1
|
Masood A, Benabdelkamel H, Joy SS, Alhossan A, Alsuwayni B, Abdeen G, Aldhwayan M, Alfadda NA, Miras AD, Alfadda AA. Label-free quantitative proteomic profiling reveals differential plasma protein expression in patients with obesity after treatment with liraglutide. Front Mol Biosci 2024; 11:1458675. [PMID: 39324112 PMCID: PMC11422103 DOI: 10.3389/fmolb.2024.1458675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Treatment and management of obesity is clinically challenging. The inclusion of GLP-1 receptor agonists (GLP1RA) in the medical management of obesity has proven to be efficacious. However, mechanisms underlying the molecular changes arising from GLP1RA treatment in patients with obesity remain to be elucidated. Methods A single-center, prospective study was undertaken to evaluate the changes in the plasma proteins after liraglutide 3 mg therapy in twenty patients (M/F: 7/13) with obesity (mean BMI 40.65 ± 3.7 kg/m2). Anthropometric and laboratory parameters were measured, and blood samples were collected at two time points: baseline, before initiating treatment (pretreatment group, PT), and after three months of receiving the full dose liraglutide 3 mg (posttreatment group, PoT). An untargeted label-free LC MSMS mass spectrometric approach combined with bioinformatics and network pathway analysis was used to determine changes in the proteomic profiles. Results The mean age of the study participants was 36.0 ± 11.1 years. A statistically significant change was observed in weight, BMI and HbA1c levels between the PT and PoT groups (paired t-test, P < 0.001). A significant dysregulation was noted in the abundances of 151 proteins (31 up and 120 downregulated) between the two groups. The potential biomarkers were evaluated using receiver operating characteristic (ROC) curves. The top ten proteins (area under the curve (AUC) of 0.999 (95% CI)) were identified as potential biomarkers between PT and PoT groups and included Cystatin-B, major vault protein, and plastin-3, which were upregulated, whereas multimerin-2, large ribosomal P2, and proline-rich acidic protein 1 were downregulated in the PoT group compared with the PT group. The top network pathway identified using ingenuity pathway analysis (IPA), centered around dysregulation of MAPK, AKT, and PKc signaling pathways and related to cell-to-cell signaling and interaction, cellular assembly and organization, cellular compromise and a score of 46 with 25 focus proteins. Discussion Through label-free quantitative proteomic analysis, our study revealed significant dysregulation of plasma proteins after liraglutide 3 mg treatment in patients with obesity. The alterations in the proteomic profile between the PT and PoT groups demonstrated a decrease in levels of proteins involved in inflammation and oxidative stress pathways. On the other hand proteins involved in the glycolytic and lipolytic metabolic pathways as well as those participating in cytoskeletal and endothelial reorganization were observed to be increased. Understanding actions of liraglutide at a molecular and proteomic levels provides a holistic look into how liraglutide impacts metabolism, induces weight loss and improves overall metabolic health.
Collapse
Affiliation(s)
- Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Salini Scaria Joy
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alhossan
- Corporate of Pharmacy Services, King Saud University Medical City, Riyadh, Saudi Arabia
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bashayr Alsuwayni
- Corporate of Pharmacy Services, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Ghalia Abdeen
- Department of Community Health Sciences, Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Madhawi Aldhwayan
- Department of Community Health Sciences, Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nora A. Alfadda
- Department of Community Health Sciences, Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Alexander Dimitri Miras
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolic Medicine, Hammersmith Hospital, Imperial College London, London, United Kingdom
- School of Medicine, Ulster University, Derry, United Kingdom
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Guardiola M, Rehues P, Amigó N, Arrieta F, Botana M, Gimeno-Orna JA, Girona J, Martínez-Montoro JI, Ortega E, Pérez-Pérez A, Sánchez-Margalet V, Pedro-Botet J, Ribalta J. Increasing the complexity of lipoprotein characterization for cardiovascular risk in type 2 diabetes. Eur J Clin Invest 2024; 54:e14214. [PMID: 38613414 DOI: 10.1111/eci.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024]
Abstract
The burden of cardiovascular disease is particularly high among individuals with diabetes, even when LDL cholesterol is normal or within the therapeutic target. Despite this, cholesterol accumulates in their arteries, in part, due to persistent atherogenic dyslipidaemia characterized by elevated triglycerides, remnant cholesterol, smaller LDL particles and reduced HDL cholesterol. The causal link between dyslipidaemia and atherosclerosis in T2DM is complex, and our contention is that a deeper understanding of lipoprotein composition and functionality, the vehicle that delivers cholesterol to the artery, will provide insight for improving our understanding of the hidden cardiovascular risk of diabetes. This narrative review covers three levels of complexity in lipoprotein characterization: 1-the information provided by routine clinical biochemistry, 2-advanced nuclear magnetic resonance (NMR)-based lipoprotein profiling and 3-the identification of minor components or physical properties of lipoproteins that can help explain arterial accumulation in individuals with normal LDLc levels, which is typically the case in individuals with T2DM. This document highlights the importance of incorporating these three layers of lipoprotein-related information into population-based studies on ASCVD in T2DM. Such an attempt should inevitably run in parallel with biotechnological solutions that allow large-scale determination of these sets of methodologically diverse parameters.
Collapse
Affiliation(s)
- Montse Guardiola
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi (URLA), Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pere Rehues
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi (URLA), Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Núria Amigó
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
- Biosfer Teslab, Reus, Spain
| | | | - Manuel Botana
- Departamento de Endocrinología y Nutrición, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - José A Gimeno-Orna
- Endocrinology and Nutrition Department, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Josefa Girona
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi (URLA), Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
| | - Emilio Ortega
- Department of Endocrinology and Nutrition, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonio Pérez-Pérez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Servicio de Endocrinología y Nutrición, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Juan Pedro-Botet
- Unidad de Lípidos y Riesgo Vascular, Department of Endocrinology and Nutrition, Hospital del Mar, Barcelona, Spain
- Department of Medicine, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Josep Ribalta
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi (URLA), Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
3
|
Harvei S, Skogen V, Egelandsdal B, Birkeland S, Paulsen JE, Carlsen H. Chronic oral LPS administration does not increase inflammation or induce metabolic dysregulation in mice fed a western-style diet. Front Nutr 2024; 11:1376493. [PMID: 39077160 PMCID: PMC11284168 DOI: 10.3389/fnut.2024.1376493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Lipopolysaccharides (LPS) present in the intestine are suggested to enter the bloodstream after consumption of high-fat diets and cause systemic inflammation and metabolic dysregulation through a process named "metabolic endotoxemia." This study aimed to determine the role of orally administered LPS to mice in the early stage of chronic low-grade inflammation induced by diet. Methods We supplemented the drinking water with E. coli derived LPS to mice fed either high-fat Western-style diet (WSD) or standard chow (SC) for 7 weeks (n = 16-17). Body weight was recorded weekly. Systemic inflammatory status was assessed by in vivo imaging of NF-κB activity at different time points, and glucose dysregulation was assessed by insulin sensitivity test and glucose tolerance test near the end of the study. Systemic LPS exposure was estimated indirectly via quantification of LPS-binding protein (LBP) and antibodies against LPS in plasma, and directly using an LPS-sensitive cell reporter assay. Results and discussion Our results demonstrate that weight development and glucose regulation are not affected by LPS. We observed a transient LPS dependent upregulation of NF-κB activity in the liver region in both diet groups, a response that disappeared within the first week of LPS administration and remained low during the rest of the study. However, WSD fed mice had overall a higher NF-κB activity compared to SC fed mice at all time points independent of LPS administration. Our findings indicate that orally administered LPS has limited to no impact on systemic inflammation and metabolic dysregulation in mice fed a high-fat western diet and we question the capability of intestinally derived LPS to initiate systemic inflammation through a healthy and uncompromised intestine, even when exposed to a high-fat diet.
Collapse
Affiliation(s)
- Silje Harvei
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Vemund Skogen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Bjørg Egelandsdal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Signe Birkeland
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Jan Erik Paulsen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, As, Norway
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| |
Collapse
|
4
|
Liang W, Li R, Chen G, Ma H, Han A, Hu Q, Xie N, Wei J, Shen H, Wang X, Xiang H. Long-term exposure to ambient particulate matter is associated with prognosis in people living with HIV/AIDS: Evidence from a longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172453. [PMID: 38641108 DOI: 10.1016/j.scitotenv.2024.172453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/24/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Evidence on the association between particulate matter (PM) exposure and prognosis in people living with HIV/AIDS (PWHA) is scarce. We aim to investigate the associations of long-term exposure to PM with AIDS-related deaths and complications. METHODS We collected follow-up information on 7444 PWHAs from 2000 to 2021 from the HIV/AIDS Comprehensive Response Information Management System of the Wuhan Center for Disease Control and Prevention. The AIDS-related deaths and complications were assessed by physicians every 3 to 6 months, and the monthly average PM concentrations for each PWHA were extracted from the China High Air Pollutants dataset. We employed time-varying Cox regression models to evaluate the associations of the average cumulative PM exposure concentrations with AIDS-related deaths and complications, as well as the mediating effects of AIDS-related complications in PM-induced AIDS-related deaths. RESULTS For each 1 μg/m3 increase in PM1, PM2.5, and PM10, the adjusted hazard ratios (HRs) for AIDS-related deaths were 1.021 (1.009, 1.033), 1.012 (1.005, 1.020), and 1.010 (1.005, 1.015), respectively; and the HRs for AIDS-related complications were 1.049 (1.034, 1.064), 1.029 (1.020, 1.038), and 1.031 (1.024, 1.037), respectively. AIDS-related complications mediated 18.38 % and 18.68 % of the association of exposure to PM1 and PM2.5 with AIDS-related deaths, respectively. The association of PM exposure with AIDS-related deaths was more significant in older PWHA. Meanwhile, the association between PM exposure and AIDS-related complications was stronger in PWHA with a BMI ≥ 24 kg/m2. CONCLUSION Long-term exposure to PM is positively associated with AIDS-related deaths and complications, and AIDS-related complications have mediating effects in PM-induced AIDS-related deaths. Our evidence emphasizes that enhanced protection against PM exposure for PWHAs is an additional mitigation strategy to reduce AIDS-related deaths and complications.
Collapse
Affiliation(s)
- Wei Liang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Ruihan Li
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Hongfei Ma
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan 430024, China
| | - Aojing Han
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Qilin Hu
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Nianhua Xie
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan 430024, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, United States
| | - Huanfeng Shen
- School of Resource and Environmental Science, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Xia Wang
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan 430024, China.
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China.
| |
Collapse
|
5
|
Han K, Meadows AM, Rodman MJ, Russo AC, Sharma R, Singh K, Hassanzadeh S, Dagur PK, Huffstutler RD, Krause FN, Griffin JL, Baumer Y, Powell-Wiley TM, Sack MN. Propionate functions as a feeding state-dependent regulatory metabolite to counter proinflammatory signaling linked to nutrient load and obesity. J Leukoc Biol 2024; 115:738-749. [PMID: 38207130 PMCID: PMC10980352 DOI: 10.1093/jleuko/qiae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
Generally, fasting and refeeding confer anti- and proinflammatory effects, respectively. In humans, these caloric-load interventions function, in part, via regulation of CD4+ T cell biology. However, mechanisms orchestrating this regulation remain incomplete. We employed integrative bioinformatics of RNA sequencing and high-performance liquid chromatography-mass spectrometry data to measure serum metabolites and gene expression of peripheral blood mononuclear cells isolated from fasting and refeeding in volunteers to identify nutrient-load metabolite-driven immunoregulation. Propionate, a short chain fatty acid (SCFA), and the SCFA-sensing G protein-coupled receptor 43 (ffar2) were coordinately and inversely regulated by fasting and refeeding. Propionate and free fatty acid receptor agonists decreased interferon-γ and interleukin-17 and significantly blunted histone deacetylase activity in CD4+ T cells. Furthermore, propionate blunted nuclear factor κB activity and diminished interleukin-6 release. In parallel, propionate reduced phosphorylation of canonical T helper 1 (TH1) and TH17 regulators, STAT1 and STAT3, respectively. Conversely, knockdown of free fatty acid receptors significantly attenuated the anti-inflammatory role of propionate. Interestingly, propionate recapitulated the blunting of CD4+ TH cell activation in primary cells from obese individuals, extending the role of this metabolite to a disease associated with low-grade inflammation. Together, these data identify a nutrient-load responsive SCFA-G protein-coupled receptor linked pathway to regulate CD4+ TH cell immune responsiveness.
Collapse
Affiliation(s)
- Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Room 5-3342, Bld 10-CRC, 10 Center Drive, Bethesda, MD 20817, United States
| | - Allison M Meadows
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Room 5-3342, Bld 10-CRC, 10 Center Drive, Bethesda, MD 20817, United States
- Department of Biochemistry, University of Cambridge, Sanger Bld, 80 Tennis Ct Rd, Cambridge CB2 1GA, United Kingdom
| | - Matthew J Rodman
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Room 5-3342, Bld 10-CRC, 10 Center Drive, Bethesda, MD 20817, United States
| | - Anna Chiara Russo
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Room 5-3342, Bld 10-CRC, 10 Center Drive, Bethesda, MD 20817, United States
| | - Rahul Sharma
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Room 5-3342, Bld 10-CRC, 10 Center Drive, Bethesda, MD 20817, United States
| | - Komudi Singh
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Room 5-3342, Bld 10-CRC, 10 Center Drive, Bethesda, MD 20817, United States
| | - Shahin Hassanzadeh
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Room 5-3342, Bld 10-CRC, 10 Center Drive, Bethesda, MD 20817, United States
| | - Pradeep K Dagur
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Rebecca D Huffstutler
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Fynn N Krause
- Department of Biochemistry, University of Cambridge, Sanger Bld, 80 Tennis Ct Rd, Cambridge CB2 1GA, United Kingdom
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Sanger Bld, 80 Tennis Ct Rd, Cambridge CB2 1GA, United Kingdom
- Rowett Institute, School of Medicine, Medical Sciences and Nutrition, Foresterhill Campus, University of Aberdeen, Ashgrove Rd W, Aberdeen AB25 2ZD, United Kingdom
| | - Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Tiffany M Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Room 5-3342, Bld 10-CRC, 10 Center Drive, Bethesda, MD 20817, United States
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| |
Collapse
|
6
|
Hall WL, Alkoblan A, Gibson PS, D'Annibale M, Coekaerts A, Bauer M, Bruce JH, Lecomte B, Penhoat A, Laugerette F, Michalski MC, Salt LJ, Wilde PJ, Berry SE. Postprandial lipid and vascular responses following consumption of a commercially-relevant interesterified palmitic acid-rich spread in comparison to functionally-equivalent non-interesterified spread and spreadable butter: a randomised controlled trial in healthy adults. Food Funct 2024; 15:2733-2750. [PMID: 38380649 PMCID: PMC10911404 DOI: 10.1039/d3fo05324e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Background: Interesterification is an industrial processing technique used widely where hard fats are essential for functionality and consumer acceptability, e.g. margarines and lower fat spreads. Objective: The aim of this study was to compare acute cardiovascular effects of functionally equivalent spreads (similar solid fat content) made with interesterified (IE) or non-IE palm-based fats, or spreadable butter. Methods: A randomised, controlled, 4-armed crossover, double-blind study (25 men, 25 women; 35-75 years; healthy; mean BMI 24.5, SD 3.8), compared effects of mixed nutrient meals containing 50 g fat from functionally equivalent products [IE spread, non-IE spread and spreadable butter (SB), with rapeseed oil (RO) as a reference treatment: with 16.7%, 27.9%, 19.3% and 4% palmitic acid, respectively] on 8 h postprandial changes in plasma triacylglycerol (TAG) and endothelial dysfunction (flow-mediated dilatation; FMD). Circulating reactive oxygen species (estimated using a neutrophil oxidative burst assay), glucose, insulin, NEFA, lipoprotein particle profiles, inflammatory markers (glycoprotein acetylation (Glyc-A) and IL-6), and biomarkers of endotoxemia were measured. Results: Postprandial plasma TAG concentrations after test meals were similar. However following RO versus the 3 spreads, there were significantly higher postprandial apolipoprotein B concentrations, and small HDL and LDL particle concentrations, and lower postprandial extra-large, large, and medium HDL particle concentrations, as well as smaller average HDL and LDL particle sizes. There were no differences following IE compared to the other spreads. Postprandial FMD% did not decrease after high-fat test meals, and there were no differences between treatments. Postprandial serum IL-6 increased similarly after test meals, but RO provoked a greater increase in postprandial concentrations of glycoprotein acetyls (GlycA), as well as 8 h sCD14, an endotoxemia marker. All other postprandial outcomes were not different between treatments. Conclusions: In healthy adults, a commercially-available IE-based spread did not evoke a different postprandial triacylglycerol, lipoprotein subclass, oxidative stress, inflammatory or endotoxemic response to functionally-equivalent, but compositionally-distinct alternative spreads. Clinical trial registry number: NCT03438084 (https://ClinicalTrials.gov).
Collapse
Affiliation(s)
- Wendy L Hall
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, Stamford St., London, UK.
| | - Aseel Alkoblan
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, Stamford St., London, UK.
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Philippa S Gibson
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, Stamford St., London, UK.
| | - Maria D'Annibale
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, Stamford St., London, UK.
| | - Astrid Coekaerts
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, Stamford St., London, UK.
| | - Mathilde Bauer
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, Stamford St., London, UK.
| | | | - Beryle Lecomte
- CarMeN Laboratory INRAE, INSERM U1060, INRAE UMR1397, University of Lyon, France
| | - Armelle Penhoat
- CarMeN Laboratory INRAE, INSERM U1060, INRAE UMR1397, University of Lyon, France
| | - Fabienne Laugerette
- CarMeN Laboratory INRAE, INSERM U1060, INRAE UMR1397, University of Lyon, France
| | | | - Louise J Salt
- Food Innovation and Health Programme, Quadram Institute Bioscience, UK
| | - Peter J Wilde
- Food Innovation and Health Programme, Quadram Institute Bioscience, UK
| | - Sarah E Berry
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin Wilkins Building, Stamford St., London, UK.
| |
Collapse
|
7
|
Zhu YL, Meng LL, Ma JH, Yuan X, Chen SW, Yi XR, Li XY, Wang Y, Tang YS, Xue M, Zhu MZ, Peng J, Lu XJ, Huang JZ, Song ZC, Wu C, Zheng KZ, Dai QQ, Huang F, Fang HS. Loss of LBP triggers lipid metabolic disorder through H3K27 acetylation-mediated C/EBPβ- SCD activation in non-alcoholic fatty liver disease. Zool Res 2024; 45:79-94. [PMID: 38114435 PMCID: PMC10839665 DOI: 10.24272/j.issn.2095-8137.2023.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/24/2023] [Indexed: 12/21/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with mutations in lipopolysaccharide-binding protein ( LBP), but the underlying epigenetic mechanisms remain understudied. Herein, LBP -/- rats with NAFLD were established and used to conduct integrative targeting-active enhancer histone H3 lysine 27 acetylation (H3K27ac) chromatin immunoprecipitation coupled with high-throughput and transcriptomic sequencing analysis to explore the potential epigenetic pathomechanisms of active enhancers of NAFLD exacerbation upon LBP deficiency. Notably, LBP -/- reduced the inflammatory response but markedly aggravated high-fat diet (HFD)-induced NAFLD in rats, with pronounced alterations in the histone acetylome and regulatory transcriptome. In total, 1 128 differential enhancer-target genes significantly enriched in cholesterol and fatty acid metabolism were identified between wild-type (WT) and LBP -/- NAFLD rats. Based on integrative analysis, CCAAT/enhancer-binding protein β (C/EBPβ) was identified as a pivotal transcription factor (TF) and contributor to dysregulated histone acetylome H3K27ac, and the lipid metabolism gene SCD was identified as a downstream effector exacerbating NAFLD. This study not only broadens our understanding of the essential role of LBP in the pathogenesis of NAFLD from an epigenetics perspective but also identifies key TF C/EBPβ and functional gene SCD as potential regulators and therapeutic targets.
Collapse
Affiliation(s)
- Ya-Ling Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, China
- Laboratory Animal Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Lei-Lei Meng
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jin-Hu Ma
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xin Yuan
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shu-Wen Chen
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xin-Rui Yi
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xin-Yu Li
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yi Wang
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yun-Shu Tang
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, China
- Laboratory Animal Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Min Xue
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Mei-Zi Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jin Peng
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xue-Jin Lu
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jian-Zhen Huang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zi-Chen Song
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chong Wu
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Ke-Zhong Zheng
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Qing-Qing Dai
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Fan Huang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China. E-mail:
| | - Hao-Shu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, China
- Laboratory Animal Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China. E-mail:
| |
Collapse
|
8
|
Tomooka S, Oishi E, Asada M, Sakata S, Hata J, Chen S, Honda T, Suzuki K, Watanabe H, Murayama N, Wada N, Kitazono T, Ninomiya T. Serum Lipopolysaccharide-binding Protein Levels and the Incidence of Metabolic Syndrome in a General Japanese Population: the Hisayama Study. J Epidemiol 2024; 34:1-7. [PMID: 36567128 PMCID: PMC10701254 DOI: 10.2188/jea.je20220232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The association between chronic lipopolysaccharide exposure and the development of metabolic syndrome (MetS) is unclear. In this study we examined the association between serum lipopolysaccharide-binding protein (LBP) levels, an indicator of lipopolysaccharide exposure, and the development of MetS in a general Japanese population. METHODS 1,869 community-dwelling Japanese individuals aged ≥40 years without MetS at baseline examination in 2002-2003 were followed up by repeated examination in 2007-2008. MetS was defined according to the Japanese criteria. Serum LBP levels were classified into quartiles (quartiles 1-4: 2.20-9.56, 9.57-10.78, 10.79-12.18, and 12.19-24.34 µg/mL, respectively). Odds ratios (ORs) for developing MetS were calculated using a logistic regression model. RESULTS At the follow-up survey, 159 participants had developed MetS. Higher serum LBP levels were associated with greater risk of developing MetS after multivariable adjustment for age, sex, smoking, drinking, and exercise habits (OR [95% confidence interval] for quartiles 1-4: 1.00 [reference], 2.92 [1.59-5.37], 3.48 [1.91-6.35], and 3.86 [2.12-7.03], respectively; P for trend <0.001). After additional adjustment for homeostasis model assessment of insulin resistance, this association was attenuated but remained significant (P for trend = 0.007). On the other hand, no significant association was observed after additional adjustment for serum high-sensitivity C-reactive protein (P for trend = 0.07). CONCLUSION In the general Japanese population, our findings suggest that higher serum LBP levels are associated with elevated risk of developing MetS. Low-grade endotoxemia could play a role in the development of MetS through systemic chronic inflammation and insulin resistance.
Collapse
Affiliation(s)
- Shoko Tomooka
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of General Dentistry, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan
| | - Emi Oishi
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masako Asada
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoko Sakata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Hata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sanmei Chen
- Global Health Nursing, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takanori Honda
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Suzuki
- Research Institute, Suntory Global Innovation Center Ltd, Kyoto, Japan
| | - Hiroshi Watanabe
- Research Institute, Suntory Global Innovation Center Ltd, Kyoto, Japan
| | - Norihito Murayama
- Research Institute, Suntory Global Innovation Center Ltd, Kyoto, Japan
| | - Naohisa Wada
- Department of General Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Li J, Xing H, Lin W, Yu H, Yang B, Jiang C, Zhang J, Wu R, Ding F, Pei M, Yang H. Specific gut microbiome and metabolome changes in patients with continuous ambulatory peritoneal dialysis and comparison between patients with different dialysis vintages. Front Med (Lausanne) 2024; 10:1302352. [PMID: 38249961 PMCID: PMC10797064 DOI: 10.3389/fmed.2023.1302352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Background In recent years, the role of gut microbiota and derived metabolites in renal disease has attracted more attention. It has been established that the gut microbiota is a potential target for medical interventions in renal disease including chronic kidney disease (CKD), acute kidney injury (AKI) and renal calculus. Emerging evidence has related dialysis treatment to the microbial composition and function of the intestines, and there are many reports related to HD, but few studies have been related to PD. Previous studies have found that PD patients have intestinal flora disturbances, so we speculate that intestinal flora and its metabolites may be the regulatory factors in long-term therapy of PD. And as far as we know, there have been no studies characterized the gut microbiota in PD patients of different dialysis vintages. Methods It is a cross-sectional study based on clinical data and biological samples of 72 patients with CAPD, 13 patients with ESRD and 13 healthy volunteers. The intestinal microecological characteristics of CAPD patients were comprehensively evaluated by combining the intestinal microflora structure, enterotoxin and receptor (serum LPS and LBP), intestinal barrier function index (serum D-Lactate), intestinal uremic toxin (serum IS, PCS, TMAO), fecal SCFAs and other multi-dimensional and multi-omics studies. Furthermore, the changes of intestinal microecology in CAPD patients of different dialysis vintages (≥ 3 and < 12 months, ≥ 12 and < 24 months, ≥ 24 and < 60 months, ≥ 60 months) were further explored, and the correlations between intestinal microecology indicators and some clinical indicators were analyzed. Fecal and serum samples were collected from PD patients (PD group, n = 72), ESRD patients (ESRD group, n = 13) and healthy volunteers (Normal group, n = 13). Fecal samples were subjected to microbiome (16S rDNA) and SCFA (GC-MS) analyses. Serum samples were subjected to LPS, LBP, D-lactate, IS, PCS, and TMAO (ELISA) analyses. Results The diversity and richness of intestinal flora in CAPD patients were lower than those in healthy people and ESRD patients, and the microflora structure was different. Anaerobes of Blautia and facultative anaerobes and aerobic bacteria with Bacilli and Lactobacillales those in Firmicutes are the main intestinal flora in CAPD patients. The abundance of Bacteroidaceae, Bacteroides, Faecalibacterium and other dominant bacteria in the intestinal tract of CAPD patients decreased. Proteobacteria, Enterobacteriaceae and Escherichia-Shigella increased their colonization (LDA > 4). In CAPD patients of different dialysis vintages, there was no significant change in the diversity and richness of microflora, and the microflora structure of PDC group was significantly different from that of PDD, which the abnormal expansion of enterobacter group was more prominent in PDC and the abundance of Bacteroides group was relatively higher in PDD. Intestinal barrier damage, intestinal uremic toxin accumulation and short-chain fatty acid reduction were observed in CAPD patients, such as the serum level of D-Lactate, PCS and TMAO were significantly higher than that in the Normal group (P < 0.05),and the fecal levels of BA and CA were significantly lower (P < 0.05). The intestinal microecological disorder of PDC group, while that of PDD group showed a better trend. Such as the PDC group had a significantly higher serum level of LPS, D-Lactate and TMAO (P < 0.01), and significantly lower serum level of LBP (P < 0.01), and lower fecal levels of AA and BA (P > 0.05) than the PDD group. Conclusion The intestinal microecology and metabolic system of CAPD patients had changes compared with healthy people and ESRD non-dialysis patients, and there were differences in CAPD patients with different dialysis vintages. PD patients on dialysis for more than 60 months showed a better trend in the intestinal microecology than patients with 24∼36 months, which suggested that the intestinal microecology of PD patients had a certain ability of self-regulation and remodeling under the management of standardized system and it is necessary to strengthen the monitoring of the intestinal status and the occurrence of related complications in PD patients on dialysis of 24∼36 months of dialysis vintage. It is initially considered that the mechanism of intestinal microecology is a potential target for intervention in the diagnosis and treatment of CAPD and incorporating intestinal microecosystem monitoring into the long-term management of CAPD patients is a new strategy.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haitao Xing
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Lin
- Department of Nephrology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Hangxing Yu
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen Jiang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruoxi Wu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengmei Ding
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ming Pei
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
10
|
Li T, Chen H, Xu B, Yu M, Li J, Shi Y, Xia S, Wu S. Deciphering the interplay between LPS/TLR4 pathways, neurotransmitter, and deltamethrin-induced depressive-like behavior: Perspectives from the gut-brain axis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105697. [PMID: 38072552 DOI: 10.1016/j.pestbp.2023.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
The improper use of deltamethrin (DM) can result in its accumulation in soil, water, food, and even the human body, which is associated with an elevated risk of neurotoxicity and behavioral abnormalities; however, the underlying mechanisms remain insufficiently investigated. Emerging evidence underscores the significance of the gut-brain axis in central nervous system (CNS) dysfunctions. Accordingly, this study investigates the role of the gut-brain axis in DM-induced behavioral anomalies in mice. The results showed that DM exposure induced depressive-like behavior, and the hippocampus, the region that is responsible for the modulation of emotional behavior, showed structural integrity disrupted (neuronal nuclear shrinkage and decreased tight junction protein expression). In addition, DM exposure led to compromised gut barrier integrity (disruptions on crypt surfaces and decreased tight junction protein expression), which might contribute to the gut bacterial-derived lipopolysaccharide (LPS) leakage into the bloodstream and reaching the brain, triggering LPS/toll-like receptor (TLR) 4 -mediated increases in brain pro-inflammatory cytokines. Subsequently, we observed a disturbance in neurotransmitter metabolic pathways following DM exposure, which inhibited the production of 5-hydroxytryptamine (5-HT). Additionally, DM exposure resulted in gut microbiota dysbiosis. Characteristic bacteria, such as Alistipes, Bifidobacterium, Gram-negative bacterium cTPY-13, and Odoribacter exhibited significant correlations with behavior, tight junction proteins, inflammatory response, and neurotransmitters. Further fecal microbiota transplantation (FMT) experiments suggested that DM-induced gut microbiota dysbiosis might contribute to depressive-like behavior. These results provide a new perspective on the toxicity mechanism of DM, indicating that its neurotoxicity may be partially regulated by the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hao Chen
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Baohua Xu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mengwei Yu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jun Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ying Shi
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shaohui Xia
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shijin Wu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
11
|
Turpin T, Thouvenot K, Gonthier MP. Adipokines and Bacterial Metabolites: A Pivotal Molecular Bridge Linking Obesity and Gut Microbiota Dysbiosis to Target. Biomolecules 2023; 13:1692. [PMID: 38136564 PMCID: PMC10742113 DOI: 10.3390/biom13121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Adipokines are essential mediators produced by adipose tissue and exert multiple biological functions. In particular, adiponectin, leptin, resistin, IL-6, MCP-1 and PAI-1 play specific roles in the crosstalk between adipose tissue and other organs involved in metabolic, immune and vascular health. During obesity, adipokine imbalance occurs and leads to a low-grade pro-inflammatory status, promoting insulin resistance-related diabetes and its vascular complications. A causal link between obesity and gut microbiota dysbiosis has been demonstrated. The deregulation of gut bacteria communities characterizing this dysbiosis influences the synthesis of bacterial substances including lipopolysaccharides and specific metabolites, generated via the degradation of dietary components, such as short-chain fatty acids, trimethylamine metabolized into trimethylamine-oxide in the liver and indole derivatives. Emerging evidence suggests that these bacterial metabolites modulate signaling pathways involved in adipokine production and action. This review summarizes the current knowledge about the molecular links between gut bacteria-derived metabolites and adipokine imbalance in obesity, and emphasizes their roles in key pathological mechanisms related to oxidative stress, inflammation, insulin resistance and vascular disorder. Given this interaction between adipokines and bacterial metabolites, the review highlights their relevance (i) as complementary clinical biomarkers to better explore the metabolic, inflammatory and vascular complications during obesity and gut microbiota dysbiosis, and (ii) as targets for new antioxidant, anti-inflammatory and prebiotic triple action strategies.
Collapse
Affiliation(s)
| | | | - Marie-Paule Gonthier
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97410 Saint-Pierre, La Réunion, France; (T.T.); (K.T.)
| |
Collapse
|
12
|
Metz CN, Xue X, Chatterjee PK, Adelson RP, Roth J, Brines M, Tracey KJ, Gregersen PK, Pavlov VA. Increased plasma lipopolysaccharide-binding protein and altered inflammatory mediators in overweight women suggest a state of subclinical endotoxemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.540879. [PMID: 37293028 PMCID: PMC10245681 DOI: 10.1101/2023.05.18.540879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic low-grade inflammation has been recognized as an underlying event linking obesity to cardiovascular disease (CVD). However, inflammatory alterations in individuals who are overweight remain understudied. To provide insight, we determined the levels of key circulating biomarkers of endotoxemia and inflammation, including lipopolysaccharide-binding protein (LBP), CRP, IL-6, leptin, and adiponectin in adult female subjects (n=40) who were lean or overweight and had high cholesterol and/or high blood pressure - two important conventional risk factors for CVD. Plasma levels of LBP were significantly higher in the overweight group compared with the lean group (P=0.005). The levels of CRP were also significantly higher in overweight subjects (P=0.01), as were IL-6 (P=0.02) and leptin (P=0.002), pro-inflammatory mediators associated with cardiovascular risk. Levels of adiponectin, an adipokine with anti-inflammatory and anti-atherogenic functions, were significantly lower in the overweight group (P=0.002). The leptin/adiponectin ratio, a preferential atherogenic marker was significantly increased in women who are overweight (P=0.02). LBP, CRP, leptin, and adiponectin levels significantly correlated with BMI, but not with age and there was a significant correlation between LBP and IL-6 levels. These results reveal the presence of subclinical endotoxemia and a pro-inflammatory state in overweight women and are of interest for further studies with the goal for improved understanding of cardiovascular health risks in women.
Collapse
Affiliation(s)
- Christine N. Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell-Hofstra University, Hempstead, NY 11550, USA
| | - Xiangying Xue
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Prodyot K Chatterjee
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Robert P. Adelson
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Jesse Roth
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell-Hofstra University, Hempstead, NY 11550, USA
| | - Michael Brines
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell-Hofstra University, Hempstead, NY 11550, USA
| | - Peter K. Gregersen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell-Hofstra University, Hempstead, NY 11550, USA
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell-Hofstra University, Hempstead, NY 11550, USA
| |
Collapse
|
13
|
Wen Z, Long J, Zhu L, Liu S, Zeng X, Huang D, Qiu X, Su L. Associations of dietary, sociodemographic, and anthropometric factors with anemia among the Zhuang ethnic adults: a cross-sectional study in Guangxi Zhuang Autonomous Region, China. BMC Public Health 2023; 23:1934. [PMID: 37803356 PMCID: PMC10557179 DOI: 10.1186/s12889-023-16697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 09/04/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND After decades of rapid economic development, anemia remains a significant public health challenge globally. This study aimed to estimate the associations of sociodemographic, dietary, and body composition factors with anemia among the Zhuang in Guangxi Zhuang Autonomous Region, China. METHODS Our study population from the baseline survey of the Guangxi ethnic minority Cohort Study of Chronic Diseases consisted of 13,465 adults (6,779 women and 6,686 men) aged 24-82 years. A validated interviewer-administered laptop-based questionnaire system was used to collect information on participants' sociodemographic, lifestyle, and dietary factors. Each participant underwent a physical examination, and hematological indices were measured. Least absolute shrinkage and selection operator (LASSO) regression was used to select the variables, and logistic regression was applied to estimate the associations of independent risk factors with anemia. RESULTS The overall prevalences of anemia in men and women were 9.63% (95% CI: 8.94-10.36%) and 18.33% (95% CI: 17.42─19.28%), respectively. LASSO and logistic regression analyses showed that age was positively associated with anemia for both women and men. For diet in women, red meat consumption for 5-7 days/week (OR = 0.79, 95% CI: 0.65-0.98, p = 0.0290) and corn/sweet potato consumption for 5-7 days/week (OR = 0.73, 95% CI: 0.55-0.96, p = 0.0281) were negatively associated with anemia. For men, fruit consumption for 5-7 days/week (OR = 0.75, 95% CI: 0.60-0.94, p = 0.0130) and corn/sweet potato consumption for 5-7 days/week (OR = 0.66, 95% CI: 0.46-0.91, p = 0.0136) were negatively correlated with anemia. Compared with a normal body water percentage (55-65%), a body water percentage below normal (< 55%) was negatively related to anemia (OR = 0.68, 95% CI: 0.53-0.86, p = 0.0014). Conversely, a body water percentage above normal (> 65%) was positively correlated with anemia in men (OR = 1.73, 95% CI: 1.38-2.17, p < 0.0001). CONCLUSIONS Anemia remains a moderate public health problem for premenopausal women and the elderly population in the Guangxi Zhuang minority region. The prevention of anemia at the population level requires multifaceted intervention measures according to sex and age, with a focus on dietary factors and the control of body composition.
Collapse
Affiliation(s)
- Zheng Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jianxiong Long
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lulu Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Li Su
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
14
|
Metz CN, Xue X, Chatterjee PK, Adelson RP, Brines M, Tracey KJ, Gregersen PK, Pavlov VA. Increased plasma lipopolysaccharide-binding protein and altered inflammatory mediators in overweight women suggest a state of subclinical endotoxemia. RESEARCH SQUARE 2023:rs.3.rs-3356683. [PMID: 37841878 PMCID: PMC10571637 DOI: 10.21203/rs.3.rs-3356683/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Chronic low-grade inflammation has been recognized as an underlying event linking obesity to cardiovascular disease (CVD). However, inflammatory alterations in individuals who are overweight remain understudied. To provide insight, we determined the levels of key circulating biomarkers of endotoxemia and inflammation, including lipopolysaccharide-binding protein (LBP), CRP, IL-6, leptin, and adiponectin in adult female subjects (n = 20) who were lean or overweight and had high cholesterol and/or high blood pressure - two important conventional risk factors for CVD. Plasma levels of LBP (a recognized marker of metabolic endotoxemia in obesity) were significantly higher in the overweight group compared with the lean group (P = 0.005). The levels of CRP, a general marker of inflammation, were also significantly higher in overweight subjects (P = 0.01), as were IL-6 (P = 0.02) and leptin (P = 0.002), pro-inflammatory mediators associated with cardiovascular risk. Levels of adiponectin, an adipokine with anti-inflammatory and anti-atherogenic functions, were significantly lower in the overweight group (P = 0.002). The leptin/adiponectin ratio, a preferential atherogenic marker was significantly increased in women who are overweight (P = 0.02). LBP, CRP, leptin, and adiponectin levels significantly correlated with BMI, but not with age. These results reveal the presence of subclinical endotoxemia and a pro-inflammatory state in overweight women and are of interest for further studies with the goal for improved understanding of women's cardiovascular health.
Collapse
|
15
|
Pokala A, Quarles WR, Ortega-Anaya J, Jimenez-Flores R, Cao S, Zeng M, Hodges JK, Bruno RS. Milk-Fat-Globule-Membrane-Enriched Dairy Milk Compared with a Soy-Lecithin-Enriched Beverage Did Not Adversely Affect Endotoxemia or Biomarkers of Gut Barrier Function and Cardiometabolic Risk in Adults with Metabolic Syndrome: A Randomized Controlled Crossover Trial. Nutrients 2023; 15:3259. [PMID: 37513677 PMCID: PMC10384269 DOI: 10.3390/nu15143259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Full-fat dairy milk may protect against cardiometabolic disorders, due to the milk fat globule membrane (MFGM), through anti-inflammatory and gut-health-promoting activities. We hypothesized that a MFGM-enriched milk beverage (MEB) would alleviate metabolic endotoxemia in metabolic syndrome (MetS) persons by improving gut barrier function and glucose tolerance. In a randomized crossover trial, MetS persons consumed for two-week period a controlled diet with MEB (2.3 g/d milk phospholipids) or a comparator beverage (COMP) formulated with soy phospholipid and palm/coconut oil. They then provided fasting blood and completed a high-fat/high-carbohydrate test meal challenge for evaluating postprandial metabolism and intestinal permeability. Participants had no adverse effects and achieved high compliance, and there were no between-trial differences in dietary intakes. Compared with COMP, fasting endotoxin, glucose, incretins, and triglyceride were unaffected by MEB. The meal challenge increased postprandial endotoxin, triglyceride, and incretins, but were unaffected by MEB. Insulin sensitivity; fecal calprotectin, myeloperoxidase, and short-chain fatty acids; and small intestinal and colonic permeability were also unaffected by MEB. This short-term study demonstrates that controlled administration of MEB in MetS persons does not affect gut barrier function, glucose tolerance, and other cardiometabolic health biomarkers, which contradicts observational evidence that full-fat milk heightens cardiometabolic risk. Registered at ClinicalTrials.gov (NCT03860584).
Collapse
Affiliation(s)
- Avinash Pokala
- Human Nutrition Program, The Ohio State University, Columbus, OH 43201, USA
| | - William R Quarles
- Human Nutrition Program, The Ohio State University, Columbus, OH 43201, USA
| | - Joana Ortega-Anaya
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43201, USA
| | - Rafael Jimenez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43201, USA
| | - Sisi Cao
- Human Nutrition Program, The Ohio State University, Columbus, OH 43201, USA
| | - Min Zeng
- Human Nutrition Program, The Ohio State University, Columbus, OH 43201, USA
| | - Joanna K Hodges
- Human Nutrition Program, The Ohio State University, Columbus, OH 43201, USA
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH 43201, USA
| |
Collapse
|
16
|
Zhao Y, Walker DI, Lill CM, Bloem BR, Darweesh SKL, Pinto-Pacheco B, McNeil B, Miller GW, Heath AK, Frissen M, Petrova D, Sánchez MJ, Chirlaque MD, Guevara M, Zibetti M, Panico S, Middleton L, Katzke V, Kaaks R, Riboli E, Masala G, Sieri S, Zamora-Ros R, Amiano P, Jenab M, Peters S, Vermeulen R. Lipopolysaccharide-binding protein and future Parkinson's disease risk: a European prospective cohort. J Neuroinflammation 2023; 20:170. [PMID: 37480114 PMCID: PMC10362572 DOI: 10.1186/s12974-023-02846-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/02/2023] [Indexed: 07/23/2023] Open
Abstract
INTRODUCTION Lipopolysaccharide (LPS) is the outer membrane component of Gram-negative bacteria. LPS-binding protein (LBP) is an acute-phase reactant that mediates immune responses triggered by LPS and has been used as a blood marker for LPS. LBP has recently been indicated to be associated with Parkinson's disease (PD) in small-scale retrospective case-control studies. We aimed to investigate the association between LBP blood levels with PD risk in a nested case-control study within a large European prospective cohort. METHODS A total of 352 incident PD cases (55% males) were identified and one control per case was selected, matched by age at recruitment, sex and study center. LBP levels in plasma collected at recruitment, which was on average 7.8 years before diagnosis of the cases, were analyzed by enzyme linked immunosorbent assay. Odds ratios (ORs) were estimated for one unit increase of the natural log of LBP levels and PD incidence by conditional logistic regression. RESULTS Plasma LBP levels were higher in prospective PD cases compared to controls (median (interquartile range) 26.9 (18.1-41.0) vs. 24.7 (16.6-38.4) µg/ml). The OR for PD incidence per one unit increase of log LBP was elevated (1.46, 95% CI 0.98-2.19). This association was more pronounced among women (OR 2.68, 95% CI 1.40-5.13) and overweight/obese subjects (OR 1.54, 95% CI 1.09-2.18). CONCLUSION The findings suggest that higher plasma LBP levels may be associated with an increased risk of PD and may thus pinpoint to a potential role of endotoxemia in the pathogenesis of PD, particularly in women and overweight/obese individuals.
Collapse
Affiliation(s)
- Yujia Zhao
- Institute for Risk Assessment Sciences, Utrecht University, Nieuw Gildestein, Room 3.53, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Christina M Lill
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Bastiaan R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Center of Expertise for Parkinson & Movement Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sirwan K L Darweesh
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Center of Expertise for Parkinson & Movement Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brismar Pinto-Pacheco
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, Mount Sinai, New York, USA
| | - Brooklyn McNeil
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, Mount Sinai, New York, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Myrthe Frissen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Center of Expertise for Parkinson & Movement Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dafina Petrova
- Escuela Andaluza de Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - María-Dolores Chirlaque
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Marcela Guevara
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Instituto de Salud Pública y Laboral de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Maurizio Zibetti
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- SC Neurologia 2U, AOU Città Della Salute E Della Scienza, Turin, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Lefkos Middleton
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
- Public Health Directorate, Imperial College NHS Healthcare Trust, London, UK
| | - Verena Katzke
- Division of Cancer Epidemiology C020, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology C020, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elio Riboli
- Cancer Epidemiology and Prevention Research Unit, School of Public Health, Imperial College London, London, UK
| | - Giovanna Masala
- Clinical Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Sub Directorate for Public Health and Addictions of Gipuzkoa, Ministry of Health of the Basque Government, San Sebastián, Spain
- Epidemiology of Chronic and Communicable Diseases Group, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Mazda Jenab
- Nutrition and Metabolism (NME) Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Susan Peters
- Institute for Risk Assessment Sciences, Utrecht University, Nieuw Gildestein, Room 3.53, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.
- Institute for Risk Assessment Sciences, Utrecht University, Nieuw Gildestein, Room 3.59, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Nieuw Gildestein, Room 3.53, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.
- University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Hayden MR. Brain Endothelial Cells Play a Central Role in the Development of Enlarged Perivascular Spaces in the Metabolic Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1124. [PMID: 37374328 DOI: 10.3390/medicina59061124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Brain capillary endothelial cell(s) (BECs) have numerous functions, including their semipermeable interface-barrier (transfer and diffusion of solutes), trophic (metabolic homeostasis), tonic (vascular hemodynamics), and trafficking (vascular permeability, coagulation, and leukocyte extravasation) functions to provide brain homeostasis. BECs also serve as the brain's sentinel cell of the innate immune system and are capable of antigen presentation. In metabolic syndrome (MetS), there are two regions resulting in the proinflammatory signaling of BECs, namely visceral adipose tissue depots supplying excessive peripheral cytokines/chemokines (pCCs) and gut microbiota dysbiotic regions supplying excessive soluble lipopolysaccharide (sLPS), small LPS-enriched extracellular vesicle exosomes (lpsEVexos), and pCCs. This dual signaling of BECs at their receptor sites results in BEC activation and dysfunction (BECact/dys) and neuroinflammation. sLPS and lpsEVexos signal BECs' toll-like receptor 4, which then signals translocated nuclear factor kappa B (NFkB). Translocated NFkB promotes the synthesis and secretion of BEC proinflammatory cytokines and chemokines. Specifically, the chemokine CCL5 (RANTES) is capable of attracting microglia cells to BECs. BEC neuroinflammation activates perivascular space(s) (PVS) resident macrophages. Excessive phagocytosis by reactive resident PVS macrophages results in a stagnation-like obstruction, which along with increased capillary permeability due to BECact/dys could expand the fluid volume within the PVS to result in enlarged PVS (EPVS). Importantly, this remodeling may result in pre- and post-capillary EPVS that would contribute to their identification on T2-weighted MRI, which are considered to be biomarkers for cerebral small vessel disease.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
18
|
Zhang L, Zhang T, Sun J, Huang Y, Liu T, Ye Z, Hu J, Zhang G, Chen H, Ye Z, He Y, Qin J. Calorie restriction ameliorates hyperglycemia, modulates the disordered gut microbiota, and mitigates metabolic endotoxemia and inflammation in type 2 diabetic rats. J Endocrinol Invest 2023; 46:699-711. [PMID: 36219316 DOI: 10.1007/s40618-022-01914-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE The effects of calorie restriction (CR) on gut microbiota and the mechanism of CR ameliorating hyperglycemia in streptozotocin (STZ)-induced T2DM model rats were explored. METHODS High-fat diet and STZ injection were applied to induce T2DM model rats. Rats were divided into the following three groups: the control-diet ad libitum group, the T2DM model group fed with ad libitum diet, and the T2DM group fed with 30% restriction diet. 16S rRNA sequencing was used to determine the bacterial communities. Lipopolysaccharide (LPS)-binding protein (LBP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were measured. RESULTS Glucose tolerance and insulin sensitivity were improved by CR, as well as the levels of fasting and random plasma glucose. Besides, CR not only modulated the overall structure of gut microbiota but also had selective enrichment in anti-inflammatory bacteria such as Lachnospiraceae_NK4A136_group, Ruminococcaceae_9, Allobaculum, Alistipes, and Oscillibacter, and decreased pro-inflammatory pathogenic bacteria such as Bacteroides, Lachnoclostridium, and Bifidobacterium. Tax4Fun indicated that CR could regulate related functional pathways such as lipopolysaccharide biosynthesis, and the plasma levels of LBP, IL-6, and TNF-α were markedly reduced by CR, suggesting the mechanism of CR ameliorating hyperglycemia may associate with the modulation of disordered gut microbiota and the reduction of metabolic endotoxemia and inflammation. CONCLUSION CR could ameliorate hyperglycemia, the mechanism of which may associate with the alteration of the overall structure of gut microbiota, restoration of disordered microbiota function, and the downregulation of metabolic endotoxemia and inflammation in diabetic rats.
Collapse
Affiliation(s)
- L Zhang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - T Zhang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - J Sun
- Peking University Shenzhen Hospital, Shenzhen, 518035, China
| | - Y Huang
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - T Liu
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Z Ye
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - J Hu
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - G Zhang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - H Chen
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Z Ye
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Y He
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - J Qin
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
19
|
Yin X, Xu Z, Zhang X, Wu J, Lu W. Deficiency of lipopolysaccharide binding protein facilitates adipose browning, glucose uptake and oxygen consumption in mouse embryonic fibroblasts via activating PI3K/Akt/mTOR pathway and inhibiting autophagy. Cell Cycle 2023; 22:967-985. [PMID: 36710409 PMCID: PMC10054173 DOI: 10.1080/15384101.2023.2169521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This study aimed to explore the role of lipopolysaccharide-binding protein (LBP) in adipose browning. Mouse embryonic fibroblasts (MEFs) were treated with differentiation induction reagents and Perifosine (Akt inhibitor), with the transfection of Atg5, short hairpin RNA targeting LBP (shLBP), and Atg5 (shAtg5). The expression levels of LBP, inflammatory markers , brown fat markers, lipid metabolism marker, autophagy markers, insulin signaling-related molecules , p-mTOR, mTOR, p-Akt, Akt, p-PI3K, and PI3K were quantified or determined by Western blot, qRT-PCR, and immunofluorescence assay. The formation of lipid was examined through Oil red O staining assay. The consumption of oxygen was assessed using a Seahorse XF96 analyzer, and the uptake of glucose was evaluated by [3H]-2-deoxy-D-glucose uptake assay. Deficiency of LBP promoted adipose browning, oxygen consumption, glucose uptake, and insulin sensitivity in differentiated MEFs, where it inhibited inflammation and autophagy. All of the effects above were reversed by Atg5 overexpression. Meanwhile, the knockdown of Atg5 strengthened the activation of PI3K/Akt/mTOR pathway induced by the depletion of LBP, while Perifosine partly reversed the activation of differentiated MEFs. The knockdown of LBP facilitated adipose browning, glucose uptake, and oxygen consumption in MEFs via the activation of PI3K/Akt/mTOR pathway and the inhibition of autophagy.
Collapse
Affiliation(s)
- Xueyao Yin
- Department of Endocrinology, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China
| | - Zhiye Xu
- Department of Endocrinology, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China
| | - Xinxin Zhang
- Department of Endocrinology, Jiangshan People's Hospital of Quzhou City, Quzhou, Zhejiang, China
| | - Jiahua Wu
- Department of Endocrinology, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China
| | - Weina Lu
- Department of Endocrinology, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Wang Y, Wen L, Tang H, Qu J, Rao B. Probiotics and Prebiotics as Dietary Supplements for the Adjunctive Treatment of Type 2 Diabetes. Pol J Microbiol 2023; 72:3-9. [PMID: 36929892 DOI: 10.33073/pjm-2023-013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
In modern lifestyles, high-fat diets and prolonged inactivity lead to more people developing type 2 diabetes (T2D). Based on the modern pathogenesis of T2D, food, and its components have become one of the top concerns for patients. Recent studies have found that dysbiosis and gut-related inflammation are more common in T2D patients. Probiotics and prebiotics play complementary roles in the gut as dietary supplements. Together, they may help improve dysbiosis and intestinal inflammation in people with T2D, increase the production of blood glucose-lowering hormones such as incretin, and help reduce insulin resistance and lower blood glucose. Therefore, changing the dietary structure and increasing the intake of probiotics and prebiotics is expected to become a new strategy for the adjuvant treatment of T2D.
Collapse
Affiliation(s)
- Yuying Wang
- 1Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- 2Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, China
| | - Lina Wen
- 1Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- 2Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, China
| | - Huazhen Tang
- 1Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- 2Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, China
| | - Jinxiu Qu
- 1Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- 2Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, China
| | - Benqiang Rao
- 1Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- 2Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, China
| |
Collapse
|
21
|
Takeuchi T, Kameyama K, Miyauchi E, Nakanishi Y, Kanaya T, Fujii T, Kato T, Sasaki T, Tachibana N, Negishi H, Matsui M, Ohno H. Fatty acid overproduction by gut commensal microbiota exacerbates obesity. Cell Metab 2023; 35:361-375.e9. [PMID: 36652945 DOI: 10.1016/j.cmet.2022.12.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 07/25/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023]
Abstract
Although recent studies have highlighted the impact of gut microbes on the progression of obesity and its comorbidities, it is not fully understood how these microbes promote these disorders, especially in terms of the role of microbial metabolites. Here, we report that Fusimonas intestini, a commensal species of the family Lachnospiraceae, is highly colonized in both humans and mice with obesity and hyperglycemia, produces long-chain fatty acids such as elaidate, and consequently facilitates diet-induced obesity. High fat intake altered the expression of microbial genes involved in lipid production, such as the fatty acid metabolism regulator fadR. Monocolonization with a FadR-overexpressing Escherichia coli exacerbated the metabolic phenotypes, suggesting that the change in bacterial lipid metabolism is causally involved in disease progression. Mechanistically, the microbe-derived fatty acids impaired intestinal epithelial integrity to promote metabolic endotoxemia. Our study thus provides a mechanistic linkage between gut commensals and obesity through the overproduction of microbe-derived lipids.
Collapse
Affiliation(s)
- Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Keishi Kameyama
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
| | - Eiji Miyauchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Yumiko Nakanishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Takashi Kanaya
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Takayoshi Fujii
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Takaharu Sasaki
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Naoko Tachibana
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Hiroki Negishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Misato Matsui
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan.
| |
Collapse
|
22
|
Ultrastructural Remodeling of the Blood-Brain Barrier and Neurovascular Unit by Lipopolysaccharide-Induced Neuroinflammation. Int J Mol Sci 2023; 24:ijms24021640. [PMID: 36675154 PMCID: PMC9862046 DOI: 10.3390/ijms24021640] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The blood-brain barrier (BBB) is an interface primarily comprised of brain endothelial cells (BECs), separating the central nervous system (CNS) from the systemic circulation while carefully regulating the transport of molecules and inflammatory cells, and maintaining the required steady-state environment. Inflammation modulates many BBB functions, but the ultrastructural cytoarchitectural changes of the BBB with inflammation are understudied. Inflammation was induced in male 8-10-week-old CD-1 mice with intraperitoneal lipopolysaccharide (LPS), using a regimen (3 mg/kg at 0, 6, and 24 h) that caused robust BBB disruption but had minimal lethality at the study timepoint of 28 h. Perfusion-fixed brains were collected and the frontal cortical layer III regions were analyzed using a transmission electron microscopy (TEM). The LPS-treated mice had pronounced ultrastructural remodeling changes in BECs that included plasma membrane ruffling, increased numbers of extracellular microvesicles, small exosome formation, aberrant BEC mitochondria, increased BEC transcytosis, while tight junctions appeared to be unaltered. Aberrant pericytes were contracted with rounded nuclei and a loss of their elongated cytoplasmic processes. Surveilling microglial cells were attracted to the neurovascular unit (NVU) of BECs, and astrocyte detachment and separation were associated with the formation of a perivascular space and pericapillary edema. The LPS treatment resulted in numerous ultrastructural aberrant remodeling changes to the neurovascular unit's BECs, microglia, pericytes, and astrocytes. In summary, a disturbance of the NVU morphology is a consequence of LPS treatment.
Collapse
|
23
|
Role of gut microbiota-derived branched-chain amino acids in the pathogenesis of Parkinson's disease: An animal study. Brain Behav Immun 2022; 106:307-321. [PMID: 36126853 DOI: 10.1016/j.bbi.2022.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/14/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroinflammation caused by the disorder of gut microbiota and its metabolites is associated with the pathogenesis of Parkinson's disease (PD). Thus, it is necessary to identify certain molecules derived from gut microbiota to verify whether they could become intervention targets for the treatment of PD. The branched-chain amino acids (BCAAs), as a common dietary supplement, could modulate brain function. Herein, we investigated the longitudinal shifts of microbial community in mice treated with rotenone for 0, 3 and 4 weeks by 16S rRNA gene sequencing to identify the microbial markers at different PD stages. Serum BCAAs were determined by gas chromatography-mass spectrometry. Then, rotenone-induced mice were given a high BCAA diet to evaluate the motor and non-motor functions, dopaminergic neuron loss, and inflammation levels. Using a PD mouse model, we discovered that during PD progression, the alterations of gut microbiota compositions led to the peripheral decrease of BCAAs. Based on the serum lipopolysaccharide binding protein concentrations and the levels of pro-inflammatory factors (including tumor necrosis factor-α, interleukin [IL]-1β, and IL-6) in the colon and substantia nigra, we found that the high BCAA diet could attenuate the inflammatory levels in PD mice, and reverse motor and non-motor dysfunctions and dopaminergic neuron impairment. Together, our results emphasize the dynamic changes of gut microbiota and BCAA metabolism and propose a novel strategy for PD therapy: a high BCAA diet intervention could improve PD progression by regulating the levels of inflammation.
Collapse
|
24
|
Li T, Lu M, Xu B, Chen H, Li J, Zhu Z, Yu M, Zheng J, Peng P, Wu S. Multiple perspectives reveal the gut toxicity of polystyrene microplastics on Eisenia fetida: Insights into community signatures of gut bacteria and their translocation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156352. [PMID: 35654182 DOI: 10.1016/j.scitotenv.2022.156352] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/13/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The gut is the primary pathway by which soil animals are exposed to microplastics (MPs). However, the gut toxicity of MPs has not been elucidated in earthworms. Herein, we aimed to study the gut toxicity (e.g., gut barrier dysfunction, gut bacterial translocation, and pathogen invasion) of polystyrene microplastics (PS-MPs) on Eisenia fetida and its relationship with gut bacteria. We found that PS-MPs exposure caused gut barrier damage to Eisenia fetida. This damage included apparent injury of gut epithelial cells and significantly lower transcription levels of genes coding for gut tight junction (TJ)-related proteins. We then observed significantly increased levels of bacterial lipopolysaccharide (LPS) and gut bacterial load, indicating the occurrence of gut bacterial translocation and related barrier damage. Subsequently, antibacterial immune responses were activated and accompanied by a failure of the antioxidant defense system, indicating that pathogen invasion might occur. Gut barrier damage could weaken host selective pressures (deterministic process) on gut bacteria, such as particular pathogens. Indeed, members of Proteobacteria, e.g., Aeromonas and Escherichia/Shigella, regarded as potential opportunistic pathogens, were remarkable signatures of groups exposed to PS-MPs. These potential opportunistic gut bacteria were pivotal contributors to gut TJ damage and gut bacterial translocation resulting from PS-MPs exposure. In addition, the gut bacterial networks of PS-MPs exposure groups were more uncomplicated than those of the control group, but more negative interactions were easy to observe. In conclusion, our work sheds light on the molecular mechanism of earthworm gut toxicity caused by PS-MPs exposure and provides a prospective risk assessment of MPs in soil ecosystems.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengtian Lu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Baohua Xu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Chen
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhenzhen Zhu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengwei Yu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiaoyang Zheng
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peilong Peng
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shijin Wu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
25
|
Latorre J, Díaz-Trelles R, Comas F, Gavaldà-Navarro A, Milbank E, Dragano N, Morón-Ros S, Mukthavaram R, Ortega F, Castells-Nobau A, Oliveras-Cañellas N, Ricart W, Karmali PP, Tachikawa K, Chivukula P, Villarroya F, López M, Giralt M, Fernández-Real JM, Moreno-Navarrete JM. Downregulation of hepatic lipopolysaccharide binding protein improves lipogenesis-induced liver lipid accumulation. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:599-613. [PMID: 36090751 PMCID: PMC9418749 DOI: 10.1016/j.omtn.2022.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
Circulating lipopolysaccharide-binding protein (LBP) is increased in individuals with liver steatosis. We aimed to evaluate the possible impact of liver LBP downregulation using lipid nanoparticle-containing chemically modified LBP small interfering RNA (siRNA) (LNP-Lbp UNA-siRNA) on the development of fatty liver. Weekly LNP-Lbp UNA-siRNA was administered to mice fed a standard chow diet, a high-fat and high-sucrose diet, and a methionine- and choline-deficient diet (MCD). In mice fed a high-fat and high-sucrose diet, which displayed induced liver lipogenesis, LBP downregulation led to reduced liver lipid accumulation, lipogenesis (mainly stearoyl-coenzyme A desaturase 1 [Scd1]) and lipid peroxidation-associated oxidative stress markers. LNP-Lbp UNA-siRNA also resulted in significantly decreased blood glucose levels during an insulin tolerance test. In mice fed a standard chow diet or an MCD, in which liver lipogenesis was not induced or was inhibited (especially Scd1 mRNA), liver LBP downregulation did not impact on liver steatosis. The link between hepatocyte LBP and lipogenesis was further confirmed in palmitate-treated Hepa1-6 cells, in primary human hepatocytes, and in subjects with morbid obesity. Altogether, these data indicate that siRNA against liver Lbp mRNA constitutes a potential target therapy for obesity-associated fatty liver through the modulation of hepatic Scd1.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | | | - Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Aleix Gavaldà-Navarro
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, CIBEROBN (CB06/03/025), 08028 Barcelona, Catalonia, Spain
| | - Edward Milbank
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Nathalia Dragano
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Samantha Morón-Ros
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, CIBEROBN (CB06/03/025), 08028 Barcelona, Catalonia, Spain
| | | | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | | | | | | | - Francesc Villarroya
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, CIBEROBN (CB06/03/025), 08028 Barcelona, Catalonia, Spain
| | - Miguel López
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Marta Giralt
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, CIBEROBN (CB06/03/025), 08028 Barcelona, Catalonia, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Department of Medicine, University of Girona, 17003 Girona, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Corresponding author José María Moreno-Navarrete, PhD, Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain.
| |
Collapse
|
26
|
Lin TY, Chang YK, Wu MY, Wu TK, Chen CH, Lim PS. Serum Lipopolysaccharide-Binding Protein Levels and Cardiovascular Events in Hemodialysis Patients: A Prospective Cohort Study. Nephrology (Carlton) 2022; 27:877-885. [PMID: 36045565 DOI: 10.1111/nep.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Patients with end-stage kidney disease (ESKD) exhibit an elevated cardiovascular risk. Chronic inflammation is one of the main mechanisms of cardiovascular disease (CVD). Lipopolysaccharide has been proposed as a link between systemic inflammation and CVD. Herein, we evaluated whether lipopolysaccharide-binding protein (LBP), a surrogate marker of lipopolysaccharide and consequent inflammation, is associated with cardiovascular events in ESKD. METHODS We performed a prospective cohort study of maintenance hemodialysis patients. Baseline serum LBP levels were categorized into tertiles and also modeled continuously for analyses. Cox regression methods were used to evaluate the association of serum LBP levels with cardiovascular events. RESULTS A total of 360 hemodialysis patients were included in this analysis. During a median follow-up of 3.1 years, 90 (25.0%) patients had cardiovascular events. Patients in the upper tertile of serum LBP levels had a significantly greater risk of cardiovascular events (hazard ratio [HR] 4.87; 95% confidence intervals [CI], 2.12-11.15) than those in the lower tertile, independent of age, sex, hypertension, diabetes, CVD, dialysis vintage, body mass index, non-high-density lipoprotein cholesterol, albumin, phosphorus, high-sensitivity C-reactive protein, and interleukin-6. The association was consistent regardless of whether competing risk of death was accounted for (subdistribution HR 4.87; 95% CI, 1.96-12.11 for upper versus lower tertiles) or serum LBP was analysed as a continuous variable (HR 1.30; 95% CI, 1.02-1.66 per 1 SD increment). CONCLUSIONS Serum LBP levels were independently associated with cardiovascular events in heomodialysis patients. LBP might serve as a novel biomarker for CVD in ESKD.
Collapse
Affiliation(s)
- Ting-Yun Lin
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yu-Kang Chang
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan.,Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Ming-Yin Wu
- Division of Renal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Tsai-Kun Wu
- Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan.,Division of Renal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chang-Hsu Chen
- Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan.,Division of Renal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Paik-Seong Lim
- Division of Renal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan.,Institute of Biomedical Science, College of Life Science, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
27
|
Li T, Tian D, Lu M, Wang B, Li J, Xu B, Chen H, Wu S. Gut microbiota dysbiosis induced by polychlorinated biphenyl 126 contributes to increased brain proinflammatory cytokines: Landscapes from the gut-brain axis and fecal microbiota transplantation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113726. [PMID: 35691195 DOI: 10.1016/j.ecoenv.2022.113726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The pathogenesis of brain inflammation induced by polychlorinated biphenyl 126 (PCB126) has not yet been fully illustrated. Growing evidence highlights the relevance of the microbiota-gut-brain axis in central nervous system (CNS) dysfunction. Therefore, we aimed to study the role of the gut microbiota in PCB126-induced proinflammatory cytokine increases in the mouse brain. The results showed that PCB126 exposure significantly disordered gut bacterial communities, resulting in the enrichment of gram-negative bacteria (e.g., Bacteroidetes and Proteobacteria), further leading to elevated levels of the gram-negative bacterial lipopolysaccharide (LPS). Subsequently, colonic toll-like receptor 4 (TLR-4) was activated by bacterial LPS, which promoted proinflammatory cytokine generation and inhibited tight junction (TJ) protein expression. Then, bacterial LPS translocated from the gut lumen into the blood circulation and reached the brain, triggering LPS/TLR-4-mediated increases in brain proinflammatory cytokines. Further analysis after fecal microbiota transplantation (FMT) suggested that the gut microbiota disturbance caused by PCB126 could induce elevated bacterial LPS and trigger TLR-4-mediated increases in proinflammatory cytokines in the brain. This study highlights the possibility that PCB126-induced gut microbiota disorder contributes to increased brain proinflammatory cytokines. These results provide a new perspective for identifying the toxicity mechanisms of PCB126 and open up the possibility of modulating the gut microbiota as a therapeutic target for CNS disease caused by environmental pollution.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongcan Tian
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengtian Lu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bijiao Wang
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Baohua Xu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Chen
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shijin Wu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
28
|
Downregulation of peripheral lipopolysaccharide binding protein impacts on perigonadal adipose tissue only in female mice. Biomed Pharmacother 2022; 151:113156. [PMID: 35643066 DOI: 10.1016/j.biopha.2022.113156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND AND AIMS The sexual dimorphism in fat-mass distribution and circulating leptin and insulin levels is well known, influencing the progression of obesity-associated metabolic disease. Here, we aimed to investigate the possible role of lipopolysaccharide-binding protein (LBP) in this sexual dimorphism. METHODS The relationship between plasma LBP and fat mass was evaluated in 145 subjects. The effects of Lbp downregulation, using lipid encapsulated unlocked nucleomonomer agent containing chemically modified-siRNA delivery system, were evaluated in mice. RESULTS Plasma LBP levels were associated with fat mass and leptin levels in women with obesity, but not in men with obesity. In mice, plasma LBP downregulation led to reduced weight, fat mass and leptin gain after a high-fat and high-sucrose diet (HFHS) in females, in parallel to increased expression of adipogenic and thermogenic genes in visceral adipose tissue. This was not observed in males. Plasma LBP downregulation avoided the increase in serum LPS levels in HFHS-fed male and female mice. Serum LPS levels were positively correlated with body weight and fat mass gain, and negatively with markers of adipose tissue function only in female mice. The sexually dimorphic effects were replicated in mice with established obesity. Of note, LBP downregulation led to recovery of estrogen receptor alpha (Esr1) mRNA levels in females but not in males. CONCLUSION LBP seems to exert a negative feedback on ERα-mediated estrogen action, impacting on genes involved in thermogenesis. The known decreased estrogen action and negative effects of metabolic endotoxemia may be targeted through LBP downregulation.
Collapse
|
29
|
Perng W, Friedman JE, Janssen RC, Glueck DH, Dabelea D. Endotoxin Biomarkers Are Associated With Adiposity and Cardiometabolic Risk Across 6 Years of Follow-up in Youth. J Clin Endocrinol Metab 2022; 107:e3018-e3028. [PMID: 35276001 PMCID: PMC9202713 DOI: 10.1210/clinem/dgac149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Metabolic endotoxemia may be a shared mechanism underlying childhood obesity and early-onset metabolic diseases (eg, type 2 diabetes, nonalcoholic fatty liver disease). OBJECTIVE Examine prospective associations of serum endotoxin biomarkers lipopolysaccharide (LPS) and its binding protein, LPS binding protein (LBP), and anti-endotoxin core immunoglobulin G (EndoCab IgG) with adiposity and cardiometabolic risk in youth. DESIGN/SETTING This prospective study included 393 youth in the Exploring Perinatal Outcomes Among Children cohort in Colorado. Participants were recruited from 2006 to 2009 at age 10 years (baseline) and followed for 6 years (follow-up). We examined associations of endotoxin biomarkers at baseline with adiposity [body mass index (BMI) z-score, visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), skinfolds, waist circumference] and cardiometabolic risk (insulin, glucose, adipokines, lipid profile, blood pressure) across both visits using mixed-effects regression, and with hepatic fat fraction (HFF) at follow-up using linear regression. RESULTS Higher LPS and LBP predicted greater adiposity across follow-up. Each 1-unit log-transformed LPS corresponded with 0.23 (95% CI 0.03, 0.43) units BMI z-score, 5.66 (95% CI 1.99, 9.33) mm3 VAT, 30.7 (95% CI 8.0, 53.3) mm3 SAT, and 8.26 (95% CI 4.13, 12.40) mm skinfold sum. EndoCab IgG was associated with VAT only [3.03 (95% CI 0.34, 5.71) mm3]. LPS was associated with higher insulin [1.93 (95% CI 0.08, 3.70) µU/mL] and leptin [2.28 (95% CI 0.66, 3.90) ng/mL] and an adverse lipid profile. No association was observed with HFF. Accounting for pubertal status and lifestyle behaviors did not change findings. However, adjustment for prepregnancy BMI and gestational diabetes attenuated most associations. CONCLUSIONS Serum endotoxin may be a marker of pathophysiological processes underlying development of childhood obesity and cardiometabolic conditions associated with exposure to fetal overnutrition.
Collapse
Affiliation(s)
- Wei Perng
- Correspondence: Wei Perng, University of Colorado Denver, Anschutz Medical Campus, 12474 E. 19th Ave, Room 208, Aurora, CO 80045, USA.
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, School of Medicine, Oklahoma City, OK, USA
| | - Rachel C Janssen
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, School of Medicine, Oklahoma City, OK, USA
| | - Deborah H Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| |
Collapse
|
30
|
Lee JH, Park JH. Host-microbial interactions in metabolic diseases: from diet to immunity. JOURNAL OF MICROBIOLOGY (SEOUL, KOREA) 2022; 60:561-575. [PMID: 35511325 DOI: 10.1007/s12275-022-2087-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Growing evidence suggests that the gut microbiome is an important contributor to metabolic diseases. Alterations in microbial communities are associated with changes in lipid metabolism, glucose homeostasis, intestinal barrier functions, and chronic inflammation, all of which can lead to metabolic disorders. Therefore, the gut microbiome may represent a novel therapeutic target for obesity, type 2 diabetes, and nonalcoholic fatty liver disease. This review discusses how gut microbes and their products affect metabolic diseases and outlines potential treatment approaches via manipulation of the gut microbiome. Increasing our understanding of the interactions between the gut microbiome and host metabolism may help restore the healthy symbiotic relationship between them.
Collapse
Affiliation(s)
- Ju-Hyung Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
31
|
Latorre J, Ortega F, Oliveras-Cañellas N, Comas F, Lluch A, Gavaldà-Navarro A, Morón-Ros S, Ricart W, Villarroya F, Giralt M, Fernández-Real JM, Moreno-Navarrete JM. Specific adipose tissue Lbp gene knockdown prevents diet-induced body weight gain, impacting fat accretion-related gene and protein expression. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:870-879. [PMID: 35141047 PMCID: PMC8807983 DOI: 10.1016/j.omtn.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 01/07/2022] [Indexed: 11/15/2022]
Abstract
Lipopolysaccharide binding protein (Lbp) has been recently identified as a relevant component of innate immunity response associated to adiposity. Here, we aimed to investigate the impact of adipose tissue Lbp on weight gain and white adipose tissue (WAT) in male and female mice fed an obesogenic diet. Specific adipose tissue Lbp gene knockdown was achieved through lentiviral particles containing shRNA-Lbp injected through surgery intervention. In males, WAT Lbp mRNA levels increased in parallel to fat accretion, and specific WAT Lbp gene knockdown led to reduced body weight gain, decreased fat accretion-related gene and protein expression, and increased inguinal WAT basal lipase activity, in parallel to lowered plasma free fatty acids, leptin, triglycerides but higher glycerol levels, resulting in slightly improved insulin action in the insulin tolerance test. In both males and females, inguinal WAT Lbp gene knockdown resulted in increased Ucp1 and Ppargc1a mRNA and Ucp1 protein levels, confirming adipose Lbp as a WAT browning repressor. In perigonadal WAT, Lbp gene knockdown also resulted in increased Ucp1 mRNA levels, but only in female mice, in which it was 500-fold increased. These data suggest specific adipose tissue Lbp gene knockdown as a possible therapeutic approach in the prevention of obesity-associated fat accretion.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Aina Lluch
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Aleix Gavaldà-Navarro
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina-Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Samantha Morón-Ros
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina-Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Francesc Villarroya
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina-Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Marta Giralt
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina-Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17071 Girona, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17071 Girona, Spain
- Corresponding author J.M. Moreno-Navarrete, Ph.D, Section of Nutrition, Eumetabolism and Health, Biomedical Research Institute of Girona “Dr Josep Trueta”, C/ Dr. Castany s/n, 17190 Salt, Spain.
| |
Collapse
|
32
|
Chen S, Zong G, Wu Q, Yun H, Niu Z, Zheng H, Zeng R, Sun L, Lin X. Associations of plasma glycerophospholipid profile with modifiable lifestyles and incident diabetes in middle-aged and older Chinese. Diabetologia 2022; 65:315-328. [PMID: 34800146 DOI: 10.1007/s00125-021-05611-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/17/2021] [Indexed: 10/19/2022]
Abstract
AIMS/HYPOTHESIS Glycerophospholipid (GPL) perturbance was linked to the pathogenesis of diabetes in animal studies but prospective studies in humans are rare, particularly in Asians. We aimed to investigate the associations between plasma GPLs and incident diabetes and to explore effects of lifestyle on the associations in a Chinese population. METHODS The study included 1877 community-dwelling Chinese individuals aged 50-70 years (751 men and 1126 women), free of diabetes at baseline and followed for 6 years. A total of 160 GPL species were quantified in plasma at baseline by using high-throughput targeted lipidomics. Log-Poisson regression was used to assess the associations between GPLs and incidence of diabetes. RESULTS Over the 6 years of follow-up, 499 participants (26.6%) developed diabetes. After multivariable adjustment, eight GPLs were positively associated with incident diabetes (RRper SD 1.13-1.25; all false-discovery rate [FDR]-corrected p < 0.05), including five novel GLPs, namely phosphatidylcholines (PCs; 16:0/18:1, 18:0/16:1, 18:1/20:3), lysophosphatidylcholine (LPC; 20:3) and phosphatidylethanolamine (PE; 16:0/16:1), and three reported GPLs (PCs 16:0/16:1, 16:0/20:3 and 18:0/20:3). In network analysis, a PC-containing module was positively associated with incident diabetes (RRper SD 1.16 [95% CI 1.06, 1.26]; FDR-corrected p < 0.05). Notably, three of the diabetes-associated PCs (16:0/16:1, 16:0/18:1 and 18:0/16:1) and PE (16:0/16:1) were associated not only with fatty acids in the de novo lipogenesis (DNL) pathway, especially 16:1n-7 (Spearman correlation coefficients = 0.35-0.62, p < 0.001), but also with an unhealthy dietary pattern high in refined grains and low in fish, dairy and soy products (|factor loadings| ≥0.2). When stratified by physical activity levels, the associations of the eight GPLs and the PC module with incident diabetes were stronger in participants with lower physical activity (RRper SD 1.24-1.49, FDR-corrected p < 0.05) than in those with the median and higher physical activity levels (RRper SD 1.03-1.12, FDR-corrected p ≥ 0.05; FDR-corrected pinteraction < 0.05). CONCLUSIONS/INTERPRETATION Eight GPLs, especially PCs associated with the DNL pathway, were positively associated with incident diabetes in a cohort of Chinese men and women. The associations were most prominent in participants with a low level of physical activity.
Collapse
Affiliation(s)
- Shuangshuang Chen
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Geng Zong
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingqing Wu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Huan Yun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenhua Niu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - He Zheng
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zeng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Liang Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Xu Lin
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
33
|
Wang X, Lu S, Fang Z, Wang H, Zhu J, Zhao J, Zhang H, Hong K, Lu W, Chen W. A recommended amount of hydrolyzed protein improves physiological function by regulating gut microbiota in aged mice. Food Res Int 2022; 154:110970. [DOI: 10.1016/j.foodres.2022.110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 11/04/2022]
|
34
|
Lipopolysaccharide-Induced Transcriptional Changes in LBP-Deficient Rat and Its Possible Implications for Liver Dysregulation during Sepsis. J Immunol Res 2022; 2021:8356645. [PMID: 35005033 PMCID: PMC8739918 DOI: 10.1155/2021/8356645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Sepsis is an organ dysfunction caused by the dysregulated inflammatory response to infection. Lipopolysaccharide-binding protein (LBP) binds to lipopolysaccharide (LPS) and modulates the inflammatory response. A rare systematic study has been reported to detect the effect of LBP gene during LPS-induced sepsis. Herein, we explored the RNA sequencing technology to profile the transcriptomic changes in liver tissue between LBP-deficient rats and WT rats at multiple time points after LPS administration. We proceeded RNA sequencing of liver tissue to search differentially expressed genes (DEGs) and enriched biological processes and pathways between WT and LBP-deficient groups at 0 h, 6 h, and 24 h. In total, 168, 284, and 307 DEGs were identified at 0 h, 6 h, and 24 h, respectively, including Lrp5, Cyp7a1, Nfkbiz, Sigmar1, Fabp7, and Hao1, which are related to the inflammatory or lipid-related process. Functional enrichment analysis revealed that inflammatory response to LPS mediated by Ifng, Cxcl10, Serpine1, and Lbp was enhanced at 6 h, while lipid-related metabolism associated with C5, Cyp4a1, and Eci1 was enriched at 24 h after LPS administration in the WT samples. The inflammatory process was not found when the LBP gene was knocked out; lipid-related metabolic process and peroxisome proliferator-activated receptor (PPAR) signaling pathway mediated by Dhrs7b and Tysnd1 were significantly activated in LBP-deficient samples. Our study suggested that the invading LPS may interplay with LBP to activate the nuclear factor kappa B (NF-κB) signaling pathway and trigger uncontrolled inflammatory response. However, when inhibiting the activity of NF-κB, lipid-related metabolism would make bacteria removal via the effect on the PPAR signaling pathway in the absence of LBP gene. We also compared the serum lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) levels using the biochemistry analyzer and analyzed the expression of high mobility group box 1 (HMGB1) and cleaved-caspase 3 with immunohistochemistry, which further validated our conclusion.
Collapse
|
35
|
Gut microbiome dysbiosis in inflammatory bowel disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:179-204. [DOI: 10.1016/bs.pmbts.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
SEKI M, MIWA A, OHSAKA F, KARATSU Y, TSURUTA T, HINO S, MORITA T, SONOYAMA K. Local free fatty acids trigger the expression of lipopolysaccharide-binding protein in murine white adipose tissue. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:54-65. [PMID: 35433160 PMCID: PMC8970656 DOI: 10.12938/bmfh.2021-061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/26/2021] [Indexed: 11/05/2022]
Abstract
Although lipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase protein mainly
produced by hepatocytes, it has also been proposed to be a pro-inflammatory adipokine.
Obesity and the consumption of a high-fat diet (HFD) are reportedly associated with
elevated levels of LPS in plasma and free fatty acids (FFAs) in white adipose tissue
(WAT). We examined whether circulating LPS or local FFAs are responsible for the
HFD-induced increase of LBP in WAT. Male C57BL/6J mice were fed either a normal-fat diet
(NFD) or an HFD. The mRNA levels in the liver and mesenteric WAT (mWAT), total FFA content
in mWAT, and LBP and LPS concentrations in plasma were determined. The
Lbp mRNA level in mWAT was higher in mice fed the HFD than in those fed
the NFD for 3, 7, or 28 days or 14 weeks, whereas the hepatic Lbp mRNA
level did not differ between the groups. The Lbp mRNA level in mWAT was
also increased by the HFD in germ-free mice, which do not have gut microbiota, the source
of LPS. The plasma LPS level did not show a significant correlation with the mWAT
Lbp mRNA level. The total FFA content in mWAT was higher in mice fed
the HFD than in those fed the NFD and positively correlated with the Lbp
mRNA level. Supplementation with palmitic acid increased the Lbp mRNA
level in 3T3-L1 adipocytes. We propose that local FFAs, but not circulating LPS, are the
trigger for increased Lbp expression in mWAT of mice fed the HFD.
Collapse
Affiliation(s)
- Manami SEKI
- Graduate School of Life Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Akiho MIWA
- Graduate School of Life Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Fumina OHSAKA
- Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Yugo KARATSU
- Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Takeshi TSURUTA
- Graduate School of Environmental and Life Science, Okayama University, 2-1-1 Tsushima-Naka, Kita-ku, Okayama-shi, Okayama 700-8530, Japan
| | - Shingo HINO
- College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka-shi, Shizuoka 422-8529, Japan
| | - Tatsuya MORITA
- College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka-shi, Shizuoka 422-8529, Japan
| | - Kei SONOYAMA
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| |
Collapse
|
37
|
Page MJ, Kell DB, Pretorius E. The Role of Lipopolysaccharide-Induced Cell Signalling in Chronic Inflammation. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2022; 6:24705470221076390. [PMID: 35155966 PMCID: PMC8829728 DOI: 10.1177/24705470221076390] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022]
Abstract
Lipopolysaccharide (LPS) is the main structural component of the outer membrane of most Gram-negative bacteria and has diverse immunostimulatory and procoagulant effects. Even though LPS is well described for its role in the pathology of sepsis, considerable evidence demonstrates that LPS-induced signalling and immune dysregulation are also relevant in the pathophysiology of many diseases, characteristically where endotoxaemia is less severe. These diseases are typically chronic and progressive in nature and span broad classifications, including neurodegenerative, metabolic, and cardiovascular diseases. This Review reappraises the mechanisms of LPS-induced signalling and emphasises the crucial contribution of LPS to the pathology of multiple chronic diseases, beyond conventional sepsis. This perspective asserts that new ways of approaching chronic diseases by targeting LPS-driven pathways may be of therapeutic benefit in a wide range of chronic inflammatory conditions.
Collapse
Affiliation(s)
| | - Douglas B Kell
- Stellenbosch University, Stellenbosch, South Africa.,Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
38
|
Exploring the Link between Leaky-Gut-Related Markers and Metabolic Health in a Large Dutch Adult Population. Metabolites 2021; 11:metabo11120877. [PMID: 34940635 PMCID: PMC8706458 DOI: 10.3390/metabo11120877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
A leaky gut can trigger chronic inflammation and poses a primary risk for metabolic diseases. This study established a relationship between intestinal integrity (leaky gut) and metabolic health in a general population. Leaky-gut markers (LGMs) were studied in a large population of Dutch adults with a broad spectrum of metabolic health. This study enrolled 500 individuals selected within the NQplus cohort study (n = 2048) by stratified randomization, based on waist circumference, fasting glucose, and high-density lipoprotein (HDL) cholesterol to obtain a representative and balanced population in terms of metabolic health parameters, sex (male/female), and age (<54/≥54 years). LGMs-zonulin, lipopolysaccharide-binding protein (LBP), and soluble CD14 (sCD14)-were measured in EDTA plasma or serum. Zonulin was most strongly associated with metabolic health. Zonulin and LBP were most strongly associated with the inflammatory marker C-reactive protein (CRP). The quartile analysis for zonulin and LBP showed that most metabolic health parameters and CRP levels increased from Q1 to Q4, with significant differences between quartiles, except for markers related to glucose homeostasis (glucose and glycated hemoglobin A1c (HbA1c)). Associations between LGMs and metabolic health parameters in this large Dutch adult population indicate that LGMs are valuable markers for identifying people at risk of a leaky gut and subsequent chronic inflammation linked to metabolic disorders.
Collapse
|
39
|
Roux-en-Y Gastric Bypass Improved Insulin Resistance via Alteration of the Human Gut Microbiome and Alleviation of Endotoxemia. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5554991. [PMID: 34337024 PMCID: PMC8294027 DOI: 10.1155/2021/5554991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/30/2021] [Accepted: 06/06/2021] [Indexed: 12/25/2022]
Abstract
Background Obesity is a main contributing factor for the development of glucose intolerance and type 2 diabetes mellitus (T2D). Roux-en-Y gastric bypass (RYGB) is believed to be one of the most effective treatments to reduce body weight and improve glucose metabolism. In this study, we sought to explore the underlying mechanisms of weight reduction and insulin resistance improvement after RYGB. Methods This was a prospective observational study using consecutive samples of 14 obese subjects undergoing bariatric surgery. Main assessments were serum indexes (blood metabolites, glucose-lipid regulating hormones, trimethylamine-N-oxide (TMAO), and lipopolysaccharide-binding protein (LBP), fecal short-chain fatty acids (SCFAs), and gut microbiota. Correlation analysis of the factors changed by RYGB was used to indicate the potential mechanism by which surgery improves insulin resistance. Results The subjects showed significant improvement on indices of obesity and insulin resistance and a correlated change of gut microbiota components at 1 month, 3 months, and 6 months post-RYGB operation. In particular, the abundance of a counterobese strain, Akkemansia muciniphila, had gradually increased with the postoperative time. Moreover, these changes were negatively correlated to serum levels of LBP and positively correlated to serum TMAO and fecal SCFAs. Conclusions Our findings uncovered links between intestinal microbiota alterations, circulating endotoxemia, and insulin resistance. This suggests that the underlying mechanism of protection of the intestine by RYGB in obesity may be through changing the gut microbiota.
Collapse
|
40
|
Zakaria NF, Hamid M, Khayat ME. Amino Acid-Induced Impairment of Insulin Signaling and Involvement of G-Protein Coupling Receptor. Nutrients 2021; 13:nu13072229. [PMID: 34209599 PMCID: PMC8308393 DOI: 10.3390/nu13072229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Amino acids are needed for general bodily function and well-being. Despite their importance, augmentation in their serum concentration is closely related to metabolic disorder, insulin resistance (IR), or worse, diabetes mellitus. Essential amino acids such as the branched-chain amino acids (BCAAs) have been heavily studied as a plausible biomarker or even a cause of IR. Although there is a long list of benefits, in subjects with abnormal amino acids profiles, some amino acids are correlated with a higher risk of IR. Metabolic dysfunction, upregulation of the mammalian target of the rapamycin (mTOR) pathway, the gut microbiome, 3-hydroxyisobutyrate, inflammation, and the collusion of G-protein coupled receptors (GPCRs) are among the indicators and causes of metabolic disorders generating from amino acids that contribute to IR and the onset of type 2 diabetes mellitus (T2DM). This review summarizes the current understanding of the true involvement of amino acids with IR. Additionally, the involvement of GPCRs in IR will be further discussed in this review.
Collapse
Affiliation(s)
- Nur Fatini Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mohd Ezuan Khayat
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
41
|
Snelson M, de Pasquale C, Ekinci EI, Coughlan MT. Gut microbiome, prebiotics, intestinal permeability and diabetes complications. Best Pract Res Clin Endocrinol Metab 2021; 35:101507. [PMID: 33642218 DOI: 10.1016/j.beem.2021.101507] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes is a metabolic condition. The composition of the gut microbiota is altered in diabetes with reduced levels of short chain fatty acids (SCFA) producers, notably butyrate. Butyrate is associated with a number of beneficial effects including promoting the integrity of the gastrointestinal barrier. Diabetes may lead to an increase in the permeability of the gut barrier, which is thought to contribute to systemic inflammation and worsen the microvascular complications of diabetes. Prebiotics, non-digestible carbohydrates, are fermented by the colonic microbiota leading to the production of a range of metabolites including SCFAs. Thus, prebiotics represent a dietary approach to increase levels of microbially produced SCFAs and improve intestinal permeability in diabetes. Whether prebiotics can lead to a reduction in the risk of developing diabetes complications in individuals with type 2 diabetes needs to be explored.
Collapse
Affiliation(s)
- Matthew Snelson
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia.
| | - Cassandra de Pasquale
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Elif I Ekinci
- Department of Endocrinology, Austin Health, Australia; Department of Medicine Austin Health, Melbourne Medical School, The University of Melbourne, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
42
|
Banaszewska B, Siakowska M, Chudzicka-Strugala I, Chang RJ, Pawelczyk L, Zwozdziak B, Spaczynski R, Duleba AJ. Elevation of markers of endotoxemia in women with polycystic ovary syndrome. Hum Reprod 2021; 35:2303-2311. [PMID: 32869098 DOI: 10.1093/humrep/deaa194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
STUDY QUESTION Is polycystic ovary syndrome (PCOS) associated with an elevation of markers of endotoxemia? SUMMARY ANSWER In women with PCOS serum levels of lipopolysaccharides (LPS), the LPS to high-density lipoprotein (HDL) ratio and LPS-binding protein (LBP) are significantly greater than those of normal control subjects. WHAT IS KNOWN ALREADY Mononuclear cells from women with PCOS respond excessively to LPS by releasing pro-inflammatory cytokines. In rat ovarian theca-interstitial cell cultures LPS stimulates androgen production. STUDY DESIGN, SIZE, DURATION Cross-sectional study comparing markers of endotoxemia in women with PCOS (n = 62), healthy ovulatory women with polycystic ovary morphology (PCOM, n = 39) and a control group of healthy ovulatory women without PCOM [normal (NL), n = 43]. PARTICIPANTS/MATERIALS, SETTING, METHODS LPS was measured using a chromogenic assay. LBP was measured by ELISA. Total cholesterol and lipids were measured using a homogeneous enzyme colorimetric method. Androgens, gonadotrophins, prolactin, insulin, high-sensitivity C-reactive protein (hs-CRP) and sex hormone-binding globulin were determined by electrochemiluminescence assays. Glucose was measured using an enzymatic reference method with hexokinase. MAIN RESULTS AND THE ROLE OF CHANCE Women with PCOS, when compared with NL subjects, had a significantly higher mean LPS (P = 0.045), LPS/HDL ratio (P = 0.007) and LBP (P = 0.01). Women with PCOM had intermediate levels of markers of endotoxemia. Comparison among all groups revealed that markers of endotoxemia correlated positively with testosterone level, ovarian volume, number of antral follicles and hirsutism score, but negatively with the number of spontaneous menses per year. In multiple regression analysis, all measures of endotoxemia correlated independently and positively with hs-CRP and with ovarian volume. LIMITATIONS, REASONS FOR CAUTION This cross-sectional study reveals that markers of endotoxemia are associated with several clinical features observed in women with PCOS. However, responsible mechanisms and causation remain unknown. Steroid quantification was carried out by electrochemiluminescence assays and not by the current gold standard: liquid chromatography-mass spectrometry. Hence, the relationship of endotoxemia with features of PCOS and the extent to which endotoxemia contributes to reproductive and metabolic dysfunction warrants further investigation. WIDER IMPLICATIONS OF THE FINDINGS This study reveals the novel observation that markers of endotoxemia are elevated in young and otherwise healthy women with PCOS without significant metabolic dysfunction. Moreover, the association of clinical and endocrine markers of PCOS with those of endotoxemia may represent a pathophysiologic link to reproductive dysfunction as well as metabolic and long-term cardiovascular risks associated with this disorder. STUDY FUNDING/COMPETING INTEREST(S) Intramural funding from Poznan University of Medical Sciences. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Beata Banaszewska
- Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Martyna Siakowska
- Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - R Jeffrey Chang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Leszek Pawelczyk
- Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Barbara Zwozdziak
- Department of Medical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Robert Spaczynski
- Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Antoni J Duleba
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
43
|
Saghafi-Asl M, Mirmajidi S, Asghari Jafarabadi M, Vahid F, Shivappa N, Hébert JR, Ebrahimzadeh Attari V. The association of dietary patterns with dietary inflammatory index, systemic inflammation, and insulin resistance, in apparently healthy individuals with obesity. Sci Rep 2021; 11:7515. [PMID: 33824355 PMCID: PMC8024341 DOI: 10.1038/s41598-021-86993-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Inflammation is considered a key mechanism leading to obesity. Dietary patterns and certain food items influence inflammation. Few studies have investigated the contribution of major dietary patterns to biological measures of inflammation. Therefore, the present study aimed to examine the associations of different dietary patterns with dietary inflammatory index (DII), systemic inflammation, and insulin resistance (IR) in the apparently healthy obese. In this cross-sectional study, 151 abdominally obese subjects were recruited from the Northwest of Iran. Dietary intake, demographic data, anthropometric indices, and physical activity (PA) was assessed. DII scores were calculated based on a validated 168-item food frequency questionnaire (FFQ). Three dietary patterns were identified, using principal component analysis. Basal blood samples were collected to determine biochemical parameters. Linear regression test with adjusted beta estimates was applied for data analysis. Three dietary patterns were extracted as Healthy, Western, and Traditional. Body mass index (BMI) (p < 0.01) and fat mass (p < 0.001) were directly associated with the Western dietary pattern. Conversely, serum lipopolysaccharide-binding protein (LBP) (b = - 0.1, p < 0.04) was negatively associated with Healthy dietary pattern, after controlling for confounders. The Traditional pattern was found to be inversely related to DII (b = - 0.3, p < 0.001). The association was also reveresed between Traditional pattern and IR (Odds Ratio: 0.3 (95% Confidence Interval 0.1-0.9)). The results suggested that the Western dietary pattern was related to higher BMI and fat mass. In addition, the Healthy pattern was associated with decreased levels of LBP. Adherence to the Traditional dietary pattern was inversely related to DII as well as IR.
Collapse
Affiliation(s)
- Maryam Saghafi-Asl
- grid.412888.f0000 0001 2174 8913Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Susan Mirmajidi
- grid.412888.f0000 0001 2174 8913Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asghari Jafarabadi
- grid.412888.f0000 0001 2174 8913Department of Statistics and Epidemiology, School of Health, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Vahid
- grid.451012.30000 0004 0621 531XLuxembourg Institute of Health, Strassen, Luxembourg
| | - Nitin Shivappa
- grid.254567.70000 0000 9075 106XDepartment of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 USA ,grid.254567.70000 0000 9075 106XCancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 USA ,grid.486905.6Connecting Health Innovations, LLC, Columbia, SC 29201 USA
| | - James R. Hébert
- grid.254567.70000 0000 9075 106XDepartment of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 USA ,grid.254567.70000 0000 9075 106XCancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 USA ,grid.486905.6Connecting Health Innovations, LLC, Columbia, SC 29201 USA
| | - Vahideh Ebrahimzadeh Attari
- grid.449862.5Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Margheh, Iran
| |
Collapse
|
44
|
Latorre J, Lluch A, Ortega FJ, Gavaldà-Navarro A, Comas F, Morón-Ros S, Rodríguez A, Becerril S, Villarroya F, Frühbeck G, Ricart W, Giralt M, Fernández-Real JM, Moreno-Navarrete JM. Adipose tissue knockdown of lysozyme reduces local inflammation and improves adipogenesis in high-fat diet-fed mice. Pharmacol Res 2021; 166:105486. [PMID: 33556481 DOI: 10.1016/j.phrs.2021.105486] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/26/2022]
Abstract
Chronic systemic low-level inflammation in metabolic disease is known to affect adipose tissue biology. Lysozyme (LYZ) is a major innate immune protein but its role in adipose tissue has not been investigated. Here, we aimed to investigate LYZ in human and rodents fat depots, and its possible role in obesity-associated adipose tissue dysfunction. LYZ mRNA and protein were identified to be highly expressed in adipose tissue from subjects with obesity and linked to systemic chronic-low grade inflammation, adipose tissue inflammation and metabolic disturbances, including hyperglycemia, dyslipidemia and decreased markers of adipose tissue adipogenesis. These findings were confirmed in experimental models after a high-fat diet in mice and rats and also in ob/ob mice. Importantly, specific inguinal and perigonadal white adipose tissue lysozyme (Lyz2) gene knockdown in high-fat diet-fed mice resulted in improved adipose tissue inflammation in parallel to reduced lysozyme activity. Of note, Lyz2 gene knockdown restored adipogenesis and reduced weight gain in this model. In conclusion, altogether these observations point to lysozyme as a new actor in obesity-associated adipose tissue dysfunction. The therapeutic targeting of lysozyme production might contribute to improve adipose tissue metabolic homeostasis.
Collapse
Affiliation(s)
- Jèssica Latorre
- Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain; CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta", Girona, Spain
| | - Aina Lluch
- Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain; CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta", Girona, Spain
| | - Francisco J Ortega
- Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain; CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta", Girona, Spain
| | - Aleix Gavaldà-Navarro
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Biochemistry and Molecular Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Ferran Comas
- Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain; CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta", Girona, Spain
| | - Samantha Morón-Ros
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Biochemistry and Molecular Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Amaia Rodríguez
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra (IdiSNA), Pamplona, Spain
| | - Sara Becerril
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra (IdiSNA), Pamplona, Spain
| | - Francesc Villarroya
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Biochemistry and Molecular Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Gema Frühbeck
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra (IdiSNA), Pamplona, Spain
| | - Wifredo Ricart
- Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain; CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta", Girona, Spain
| | - Marta Giralt
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Biochemistry and Molecular Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - José Manuel Fernández-Real
- Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain; CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta", Girona, Spain; Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain.
| | - José María Moreno-Navarrete
- Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain; CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta", Girona, Spain; Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain.
| |
Collapse
|
45
|
Zhang Z, Tian T, Chen Z, Liu L, Luo T, Dai J. Characteristics of the gut microbiome in patients with prediabetes and type 2 diabetes. PeerJ 2021; 9:e10952. [PMID: 33828910 PMCID: PMC8000457 DOI: 10.7717/peerj.10952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Background Gut microbiome has recently been identified as a new potential risk factor in addition to well-known diabetes risk factors. The aim of this study was to analyze the differences in the composition of gut microbiome in prediabetes(PreDM), type 2 diabetes mellitus (T2DM) and non-diabetic controls. Methods A total of 180 participants were recruited for this study: 60 with T2DM, 60 with PreDM and 60 non-diabetics (control group). Fecal samples were collected from the participants and genomic DNA was extracted. The composition and diversity of gut microbiome were investigated in fecal DNA samples using Illumina sequencing of the V3∼V4 regions of 16sRNA. Results There were significant differences in the number of bacteria among patients with PreDM and T2DM and the control group. Compared with the control group, Proteobacteria bacteria were significantly higher in the PreDM group (P = 0.006). On the genus level, Compared with the control group, the relative abundance of Prevotella and Alloprevotella was significantly higher in the T2DM group (P = 0.016, P = 0.018), and the relative abundance of Paraprevotella in T2DM and PreDM groups was lower than that in the control group (P = 0.011, P = 0.045). Compared with the PreDM group and the control group, the relative abundance of Bacteroides in the T2DM group was significantly lower (P = 0.019, P = 0.002). Conclusions The present study found significant differences in the gut microbiome between PreDM, T2DM and non-diabetic individuals, specifically at the genus level, suggesting that early intervention in PreDM patients could have implications for gut flora transitioning to T2DM. In addition, these results may be valuable for developing strategies to control T2DM by modifying the gut microbiome.
Collapse
Affiliation(s)
- Zewen Zhang
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Tian Tian
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Zhen Chen
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Lirong Liu
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Tao Luo
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Jianghong Dai
- School of Public Health, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
46
|
Moin ASM, Sathyapalan T, Diboun I, Atkin SL, Butler AE. Identification of macrophage activation-related biomarkers in obese type 2 diabetes that may be indicative of enhanced respiratory risk in COVID-19. Sci Rep 2021; 11:6428. [PMID: 33742062 PMCID: PMC7979696 DOI: 10.1038/s41598-021-85760-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
Hyperactivation of the immune system through obesity and diabetes may enhance infection severity complicated by Acute Respiratory Distress Syndrome (ARDS). The objective was to determine the circulatory biomarkers for macrophage activation at baseline and after serum glucose normalization in obese type 2 diabetes (OT2D) subjects. A case-controlled interventional pilot study in OT2D (n = 23) and control subjects (n = 23). OT2D subjects underwent hyperinsulinemic clamp to normalize serum glucose. Plasma macrophage-related proteins were determined using Slow Off-rate Modified Aptamer-scan plasma protein measurement at baseline (control and OT2D subjects) and after 1-h of insulin clamp (OT2D subjects only). Basal M1 macrophage activation was characterized by elevated levels of M1 macrophage-specific surface proteins, CD80 and CD38, and cytokines or chemokines (CXCL1, CXCL5, RANTES) released by activated M1 macrophages. Two potent M1 macrophage activation markers, CXCL9 and CXCL10, were decreased in OT2D. Activated M2 macrophages were characterized by elevated levels of plasma CD163, TFGβ-1, MMP7 and MMP9 in OT2D. Conventional mediators of both M1 and M2 macrophage activation markers (IFN-γ, IL-4, IL-13) were not altered. No changes were observed in plasma levels of M1/M2 macrophage activation markers in OT2D in response to acute normalization of glycemia. In the basal state, macrophage activation markers are elevated, and these reflect the expression of circulatory cytokines, chemokines, growth factors and matrix metalloproteinases in obese individuals with type 2 diabetes, that were not changed by glucose normalisation. These differences could potentially predispose diabetic individuals to increased infection severity complicated by ARDS.
Clinical trial reg. no: NCT03102801; registration date April 6, 2017.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | | | | | - Stephen L Atkin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Alexandra E Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
47
|
Ha EK, Kim JH, Yon DK, Lee SW, Kim MA, Lee KS, Sung M, Jee HM, Shin YH, Han MY. Association of serum lipopolysaccharide-binding protein level with sensitization to food allergens in children. Sci Rep 2021; 11:2143. [PMID: 33495502 PMCID: PMC7835372 DOI: 10.1038/s41598-020-79241-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
Lipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase reactant that mediates innate immune responses triggered by LPS. Recent studies indicated a positive correlation of circulating LBP level with chronic low-grade inflammation, a condition present in many non-communicable diseases. We determined the association of serum LBP concentration with allergic sensitization in a general pediatric population. Serum LBP was measured in a sample of children (n = 356; mean age = 9.6 ± 0.2 years) in this population-based cross-sectional study. Skin prick tests (SPTs) were performed to assess allergic sensitization to 22 common inhalant and food allergens. One hundred and seven children (30.1%) were nonsensitized, 160 (44.9%) were monosensitized, and 89 (25.0%) were polysensitized. Children who were mono- or polysensitized had a significantly higher median serum LBP level (25.5 ng/mL, inter-quartile range [IQR] 20.3-30.7) than those who were nonsensitized (20.3 ng/mL, IQR = 14.81-25.8, P < 0.0001). Multivariate logistic regression analysis with adjustment for confounders indicated that serum LBP level was positively associated with allergic sensitization overall (adjusted odds ratio [aOR] 1.041; 95% CI 1.007-1.076, P = 0.016), with sensitization to food allergens in particular (aOR 1.080, 95% CI 1.029-1.133, P = 0.002), but not with sensitization to aeroallergens (aOR 1.010, 95% CI 0.982-1.040, P = 0.467). LBP level was not associated with allergic diseases after adjustment. We suggest the possibility of sensitization to food allergens may be related to gut-derived low-grade inflammation, and large sized longitudinal investigations are needed to elucidate the relationship.
Collapse
Affiliation(s)
- Eun Kyo Ha
- Department of Pediatris, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Ju Hee Kim
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, CHA University, 351 Yatap-dong, Bundang-gu, Seongnam, Gyonggi-do, 13496, Republic of Korea
| | - Dong Keon Yon
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Won Lee
- Department of Data Science, Sejong University College of Software Convergence, Seoul, Republic of Korea
| | - Mi Ae Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Kyung Suk Lee
- Department of Pediatrics, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Myongsoon Sung
- Department of Pediatrics, Soon Chun Hyang University Gumi Hospital, Soon Chun Hyang University College of Medicine, Gumi-si, Republic of Korea
| | - Hye Mi Jee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, CHA University, 351 Yatap-dong, Bundang-gu, Seongnam, Gyonggi-do, 13496, Republic of Korea
| | - Youn Ho Shin
- Deparment of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, CHA University, 566 Nonhyeon-ro, Gangnam-gu, Seoul, 06135, Republic of Korea.
| | - Man Yong Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, CHA University, 351 Yatap-dong, Bundang-gu, Seongnam, Gyonggi-do, 13496, Republic of Korea.
| |
Collapse
|
48
|
Mohammad S, Thiemermann C. Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions. Front Immunol 2021; 11:594150. [PMID: 33505393 PMCID: PMC7829348 DOI: 10.3389/fimmu.2020.594150] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Diet-induced metabolic endotoxemia is an important factor in the development of many chronic diseases in animals and man. The gut epithelium is an efficient barrier that prevents the absorption of liposaccharide (LPS). Structural changes to the intestinal epithelium in response to dietary alterations allow LPS to enter the bloodstream, resulting in an increase in the plasma levels of LPS (termed metabolic endotoxemia). LPS activates Toll-like receptor-4 (TLR4) leading to the production of numerous pro-inflammatory cytokines and, hence, low-grade systemic inflammation. Thus, metabolic endotoxemia can lead to several chronic inflammatory conditions. Obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD) can also cause an increase in gut permeability and potential pharmacological and dietary interventions could be used to reduce the chronic low-grade inflammation associated with endotoxemia.
Collapse
Affiliation(s)
- Shireen Mohammad
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
49
|
Depommier C, Flamand N, Pelicaen R, Maiter D, Thissen JP, Loumaye A, Hermans MP, Everard A, Delzenne NM, Di Marzo V, Cani PD. Linking the Endocannabinoidome with Specific Metabolic Parameters in an Overweight and Insulin-Resistant Population: From Multivariate Exploratory Analysis to Univariate Analysis and Construction of Predictive Models. Cells 2021; 10:cells10010071. [PMID: 33466285 PMCID: PMC7824762 DOI: 10.3390/cells10010071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
The global obesity epidemic continues to rise worldwide. In this context, unraveling new interconnections between biological systems involved in obesity etiology is highly relevant. Dysregulation of the endocannabinoidome (eCBome) is associated with metabolic complications in obesity. This study aims at deciphering new associations between circulating endogenous bioactive lipids belonging to the eCBome and metabolic parameters in a population of overweight or obese individuals with metabolic syndrome. To this aim, we combined different multivariate exploratory analysis methods: canonical correlation analysis and principal component analysis, revealed associations between eCBome subsets, and metabolic parameters such as leptin, lipopolysaccharide-binding protein, and non-esterified fatty acids (NEFA). Subsequent construction of predictive regression models according to the linear combination of selected endocannabinoids demonstrates good prediction performance for NEFA. Descriptive approaches reveal the importance of specific circulating endocannabinoids and key related congeners to explain variance in the metabolic parameters in our cohort. Analysis of quartiles confirmed that these bioactive lipids were significantly higher in individuals characterized by important levels for aforementioned metabolic variables. In conclusion, by proposing a methodology for the exploration of large-scale data, our study offers additional evidence of the existence of an interplay between eCBome related-entities and metabolic parameters known to be altered in obesity.
Collapse
Affiliation(s)
- Clara Depommier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium; (C.D.); (R.P.); (A.E.); (N.M.D.)
| | - Nicolas Flamand
- Quebec Heart and Lung Institute Research Centre, Université Laval, Quebec City, QC G1V 0A6, Canada; (N.F.); (V.D.M.)
| | - Rudy Pelicaen
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium; (C.D.); (R.P.); (A.E.); (N.M.D.)
| | - Dominique Maiter
- Pôle EDIN, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (D.M.); (J.-P.T.); (A.L.); (M.P.H.)
- Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc, Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - Jean-Paul Thissen
- Pôle EDIN, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (D.M.); (J.-P.T.); (A.L.); (M.P.H.)
- Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc, Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - Audrey Loumaye
- Pôle EDIN, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (D.M.); (J.-P.T.); (A.L.); (M.P.H.)
- Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc, Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - Michel P. Hermans
- Pôle EDIN, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (D.M.); (J.-P.T.); (A.L.); (M.P.H.)
- Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc, Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium; (C.D.); (R.P.); (A.E.); (N.M.D.)
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium; (C.D.); (R.P.); (A.E.); (N.M.D.)
| | - Vincenzo Di Marzo
- Quebec Heart and Lung Institute Research Centre, Université Laval, Quebec City, QC G1V 0A6, Canada; (N.F.); (V.D.M.)
- Centre NUTRISS, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC G1V 0A6, Canada
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium; (C.D.); (R.P.); (A.E.); (N.M.D.)
- Correspondence: ; Tel.: +32-2-764-73-97
| |
Collapse
|
50
|
Biomarkers of cardiometabolic complications in survivors of childhood acute lymphoblastic leukemia. Sci Rep 2020; 10:21507. [PMID: 33299020 PMCID: PMC7726154 DOI: 10.1038/s41598-020-78493-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Survivors of childhood acute lymphoblastic leukemia (cALL) are at higher risk of developing cardiometabolic complications. We aimed at exploring the associations between biomarkers of inflammation, oxidative stress, endothelial function, endotoxemia and cardiometabolic risk factors. We conducted a cross-sectional analysis in 246 cALL survivors (mean age, 22.1 ± 6.3 years; mean time since diagnosis, 15.5 ± 5.2 years) and evaluated the associations using a series of logistic regressions. Using structural equation models, we also tested if the relationship between endotoxemia and cardiometabolic complications was mediated by the latent (unobserved) variable inflammation inferred from the observed biomarkers CRP, TNF-α and IL-6. High leptin-adiponectin ratio was associated with obesity [adjusted OR = 15.7; 95% CI (6.2–39.7)], insulin resistance [20.6 (5.2–82.1)] and the metabolic syndrome [11.2 (2.6–48.7)]. Higher levels of plasminogen activator inhibitor-1 and tumor necrosis factor-α were associated with obesity [3.37 (1.6–7.1) and 2.34 (1.3–4.2), respectively] whereas high C-reactive protein levels were associated with insulin resistance [3.3 (1.6–6.8)], dyslipidemia [2.6 (1.4–4.9)] and MetS [6.5 (2.4–17.9)]. Our analyses provided evidence for a directional relationship between lipopolysaccharide binding protein, related to metabolic endotoxemia, inflammation and cardiometabolic outcomes. Identification of biomarkers and biological mechanisms could open new avenues for prevention strategies to minimize the long-term sequelae, improve follow-up and optimize the quality of life of this high-risk population.
Collapse
|