1
|
Sheikh S, Stefanovski D, Kilberg MJ, Hadjiliadis D, Rubenstein RC, Rickels MR, Kelly A. Early-phase insulin secretion during mixed-meal tolerance testing predicts β-cell function and secretory capacity in cystic fibrosis. Front Endocrinol (Lausanne) 2024; 15:1340346. [PMID: 38444582 PMCID: PMC10912512 DOI: 10.3389/fendo.2024.1340346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Insulin secretion within 30 minutes of nutrient ingestion is reduced in people with cystic fibrosis (PwCF) and pancreatic insufficiency and declines with worsening glucose tolerance. The glucose potentiated arginine (GPA) test is validated for quantifying β-cell secretory capacity as an estimate of functional β-cell mass but requires technical expertise and is burdensome. This study sought to compare insulin secretion during mixed-meal tolerance testing (MMTT) to GPA-derived parameters in PwCF. Methods Secondary data analysis of CF-focused prospective studies was performed in PwCF categorized as 1) pancreatic insufficient [PI-CF] or 2) pancreatic sufficient [PS-CF] and in 3) non-CF controls. MMTT: insulin secretory rates (ISR) were derived by parametric deconvolution using 2-compartment model of C-peptide kinetics, and incremental area under the curve (AUC) was calculated for 30, 60 and 180-minutes. GPA: acute insulin (AIR) and C-peptide responses (ACR) were calculated as average post-arginine insulin or C-peptide response minus pre-arginine insulin or C-peptide under fasting (AIRarg and ACRarg), ~230 mg/dL (AIRpot and ACRpot), and ~340 mg/dL (AIRmax and ACRmax) hyperglycemic clamp conditions. Relationships of MMTT to GPA parameters were derived using Pearson's correlation coefficient. Predicted values were generated for MMTT ISR and compared to GPA parameters using Bland Altman analysis to assess degree of concordance. Results 85 PwCF (45 female; 75 PI-CF and 10 PS-CF) median (range) age 23 (6-56) years with BMI 23 (13-34) kg/m2, HbA1c 5.5 (3.8-10.2)%, and FEV1%-predicted 88 (26-125) and 4 non-CF controls of similar age and BMI were included. ISR AUC30min positively correlated with AIRarg (r=0.55), AIRpot (r=0.62), and AIRmax (r=0.46) and with ACRarg (r=0.59), ACRpot (r=0.60), and ACRmax (r=0.51) (all P<0.001). ISR AUC30min strongly predicted AIRarg (concordance=0.86), AIRpot (concordance=0.89), and AIRmax (concordance=0.76) at lower mean GPA values, but underestimated AIRarg, AIRpot, and AIRmax at higher GPA-defined β-cell secretory capacity. Between test agreement was unaltered by adjustment for study group, OGTT glucose category, and BMI. Conclusion Early-phase insulin secretion during MMTT can accurately predict GPA-derived measures of β-cell function and secretory capacity when functional β-cell mass is reduced. These data can inform future multicenter studies requiring reliable, standardized, and technically feasible testing mechanisms to quantify β-cell function and secretory capacity.
Collapse
Affiliation(s)
- Saba Sheikh
- Division of Pulmonary and Sleep Medicine, Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, United States
| | - Marissa J. Kilberg
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Denis Hadjiliadis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Ronald C. Rubenstein
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Andrea Kelly
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
2
|
Flatt AJ, Sheikh S, Peleckis AJ, Alvarado P, Hadjiliadis D, Stefanovski D, Gallop RJ, Rubenstein RC, Kelly A, Rickels MR. Preservation of β-cell Function in Pancreatic Insufficient Cystic Fibrosis With Highly Effective CFTR Modulator Therapy. J Clin Endocrinol Metab 2023; 109:151-160. [PMID: 37503734 PMCID: PMC10735317 DOI: 10.1210/clinem/dgad443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
CONTEXT Elexacaftor/tezacaftor/ivacaftor (ETI; Trikafta) enhances aberrant cystic fibrosis transmembrane conductance regulator function and may improve the insulin secretory defects associated with a deterioration in clinical outcomes in pancreatic insufficient cystic fibrosis (PI-CF). OBJECTIVE This longitudinal case-control study assessed changes in β-cell function and secretory capacity measures over 2 visits in individuals with PI-CF who were initiated on ETI after the baseline visit (2012-2018) and (1) restudied between 2019 and 2021 (ETI group) vs (2) those restudied between 2015 and 2018 and not yet treated with cystic fibrosis transmembrane conductance regulator modulator therapy (controls). METHODS Nine ETI participants (mean ± SD age, 25 ± 5 years) and 8 matched controls were followed up after a median (interquartile range) 5 (4-7) and 3 (2-3) years, respectively (P < .01), with ETI initiation a median of 1 year before follow-up. Clinical outcomes, glucose-potentiated arginine, and mixed-meal tolerance test measures were assessed with comparisons of within- and between-group change by nonparametric testing. RESULTS Glucose-potentiated insulin and C-peptide responses to glucose-potentiated arginine deteriorated in controls but not in the ETI group, with C-peptide changes different between groups (P < .05). Deterioration in basal proinsulin secretory ratio was observed in controls but improved, as did the maximal arginine-induced proinsulin secretory ratio, in the ETI group (P < .05 for all comparisons). During mixed-meal tolerance testing, early insulin secretion improved as evidenced by more rapid insulin secretory rate kinetics. CONCLUSION ETI preserves β-cell function in CF through effects on glucose-dependent insulin secretion, proinsulin processing, and meal-related insulin secretion. Further work should determine whether early intervention with ETI can prevent deterioration of glucose tolerance in PI-CF.
Collapse
Affiliation(s)
- Anneliese J Flatt
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Saba Sheikh
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Amy J Peleckis
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Paola Alvarado
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Denis Hadjiliadis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Darko Stefanovski
- New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA 19348, USA
| | - Robert J Gallop
- Department of Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ronald C Rubenstein
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrea Kelly
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael R Rickels
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Chen Y, Zhang M, Li W, Wang X, Chen X, Wu Y, Zhang H, Yang L, Han B, Tang J. Drug repurposing based on the similarity gene expression signatures to explore for potential indications of quercetin: a case study of multiple sclerosis. Front Chem 2023; 11:1250043. [PMID: 37744058 PMCID: PMC10514366 DOI: 10.3389/fchem.2023.1250043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Quercetin (QR) is a natural flavonol compound widely distributed in the plant kingdom with extensive pharmacological effects. To find the potential clinical indications of QR, 156 differentially expressed genes (DEGs) regulated by QR were obtained from the Gene Expression Omnibus database, and new potential pharmacological effects and clinical indications of QR were repurposed by integrating compounds with similar gene perturbation signatures and associated-disease signatures to QR based on the Connectivity Map and Coexpedia platforms. The results suggested QR has mainly potential therapeutic effects on multiple sclerosis (MS), osteoarthritis, type 2 diabetes mellitus, and acute leukemia. Then, MS was selected for subsequent animal experiments as a representative potential indication, and it found that QR significantly delays the onset time of classical MS model animal mice and ameliorates the inflammatory infiltration and demyelination in the central nervous system. Combined with network pharmacology technology, the therapeutic mechanism of QR on MS was further demonstrated to be related to the inhibition of the expression of inflammatory cytokines (TNF-α, IL-6, IL-1β, IFN-γ, IL-17A, and IL-2) related to TNF-α/TNFR1 signaling pathway. In conclusion, this study expanded the clinical indications of QR and preliminarily confirmed the therapeutic effect and potential mechanism of QR on MS.
Collapse
Affiliation(s)
- Yulong Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingliang Zhang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Weixia Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoyan Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaofei Chen
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yali Wu
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hui Zhang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Liuqing Yang
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Bing Han
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinfa Tang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
4
|
Zhang Z, Zhang Q, Tan Y, Chen Y, Zhou X, Liu S, Yu J. GLP-1RAs caused gastrointestinal adverse reactions of drug withdrawal: a system review and network meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1149328. [PMID: 37484944 PMCID: PMC10359616 DOI: 10.3389/fendo.2023.1149328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Background Glucagon-like peptide-1 receptor agonists (GLP-1RAs) significantly reduce postprandial blood glucose, inhibit appetite, and delay gastrointestinal emptying. However, it is controversial that some patients are intolerant to GLP-1RAs. Methods PubMed, Embase, Web of Science, and Cochrane Library were searched for randomized controlled trials (RCTs) using GLP-1RAs with documented withdrawal due to gastrointestinal adverse reactions (GI AEs) from their inception to September 28, 2022. After extracting the information incorporated into the studies, a random-effects network meta-analysis was performed within a frequentist framework. Results 64 RCTs were finally enrolled, which included six major categories of the GLP-1RA. The sample size of the GLP-1RAs treatment group was 16,783 cases. The risk of intolerable gastrointestinal adverse reactions of Liraglutide and Semaglutide was higher than that of Dulaglutide. Meanwhile, the higher the dose of the same GLP-1RA preparation, the more likely to cause these adverse reactions. These intolerable GI AEs were not significantly related to drug homology or formulations and may be related to the degree of suppression of the appetite center. Conclusion Dulaglutide caused the lowest intolerable GI AEs, while Liraglutide and Semaglutide were the highest. For Semaglutide, the higher the dose, the more likely it is to drive GI AEs. Meanwhile, the risk of these GI AEs is independent of the different formulations of the drug. All these findings can effectively guide individualized treatment. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022359346, identifier CRD42022359346.
Collapse
Affiliation(s)
- Ziqi Zhang
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiling Zhang
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Tan
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Chen
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Su Liu
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Lodato M, Plaisance V, Pawlowski V, Kwapich M, Barras A, Buissart E, Dalle S, Szunerits S, Vicogne J, Boukherroub R, Abderrahmani A. Venom Peptides, Polyphenols and Alkaloids: Are They the Next Antidiabetics That Will Preserve β-Cell Mass and Function in Type 2 Diabetes? Cells 2023; 12:cells12060940. [PMID: 36980281 PMCID: PMC10047094 DOI: 10.3390/cells12060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Improvement of insulin secretion by pancreatic β-cells and preservation of their mass are the current challenges that future antidiabetic drugs should meet for achieving efficient and long-term glycemic control in patients with type 2 diabetes (T2D). The successful development of glucagon-like peptide 1 (GLP-1) analogues, derived from the saliva of a lizard from the Helodermatidae family, has provided the proof of concept that antidiabetic drugs directly targeting pancreatic β-cells can emerge from venomous animals. The literature reporting on the antidiabetic effects of medicinal plants suggests that they contain some promising active substances such as polyphenols and alkaloids, which could be active as insulin secretagogues and β-cell protectors. In this review, we discuss the potential of several polyphenols, alkaloids and venom peptides from snake, frogs, scorpions and cone snails. These molecules could contribute to the development of new efficient antidiabetic medicines targeting β-cells, which would tackle the progression of the disease.
Collapse
Affiliation(s)
- Michele Lodato
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Plaisance
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Maxime Kwapich
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
- Service de Diabétologie et d’Endocrinologie, CH Dunkerque, 59385 Dunkirk, France
| | - Alexandre Barras
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Emeline Buissart
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Sabine Szunerits
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Jérôme Vicogne
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Rabah Boukherroub
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Amar Abderrahmani
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
- Correspondence: ; Tel.: +33-362531704
| |
Collapse
|
6
|
Volke V, Katus U, Johannson A, Toompere K, Heinla K, Rünkorg K, Uusküla A. Systematic review and meta-analysis of head-to-head trials comparing sulfonylureas and low hypoglycaemic risk antidiabetic drugs. BMC Endocr Disord 2022; 22:251. [PMID: 36261824 PMCID: PMC9580135 DOI: 10.1186/s12902-022-01158-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Safety of sulfonylurea drugs in the treatment of Type 2 Diabetes is still under debate. The aim of this study was to compare the all-cause mortality and cardiovascular adverse events of sulfonylureas and drugs with a low risk for hypoglycaemia in adults with type 2 diabetes. METHODS Systematic review and meta-analysis of randomised controlled trials. DATA SOURCES MEDLINE (PubMed, OVID), Embase, Cochrane Central Register of Controlled Trials, CINAHL, WOS and Lilacs. STUDY SELECTION Randomised controlled head-to-head trials that compared sulfonylureas with active control with low hypoglycaemic potential in adults (≥ 18 years old) with type 2 diabetes published up to August 2015. The drug classes involved in the analysis were metformin, dipeptidyl peptidase-4 (DPP-4) inhibitors, sodium-glucose co-transporter-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists. OUTCOMES The primary endpoint was all-cause mortality. The secondary endpoints were MACE, cardiovascular events and severe hypoglycaemia. SYNTHESIS OF RESULTS Two reviewers checked study eligibility, independently extracted data and assessed quality with disagreements resolved through discussion. We assessed the risk of bias of the included studies using the Cochrane risk of bias tool for randomized trials v2. Pooled odds ratios (ORs) were estimated by using fixed effects model. The study is registered on PROSPERO (26/05/2016 CRD42016038780). RESULTS Our final analysis comprised 31 studies (26,204 patients, 11,711 patients given sulfonylureas and 14,493 given comparator drugs). In comparison to drugs with low hypoglycaemic potential, sulfonylureas had higher odds for all-cause mortality (OR 1.32, 95% CI 1.00-1.75), MACE (OR 1.32, 95% CI 1.07-1.61), myocardial infarction (fatal and non-fatal) (OR 1.67, 95% CI 1.17-2.38) and hypoglycaemia (OR 5.24, 95% CI 4.20-6.55). Subsequent sensitivity analysis revealed differences in the effect of sulfonylureas, with an increased risk of all-cause mortality with glipizide but not the other molecules. CONCLUSION Our meta-analysis raises concern about the safety of SUs compared to alternative drugs involved in current analysis. Important differences may exist within the drug class, and glimepiride seems to have best safety profile.
Collapse
Affiliation(s)
- Vallo Volke
- Department of Physiology, Institute of Biomedicine and Translational Medicine, Centre of excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.
- Endocrinology Unit, Tartu University Hospital, 8 L. Puusepa Street, 51014, Tartu, Estonia.
| | - Urmeli Katus
- Department of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Annika Johannson
- Department of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Karolin Toompere
- Department of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Keiu Heinla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, Centre of excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Kertu Rünkorg
- Department of Physiology, Institute of Biomedicine and Translational Medicine, Centre of excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
- Department of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Anneli Uusküla
- Department of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| |
Collapse
|
7
|
Nyirjesy SC, Peleckis AJ, Eiel JN, Gallagher K, Doliba A, Tami A, Flatt AJ, De Leon DD, Hadjiliadis D, Sheikh S, Stefanovski D, Gallop R, D’Alessio DA, Rubenstein RC, Kelly A, Rickels MR. Effects of GLP-1 and GIP on Islet Function in Glucose-Intolerant, Pancreatic-Insufficient Cystic Fibrosis. Diabetes 2022; 71:2153-2165. [PMID: 35796669 PMCID: PMC9501647 DOI: 10.2337/db22-0399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/01/2022] [Indexed: 01/07/2023]
Abstract
Impaired insulin and incretin secretion underlie abnormal glucose tolerance (AGT) in pancreatic insufficient cystic fibrosis (PI-CF). Whether the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) can enhance pancreatic islet function in cystic fibrosis (CF) is not known. We studied 32 adults with PI-CF and AGT randomized to receive either GLP-1 (n = 16) or GIP (n = 16) during glucose-potentiated arginine (GPA) testing of islet function on two occasions, with either incretin or placebo infused, in a randomized, double-blind, cross-over fashion. Another four adults with PI-CF and normal glucose tolerance (NGT) and four matched control participants without CF underwent similar assessment with GIP. In PI-CF with AGT, GLP-1 substantially augmented second-phase insulin secretion but without effect on the acute insulin response to GPA or the proinsulin secretory ratio (PISR), while GIP infusion did not enhance second-phase or GPA-induced insulin secretion but increased the PISR. GIP also did not enhance second-phase insulin in PI-CF with NGT but did so markedly in control participants without CF controls. These data indicate that GLP-1, but not GIP, augments glucose-dependent insulin secretion in PI-CF, supporting the likelihood that GLP-1 agonists could have therapeutic benefit in this population. Understanding loss of GIP's insulinotropic action in PI-CF may lead to novel insights into diabetes pathogenesis.
Collapse
Affiliation(s)
- Sarah C. Nyirjesy
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Amy J. Peleckis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Jack N. Eiel
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Kathryn Gallagher
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Andriana Doliba
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Abigail Tami
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Anneliese J. Flatt
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Diva D. De Leon
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Denis Hadjiliadis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Saba Sheikh
- Division of Pulmonary Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Darko Stefanovski
- New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA
| | - Robert Gallop
- Department of Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA
- Department of Mathematics, West Chester University of Pennsylvania, West Chester, PA
| | - David A. D’Alessio
- Division of Endocrinology and Metabolism, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Ronald C. Rubenstein
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Andrea Kelly
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
8
|
Orsini Federici M, Gentilella R, Corcos A, Torre E, Genovese S. Changing the approach to type 2 diabetes treatment: A comparison of glucagon-like peptide-1 receptor agonists and sulphonylureas across the continuum of care. Diabetes Metab Res Rev 2021; 37:e3434. [PMID: 33900667 PMCID: PMC8519155 DOI: 10.1002/dmrr.3434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/11/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022]
Abstract
Despite the importance of individualised strategies for patients with type 2 diabetes mellitus (T2DM) and the availability of alternative treatments, including glucagon-like peptide-1 receptor agonists (GLP-1 RAs), sulphonylureas are still widely used in practice. Clinical evidence shows that GLP-1 RAs may provide better and more durable glycaemic control than sulphonylureas, with lower risk of hypoglycaemia. Other reported benefits of GLP-1 RAs include weight loss rather than weight gain (as observed with sulphonylureas), blood pressure reduction and improvement in lipid profiles. In general, the main adverse events with GLP-1 RAs are gastrointestinal in nature. The respective modes of action of GLP-1 RAs and sulphonylureas contribute to differences in the durability of glycaemic control (related to effects on beta-cells) and effects on body weight. Moreover, the glucose-dependent mode of action of GLP-1 RAs, which favours a low incidence of hypoglycaemia, contrasts with the glucose-independent mode of action of sulphonylureas. Evidence from cardiovascular outcomes trials indicates a consistent finding of cardiovascular safety across the GLP-1 RAs and suggests a class benefit for the long-acting GLP-1 RAs in reducing three-point major adverse cardiovascular events, cardiovascular mortality and all-cause mortality. In contrast, potential concerns relating to an increased incidence of adverse cardiovascular events with sulphonylureas have yet to be fully resolved. Recent updates to management guidelines recommend that treatment selection for patients with T2DM should consider clinical trial evidence of cardiovascular safety. Available evidence suggests that this selection should give preference to GLP-1 RAs over sulphonylureas, especially for patients at high cardiovascular risk.
Collapse
Affiliation(s)
| | | | | | - Enrico Torre
- Asl3 GenoveseHead of EndocrinologyDiabetology and Metabolic Diseases SSDGenovaItaly
| | - Stefano Genovese
- Centro Cardiologico Monzino IRCCSHead of DiabetologyEndocrinology and Metabolic Diseases UnitMilanoItaly
| |
Collapse
|
9
|
Kelly A, Sheikh S, Stefanovski D, Peleckis AJ, Nyirjesy SC, Eiel JN, Sidhaye A, Localio R, Gallop R, De Leon DD, Hadjiliadis D, Rubenstein RC, Rickels MR. Effect of Sitagliptin on Islet Function in Pancreatic Insufficient Cystic Fibrosis With Abnormal Glucose Tolerance. J Clin Endocrinol Metab 2021; 106:2617-2634. [PMID: 34406395 PMCID: PMC8660013 DOI: 10.1210/clinem/dgab365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE Impaired incretin secretion may contribute to the defective insulin secretion and abnormal glucose tolerance (AGT) that associate with worse clinical outcomes in pancreatic insufficient cystic fibrosis (PI-CF). The study objective was to test the hypothesis that dipeptidyl peptidase-4 (DPP-4) inhibitor-induced increases in intact incretin hormone [glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP)] concentrations augment insulin secretion and glucagon suppression and lower postprandial glycemia in PI-CF with AGT. METHODS 26 adults from Children's Hospital of Philadelphia and University of Pennsylvania CF Center with PI-CF and AGT [defined by oral glucose tolerance test glucose (mg/dL): early glucose intolerance (1-h ≥ 155 and 2-h < 140), impaired glucose tolerance (2-h ≥ 140 and < 200 mg/dL), or diabetes (2-h ≥ 200)] were randomized to a 6-month double-blind trial of DPP-4 inhibitor sitagliptin 100 mg daily or matched placebo; 24 completed the trial (n = 12 sitagliptin; n = 12 placebo). Main outcome measures were mixed-meal tolerance test (MMTT) responses for intact GLP-1 and GIP, insulin secretory rates (ISRs), glucagon suppression, and glycemia and glucose-potentiated arginine (GPA) test-derived measures of β- and α-cell function. RESULTS Following 6-months of sitagliptin vs placebo, MMTT intact GLP-1 and GIP responses increased (P < 0.001), ISR dynamics improved (P < 0.05), and glucagon suppression was modestly enhanced (P < 0.05) while GPA test responses for glucagon were lower. No improvements in glucose tolerance or β-cell sensitivity to glucose, including for second-phase insulin response, were found. CONCLUSIONS In glucose intolerant PI-CF, sitagliptin intervention augmented meal-related incretin responses with improved early insulin secretion and glucagon suppression without affecting postprandial glycemia.
Collapse
Affiliation(s)
- Andrea Kelly
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Correspondence: Andrea Kelly, MD, MSCE, Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Saba Sheikh
- Division of Pulmonary Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphias, PA, USA
| | - Darko Stefanovski
- Department of Biostatistics, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, USA
| | - Amy J Peleckis
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah C Nyirjesy
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jack N Eiel
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Aniket Sidhaye
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Russell Localio
- Department of Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Robert Gallop
- Department of Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Mathematics, West Chester University of Pennsylvania, West Chester, PA, USA
| | - Diva D De Leon
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Denis Hadjiliadis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald C Rubenstein
- Division of Pulmonary Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphias, PA, USA
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Michael R Rickels
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Michael R. Rickels, MD, MS, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Yang L, Liang H, Liu X, Wang X, Cheng Y, Zhao Y, Liu L, Huang G, Wang X, Zhou Z. Islet Function and Insulin Sensitivity in Latent Autoimmune Diabetes in Adults Taking Sitagliptin: A Randomized Trial. J Clin Endocrinol Metab 2021; 106:e1529-e1541. [PMID: 33475138 PMCID: PMC7993585 DOI: 10.1210/clinem/dgab026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/17/2022]
Abstract
CONTEXT The long-term effects of dipeptidyl peptidase-4 inhibitors on β-cell function and insulin sensitivity in latent autoimmune diabetes in adults (LADA) are unclear. OBJECTIVE To investigate the effects of sitagliptin on β-cell function and insulin sensitivity in LADA patients receiving insulin. DESIGN AND SETTING A randomized controlled trial at the Second Xiangya Hospital. METHODS Fifty-one patients with LADA were randomized to sitagliptin + insulin (SITA) group or insulin alone (CONT) group for 24 months. MAIN OUTCOME MEASURES Fasting C-peptide (FCP), 2-hour postprandial C-peptide (2hCP) during mixed-meal tolerance test, △CP (2hCP - FCP), and updated homeostatic model assessment of β-cell function (HOMA2-B) were determined every 6 months. In 12 subjects, hyperglycemic clamp and hyperinsulinemic euglycemic clamp (HEC) tests were further conducted at 12-month intervals. RESULTS During the 24-month follow-up, there were no significant changes in β-cell function in the SITA group, whereas the levels of 2hCP and △CP in the CONT group were reduced at 24 months. Meanwhile, the changes in HOMA2-B from baseline were larger in the SITA group than in the CONT group. At 24 months, first-phase insulin secretion was improved in the SITA group by hyperglycemia clamp, which was higher than in the CONT group (P < .001), while glucose metabolized (M), insulin sensitivity index, and M over logarithmical insulin ratio in HEC were increased in the SITA group (all P < .01 vs baseline), which were higher than in the CONT group. CONCLUSION Compared with insulin intervention alone, sitagliptin plus insulin treatment appeared to maintain β-cell function and improve insulin sensitivity in LADA to some extent.
Collapse
Affiliation(s)
- Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiying Liang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Affiliated Dongguan People’s Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, China
| | - Xinyuan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xia Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying Cheng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yunjuan Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lingjiao Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiangbing Wang
- Division of Endocrinology, Metabolism and Nutrition, Rutgers University-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Correspondence: Zhiguang Zhou, MD, PhD, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha 410011, Hunan, China.
| |
Collapse
|
11
|
Tolerance develops toward GLP-1 receptor agonists' glucose-lowering effect in mice. Eur J Pharmacol 2020; 885:173443. [PMID: 32750365 DOI: 10.1016/j.ejphar.2020.173443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/20/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) receptor agonists are popular antidiabetic drugs with potent glucose-lowering effects and low risk of hypoglycemia. Animal experiments and human data indicate that tolerance develops toward at least some of their effects, e.g., gastric motility. Whether tolerance develops toward the glucose-lowering effect of GLP-1 receptor agonists in mice has never been formally tested. The hypothesis of tolerance development in mice will be reported in this study. The direct glucose-lowering effect of the GLP-1 receptor agonists was measured in non-fasted mice and with intraperitoneal glucose tolerance test. Exenatide (10 μg/kg) and liraglutide (600 μg/kg) both substantially lost efficacy during the 18-day treatment as compared to the acute effect. We conclude that our results demonstrate development of tolerance toward GLP-1 receptor agonists' glucose-lowering effect in mice.
Collapse
|
12
|
Kilberg MJ, Harris C, Sheikh S, Stefanovski D, Cuchel M, Kubrak C, Hadjiliadis D, Rubenstein RC, Rickels MR, Kelly A. Hypoglycemia and Islet Dysfunction Following Oral Glucose Tolerance Testing in Pancreatic-Insufficient Cystic Fibrosis. J Clin Endocrinol Metab 2020; 105:5872086. [PMID: 32668452 PMCID: PMC7755140 DOI: 10.1210/clinem/dgaa448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 01/22/2023]
Abstract
CONTEXT Oral glucose tolerance test (OGTT)-related hypoglycemia is common in pancreatic-insufficient cystic fibrosis (PI-CF), but its mechanistic underpinnings are yet to be established. OBJECTIVE To delineate the mechanism(s) underlying OGTT-related hypoglycemia. DESIGN AND SETTING We performed 180-minute OGTTs with frequent blood sampling in adolescents and young adults with PI-CF and compared results with those from a historical healthy control group. Hypoglycemia (Hypo[+]) was defined as plasma glucose <65 mg/dL. We hypothesized that CF-Hypo[+] would demonstrate impaired early phase insulin secretion and persistent late insulin effect compared with control-Hypo[+], and explored the contextual counterregulatory response. MAIN OUTCOME MEASURE OGTT 1-hour and nadir glucose, insulin, C-peptide, and insulin secretory rate (ISR) incremental areas under the curve (AUC) between 0 and 30 minutes (early) and between 120 and 180 minutes (late), and Δglucagon120-180min and Δfree fatty acids (FFAs)120-180min were compared between individuals with CF and control participants with Hypo[+]. RESULTS Hypoglycemia occurred in 15/23 (65%) patients with CF (43% female, aged 24.8 [14.6-30.6] years) and 8/15 (55%) control participants (33% female, aged 26 [21-38] years). The CF-Hypo[+] group versus the control-Hypo[+] group had higher 1-hour glucose (197 ± 49 vs 139 ± 53 mg/dL; P = 0.05) and lower nadir glucose levels (48 ± 7 vs 59 ± 4 mg/dL; P < 0.01), while insulin, C-peptide, and ISR-AUC0-30 min results were lower and insulin and C-peptide, and AUC120-180min results were higher (P < 0.05). Individuals with CF-Hypo[+] had lower Δglucagon120-180min and ΔFFA120-180min compared with the control-Hypo[+] group (P < 0.01). CONCLUSIONS OGTT-related hypoglycemia in PI-CF is associated with elevated 1-hour glucose, impaired early phase insulin secretion, higher late insulin exposure, and less increase in glucagon and FFAs. These data suggest that hypoglycemia in CF is a manifestation of islet dysfunction including an impaired counterregulatory response.
Collapse
Affiliation(s)
- Marissa J Kilberg
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Correspondence and Reprint Requests: Marissa Kilberg, MD, Division of Endocrinology and Diabetes, 3500 Civic Center Blvd, Philadelphia, PA 19104, USA. E-mail:
| | - Clea Harris
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saba Sheikh
- Division of Pulmonary Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Darko Stefanovski
- Department of Clinical Studies—New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Marina Cuchel
- Division of Translational Medicine & Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christina Kubrak
- Division of Pulmonary Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Denis Hadjiliadis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronald C Rubenstein
- Division of Pulmonary Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael R Rickels
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania PA
| | - Andrea Kelly
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Gudipaty L, Rosenfeld NK, Fuller CS, Cuchel M, Rickels MR. Different β-cell secretory phenotype in non-obese compared to obese early type 2 diabetes. Diabetes Metab Res Rev 2020; 36:e3295. [PMID: 32017362 PMCID: PMC7864552 DOI: 10.1002/dmrr.3295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/21/2020] [Accepted: 01/26/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Type 2 diabetes (T2D) is characterized by impaired tissue sensitivity to insulin action (ie, insulin resistance) and impaired β-cell insulin secretion. Because obesity contributes importantly to the development of insulin resistance, we sought to determine whether insulin secretory defects would predominate in non-obese compared to obese T2D. METHODS We measured β-cell function and secretory capacity using the glucose-potentiated arginine test in T2D subjects early in the disease course classified as non-obese (BMI <30; n = 12) or obese (BMI ≥30 kg/m2 ; n = 28) and additionally compared responses from non-obese T2D with a non-diabetic control group (n = 12). RESULTS The acute insulin response to glucose potentiation of arginine-induced insulin release was less in non-obese T2D than in controls and associated with impaired β-cell sensitivity to glucose (PG50 ). Proinsulin secretory ratios were increased in non-obese T2D when compared to obese T2D. Obese T2D subjects had reduced insulin sensitivity (M/I) while non-obese T2D subjects had insulin sensitivity that was comparable to controls. CONCLUSIONS In non-obese T2D, insulin secretory defects predominate with impaired β-cell sensitivity to glucose and proinsulin processing in the absence of insulin resistance. Future studies should consider whether different β-cell secretory phenotypes and tissue sensitivity to insulin explain the varying responsiveness to T2D interventions.
Collapse
Affiliation(s)
- Lalitha Gudipaty
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nora K. Rosenfeld
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Carissa S. Fuller
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Kelly A, De Leon DD, Sheikh S, Camburn D, Kubrak C, Peleckis AJ, Stefanovski D, Hadjiliadis D, Rickels MR, Rubenstein RC. Islet Hormone and Incretin Secretion in Cystic Fibrosis after Four Months of Ivacaftor Therapy. Am J Respir Crit Care Med 2019; 199:342-351. [PMID: 30130412 DOI: 10.1164/rccm.201806-1018oc] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RATIONALE Diabetes is associated with worse cystic fibrosis (CF) outcomes. The CFTR potentiator ivacaftor is suggested to improve glucose homeostasis in individuals with CF. OBJECTIVES To test the hypothesis that clinically indicated ivacaftor would be associated with improvements in glucose tolerance and insulin and incretin secretion. METHODS Oral glucose tolerance tests, mixed-meal tolerance tests, and glucose-potentiated arginine tests were compared preivacaftor initiation and 16 weeks postivacaftor initiation in CF participants with at least one CFTR gating or conductance mutation. Meal-related 30-minute (early phase) and 180-minute incremental area under the curves were calculated as responses for glucose, insulin, C-peptide, and incretin hormones; glucagon-like peptide-1; and glucose-dependent insulinotropic polypeptide. First-phase insulin secretion, glucose potentiation of arginine-induced insulin secretion, and disposition index were characterized by glucose-potentiated arginine stimulation tests. MEASUREMENTS AND MAIN RESULTS Twelve subjects completed the study: six male/six female; seven normal/five abnormal glucose tolerance (oral glucose tolerance test 1-h glucose ≥155 and 2-h glucose <200 mg/dl); of median (minimum-maximum) age (13.8 yr [6.0-42.0]), body mass index-Z of 0.66 (-2.4 to 1.9), and FEV1% predicted of 102 (39-122). Glucose tolerance normalized in one abnormal glucose tolerance subject. Ivacaftor treatment did not alter meal responses except for an increase in early phase C-peptide (P = 0.04). First-phase (P = 0.001) and glucose potentiation of arginine-induced (P = 0.027) insulin secretion assessed by acute C-peptide responses improved after ivacaftor treatment. Consistent with an effect on β-cell function, the disposition index relating the amount of insulin secreted for insulin sensitivity also improved (P = 0.04). CONCLUSIONS Insulin secretion improved following 4 months of clinically indicated ivacaftor therapy in this relatively young group of patients with CF with normal to mildly impaired glucose tolerance, whereas incretin secretion remained unchanged.
Collapse
Affiliation(s)
| | | | - Saba Sheikh
- 2 Division of Pulmonary Medicine and Cystic Fibrosis Center, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Devaney Camburn
- 2 Division of Pulmonary Medicine and Cystic Fibrosis Center, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Christina Kubrak
- 2 Division of Pulmonary Medicine and Cystic Fibrosis Center, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Darko Stefanovski
- 4 Department of Clinical Studies-NCI, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Denis Hadjiliadis
- 5 Division of Pulmonary & Critical Care Medicine and Cystic Fibrosis Center, Department of Medicine, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania; and
| | | | - Ronald C Rubenstein
- 2 Division of Pulmonary Medicine and Cystic Fibrosis Center, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Karimi S, Ai J, Khorsandi L, Bijan Nejad D, Saki G. Vildagliptin Enhances Differentiation of Insulin Producing Cells from Adipose-Derived Mesenchymal Stem Cells. CELL JOURNAL 2018; 20:477-482. [PMID: 30123993 PMCID: PMC6099143 DOI: 10.22074/cellj.2019.5542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Objective Type 1 diabetes is caused by destruction of beta cells of pancreas. Vildagliptin (VG), a dipeptidyl peptidase IV
(DPP IV) inhibitor, is an anti-diabetic drug, which increases beta cell mass. In the present study, the effects of VG on generation
of insulin-producing cells (IPCs) from adipose-derived mesenchymal stem cells (ASCs) is investigated.
Materials and Methods In this experimental study, ASCs were isolated and after characterization were exposed to
differentiation media with or without VG. The presence of IPCs was confirmed by morphological analysis and gene expression
(Pdx-1, Glut-2 and Insulin). Newport Green staining was used to determine insulin-positive cells. Insulin secretion under
different concentrations of glucose was measured using radioimmunoassay method.
Results In the presence of VG the morphology of differentiated cells was similar to the pancreatic islet cells. Expression
of Pdx-1, Glut-2 and Insulin genes in VG-treated cells was significantly higher than the cells exposed to induction media
only. Insulin release from VG-treated ASCs showed a nearly 3.6 fold (P<0.05) increase when exposed to a high-
glucose medium in comparison to untreated ASCs. The percentage of insulin-positive cells in the VG-treated cells was
approximately 2.9-fold higher than the untreated ASCs.
Conclusion The present study has demonstrated that VG elevates differentiation of ASCs into IPCs. Improvement of this
protocol may be used in cell therapy in diabetic patients.
Collapse
Affiliation(s)
- Samaneh Karimi
- Cell and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences, Department-School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Layasadat Khorsandi
- Cell and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Electronic Address:
| | - Darioush Bijan Nejad
- Cell and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Cell and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
16
|
Wiest EJ, Smith HJ, Hollingsworth MA. Met receptor inhibitor SU11274 localizes in the endoplasmic reticulum. Biochem Biophys Res Commun 2018; 501:858-862. [DOI: 10.1016/j.bbrc.2018.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022]
|
17
|
Zhao D, Ma L, Shen C, Li D, Cheng W, Shang Y, Liu Z, Wang X, Yin K. Long-lasting Glucagon-like Peptide 1 Analogue Exendin-4 Ameliorates the Secretory and Synthetic Function of Islets Isolated From Severely Scalded Rats. J Burn Care Res 2018; 39:545-554. [PMID: 29579298 DOI: 10.1093/jbcr/irx014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dongxu Zhao
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Li Ma
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Chuanan Shen
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Dawei Li
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Wenfeng Cheng
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Yuru Shang
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Zhaoxing Liu
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Xin Wang
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Kai Yin
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| |
Collapse
|
18
|
Tran S, Retnakaran R, Zinman B, Kramer CK. Efficacy of glucagon-like peptide-1 receptor agonists compared to dipeptidyl peptidase-4 inhibitors for the management of type 2 diabetes: A meta-analysis of randomized clinical trials. Diabetes Obes Metab 2018; 20 Suppl 1:68-76. [PMID: 29364587 DOI: 10.1111/dom.13137] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022]
Abstract
AIMS Glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors are both incretin-based therapies for type 2 diabetes (T2DM) but have distinct efficacy and side effect profiles. We thus performed a systematic review and meta-analysis to compare the effects of GLP-1 agonists to DPP-4 inhibitors on glycaemic control, weight and incidence of adverse events in adults with T2DM. We also sought to determine whether there was any additional effect in switching from DPP-4 inhibitor to GLP-1 agonist. MATERIALS AND METHODS We systematically searched PubMed, Embase and ClinicalTrials.gov for (1) randomized controlled trials (RCTs) comparing any GLP-1 agonist to any DPP-4 inhibitor and (2) interventional studies where a DPP-4 inhibitor was switched to a GLP-1 agonist. We assessed pooled data using random-effects model (CRD42017057115). RESULTS The pooled analysis of 13 RCTs (n = 4330) showed that, compared to DPP-4 inhibitors, GLP-1 agonists yielded a greater mean reduction in glycated haemoglobin (HbA1c) of -0.41% (95% CI -0.53 to -0.30) and in weight of -2.15 kg (-3.04 to -1.27). GLP-1 agonists were associated with greater likelihood of gastrointestinal side effects with no increased risk of hypoglycaemia. In 5 interventional studies (n = 433), switching from DPP-4 inhibitor to GLP-1 agonist yielded further mean reduction in HbA1c of -0.69% (-1.03 to -0.35) and in weight of -2.25 kg (-3.12 to -1.38). CONCLUSIONS GLP-1 agonists yield greater reduction in HbA1c and weight as compared to DPP-4 inhibitors, with increased incidence of gastrointestinal symptoms but not hypoglycaemia. Replacing a DPP-4 inhibitor with GLP-1 agonist provides additional benefits in glycaemic control and weight loss.
Collapse
Affiliation(s)
- Susan Tran
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
| | - Ravi Retnakaran
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
- Division of Endocrinology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Bernard Zinman
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
- Division of Endocrinology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Caroline K Kramer
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
- Division of Endocrinology, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Hædersdal S, Lund A, Knop FK, Vilsbøll T. The Role of Glucagon in the Pathophysiology and Treatment of Type 2 Diabetes. Mayo Clin Proc 2018; 93:217-239. [PMID: 29307553 DOI: 10.1016/j.mayocp.2017.12.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes is a disease involving both inadequate insulin levels and increased glucagon levels. While glucagon and insulin work together to achieve optimal plasma glucose concentrations in healthy individuals, the usual regulatory balance between these 2 critical pancreatic hormones is awry in patients with diabetes. Although clinical discussion often focuses on the role of insulin, glucagon is equally important in understanding type 2 diabetes. Furthermore, an awareness of the role of glucagon is essential to appreciate differences in the mechanisms of action of various classes of glucose-lowering therapies. Newer drug classes such as dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 receptor agonists improve glycemic control, in part, by affecting glucagon levels. This review provides an overview of the effect of glucose-lowering therapies on glucagon on the basis of an extensive PubMed literature search to identify clinical studies of glucose-lowering therapies in type 2 diabetes that included assessment of glucagon. Clinical practice currently benefits from available therapies that impact the glucagon regulatory pathway. As clinicians look to the future, improved treatment strategies are likely to emerge that will either use currently available therapies whose mechanisms of action complement each other or take advantage of new therapies based on an improved understanding of glucagon pathophysiology.
Collapse
Affiliation(s)
- Sofie Hædersdal
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Asger Lund
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Filip K Knop
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Steno Diabetes Center Copenhagen, University of Copenhagen, Gentofte, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Wang SL, Dong WB, Dong XL, Zhu WM, Wang FF, Han F, Yan X. Comparison of twelve single-drug regimens for the treatment of type 2 diabetes mellitus. Oncotarget 2017; 8:72700-72713. [PMID: 29069819 PMCID: PMC5641162 DOI: 10.18632/oncotarget.20282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/18/2017] [Indexed: 12/28/2022] Open
Abstract
We performed a network meta-analysis to compare the efficacy of 12 single-drug regimens (Glibenclamide, Glimepiride, Pioglitazone, Rosiglitazone, Repaglinide, Metformin, Sitaglitin, Exenatide, Liraglutide, Acarbose, Benfluorex, and Glipizide) in the treatment of type 2 diabetes mellitus (T2DM). Fifteen relevant randomized controlled trials (RCTs) were included; direct and indirect evidence from these studies was combined, and weighted mean difference (WMD) and surface under the cumulative ranking curves (SUCRAs) were examined to evaluate the monotherapies. Liraglutide was more effective than Glimepiride, Pioglitazone, Sitaglitin, Exenatide, and Glipizide at reducing glycated hemoglobin (HbA1c) levels. In contrast, Acarbose was less effective than Glibenclamide, Glimepiride, Pioglitazone, Rosiglitazone, Repaglinide, Metformin, and Liraglutide at decreasing HbA1c levels. Reductions in fasting plasma glucose (FPG) levels were similar after all treatments. Rosiglitazone was less effective than Glibenclamide and Repaglinide at reducing total cholesterol (TC) levels. High density lipoprotein (HDL), low density lipoprotein (LDL), and triglyceride levels did not differ after treatment with any of the monotherapies. HbA1c and FPG SUCRA values were highest for Liraglutide, while HbA1c and FPG values were lowest for Acarbose, and TC and LDL values were lowest for Rosiglitazone. These results suggest that Liraglutide may be most effective, and Acarbose least effective, at reducing blood glucose levels, while Glibenclamide, Repaglinide, and Metformin may be most effective, and Rosiglitazone least effective, at reducing lipoidemia, in T2DM patients.
Collapse
Affiliation(s)
- Shao-Lian Wang
- Department of Endocrinology, Jinan Central Hospital, Jinan 250013, P.R. China
| | - Wen-Bin Dong
- Pharmaceutical Preparation Section, Jinan Central Hospital, Jinan 250013, P.R. China
| | - Xiao-Lin Dong
- Department of Endocrinology, Jinan Central Hospital, Jinan 250013, P.R. China
| | - Wen-Min Zhu
- Department of Endocrinology, Jinan Central Hospital, Jinan 250013, P.R. China
| | - Fang-Fang Wang
- Department of Endocrinology, Jinan Central Hospital, Jinan 250013, P.R. China
| | - Fang Han
- Department of Endocrinology, Jinan Central Hospital, Jinan 250013, P.R. China
| | - Xin Yan
- Department of Endocrinology, Jinan Central Hospital, Jinan 250013, P.R. China
| |
Collapse
|
21
|
Sedman T, Vasar E, Volke V. Tolerance Does Not Develop Toward Liraglutide's Glucose-Lowering Effect. J Clin Endocrinol Metab 2017; 102:2335-2339. [PMID: 28379427 DOI: 10.1210/jc.2017-00199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/28/2017] [Indexed: 02/05/2023]
Abstract
CONTEXT Glucagon-like peptide-1 receptor agonists are popular antidiabetic drugs with potent glucose-lowering effects and low risk of hypoglycemia. Animal experiments and human data indicate that tolerance develops toward at least some of their effects (e.g., gastric motility). Whether tolerance develops toward the glucose-lowering effect of glucagon-like peptide-1 receptor agonists has never been formally tested. OBJECTIVE The objective of this pilot study was to test the hypothesis whether tolerance develops toward glucagon-like peptide-1 receptor agonists' glucose-lowering effect in chronic use. DESIGN, SETTING, PARTICIPANTS, AND INTERVENTION We conducted a single group, open-label clinical trial. Ten healthy volunteers were treated with 0.6 mg liraglutide once daily subcutaneously for 21 days. The drug's effect was quantified by serial graded glucose infusion tests, with glucose and c-peptide measured every 20 minutes and insulin secretion rate calculated. MAIN OUTCOME MEASURE The primary outcome was a change in the dose-response relationship between calculated insulin secretion rate and blood glucose level after acute and chronic administration of liraglutide. RESULTS Liraglutide clearly decreased the glucose values during the graded glucose infusion test and robustly enhanced insulin secretion. For all parameters, chronic liraglutide was as effective as acute treatment in human subjects. CONCLUSIONS We conclude that our results largely refute the hypothesis of tolerance development with prolonged liraglutide use in healthy nonobese humans.
Collapse
Affiliation(s)
- Tuuli Sedman
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Vallo Volke
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Tartu University Hospital, 51014 Tartu, Estonia
| |
Collapse
|
22
|
GLP-1 receptor signalling promotes β-cell glucose metabolism via mTOR-dependent HIF-1α activation. Sci Rep 2017; 7:2661. [PMID: 28572610 PMCID: PMC5454020 DOI: 10.1038/s41598-017-02838-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/19/2017] [Indexed: 02/05/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) promotes insulin secretion from pancreatic β-cells in a glucose dependent manner. Several pathways mediate this action by rapid, kinase phosphorylation-dependent, but gene expression-independent mechanisms. Since GLP-1-induced insulin secretion requires glucose metabolism, we aimed to address the hypothesis that GLP-1 receptor (GLP-1R) signalling can modulate glucose uptake and utilization in β-cells. We have assessed various metabolic parameters after short and long exposure of clonal BRIN-BD11 β-cells and rodent islets to the GLP-1R agonist Exendin-4 (50 nM). Here we report for the first time that prolonged stimulation of the GLP-1R for 18 hours promotes metabolic reprogramming of β-cells. This is evidenced by up-regulation of glycolytic enzyme expression, increased rates of glucose uptake and consumption, as well as augmented ATP content, insulin secretion and glycolytic flux after removal of Exendin-4. In our model, depletion of Hypoxia-Inducible Factor 1 alpha (HIF-1α) impaired the effects of Exendin-4 on glucose metabolism, while pharmacological inhibition of Phosphoinositide 3-kinase (PI3K) or mTOR completely abolished such effects. Considering the central role of glucose catabolism for stimulus-secretion coupling in β-cells, our findings suggest that chronic GLP-1 actions on insulin secretion include elevated β-cell glucose metabolism. Moreover, our data reveal novel aspects of GLP-1 stimulated insulin secretion involving de novo gene expression.
Collapse
|
23
|
Effect of exenatide after short-time intensive insulin therapy on glycaemic remission maintenance in type 2 diabetes patients: a randomized controlled trial. Sci Rep 2017; 7:2383. [PMID: 28539618 PMCID: PMC5443840 DOI: 10.1038/s41598-017-02631-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/13/2017] [Indexed: 12/11/2022] Open
Abstract
Early short-term intensive insulin (STII) therapy can induce drug-free glycemic remission for up to 1 year in half of newly diagnosed type 2 diabetic mellitus (T2DM) patients. Whether exenatide following STII therapy will induce higher long-term glycaemic remission is currently unknown. To assess the effect of STII+ exenatide therapy, compared with STII only, on maintenance of glycaemic remission in newly diagnosed T2DM patients. In this randomized, parallel-group, open-label, controlled trial, 129 patients (66 in STII+ exenatide group and 63 in STII only group) firstly completed 3-week STII therapy, then STII+ exenatide group was treated with exenatide for 12 weeks further. The cumulative probabilities of 1-year and 2-year glycaemic remission in STII+ exenatide group were 68.2 ± 5.7% and 53.0 ± 6.1%, which were significantly higher than STII only group (36.5 ± 6.1% and 31.8 ± 5.9%) (p-values < 0.001). Patients in STII+ exenatide group, compared with STII only group, showed significantly decreased levels of waist (82.2 (81.0, 83.5) cm v.s. 84.2 (82.7, 85.7) cm, p = 0.048) and HbA1c (5.83 (5.60, 6.06)% v.s. 6.49 (6.20, 6.77)%, p < 0.001) after 12-week exenatide treatment, but these differences disappeared after 1-year and 2-year follow-up. As conclusions, Improved effect of sequential exenatide after STII therapy on maintenance of glycaemic remission only occurred during exenatide treatment and lost upon treatment cessation.
Collapse
|
24
|
Ji Q. Treatment Strategy for Type 2 Diabetes with Obesity: Focus on Glucagon-like Peptide-1 Receptor Agonists. Clin Ther 2017; 39:1244-1264. [PMID: 28526416 DOI: 10.1016/j.clinthera.2017.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/08/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE The progressive nature of type 2 diabetes mellitus (T2DM) calls for step-wise intensification of therapy for maintaining normal glycemic levels and lowering cardiovascular (CV) risk. Because obesity is a prominent risk factor and comorbidity of T2DM, it further elevates the CV risk in T2DM. Therefore, it is vital to manage weight, obesity, and glycemic parameters for effective T2DM management. Few oral antidiabetic drugs (sulfonylureas and thiazolidinediones) and insulin are not suitable for obese patients with T2DM because these drugs cause weight gain. The present review discusses the place of glucagon-like peptide-1 receptor agonists (GLP-1RAs) in the treatment of obese patients with T2DM and the significance of these drugs in the prevention of future CV risk in patients with T2DM. METHODS A literature search of PubMed and EMBASE was conducted by using the search terms T2DM, GLP-1RAs, obesity, and cardiovascular complication. Randomized controlled trials measuring the effect of GLP-1RAs versus that of placebo on CV outcomes were included in the review. FINDINGS GLP-1RAs have emerged as a therapeutic alternative; these drugs exert their actions by providing glycemic control, improving insulin resistance and ö̇-cell function, and reducing weight. The risk of hypoglycemia with GLP-1RAs is minimal; however, GLP-1RAs are associated with gastrointestinal adverse events and raise concerns regarding pancreatitis. Combining GLP-1RAs with insulin analogues results in higher efficacy, a lowered insulin dose, and reduced insulin-related hypoglycemia and weight gain. Longer acting GLP-1RAs are also associated with improvement in medication adherence. Improvement in CV risk factors such as blood pressure and lipid profile further increases their usability for improving CV outcomes. IMPLICATIONS Overall, the properties of GLP-1RAs make them suitable for combination with oral antidiabetic drugs in the early stages of T2DM and with insulins in the later stages for optimizing comprehensive management of the disease.
Collapse
Affiliation(s)
- Qiuhe Ji
- Department of Endocrinology, Xijing Hospital, The First Affiliated Hospital of the Fourth Military Medical University, Xian, People's Republic of China.
| |
Collapse
|
25
|
Hemmingsen B, Sonne DP, Metzendorf M, Richter B. Dipeptidyl-peptidase (DPP)-4 inhibitors and glucagon-like peptide (GLP)-1 analogues for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk for the development of type 2 diabetes mellitus. Cochrane Database Syst Rev 2017; 5:CD012204. [PMID: 28489279 PMCID: PMC6481586 DOI: 10.1002/14651858.cd012204.pub2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The projected rise in the incidence of type 2 diabetes mellitus (T2DM) could develop into a substantial health problem worldwide. Whether dipeptidyl-peptidase (DPP)-4 inhibitors or glucagon-like peptide (GLP)-1 analogues are able to prevent or delay T2DM and its associated complications in people at risk for the development of T2DM is unknown. OBJECTIVES To assess the effects of DPP-4 inhibitors and GLP-1 analogues on the prevention or delay of T2DM and its associated complications in people with impaired glucose tolerance, impaired fasting blood glucose, moderately elevated glycosylated haemoglobin A1c (HbA1c) or any combination of these. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials; MEDLINE; PubMed; Embase; ClinicalTrials.gov; the World Health Organization (WHO) International Clinical Trials Registry Platform; and the reference lists of systematic reviews, articles and health technology assessment reports. We asked investigators of the included trials for information about additional trials. The date of the last search of all databases was January 2017. SELECTION CRITERIA We included randomised controlled trials (RCTs) with a duration of 12 weeks or more comparing DPP-4 inhibitors and GLP-1 analogues with any pharmacological glucose-lowering intervention, behaviour-changing intervention, placebo or no intervention in people with impaired fasting glucose, impaired glucose tolerance, moderately elevated HbA1c or combinations of these. DATA COLLECTION AND ANALYSIS Two review authors read all abstracts and full-text articles and records, assessed quality and extracted outcome data independently. One review author extracted data which were checked by a second review author. We resolved discrepancies by consensus or the involvement of a third review author. For meta-analyses, we planned to use a random-effects model with investigation of risk ratios (RRs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes, using 95% confidence intervals (CIs) for effect estimates. We assessed the overall quality of the evidence using the GRADE instrument. MAIN RESULTS We included seven completed RCTs; about 98 participants were randomised to a DPP-4 inhibitor as monotherapy and 1620 participants were randomised to a GLP-1 analogue as monotherapy. Two trials investigated a DPP-4 inhibitor and five trials investigated a GLP-1 analogue. A total of 924 participants with data on allocation to control groups were randomised to a comparator group; 889 participants were randomised to placebo and 33 participants to metformin monotherapy. One RCT of liraglutide contributed 85% of all participants. The duration of the intervention varied from 12 weeks to 160 weeks. We judged none of the included trials at low risk of bias for all 'Risk of bias' domains and did not perform meta-analyses because there were not enough trials.One trial comparing the DPP-4 inhibitor vildagliptin with placebo reported no deaths (very low-quality evidence). The incidence of T2DM by means of WHO diagnostic criteria in this trial was 3/90 participants randomised to vildagliptin versus 1/89 participants randomised to placebo (very low-quality evidence). Also, 1/90 participants on vildagliptin versus 2/89 participants on placebo experienced a serious adverse event (very low-quality evidence). One out of 90 participants experienced congestive heart failure in the vildagliptin group versus none in the placebo group (very low-quality evidence). There were no data on non-fatal myocardial infarction, stroke, health-related quality of life or socioeconomic effects reported.All-cause and cardiovascular mortality following treatment with GLP-1 analogues were rarely reported; one trial of exenatide reported that no participant died. Another trial of liraglutide 3.0 mg showed that 2/1501 in the liraglutide group versus 2/747 in the placebo group died after 160 weeks of treatment (very low-quality evidence).The incidence of T2DM following treatment with liraglutide 3.0 mg compared to placebo after 160 weeks was 26/1472 (1.8%) participants randomised to liraglutide versus 46/738 (6.2%) participants randomised to placebo (very low-quality evidence). The trial established the risk for (diagnosis of) T2DM as HbA1c 5.7% to 6.4% (6.5% or greater), fasting plasma glucose 5.6 mmol/L or greater to 6.9 mmol/L or less (7.0 mmol/L or greater) or two-hour post-load plasma glucose 7.8 mmol/L or greater to 11.0 mmol/L (11.1 mmol/L). Altogether, 70/1472 (66%) participants regressed from intermediate hyperglycaemia to normoglycaemia compared with 268/738 (36%) participants in the placebo group. The incidence of T2DM after the 12-week off-treatment extension period (i.e. after 172 weeks) showed that five additional participants were diagnosed T2DM in the liraglutide group, compared with one participant in the placebo group. After 12-week treatment cessation, 740/1472 (50%) participants in the liraglutide group compared with 263/738 (36%) participants in the placebo group had normoglycaemia.One trial used exenatide and 2/17 participants randomised to exenatide versus 1/16 participants randomised to placebo developed T2DM (very low-quality evidence). This trial did not provide a definition of T2DM. One trial reported serious adverse events in 230/1524 (15.1%) participants in the liraglutide 3.0 mg arm versus 96/755 (12.7%) participants in the placebo arm (very low quality evidence). There were no serious adverse events in the trial using exenatide. Non-fatal myocardial infarction was reported in 1/1524 participants in the liraglutide arm and in 0/55 participants in the placebo arm at 172 weeks (very low-quality evidence). One trial reported congestive heart failure in 1/1524 participants in the liraglutide arm and in 1/755 participants in the placebo arm (very low-quality evidence). Participants receiving liraglutide compared with placebo had a small mean improvement in the physical component of the 36-item Short Form scale showing a difference of 0.87 points (95% CI 0.17 to 1.58; P = 0.02; 1 trial; 1791 participants; very low-quality evidence). No trial evaluating GLP-1-analogues reported data on stroke, microvascular complications or socioeconomic effects. AUTHORS' CONCLUSIONS There is no firm evidence that DPP-4 inhibitors or GLP-1 analogues compared mainly with placebo substantially influence the risk of T2DM and especially its associated complications in people at increased risk for the development of T2DM. Most trials did not investigate patient-important outcomes.
Collapse
Affiliation(s)
- Bianca Hemmingsen
- Herlev University HospitalDepartment of Internal MedicineHerlev Ringvej 75HerlevDenmarkDK‐2730
| | - David P Sonne
- Gentofte Hospital, University of CopenhagenCenter for Diabetes Research, Department of MedicineKildegaardsvej 28HellerupDenmarkDK‐2900
| | - Maria‐Inti Metzendorf
- Institute of General Practice, Medical Faculty of the Heinrich‐Heine‐University DüsseldorfCochrane Metabolic and Endocrine Disorders GroupMoorenstr. 5DüsseldorfGermany40225
| | - Bernd Richter
- Institute of General Practice, Medical Faculty of the Heinrich‐Heine‐University DüsseldorfCochrane Metabolic and Endocrine Disorders GroupMoorenstr. 5DüsseldorfGermany40225
| | | |
Collapse
|
26
|
Sheikh S, Gudipaty L, De Leon DD, Hadjiliadis D, Kubrak C, Rosenfeld NK, Nyirjesy SC, Peleckis AJ, Malik S, Stefanovski D, Cuchel M, Rubenstein RC, Kelly A, Rickels MR. Reduced β-Cell Secretory Capacity in Pancreatic-Insufficient, but Not Pancreatic-Sufficient, Cystic Fibrosis Despite Normal Glucose Tolerance. Diabetes 2017; 66:134-144. [PMID: 27495225 PMCID: PMC5204312 DOI: 10.2337/db16-0394] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/01/2016] [Indexed: 01/21/2023]
Abstract
Patients with pancreatic-insufficient cystic fibrosis (PI-CF) are at increased risk for developing diabetes. We determined β-cell secretory capacity and insulin secretory rates from glucose-potentiated arginine and mixed-meal tolerance tests (MMTTs), respectively, in pancreatic-sufficient cystic fibrosis (PS-CF), PI-CF, and normal control subjects, all with normal glucose tolerance, in order to identify early pathophysiologic defects. Acute islet cell secretory responses were determined under fasting, 230 mg/dL, and 340 mg/dL hyperglycemia clamp conditions. PI-CF subjects had lower acute insulin, C-peptide, and glucagon responses compared with PS-CF and normal control subjects, indicating reduced β-cell secretory capacity and α-cell function. Fasting proinsulin-to-C-peptide and proinsulin secretory ratios during glucose potentiation were higher in PI-CF, suggesting impaired proinsulin processing. In the first 30 min of the MMTT, insulin secretion was lower in PI-CF compared with PS-CF and normal control subjects, and glucagon-like peptide 1 and gastric inhibitory polypeptide were lower compared with PS-CF, and after 180 min, glucose was higher in PI-CF compared with normal control subjects. These findings indicate that despite "normal" glucose tolerance, adolescents and adults with PI-CF have impairments in functional islet mass and associated early-phase insulin secretion, which with decreased incretin responses likely leads to the early development of postprandial hyperglycemia in CF.
Collapse
Affiliation(s)
- Saba Sheikh
- Division of Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lalitha Gudipaty
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Diva D De Leon
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Denis Hadjiliadis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Christina Kubrak
- Division of Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Nora K Rosenfeld
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sarah C Nyirjesy
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Amy J Peleckis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Saloni Malik
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Darko Stefanovski
- Department of Biostatistics, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Ronald C Rubenstein
- Division of Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Andrea Kelly
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Michael R Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
27
|
Hemmingsen B, Sonne DP, Metzendorf M, Richter B. Insulin secretagogues for prevention or delay of type 2 diabetes mellitus and its associated complications in persons at increased risk for the development of type 2 diabetes mellitus. Cochrane Database Syst Rev 2016; 10:CD012151. [PMID: 27749986 PMCID: PMC6461156 DOI: 10.1002/14651858.cd012151.pub2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The projected rise in the incidence of type 2 diabetes mellitus (T2DM) could develop into a substantial health problem worldwide. Whether insulin secretagogues (sulphonylureas and meglitinide analogues) are able to prevent or delay T2DM and its associated complications in people at risk for the development of T2DM is unknown. OBJECTIVES To assess the effects of insulin secretagogues on the prevention or delay of T2DM and its associated complications in people with impaired glucose tolerance, impaired fasting blood glucose, moderately elevated glycosylated haemoglobin A1c (HbA1c) or any combination of these. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials, MEDLINE, PubMed, Embase, ClinicalTrials.gov, the World Health Organization International Clinical Trials Registry Platform, and the reference lists of systematic reviews, articles and health technology assessment reports. We asked investigators of the included trials for information about additional trials. The date of the last search of all databases was April 2016. SELECTION CRITERIA We included randomised controlled trials (RCTs) with a duration of 12 weeks or more comparing insulin secretagogues with any pharmacological glucose-lowering intervention, behaviour-changing intervention, placebo or no intervention in people with impaired fasting glucose, impaired glucose tolerance, moderately elevated HbA1c or combinations of these. DATA COLLECTION AND ANALYSIS Two review authors read all abstracts and full-text articles/records, assessed quality and extracted outcome data independently. One review author extracted data which were checked by a second review author. We resolved discrepancies by consensus or the involvement of a third review author. For meta-analyses we used a random-effects model with investigation of risk ratios (RRs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes, using 95% confidence intervals (CIs) for effect estimates. We carried out trial sequential analyses (TSAs) for all outcomes that could be meta-analysed. We assessed the overall quality of the evidence by using the GRADE instrument. MAIN RESULTS We included six RCTs with 10,018 participants; 4791 participants with data on allocation to intervention groups were randomised to a second- or third-generation sulphonylurea or a meglitinide analogue as monotherapy and 29 participants were randomised to a second-generation sulphonylurea plus metformin. Three trials investigated a second-generation sulphonylurea, two trials investigated a third-generation sulphonylurea and one trial a meglitinide analogue. A total of 4873 participants with data on allocation to control groups were randomised to a comparator group; 4820 participants were randomised to placebo, 23 to diet and exercise, and 30 participants to metformin monotherapy. One RCT of nateglinide contributed 95% of all participants. The duration of the intervention varied from six months to five years. We judged none of the included trials as at low risk of bias for all 'Risk of bias' domains.All-cause and cardiovascular mortality following sulphonylurea (glimepiride) treatment were rarely observed (very low-quality evidence). The RR for incidence of T2DM comparing glimepiride monotherapy with placebo was 0.75; 95% CI 0.54 to 1.04; P = 0.08; 2 trials; 307 participants; very low-quality evidence. One of the trials reporting on the incidence of T2DM did not define the diagnostic criteria used. The other trial diagnosed T2DM as two consecutive fasting blood glucose values ≥ 6.1 mmol/L. TSA showed that only 4.5% of the diversity-adjusted required information size was accrued so far. No trial reported data on serious adverse events, non-fatal myocardial infarction (MI), non-fatal stroke, congestive heart failure (HF), health-related quality of life or socioeconomic effects.One trial with a follow-up of five years compared a meglitinide analogue (nateglinide) with placebo. A total of 310/4645 (6.7%) participants allocated to nateglinide died compared with 312/4661 (6.7%) participants allocated to placebo (hazard ratio (HR) 1.00; 95% CI 0.85 to 1.17; P = 0.98; moderate-quality evidence). The two main criteria for diagnosing T2DM were a fasting plasma glucose level ≥ 7.0 mmol/L or a 2-hour post challenge glucose ≥ 11.1 mmol/L. T2DM developed in 1674/4645 (36.0%) participants in the nateglinide group and in 1580/4661 (33.9%) in the placebo group (HR 1.07; 95% CI 1.00 to 1.15; P = 0.05; moderate-quality evidence). One or more serious adverse event was reported in 2066/4602 (44.9%) participants allocated to nateglinide compared with 2089/4599 (45.6%) participants allocated to placebo. A total of 126/4645 (2.7%) participants allocated to nateglinide died because of cardiovascular disease compared with 118/4661 (2.5%) participants allocated to placebo (HR 1.07; 95% CI 0.83 to 1.38; P = 0.60; moderate-quality evidence). Comparing participants receiving nateglinide with those receiving placebo for the outcomes MI, non-fatal stroke and HF gave the following event rates: MI 116/4645 (2.5%) versus 122/4661 (2.6%), stroke 100/4645 (2.2%) versus 110/4661 (2.4%) and numbers hospitalised for HF 85/4645 (1.8%) versus 100/4661 (2.1%) - (HR 0.85; 95% CI 0.64 to 1.14; P = 0.27). The quality of the evidence was moderate for all these outcomes. Health-related quality of life or socioeconomic effects were not reported. AUTHORS' CONCLUSIONS There is insufficient evidence to demonstrate whether insulin secretagogues compared mainly with placebo reduce the risk of developing T2DM and its associated complications in people at increased risk for the development of T2DM. Most trials did not investigate patient-important outcomes.
Collapse
Affiliation(s)
- Bianca Hemmingsen
- Herlev University HospitalDepartment of Internal MedicineHerlev Ringvej 75HerlevDenmarkDK‐2730
| | - David Peick Sonne
- Gentofte Hospital, University of CopenhagenCenter for Diabetes Research, Department of MedicineKildegaardsvej 28HellerupDenmarkDK‐2900
| | - Maria‐Inti Metzendorf
- Institute of General Practice, Medical Faculty of the Heinrich‐Heine‐University DüsseldorfCochrane Metabolic and Endocrine Disorders GroupMoorenstr. 5DüsseldorfGermany40225
| | - Bernd Richter
- Institute of General Practice, Medical Faculty of the Heinrich‐Heine‐University DüsseldorfCochrane Metabolic and Endocrine Disorders GroupMoorenstr. 5DüsseldorfGermany40225
| | | |
Collapse
|
28
|
Kalra S, Baruah MP. Comment on Schwartz et al. The Time Is Right for a New Classification System for Diabetes: Rationale and Implications of the β-Cell-Centric Classification Schema. Diabetes Care 2016;39:179-186. Diabetes Care 2016; 39:e128. [PMID: 27457643 DOI: 10.2337/dc16-0162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sanjay Kalra
- Department of Endocrinology and Metabolism, Bharti Hospital, Karnal, Haryana, India
| | - Manash P Baruah
- Department of Endocrinology and Metabolism, Excel Hospitals, Guwahati, Assam, India
| |
Collapse
|
29
|
Kalra S, Aamir AH, Raza A, Das AK, Azad Khan AK, Shrestha D, Qureshi MF, Md Fariduddin, Pathan MF, Jawad F, Bhattarai J, Tandon N, Somasundaram N, Katulanda P, Sahay R, Dhungel S, Bajaj S, Chowdhury S, Ghosh S, Madhu SV, Ahmed T, Bulughapitiya U. Place of sulfonylureas in the management of type 2 diabetes mellitus in South Asia: A consensus statement. Indian J Endocrinol Metab 2015; 19:577-96. [PMID: 26425465 PMCID: PMC4566336 DOI: 10.4103/2230-8210.163171] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Since their introduction in clinical practice in the 1950's, Sulfonylureas (SUs) have remained the main-stay of pharmacotherapy in the management of type 2 diabetes. Despite their well-established benefits, their place in therapy is inappropriately being overshadowed by newer therapies. Many of the clinical issues associated with the use of SUs are agent-specific, and do not pertain to the class as such. Modern SUs (glimepiride, gliclazide MR) are backed by a large body of evidence, experience, and most importantly, outcome data, which supports their role in managing patients with diabetes. Person-centred care, i.e., careful choice of SU, appropriate dosage, timing of administration, and adequate patient counseling, will ensure that deserving patients are not deprived of the advantages of this well-established class of anti-diabetic agents. Considering their efficacy, safety, pleiotropic benefits, and low cost of therapy, SUs should be considered as recommended therapy for the treatment of diabetes in South Asia. This initiative by SAFES aims to encourage rational, safe and smart prescription of SUs, and includes appropriate medication counseling.
Collapse
Affiliation(s)
- Sanjay Kalra
- Department of Endocrinology, Bharti Hospital and BRIDE, Karnal, Haryana, India
| | - A H Aamir
- Department of Endocrinology, Post Graduate Medical Institute Hayatabad Medical Complex, Peshawar, Pakistan
| | - Abbas Raza
- Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - A K Das
- Department of Endocrinology, Pondicherry Institute of Medical Sciences, Puducherry, India
| | - A K Azad Khan
- Department of Public Health, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Dina Shrestha
- Department of Endocrinology, Norvic International Hospital, Kathmandu, Nepal
| | - Md Faisal Qureshi
- Department of Endocrinology, Al-Khaliq Medicare Hospital, Dhaka, Bangladesh
| | - Md Fariduddin
- Department of Endocrinology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | | | - Fatema Jawad
- Department of Diabetology, Medilink Clinics, Karachi, Pakistan
| | - Jyoti Bhattarai
- Department of Medicine, Trivuvan University, Kathmandu, Nepal
| | - Nikhil Tandon
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Noel Somasundaram
- South Asian Federation of Endocrine Societies, National Hospital, Dhaka, Bangladesh
| | - Prasad Katulanda
- Department of Clinical Medicines, Diabetes Research Unit, University of Colombo, Colombo, Sri Lanka
| | - Rakesh Sahay
- Department of Endocrinology, Osmania Medical College, Hyderabad, Telangana, India
| | - Sanjib Dhungel
- Department of Medicine, Nepal Medical College Teaching Hospital, Kathmandu, Nepal
| | - Sarita Bajaj
- Department of Medicine, MLN Medical College, Allahabad, Uttar Pradesh, India
| | - Subhankar Chowdhury
- Department of Endocrinology, IPGMER and SSKM Hospital, Kolkata, West Bengal, India
| | - Sujoy Ghosh
- Department of Endocrinology and Metabolism, IPGMER, Kolkata, West Bengal, India
| | - S V Madhu
- Department of Medicine and Head, Centre for Diabetes, Endocrinology and Metabolism, UCMS-GTB Hospital, New Delhi, India
| | - Tofail Ahmed
- Department of Endocrinology, BIRDEM, Dhaka, Bangladesh
| | - Uditha Bulughapitiya
- Department of Endocrinology, Kalubowila South Teaching Hospital, Kalubowila, Sri Lanka
| |
Collapse
|
30
|
Yang HK, Kang B, Lee SH, Kim HS, Yoon KH, Cha BY, Cho JH. Effects of 6-Month Sitagliptin Treatment on Insulin and Glucagon Responses in Korean Patients with Type 2 Diabetes Mellitus. Diabetes Metab J 2015; 39:335-41. [PMID: 26301196 PMCID: PMC4543198 DOI: 10.4093/dmj.2015.39.4.335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/15/2014] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the effect of sitagliptin, an oral dipeptidyl peptidase-4 inhibitor, on insulin secretion and glucagon suppression in Korean subjects with type 2 diabetes mellitus. METHODS Twenty-four subjects underwent a 75-g oral glucose tolerance test (OGTT) before and after 6 months of sitagliptin treatment. Sitagliptin, insulin, and sulfonylurea were withdrawn for 3 days before OGTT to eliminate any acute effects on β-cell insulin or α-cell glucagon secretion. Venous samples were drawn five times during each OGTT to measure plasma glucose, insulin, and glucagon. Indices on insulin secretion and resistance were calculated. RESULTS Early phase insulin secretion, measured by the insulinogenic index significantly increased after 6 months of sitagliptin treatment, especially in the higher baseline body mass index group and higher baseline glycosylated hemoglobin (HbA1c) group. There were no significant differences in the insulin resistance indices before and after sitagliptin treatment. Although no significant differences were observed in the absolute levels of glucagon and the glucagon-to-insulin ratio, there was a significant reduction in the percentile change of glucagon-to-insulin ratio at 30- and 120-minute during the OGTT. CONCLUSION Although the HbA1c level did not decrease significantly after 6 months of sitagliptin treatment, an increase in insulin secretion and reduction in early phase postprandial plasma glucagon-to-insulin ratio excursion was confirmed in Korean subjects with type 2 diabetes.
Collapse
Affiliation(s)
- Hae Kyung Yang
- Divison of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Borami Kang
- Divison of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hwan Lee
- Divison of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hun-Sung Kim
- Divison of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kun-Ho Yoon
- Divison of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Bong-Yun Cha
- Divison of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae-Hyoung Cho
- Divison of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
31
|
Affiliation(s)
- Sanjay Kalra
- Department of Endocrinology, Bharti Hospital and B.R.I.D.E., Karnal, Haryana, India
| | - S. V. Madhu
- Department of Medicine, University College of Medical Sciences, New Delhi, India
| | - Sarita Bajaj
- Department of Medicine, MLN Medical College, Allahabad, Uttar Pradesh, India
| |
Collapse
|