1
|
Morabito G, Ryabova A, Valenzano DR. Immune aging in annual killifish. Immun Ageing 2024; 21:18. [PMID: 38459521 PMCID: PMC10921792 DOI: 10.1186/s12979-024-00418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
Turquoise killifish (Nothobranchius furzeri) evolved a naturally short lifespan of about six months and exhibit aging hallmarks that affect multiple organs. These hallmarks include protein aggregation, telomere shortening, cellular senescence, and systemic inflammation. Turquoise killifish possess the full spectrum of vertebrate-specific innate and adaptive immune system. However, during their recent evolutionary history, they lost subsets of mucosal-specific antibody isoforms that are present in other teleosts. As they age, the immune system of turquoise killifish undergoes dramatic cellular and systemic changes. These changes involve increased inflammation, reduced antibody diversity, an increased prevalence of pathogenic microbes in the intestine, and extensive DNA damage in immune progenitor cell clusters. Collectively, the wide array of age-related changes occurring in turquoise killifish suggest that, despite an evolutionary separation spanning hundreds of millions of years, teleosts and mammals share common features of immune system aging. Hence, the spontaneous aging observed in the killifish immune system offers an excellent opportunity for discovering fundamental and conserved aspects associated with immune system aging across vertebrates. Additionally, the species' naturally short lifespan of only a few months, along with its experimental accessibility, offers a robust platform for testing interventions to improve age-related dysfunctions in the whole organism and potentially inform the development of immune-based therapies for human aging-related diseases.
Collapse
Affiliation(s)
| | - Alina Ryabova
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Dario Riccardo Valenzano
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.
- Friedrich Schiller University, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
2
|
Pearah A, Ramatchandirin B, Liu T, Wolf RM, Ikeda A, Radovick S, Sesaki H, Wondisford FE, O'Rourke B, He L. Blocking AMPKαS496 phosphorylation improves mitochondrial dynamics and hyperglycemia in aging and obesity. Cell Chem Biol 2023; 30:1585-1600.e6. [PMID: 37890479 PMCID: PMC10841824 DOI: 10.1016/j.chembiol.2023.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
Impaired mitochondrial dynamics causes aging-related or metabolic diseases. Yet, the molecular mechanism responsible for the impairment of mitochondrial dynamics is still not well understood. Here, we report that elevated blood insulin and/or glucagon levels downregulate mitochondrial fission through directly phosphorylating AMPKα at S496 by AKT or PKA, resulting in the impairment of AMPK-MFF-DRP1 signaling and mitochondrial dynamics and activity. Since there are significantly increased AMPKα1 phosphorylation at S496 in the liver of elderly mice, obese mice, and obese patients, we, therefore, designed AMPK-specific targeting peptides (Pa496m and Pa496h) to block AMPKα1S496 phosphorylation and found that these targeting peptides can increase AMPK kinase activity, augment mitochondrial fission and oxidation, and reduce ROS, leading to the rejuvenation of mitochondria. Furthermore, these AMPK targeting peptides robustly suppress liver glucose production in obese mice. Our data suggest these targeting peptides are promising therapeutic agents for improving mitochondrial dynamics and activity and alleviating hyperglycemia in elderly and obese patients.
Collapse
Affiliation(s)
- Alexia Pearah
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Ting Liu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Risa M Wolf
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Arisa Ikeda
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sally Radovick
- Departments of Pediatrics and Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Fredric E Wondisford
- Departments of Pediatrics and Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Brian O'Rourke
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ling He
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Departments of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
3
|
Umbayev B, Saliev T, Safarova (Yantsen) Y, Yermekova A, Olzhayev F, Bulanin D, Tsoy A, Askarova S. The Role of Cdc42 in the Insulin and Leptin Pathways Contributing to the Development of Age-Related Obesity. Nutrients 2023; 15:4964. [PMID: 38068822 PMCID: PMC10707920 DOI: 10.3390/nu15234964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Age-related obesity significantly increases the risk of chronic diseases such as type 2 diabetes, cardiovascular diseases, hypertension, and certain cancers. The insulin-leptin axis is crucial in understanding metabolic disturbances associated with age-related obesity. Rho GTPase Cdc42 is a member of the Rho family of GTPases that participates in many cellular processes including, but not limited to, regulation of actin cytoskeleton, vesicle trafficking, cell polarity, morphology, proliferation, motility, and migration. Cdc42 functions as an integral part of regulating insulin secretion and aging. Some novel roles for Cdc42 have also been recently identified in maintaining glucose metabolism, where Cdc42 is involved in controlling blood glucose levels in metabolically active tissues, including skeletal muscle, adipose tissue, pancreas, etc., which puts this protein in line with other critical regulators of glucose metabolism. Importantly, Cdc42 plays a vital role in cellular processes associated with the insulin and leptin signaling pathways, which are integral elements involved in obesity development if misregulated. Additionally, a change in Cdc42 activity may affect senescence, thus contributing to disorders associated with aging. This review explores the complex relationships among age-associated obesity, the insulin-leptin axis, and the Cdc42 signaling pathway. This article sheds light on the vast molecular web that supports metabolic dysregulation in aging people. In addition, it also discusses the potential therapeutic implications of the Cdc42 pathway to mitigate obesity since some new data suggest that inhibition of Cdc42 using antidiabetic drugs or antioxidants may promote weight loss in overweight or obese patients.
Collapse
Affiliation(s)
- Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Timur Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan;
| | - Yuliya Safarova (Yantsen)
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Aislu Yermekova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Farkhad Olzhayev
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Denis Bulanin
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Andrey Tsoy
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Sholpan Askarova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| |
Collapse
|
4
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
5
|
Malin SK, Frick H, Wisseman WS, Edwards ES, Edwards DA, Emerson SR, Kurti SP. β-Cell function during a high-fat meal in young versus old adults: role of exercise. Am J Physiol Regul Integr Comp Physiol 2023; 325:R164-R171. [PMID: 37306399 PMCID: PMC10393366 DOI: 10.1152/ajpregu.00047.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
The acute effect of exercise on β-cell function during a high-fat meal (HFM) in young adults (YA) versus old adults (OA) is unclear. In this randomized crossover trial, YA (n = 5 M/7 F, 23.3 ± 3.9 yr) and OA (n = 8 M/4 F, 67.7 ± 6.0 yr) underwent a 180-min HFM (12 kcal/kg body wt; 57% fat, 37% CHO) after a rest or exercise [∼65% heart rate peak (HRpeak)] condition ∼12 h earlier. After an overnight fast, plasma lipids, glucose, insulin, and free fatty acid (FFA) were determined to estimate peripheral, or skeletal muscle, insulin sensitivity (Matsuda index) as well as hepatic [homeostatic model assessment of insulin resistance (HOMA-IR)] and adipose insulin resistance (adipose-IR). β-Cell function was derived from C-peptide and defined as early-phase (0-30 min) and total-phase (0-180 min) disposition index [DI, glucose-stimulated insulin secretion (GSIS) adjusted for insulin sensitivity/resistance]. Hepatic insulin extraction (HIE), body composition [dual-energy X-ray absorptiometry (DXA)], and peak oxygen consumption (V̇o2peak) were also assessed. OA had higher total cholesterol (TC), LDL, HIE, and DI across organs as well as lower adipose-IR (all, P < 0.05) and V̇o2peak (P = 0.056) despite similar body composition and glucose tolerance. Exercise lowered early-phase TC and LDL in OA versus YA (P < 0.05). However, C-peptide area under the curve (AUC), total phase GSIS, and adipose-IR were reduced postexercise in YA versus OA (P < 0.05). Skeletal muscle DI increased in YA and OA after exercise (P < 0.05), whereas adipose DI tended to decline in OA (P = 0.06 and P = 0.08). Exercise-induced skeletal muscle insulin sensitivity (r = -0.44, P = 0.02) and total-phase DI (r = -0.65, P = 0.005) correlated with reduced glucose AUC180min. Together, exercise improved skeletal muscle insulin sensitivity/DI in relation to glucose tolerance in YA and OA, but only raised adipose-IR and reduced adipose-DI in OA.NEW & NOTEWORTHY High-fat diets may induce β-cell dysfunction. This study compared how young and older adults responded to a high-fat meal with regard to β-cell function and whether exercise comparably impacted glucose regulation. Older adults secreted more insulin during the high-fat meal than younger adults. Although exercise increased β-cell function adjusted for skeletal muscle insulin sensitivity in relation to glucose tolerance, it raised adipose insulin resistance and reduced pancreatic β-cell function relative to adipose tissue in older adults. Additional work is needed to discern nutrient-exercise interactions across age to mitigate chronic disease risk.
Collapse
Affiliation(s)
- Steven K Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Hannah Frick
- Human Performance Laboratory, Department of Kinesiology, James Madison University, Harrisonburg, Virginia, United States
- Department of Kinesiology, Morrison Bruce Center, James Madison University, Harrisonburg, Virginia, United States
| | - William S Wisseman
- Human Performance Laboratory, Department of Kinesiology, James Madison University, Harrisonburg, Virginia, United States
| | - Elizabeth S Edwards
- Human Performance Laboratory, Department of Kinesiology, James Madison University, Harrisonburg, Virginia, United States
- Department of Kinesiology, Morrison Bruce Center, James Madison University, Harrisonburg, Virginia, United States
| | - David A Edwards
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, United States
| | - Sam R Emerson
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Stephanie P Kurti
- Human Performance Laboratory, Department of Kinesiology, James Madison University, Harrisonburg, Virginia, United States
| |
Collapse
|
6
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
7
|
Muñoz VR, Gaspar RC, Mancini MCS, de Lima RD, Vieira RFL, Crisol BM, Antunes GC, Trombeta JCS, Bonfante ILP, Simabuco FM, da Silva ASR, Cavaglieri CR, Ropelle ER, Cintra DE, Pauli JR. Short-term physical exercise controls age-related hyperinsulinemia and improves hepatic metabolism in aged rodents. J Endocrinol Invest 2023; 46:815-827. [PMID: 36318449 DOI: 10.1007/s40618-022-01947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/19/2022] [Indexed: 03/18/2023]
Abstract
PURPOSE Aging is associated with changes in glucose homeostasis related to both decreased insulin secretion and/or impaired insulin action, contributing to the high prevalence of type 2 diabetes (T2D) in the elderly population. Additionally, studies are showing that chronically high levels of circulating insulin can also lead to insulin resistance. In contrast, physical exercise has been a strategy used to improve insulin sensitivity and metabolic health. However, the molecular alterations resulting from the effects of physical exercise in the liver on age-related hyperinsulinemia conditions are not yet fully established. This study aimed to investigate the effects of 7 days of aerobic exercise on hepatic metabolism in aged hyperinsulinemic rats (i.e., Wistar and F344) and in Slc2a4+/- mice (hyperglycemic and hyperinsulinemic mice). RESULTS Both aged models showed alterations in insulin and glucose tolerance, which were associated with essential changes in hepatic fat metabolism (lipogenesis, gluconeogenesis, and inflammation). In contrast, 7 days of physical exercise was efficient in improving whole-body glucose and insulin sensitivity, and hepatic metabolism. The Slc2a4+/- mice presented significant metabolic impairments (insulin resistance and hepatic fat accumulation) that were improved by short-term exercise training. In this scenario, high circulating insulin may be an important contributor to age-related insulin resistance and hepatic disarrangements in some specific conditions. CONCLUSION In conclusion, our data demonstrated that short-term aerobic exercise was able to control mechanisms related to hepatic fat accumulation and insulin sensitivity in aged rodents. These effects could contribute to late-life metabolic health and prevent the development/progression of age-related T2D.
Collapse
Affiliation(s)
- V R Muñoz
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - R C Gaspar
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - M C S Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - R D de Lima
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - R F L Vieira
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - B M Crisol
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - G C Antunes
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - J C S Trombeta
- Exercise Physiology Laboratory (FISEX), Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil
| | - I L P Bonfante
- Exercise Physiology Laboratory (FISEX), Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil
| | - F M Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - A S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - C R Cavaglieri
- Exercise Physiology Laboratory (FISEX), Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil
| | - E R Ropelle
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- OCRC-Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- National Institute of Science and Technology of Obesity and Diabetes, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - D E Cintra
- OCRC-Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Laboratory of Nutritional Genomics, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - J R Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
- OCRC-Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
- National Institute of Science and Technology of Obesity and Diabetes, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
8
|
Age-Related Sex Differences in Glucose Tolerance by 75 g Oral Glucose Tolerance Test in Japanese. Nutrients 2022; 14:nu14224868. [PMID: 36432554 PMCID: PMC9698682 DOI: 10.3390/nu14224868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
To elucidate the age-related sex difference in glucose tolerance, we conducted 75 g oral glucose tolerance tests in 1156 participants. Participants were divided into four groups, namely, young (22−29) males, young females, middle-aged (>50) males, and middle-aged females. According to the Japanese Clinical Practice Guideline for Diabetes 2019, the prevalence of normal glucose tolerance (NGT) was significantly lower in middle-aged than in young participants. The prevalence of high-normal fasting plasma glucose (FPG) was higher, and NGT was lower in young males (high-normal FPG 15.2%, NGT 82.0%) than young females (high-FPG 3.9%, NGT 94.3%). Combined glucose intolerance (CGI) was higher and NGT was lower in middle-aged males (CGI 10.2%, NGT 25.2%) than in middle-aged females (CGI 3.3%, NGT 39.8%). FPG and body mass index (BMI) were the lowest and Homeostatic model assessment beta cell function (HOMA-β) was the highest in young females, followed by young males, middle-aged females, and middle-aged males. Multiple linear regression analysis revealed that BMI weakly correlated with HOMA-β and Matsuda index in all subjects except young females. The superior glucose tolerance in females was apparent in young, but attenuated in middle-aged females. The differences are due to the higher insulin secretion potential and lower BMI in young females.
Collapse
|
9
|
Meijnikman AS, van Olden CC, Aydin Ö, Herrema H, Kaminska D, Lappa D, Männistö V, Tremaroli V, Olofsson LE, de Brauw M, van de Laar A, Verheij J, Gerdes VE, Schwartz TW, Nielsen J, Bäckhed F, Pajukanta P, Pihlajamäki J, Tchkonia T, Kirkland JL, Kuipers F, Nieuwdorp M, Groen AK. Hyperinsulinemia Is Highly Associated With Markers of Hepatocytic Senescence in Two Independent Cohorts. Diabetes 2022; 71:1929-1936. [PMID: 35713877 PMCID: PMC9450852 DOI: 10.2337/db21-1076] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/25/2022] [Indexed: 11/13/2022]
Abstract
Cellular senescence is an essentially irreversible growth arrest that occurs in response to various cellular stressors and may contribute to development of type 2 diabetes mellitus and nonalcoholic fatty liver disease (NAFLD). In this article, we investigated whether chronically elevated insulin levels are associated with cellular senescence in the human liver. In 107 individuals undergoing bariatric surgery, hepatic senescence markers were assessed by immunohistochemistry as well as transcriptomics. A subset of 180 participants from the ongoing Finnish Kuopio OBesity Surgery (KOBS) study was used as validation cohort. We found plasma insulin to be highly associated with various markers of cellular senescence in liver tissue. The liver transcriptome of individuals with high insulin revealed significant upregulation of several genes associated with senescence: p21, TGFβ, PI3K, HLA-G, IL8, p38, Ras, and E2F. Insulin associated with hepatic senescence independently of NAFLD and plasma glucose. By using transcriptomic data from the KOBS study, we could validate the association of insulin with p21 in the liver. Our results support a potential role for hyperinsulinemia in induction of cellular senescence in the liver. These findings suggest possible benefits of lowering insulin levels in obese individuals with insulin resistance.
Collapse
Affiliation(s)
- Abraham S. Meijnikman
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
- Department of Surgery, Spaarne Hospital, Hoofddorp, the Netherlands
| | - Casper C. van Olden
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Ömrüm Aydin
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
- Department of Surgery, Spaarne Hospital, Hoofddorp, the Netherlands
| | - Hilde Herrema
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Dorota Kaminska
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Dimitra Lappa
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ville Männistö
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio Finland
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise E. Olofsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maurits de Brauw
- Department of Surgery, Spaarne Hospital, Hoofddorp, the Netherlands
| | | | - Joanne Verheij
- Department of Pathology, University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Victor E.A. Gerdes
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
- Department of Surgery, Spaarne Hospital, Hoofddorp, the Netherlands
| | - Thue W. Schwartz
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Nielsen
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Region Västra Götaland, Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio Finland
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
| | | | - Folkert Kuipers
- Departments of Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Albert K. Groen
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
- Departments of Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Murao N, Yokoi N, Takahashi H, Hayami T, Minami Y, Seino S. Increased glycolysis affects β-cell function and identity in aging and diabetes. Mol Metab 2022; 55:101414. [PMID: 34871777 PMCID: PMC8732780 DOI: 10.1016/j.molmet.2021.101414] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Age is a risk factor for type 2 diabetes (T2D). We aimed to elucidate whether β-cell glucose metabolism is altered with aging and contributes to T2D. METHODS We used senescence-accelerated mice (SAM), C57BL/6J (B6) mice, and ob/ob mice as aging models. As a diabetes model, we used db/db mice. The glucose responsiveness of insulin secretion and the [U-13C]-glucose metabolic flux were examined in isolated islets. We analyzed the expression of β-cell-specific genes in isolated islets and pancreatic sections as molecular signatures of β-cell identity. β cells defective in the malate-aspartate (MA) shuttle were previously generated from MIN6-K8 cells by the knockout of Got1, a component of the shuttle. We analyzed Got1 KO β cells as a model of increased glycolysis. RESULTS We identified hyperresponsiveness to glucose and compromised cellular identity as dysfunctional phenotypes shared in common between aged and diabetic mouse β cells. We also observed a metabolic commonality between aged and diabetic β cells: hyperactive glycolysis through the increased expression of nicotinamide mononucleotide adenylyl transferase 2 (Nmnat2), a cytosolic nicotinamide adenine dinucleotide (NAD)-synthesizing enzyme. Got1 KO β cells showed increased glycolysis, β-cell dysfunction, and impaired cellular identity, phenocopying aging and diabetes. Using Got1 KO β cells, we show that attenuation of glycolysis or Nmnat2 activity can restore β-cell function and identity. CONCLUSIONS Our study demonstrates that hyperactive glycolysis is a metabolic signature of aged and diabetic β cells, which may underlie age-related β-cell dysfunction and loss of cellular identity. We suggest Nmnat2 suppression as an approach to counteract age-related T2D.
Collapse
Affiliation(s)
- Naoya Murao
- Division of Molecular and Metabolic Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan; Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.
| | - Tomohide Hayami
- Division of Molecular and Metabolic Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan; Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Graduate School of Medicine, Kobe University, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
11
|
Böni-Schnetzler M, Méreau H, Rachid L, Wiedemann SJ, Schulze F, Trimigliozzi K, Meier DT, Donath MY. IL-1beta promotes the age-associated decline of beta cell function. iScience 2021; 24:103250. [PMID: 34746709 PMCID: PMC8554531 DOI: 10.1016/j.isci.2021.103250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/03/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022] Open
Abstract
Aging is the prime risk factor for the development of type 2 diabetes. We investigated the role of the interleukin-1 (IL-1) system on insulin secretion in aged mice. During aging, expression of the protective IL-1 receptor antagonist decreased in islets, whereas IL-1beta gene expression increased specifically in the CD45 + islet immune cell fraction. One-year-old mice with a whole-body knockout of IL-1beta had higher insulin secretion in vivo and in isolated islets, along with enhanced proliferation marker Ki67 and elevated size and number of islets. Myeloid cell-specific IL-1beta knockout preserved glucose-stimulated insulin secretion during aging, whereas it declined in control mice. Isolated islets from aged myeloIL-1beta ko mice secreted more insulin along with increased expression of Ins2, Kir6.2, and of the cell-cycle gene E2f1. IL-1beta treatment of isolated islets reduced E2f1, Ins2, and Kir6.2 expression in beta cells. We conclude that IL-1beta contributes the age-associated decline of beta cell function. Islets from aged mice have increased IL-1beta and decreased IL-1Ra expression Islet immune cells are the source of increased IL-1beta expression during aging Myeloid-cell-specific IL-1beta knockout preserves insulin secretion in aged mice IL-1beta targets genes regulating insulin secretion and proliferation during aging
Collapse
Affiliation(s)
- Marianne Böni-Schnetzler
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Hélène Méreau
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Leila Rachid
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Sophia J Wiedemann
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Friederike Schulze
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Kelly Trimigliozzi
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Daniel T Meier
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Marc Y Donath
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
12
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Henquin JC. Glucose-induced insulin secretion in isolated human islets: Does it truly reflect β-cell function in vivo? Mol Metab 2021; 48:101212. [PMID: 33737253 PMCID: PMC8065218 DOI: 10.1016/j.molmet.2021.101212] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetes always involves variable degrees of β-cell demise and malfunction leading to insufficient insulin secretion. Besides clinical investigations, many research projects used rodent islets to study various facets of β-cell pathophysiology. Their important contributions laid the foundations of steadily increasing numbers of experimental studies resorting to isolated human islets. SCOPE OF REVIEW This review, based on an analysis of data published over 60 years of clinical investigations and results of more recent studies in isolated islets, addresses a question of translational nature. Does the information obtained in vitro with human islets fit with our knowledge of insulin secretion in man? The aims are not to discuss specificities of pathways controlling secretion but to compare qualitative and quantitative features of glucose-induced insulin secretion in isolated human islets and in living human subjects. MAJOR CONCLUSIONS Much of the information gathered in vitro can reliably be translated to the in vivo situation. There is a fairly good, though not complete, qualitative and quantitative coherence between insulin secretion rates measured in vivo and in vitro during stimulation with physiological glucose concentrations, but the concordance fades out under extreme conditions. Perplexing discrepancies also exist between insulin secretion in subjects with Type 2 diabetes and their islets studied in vitro, in particular concerning the kinetics. Future projects should ascertain that the experimental conditions are close to physiological and do not alter the function of normal and diabetic islets.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
14
|
Seiron P, Stenwall A, Hedin A, Granlund L, Esguerra JLS, Volkov P, Renström E, Korsgren O, Lundberg M, Skog O. Transcriptional analysis of islets of Langerhans from organ donors of different ages. PLoS One 2021; 16:e0247888. [PMID: 33711030 PMCID: PMC7954335 DOI: 10.1371/journal.pone.0247888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Insulin secretion is impaired with increasing age. In this study, we aimed to determine whether aging induces specific transcriptional changes in human islets. Laser capture microdissection was used to extract pancreatic islet tissue from 37 deceased organ donors aged 1-81 years. The transcriptomes of the extracted islets were analysed using Ion AmpliSeq sequencing. 346 genes that co-vary significantly with age were found. There was an increased transcription of genes linked to senescence, and several aspects of the cell cycle machinery were downregulated with increasing age. We detected numerous genes not linked to aging in previous studies likely because earlier studies analysed islet cells isolated by enzymatic digestion which might affect the islet transcriptome. Among the novel genes demonstrated to correlate with age, we found an upregulation of SPP1 encoding osteopontin. In beta cells, osteopontin has been seen to be protective against both cytotoxicity and hyperglycaemia. In summary, we present a transcriptional profile of aging in human islets and identify genes that could affect disease course in diabetes.
Collapse
Affiliation(s)
- Peter Seiron
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anton Stenwall
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anders Hedin
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Louise Granlund
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Petr Volkov
- Department of Clinical Sciences-Malmö, Lund University Diabetes Centre, Malmö, Sweden
| | - Erik Renström
- Department of Clinical Sciences-Malmö, Lund University Diabetes Centre, Malmö, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Lundberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Tomimaru Y, Kobayashi S, Ito T, Iwagami Y, Yamada D, Akita H, Noda T, Gotoh K, Kenmochi T, Doki Y, Eguchi H. Clinical impact of pancreas donor age on outcomes following pancreas transplantation: Analysis of a nationwide registry in Japan. Pancreatology 2021; 21:473-479. [PMID: 33461932 DOI: 10.1016/j.pan.2021.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Clinical impact of pancreas donor age on pancreas transplantation (PTx) outcome has not been well investigated. Here we analyzed the nationwide PTx registry in Japan to assess posttransplant outcomes in donor age-stratified groups. METHODS This study included 410 cases of PTx performed in Japan between 2000 and 2019. Analyses were performed using clinical data from the Japan Pancreas Transplant Registry of Japan Society for Pancreas and Islet Transplantation. RESULTS The 410 PTx cases were classified based on donor age: <10 years (n = 10, 2.4%), 10-19 years (n = 30, 7.3%), 20-29 years (n = 64, 15.6%), 30-39 years (n = 75, 18.3%), 40-49 years (n = 114, 27.8%), 50-59 years (n = 90, 22.0%), and ≥60 years (n = 27, 6.6%). The incidence of early pancreas graft loss (8.9%, 36/410 cases) did not exhibit a significant linear correlation with donor age. Posttransplant pancreas graft survival (1-/3-/5-/10-year rates of 85.9%/80.6%/76.2%/67.4% among all cases) was also not significantly associated with donor age. CONCLUSION Pancreas donor age was not significantly associated with posttransplant outcome. This finding supports the use of expanded criteria donors, with regards to pancreas donor age, for PTx in cases of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan; The Japan Pancreas Transplant Registry, Japan Society for Pancreas and Islet Transplantation, Suita, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Toshinori Ito
- The Japan Pancreas Transplant Registry, Japan Society for Pancreas and Islet Transplantation, Suita, Japan; Osaka Center for Cancer and Cardiovascular Disease Prevention, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takashi Kenmochi
- The Japan Pancreas Transplant Registry, Japan Society for Pancreas and Islet Transplantation, Suita, Japan; Department of Transplantation and Regenerative Medicine, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
16
|
Abstract
Aging is characterized by a progressive loss of physiological function leading to increase in the vulnerability to death. This deterioration process occurs in all living organisms and is the primary risk factor for pathological conditions including obesity, type 2 diabetes mellitus, Alzheimer's disease and cardiovascular diseases. Most of the age-related diseases have been associated with impairment of action of an important hormone, namely insulin. It is well-known that this hormone is a critical mediator of metabolism, growth, proliferation and differentiation. Insulin action depends on two processes that determine its circulating levels, insulin secretion and clearance, and insulin sensitivity in its target tissues. Aging has deleterious effects on these three mechanisms, impairing insulin action, thereby increasing the risk for diseases and death. Thus, improving insulin action may be an important strategy to have a healthier and longer life.
Collapse
|
17
|
Marmentini C, Soares GM, Bronczek GA, Piovan S, Mareze-Costa CE, Carneiro EM, Boschero AC, Kurauti MA. Aging Reduces Insulin Clearance in Mice. Front Endocrinol (Lausanne) 2021; 12:679492. [PMID: 34054736 PMCID: PMC8150109 DOI: 10.3389/fendo.2021.679492] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Hyperinsulinemia is frequently associated with aging and may cause insulin resistance in elderly. Since insulin secretion and clearance decline with age, hyperinsulinemia seems to be maintained, primarily, due to a decrease in the insulin clearance. To investigate these aging effects, 3- and 18-month-old male C57BL/6 mice were subjected to intraperitoneal glucose and insulin tolerance tests (ipGTT and ipITT) and, during the ipGTT, plasma c-peptide and insulin were measure to evaluate in vivo insulin clearance. Glucose-stimulated insulin secretion in isolated pancreatic islets was also assessed, and liver samples were collected for molecular analyses (western blot). Although insulin sensitivity was not altered in the old mice, glucose tolerance, paradoxically, seems to be increased, accompanied by higher plasma insulin, during ipGTT. While insulin secretion did not increase, insulin clearance was reduced in the old mice, as suggested by the lower c-peptide:insulin ratio, observed during ipGTT. Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) and insulin-degrading enzyme (IDE), as well as the activity of this enzyme, were reduced in the liver of old mice, justifying the decreased insulin clearance observed in these mice. Therefore, loss of hepatic CEACAM1 and IDE function may be directly related to the decline in insulin clearance during aging.
Collapse
Affiliation(s)
- Carine Marmentini
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela M. Soares
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela A. Bronczek
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Silvano Piovan
- Department of Physiological Sciences, Biological Sciences Center, State University of Maringa (UEM), Maringa, Brazil
| | - Cecília E. Mareze-Costa
- Department of Physiological Sciences, Biological Sciences Center, State University of Maringa (UEM), Maringa, Brazil
| | - Everardo M. Carneiro
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Antonio C. Boschero
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Mirian A. Kurauti
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Physiological Sciences, Biological Sciences Center, State University of Maringa (UEM), Maringa, Brazil
- *Correspondence: Mirian A. Kurauti, ;
| |
Collapse
|
18
|
Ganesan D, Ramaian Santhaseela A, Rajasekaran S, Selvam S, Jayavelu T. Astroglial biotin deprivation under endoplasmic reticulum stress uncouples BCAA‐mTORC1 role in lipid synthesis to prolong autophagy inhibition in the aging brain. J Neurochem 2020; 154:562-575. [DOI: 10.1111/jnc.14979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 01/10/2023]
|
19
|
Abdulateef DS, Salih JM. Detection of C-Peptide in Scalp Hair of Healthy Adults. Diabetes Metab Syndr Obes 2020; 13:227-236. [PMID: 32099429 PMCID: PMC7006852 DOI: 10.2147/dmso.s240785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The C-peptide level from blood and urine samples represents endogenous insulin secretion and has clinical implications for individuals with and without diabetes. However, the study results are inconsistent and the available methods can only measure short-term C-peptide levels, which can be substantially affected by concurrent glycaemia. In this study, we evaluated whether C-peptide can be detected from hair? Hair C-peptide if detected could potentially represent long-term, insulin secretion. And to know whether there is any correlation between hair C-peptide with certain biochemical and demographic parameters. METHODS In a prospective observational study on 120 normal healthy individuals, hair samples were taken from the scalp and C-peptide was extracted. The hair C-peptide levels were measured in pg/mg of hair using electrochemiluminescence immunoassay (ECLISA) after methanol extraction and were compared among different age and body-type groups. Serum C-peptide, fasting plasma glucose (FPG) and HbA1c were assessed and their levels were correlated with anthropometric parameters. RESULTS A detectable range of C-peptide was found in the hair samples of all the subjects with a median of 63.59 pg/mg hair and it was positively correlated with FPG but no significant correlation was found between hair C-peptide and serum C-peptide levels. The hair C-peptide level, along with FPG and HbA1c, was significantly different according to age. CONCLUSION These results conclude that C-peptide can be detected from and measured in the scalp hair of humans and it is positively correlated with FPG, and it is significantly different according to age. This technique, if validated, may verify its usefulness in future studies of both healthy and diseased subjects.
Collapse
Affiliation(s)
- Darya S Abdulateef
- Physiology Department, College of Medicine, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq
| | - Jamal M Salih
- Physiology Department, College of Medicine, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq
- Diabetes Physician, Diabetes and Endocrine Centre, Sulaymaniyah, Kurdistan Region, Iraq
| |
Collapse
|
20
|
Yu Y, Pan F, Cui W, Tang W, Hu Y. Differences in early-phase insulin secretion and glucose disposition index between aged and middle-aged patients with newly diagnosed type 2 diabetes. Geriatr Gerontol Int 2020; 20:206-211. [PMID: 31923347 DOI: 10.1111/ggi.13861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/29/2019] [Accepted: 12/11/2019] [Indexed: 01/18/2023]
Abstract
AIM This cross-sectional study aimed to investigate the differences in β-cell function and insulin sensitivity between newly diagnosed aged and middle-aged type 2 diabetes mellitus (T2DM) patients. METHODS A total of 206 newly diagnosed T2DM patients aged ≥60 years (A-DM group) and 206 newly diagnosed sex- and glycated hemoglobin-matched T2DM patients aged <60 years (MA-DM group) were recruited. All patients underwent the 75-g oral glucose tolerance test. Plasma glucose, lipid profiles, liver and renal function, glycated hemoglobin, and insulin were measured. Homeostasis model assessment for insulin resistance, quantitative insulin sensitivity check index, area under the curve of glucose during 0-30 min (GluAUC30) × area under the curve of insulin during 0-30 min (InsAUC30) and β-cell function indexes were calculated. RESULTS The mean age of the total 412 patients (356 men and 56 women) was 59.76 ± 13.32 years. There were no significant differences in GluAUC120 between the two groups (106.89 ± 27.70 in A-DM vs 108.32 ± 27.58 in MA-DM; P = 0.6), but ΔI30/ΔG30, InsAUC30 and GluAUC30 × InsAUC30 levels were significantly higher in the A-DM group than in the MA-DM group (3.55 ± 4.54 vs 2.53 ± 3.83; P = 0.014, and 39.19 ± 32.19 vs 32.71 ± 28.81; P = 0.032, 675.05 ± 475.60 vs 584.56 ± 450.23; P = 0.048, respectively). The glucose disposition index (GDI) of the A-DM group was statistically higher than that of the MA-DM group (0.38 ± 0.40 vs 0.30 ± 0.35; P = 0.018). Age was positively associated with ΔI30/ΔG30 (r = 0.117; P = 0.017) and GDI (r = 0.147; P = 0.003), but had no correlation with InsAUC30, InsAUC120 or GluAUC30 × InsAUC30. After multiple adjustments for confounders, including sex, body mass index, glycated hemoglobin, triglyceride, total cholesterol and high-density lipoprotein cholesterol, age was positively associated with ΔI30/ΔG30, InsAUC30, InsAUC120, GluAUC30 × InsAUC30 and GDI. CONCLUSIONS Aged patients have relatively higher early-phase insulin secretion and GDI than middle-aged patients in newly diagnosed T2DM. Geriatr Gerontol Int 2020; ••: ••-••.
Collapse
Affiliation(s)
- Yun Yu
- Department of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China.,Department of Endocrinology and Metabolism, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Fenghui Pan
- Department of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Wenxia Cui
- Department of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Wei Tang
- Department of Endocrinology and Metabolism, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Hu
- Department of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Hamley S, Kloosterman D, Duthie T, Dalla Man C, Visentin R, Mason SA, Ang T, Selathurai A, Kaur G, Morales-Scholz MG, Howlett KF, Kowalski GM, Shaw CS, Bruce CR. Mechanisms of hyperinsulinaemia in apparently healthy non-obese young adults: role of insulin secretion, clearance and action and associations with plasma amino acids. Diabetologia 2019; 62:2310-2324. [PMID: 31489455 PMCID: PMC6861536 DOI: 10.1007/s00125-019-04990-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/29/2019] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS This study aimed to examine the metabolic health of young apparently healthy non-obese adults to better understand mechanisms of hyperinsulinaemia. METHODS Non-obese (BMI < 30 kg/m2) adults aged 18-35 years (N = 254) underwent a stable isotope-labelled OGTT. Insulin sensitivity, glucose effectiveness and beta cell function were determined using oral minimal models. Individuals were stratified into quartiles based on their insulin response during the OGTT, with quartile 1 having the lowest and quartile 4 the highest responses. RESULTS Thirteen per cent of individuals had impaired fasting glucose (IFG; n = 14) or impaired glucose tolerance (IGT; n = 19), allowing comparisons across the continuum of insulin responses within the spectrum of normoglycaemia and prediabetes. BMI (~24 kg/m2) was similar across insulin quartiles and in those with IFG and IGT. Despite similar glycaemic excursions, fasting insulin, triacylglycerols and cholesterol were elevated in quartile 4. Insulin sensitivity was lowest in quartile 4, and accompanied by increased insulin secretion and reduced insulin clearance. Individuals with IFG had similar insulin sensitivity and beta cell function to those in quartiles 2 and 3, but were more insulin sensitive than individuals in quartile 4. While individuals with IGT had a similar degree of insulin resistance to quartile 4, they exhibited a more severe defect in beta cell function. Plasma branched-chain amino acids were not elevated in quartile 4, IFG or IGT. CONCLUSIONS/INTERPRETATION Hyperinsulinaemia within normoglycaemic young, non-obese adults manifests due to increased insulin secretion and reduced insulin clearance. Individual phenotypic characterisation revealed that the most hyperinsulinaemic were more similar to individuals with IGT than IFG, suggesting that hyperinsulinaemic individuals may be on the continuum toward IGT. Furthermore, plasma branched-chain amino acids may not be an effective biomarker in identifying hyperinsulinaemia and insulin resistance in young non-obese adults.
Collapse
Affiliation(s)
- Steven Hamley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Danielle Kloosterman
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Tamara Duthie
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Roberto Visentin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Teddy Ang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Ahrathy Selathurai
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Gunveen Kaur
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Maria G Morales-Scholz
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.
| |
Collapse
|
22
|
Vercalsteren E, Vranckx C, Frederix L, Lox M, Lijnen HR, Scroyen I, Hemmeryckx B. Advanced-age C57BL/6JRj mice do not develop obesity upon western-type diet exposure. Adipocyte 2019; 8:105-113. [PMID: 30860940 PMCID: PMC6768272 DOI: 10.1080/21623945.2019.1590893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
Obesity has become a global health-threat for every age group. It is well known that young mice (10-12 weeks of age) fed a western-type diet (WD) become obese and develop higher cholesterol levels and liver steatosis whereas insulin sensitivity is reduced. Less is known, however, about the effect of a WD on advanced-age mice. Therefore, 10 week-old (young) and 22 month-old (advanced-age), male C57BL/6JRj mice were kept on either a WD or a control diet (SFD) for 15 weeks. In contrast to young mice, advanced-age mice on WD did not show a higher body weight or adipose tissue (AT)-masses, suggesting a protection against diet-induced obesity. Furthermore, plasma adiponectin and leptin levels were not affected upon WD-feeding. A WD, however, did induce more hepatic lipid accumulation as well as increased hepatic expression of the macrophage marker F4/80, in advanced-age mice. There were no significant differences in mRNA levels of uncoupling protein-1 or F4/80 in brown AT (BAT) or of several intestinal integrity markers in colon suggesting that the protection against obesity is not due to excessive BAT or to impaired intestinal absorption of fat. Thus, advanced-age mice, in contrast to their younger counterparts, appeared to be protected against diet-induced obesity.
Collapse
Affiliation(s)
- Ellen Vercalsteren
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Christine Vranckx
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Liesbeth Frederix
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marleen Lox
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - H. Roger Lijnen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Ilse Scroyen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Bianca Hemmeryckx
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Bareja A, Lee DE, White JP. Maximizing Longevity and Healthspan: Multiple Approaches All Converging on Autophagy. Front Cell Dev Biol 2019; 7:183. [PMID: 31555646 PMCID: PMC6742954 DOI: 10.3389/fcell.2019.00183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Our understanding of the molecular basis of aging has greatly increased over the past few decades. In this review, we provide an overview of the key signaling pathways associated with aging, and whose modulation has been shown to extend lifespan in a range of model organisms. We also describe how these pathways converge onto autophagy, a catabolic process that functions to recycle dysfunctional cellular material and maintains energy homeostasis. Finally, we consider various approaches of therapeutically modulating these longevity pathways, highlighting exercise as a potent geroprotector.
Collapse
Affiliation(s)
- Akshay Bareja
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - David E Lee
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - James P White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States.,Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States.,Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
24
|
Henquin JC. Influence of organ donor attributes and preparation characteristics on the dynamics of insulin secretion in isolated human islets. Physiol Rep 2019. [PMID: 29536672 PMCID: PMC5849575 DOI: 10.14814/phy2.13646] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In vitro studies of human pancreatic islets are critical for understanding normal insulin secretion and its perturbations in diabetic β-cells, but the influence of islet preparation characteristics and organ donor attributes in such experiments is poorly documented. Preparations from normal donors were tested with a standardized protocol evaluating dynamic insulin secretion induced by glucose, tolbutamide, and cAMP (forskolin). Secretion rates, normalized to insulin content (fractional insulin secretion), were analyzed as a function of preparation and donor characteristics. Low purity (25-45%) of the preparation (n = 8) blunted the first phase of insulin secretion induced by glucose or tolbutamide and increased basal secretion, resulting in threefold lower stimulation index than in more pure (55-95%) preparations (n = 43). In these more pure preparations, cold ischemia time (1-13 h) before pancreas digestion did not impact insulin secretion. Islet size (estimated by the islet size index) did not influence the dynamics of secretion, but fractional insulin secretion rates were greater in large than small islets, and positively correlated with islet size. Age of the donors (20-68 years) had no influence on islet size and insulin content or on dynamics and amplitude of insulin secretion, which were also similar in islets from male and female donors. In contrast, islet size and islet insulin content (normalized for size), and basal or stimulated insulin secretion positively correlated with Body-Mass Index (19-33). These results contradict previous reports on the impact of donor age and islet size and point to possible confounding effects of donor BMI in insulin secretion studies with isolated human islets.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
| |
Collapse
|
25
|
Abstract
Diabetes develops due to deficient functional β cell mass, insulin resistance, or both. Yet, various challenges in understanding the mechanisms underlying diabetes development in vivo remain to be overcome owing to the lack of appropriate intravital imaging technologies. To meet these challenges, we have exploited the anterior chamber of the eye (ACE) as a novel imaging site to understand diabetes basics and clinics in vivo. We have developed a technology platform transplanting pancreatic islets into the ACE where they later on can be imaged non-invasively for long time. It turns out that the ACE serves as an optimal imaging site and provides implanted islets with an oxygen-rich milieu and an immune-privileged niche where they undergo optimal engraftment, rich vascularization and dense innervation, preserve organotypic features and live with satisfactory viability and functionality. The ACE technology has led to a series of significant observations. It enables in vivo microscopy of islet cytoarchitecture, function and viability in the physiological context and intravital imaging of a variety of pathological events such as autoimmune insulitis, defects in β cell function and mass and insulin resistance during diabetes development in a real-time manner. Furthermore, application of the ACE technology in humanized mice and non-human primates verifies translational and clinical values of the technology. In this article, we describe the ACE technology in detail, review accumulated knowledge gained by means of the ACE technology and delineate prospective avenues for the ACE technology.
Collapse
|
26
|
Ross M, Lithgow H, Hayes L, Florida-James G. Potential Cellular and Biochemical Mechanisms of Exercise and Physical Activity on the Ageing Process. Subcell Biochem 2019; 91:311-338. [PMID: 30888658 DOI: 10.1007/978-981-13-3681-2_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exercise in young adults has been consistently shown to improve various aspects of physiological and psychological health but we are now realising the potential benefits of exercise with advancing age. Specifically, exercise improves cardiovascular, musculoskeletal, and metabolic health through reductions in oxidative stress, chronic low-grade inflammation and modulating cellular processes within a variety of tissues. In this this chapter we will discuss the effects of acute and chronic exercise on these processes and conditions in an ageing population, and how physical activity affects our vasculature, skeletal muscle function, our immune system, and cardiometabolic risk in older adults.
Collapse
Affiliation(s)
- Mark Ross
- School of Applied Science, Edinburgh Napier University, Edinburgh, Scotland, UK.
| | - Hannah Lithgow
- School of Applied Science, Edinburgh Napier University, Edinburgh, Scotland, UK
| | - Lawrence Hayes
- Active Ageing Research Group, University of Cumbria, Lancaster, UK
| | | |
Collapse
|
27
|
Kurauti MA, Ferreira SM, Soares GM, Vettorazzi JF, Carneiro EM, Boschero AC, Costa‐Júnior JM. Hyperinsulinemia is associated with increasing insulin secretion but not with decreasing insulin clearance in an age‐related metabolic dysfunction mice model. J Cell Physiol 2018; 234:9802-9809. [DOI: 10.1002/jcp.27667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Mirian A. Kurauti
- Obesity and Comorbidities Research Center Institute of Biology, University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - Sandra M. Ferreira
- Obesity and Comorbidities Research Center Institute of Biology, University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - Gabriela M. Soares
- Obesity and Comorbidities Research Center Institute of Biology, University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - Jean F. Vettorazzi
- Obesity and Comorbidities Research Center Institute of Biology, University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - Everardo M. Carneiro
- Obesity and Comorbidities Research Center Institute of Biology, University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - Antonio C. Boschero
- Obesity and Comorbidities Research Center Institute of Biology, University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - José M. Costa‐Júnior
- Obesity and Comorbidities Research Center Institute of Biology, University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| |
Collapse
|
28
|
Rapson JL, Schott HC, Nielsen BD, McCutcheon LJ, Harris PA, Geor RJ. Effects of age and diet on glucose and insulin dynamics in the horse. Equine Vet J 2018; 50:690-696. [PMID: 29356053 DOI: 10.1111/evj.12812] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/10/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Age and diet may affect insulin sensitivity (SI) but these factors have received limited investigation in horses. OBJECTIVES To measure minimal model parameters during an insulin-modified frequently sampled intravenous glucose tolerance test (FSIGTT) after adaptation to a forage only diet (HAY) or forage supplemented with either starch/sugar-rich (SS) or oil/fibre-rich (FF) concentrate feeds; and to assess glucose and insulin responses to a standardised meal challenge (SMC, 4 g/kg BW of SS) after diet adaptation in adult and aged mares. STUDY DESIGN Latin square design with eight adult (5-12 years) and nine aged (>19 years) healthy mares. METHODS Diets were fed for 6 weeks, and the FSIGTT and SMC were performed after 31-32 and 41 days on each diet respectively. Data were analysed by a mixed ANOVA for repeated measures. RESULTS Acute insulin response to glucose (AIRg) was greater and SI was lower in aged horses, compared with adults, regardless of diet. Both AIRg and SI were greater in aged mares after adaptation to SS, as compared with HAY. Similar trends, although not statistically significant, were observed after adaptation to SS in adult mares. Peak insulin concentration and area under the insulin vs. time curve during the SMC were greater in aged than adult mares with all diets. Furthermore, area under the glucose vs. time curve was lower after adaptation to SS, when compared with other diets, in both groups. MAIN LIMITATIONS Transient weight loss occurred at the beginning of the study and only one sex was included. Incomplete ingestion of the SMC by four mares was another limitation. CONCLUSIONS Insulin responses to i.v. and enteral nonstructural carbohydrate challenge increase with age in healthy horses, regardless of diet fed.
Collapse
Affiliation(s)
- J L Rapson
- Michigan State University, East Lansing, Michigan, USA
| | - H C Schott
- Michigan State University, East Lansing, Michigan, USA
| | - B D Nielsen
- Michigan State University, East Lansing, Michigan, USA
| | | | - P A Harris
- Equine Studies Group, WALTHAM Centre for Pet Nutrition, Melton Mowbray, Leicestershire, UK
| | - R J Geor
- Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
29
|
Monami M, Dicembrini I, Nreu B, Andreozzi F, Sesti G, Mannucci E. Predictors of response to glucagon-like peptide-1 receptor agonists: a meta-analysis and systematic review of randomized controlled trials. Acta Diabetol 2017; 54:1101-1114. [PMID: 28932989 DOI: 10.1007/s00592-017-1054-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/11/2017] [Indexed: 12/21/2022]
Abstract
AIMS The aim of the present meta-analysis is the identification of the characteristics of patients, which predict the efficacy on HbA1c of glucagon-like peptide-1 receptor agonists (GLP-1 RA). METHODS A Medline and Embase search for "exenatide" OR "liraglutide" OR "albiglutide" OR "dulaglutide" OR "lixisenatide" was performed, collecting randomized clinical trials (duration > 12 weeks) up to September 2016, comparing GLP-1 RA at the maximal approved dose with placebo or active drugs. Furthermore, unpublished studies were searched in the www.clinicaltrials.gov register. For meta-analyses, the outcome considered were 24- and 52-week HbA1c. Separate analyses were performed, whenever possible, for subgroups of trials based on several inclusion criteria. In addition, meta-regression analyses were performed for comparisons for which 10 or more trails were available. RESULTS A total of 92 trials fulfilling the inclusion criteria were identified. In placebo-controlled trials (n = 41), the 24-week mean reduction of HbA1c with GLP-1 RA was - 0.75 [- 0.87; - 0.63]%. Shorter-acting molecules appear to be more effective in patients with lower fasting glucose, whereas longer-acting agents in patients with higher fasting hyperglycaemia. Obesity and duration of diabetes do not seem to moderate the efficacy of GLP-1 RA, whereas in non-Caucasians and older patients liraglutide could be less effective. At 52 weeks, only 9 placebo-controlled trials were available for preventing any reliable analyses. CONCLUSIONS Using a variety of approaches (meta-analyses of subgroup of trials, meta-regression, systematic review of subgroup analyses in individual trials, and meta-analyses of subgroups of patients), we identified some putative predictors of efficacy of GLP-1 RA, which deserve further investigation.
Collapse
Affiliation(s)
- Matteo Monami
- Diabetology, Careggi Teaching Hospital, Azienda Ospedaliero-Universitaria Careggi, Via delle Oblate 4, 50141, Florence, Italy.
| | - Ilaria Dicembrini
- Diabetology, Careggi Teaching Hospital, Azienda Ospedaliero-Universitaria Careggi, Via delle Oblate 4, 50141, Florence, Italy
| | - Besmir Nreu
- Diabetology, Careggi Teaching Hospital, Azienda Ospedaliero-Universitaria Careggi, Via delle Oblate 4, 50141, Florence, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Edoardo Mannucci
- Diabetology, Careggi Teaching Hospital, Azienda Ospedaliero-Universitaria Careggi, Via delle Oblate 4, 50141, Florence, Italy
| |
Collapse
|
30
|
Eitan E, Tosti V, Suire CN, Cava E, Berkowitz S, Bertozzi B, Raefsky SM, Veronese N, Spangler R, Spelta F, Mustapic M, Kapogiannis D, Mattson MP, Fontana L. In a randomized trial in prostate cancer patients, dietary protein restriction modifies markers of leptin and insulin signaling in plasma extracellular vesicles. Aging Cell 2017; 16:1430-1433. [PMID: 28921841 PMCID: PMC5676054 DOI: 10.1111/acel.12657] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2017] [Indexed: 12/21/2022] Open
Abstract
Obesity, metabolic syndrome, and hyperleptinemia are associated with aging and age-associated diseases including prostate cancer. One experimental approach to inhibit tumor growth is to reduce dietary protein intake and hence levels of circulating amino acids. Dietary protein restriction (PR) increases insulin sensitivity and suppresses prostate cancer cell tumor growth in animal models, providing a rationale for clinical trials. We sought to demonstrate that biomarkers derived from plasma extracellular vesicles (EVs) reflect systemic leptin and insulin signaling and respond to dietary interventions. We studied plasma samples from men with prostate cancer awaiting prostatectomy who participated in a randomized trial of one month of PR or control diet. We found increased levels of leptin receptor in the PR group in total plasma EVs and in a subpopulation of plasma EVs expressing the neuronal marker L1CAM. Protein restriction also shifted the phosphorylation status of the insulin receptor signal transducer protein IRS1 in L1CAM+ EVs in a manner suggestive of improved insulin sensitivity. Dietary PR modifies indicators of leptin and insulin signaling in circulating EVs. These findings are consistent with improved insulin and leptin sensitivity in response to PR and open a new window for following physiologic responses to dietary interventions in humans.
Collapse
Affiliation(s)
- Erez Eitan
- Laboratory of NeurosciencesNational Institute on Aging, NIH251 Bayview BoulevardBaltimoreMD21224USA
| | - Valeria Tosti
- Division of Geriatrics and Nutritional Sciences and Center for Human NutritionWashington University School of MedicineSt. LouisMO63110USA
| | - Caitlin N. Suire
- Laboratory of NeurosciencesNational Institute on Aging, NIH251 Bayview BoulevardBaltimoreMD21224USA
| | - Edda Cava
- Division of Geriatrics and Nutritional Sciences and Center for Human NutritionWashington University School of MedicineSt. LouisMO63110USA
| | - Sean Berkowitz
- Laboratory of NeurosciencesNational Institute on Aging, NIH251 Bayview BoulevardBaltimoreMD21224USA
| | - Beatrice Bertozzi
- Division of Geriatrics and Nutritional Sciences and Center for Human NutritionWashington University School of MedicineSt. LouisMO63110USA
| | - Sophia M. Raefsky
- Laboratory of NeurosciencesNational Institute on Aging, NIH251 Bayview BoulevardBaltimoreMD21224USA
| | - Nicola Veronese
- Division of Geriatrics and Nutritional Sciences and Center for Human NutritionWashington University School of MedicineSt. LouisMO63110USA
- Department of Medicine (DIMED)Geriatrics DivisionUniversity of Padova35128PadovaItaly
| | - Ryan Spangler
- Laboratory of NeurosciencesNational Institute on Aging, NIH251 Bayview BoulevardBaltimoreMD21224USA
| | - Francesco Spelta
- Division of Geriatrics and Nutritional Sciences and Center for Human NutritionWashington University School of MedicineSt. LouisMO63110USA
- Department of MedicineUniversity of Verona37129VeronaItaly
| | - Maja Mustapic
- Laboratory of NeurosciencesNational Institute on Aging, NIH251 Bayview BoulevardBaltimoreMD21224USA
| | - Dimitrios Kapogiannis
- Laboratory of NeurosciencesNational Institute on Aging, NIH251 Bayview BoulevardBaltimoreMD21224USA
| | - Mark P. Mattson
- Laboratory of NeurosciencesNational Institute on Aging, NIH251 Bayview BoulevardBaltimoreMD21224USA
- Department of NeuroscienceJohns Hopkins University School of Medicine725 N. Wolfe StreetBaltimoreMD21205USA
| | - Luigi Fontana
- Division of Geriatrics and Nutritional Sciences and Center for Human NutritionWashington University School of MedicineSt. LouisMO63110USA
- Department of Clinical and Experimental SciencesBrescia University25121BresciaItaly
- CEINGE Biotecnologie Avanzate80122NapoliItaly
| |
Collapse
|
31
|
Westacott MJ, Farnsworth NL, St Clair JR, Poffenberger G, Heintz A, Ludin NW, Hart NJ, Powers AC, Benninger RKP. Age-Dependent Decline in the Coordinated [Ca 2+] and Insulin Secretory Dynamics in Human Pancreatic Islets. Diabetes 2017; 66:2436-2445. [PMID: 28588099 PMCID: PMC5566297 DOI: 10.2337/db17-0137] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022]
Abstract
Aging is associated with increased risk for type 2 diabetes, resulting from reduced insulin sensitivity and secretion. Reduced insulin secretion can result from reduced proliferative capacity and reduced islet function. Mechanisms underlying altered β-cell function in aging are poorly understood in mouse and human islets, and the impact of aging on intraislet communication has not been characterized. Here, we examine how β-cell [Ca2+] and electrical communication are impacted during aging in mouse and human islets. Islets from human donors and from mice were studied using [Ca2+] imaging, static and perifusion insulin secretion assays, and gap junction permeability measurements. In human islets, [Ca2+] dynamics were coordinated within distinct subregions of the islet, invariant with islet size. There was a marked decline in the coordination of [Ca2+] dynamics, gap junction coupling, and insulin secretion dynamics with age. These age-dependent declines were reversed by pharmacological gap junction activation. These results show that human islet function declines with aging, which can reduce insulin action and may contribute to increased risk of type 2 diabetes.
Collapse
Affiliation(s)
- Matthew J Westacott
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Nikki L Farnsworth
- Barbara Davis Center for Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Joshua R St Clair
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Greg Poffenberger
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN
- VA Tennessee Valley Healthcare System, Nashville, TN
| | - Audrey Heintz
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Nurin W Ludin
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Nathaniel J Hart
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN
- VA Tennessee Valley Healthcare System, Nashville, TN
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, CO
- Barbara Davis Center for Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
32
|
Levine JA, Kaihara KA, Layden BT, Wicksteed B. Long-term activation of PKA in β-cells provides sustained improvement to glucose control, insulin sensitivity and body weight. Islets 2016; 8:125-34. [PMID: 27340937 PMCID: PMC5029204 DOI: 10.1080/19382014.2016.1198457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Type 2 diabetes is associated with obesity, insulin resistance and β-cell failure. Therapeutic aims are to reduce adiposity, improve insulin sensitivity and enhance β-cell function. However, it has been proposed that chronically increasing insulin release leads to β-cell exhaustion and failure. We previously developed mice to have increased activity of the cAMP-dependent protein kinase (PKA), specifically in β-cells (β-caPKA mice). β-caPKA mice have enhanced acute phase insulin release, which is the primary determinant of the efficacy of glucose clearance. Here these mice were used to determine the sustainability of enhanced insulin secretion, and to characterize peripheral effects of enhanced β-cell function. Increased PKA activity was induced by tamoxifen administration at 10 weeks of age. Male mice were aged to 12 months of age and female mice to 16 months. Glucose control in both male and female β-caPKA mice was significantly improved relative to littermate controls with ad libitum feeding, upon refeeding after fasting, and in glucose tolerance tests. In female mice insulin release was both greater and more rapid than in controls. Female mice were more insulin sensitive than controls. Male and female β-caPKA mice had lower body weights than controls. DEXA analysis of male mice revealed that this was due to reduced adiposity and not due to changes in lean body mass. This study indicates that targeting β-cells to enhance insulin release is sustainable, maintains insulin sensitivity and reduces body weight. These data identify β-cell PKA activity as a novel target for obesity therapies.
Collapse
Affiliation(s)
- Joshua A. Levine
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kelly A. Kaihara
- Committee for Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Bio-Rad Laboratories, Hercules, CA, USA
| | - Brian T. Layden
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Barton Wicksteed
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Committee for Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- CONTACT Barton Wicksteed Division of Endocrinology, Metabolism and Molecular Medicine, Tarry Building 15-735 300 East Superior St., Chicago, IL 60611-3008, USA
| |
Collapse
|
33
|
Helman A, Avrahami D, Klochendler A, Glaser B, Kaestner KH, Ben-Porath I, Dor Y. Effects of ageing and senescence on pancreatic β-cell function. Diabetes Obes Metab 2016; 18 Suppl 1:58-62. [PMID: 27615132 DOI: 10.1111/dom.12719] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/22/2016] [Indexed: 12/31/2022]
Abstract
Ageing is generally associated with deterioration of organ function and regenerative potential. In the case of pancreatic β-cells, an age-related decline in proliferative potential is well documented, and was proposed to contribute to the increased prevalence of type 2 diabetes in the elderly. The effects of ageing on β-cell function, namely glucose-stimulated insulin secretion (GSIS), have not been studied as extensively. Recent work revealed that, surprisingly, β-cells of mature mice and humans secrete more insulin than young β-cells in response to high glucose concentrations, potentially serving to counteract age-related peripheral insulin resistance. This functional change appears to be orchestrated by p16(Ink4A) -driven cellular senescence and downstream remodelling of chromatin structure and DNA methylation, enhancing the expression of genes controlling β-cell function. We propose that activation of the cellular senescence program drives life-long functional maturation of β-cells, due to β-cell hypertrophy, enhanced glucose uptake and more efficient mitochondrial metabolism, in parallel to locking these cells in a non-replicative state. We speculate that the beneficial aspects of this process can be harnessed to enhance GSIS. Other age-related mechanisms, which are currently poorly understood, act to increase basal insulin secretion levels also in low glucose conditions. This leads to an overall reduction in the amplitude of insulin secretion between low and high glucose at old age, which may contribute to a deterioration in metabolic control.
Collapse
Affiliation(s)
- A Helman
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - D Avrahami
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Klochendler
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - B Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - K H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - I Ben-Porath
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Y Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
34
|
Helman A, Klochendler A, Azazmeh N, Gabai Y, Horwitz E, Anzi S, Swisa A, Condiotti R, Granit RZ, Nevo Y, Fixler Y, Shreibman D, Zamir A, Tornovsky-Babeay S, Dai C, Glaser B, Powers AC, Shapiro AMJ, Magnuson MA, Dor Y, Ben-Porath I. p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion. Nat Med 2016; 22:412-20. [PMID: 26950362 DOI: 10.1038/nm.4054] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/02/2016] [Indexed: 12/15/2022]
Abstract
Cellular senescence is thought to contribute to age-associated deterioration of tissue physiology. The senescence effector p16(Ink4a) is expressed in pancreatic beta cells during aging and limits their proliferative potential; however, its effects on beta cell function are poorly characterized. We found that beta cell-specific activation of p16(Ink4a) in transgenic mice enhances glucose-stimulated insulin secretion (GSIS). In mice with diabetes, this leads to improved glucose homeostasis, providing an unexpected functional benefit. Expression of p16(Ink4a) in beta cells induces hallmarks of senescence--including cell enlargement, and greater glucose uptake and mitochondrial activity--which promote increased insulin secretion. GSIS increases during the normal aging of mice and is driven by elevated p16(Ink4a) activity. We found that islets from human adults contain p16(Ink4a)-expressing senescent beta cells and that senescence induced by p16(Ink4a) in a human beta cell line increases insulin secretion in a manner dependent, in part, on the activity of the mechanistic target of rapamycin (mTOR) and the peroxisome proliferator-activated receptor (PPAR)-γ proteins. Our findings reveal a novel role for p16(Ink4a) and cellular senescence in promoting insulin secretion by beta cells and in regulating normal functional tissue maturation with age.
Collapse
Affiliation(s)
- Aharon Helman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Agnes Klochendler
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Narmen Azazmeh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yael Gabai
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Elad Horwitz
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shira Anzi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Avital Swisa
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Reba Condiotti
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Roy Z Granit
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Nevo
- Computation Center, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yaakov Fixler
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Dorin Shreibman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Amit Zamir
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Sharona Tornovsky-Babeay
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Chunhua Dai
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alvin C Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Veteran Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - A M James Shapiro
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ittai Ben-Porath
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
35
|
Surbeck M, Deschner T, Behringer V, Hohmann G. Urinary C-peptide levels in male bonobos (Pan paniscus) are related to party size and rank but not to mate competition. Horm Behav 2015; 71:22-30. [PMID: 25870021 DOI: 10.1016/j.yhbeh.2015.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/18/2015] [Accepted: 03/24/2015] [Indexed: 11/22/2022]
Abstract
Within- and between-species variation in male mating strategies has been attributed to a multitude of factors including male competitive ability and the distribution of fertile females across space and time. Differences in energy balance across and within males allow for the identification of some of the trade-offs associated with certain social and mating strategies. Bonobos live in groups with a high degree of fission-fusion dynamics, there is co-dominance between the sexes and a linear dominance hierarchy among males. Males compete over access to females, breeding is aseasonal, and females exhibit sexual swellings over extended time periods. In this study we use urinary C-peptide (UCP) levels in male bonobos (Pan paniscus) obtained from 260 urine samples from a wild bonobo community, to quantify male energy balance during mate competition and levels of gregariousness in the species. Although high ranking males are more aggressive, spend more time in proximity to maximally tumescent females, and have higher mating frequencies, we found no indication that mate guarding or mate competition affected male energy balance. Our results showed a positive correlation between monthly mean UCP levels and mean party size. When traveling in large parties, high ranking males had higher UCP levels than those of the low ranking males. These results support the hypothesis that patterns of fission-fusion dynamics in bonobos are either linked to energy availability in the environment or to the energetic costs of foraging. The finding of a rank-bias in UCP levels in larger parties could also reflect an increase in contest competition among males over access to food.
Collapse
Affiliation(s)
- Martin Surbeck
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Tobias Deschner
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Verena Behringer
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Gottfried Hohmann
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
36
|
Abstract
Pancreatic islets secrete hormones that play a key role in regulating blood glucose levels (glycemia). Age-dependent impairment of islet function and concomitant dysregulation of glycemia are major health threats in aged populations. However, the major causes of the age-dependent decline of islet function are still disputed. Here we demonstrate that aging of pancreatic islets in mice and humans is notably associated with inflammation and fibrosis of islet blood vessels but does not affect glucose sensing and the insulin secretory capacity of islet beta cells. Accordingly, when transplanted into the anterior chamber of the eye of young mice with diabetes, islets from old mice are revascularized with healthy blood vessels, show strong islet cell proliferation, and fully restore control of glycemia. Our results indicate that beta cell function does not decline with age and suggest that islet function is threatened by an age-dependent impairment of islet vascular function. Strategies to mitigate age-dependent dysregulation in glycemia should therefore target systemic and/or local inflammation and fibrosis of the aged islet vasculature.
Collapse
|
37
|
Greeley NR, Regner S, Willi S, Lynch DR. Cross-sectional analysis of glucose metabolism in Friedreich ataxia. J Neurol Sci 2014; 342:29-35. [PMID: 24819921 DOI: 10.1016/j.jns.2014.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/08/2014] [Accepted: 04/12/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To evaluate the relationship between disease features in Friedreich ataxia and aberrant glucose metabolism. METHODS Fasting glucose, fasting insulin and random HbA1C were obtained in 158 patients with Friedreich ataxia. Regression analysis evaluated glucose, insulin, and homeostatic model assessment (HOMA) of insulin resistance (IR) and beta-cell function (ß) in relation to age, BMI, sex, and genetic severity. Categorical glucose values were analyzed in relation to other FRDA-associated disease characteristics. RESULTS In the FRDA cohort, age and GAA repeat length predicted fasting glucose and HbA1c levels (accounting for sex and BMI), while insulin and HOMA-IR were not predicted by these parameters. Within the cohort, average BMI was consistently lower than the national average by age and was marginally associated with insulin levels and HOMA-IR. Within juvenile subjects, insulin and HOMA-IR were predicted by age. Controlling for age and genetic severity, diabetes-related measures were not independent predictors of any quantitative measure of disease severity in FRDA. Glucose handling properties were also predicted by the presence of a point mutation, with 40% of individuals heterozygous for point mutations having diabetes, compared to 4.3% of subjects who carried two expanded GAA repeats. INTERPRETATION In FRDA, aberrant glucose metabolism is linked to increasing age, longer GAA repeat length on the shorter allele, frataxin point mutations, and increasing BMI. The effect of age to some degree may be mediated through changes in BMI, with increasing age associated with increases in BMI, and with HOMA-IR and insulin increases in children.
Collapse
Affiliation(s)
- Nathaniel R Greeley
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| | - Sean Regner
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| | - Steve Willi
- Division of Endocrinology and Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| | - David R Lynch
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Neurology, University of Pennsylvania Medical School, Philadelphia, PA, United States; Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA, United States.
| |
Collapse
|
38
|
Li Y, Liu H, Sato Y. The association between the serum C-peptide level and bone mineral density. PLoS One 2013; 8:e83107. [PMID: 24358252 PMCID: PMC3865098 DOI: 10.1371/journal.pone.0083107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/09/2013] [Indexed: 12/21/2022] Open
Abstract
Objective Although serum C-peptide was previously considered biologically inactive, a growing number of recent studies have shown that it is an active peptide with important physiologic functions. The present study aimed to investigate the association of serum C-peptide level with bone mineral density (BMD) in residents of the United States. Methods The study included 6,625 participants aged 12–85 years. Total and regional BMD were measured using dual-energy X-ray absorptiometry. Stratified multiple linear regression analysis was performed to determine the association of the serum C-peptide level with BMD. Three regression models were produced for each stratum. All models were adjusted for ethnicity, height, weight, education level, physical activity, smoking status, alcohol use, triglycerides and creatinine level, and models 2 and 3 were further adjusted for the fasting plasma glucose (FPG) and alkaline phosphatase (ALP) levels, respectively. Results Sex-specific results showed a significant association between the serum C-peptide level and total BMD in both sexes. Stratified analyses based on age and body mass index showed that serum C-peptide levels were significantly negatively associated with most regional BMD, and most of these associations remained significant after stratification based on the serum insulin level. Conclusion The serum C-peptide level was significantly negatively associated with the total and most regional BMD. These findings suggest that serum C-peptide may have biological activity associated with bone metabolism and therefore serum C-peptide control is advisable in order to reduce the risk of low bone mineral density.
Collapse
Affiliation(s)
- Ying Li
- Department of Social Medicine, School of Public Health, Zhejiang University, Zhejiang, China
- * E-mail:
| | - Hua Liu
- School of Basic Medical Sciences, Zhejiang University, Zhejiang, China
| | - Yasuto Sato
- Department of Hygiene and Public Health II, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
39
|
Costello PM, Hollis LJ, Cripps RL, Bearpark N, Patel HP, Sayer AA, Cooper C, Hanson MA, Ozanne SE, Green LR. Lower maternal body condition during pregnancy affects skeletal muscle structure and glut-4 protein levels but not glucose tolerance in mature adult sheep. Reprod Sci 2013; 20:1144-55. [PMID: 23420826 PMCID: PMC3766346 DOI: 10.1177/1933719113477494] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Suboptimal maternal nutrition and body composition are implicated in metabolic disease risk in adult offspring. We hypothesized that modest disruption of glucose homeostasis previously observed in young adult sheep offspring from ewes of a lower body condition score (BCS) would deteriorate with age, due to changes in skeletal muscle structure and insulin signaling mechanisms. Ewes were fed to achieve a lower (LBCS, n = 10) or higher (HBCS, n = 14) BCS before and during pregnancy. Baseline plasma glucose, glucose tolerance and basal glucose uptake into isolated muscle strips were similar in male offspring at 210 ± 4 weeks. Vastus total myofiber density (HBCS, 343 ± 15; LBCS, 294 ± 14 fibers/mm(2), P < .05) and fast myofiber density (HBCS, 226 ± 10; LBCS 194 ± 10 fibers/mm(2), P < .05), capillary to myofiber ratio (HBCS, 1.5 ± 0.1; LBCS 1.2 ± 0.1 capillary:myofiber, P < .05) were lower in LBCS offspring. Vastus protein levels of Akt1 were lower (83% ± 7% of HBCS, P < .05), and total glucose transporter 4 was increased (157% ± 6% of HBCS, P < .001) in LBCS offspring, Despite the reduction in total myofiber density in LBCS offspring, glucose tolerance was normal in mature adult life. However, such adaptations may lead to complications in metabolic control in an overabundant postnatal nutrient environment.
Collapse
Affiliation(s)
- Paula M. Costello
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Lisa J. Hollis
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Roselle L. Cripps
- Metabolic Research Laboratories, Department of Clinical Biochemistry, Addenbrooke’s Hospital, Institute of Metabolic Science, University of Cambridge, UK
| | - Natasha Bearpark
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Harnish P. Patel
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Avan Aihie Sayer
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Mark A. Hanson
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Susan E. Ozanne
- Metabolic Research Laboratories, Department of Clinical Biochemistry, Addenbrooke’s Hospital, Institute of Metabolic Science, University of Cambridge, UK
| | - Lucy R. Green
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
40
|
Karbalaei N, Ghasemi A, Faraji F, Zahediasl S. Comparison of the effect of maternal hypothyroidism on carbohydrate metabolism in young and aged male offspring in rats. Scandinavian Journal of Clinical and Laboratory Investigation 2012. [DOI: 10.3109/00365513.2012.743164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Asghar Ghasemi
- Endocrine Physiology Research Center
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences,
Tehran, Iran
| | - Farzaneh Faraji
- Endocrine Physiology Research Center
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences,
Tehran, Iran
| | - Saleh Zahediasl
- Endocrine Physiology Research Center
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences,
Tehran, Iran
| |
Collapse
|
41
|
Santulli G, Lombardi A, Sorriento D, Anastasio A, Del Giudice C, Formisano P, Béguinot F, Trimarco B, Miele C, Iaccarino G. Age-related impairment in insulin release: the essential role of β(2)-adrenergic receptor. Diabetes 2012; 61:692-701. [PMID: 22315324 PMCID: PMC3282797 DOI: 10.2337/db11-1027] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this study, we investigated the significance of β(2)-adrenergic receptor (β(2)AR) in age-related impaired insulin secretion and glucose homeostasis. We characterized the metabolic phenotype of β(2)AR-null C57Bl/6N mice (β(2)AR(-/-)) by performing in vivo and ex vivo experiments. In vitro assays in cultured INS-1E β-cells were carried out in order to clarify the mechanism by which β(2)AR deficiency affects glucose metabolism. Adult β(2)AR(-/-) mice featured glucose intolerance, and pancreatic islets isolated from these animals displayed impaired glucose-induced insulin release, accompanied by reduced expression of peroxisome proliferator-activated receptor (PPAR)γ, pancreatic duodenal homeobox-1 (PDX-1), and GLUT2. Adenovirus-mediated gene transfer of human β(2)AR rescued these defects. Consistent effects were evoked in vitro both upon β(2)AR knockdown and pharmacologic treatment. Interestingly, with aging, wild-type (β(2)AR(+/+)) littermates developed impaired insulin secretion and glucose tolerance. Moreover, islets from 20-month-old β(2)AR(+/+) mice exhibited reduced density of β(2)AR compared with those from younger animals, paralleled by decreased levels of PPARγ, PDX-1, and GLUT2. Overexpression of β(2)AR in aged mice rescued glucose intolerance and insulin release both in vivo and ex vivo, restoring PPARγ/PDX-1/GLUT2 levels. Our data indicate that reduced β(2)AR expression contributes to the age-related decline of glucose tolerance in mice.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Clinical Medicine, Cardiovascular & Immunologic Sciences, “Federico II” University of Naples, Naples, Italy
- Columbia-Presbyterian Medical Center, College of Physicians & Surgeons, Columbia University, New York, New York
| | - Angela Lombardi
- Columbia University Medical Center, Columbia University, New York, New York
- Department of Cellular and Molecular Biology and Pathology and Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore,” “Federico II” University of Naples, Naples, Italy
| | - Daniela Sorriento
- Department of Clinical Medicine, Cardiovascular & Immunologic Sciences, “Federico II” University of Naples, Naples, Italy
| | - Antonio Anastasio
- Department of Clinical Medicine, Cardiovascular & Immunologic Sciences, “Federico II” University of Naples, Naples, Italy
| | - Carmine Del Giudice
- Department of Clinical Medicine, Cardiovascular & Immunologic Sciences, “Federico II” University of Naples, Naples, Italy
| | - Pietro Formisano
- Department of Cellular and Molecular Biology and Pathology and Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore,” “Federico II” University of Naples, Naples, Italy
| | - Francesco Béguinot
- Department of Cellular and Molecular Biology and Pathology and Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore,” “Federico II” University of Naples, Naples, Italy
| | - Bruno Trimarco
- Department of Clinical Medicine, Cardiovascular & Immunologic Sciences, “Federico II” University of Naples, Naples, Italy
| | - Claudia Miele
- Department of Cellular and Molecular Biology and Pathology and Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore,” “Federico II” University of Naples, Naples, Italy
- Corresponding authors: Guido Iaccarino, , and Claudia Miele,
| | - Guido Iaccarino
- School of Medicine, University of Salerno, Salerno, Italy
- Corresponding authors: Guido Iaccarino, , and Claudia Miele,
| |
Collapse
|
42
|
Lee JM, Gebremariam A, Vijan S, Gurney JG. Excess body mass index-years, a measure of degree and duration of excess weight, and risk for incident diabetes. ACTA ACUST UNITED AC 2012; 166:42-8. [PMID: 22213749 DOI: 10.1001/archpedi.166.1.42] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To evaluate the relation between excess body mass index (BMI)-years, a measure of the degree to which an individual's BMI (calculated as weight in kilograms divided by height in meters squared) exceeds the reference BMI and the duration for which he or she carries excess BMI, and incident diabetes. DESIGN Longitudinal analysis. SETTING United States of America. PARTICIPANTS A total of 8157 adolescents and young adults aged 14 to 21 years at the start of the National Longitudinal Survey of Youth 1979 with self-reported measures of height, weight, and diabetes status (type unspecified) from 1981 through 2006. MAIN EXPOSURE Excess BMI-years, which were calculated by subtracting the [corrected] reference BMI (25.0 for adults or 85th percentile for adolescents) from the actual BMI [corrected] for each study year and cumulating excess BMI for the study duration. MAIN OUTCOME MEASURE We conducted logistic regression models to predict presumed type 2 diabetes (after excluding presumed type 1 diabetes) as a function of age, sex, race, excess BMI-years, and specific interactions. RESULTS A higher level of excess BMI-years was associated with an increased risk of diabetes. For example, on average, white men aged 40 years with 200 excess BMI-years had 2.94 times (95% confidence interval, 2.36-3.67) higher odds of developing diabetes compared with men of the same age and race with 100 excess BMI-years. For a given level of excess BMI-years, younger compared with older and Hispanic and black compared with white individuals had higher risk of developing diabetes. Our study is limited by use of self-reported data without specification of diabetes type. CONCLUSIONS Because younger compared with older individuals have a higher risk of self-reported diabetes for a given level of excess BMI-years and cumulative exposure to excess BMI is increasing among younger US birth cohorts, public health interventions should target younger adults.
Collapse
Affiliation(s)
- Joyce M Lee
- Division of Pediatric Endocrinology, Child Health Evaluation and Research Unit, University of Michigan, 300 North Ingalls Building, Room 6E18, Campus Box 5456, Ann Arbor, MI 48109-5456, USA.
| | | | | | | |
Collapse
|
43
|
Evans WJ, Farrell PA. The Aging Pancreas: Effects of Aging on Insulin Secretion and Action. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Matveyenko AV, Veldhuis JD, Butler PC. Adaptations in pulsatile insulin secretion, hepatic insulin clearance, and beta-cell mass to age-related insulin resistance in rats. Am J Physiol Endocrinol Metab 2008; 295:E832-41. [PMID: 18664594 PMCID: PMC2575907 DOI: 10.1152/ajpendo.90451.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In health insulin is secreted in discrete insulin secretory bursts from pancreatic beta-cells, collectively referred to as beta-cell mass. We sought to establish the relationship between beta-cell mass, insulin secretory-burst mass, and hepatic insulin clearance over a range of age-related insulin sensitivity in adult rats. To address this, we used a novel rat model with chronically implanted portal vein catheters in which we recently established the parameters to permit deconvolution of portal vein insulin concentration profiles to measure insulin secretion and resolve its pulsatile components. In the present study, we examined total and pulsatile insulin secretion, insulin sensitivity, hepatic insulin clearance, and beta-cell mass in 35 rats aged 2-12 mo. With aging, insulin sensitivity declined, but euglycemia was sustained by an adaptive increase in fasting and glucose-stimulated insulin secretion through the mechanism of a selective augmentation of insulin pulse mass. The latter was attributable to a closely related increase in beta-cell mass (r=0.8, P<0.001). Hepatic insulin clearance increased with increasing portal vein insulin pulse amplitude, damping the delivery of insulin in the systemic circulation. In consequence, the curvilinear relationship previously reported between insulin secretion and insulin sensitivity was extended to both insulin pulse mass and beta-cell mass vs. insulin sensitivity. These data support a central role of adaptive changes in beta-cell mass to permit appropriate insulin secretion in the setting of decreasing insulin sensitivity in the aging animal. They emphasize the cooperative role of pancreatic beta-cells and the liver in regulating the secretion and delivery of insulin to the systemic circulation.
Collapse
Affiliation(s)
- Aleksey V Matveyenko
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
45
|
Abstract
Gastric emptying is mildly slowed in healthy aging, although generally remains within the normal range for young people. The significance of this is unclear, but may potentially influence the absorption of certain drugs, especially when a rapid effect is desired. Type 2 diabetes is common in the elderly, but there is little data regarding its natural history, prognosis, and management. This article focuses on the interactions between gastric emptying and diabetes, how each is influenced by the process of aging, and the implications for patient management.
Collapse
Affiliation(s)
- Paul Kuo
- Discipline of Medicine, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia
| | | | | |
Collapse
|
46
|
Meier JM, Alavi A, Iruvuri S, Alzeair S, Parker R, Houseni M, Hernandez-Pampaloni M, Mong A, Torigian DA. Assessment of Age-Related Changes in Abdominal Organ Structure and Function With Computed Tomography and Positron Emission Tomography. Semin Nucl Med 2007; 37:154-72. [PMID: 17418149 DOI: 10.1053/j.semnuclmed.2007.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the size of the aged population in the United States expected to grow considerably during the next several decades, the number of imaging studies performed on such aged individuals will similarly increase. Thus, it is important to understand normal age-related changes in the structural and functional imaging appearance of the abdominal organs. We therefore present preliminary data and a review of the literature relevant to structural and functional changes in the abdominal organs of children and older adults. In a retrospective study of both adult and pediatric populations, we used computed tomography (CT), positron emission tomography (PET), and PET/CT imaging to investigate age-associated changes in size, attenuation, and metabolic function of the abdominal organs. Organs of interest include the liver, spleen, pancreas, kidneys, adrenal glands, stomach, small bowel, colon, and rectum. Although volumes of adult liver, spleen, pancreas, and kidneys do not change significantly with age, adult left and right adrenal gland volumes do significantly increase with age (r = 0.2823, P = 0.0334, and r = 0.3676, P = 0.0049, respectively). Also, the attenuation of adult liver (r = -0.2122, P = 0.0412), spleen (r = -0.4508, P < 0.0001), pancreas (r = -0.5124, P = 0.0007), and left and right adrenal gland (r = -0.5835, P < 0.0001 and r = -0.6135, P < 0.0001, respectively) decrease significantly with increasing age. Every organ studied in the pediatric population demonstrates a positive association between organ volume and age. Significant age-related changes in organ function are noted in the adult liver and small bowel, with the liver demonstrating a positive association between metabolic activity and age (r = 0.4434, P = 0.0029) and the small bowel showing an inverse association between mean small bowel standardize uptake value and age (r = -0.2435, P = 0.0174). Also, the maximum overall small bowel and colon metabolic activity in children increases with age (r = 0.6478, P = 0.0008). None of the other organs studied (ie, spleen, pancreas, adrenal glands, stomach, colon, rectum) demonstrate significant changes in metabolism with advancing age. The metabolic volumetric product (calculated as the product of organ volume and mean organ SUV) of the liver and spleen does not change significantly with age. In conclusion, various abdominal organs demonstrate differential changes in volume, attenuation, and/or metabolism with increasing age in pediatric and adult populations.
Collapse
Affiliation(s)
- Jeffrey M Meier
- Department of Radiology, Division of Nuclear Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Spiegel K, Knutson K, Leproult R, Tasali E, Van Cauter E. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. J Appl Physiol (1985) 2005; 99:2008-19. [PMID: 16227462 DOI: 10.1152/japplphysiol.00660.2005] [Citation(s) in RCA: 714] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic sleep loss as a consequence of voluntary bedtime restriction is an endemic condition in modern society. Although sleep exerts marked modulatory effects on glucose metabolism, and molecular mechanisms for the interaction between sleeping and feeding have been documented, the potential impact of recurrent sleep curtailment on the risk for diabetes and obesity has only recently been investigated. In laboratory studies of healthy young adults submitted to recurrent partial sleep restriction, marked alterations in glucose metabolism including decreased glucose tolerance and insulin sensitivity have been demonstrated. The neuroendocrine regulation of appetite was also affected as the levels of the anorexigenic hormone leptin were decreased, whereas the levels of the orexigenic factor ghrelin were increased. Importantly, these neuroendocrine abnormalities were correlated with increased hunger and appetite, which may lead to overeating and weight gain. Consistent with these laboratory findings, a growing body of epidemiological evidence supports an association between short sleep duration and the risk for obesity and diabetes. Chronic sleep loss may also be the consequence of pathological conditions such as sleep-disordered breathing. In this increasingly prevalent syndrome, a feedforward cascade of negative events generated by sleep loss, sleep fragmentation, and hypoxia are likely to exacerbate the severity of metabolic disturbances. In conclusion, chronic sleep loss, behavioral or sleep disorder related, may represent a novel risk factor for weight gain, insulin resistance, and Type 2 diabetes.
Collapse
Affiliation(s)
- Karine Spiegel
- Laboratoire de Physiologie, Centre d'Etude des Rythmes Biologiques, Université Libre de Bruxelles, Campus Hôpital Erasme-CPI 604, 808, Route de Lennik, B-1070 Bruxelles, Belgium.
| | | | | | | | | |
Collapse
|
48
|
Qiao Q, Tuomilehto J, Balkau B, Borch-Johnsen K, Heine R, Wareham NJ. Are insulin resistance, impaired fasting glucose and impaired glucose tolerance all equally strongly related to age? Diabet Med 2005; 22:1476-81. [PMID: 16241909 DOI: 10.1111/j.1464-5491.2005.01655.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Insulin resistance (IR) has been considered an underlying cause of impaired glucose tolerance (IGT) and impaired fasting glucose (IFG). Whether IR increases with age has been debated. We investigated the age-associated deterioration in the homeostasis model assessment (HOMA) of IR and in glucose metabolism. METHODS Ten (nine including women) European studies contributed data on 6314 men and 6393 women aged 30-88 years. The cohort- and sex-specific top 25% of HOMA of IR in non-diabetic subjects was used to define HOMA-IR. RESULTS Compared with subjects aged 50-59 years, the cohort- and body mass index-adjusted odds ratio (95% confidence interval) for HOMA-IR was 0.83 (0.64, 1.08), 0.87 (0.74, 1.03), 1.20 (1.02, 1.42) and 1.45 (1.10, 1.92) in men and 0.84 (0.62, 1.14), 0.91 (0.77, 1.09), 1.38 (1.19, 1.62) and 1.71 (1.35, 2.17) in women, respectively, aged 30-39, 40-49, 60-69 and > or = 70 years (P < 0.0001 for trend test). The same increasing trend was also observed for IFG. In contrast, the corresponding odds ratios for IGT increased linearly and more strongly with age, being 0.37 (0.22, 0.63), 0.67 (0.52, 0.87), 1.55 (1.24, 1.92) and 2.96 (2.13, 4.13) in men and 0.51 (0.31, 0.85), 0.66 (0.52, 0.86), 1.92 (1.57, 2.35) and 3.85 (2.89, 5.12) in women, respectively. CONCLUSIONS Age is more strongly associated with IGT than with HOMA-IR or IFG in non-diabetic European populations.
Collapse
Affiliation(s)
- Qing Qiao
- Diabetes and Genetic Epidemiology Unit, National Public Health Institute, Mannerheimintie 166, 00300 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
49
|
Ratnakant S, Ochs ME, Solomon SS. Sounding board: diabetes mellitus in the elderly: a truly heterogeneous entity? Diabetes Obes Metab 2003; 5:81-92. [PMID: 12630932 DOI: 10.1046/j.1463-1326.2003.00242.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Sanjay Ratnakant
- Medical Services, Department of Veterans Affairs Medical Center, Memphis, TN, USA
| | | | | |
Collapse
|
50
|
Abstract
Glucose tolerance progressively declines with age, and there is a high prevalence of type 2 diabetes and postchallenge hyperglycemia in the older population. Age-related glucose intolerance in humans is often accompanied by insulin resistance, but circulating insulin levels are similar to those of younger people. Under some conditions of hyperglycemic challenge, insulin levels are lower in older people, suggesting beta-cell dysfunction. When insulin sensitivity is controlled for, insulin secretory defects have been consistently demonstrated in aging humans. In addition, beta-cell sensitivity to incretin hormones may be decreased with advancing age. Impaired beta-cell compensation to age-related insulin resistance may predispose older people to develop postchallenge hyperglycemia and type 2 diabetes. An improved understanding of the metabolic alterations associated with aging is essential for the development of preventive and therapeutic interventions in this population at high risk for glucose intolerance.
Collapse
Affiliation(s)
- Annette M Chang
- Divisions of Endocrinology and Geriatric Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, USA.
| | | |
Collapse
|