1
|
Taneera J, Yaseen D, Youssef M, Khalique A, Al Shehadat OS, Mohammed AK, Bustanji Y, Madkour MI, El-Huneidi W. Vitamin D augments insulin secretion via calcium influx and upregulation of voltage calcium channels: Findings from INS-1 cells and human islets. Mol Cell Endocrinol 2025; 599:112472. [PMID: 39864489 DOI: 10.1016/j.mce.2025.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Vitamin D (VD) has been implicated in regulating insulin secretion and pancreatic β-cell function. Yet, the underlying molecular mechanism of VD in glucose homeostasis is not fully understood. This study investigates the effect of VD in regulating insulin secretion and pancreatic β-cell function. INS-1 β-cells were treated with VD to assess cell viability, reactive oxygen species production (ROS), insulin secretion, glucose uptake, proliferation, gene expression alterations, mitochondria metabolism, calcium influx, as well as the effects of antidiabetic drugs on VDR expression. Additionally, RNA sequencing from human pancreatic islets were utilized to examine VDR expression in relation to clinical parameters such as HbA1c, BMI, age, and gender. VD treatment enhanced glucose-stimulated insulin secretion and elevated intracellular calcium levels without affecting insulin content, glucose uptake, ROS production, proliferation, or mitochondrial metabolism. Expression levels of key β-cell function genes, including Ins, Pdx1, and Glut2, remained unchanged with VD treatment. However, genes associated with calcium channels were upregulated. Cell exposure to rosiglitazone and dexamethasone elevated VDR expression in INS-1 cells, while metformin and insulin had no effect. RNA-seq analysis in human islets showed that VDR expression levels in human islets were significantly higher than in other metabolic tissues and were notably reduced in hyperglycemic donors compared to normoglycemic individuals. Furthermore, VDR expression positively correlated with several genes regulating voltage-gated calcium channels. In conclusion, the study indicates that VD plays a significant role in enhancing insulin secretion through modulation of intracellular calcium dynamics, highlighting its potential therapeutic implications for managing type 2 diabetes.
Collapse
Affiliation(s)
- Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Center of Excellence of Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, United Arab Emirates.
| | - Deema Yaseen
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Mona Youssef
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Anila Khalique
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Ola Saed Al Shehadat
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Abdul Khader Mohammed
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohamed I Madkour
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
2
|
Ji L, Li S, Yuan T, Li S, Shu R, Yang H. Inverse association of triglyceride-glucose and triglyceride/HDL-c indexes with serum 25(OH) vitamin D levels in US adults. Lipids 2025. [PMID: 39829058 DOI: 10.1002/lipd.12429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/05/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
The triglyceride-glucose index (TyG) and the triglyceride to high-density lipoprotein ratio (TG/HDL-c) are novel indicators for assessing insulin resistance (IR) in epidemiological studies. This study aimed to evaluate the association between 25-hydroxy-vitamin D [25(OH)D] levels and these two indicators in the adult population of the United States. 14,380 participants aged 20 years and older were included from the National Health and Nutrition Examination Survey (NHANES). Multivariable linear regression models were used to analyze the association between 25(OH)D and TyG, as well as TG/HDL-c. Smooth fitting curves were employed to identify potential non-linear relationships between 25(OH)D, TyG, and TG/HDL-c. The findings revealed a negative association between 25(OH)D and TyG, with the effect being more pronounced in males and individuals with diabetes (p < 0.01). Similarly, 25(OH)D was negatively associated with TG/HDL-c, with a stronger impact observed in males compared to females. The study population was divided into four quartiles based on 25(OH)D concentration, and TyG and TG/HDL-c levels in Q3 and Q4 were lower than those in Q1. Furthermore, a non-linear relationship was observed between 25(OH)D and TyG, with an inflection point at 19.352 ng/mL. A non-linear relationship was also found between TG/HDL-c and 25(OH)D, with an inflection point at 37.211 ng/mL. 25(OH)D is an independent factor significantly associated with TyG and TG/HDL-c indexes. This negative association may be related to the role of 25(OH)D in insulin resistance.
Collapse
Affiliation(s)
- Li Ji
- Department of Geriatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shuying Li
- Department of Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tangbing Yuan
- General Surgery, People's Hospital of Ganyu District, Lianyungang, China
| | - Shaoping Li
- Department of Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruilu Shu
- Department of Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haiming Yang
- Department of Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Del Campo CMZM, Nicolson GL, Sfera A. Neurolipidomics in schizophrenia: A not so well-oiled machine. Neuropharmacology 2024; 260:110117. [PMID: 39153730 DOI: 10.1016/j.neuropharm.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Most patients with schizophrenia (SCZ) do not exhibit violent behaviors and are more likely to be victims rather than perpetrators of violent acts. However, a subgroup of forensic detainees with SCZ exhibit tendencies to engage in criminal violations. Although numerous models have been proposed, ranging from substance use, serotonin transporter gene, and cognitive dysfunction, the molecular underpinnings of violence in SCZ patients remains elusive. Lithium and clozapine have established anti-aggression properties and recent studies have linked low cholesterol levels and ultraviolet (UV) radiation with human aggression, while vitamin D3 reduces violent behaviors. A recent study found that vitamin D3, omega-3 fatty acids, magnesium, and zinc lower aggression in forensic population. In this review article, we take a closer look at aryl hydrocarbon receptor (AhR) and the dysfunctional lipidome in neuronal membranes, with emphasis on cholesterol and vitamin D3 depletion, as sources of aggressive behavior. We also discuss modalities to increase the fluidity of neuronal double layer via membrane lipid replacement (MLR) and natural or synthetic compounds. This article is part of the Special Issue on "Personality Disorders".
Collapse
Affiliation(s)
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, 92647, USA
| | - Adonis Sfera
- Patton State Hospital, Loma Linda University, Department of Psychiatry, University of California, Riverside, USA.
| |
Collapse
|
4
|
Roizen J, Long C, Casella A, Nguyen M, Danahy L, Seiler C, Lei M, Mark J. High dose dietary vitamin D allocates surplus calories to muscle and growth instead of fat via modulation of myostatin and leptin signaling. RESEARCH SQUARE 2024:rs.3.rs-4202165. [PMID: 38766160 PMCID: PMC11100886 DOI: 10.21203/rs.3.rs-4202165/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Obesity occurs because the body stores surplus calories as fat rather than as muscle. Fat secretes a hormone, leptin, that modulates energy balance at the brain. Changes in fat mass are mirrored by changes in serum leptin. Elevated leptin prompts the brain to decrease appetite and increase energy expenditure. In obesity, however, impaired leptin sensitivity mutes these leptin-mediated changes. We have limited understanding of what controls leptin production by fat or leptin sensitivity in the brain. Muscle produces a hormone, myostatin, that plays a role in muscle analogous to the one that leptin plays in fat. Absent myostatin leads to increased muscle mass and strength. As with leptin, we also do not know what controls myostatin production or sensitivity. Although fat mass and muscle mass are closely linked, the interplay between leptin and myostatin remains obscure. Here we describe an interplay linked thru vitamin D. Conventionally, it is thought that vitamin D improves strength via trophic effects at the muscle. However, we find here that high dose dietary vitamin D allocates excess calories to muscle and linear growth instead of storage as fat. Vitamin D mediates this allocation by decreasing myostatin production and increasing leptin production and sensitivity. That is, high dose vitamin D improves integration of organismal energy balance. Obesity, aging and other chronic inflammatory diseases are associated with increased fat mass and decreased muscle mass and function (e.g. sarcopenia). Our work provides a physiologic framework for how high-dose vitamin D would increase allocation of calories to muscle instead of fat in these pathologies. Additionally, our work reveals a novel link between the myostatin and leptin signaling whereby myostatin conveys energy needs to modulate leptin effects on calorie allocation. This result provides evidence to update the conventional model of energy stores sensing to a new model of energy balance sensing. In our proposed model, integration of leptin and myostatin signaling allows control of body composition independent of weight. Furthermore, our work reveals how physiologic seasonal variation in vitamin D may be important in controlling season-specific metabolism and calorie allocation to fat in winter and muscle and growth in summer.
Collapse
Affiliation(s)
- Jeffrey Roizen
- Childrens Hosp Philadelphia, Div Endocrinol & Diabet, 34th & Civ Ctr Blvd, Philadelphia, PA 19104 USA
| | - Caela Long
- The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine
| | - Alex Casella
- The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine
| | - Michael Nguyen
- The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine
| | - Lo Danahy
- The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine
| | | | - Meizan Lei
- The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine
| | - Julian Mark
- The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine
| |
Collapse
|
5
|
Vera Castro MF, Assmann CE, Reichert KP, Coppetti PM, Stefanello N, da Silva AD, Mostardeiro VB, de Jesus LB, da Silveira MV, Schirmann AA, Fracasso M, Maciel RM, Morsch VMM, Schetinger MRC. Vitamin D3 mitigates type 2 diabetes induced by a high carbohydrate-high fat diet in rats: Role of the purinergic system. J Nutr Biochem 2024; 127:109602. [PMID: 38373509 DOI: 10.1016/j.jnutbio.2024.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
This study evaluated the effect of vitamin D3 (VIT D3) supplementation on the enzymatic activities and density of ectonucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5-nucleotidase (E-5'-NT), adenosine deaminase (ADA), as well as the density of P2 × 7R, P2Y12R, A1R, A2AR receptors, IL-1β, and oxidative parameters in type 2 diabetic rats. Forty male Wistar rats were fed a high carbohydrate-high fat diet (HCHFD) and received an intraperitoneal injection containing a single dose of streptozotocin (STZ, 35 mg/kg). Animals were divided into four groups: 1) control; 2) control/VIT D3 12 µg/kg; 3) diabetic; and 4) diabetic/VIT D3 12 µg/kg. Results show that VIT D3 reduced blood glucose, ATP hydrolysis, ADA activity, P2Y12R density (platelets), as well as ATP, ADP, and AMP hydrolysis and ADA activity (synaptosomes). Moreover, VIT D3 increased insulin levels and AMP hydrolysis (platelets) and improved antioxidant defense. Therefore, we suggest that VIT D3 treatment modulates hyperglycemia-induced changes via purinergic enzymes and receptor expression, consequently attenuating insulin homeostasis dysregulation in the diabetic state.
Collapse
Affiliation(s)
- Milagros Fanny Vera Castro
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil.
| | - Charles Elias Assmann
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Karine Paula Reichert
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Priscila Marquezan Coppetti
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Naiara Stefanello
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Aniélen Dutra da Silva
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vitor Bastianello Mostardeiro
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Loren Borba de Jesus
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Marcylene Vieira da Silveira
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Adriel Antonio Schirmann
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Mateus Fracasso
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Roberto Marinho Maciel
- Department of Pathology, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Li P, Li K, Yuan W, Xu Y, Li P, Wu R, Han J, Yin Z, Lu L, Gao Y. 1α,25(OH) 2D 3 ameliorates insulin resistance by alleviating γδ T cell inflammation via enhancing fructose-1,6-bisphosphatase 1 expression. Theranostics 2023; 13:5290-5304. [PMID: 37908738 PMCID: PMC10614678 DOI: 10.7150/thno.84645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/16/2023] [Indexed: 11/02/2023] Open
Abstract
Background: Chronic inflammation caused by immune cells is the central link between obesity and insulin resistance. Targeting the inflammatory process is a highly promising method for reversing systemic insulin resistance. Methods: Blood samples were prospectively collected from 68 patients with type 2 diabetes. C57BL/6J mice were fed either a high-fat diet (HFD) or normal chow (NC). We performed phenotypical and functional analyses of immune cells using flow cytometry. Vitamin D receptor (VDR) knockout γδ T cells were constructed using Cas9-gRNA targeted approaches to identify 1α,25(OH)2D3/VDR signaling pathway-mediated transcriptional regulation of fructose-1,6-bisphosphatase (FBP1) in γδ T cells. Results: Serum vitamin D deficiency aggravates inflammation in circulating γδ T cells in type 2 diabetes patients. We defined a critical role for 1α,25(OH)2D3 in regulating glycolysis metabolism, protecting against inflammation, and alleviating insulin resistance. Mechanistically, 1α,25(OH)2D3-VDR promoted FBP1 expression to suppress glycolysis in γδ T cells, thereby inhibiting Akt/p38 MAPK phosphorylation and reducing inflammatory cytokine production. Notably, therapeutic administration of 1α,25(OH)2D3 restrained inflammation in γδ T cells and ameliorated systemic insulin resistance in obese mice. Conclusions: Collectively, these findings show that 1α,25(OH)2D3 plays an important role in maintaining γδ T cell homeostasis by orchestrating metabolic programs, and is a highly promising target for preventing obesity, inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Peng Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Ke Li
- Department of Geriatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Wenhui Yuan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yuqi Xu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Ping Li
- Department of Endocrinology, Guangdong Second Provincial General Hospital, Guangzhou, 510310, Guangdong, China
| | - Ruan Wu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, 230601, Anhui, China
| | - Jingru Han
- Department of Oncology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Yunfei Gao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| |
Collapse
|
7
|
Ye X, Zhou Q, Ren P, Xiang W, Xiao L. The Synaptic and Circuit Functions of Vitamin D in Neurodevelopment Disorders. Neuropsychiatr Dis Treat 2023; 19:1515-1530. [PMID: 37424961 PMCID: PMC10327924 DOI: 10.2147/ndt.s407731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Vitamin D deficiency/insufficiency is a public health issue around the world. According to epidemiological studies, low vitamin D levels have been associated with an increased risk of some neurodevelopmental disorders, including autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). Animal models reveal that vitamin D has a variety of impacts on the synapses and circuits in the brain. A lack of vitamin D affects the expression of synaptic proteins, as well as the synthesis and metabolism of various neurotransmitters. Depending on where vitamin D receptors (VDRs) are expressed, vitamin D may also regulate certain neuronal circuits through the endocannabinoid signaling, mTOR pathway and oxytocin signaling. While inconsistently, some data suggest that vitamin D supplementation may be able to reduce the core symptoms of ASD and ADHD. This review emphasizes vitamin D's role in the synaptic and circuit mechanisms of neurodevelopmental disorders including ASD and ADHD. Future application of vitamin D in these disorders will depend on both basic research and clinical studies, in order to make the transition from the bench to the bedside.
Collapse
Affiliation(s)
- Xiaoshan Ye
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
| | - Qionglin Zhou
- International School of Public Health and One Health, Hainan Medical University, Haikou, People’s Republic of China
| | - Pengcheng Ren
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, People’s Republic of China
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, People’s Republic of China
| | - Wei Xiang
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, People’s Republic of China
| | - Le Xiao
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
| |
Collapse
|
8
|
McGuire BD, Dees A, Hao L, Buckendahl P, Ogilvie AR, Sun H, Rezaee T, Barrett LO, Karim L, Dominguez-Bello MG, Bello NT, Shapses SA. A vitamin D deficient diet increases weight gain and compromises bone biomechanical properties without a reduction in BMD in adult female mice. J Steroid Biochem Mol Biol 2023; 231:106314. [PMID: 37088440 DOI: 10.1016/j.jsbmb.2023.106314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Vitamin D contributes to the development and maintenance of bone. Evidence suggests vitamin D status can also alter energy balance and gut health. In young animals, vitamin D deficiency (VDD) negatively affects bone mineral density (BMD) and bone microarchitecture, and these effects may also occur due to chronic ethanol intake. However, evidence is limited in mature models, and addressing this was a goal of the current study. Seven-month-old female C57BL/6 mice (n = 40) were weight-matched and randomized to one of four ad libitum diets: control, alcohol (Alc), vitamin D deficient (0 IU/d), or Alc+VDD for 8 weeks. A purified (AIN-93) diet was provided with water or alcohol (10 %) ad libitum. Body weight and food intake were recorded weekly, and feces were collected at 0, 4, and 8 weeks. At the age of 9 months, intestinal permeability was assessed by oral gavage of fluorescein isothiocyanate-dextran. Thereafter, bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. The microarchitecture of the distal femur was assessed by micro-computed tomography and biomechanical properties were evaluated by cyclic reference point indentation. VDD did not affect BMD or most bone microarchitecture parameters, however, the polar moment of inertia (p < 0.05) was higher in the VDD groups compared to vitamin D sufficient groups. VDD mice also had lower whole bone water content (p < 0.05) and a greater average unloading slope (p < 0.01), and energy dissipated (p < 0.01), indicating the femur displayed a brittle phenotype. In addition, VDD caused a greater increase in energy intake (p < 0.05), weight gain (p < 0.05), and a trend for higher intestinal permeability (p = 0.08). The gut microbiota of the VDD group had a reduction in alpha diversity (p < 0.05) and a lower abundance of ASVs from Rikenellaceae, Clostridia_UCG-014, Oscillospiraceae, and Lachnospiraceae (p < 0.01). There was little to no effect of alcohol supplementation on outcomes. Overall, these findings suggest that vitamin D deficiency causes excess weight gain and reduces the biomechanical strength of the femur as indicated by the higher average unloading slope and energy dissipated without an effect on BMD in a mature murine model.
Collapse
Affiliation(s)
- Brandon D McGuire
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Azra Dees
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Lihong Hao
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ, USA
| | | | - Anna R Ogilvie
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Haipeng Sun
- Department of Microbiology and Biochemistry, New Brunswick, NJ, USA
| | - Taraneh Rezaee
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Leland O Barrett
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Lamya Karim
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Maria Gloria Dominguez-Bello
- Department of Microbiology and Biochemistry, New Brunswick, NJ, USA; NJ Institute of Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Nicholas T Bello
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ, USA; NJ Institute of Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Sue A Shapses
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA; NJ Institute of Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA; Department of Medicine, Rutgers-Robert Wood Johnson Univ. Hospital, New Brunswick, NJ, USA.
| |
Collapse
|
9
|
Kaličanin D, Cvek M, Barić A, Škrabić V, Punda A, Boraska Perica V. Associations between vitamin D levels and dietary patterns in patients with Hashimoto's thyroiditis. Front Nutr 2023; 10:1188612. [PMID: 37215216 PMCID: PMC10198619 DOI: 10.3389/fnut.2023.1188612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Vitamin D insufficiency is a global health problem affecting healthy and diseased individuals, including patients with Hashimoto's thyroiditis (HT). Identifying dietary factors that may affect vitamin D levels and providing dietary guidelines accordingly can alleviate this problem. We therefore aimed to identify still unknown associations of dietary patterns, assessed through the Food Frequency Questionnaire (FFQ) with vitamin D blood levels. Materials and methods FFQ was collected from 459 patients from Croatian Biobank of Patients with Hashimoto's thyroiditis (CROHT), while total 25(OH)D was measured from their stored serum samples. We performed linear regression analysis between vitamin D levels and weekly intake of 24 food groups in 459 patients with HT (ALL), and in two disease-severity groups (MILD and OVERT). Results The main results of our study are observations of: (1) an inverse association between vitamin D levels and coffee consumption (ALL: β = -0.433, p = 0.005; OVERT: β = -0.62, p = 0.008); (2) an inverse association between vitamin D levels and sweets consumption (ALL: β = -0.195, p = 0.034; OVERT: β = -0.431, p = 0.006); (3) positive association between vitamin D levels and vegetable consumption (ALL: β = 0.182, p = 0.019; OVERT, β = 0.311, p = 0.009). Importantly, effect sizes of all three associations were more prominent in HT patients with prolonged and more severe disease (OVERT). Conclusion Further research into the functional and causal relationships of the observed associations is important to provide guidance regarding coffee/sugar intake on vitamin D status. A well-balanced diet can help prevent vitamin D deficiency and improve the quality of life of patients with HT, especially those in later stages of disease characterized by greater metabolic imbalance.
Collapse
Affiliation(s)
- Dean Kaličanin
- Department of Medical Biology, University of Split School of Medicine, Split, Croatia
| | - Maja Cvek
- Department of Nuclear Medicine, University Hospital of Split, Split, Croatia
| | - Ana Barić
- Department of Nuclear Medicine, University Hospital of Split, Split, Croatia
| | - Veselin Škrabić
- Department of Paediatrics, University Hospital of Split, Split, Croatia
| | - Ante Punda
- Department of Nuclear Medicine, University Hospital of Split, Split, Croatia
| | - Vesna Boraska Perica
- Department of Medical Biology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
10
|
Pereira ADS, Miron VV, Castro MFV, Bottari NB, Assmann CE, Nauderer JN, Bissacotti BF, Mostardeiro VB, Stefanello N, Baldissarelli J, Palma TV, Morsch VMM, Schetinger MRC. Neuromodulatory effect of the combination of metformin and vitamin D 3 triggered by purinergic signaling in type 1 diabetes induced-rats. Mol Cell Endocrinol 2023; 563:111852. [PMID: 36657632 DOI: 10.1016/j.mce.2023.111852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Several studies have indicated the vitamin D deficiency in the development of macro- and microvascular complications of diabetes mellitus (DM) including DM-related cognitive dysfunction. The purinergic system plays an important role in the modulation of a variety of mechanisms, including neuroinflammation, plasticity, and cell-cell communication. In addition, purines, their receptors, and enzymes can regulate the purinergic axis at different levels in type 1 DM (T1DM). This study evaluated the effects of vitamin D3 alone or in combination with metformin in the behavioral performance of streptozotocin-induced T1DM rats. The effects of this combination on the metabolism of ATP and ADP were also studied by NTPDase (CD39), AMP by 5'-nucleotidase (CD73), and adenosine by adenosine deaminase (E-ADA) in the brain and peripheral lymphocytes of type 1 diabetic STZ-induced rats. The results showed that anxiety and memory loss from the DM condition reverted after 30 days of vitamin D3 treatment. Furthermore, the DM state affected systemic enzymes, with no effect on the central enzymes hydrolyzing extracellular nucleotides and nucleosides. Vitamin D3 treatment positively regulated ectonucleotidase (NTPDase and 5'-nucleotidase) activity, E-ADA, and the purinergic receptors as a mechanism to prevent oxidative damage in the cerebral cortex of T1DM rats. A neuroprotector effect of vitamin D3 through adenosine signaling was also observed, by regulating A1 and A2A receptors proteins levels. The present findings suggest that purinergic signaling through vitamin D3 modulation may be a novel alternative strategy for T1DM treatment, and may compensate for the negative changes in the central nervous system.
Collapse
Affiliation(s)
- Aline da Silva Pereira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Vanessa Valéria Miron
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Milagros Fanny Vera Castro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Nathieli Bianchin Bottari
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jelson Norberto Nauderer
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Bianca Fagan Bissacotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vitor Bastianello Mostardeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Naiara Stefanello
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jucimara Baldissarelli
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Taís Vidal Palma
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
11
|
Wada T, Miyazawa Y, Ikurumi M, Fuse K, Okekawa A, Onogi Y, Saito S, Tsuneki H, Sasaoka T. A transdermal treatment with MC903 ameliorates diet-induced obesity by reducing visceral fat and increasing myofiber thickness and energy consumption in mice. Nutr Metab (Lond) 2023; 20:10. [PMID: 36774476 PMCID: PMC9921322 DOI: 10.1186/s12986-023-00732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
AIM MC903 is a synthetic derivative of vitamin D3 that has been designed to diminish its impact on calcium metabolism and is clinically used as a transdermal reagent for psoriasis. Animal studies showed that an oral or intraperitoneal vitamin D3 treatment prevented the development of obesity. In contrast, the bioavailability of orally administered vitamin D3 is reported to be low in obese patients. In the current study, we aimed to investigate the impact of a transdermal treatment with MC903 in established obese mice. We further studied the underlying mechanisms of MC903-mediated metabolic improvement. MATERIALS AND METHODS Male C57BL/6 J mice were fed standard chow or a 60% high-fat diet (HFD) for 7 weeks, and a transdermal treatment with MC903 on the ear auricle was initiated thereafter. The metabolic profiles of mice were analyzed during 4 weeks of treatment, and mice were dissected for histological and gene expression analyses. The direct impacts of MC903 and vitamin D3 were investigated using 3T3-L1 adipocytes and C2C12 myotubes in vitro. RESULTS HFD-fed mice showed significant increases in body and epididymal white adipose tissue (eWAT) weights with enlarged adipocytes. They exhibited glucose intolerance, decreased oxygen consumption, and chronic inflammation in eWAT. The transdermal treatment with MC903 significantly ameliorated these metabolic abnormalities in HFD-fed mice without affecting food consumption. In accordance with enhanced energy metabolism, myofiber diameters and the expression of uncoupling protein 3 (UCP3) in the gastrocnemius and soleus muscle were significantly increased in MC903-treated HFD mice. In addition, vitamin D3 and MC903 both suppressed adipogenic differentiation and enhanced lipolysis in 3T3-L1 adipocytes, and increased UCP3 expression in cultured C2C12 myotubes. Furthermore, MC903 increased oxygen consumption and UCP3 knockdown significantly decreased them in C2C12 myotubes. CONCLUSIONS A transdermal treatment with MC903 increased myofiber diameter and energy metabolism and decreased visceral fat accumulation, thereby improving obesity and glucose intolerance in mice.
Collapse
Affiliation(s)
- Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Yuichiro Miyazawa
- grid.267346.20000 0001 2171 836XDepartment of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Misa Ikurumi
- grid.267346.20000 0001 2171 836XDepartment of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Kento Fuse
- grid.267346.20000 0001 2171 836XDepartment of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Akira Okekawa
- grid.267346.20000 0001 2171 836XDepartment of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Yasuhiro Onogi
- grid.267346.20000 0001 2171 836XDepartment of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan ,grid.267346.20000 0001 2171 836XResearch Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| | - Shigeru Saito
- grid.267346.20000 0001 2171 836XDepartment of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Hiroshi Tsuneki
- grid.267346.20000 0001 2171 836XDepartment of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan ,grid.267346.20000 0001 2171 836XDepartment of Integrative Pharmacology, University of Toyama, Toyama, Japan
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
12
|
Vitamin D, Gut Microbiota, and Cardiometabolic Diseases-A Possible Three-Way Axis. Int J Mol Sci 2023; 24:ijms24020940. [PMID: 36674452 PMCID: PMC9866669 DOI: 10.3390/ijms24020940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023] Open
Abstract
Metabolic syndrome (MetSyn) is a precursor for several cardiometabolic diseases such as obesity, type-2 diabetes mellitus (T2DM), and cardiovascular diseases. Emerging evidence suggests that vitamin D deficiency links to cardiometabolic diseases through microbiota. A combination of poor vitamin D status and dysbiosis may contribute to the progression of cardiometabolic diseases. Therefore, in this review, we present the relationship among vitamin D, microbiota, and cardiometabolic diseases with a focus on MetSyn. We searched major databases for reports on vitamin D, microbiota, and MetSyn until June 2022. We reviewed 13 reports on the relation between vitamin D and MetSyn (6 randomized controlled and 7 cross-sectional studies) and 6 reports on the effect of vitamin D on the gut microbiome. Adequate vitamin D status has a beneficial effect on gut microbiota, therefore preventing the progression of MetSyn. Further, well-controlled studies are needed for a better understanding of the mechanisms of action involving vitamin D and microbiota in the pathogenesis of cardiometabolic diseases.
Collapse
|
13
|
Hao N, Zhou Z, Zhang F, Li Y, Hu R, Zou J, Zheng R, Wang L, Xu L, Tan W, Li C, Wang F. Interleukin-29 Accelerates Vascular Calcification via JAK2/STAT3/BMP2 Signaling. J Am Heart Assoc 2022; 12:e027222. [PMID: 36537334 PMCID: PMC9973608 DOI: 10.1161/jaha.122.027222] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Vascular calcification (VC), associated with enhanced cardiovascular morbidity and mortality, is characterized by the osteogenic transdifferentiation of vascular smooth muscle cells. Inflammation promotes VC initiation and progression. Interleukin (IL)-29, a newly discovered member of type III interferon, has recently been implicated in the pathogenesis of autoimmune diseases. Here we evaluated the role of IL-29 in the VC process and underlying inflammatory mechanisms. Methods and Results The mRNA expression of IL-29 was significantly increased and positively associated with an increase in BMP2 (bone morphogenetic protein 2) mRNA level in calcified carotid arteries from patients with coronary artery disease or chronic kidney disease. IL-29 and BMP2 proteins are colocalized in human calcified arteries. IL-29 binding to its specific receptor IL-28Rα (IL-28 receptor α) (IL-29/IL-28Rα) inhibited the proliferation of rat vascular smooth muscle cells without altering cell apoptosis or migration. IL-29 promoted the calcification of rat vascular smooth muscle cells and their osteogenic transdifferentiation in vitro as well as the rat aortic ring calcification ex vivo, induced by the calcification medium or osteogenic medium. The procalcification effect of IL-29 was reduced by pharmacological inhibition of IL-29/IL-28Rα binding as well as suppression of janus kinase 2/signal transducer and activator of transcription pathway activation, accompanied by decreased BMP2 expression in the cultured rat vascular smooth muscle cells. Conclusions These results suggest an important role of IL-29 in VC development, at least partly, via activating the janus kinase 2/signal transducer and activator of transcription 3 signaling. Inhibition of IL-29 or its specific receptor, IL-28Rα, may provide a novel strategy to reduce VC in patients with vascular diseases.
Collapse
Affiliation(s)
- Nannan Hao
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Zihao Zhou
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Feifei Zhang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Yong Li
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Rui Hu
- Department of Vascular SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Junjie Zou
- Department of Vascular SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Rui Zheng
- Department of Cardiovascular SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Lei Wang
- Department of RheumatologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Lingxiao Xu
- Department of RheumatologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Wenfeng Tan
- Department of RheumatologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Chunjian Li
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Fang Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
14
|
Muraro EN, Sbardelotto BM, Guareschi ZM, de Almeida W, Souza Dos Santos A, Grassiolli S, Centenaro LA. Vitamin D supplementation combined with aerobic physical exercise restores the cell density in hypothalamic nuclei of rats exposed to monosodium glutamate. Clin Nutr ESPEN 2022; 52:20-27. [PMID: 36513455 DOI: 10.1016/j.clnesp.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS In view of the increase in the prevalence of obesity and metabolic syndrome in childhood and adolescence, this study proposed the early and combined use of treatments to restore brain areas related to satiety. The vitamin D supplementation, aerobic exercise and the combination of these interventions on the structure of arcuate (ARC) and ventromedial (VMH) nuclei of hypothalamus were investigated in monosodium glutamate (MSG)-treated rats. METHODS Wistar rats were separated into five groups: Control group (CT); Obese group injected with MSG (OB); Obese group supplemented with vitamin D (OBvd); Obese group submitted to forced swimming training (OBexe) and Obese group treated with vitamin D supplementation and forced swimming training (OBvd + exe). RESULTS In the OB group, the visceral fat weight was significantly higher, there was a reduction in the number of glial cells in the ARC nucleus and also in the number of neurons in the ARC and VMH nuclei. Aerobic exercise was able to reduce the visceral fat weight in the OBexe group. The combination of treatments used in the OBvd + exe group reversed the loss of neurons and glial cells produced by MSG in the ARC nucleus. All treated groups exhibited a higher number of neurons in VMH nucleus, but an increase in the glial cells were observed only in the OBexe and OBvd + exe groups. CONCLUSIONS The effectiveness of obesity treatment can be favored through the early and combined use of vitamin D supplementation and aerobic exercise, since these therapies are able to restore brain nuclei involved in the control of food intake.
Collapse
Affiliation(s)
- Eduardo Natan Muraro
- Laboratório de Morfologia Experimental, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 1619, Cascavel, Paraná, CEP: 85819-110, Brazil.
| | - Bruno Marques Sbardelotto
- Laboratório de Morfologia Experimental, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 1619, Cascavel, Paraná, CEP: 85819-110, Brazil.
| | - Zoé Maria Guareschi
- Laboratório de Fisiologia Endócrina e Metabólica, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária, 1619, Cascavel, Paraná, CEP: 85819-110, Brazil.
| | - Wellington de Almeida
- Laboratório de Morfologia Experimental, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 1619, Cascavel, Paraná, CEP: 85819-110, Brazil.
| | - Adriana Souza Dos Santos
- Laboratório de Morfologia Experimental, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 1619, Cascavel, Paraná, CEP: 85819-110, Brazil.
| | - Sabrina Grassiolli
- Laboratório de Fisiologia Endócrina e Metabólica, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária, 1619, Cascavel, Paraná, CEP: 85819-110, Brazil.
| | - Lígia Aline Centenaro
- Laboratório de Morfologia Experimental, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 1619, Cascavel, Paraná, CEP: 85819-110, Brazil.
| |
Collapse
|
15
|
Cordeiro A, Pereira SE, Saboya CJ, Ramalho A. Vitamin D Supplementation and Its Relationship with Loss of Visceral Adiposity. Obes Surg 2022; 32:3419-3425. [PMID: 35953634 DOI: 10.1007/s11695-022-06239-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE An inverse relationship between vitamin D (VD) nutritional status and obesity is frequent, and the distribution of body fat is an important aspect to assess the risks of obesity-related metabolic dysfunction. The purpose of the study was to evaluate the relationship between serum VD concentrations and body fat reduction after 12 months of bariatric surgery, using two different vitamin D3 (VD3) supplementation protocols. MATERIAL AND METHODS A randomized controlled trial consisted of 41 patients divided into G1 (800 IU/day) and G2 (1800 IU/day) according to the VD3 supplementation. At baseline (T0) and follow-up (T1), 25(OH)D, waist circumference (WC), visceral adiposity index (VAI), body adiposity index (BAI), and waist/height ratio (WHtR) were evaluated. RESULTS In T0, the mean of 25(OH)D was lower in G2 compared to that in G1 (22.6 vs 23.6 ng/mL; p = 0.000). At T1, it had a significant increase in G2 (32.1 vs 29.9 ng/mL; p = 0.000), with 60% sufficiency. A significant negative correlation was observed between VAI, BAI, and WHtR with 25(OH)D in G2 (r = - 0.746, p = 0.024; r = - 0.411, p = 0.036; r = - 0.441, p = 0.032) after surgery. Higher mean changes from baseline of visceral fat loss, represented by VAI, were observed in G2 (176.2 ± 149.0-75.5 ± 55.0, p = 0.000). CONCLUSION Patients submitted to the 1800 IU/day protocol, 12 months after the surgical procedure, had a higher percentage of sufficient vitamin D levels compared to those submitted to the 800 IU/day protocol. Additionally, higher dose supplementation promoted a significant improvement in VAI.
Collapse
Affiliation(s)
- Adryana Cordeiro
- Center for Research On Micronutrients, Federal University of Rio de Janeiro (NPqM/UFRJ), Rio de Janeiro, 21941-902, Brazil.
| | - Silvia Elaine Pereira
- Center for Research On Micronutrients, Federal University of Rio de Janeiro (NPqM/UFRJ), Rio de Janeiro, 21941-902, Brazil
- Multidisciplinary Center for Bariatric and Metabolic Surgery, Rio de Janeiro, 22280-020, Brazil
| | - Carlos José Saboya
- Multidisciplinary Center for Bariatric and Metabolic Surgery, Rio de Janeiro, 22280-020, Brazil
| | - Andrea Ramalho
- Center for Research On Micronutrients, Federal University of Rio de Janeiro (NPqM/UFRJ), Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
16
|
El Amrousy D, Abdelhai D, Shawky D. Vitamin D and nonalcoholic fatty liver disease in children: a randomized controlled clinical trial. Eur J Pediatr 2022; 181:579-586. [PMID: 34459959 DOI: 10.1007/s00431-021-04243-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023]
Abstract
Vitamin D is reported to have anti-inflammatory and insulin-sensitizing effects, yet vitamin D effects on hepatic fat content in children with nonalcoholic fatty liver disease (NAFLD) are not studied sufficiently. We aimed to evaluate the role of vitamin D supplementation on the hepatic fat content and NAFLD progression in children. This randomized controlled clinical trial was performed on 109 children with biopsy-proven NAFLD; only 100 patients completed the study. Patients were randomly assigned into two groups: the treatment group who received 2000 IU/day vitamin D for 6 months and the control group who received a placebo. Anthropometric measurements, vitamin D levels, aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC), serum triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), fasting blood glucose (FBG), fasting blood insulin level (FBI), homeostasis model assessment of insulin resistance (HOMA-IR), and serum calcium level were measured at the beginning and the end of the study. Liver biopsy was taken before and at the end of the study for all included children. There was a significant improvement of the hepatic steatosis and lobular inflammation by liver biopsy in the treatment group after treatment. However, there was no significant effect on the hepatocyte ballooning or hepatic fibrosis. There were significant decrease of AST, ALT, TG, LDL, FBG, FBI, and HOMA-IR and significant increase of vitamin D levels and HDL in the treatment group compared to the placebo group (P < 0.05).Conclusion: Vitamin D supplementation was found to be beneficial in the treatment of NAFLD in children.Trial registration: www.pactr.org , PACTR201710002634203. What is Known: • Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease in pediatrics. • Several studies reported a negative association between low serum vitamin D level and grades of NAFLD. What is New: • Vitamin D supplementation has significantly decreased hepatic steatosis and lobular inflammation and improved the grades of NAFLD in children, confirmed by liver biopsy, but no effect on hepatocyte ballooning or fibrosis was observed. • Adjuvant vitamin D supplementation is recommended in children with NAFLD.
Collapse
Affiliation(s)
- Doaa El Amrousy
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
- Tanta University Hospital, El Motasem Street No. 6, Tanta, Egypt.
| | - Dina Abdelhai
- Tanta University Hospital, El Motasem Street No. 6, Tanta, Egypt
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina Shawky
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Tanta University Hospital, El Motasem Street No. 6, Tanta, Egypt
| |
Collapse
|
17
|
Beck J, da Silva Teixeira S, Harrison K, Phillips G, He Y, Sisley S. Paraventricular Vitamin D Receptors Are Required for Glucose Tolerance in Males but Not Females. Front Endocrinol (Lausanne) 2022; 13:869678. [PMID: 35620386 PMCID: PMC9128386 DOI: 10.3389/fendo.2022.869678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
Abstract
When delivered directly into the brain, vitamin D, can improve glucose levels in male mice. Additionally, the loss of the vitamin D receptor (VDR) in male mice's paraventricular hypothalamus (PVH) results in impaired glucose tolerance. Data in humans shows that low vitamin D levels are detrimental to glucose homeostasis, an effect that may be more prominent in men. However, it is unknown if vitamin D action in the brain is required for normal glucose regulation in female mice. This study shows that in both viral and genetic models, male mice with obesity and PVH VDR loss have impaired glucose tolerance while female mice are unaffected. Weights were unaltered in both sexes by PVH VDR loss. Additionally, PVH VDR loss did not cause any glucose abnormalities in either sex when the mice were on a chow diet. Utilizing electrophysiology studies, we show PVH VDR loss resulted in decreased baseline firing frequency and resting membrane potential in males, but not females. Additionally, male mice with PVH VDR loss had impaired miniature excitatory postsynaptic currents (mEPSC), while females were unaffected. Interestingly, the PVH neurons of both sexes were activated by exogenous vitamin D (1,25-dihydroxyvitamin D3), an effect dependent upon the VDR. Thus, there is sexual dimorphism, for the actions of the PVH VDR on glucose regulation. PVH VDRs are necessary for normal glucose homeostasis in males but not females and this may be secondary to actions of the VDR on neuronal activity.
Collapse
Affiliation(s)
- Jessie Beck
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Children’s Nutrition Research Center, Houston, TX, United States
| | - Silvania da Silva Teixeira
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Children’s Nutrition Research Center, Houston, TX, United States
| | - Keisha Harrison
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Children’s Nutrition Research Center, Houston, TX, United States
| | - Gabrielle Phillips
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Children’s Nutrition Research Center, Houston, TX, United States
| | - Yanlin He
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Children’s Nutrition Research Center, Houston, TX, United States
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, United States
| | - Stephanie Sisley
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Children’s Nutrition Research Center, Houston, TX, United States
- *Correspondence: Stephanie Sisley,
| |
Collapse
|
18
|
Effects of active vitamin D on insulin resistance and islet β-cell function in non-diabetic chronic kidney disease patients: a randomized controlled study. Int Urol Nephrol 2021; 54:1725-1732. [PMID: 34807347 PMCID: PMC9184423 DOI: 10.1007/s11255-021-02968-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/25/2021] [Indexed: 11/25/2022]
Abstract
Purpose The purpose of the study is to observe the effects of active vitamin D supplementation on insulin resistance and islet β-cell function (HOMA-β) in patients with non-diabetic chronic kidney disease (NDCKD). Methods A total of 134 patients with NDCKD who met the inclusion criteria were enrolled in the prospective controlled study and categorized as such: 60 patients in the non-dialysis (ND) group; 36, hemodialysis (HD) group; and 38, peritoneal dialysis (PD) group. Each group was divided into two equal-numbered subgroups for vitamin D supplementation. Those in the experimental subgroups received calcitriol 0.5 ug/day orally, and were followed-up for 6 months. A total of 117 patients were followed-up, including 57 patients in the ND group; 29, HD group; and 31, PD group. Changes in the insulin resistance index (HOMA-IR) and HOMA-β index were calculated and compared at the time of enrollment and after 1, 3, and 6 months of intervention. Results (1) Mean HOMA-IR value: In the ND group, mean HOMA-IR value of the experimental group significantly decreased compared with that of the control group after 3 months of intervention (P = 0.02). In the HD and PD groups, there was no statistical difference between the experimental and control groups (P > 0.05). (2) Mean HOMA-β index: In the ND group, mean HOMA-β index of the experimental group was higher than that of the control group after 1 month of active vitamin D treatment (P = 0.03), and, with an extended intervention time, the index gradually increased (P < 0.001). In the HD group, mean HOMA-β index of the experimental group was higher than that of the control group after 3 months of active vitamin D treatment (P = 0.01). Among PD patients, mean HOMA-β index of the patients in the experimental group was higher than that of the control group after 6 months of active vitamin D treatment (P = 0.02). Conclusions Active vitamin D supplementation improved insulin resistance and HOMA-β after 6 months in ND patients, but only improved HOMA-β in the dialysis patients, with no significant effect on insulin resistance.
Collapse
|
19
|
He Y, Yang X, Li M, Zhang A, Sun N. Vitamin D supplementation and energy and metabolic homoeostasis in obese and overweight subjects: a protocol for a systematic review. BMJ Open 2021; 11:e051230. [PMID: 34593501 PMCID: PMC8487182 DOI: 10.1136/bmjopen-2021-051230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Obesity and vitamin D deficiency are major public health problems. According to the pathophysiological mechanism of obesity as well as the bidirectional relationship between obesity and vitamin D metabolism and storage, vitamin D supplementation in obese and overweight subjects could have beneficial effects on the energy and metabolic homoeostasis. This review will assess the efficacy of vitamin D supplementation on the energy and metabolic homoeostasis in overweight and obese subjects. METHODS AND ANALYSIS In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols, we retrieved the relevant literature from the following electronic bibliographic databases: MEDLINE/PubMed, EMBASE and the Cochrane Central Register of Controlled Trials, from inception to June 2021. A manual search of the reference lists of all the relevant research articles will be performed to identify additional studies. We will include randomised controlled trials (RCTs) published in English that examine the effects of vitamin D supplementation on energy and metabolic homoeostasis in overweight and obese subjects. RCTs with multiple vitamin D groups will also be included. Two reviewers will independently complete the article selection, data extraction and rating. The bias tool from the Cochrane Handbook for Systematic Reviews of Interventions was used to assess the methodological quality of the included studies. A narrative or quantitative synthesis will be performed based on the available data. The planned start and end dates for the study were 1 February 2021 and 1 March 2022. ETHICS AND DISSEMINATION Ethical approval will not be required for this review. The results of this review will be disseminated in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42021228981.
Collapse
Affiliation(s)
- Yu He
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiao Yang
- Department of Rehabilitation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Li
- Department of Rehabilitation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nianyi Sun
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Rehabilitation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Chang Villacreses MM, Karnchanasorn R, Panjawatanan P, Ou HY, Chiu KC. Conundrum of vitamin D on glucose and fuel homeostasis. World J Diabetes 2021; 12:1363-1385. [PMID: 34630895 PMCID: PMC8472505 DOI: 10.4239/wjd.v12.i9.1363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/10/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
As an endocrine hormone, vitamin D plays an important role in bone health and calcium homeostasis. Over the past two decades, the non-calcemic effects of vitamin D were extensively examined. Although the effect of vitamin D on beta cell function were known for some time, the effect of vitamin D on glucose and fuel homeostasis has attracted new interest among researchers. Yet, to date, studies remain inconclusive and controversial, in part, due to a lack of understanding of the threshold effects of vitamin D. In this review, a critical examination of interventional trials of vitamin D in prevention of diabetes is provided. Like use of vitamin D for bone loss, the benefits of vitamin D supplementation in diabetes prevention were observed in vitamin D-deficient subjects with serum 25-hydroxyvitamin D < 50 nmol/L (20 ng/mL). The beneficial effect from vitamin D supplementation was not apparent in subjects with serum 25-hydroxyvitamin D > 75 nmol/L (30 ng/mL). Furthermore, no benefit was noted in subjects that achieved serum 25-hydroxyvitamin D > 100 nmol/L (40 ng/mL). Further studies are required to confirm these observations.
Collapse
Affiliation(s)
- Maria Mercedes Chang Villacreses
- Department of Clinical Diabetes, Endocrinology, and Metabolism, City of Hope National Medical Center, Duarte, CA 91010, United States
- Division of Endocrinology, Metabolism and Nutrition, Department of Internal Medicine, Harbor-UCLA Medical Center, Torrance, CA 90509, United States
| | - Rudruidee Karnchanasorn
- Division of Endocrinology, Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Panadeekarn Panjawatanan
- Department of Clinical Diabetes, Endocrinology, and Metabolism, City of Hope National Medical Center, Duarte, CA 91010, United States
- Department of Internal Medicine, Bassett Medical Center, Cooperstown, NY 13326, United States
| | - Horng-Yih Ou
- Department of Internal Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 700, Taiwan
| | - Ken C Chiu
- Department of Clinical Diabetes, Endocrinology, and Metabolism, City of Hope National Medical Center, Duarte, CA 91010, United States
- Division of Endocrinology, Metabolism and Nutrition, Department of Internal Medicine, Harbor-UCLA Medical Center, Torrance, CA 90509, United States
| |
Collapse
|
21
|
Abed MN, Alassaf FA, Qazzaz ME, Alfahad M, Jasim MHM. Insights into the Perspective Correlation Between Vitamin D and Regulation of Hormones: Thyroid and Parathyroid Hormones. Clin Rev Bone Miner Metab 2021. [DOI: 10.1007/s12018-021-09279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Huang K, Deng J, Yang Y, Qiao N, Zhang Z, Li Q, Han Q, Zhang H, Yang F, Ji Y, Cui J, Ali F, Li Y, Tang Z. Effects of 25(OH)D 3 supplementation during late gestation on the serum biochemistry and reproductive performance of aged sows and newborn piglets. J Anim Physiol Anim Nutr (Berl) 2021; 105:908-915. [PMID: 33713505 DOI: 10.1111/jpn.13530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 12/20/2020] [Accepted: 02/15/2021] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to investigate the effects of diet type (normal or low Ca and P diets) and 25(OH)D3 supplementation (with or with not 2000 IU/kg 25(OH)D3 ) during late gestation on the serum biochemistry and reproductive performance of aged sows and newborn piglets. A total of 40 sows, which are at their 7th parity, were divided into four groups: control group (standard diet), low Ca group, 25(OH)D3 group and low Ca plus 25(OH)D3 group respectively (10 in each group). The blood of sows on day 100 and 114 of gestation and newborn piglets was collected for serum biochemical analyses. Results showed that the reproductive performance of sows was not influenced by diet type or 25(OH)D3 supplementation (p > 0.05). And the addition of 25(OH)D3 to diet low Ca group caused that the content of serum TG in sows on day 100 of gestation was not different from that of the control group (p > 0.05). The addition of 25(OH)D3 significantly decreases the content of serum TG in sows on day 114 of gestation (p < 0.05). The addition of 25(OH)D3 significantly increased the content of serum UREA and CREA in newborn piglets (p < 0.05). Overall, feeding 2000 IU/kg 25(OH)D3 to aged sows at late gestation had no effects on reproductive performance, but partly contributed to keeping serum TG balance in sows and may indicate increased pressure on kidneys in newborn piglets.
Collapse
Affiliation(s)
- Kunxuan Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jichang Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yanyang Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Na Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhuowei Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fan Yang
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yanju Ji
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianxin Cui
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Farah Ali
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Hou YF, Shan C, Zhuang SY, Zhuang QQ, Ghosh A, Zhu KC, Kong XK, Wang SM, Gong YL, Yang YY, Tao B, Sun LH, Zhao HY, Guo XZ, Wang WQ, Ning G, Gu YY, Li ST, Liu JM. Gut microbiota-derived propionate mediates the neuroprotective effect of osteocalcin in a mouse model of Parkinson's disease. MICROBIOME 2021; 9:34. [PMID: 33517890 PMCID: PMC7849090 DOI: 10.1186/s40168-020-00988-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/29/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder with no absolute cure. The evidence of the involvement of gut microbiota in PD pathogenesis suggests the need to identify certain molecule(s) derived from the gut microbiota, which has the potential to manage PD. Osteocalcin (OCN), an osteoblast-secreted protein, has been shown to modulate brain function. Thus, it is of interest to investigate whether OCN could exert protective effect on PD and, if yes, whether the underlying mechanism lies in the subsequent changes in gut microbiota. RESULTS The intraperitoneal injection of OCN can effectively ameliorate the motor deficits and dopaminergic neuronal loss in a 6-hydroxydopamine-induced PD mouse model. The further antibiotics treatment and fecal microbiota transplantation experiments confirmed that the gut microbiota was required for OCN-induced protection in PD mice. OCN elevated Bacteroidetes and depleted Firmicutes phyla in the gut microbiota of PD mice with elevated potential of microbial propionate production and was confirmed by fecal propionate levels. Two months of orally administered propionate successfully rescued motor deficits and dopaminergic neuronal loss in PD mice. Furthermore, AR420626, the agonist of FFAR3, which is the receptor of propionate, mimicked the neuroprotective effects of propionate and the ablation of enteric neurons blocked the prevention of dopaminergic neuronal loss by propionate in PD mice. CONCLUSIONS Together, our results demonstrate that OCN ameliorates motor deficits and dopaminergic neuronal loss in PD mice, modulating gut microbiome and increasing propionate level might be an underlying mechanism responsible for the neuroprotective effects of OCN on PD, and the FFAR3, expressed in enteric nervous system, might be the main action site of propionate. Video abstract.
Collapse
Affiliation(s)
- Yan-Fang Hou
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Chang Shan
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Si-Yue Zhuang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian-Qian Zhuang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Arijit Ghosh
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ke-Cheng Zhu
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Xiao-Ke Kong
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Shu-Min Wang
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Yan-Ling Gong
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Ying Yang
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Bei Tao
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Li-Hao Sun
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Hong-Yan Zhao
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Xing-Zhi Guo
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Wei-Qing Wang
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Yan-Yun Gu
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China.
| | - Sheng-Tian Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China.
| |
Collapse
|
24
|
Chaudhari SN, Luo JN, Harris DA, Aliakbarian H, Yao L, Paik D, Subramaniam R, Adhikari AA, Vernon AH, Kiliç A, Weiss ST, Huh JR, Sheu EG, Devlin AS. A microbial metabolite remodels the gut-liver axis following bariatric surgery. Cell Host Microbe 2021; 29:408-424.e7. [PMID: 33434516 DOI: 10.1016/j.chom.2020.12.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/15/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Bariatric surgery is the most effective treatment for type 2 diabetes and is associated with changes in gut metabolites. Previous work uncovered a gut-restricted TGR5 agonist with anti-diabetic properties-cholic acid-7-sulfate (CA7S)-that is elevated following sleeve gastrectomy (SG). Here, we elucidate a microbiome-dependent pathway by which SG increases CA7S production. We show that a microbial metabolite, lithocholic acid (LCA), is increased in murine portal veins post-SG and by activating the vitamin D receptor, induces hepatic mSult2A1/hSULT2A expression to drive CA7S production. An SG-induced shift in the microbiome increases gut expression of the bile acid transporters Asbt and Ostα, which in turn facilitate selective transport of LCA across the gut epithelium. Cecal microbiota transplant from SG animals is sufficient to recreate the pathway in germ-free (GF) animals. Activation of this gut-liver pathway leads to CA7S synthesis and GLP-1 secretion, causally connecting a microbial metabolite with the improvement of diabetic phenotypes.
Collapse
Affiliation(s)
- Snehal N Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - James N Luo
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David A Harris
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hassan Aliakbarian
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lina Yao
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Donggi Paik
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Renuka Subramaniam
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Arijit A Adhikari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ashley H Vernon
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ayse Kiliç
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Program in Molecular Integrative Physiological Sciences, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Eric G Sheu
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Liu H, He Y, Beck J, da Silva Teixeira S, Harrison K, Xu Y, Sisley S. Defining vitamin D receptor expression in the brain using a novel VDR Cre mouse. J Comp Neurol 2021; 529:2362-2375. [PMID: 33368246 DOI: 10.1002/cne.25100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Vitamin D action has been linked to several diseases regulated by the brain including obesity, diabetes, autism, and Parkinson's. However, the location of the vitamin D receptor (VDR) in the brain is not clear due to conflicting reports. We found that two antibodies previously published as specific in peripheral tissues are not specific in the brain. We thus created a new knockin mouse with cre recombinase expression under the control of the endogenous VDR promoter (VDRCre ). We demonstrated that the cre activity in the VDRCre mouse brain (as reported by a cre-dependent tdTomato expression) is highly overlapping with endogenous VDR mRNAs. These VDR-expressing cells were enriched in multiple brain regions including the cortex, amygdala, caudate putamen, and hypothalamus among others. In the hypothalamus, VDR partially colocalized with vasopressin, oxytocin, estrogen receptor-α, and β-endorphin to various degrees. We further functionally validated our model by demonstrating that the endogenous VDR agonist 1,25-dihydroxyvitamin D activated all tested tdTomato+ neurons in the paraventricular hypothalamus but had no effect on neurons without tdTomato fluorescence. Thus, we have generated a new mouse tool that allows us to visualize VDR-expressing cells and to characterize their functions.
Collapse
Affiliation(s)
- Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yang He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Jessie Beck
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Silvania da Silva Teixeira
- Department of Pediatrics, Section of Nutrition, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Keisha Harrison
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Stephanie Sisley
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
26
|
Klahold E, Penna-Martinez M, Bruns F, Seidl C, Wicker S, Badenhoop K. Vitamin D in Type 2 Diabetes: Genetic Susceptibility and the Response to Supplementation. Horm Metab Res 2020; 52:492-499. [PMID: 32542627 PMCID: PMC7746514 DOI: 10.1055/a-1157-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Variants of vitamin D metabolism-genes may predispose to type 2 diabetes (T2D). This study investigated the impact of these variants on disease susceptibility, Vitamin D, parathyroid hormone, C-peptide and HbA1c levels before and after cholecalciferol supplementation in patients with T2D.Twelve polymorphisms within CYP2R1, CYP27B1, DBP, VDR and CYP24A1 were genotyped in 553 T2D patients and 916 controls. In addition 65 patients receiving either cholecalciferol or placebo were analyzed during 6 months intervention and 6 months follow-up.T2D risk alleles are VDR rs7975232 "G" (pc=0.031), rs1544410 "G" (pc=0.027) and CYP2R1 rs10741657 "A" (pc=0.016). Patients with genotypes CYP27B1 rs10877012 "CC" (pc=4x10-5), DBP rs7041 "GG" (pc=0.003), rs4588 "CC" (pc = 3x10-4), CYP24A1 rs2585426 "CG" (pc=0.006) and rs2248137 "CG" (pc=0.001) showed lower 25(OH)D3 and DBP rs4588 "CC" lower 1,25(OH)2D3 levels (pc=0.005). Whereas DBP rs4588 "CC" (pc=0.009), CYP27B1 rs10877012 "AC" (pc=0.059), VDR rs7975323 "AG" (pc=0.033) and rs1544410 "GG" (pc=0.013) are associated with higher 25(OH)D3 levels at 6 months' follow-up. Significant PTH suppression was detected for CYP2R1 "AG" (pc=0.002), DBP rs4588 "CC" (pc<0.001), VDR rs110735810 "CT" (pc<0.001) and CYP24A1 rs2248137 "GG" (pc=0.021).Genetic variants of the vitamin D system predispose to type 2 diabetes and regulate - partially - vitamin D metabolism, concentrations and the vitamin D status. Vitamin D insufficiency is a T2D risk factor. The response to cholecalciferol supplementation can be measured as 25(OH)D3 increment and PTH suppression. This process is regulated by genes of the vitamin D system conferring modest T2D risk.
Collapse
Affiliation(s)
- Edith Klahold
- Department of Internal Medicine I, Division of Endocrinology, Diabetes
and Metabolism, Goethe-University Hospital, Frankfurt/Main,
Germany
- Correspondence: Edith Klahold Department of Internal Medicine I, Division of
Endocrinology,Diabetes and Metabolism, Goethe-University HospitalTheodor-Stern-Kai 760590 Frankfurt/MainGermany+49 69 6301 83977+49 69 6301 83343
| | - Marissa Penna-Martinez
- Department of Internal Medicine I, Division of Endocrinology, Diabetes
and Metabolism, Goethe-University Hospital, Frankfurt/Main,
Germany
| | - Franziska Bruns
- Department of Internal Medicine I, Division of Endocrinology, Diabetes
and Metabolism, Goethe-University Hospital, Frankfurt/Main,
Germany
| | - Christian Seidl
- German Red Cross Blood Donor Service, Institute for Transfusion
Medicine and Immunohaematology, Frankfurt/Main, Germany
| | - Sabine Wicker
- Occupational Health Service, Goethe-University Hospital,
Frankfurt/Main, Germany
| | - Klaus Badenhoop
- Department of Internal Medicine I, Division of Endocrinology, Diabetes
and Metabolism, Goethe-University Hospital, Frankfurt/Main,
Germany
| |
Collapse
|
27
|
da Silva Teixeira S, Harrison K, Uzodike M, Rajapakshe K, Coarfa C, He Y, Xu Y, Sisley S. Vitamin D actions in neurons require the PI3K pathway for both enhancing insulin signaling and rapid depolarizing effects. J Steroid Biochem Mol Biol 2020; 200:105690. [PMID: 32408067 PMCID: PMC7397709 DOI: 10.1016/j.jsbmb.2020.105690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/23/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022]
Abstract
Despite correlations between low vitamin D levels and diabetes incidence/severity, supplementation with vitamin D has not been widely effective in improving glucose parameters. This may be due to a lack of knowledge regarding how low vitamin D levels physiologically affect glucose homeostasis. We have previously shown that the brain may be a critical area for vitamin d-mediated action on peripheral glucose levels. However, the mechanisms for how vitamin D acts in the brain are unknown. We utilized a multimodal approach to determine the mechanisms by which vitamin D may act in the brain. We first performed an unbiased search (RNA-sequencing) for pathways affected by vitamin D. Vitamin D (125-dihydroxyvitamin D3; 1,25D3) delivered directly into the third ventricle of obese animals differentially regulated multiple pathways, including the insulin signaling pathway. The insulin signaling pathway includes PI3K, which is important in the brain for glucose regulation. Since others have shown that vitamin D acts through the PI3K pathway in non-neuronal cells (muscle and bone), we hypothesized that vitamin D may act in neurons through a PI3K-dependent pathway. In a hypothalamic cell-culture model (GT1-7 cells), we demonstrate that 1,25D3 increased phosphorylation of Akt in the presence of insulin. However, this was blocked with pre-treatment of wortmannin, a PI3K inhibitor. 1,25D3 increased gene transcription of several genes within the PI3K pathway, including Irs2 and p85, without affecting expression of InsR or Akt. Since we had previously shown that 1,25D3 has significant effects on neuronal function, we also tested if the PI3K pathway could mediate rapid actions of vitamin D. We found that 1,25D3 increased the firing frequency of neurons through a PI3K-dependent mechanism. Collectively, these data support that vitamin D enhances insulin signaling and neuronal excitability through PI3K dependent processes which involve both transcriptional and membrane-initiated signaling events.
Collapse
Affiliation(s)
- Silvania da Silva Teixeira
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Keisha Harrison
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, United States
| | | | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, United States; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, United States; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, United States; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Stephanie Sisley
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, United States.
| |
Collapse
|
28
|
Lu X, Vick S, Chen Z, Chen J, Watsky MA. Effects of Vitamin D Receptor Knockout and Vitamin D Deficiency on Corneal Epithelial Wound Healing and Nerve Density in Diabetic Mice. Diabetes 2020; 69:1042-1051. [PMID: 32139594 PMCID: PMC7171964 DOI: 10.2337/db19-1051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
Diabetic keratopathy occurs in ∼70% of all people with diabetes. This study was designed to examine the effects of vitamin D receptor knockout (VDR-/-) and vitamin D deficiency (VDD) on corneal epithelial wound healing and nerve density in diabetic mice. Diabetes was induced using the low-dose streptozotocin method. Corneal epithelial wounds were created using an Algerbrush, and wound healing was monitored over time. Corneal nerve density was measured in unwounded mice. VDR-/- and VDD diabetic mice (diabetic for 8 and 20 weeks, respectively) had slower healing ratios than wild-type diabetic mice. VDR-/- and VDD diabetic mice also showed significantly decreased nerve density. Reduced wound healing ratios and nerve densities were not fully rescued by a supplemental diet rich in calcium, lactose, and phosphate. We conclude that VDR-/- and VDD significantly reduce both corneal epithelial wound healing and nerve density in diabetic mice. Because the supplemental diet did not rescue wound healing or nerve density, these effects are likely not specifically related to hypocalcemia. This work supports the hypothesis that low vitamin D levels can exacerbate preexisting ophthalmic conditions, such as diabetes.
Collapse
Affiliation(s)
- Xiaowen Lu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA
| | - Sarah Vick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA
| | - Zhong Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jie Chen
- Biostatistics and Data Science, Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA
| | - Mitchell A Watsky
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA
- The Graduate School, Augusta University, Augusta, GA
| |
Collapse
|
29
|
de Oliveira LRC, Mimura LAN, Fraga-Silva TFDC, Ishikawa LLW, Fernandes AAH, Zorzella-Pezavento SFG, Sartori A. Calcitriol Prevents Neuroinflammation and Reduces Blood-Brain Barrier Disruption and Local Macrophage/Microglia Activation. Front Pharmacol 2020; 11:161. [PMID: 32226379 PMCID: PMC7080989 DOI: 10.3389/fphar.2020.00161] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a progressive disease of the central nervous system (CNS) that involves damage to the myelin sheath surrounding axons. MS therapy is based on immunomodulatory drugs that reduce disease recurrence and severity. Vitamin D is a hormone whose immunomodulatory ability has been widely demonstrated, including in experimental autoimmune encephalomyelitis (EAE), which is an animal model of CNS inflammation. In this study, we evaluated the potential of very early intervention with the active form of vitamin D (1,25-dihydroxyvitamin D3) to control neuroinflammation during EAE development. EAE was induced in C57BL/6J mice and 1,25-dihydroxyvitamin D3 administration began 1 day after disease induction. This procedure decreased prevalence, clinical score, inflammation, and demyelination. It also reduced MHCII expression in macrophages and microglia as well as the level of oxidative stress and messenger RNA (mRNA) expression for NLRP3, caspase-1, interleukin (IL)-1β, CX3CR1, CCL17, RORc and Tbx21 at the CNS. Otherwise, mRNA expression for ZO-1 increased at the lumbar spinal cord. These effects were accompanied by the stabilization of blood-spinal cord barrier permeability. The results of this study indicate that early intervention with 1,25-dihydroxyvitamin D3 can control the neuroinflammatory process that is the hallmark of EAE and MS immunopathogenesis and should thus be explored as an adjunct therapy for MS patients.
Collapse
Affiliation(s)
| | - Luiza Ayumi Nishiyama Mimura
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Larissa Lumi Watanabe Ishikawa
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | | | | | - Alexandrina Sartori
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
30
|
Serum Vitamin D Concentration ≥75 nmol/L Is Related to Decreased Cardiometabolic and Inflammatory Biomarkers, Metabolic Syndrome, and Diabetes; and Increased Cardiorespiratory Fitness in US Adults. Nutrients 2020; 12:nu12030730. [PMID: 32164233 PMCID: PMC7146199 DOI: 10.3390/nu12030730] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
A serum vitamin D [25-hydroxyvitamin D, 25(OH)D] concentration of ≥75 nmol/L is recommended for optimal health. We investigated the relationship between serum 25(OH)D and metabolic syndrome (MetS), diabetes, cardiometabolic biomarkers, and cardiorespiratory fitness (CRF) in US adults using clinical cut points recommended by health organizations. Data from USA's National Health and Nutrition Examination Surveys were used. Prevalences and likelihood of having MetS and diabetes according to clinical cut points for serum 25(OH)D (<30 nmol/L, 30-<50 nmol/L, 50-<75 nmo/L, and ≥75 nmol/L) were determined with multivariate logistic regression. Relations between serum 25(OH)D and various cardiometabolic biomarkers, CRF, MetS, and diabetes were tested using multivariable adjusted regression. Prevalence of MetS and diabetes were significantly lower in individuals with serum 25(OH)D ≥75 nmol/L (MetS, 21.6%; diabetes, 4.1%) compared to those with 25(OH)D <30 nmol/L (MetS, 45.5%; diabetes, 11.6%) (p < 0.0001). Individuals with serum 25(OH)D ≥75 nmol/L had significantly lower waist circumference (p < 0.0001), C-reactive protein (p = 0.003), glycated hemoglobin (p < 0.0002), fasting triglycerides (p < 0.0001), total homocysteine (p < 0.0001), and insulin resistance (p = 0.0001) and had significantly higher HDL-cholesterol (p < 0.0001) and maximal oxygen uptake (marker for CRF) (p< 0.0009) compared to those with 25(OH)D <30 nmol/L. In conclusion, serum 25(OH)D ≥75 nmol/L is associated with positive indicators related to cardiometabolic diseases in US adults.
Collapse
|
31
|
Mutt SJ, Raza GS, Mäkinen MJ, Keinänen‐Kiukaanniemi S, Järvelin M, Herzig K. Vitamin D Deficiency Induces Insulin Resistance and Re‐Supplementation Attenuates Hepatic Glucose Output via the PI3K‐AKT‐FOXO1 Mediated Pathway. Mol Nutr Food Res 2020; 64:e1900728. [DOI: 10.1002/mnfr.201900728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/11/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Shivaprakash Jagalur Mutt
- Institute of Biomedicine, Department of PhysiologyUniversity of Oulu 90014 Oulu Finland
- Biocenter of OuluUniversity of Oulu 90014 Oulu Finland
- Medical Research CenterUniversity of Oulu and Oulu University Hospital 90014 Oulu Finland
| | - Ghulam Shere Raza
- Institute of Biomedicine, Department of PhysiologyUniversity of Oulu 90014 Oulu Finland
- Biocenter of OuluUniversity of Oulu 90014 Oulu Finland
| | - Markus J Mäkinen
- Medical Research CenterUniversity of Oulu and Oulu University Hospital 90014 Oulu Finland
- Cancer and Translational Research Unit, Department of PathologyUniversity of Oulu 90014 Oulu Finland
| | - Sirkka Keinänen‐Kiukaanniemi
- Center for Life Course Health Research, Faculty of MedicineUniversity of Oulu 90014 Oulu Finland
- Unit of General Practice and Primary CareOulu University Hospital 90220 Oulu Finland
- Institute of Health SciencesUniversity of Oulu 90014 Oulu Finland
| | - Marjo‐Riitta Järvelin
- Biocenter of OuluUniversity of Oulu 90014 Oulu Finland
- Center for Life Course Health Research, Faculty of MedicineUniversity of Oulu 90014 Oulu Finland
- Institute of Health SciencesUniversity of Oulu 90014 Oulu Finland
- Unit of General Practice and Primary CareOulu University Hospital 90220 Oulu Finland
- Department of Children, Young People and FamiliesNational Institute for Health and Welfare 90101 Oulu Finland
| | - Karl‐Heinz Herzig
- Institute of Biomedicine, Department of PhysiologyUniversity of Oulu 90014 Oulu Finland
- Biocenter of OuluUniversity of Oulu 90014 Oulu Finland
- Medical Research CenterUniversity of Oulu and Oulu University Hospital 90014 Oulu Finland
- Department of Gastroenterology and MetabolismPoznan University of Medical Sciences 61–701 Poznan Poland
| |
Collapse
|
32
|
Zaulkffali AS, Md Razip NN, Syed Alwi SS, Abd Jalil A, Abd Mutalib MS, Gopalsamy B, Chang SK, Zainal Z, Ibrahim NN, Zakaria ZA, Khaza'ai H. Vitamins D and E Stimulate the PI3K-AKT Signalling Pathway in Insulin-Resistant SK-N-SH Neuronal Cells. Nutrients 2019; 11:nu11102525. [PMID: 31635074 PMCID: PMC6836113 DOI: 10.3390/nu11102525] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/27/2019] [Indexed: 01/06/2023] Open
Abstract
This study investigated the effects of vitamins D and E on an insulin-resistant model and hypothesized that this treatment would reverse the effects of Alzheimer’s disease (AD) and improves insulin signalling. An insulin-resistant model was induced in SK-N-SH neuronal cells with a treatment of 250 nM insulin and re-challenged with 100 nM at two different incubation time (16 h and 24 h). The effects of vitamin D (10 and 20 ng/mL), vitamin E in the form of tocotrienol-rich fraction (TRF) (200 ng/mL) and the combination of vitamins D and E on insulin signalling markers (IR, PI3K, GLUT3, GLUT4, and p-AKT), glucose uptake and AD markers (GSK3β and TAU) were determined using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The results demonstrated an improvement of the insulin signalling pathway upon treatment with vitamin D alone, with significant increases in IR, PI3K, GLUT3, GLUT4 expression levels, as well as AKT phosphorylation and glucose uptake, while GSK3β and TAU expression levels was decreased significantly. On the contrary, vitamin E alone, increased p-AKT, reduced the ROS as well as GSK3β and TAU but had no effect on the insulin signalling expression levels. The combination of vitamins D and E only showed significant increase in GLUT4, p-AKT, reduced ROS as well as GSK3β and TAU. Thus, the universal role of vitamin D, E alone and in combinations could be the potential nutritional agents in restoring the sensitivity of neuronal cells towards insulin and delaying the pathophysiological progression of AD.
Collapse
Affiliation(s)
- Amirah Salwani Zaulkffali
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Nurliyana Najwa Md Razip
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Sharifah Sakinah Syed Alwi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Afifah Abd Jalil
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Mohd Sokhini Abd Mutalib
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Banulata Gopalsamy
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Sui Kiat Chang
- Department of Nutrition and Dietetics, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Zaida Zainal
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, Bandar Baru Bangi 43000, Malaysia.
| | - Nafissa Nadia Ibrahim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Huzwah Khaza'ai
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| |
Collapse
|
33
|
Hyppönen E, Boucher BJ. Adiposity, vitamin D requirements, and clinical implications for obesity-related metabolic abnormalities. Nutr Rev 2018; 76:678-692. [DOI: 10.1093/nutrit/nuy034] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Elina Hyppönen
- Australian Centre for Population Health Research, Sansom Institute for Health Research, University of South Australia, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Barbara J Boucher
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
34
|
Harrison K, Sisley S. Vitamin D and the paraventricular nucleus: Relevance for type 2 diabetes. J Steroid Biochem Mol Biol 2018; 177:125-128. [PMID: 28993246 DOI: 10.1016/j.jsbmb.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
Abstract
Vitamin D deficiency is linked to type 2 diabetes and we recently showed this may be through action of vitamin D in the paraventricular nuclei (PVN) in the hypothalamus of the brain. This review focuses on the known roles of the PVN in glucose control and how previously discovered actions of vitamin D in other tissues may translate to action in the PVN. Specifically, we focus on the role of insulin and inflammation in the hypothalamus and how these may be modified through vitamin D action.
Collapse
Affiliation(s)
- Keisha Harrison
- Department of Pediatrics, Baylor College of Medicine, 1100 Bates Avenue, Houston, TX 77030, USA.
| | - Stephanie Sisley
- Department of Pediatrics, Baylor College of Medicine, 1100 Bates Avenue, Houston, TX 77030, USA.
| |
Collapse
|
35
|
Benetti E, Mastrocola R, Chiazza F, Nigro D, D'Antona G, Bordano V, Fantozzi R, Aragno M, Collino M, Minetto MA. Effects of vitamin D on insulin resistance and myosteatosis in diet-induced obese mice. PLoS One 2018; 13:e0189707. [PMID: 29342166 PMCID: PMC5771572 DOI: 10.1371/journal.pone.0189707] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Epidemiological studies pointed out to a strong association between vitamin D deficiency and type 2 diabetes prevalence. However, the role of vitamin D supplementation in the skeletal muscle, a tissue that play a crucial role in the maintenance of glucose homeostasis, has been scarcely investigated so far. On this basis, this study aimed to evaluate the effect of vitamin D supplementation in a murine model of diet-induced insulin resistance with particular attention to the effects evoked on the skeletal muscle. Male C57BL/6J mice (n = 40) were fed with a control or a High Fat-High Sugar (HFHS) diet for 4 months. Subsets of animals were treated for 2 months with vitamin D (7 μg·kg-1, i.p. three times/week). HFHS diet induced body weight increase, hyperglycemia and impaired glucose tolerance. HFHS animals showed an impaired insulin signaling and a marked fat accumulation in the skeletal muscle. Vitamin D reduced body weight and improved systemic glucose tolerance. In addition, vitamin D restored the impaired muscle insulin signaling and reverted myosteatosis evoked by the diet. These effects were associated to decreased activation of NF-κB and lower levels of TNF-alpha. Consistently, a significantly decreased activation of the SCAP/SREBP lipogenic pathway and lower levels of CML protein adducts and RAGE expression were observed in skeletal muscle of animals treated with vitamin D. Collectively, these data indicate that vitamin D-induced selective inhibition of signaling pathways (including NF-κB, SCAP/SREBP and CML/RAGE cascades) within the skeletal muscle significantly contributed to the beneficial effects of vitamin D supplementation against diet-induced metabolic derangements.
Collapse
Affiliation(s)
- Elisa Benetti
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Fausto Chiazza
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Debora Nigro
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giuseppe D'Antona
- Department of Public Health, Molecular and Forensic Medicine, and Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | - Valentina Bordano
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Roberto Fantozzi
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Massimo Collino
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Marco Alessandro Minetto
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy.,Division of Physical Medicine and Rehabilitation, Department of Surgical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
36
|
Hoffman PL, Saba LM, Vanderlinden LA, Tabakoff B. Voluntary exposure to a toxin: the genetic influence on ethanol consumption. Mamm Genome 2017; 29:128-140. [PMID: 29196862 DOI: 10.1007/s00335-017-9726-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023]
Abstract
Ethyl alcohol is a toxin that, when consumed at high levels, produces organ damage and death. One way to prevent or ameliorate this damage in humans is to reduce the exposure of organs to alcohol by reducing alcohol ingestion. Both the propensity to consume large volumes of alcohol and the susceptibility of human organs to alcohol-induced damage exhibit a strong genetic influence. We have developed an integrative genetic/genomic approach to identify transcriptional networks that predispose complex traits, including propensity for alcohol consumption and propensity for alcohol-induced organ damage. In our approach, the phenotype is assessed in a panel of recombinant inbred (RI) rat strains, and quantitative trait locus (QTL) analysis is performed. Transcriptome data from tissues/organs of naïve RI rat strains are used to identify transcriptional networks using Weighted Gene Coexpression Network Analysis (WGCNA). Correlation of the first principal component of transcriptional coexpression modules with the phenotype across the rat strains, and overlap of QTLs for the phenotype and the QTLs for the coexpression modules (module eigengene QTL) provide the criteria for identification of the functionally related groups of genes that contribute to the phenotype (candidate modules). While we previously identified a brain transcriptional module whose QTL overlapped with a QTL for levels of alcohol consumption in HXB/BXH RI rat strains and 12 selected rat lines, this module did not account for all of the genetic variation in alcohol consumption. Our search for QTL overlap and correlation of coexpression modules with phenotype can, however, be applied to any organ in which the transcriptome has been measured, and this represents a holistic approach in the search for genetic contributors to complex traits. Previous work has implicated liver/brain interactions, particularly involving inflammatory/immune processes, as influencing alcohol consumption levels. We have now analyzed the liver transcriptome of the HXB/BXH RI rat panel in relation to the behavioral trait of alcohol consumption. We used RNA-Seq and microarray data to construct liver transcriptional networks, and identified a liver candidate transcriptional coexpression module that explained 24% of the genetic variance in voluntary alcohol consumption. The transcripts in this module focus attention on liver secretory products that influence inflammatory and immune signaling pathways. We propose that these liver secretory products can interact with brain mechanisms that affect alcohol consumption, and targeting these pathways provides a potential approach to reducing high levels of alcohol intake and also protecting the integrity of the liver and other organs.
Collapse
Affiliation(s)
- Paula L Hoffman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA
| | - Lauren A Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, 80045, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA. .,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., Campus Box: C238, Aurora, CO, 80045, USA.
| |
Collapse
|
37
|
Saande CJ, Jones SK, Hahn KE, Reed CH, Rowling MJ, Schalinske KL. Dietary Whole Egg Consumption Attenuates Body Weight Gain and Is More Effective than Supplemental Cholecalciferol in Maintaining Vitamin D Balance in Type 2 Diabetic Rats. J Nutr 2017; 147:1715-1721. [PMID: 28794211 DOI: 10.3945/jn.117.254193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/07/2017] [Accepted: 07/10/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Type 2 diabetes (T2D) is characterized by vitamin D insufficiency owing to excessive urinary loss of 25-hydroxycholecalciferol [25(OH)D]. We previously reported that a diet containing dried whole egg, a rich source of vitamin D, was effective at maintaining circulating 25(OH)D concentrations in rats with T2D. Furthermore, whole egg consumption reduced body weight gain in rats with T2D.Objective: This study was conducted to compare whole egg consumption with supplemental cholecalciferol with respect to vitamin D balance, weight gain, and body composition in rats with T2D.Methods: Male Zucker diabetic fatty (ZDF) rats (n = 24) and their lean controls (n = 24) were obtained at 5 wk of age and randomly assigned to 3 treatment groups: a casein-based diet (CAS), a dried whole egg-based diet (WE), or a casein-based diet containing supplemental cholecalciferol (CAS+D) at the same amount of cholecalciferol provided by WE (37.6 μg/kg diet). Rats were fed their respective diets for 8 wk. Weight gain and food intake were measured daily, circulating 25(OH)D concentrations were measured by ELISA, and body composition was analyzed by dual X-ray absorptiometry.Results: Weight gain and percentage of body fat were reduced by ∼20% and 11%, respectively, in ZDF rats fed WE compared with ZDF rats fed CAS or CAS+D. ZDF rats fed CAS had 21% lower serum 25(OH)D concentrations than lean rats fed CAS. In ZDF rats, WE consumption increased serum 25(OH)D concentrations 130% compared with CAS, whereas consumption of CAS+D increased serum 25(OH)D concentrations 35% compared with CAS.Conclusions: Our data suggest that dietary consumption of whole eggs is more effective than supplemental cholecalciferol in maintaining circulating 25(OH)D concentrations in rats with T2D. Moreover, whole egg consumption attenuated weight gain and reduced percentage of body fat in ZDF rats. These data may support new dietary recommendations targeting the prevention of vitamin D insufficiency in T2D.
Collapse
Affiliation(s)
- Cassondra J Saande
- Department of Food Science and Human Nutrition and.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA
| | - Samantha K Jones
- Department of Food Science and Human Nutrition and.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA
| | | | | | - Matthew J Rowling
- Department of Food Science and Human Nutrition and.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA
| | - Kevin L Schalinske
- Department of Food Science and Human Nutrition and .,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA
| |
Collapse
|
38
|
Gaspar RC, Botezelli JD, Kuga GK, Muñoz VR, Coope A, Pereira RM, da Silva ASR, Cintra DE, de Moura LP, Ropelle ER, Pauli JR. High Dosage of Vitamin D Regulates the Energy Metabolism and Increases Insulin Sensitivity, but are Associated with High Levels of Kidney Damage. Drug Dev Res 2017; 78:203-209. [PMID: 28718949 DOI: 10.1002/ddr.21394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/12/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Rafael Calais Gaspar
- Department of Nutrition, Metabolism and Exercise; University of Campinas (UNICAMP); Limeira SP Brazil
| | - José Diego Botezelli
- Department of Nutrition, Metabolism and Exercise; University of Campinas (UNICAMP); Limeira SP Brazil
| | - Gabriel Keine Kuga
- Post-Graduate Program in Movement Sciences, São Paulo State University (Unesp), Institute of Biosciences; Rio Claro SP Brazil
| | - Vitor Rosetto Muñoz
- Department of Nutrition, Metabolism and Exercise; University of Campinas (UNICAMP); Limeira SP Brazil
| | - Andressa Coope
- Medical Sciences University, University of Campinas (UNICAMP); Campinas SP Brazil
| | - Rodrigo Martins Pereira
- Department of Nutrition, Metabolism and Exercise; University of Campinas (UNICAMP); Limeira SP Brazil
| | | | - Dennys Esper Cintra
- Department of Nutrition, Metabolism and Exercise; University of Campinas (UNICAMP); Limeira SP Brazil
- Laboratory of Cell Signaling; Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP); Campinas SP Brazil
| | - Leandro Pereira de Moura
- Department of Nutrition, Metabolism and Exercise; University of Campinas (UNICAMP); Limeira SP Brazil
- Laboratory of Cell Signaling; Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP); Campinas SP Brazil
- CEPECE - Center of Research in Sport Sciences, School of Applied Sciences; University of Campinas (UNICAMP); Limeira SP Brazil
| | - Eduardo Rochete Ropelle
- Department of Nutrition, Metabolism and Exercise; University of Campinas (UNICAMP); Limeira SP Brazil
- Laboratory of Cell Signaling; Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP); Campinas SP Brazil
- CEPECE - Center of Research in Sport Sciences, School of Applied Sciences; University of Campinas (UNICAMP); Limeira SP Brazil
| | - José Rodrigo Pauli
- Department of Nutrition, Metabolism and Exercise; University of Campinas (UNICAMP); Limeira SP Brazil
- Laboratory of Cell Signaling; Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP); Campinas SP Brazil
- CEPECE - Center of Research in Sport Sciences, School of Applied Sciences; University of Campinas (UNICAMP); Limeira SP Brazil
| |
Collapse
|
39
|
Hajiluian G, Abbasalizad Farhangi M, Nameni G, Shahabi P, Megari-Abbasi M. Oxidative stress-induced cognitive impairment in obesity can be reversed by vitamin D administration in rats. Nutr Neurosci 2017; 21:744-752. [DOI: 10.1080/1028415x.2017.1348436] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ghazaleh Hajiluian
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Abbasalizad Farhangi
- Drug Applied Research Center, Department of Community Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghazaleh Nameni
- Nutrition Research Center, Department of Community Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Neuroscience Research Center, Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Megari-Abbasi
- Drug Applied Research Center, Department of Community Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Alkhatatbeh MJ, Abdul-Razzak KK, Khasawneh LQ, Saadeh NA. High Prevalence of Vitamin D Deficiency and Correlation of Serum Vitamin D with Cardiovascular Risk in Patients with Metabolic Syndrome. Metab Syndr Relat Disord 2017; 15:213-219. [DOI: 10.1089/met.2017.0003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Mohammad J. Alkhatatbeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Khalid K. Abdul-Razzak
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Lubna Q. Khasawneh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nesreen A. Saadeh
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
41
|
Xu Y, O'Malley BW, Elmquist JK. Brain nuclear receptors and body weight regulation. J Clin Invest 2017; 127:1172-1180. [PMID: 28218618 DOI: 10.1172/jci88891] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neural pathways, especially those in the hypothalamus, integrate multiple nutritional, hormonal, and neural signals, resulting in the coordinated control of body weight balance and glucose homeostasis. Nuclear receptors (NRs) sense changing levels of nutrients and hormones, and therefore play essential roles in the regulation of energy homeostasis. Understanding the role and the underlying mechanisms of NRs in the context of energy balance control may facilitate the identification of novel targets to treat obesity. Notably, NRs are abundantly expressed in the brain, and emerging evidence indicates that a number of these brain NRs regulate multiple aspects of energy balance, including feeding, energy expenditure and physical activity. In this Review we summarize some of the recent literature regarding effects of brain NRs on body weight regulation and discuss mechanisms underlying these effects.
Collapse
|
42
|
Nameni G, Hajiluian G, Shahabi P, Farhangi MA, Mesgari-Abbasi M, Hemmati MR, Vatandoust SM. The Impact of Vitamin D Supplementation on Neurodegeneration, TNF-α Concentration in Hypothalamus, and CSF-to-Plasma Ratio of Insulin in High-Fat-Diet-Induced Obese Rats. J Mol Neurosci 2016; 61:247-255. [PMID: 27921254 DOI: 10.1007/s12031-016-0864-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
There is growing evidence that obesity can lead to neurodegeneration induced by pro-inflammatory cytokines such as tumor necrosis factor (TNF-α). Moreover, obesity is associated with reduced transport of insulin through the blood-brain barrier (BBB). Insulin deficiency in the brain especially in the hypothalamus region has neurodegenerative and obesity-promoting effects. Because of the anti-inflammatory and neuroprotective effects of vitamin D, in the current experimental study, we aimed to investigate the effects of vitamin D supplementation on neurodegeneration, TNF-α concentration in the hypothalamus, and cerebrospinal fluid (CSF) to serum ratio of insulin in high-fat-diet-induced obese rats. At the first phase of the study, the rats were divided into two groups: (1) normal diet (ND, 10% fat) and (2) high-fat diet (HFD, 59% fat) and were fed for 16 weeks. In the second phase, each group was subdivided into four groups including the following: ND, normal diet + vitamin D, HFD, and HFD + vitamin D. Weight was measured and recorded weekly. Vitamin D supplementation for 5 weeks at 500 IU/kg dosage was used. One week after vitamin D supplementation, daily food intake was recorded. At week 22, blood was collected to determine fasting serum glucose, vitamin D, and insulin concentrations, and the homeostasis model assessment of insulin resistance (HOMA-IR) was calculated. CSF samples were also collected to measure insulin concentrations, and the hypothalamus was dissected to determine TNF-α concentration. HFD significantly increased TNF-α concentrations and degenerated neurons in the hypothalamus (P = 0.02). We also observed a significant reduction of CSF-to-serum ratio of insulin in HFD group (P = 0.03). The HOMA-IR test indicated significant increment of insulin resistance in HFD-fed rats (P = 0.006). Vitamin D supplementation in HFD group significantly reduced weight (P = 0.001) and food intake (P = 0.008) and increased CSF-to-serum ratio of insulin (P = 0.01). Furthermore, vitamin D decreased insulin resistance in the HFD group (P = 0.008). Vitamin D had no significant effect on degenerated neurons and TNF-α concentration in the hypothalamus. According to our findings, vitamin D improved brain insulin homeostasis and modulated food intake and body weight in high-fat-diet-induced obese rats. Further studies are needed to better clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Ghazaleh Nameni
- Nutrition Research Center, Department of Community Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghazaleh Hajiluian
- Student Research Committee, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, School of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Abbasalizad Farhangi
- Nutrition Research Center, Department of Community Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mohammad-Reza Hemmati
- Pathology Section Social Security of East Azarbaijan, Alinasab Hospital, Tabriz, Iran
| | | |
Collapse
|