCD- and LFD-fed mice did not differ, that of the VLCD-fed mice was sometimes higher during the dark cycle. Hepatic TG accumulation was reduced in LFD-fed mice due to their decreased fatty acid uptake but not in the VLCD-fed mice. The pro-inflammatory macrophage ratio was increased in the WAT of VLCD-fed mice. Conclusions After 3 weeks, the isoenergetic VLCD- and LFD-fed DIO mice showed similar weight loss. The VLCD-fed mice increased serum concentration of FGF21 and ketone bodies, and marker mRNA levels of browning in WAT, activation in BAT and hepatic lipogenesis.
Collapse
Affiliation(s)
- Tomomi Yamazaki
- Department of Nutritional Science, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636 Japan
| | - Sumire Okawa
- Department of Nutritional Science, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636 Japan
| | - Mayumi Takahashi
- Department of Life Science, Osaka Women's Junior College, 3-8-1 Kasugaoka, Fujiidera City, Osaka 583-8558 Japan
| |
Collapse
|
30
|
Hanatani S, Motoshima H, Takaki Y, Kawasaki S, Igata M, Matsumura T, Kondo T, Senokuchi T, Ishii N, Kawashima J, Kukidome D, Shimoda S, Nishikawa T, Araki E. Acetate alters expression of genes involved in beige adipogenesis in 3T3-L1 cells and obese KK-Ay mice. J Clin Biochem Nutr 2016; 59:207-214. [PMID: 27895388 PMCID: PMC5110936 DOI: 10.3164/jcbn.16-23] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022] Open
Abstract
The induction of beige adipogenesis within white adipose tissue, known as "browning", has received attention as a novel potential anti-obesity strategy. The expression of some characteristic genes including PR domain containing 16 is induced during the browning process. Although acetate has been reported to suppress weight gain in both rodents and humans, its potential effects on beige adipogenesis in white adipose tissue have not been fully characterized. We examined the effects of acetate treatment on 3T3-L1 cells and in obese diabetic KK-Ay mice. The mRNA expression levels of genes involved in beige adipocyte differentiation and genes selectively expressed in beige adipocytes were significantly elevated in both 3T3-L1 cells incubated with 1.0 mM acetate and the visceral white adipose tissue from mice treated with 0.6% acetate for 16 weeks. In KK-Ay mice, acetate reduced the food efficiency ratio and increased the whole-body oxygen consumption rate. Additionally, reduction of adipocyte size and uncoupling protein 1-positive adipocytes and interstitial areas with multilocular adipocytes appeared in the visceral white adipose tissue of acetate-treated mice, suggesting that acetate induced initial changes of "browning". In conclusion, acetate alters the expression of genes involved in beige adipogenesis and might represent a potential therapeutic agent to combat obesity.
Collapse
Affiliation(s)
- Satoko Hanatani
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yuki Takaki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Shuji Kawasaki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Motoyuki Igata
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takafumi Senokuchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Norio Ishii
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Junji Kawashima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Daisuke Kukidome
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Seiya Shimoda
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takeshi Nishikawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
31
|
Kim J, Okla M, Erickson A, Carr T, Natarajan SK, Chung S. Eicosapentaenoic Acid Potentiates Brown Thermogenesis through FFAR4-dependent Up-regulation of miR-30b and miR-378. J Biol Chem 2016; 291:20551-62. [PMID: 27489163 DOI: 10.1074/jbc.m116.721480] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 01/25/2023] Open
Abstract
Emerging evidence suggests that n-3 polyunsaturated fatty acids (PUFA) promote brown adipose tissue thermogenesis. However, the underlying mechanisms remain elusive. Here, we hypothesize that n-3 PUFA promotes brown adipogenesis by modulating miRNAs. To test this hypothesis, murine brown preadipocytes were induced to differentiate the fatty acids of palmitic, oleate, or eicosapentaenoic acid (EPA). The increases of brown-specific signature genes and oxygen consumption rate by EPA were concurrent with up-regulation of miR-30b and 378 but not by oleate or palmitic acid. Next, we hypothesize that free fatty acid receptor 4 (Ffar4), a functional receptor for n-3 PUFA, modulates miR-30b and 378. Treatment of Ffar4 agonist (GW9508) recapitulated the thermogenic activation of EPA by increasing oxygen consumption rate, brown-specific marker genes, and miR-30b and 378, which were abrogated in Ffar4-silenced cells. Intriguingly, addition of the miR-30b mimic was unable to restore EPA-induced Ucp1 expression in Ffar4-depleted cells, implicating that Ffar4 signaling activity is required for up-regulating the brown adipogenic program. Moreover, blockage of miR-30b or 378 by locked nucleic acid inhibitors significantly attenuated Ffar4 as well as brown-specific signature gene expression, suggesting the signaling interplay between Ffar4 and miR-30b/378. The association between miR-30b/378 and brown thermogenesis was also confirmed in fish oil-fed C57/BL6 mice. Interestingly, the Ffar4 agonism-mediated signaling axis of Ffar4-miR-30b/378-Ucp1 was linked with an elevation of cAMP in brown adipocytes, similar to cold-exposed or fish oil-fed brown fat. Taken together, our work identifies a novel function of Ffar4 in modulating brown adipogenesis partly through a mechanism involving cAMP activation and up-regulation of miR-30b and miR-378.
Collapse
Affiliation(s)
- Jiyoung Kim
- From the Department of Nutrition and Health Sciences, the University of Nebraska, Lincoln, Nebraska 68583
| | - Meshail Okla
- From the Department of Nutrition and Health Sciences, the University of Nebraska, Lincoln, Nebraska 68583
| | - Anjeza Erickson
- From the Department of Nutrition and Health Sciences, the University of Nebraska, Lincoln, Nebraska 68583
| | - Timothy Carr
- From the Department of Nutrition and Health Sciences, the University of Nebraska, Lincoln, Nebraska 68583
| | - Sathish Kumar Natarajan
- From the Department of Nutrition and Health Sciences, the University of Nebraska, Lincoln, Nebraska 68583
| | - Soonkyu Chung
- From the Department of Nutrition and Health Sciences, the University of Nebraska, Lincoln, Nebraska 68583
| |
Collapse
|
32
|
Abstract
Inflammation originating from the adipose tissue is considered to be one of the main driving forces for the development of insulin resistance and type 2 diabetes in obese individuals. Although a plethora of different immune cells shapes adipose tissue inflammation, this review is specifically focused on the contribution of macrophages that reside in adipose tissue in lean and obese conditions. Both conventional and tissue-specific functions of adipose tissue macrophages (ATMs) in lean and obese adipose tissue are discussed and linked with metabolic and inflammatory changes that occur during the development of obesity. Furthermore, we will address various circulating and adipose tissue-derived triggers that may be involved in shaping the ATM phenotype and underlie ATM function in lean and obese conditions. Finally, we will highlight how these changes affect adipose tissue inflammation and may be targeted for therapeutic interventions to improve insulin sensitivity in obese individuals.
Collapse
Affiliation(s)
- Lily Boutens
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Nutrition, Metabolism and Genomics Group, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, the Netherlands
| | - Rinke Stienstra
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
- Nutrition, Metabolism and Genomics Group, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, the Netherlands.
| |
Collapse
|
33
|
Sakamoto T, Nitta T, Maruno K, Yeh YS, Kuwata H, Tomita K, Goto T, Takahashi N, Kawada T. Macrophage infiltration into obese adipose tissues suppresses the induction of UCP1 level in mice. Am J Physiol Endocrinol Metab 2016; 310:E676-E687. [PMID: 26884382 DOI: 10.1152/ajpendo.00028.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/13/2016] [Indexed: 12/12/2022]
Abstract
Emergence of thermogenic adipocytes such as brown and beige adipocytes is critical for whole body energy metabolism. Promoting the emergence of these adipocytes, which increase energy expenditure, could be a viable strategy in treating obesity and its related diseases. However, little is known regarding the mechanisms that regulate the emergence of these adipocytes in obese adipose tissue. Here, we demonstrated that classically activated macrophages (M1 Mϕ) suppress the induction of thermogenic adipocytes in obese adipose tissues of mice. Cold exposure significantly induced the expression levels of uncoupling protein-1 (UCP1), which is a mitochondrial protein unique in thermogenic adipocytes, in C57BL/6 mice fed a normal diet. However, UCP1 induction was significantly suppressed in adipose tissues of C57BL/6 mice fed a high-fat diet, into which M1 Mϕ infiltrated. Depletion of M1 Mϕ using clodronate liposomes eliminated the suppressive effect and markedly reduced the mRNA level of tumor necrosis factor-α (TNFα) in the adipose tissues. Importantly, consistent with the observed changes in the expression levels of marker genes for thermogenic adipocytes, combination treatment of clodronate liposome and cold exposure resulted in metabolic benefits such as lowered body weight and blood glucose level in obese mice. Moreover, intraperitoneal injection of recombinant TNFα protein suppressed UCP1 induction in lean adipose tissues of mice. Collectively, our data indicate that infiltrated M1 Mϕ suppress the induction of thermogenic adipocytes in obese adipose tissues via TNFα. This report suggests that inflammation induced by infiltrated Mϕ could cause not only insulin resistance but also reduction of energy expenditure in adipose tissues.
Collapse
Affiliation(s)
- Tomoya Sakamoto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Uji, Kyoto University, Kyoto, Japan
| | - Takahiro Nitta
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Uji, Kyoto University, Kyoto, Japan
| | - Koji Maruno
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Uji, Kyoto University, Kyoto, Japan
| | - Yu-Sheng Yeh
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Uji, Kyoto University, Kyoto, Japan
| | - Hidetoshi Kuwata
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Uji, Kyoto University, Kyoto, Japan
| | - Koichi Tomita
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Uji, Kyoto University, Kyoto, Japan
- Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Nobuyuki Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Uji, Kyoto University, Kyoto, Japan
- Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Uji, Kyoto University, Kyoto, Japan;
- Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
34
|
Shahid M, Javed AA, Chandra D, Ramsey HE, Shah D, Khan MF, Zhao L, Wu MX. IEX-1 deficiency induces browning of white adipose tissue and resists diet-induced obesity. Sci Rep 2016; 6:24135. [PMID: 27063893 PMCID: PMC4827096 DOI: 10.1038/srep24135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/21/2016] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammation plays a crucial role in the pathogenesis of obesity and insulin resistance. However, the primary mediators that affect energy homeostasis remain ill defined. Here, we report an unexpected role for immediate early response gene X-1 (IEX-1), a downstream target of NF-κB, in energy metabolism. We found that IEX-1 expression was highly induced in white adipose tissue (WAT) in both epidydmal and subcutaneous depots but not in interscapular brown adipose tissue (BAT) in mice fed a high fat diet (HFD). Null mutation of IEX-1 protected mice against HFD-induced adipose and hepatic inflammation, hepatic steatosis, and insulin resistance. Unexpectedly, IEX-1 knockout (IEX-1(-/-)) mice gained markedly less weight on HFD for 20 weeks as compared to wild-type (WT) littermates (37 ± 3 versus 48 ± 2 gm) due to increased energy expenditure. Mechanistically, we showed that IEX-1 deficiency induced browning and activated thermogenic genes program in WAT but not in BAT by promoting alternative activation of adipose macrophages. Consequently, IEX-1(-/-) mice exhibited enhanced thermogenesis (24 ± 0.1 versus 22 ± 0.1 kcal/hour/kg in WT mice) explaining increased energy expenditure and lean phenotype in these mice. In conclusion, the present study suggests that IEX-1 is a novel physiological regulator of energy homeostasis via its action in WAT.
Collapse
Affiliation(s)
- Mohd Shahid
- The Wellman Center for Photomedicine, Massachusetts General Hospital (MGH) and Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114 USA
| | - Ammar A Javed
- The Wellman Center for Photomedicine, Massachusetts General Hospital (MGH) and Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114 USA
| | - David Chandra
- The Wellman Center for Photomedicine, Massachusetts General Hospital (MGH) and Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114 USA
| | - Haley E Ramsey
- The Wellman Center for Photomedicine, Massachusetts General Hospital (MGH) and Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114 USA
| | - Dilip Shah
- The Wellman Center for Photomedicine, Massachusetts General Hospital (MGH) and Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114 USA
| | - Mohammed F Khan
- Department of Anesthesia, Critical Care and Pain Medicine, Shriners Hospitals for Children, MGH and HMS, Boston, MA 02114, USA
| | - Liping Zhao
- Department of Molecular Biology, MGH and HMS, Boston, Massachusetts USA
| | - Mei X Wu
- The Wellman Center for Photomedicine, Massachusetts General Hospital (MGH) and Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114 USA.,Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Boston, Massachusetts USA
| |
Collapse
|
35
|
Chen L, Tian G, Tang W, Luo W, Liu P, Ma Z. Protective effect of luteolin on streptozotocin-induced diabetic renal damage in mice via the regulation of RIP140/NF-кB pathway and insulin signalling pathway. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Chirumbolo S. Commentary: Heart Failure with Preserved Ejection Fraction Induces Beiging in Adipose Tissue. Front Physiol 2016; 7:85. [PMID: 27014086 PMCID: PMC4779995 DOI: 10.3389/fphys.2016.00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/22/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Salvatore Chirumbolo
- University Laboratories for Medical Research-Medicine D, Department of Medicine-Unit of Geriatry, University of Verona Verona, Italy
| |
Collapse
|
37
|
Schlessinger K, Li W, Tan Y, Liu F, Souza SC, Tozzo E, Liu K, Thompson JR, Wang L, Muise ES. Gene expression in WAT from healthy humans and monkeys correlates with FGF21-induced browning of WAT in mice. Obesity (Silver Spring) 2015; 23:1818-29. [PMID: 26308478 DOI: 10.1002/oby.21153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/06/2015] [Accepted: 04/21/2015] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Identify a gene expression signature in white adipose tissue (WAT) that reports on WAT browning and is associated with a healthy phenotype. METHODS RNA from several different adipose depots across three species were analyzed by whole transcriptome profiling, including 1) mouse subcutaneous white fat, brown fat, and white fat after in vivo treatment with FGF21; 2) human subcutaneous and omental fat from insulin-sensitive and insulin-resistant patients; and 3) rhesus monkey subcutaneous fat from healthy and dysmetabolic individuals. RESULTS A "browning" signature in mice was identified by cross-referencing the FGF21-induced signature in WAT with the brown adipose tissue (BAT) vs. WAT comparison. In addition, gene expression levels in WAT from insulin-sensitive/healthy vs. insulin-resistant/dysmetabolic humans and rhesus monkeys, respectively, correlated with the gene expression levels in mouse BAT vs. WAT. A subset of 49 genes were identified that were consistently regulated or differentially expressed in the mouse and human data sets that could be used to monitor browning of WAT across species. CONCLUSIONS Gene expression profiles of WATs from healthy insulin-sensitive individuals correlate with those of BAT and FGF21-induced browning of WAT.
Collapse
Affiliation(s)
- Karni Schlessinger
- Department of Diabetes, Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Kenilworth, New Jersey, USA
| | - Wenyu Li
- Department of Diabetes, Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Kenilworth, New Jersey, USA
| | - Yejun Tan
- Department of Genetics and Pharmacogenomics, Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Kenilworth, New Jersey, USA
| | - Franklin Liu
- Department of Diabetes, Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Kenilworth, New Jersey, USA
| | - Sandra C Souza
- Department of Diabetes, Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Kenilworth, New Jersey, USA
| | - Effie Tozzo
- Department of Diabetes, Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Kenilworth, New Jersey, USA
| | - Kevin Liu
- Department of Diabetes, Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Kenilworth, New Jersey, USA
| | - John R Thompson
- Department of Genetics and Pharmacogenomics, Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Kenilworth, New Jersey, USA
| | - Liangsu Wang
- Department of Diabetes, Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Kenilworth, New Jersey, USA
| | - Eric S Muise
- Department of Genetics and Pharmacogenomics, Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Kenilworth, New Jersey, USA
| |
Collapse
|
38
|
The Prostaglandin E2 Receptor EP4 Regulates Obesity-Related Inflammation and Insulin Sensitivity. PLoS One 2015; 10:e0136304. [PMID: 26308623 PMCID: PMC4550358 DOI: 10.1371/journal.pone.0136304] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/02/2015] [Indexed: 11/29/2022] Open
Abstract
With increasing body weight, macrophages accumulate in adipose tissue. There, activated macrophages secrete numerous proinflammatory cytokines and chemokines, giving rise to chronic inflammation and insulin resistance. Prostaglandin E2 suppresses macrophage activation via EP4; however, the role of EP4 signaling in insulin resistance and type 2 diabetes mellitus remains unknown. In this study, we treated db/db mice with an EP4-selective agonist, ONO-AE1-329, for 4 weeks to explore the role of EP4 signaling in obesity-related inflammation in vivo. Administration of the EP4 agonist did not affect body weight gain or food intake; however, in the EP4 agonist–treated group, glucose tolerance and insulin resistance were significantly improved over that of the vehicle–treated group. Additionally, administration of the EP4 agonist inhibited the accumulation of F4/80-positive macrophages and the formation of crown-like structures in white adipose tissue, and the adipocytes were significantly smaller. The treatment of the EP4 agonist increased the number of anti-inflammatory M2 macrophages, and in the stromal vascular fraction of white adipose tissue, which includes macrophages, it markedly decreased the levels of proinflammatory cytokines and chemokines. Further, EP4 activation increased the expression of adiponectin and peroxidase proliferator–activated receptors in white adipose tissue. Next, we examined in vitro M1/M2 polarization assay to investigate the impact of EP4 signaling on determining the functional phenotypes of macrophages. Treatment with EP4 agonist enhanced M2 polarization in wild-type peritoneal macrophages, whereas EP4-deficient macrophages were less susceptible to M2 polarization. Notably, antagonizing peroxidase proliferator–activated receptor δ activity suppressed EP4 signaling-mediated shift toward M2 macrophage polarization. Thus, our results demonstrate that EP4 signaling plays a critical role in obesity-related adipose tissue inflammation and insulin resistance by regulating macrophage recruitment and polarization. The activation of EP4 signaling holds promise for treating obesity and type 2 diabetes mellitus.
Collapse
|
39
|
Franco R, Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 2015; 131:65-86. [PMID: 26067058 DOI: 10.1016/j.pneurobio.2015.05.003] [Citation(s) in RCA: 495] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/22/2015] [Accepted: 05/30/2015] [Indexed: 12/20/2022]
Abstract
Macrophages are important players in the fight against viral, bacterial, fungal and parasitic infections. From a resting state they may undertake two activation pathways, the classical known as M1, or the alternative known as M2. M1 markers are mostly mediators of pro-inflammatory responses whereas M2 markers emerge for resolution and cleanup. Microglia exerts in the central nervous system (CNS) a function similar to that of macrophages in the periphery. Microglia activation and proliferation occurs in almost any single pathology affecting the CNS. Often microglia activation has been considered detrimental and drugs able to stop microglia activation were considered for the treatment of a variety of diseases. Cumulative evidence shows that microglia may undergo the alternative activation pathway, express M2-type markers and contribute to neuroprotection. This review focuses on details about the role of M2 microglia and in the approaches available for its identification. Approaches to drive the M2 phenotype and data on its potential in CNS diseases are also reviewed.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro Investigación Biomédica en Red: Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | - Diana Fernández-Suárez
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
40
|
Brestoff JR, Artis D. Immune regulation of metabolic homeostasis in health and disease. Cell 2015; 161:146-160. [PMID: 25815992 DOI: 10.1016/j.cell.2015.02.022] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 02/07/2023]
Abstract
Obesity is an increasingly prevalent disease worldwide. While genetic and environmental factors are known to regulate the development of obesity and associated metabolic diseases, emerging studies indicate that innate and adaptive immune cell responses in adipose tissue have critical roles in the regulation of metabolic homeostasis. In the lean state, type 2 cytokine-associated immune cell responses predominate in white adipose tissue and protect against weight gain and insulin resistance through direct effects on adipocytes and elicitation of beige adipose. In obesity, these metabolically beneficial immune pathways become dysregulated, and adipocytes and other factors initiate metabolically deleterious type 1 inflammation that impairs glucose metabolism. This review discusses our current understanding of the functions of different types of adipose tissue and how immune cells regulate adipocyte function and metabolic homeostasis in the context of health and disease and highlights. We also highlight the potential of targeting immuno-metabolic pathways as a therapeutic strategy to treat obesity and associated diseases.
Collapse
Affiliation(s)
- Jonathan R Brestoff
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, 10021, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, 10021, USA.
| |
Collapse
|
41
|
Liu PS, Lin YW, Burton FH, Wei LN. M1-M2 balancing act in white adipose tissue browning - a new role for RIP140. Adipocyte 2015; 4:146-8. [PMID: 26167418 DOI: 10.4161/21623945.2014.981428] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/06/2014] [Accepted: 10/23/2014] [Indexed: 01/23/2023] Open
Abstract
A "Holy Grail" sought in medical treatment of obesity is to be able to biologically reprogram their adipose tissues to burn fat rather than store it. White adipose tissue (WAT) stores fuel and its expansion underlines insulin resistance (IR) whereas brown adipose tissue (BAT) burns fuel and stimulates insulin sensitivity. These two types of fats seesaw within our bodies via a regulatory mechanism that involves intricate communication between adipocytes and blood cells, particularly macrophages that migrate into adipose deposits. The coregulator, Receptor Interacting Protein 140 (RIP140), plays a key role in regulating this communication. In mice on a high-fat diet, the level of RIP140 in macrophages is dramatically elevated to activate their inflammatory M1 polarization and enhance their recruitment into WAT, facilitating IR. Conversely, lowering the level of RIP140 in macrophages not only reduces M1 macrophages but also expands alternatively polarized, anti-inflammatory M2 macrophages, triggering white adipose tissue browning, fat burning, and restoration of insulin sensitivity. This suggests a potential therapeutic strategy for reversing IR, obesity, and atherosclerotic or even cosmetic fat deposits: therapeutic browning of white adipose deposits by diminishing RIP140 levels in macrophages.
Collapse
|
42
|
Liu PS, Lin YW, Burton FH, Wei LN. Injecting engineered anti-inflammatory macrophages therapeutically induces white adipose tissue browning and improves diet-induced insulin resistance. Adipocyte 2015; 4:123-8. [PMID: 26167415 DOI: 10.4161/21623945.2014.981438] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/03/2014] [Accepted: 10/23/2014] [Indexed: 12/17/2022] Open
Abstract
We recently exploited a transgenic approach to coerce macrophage anti-inflammatory M2 polarization in vivo by lowering Receptor Interacting Protein 140 (RIP140) level in macrophages (mφRIP140KD), which induced browning of white adipose tissue (WAT). In vitro, conditioned medium from cultured adipose tissue macrophages (ATMs) of mφRIP140KD mice could trigger preadipocytes' differentiation into beige cells. Here we describe a cell therapy for treating high fat diet (HFD)-induced insulin resistance (IR). Injecting M2 ATMs retrieved from the WAT of mφRIP140KD mice into HFD-fed obese adult wild-type mice effectively triggers their WAT browning, reduces their pro-inflammatory responses, and improves their insulin sensitivity. These data provide a proof-of-concept that delivering engineered anti-inflammatory macrophages can trigger white fat browning, stimulate whole-body thermogenesis, and reduce obesity-associated IR.
Collapse
Key Words
- (v)WAT, (visceral) white adipose tissue
- ATM(s), adipose tissue macrophage(s)
- BAT, brown adipose tissue
- FFA, free fatty acid
- GTT, glucose tolerance test
- HFD
- HFD, high-fat diet
- IL4, Interleukin 4
- IR, insulin resistance
- ITT, insulin tolerance test
- KD, knockdown mice
- M2 ATM
- ND, normal diet
- PBS, phosphate-buffered saline
- RIP140
- RIP140, Receptor Interacting Protein 140
- SVF, stromal vascular fraction
- TG, triglyceride
- WT, wild-type mice
- beige cells
- browning
- insulin resistance
- macrophages
- mφRIP140KD, macrophage-specific RIP140 knockdown mutation
- obesity
- preadipocyte differentiation
Collapse
|
43
|
Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 2014; 519:242-6. [PMID: 25533952 DOI: 10.1038/nature14115] [Citation(s) in RCA: 743] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 11/27/2014] [Indexed: 12/12/2022]
Abstract
Obesity is an increasingly prevalent disease regulated by genetic and environmental factors. Emerging studies indicate that immune cells, including monocytes, granulocytes and lymphocytes, regulate metabolic homeostasis and are dysregulated in obesity. Group 2 innate lymphoid cells (ILC2s) can regulate adaptive immunity and eosinophil and alternatively activated macrophage responses, and were recently identified in murine white adipose tissue (WAT) where they may act to limit the development of obesity. However, ILC2s have not been identified in human adipose tissue, and the mechanisms by which ILC2s regulate metabolic homeostasis remain unknown. Here we identify ILC2s in human WAT and demonstrate that decreased ILC2 responses in WAT are a conserved characteristic of obesity in humans and mice. Interleukin (IL)-33 was found to be critical for the maintenance of ILC2s in WAT and in limiting adiposity in mice by increasing caloric expenditure. This was associated with recruitment of uncoupling protein 1 (UCP1)(+) beige adipocytes in WAT, a process known as beiging or browning that regulates caloric expenditure. IL-33-induced beiging was dependent on ILC2s, and IL-33 treatment or transfer of IL-33-elicited ILC2s was sufficient to drive beiging independently of the adaptive immune system, eosinophils or IL-4 receptor signalling. We found that ILC2s produce methionine-enkephalin peptides that can act directly on adipocytes to upregulate Ucp1 expression in vitro and that promote beiging in vivo. Collectively, these studies indicate that, in addition to responding to infection or tissue damage, ILC2s can regulate adipose function and metabolic homeostasis in part via production of enkephalin peptides that elicit beiging.
Collapse
|