1
|
Li Y, Yang X, Li X, Wang S, Chen P, Ma T, Zhang B. Astragaloside IV and cycloastragenol promote liver regeneration through regulation of hepatic oxidative homeostasis and glucose/lipid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156165. [PMID: 39461202 DOI: 10.1016/j.phymed.2024.156165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/28/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND The regenerative capacity of the liver is pivotal for mitigating various forms of liver injury and requires the rapid proliferation of hepatocytes. Aquaporin-9 (AQP9) provides vital support for hepatocyte proliferation by preserving hydrogen peroxide (H2O2) oxidative balance and glucose/lipid metabolism equilibrium within hepatocytes. Our previous study demonstrated that Radix Astragali (RA) decoction promotes liver regeneration by upregulating hepatic expression of AQP9, possibly via two major active constituents: astragaloside IV (AS-IV) and cycloastragenol (CAG). PURPOSE To verify that upregulated AQP9 expression in hepatocytes maintains liver oxidative balance and glucose/lipid metabolism homeostasis, and is the main pharmacological mechanism by which AS-IV and CAG promote liver regeneration. STUDY DESIGN/METHODS Effects of AS-IV and CAG on liver regeneration were scrutinized using a mouse model of 70 % partial hepatectomy (PHx). AQP9-targeted liver regeneration mediated by AS-IV and CAG was verified using AQP9 gene knockout mice (AQP9-/-). The AQP9 protein expression pattern in hepatocytes was determined using tdTomato-tagged AQP9 transgenic mice (AQP9-RFP). Potential mechanisms of AS-IV and CAG on liver regeneration were studied using real-time quantitative PCR, immunoblotting, staining with hematoxylin and eosin, oil red O, and periodic acid-Schiff, and immunofluorescence, immunohistochemistry, HyPerRed fluorescence, and biochemical analyses. RESULTS AS-IV and CAG promoted substantial liver regeneration and increased hepatic AQP9 expression in wild-type mice (AQP9+/+) following 70 % PHx, but had no discernible benefits in AQP9-/- mice. Both saponin compounds also helped maintain oxidative homeostasis by reducing levels of oxidative stress markers (reactive oxygen species [ROS], H2O2, and malondialdehyde) and elevating levels of ROS scavengers (glutathione and superoxide dismutase) in AQP9+/+ mice post-70 % PHx. This further activated the PI3K-AKT and insulin signaling pathways, thereby fostering liver regeneration. Furthermore, AS-IV and CAG both promoted hepatocyte glycerol uptake, increased gluconeogenesis, facilitated lipolysis, reduced glycolysis, and inhibited glycogen deposition, thus ensuring the energy supply required for liver regeneration. CONCLUSION This research is the first to demonstrate AS-IV and CAG as major active ingredients of RA that promote liver regeneration by upregulating hepatocyte AQP9 expression, improving hepatocyte glucose/lipid metabolism, and reducing oxidative stress damage, constituting a crucial pharmacological mechanism underlying the liver-protective effects of RA. The augmentation of hepatocyte AQP9 expression underscores an important aspect of the Qi-tonifying effect of RA. This study establishes AQP9 as an effective target for regulation of liver regeneration and provides a universal strategy for clinical drug intervention aimed at enhancing liver regeneration.
Collapse
Affiliation(s)
- Yanghao Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023,PR China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xu Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiang Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shaodong Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Peng Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Tonghui Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023,PR China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Bo Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Liu J, Xia Z, Peng S, Xia J, Xu R, Wang X, Li F, Zhu W. The Important Role of Aquaglyceroporin 7 in Health and Disease. Biomolecules 2024; 14:1228. [PMID: 39456161 PMCID: PMC11505742 DOI: 10.3390/biom14101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Aquaporins (AQPs) are highly conserved small transmembrane proteins that facilitate the transport of water and small solutes across cell membranes. Aquaglyceroporin 7 (AQP7), a significant member of the AQP family, is widely distributed throughout the body. For years, AQP7 was predominantly recognized for its role as a small-molecule transporter, facilitating the passage of small molecular substances. However, growing studies have revealed that AQP7 is also involved in the regulation of lipid synthesis, gluconeogenesis, and energy homeostasis, and it is intimately linked to a variety of diseases, such as obesity, type 2 diabetes mellitus, cardiovascular diseases, cancer, and inflammatory bowel disease. This article presents a comprehensive overview of the structure of AQP7, its regulatory mechanisms, its vital roles in both healthy and diseased states, and potential therapeutic advancements. We hope that these studies will serve as a valuable reference for the development of future treatments and diagnostic protocols targeting AQP7.
Collapse
Affiliation(s)
- Jing Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Ziwei Xia
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Shuhong Peng
- Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Juanjuan Xia
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Ruixiang Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Xin Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Fei Li
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weifeng Zhu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
3
|
Zhang L, Gu H, Li X, Wang Y, Yao S, Chen X, Zheng L, Yang X, Du Q, An J, Wen G, Zhu J, Jin H, Tuo B. Pathophysiological role of ion channels and transporters in hepatocellular carcinoma. Cancer Gene Ther 2024:10.1038/s41417-024-00782-8. [PMID: 39048663 DOI: 10.1038/s41417-024-00782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 07/27/2024]
Abstract
The incidence of hepatocellular carcinoma (HCC) has continued to increase annually worldwide, and HCC has become a common cause of cancer-related death. Despite great progress in understanding the molecular mechanisms underlying HCC development, the treatment of HCC remains a considerable challenge. Thus, the survival and prognosis of HCC patients remain extremely poor. In recent years, the role of ion channels in the pathogenesis of diseases has become a hot topic. In normal liver tissue, ion channels and transporters maintain water and electrolyte balance and acid‒base homeostasis. However, dysfunction of these ion channels and transporters can lead to the development and progression of HCC, and thus these ion channels and transporters are expected to become new therapeutic targets. In this review, ion channels and transporters associated with HCC are reviewed, and potential targets for new and effective therapies are proposed.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Hong Gu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
4
|
Elnegaard JJ, Iena FM, Herold J, Lebeck J. Sex-specific effect of AQP9 deficiency on hepatic triglyceride metabolism in mice with diet-induced obesity. J Physiol 2024; 602:3131-3149. [PMID: 37026573 DOI: 10.1113/jp284188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Studies in obese rats and human cell models of non-alcoholic fatty liver disease have indicated that knockdown of the hepatic glycerol channel aquaporin 9 (AQP9) leads to decreased hepatic steatosis. However, a study in leptin receptor-deficient mice did not find that knockout (KO) of AQP9 alleviated hepatic steatosis. The aim of this study was to investigate the effect of high-fat diet (HFD) on hepatic glycerol and triglyceride metabolism in male and female AQP9 KO mice. Male and female AQP9 KO mice and wild-type (WT) littermates were fed a HFD for 12 weeks. Weight, food intake and blood glucose were monitored throughout the study and tissue analysis included determination of hepatic triglyceride content and triglyceride secretion. The expression of key molecules for hepatic glycerol and triglyceride metabolism was evaluated using qPCR and western blotting. AQP9 KO and WT mice demonstrated a similar weight gain throughout the study period, and we found no evidence for AQP9 deficiency being associated with a reduced hepatic accumulation of triglyceride or a reduced blood glucose level. Instead, we show that the effect of AQP9 deficiency on hepatic lipid metabolism is sex-specific, with only male AQP9 KO mice having a reduced hepatic secretion of triglycerides and an elevated expression of peroxisome proliferator-activated receptor α. Male AQP9 KO mice had an elevated blood glucose level after 12 weeks of HFD when compared to baseline levels. Thus, we found no evidence for AQP9 inhibition being a target for alleviating the development of hepatic steatosis in mice with diet-induced obesity. KEY POINTS: This study investigates the effect of AQP9 deficiency on hepatic triglyceride metabolism in both male and female mice fed a high-fat diet (HFD) for 12 weeks. No evidence was found for AQP9 deficiency being associated with a reduced hepatic accumulation of triglyceride or a reduced blood glucose level. The effect of AQP9 deficiency on hepatic triglyceride metabolism is sex-specific. Male AQP9 KO mice had a reduced hepatic secretion of triglycerides and an elevated expression of peroxisome proliferator-activated receptor α, which likely promotes an increased hepatic fatty acid oxidation. Male AQP9 KO had an elevated blood glucose level after 12 weeks of HFD when compared to baseline levels.
Collapse
Affiliation(s)
| | | | | | - Janne Lebeck
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Iizuka Y, Hirako S, Kim H, Wada N, Ohsaki Y, Yanagisawa N. Fish oil-derived n-3 polyunsaturated fatty acids downregulate aquaporin 9 protein expression of liver and white adipose tissues in diabetic KK mice and 3T3-L1 adipocytes. J Nutr Biochem 2024; 124:109514. [PMID: 37918450 DOI: 10.1016/j.jnutbio.2023.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Aquaporin 9 (AQP9) is an integral membrane protein that facilitates glycerol transport in hepatocytes and adipocytes. Glycerol is necessary as a substrate for gluconeogenesis in the physiological fasted state, suggesting that inhibiting AQP9 function may be beneficial for treating type 2 diabetes associated with fasting hyperglycemia. The n-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are rich in fish oil and lower the risk of metabolic syndrome; however, the effects of EPA and DHA on AQP9 expression in obese and type 2 diabetes are unclear. The KK mouse is an animal model of obesity and type 2 diabetes because of the polymorphisms on leptin receptor gene, which results in a part of cause for obese and diabetic conditions. In this study, we determined the effect of fish oil-derived n-3 PUFA on AQP9 protein expression in the liver and white adipose tissue (WAT) of KK mice and mouse 3T3-L1 adipocytes. The expression of AQP9 protein in the liver, epididymal WAT, and inguinal WAT were markedly decreased following fish oil administration. We also demonstrated that n-3 PUFAs, such as DHA, and to a lesser extent EPA, downregulated AQP9 protein expression in 3T3-L1 adipocytes. Our results suggest that fish oil-derived n-3 PUFAs may regulate the protein expressions of AQP9 in glycerol metabolism-related organs in KK mice and 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Yuzuru Iizuka
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.
| | - Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, Saitama, Japan
| | - Hyounju Kim
- Department of Nutrition and Health Sciences, Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Nobuhiro Wada
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Ohsaki
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoko Yanagisawa
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Li Y, Yang X, Bao T, Sun X, Li X, Zhu H, Zhang B, Ma T. Radix Astragali decoction improves liver regeneration by upregulating hepatic expression of aquaporin-9. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155166. [PMID: 37918281 DOI: 10.1016/j.phymed.2023.155166] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The therapeutic efficacy of liver injuries heavily relies on the liver's remarkable regenerative capacity, necessitating the maintenance of glycose/lipids homeostasis and oxidative eustasis during the recovery process. Astragali Radix, an herbal tonic widely used in China and many other countries, is believed to have many positive effects, including immune stimulation, nourishing, antioxidant, liver protection, diuresis, anti-diabetes, anti-cancer and expectorant. Astragali Radix is widely integrated into hepatoprotective formulas as it is believed to facilitate liver regeneration. Nevertheless, the precise molecular pharmacological mechanisms underlying this hepatoprotective effect remain elusive. PURPOSE To investigate the improving effects of Astragali Radix on liver regeneration and the underlying mechanisms. METHODS A mouse model of 70% partial hepatectomy (PHx) was employed to investigate the impact of Radix Astragali decoction (HQD) on liver regeneration. HQD was orally administered for 7 days before the PHx procedure and throughout the experiment. N-acetylcysteine (NAC) was used as a positive control for liver regeneration. Liver regeneration was assessed by evaluating the liver-to-body weight ratio (LW/BW) and the expression of representative cell proliferation marker proteins. Oxidative stress and glucose metabolism were analyzed using biochemical assays, Western blotting, dihydroethidium (DHE) fluorescence, and periodic acid-Schiff (PAS) staining methods. To understand the role of AQP9 as a potential molecular target of HQD in promoting liver regeneration, td-Tomato-tagged AQP9 transgenic mice (AQP9-RFP) were employed to determine the expression pattern of AQP9 protein. AQP9 knockout mice (AQP9-/-) were used to assess the specific targeting of AQP9 in the promotion of liver regeneration by HQD. RESULTS HQD significantly upregulated hepatic AQP9 expression, alleviated liver injury and promoted liver regeneration in wild-type (AQP9+/+) mice after 70% PHx. However, the beneficial impact of HQD on liver regeneration was absent in AQP9 gene knockout (AQP9-/-) mice. Moreover, HQD facilitated the uptake of glycerol by hepatocytes, enhanced gluconeogenesis, and concurrently reduced H2O2 content and oxidative stress levels in AQP9+/+ but not AQP9-/- mouse livers. Additionally, main active substance of Radix Astragali, astragaloside IV (AS-IV) and cycloastragenol (CAG), demonstrated substantial upregulation of AQP9 expression and promoted liver regeneration in AQP9+/+ but not AQP9-/- mice. CONCLUSION This study is the first to demonstrate that Radix Astragali and its main active constituents (AS-IV and CAG) improve liver regeneration by upregulating the expression of AQP9 in hepatocytes to increase gluconeogenesis and reduce oxidative stress. The study revealed novel molecular pharmacological mechanisms of Radix Astragali and provided a promising therapeutic target of liver diseases.
Collapse
Affiliation(s)
- Yanghao Li
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Xu Yang
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Tiantian Bao
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Xiaojuan Sun
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Xiang Li
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Huilin Zhu
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China
| | - Bo Zhang
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China.
| | - Tonghui Ma
- School of Medicine & Holistic Integrative Medicine, Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Xianlin Avenue 138, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
7
|
Hirako S, Wakayama Y, Kim H, Iizuka Y, Wada N, Kaibara N, Okabe M, Arata S, Matsumoto A. Association of Aquaporin 7 and 9 with Obesity and Fatty Liver in db/db Mice. Zoolog Sci 2023; 40:455-462. [PMID: 38064372 DOI: 10.2108/zs230037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/27/2023] [Indexed: 12/18/2023]
Abstract
Aquaporin (AQP) 7 and AQP9 are membrane channel proteins called aquaglyceroporins and are related to glucose and lipid metabolism. AQP7 is mainly expressed in white adipose tissue (WAT) and is involved in releasing glycerol into the bloodstream. AQP9 is the glycerol channel in the liver that supplies glycerol to the hepatic cells. In this study, we investigated the relationship between the expression of aquaglyceroporins and lifestyle-related diseases, such as obesity and fatty liver, using 22-week-old db/db mice. Body weight, WAT, and liver weight showed increases in db/db mice. The levels of liver lipids, plasma lipids, insulin, and leptin were also increased in db/db mice. Gene expression related to fatty acid and triglyceride synthesis in the liver was enhanced in db/db mice. In addition, gene and protein expression of gluconeogenesis-related enzymes was increased. Conversely, lipolysis-related gene expression in WAT was reduced. In the db/db mice, AQP9 expression in the liver was raised; however, AQP7 expression in WAT was reduced. These results suggest that in db/db mice, enhanced hepatic AQP9 expression increased the supply of glycerol to the liver and induced fatty liver and hyperglycemia. Additionally, reduced AQP7 expression in WAT is associated with excessive lipid accumulation in adipocytes. Aquaglyceroporins are essential molecules for glucose and lipid metabolism, and may be potential target molecules for the treatment of obesity and lifestyle-related diseases.
Collapse
Affiliation(s)
- Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, Iwatsuki-ku, Saitama-shi, Saitama 339-8539, Japan,
| | - Yoshihiro Wakayama
- Wakayama Clinic, Machida-shi, Tokyo 195-0072, Japan
- Department of Anatomy, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hyounju Kim
- Department of Nutrition and Health Sciences, Faculty of Food and Nutritional Sciences, Toyo University, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Yuzuru Iizuka
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Nobuhiro Wada
- Department of Anatomy, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | - Naoko Kaibara
- Department of Health and Nutrition, University of Human Arts and Sciences, Iwatsuki-ku, Saitama-shi, Saitama 339-8539, Japan
| | - Mai Okabe
- Tokyo Shokuryo Dietitian Academy, Setagaya-ku, Tokyo 154-8544, Japan
| | - Satoru Arata
- Center for Biotechnology, Showa University, Shinagawa-ku, Tokyo 142-8555, Japan
- Department of Biochemistry, Faculty of Arts and Sciences, Showa University, Fujiyoshida-shi, Yamanashi 403-0005, Japan
| | - Akiyo Matsumoto
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, Sakado-shi, Saitama 350-0295, Japan
| |
Collapse
|
8
|
Yin S, Li Z, Yang F, Guo H, Zhao Q, Zhang Y, Yin Y, Wu X, He J. A Comprehensive Genomic Analysis of Chinese Indigenous Ningxiang Pigs: Genomic Breed Compositions, Runs of Homozygosity, and Beyond. Int J Mol Sci 2023; 24:14550. [PMID: 37833998 PMCID: PMC10572203 DOI: 10.3390/ijms241914550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Ningxiang pigs are a renowned indigenous pig breed in China, known for their meat quality, disease resistance, and environmental adaptability. In recent decades, consumer demand for meats from indigenous breeds has grown significantly, fueling the selection and crossbreeding of Ningxiang pigs (NXP). The latter has raised concerns about the conservation and sustainable use of Ningxiang pigs as an important genetic resource. To address these concerns, we conducted a comprehensive genomic study using 2242 geographically identified Ningxiang pigs. The estimated genomic breed composition (GBC) suggested 2077 pigs as purebred Ningxiang pigs based on a ≥94% NXP-GBC cut-off. The remaining 165 pigs were claimed to be crosses, including those between Duroc and Ningxiang pigs and between Ningxiang and Shaziling pigs, and non-Ningxiang pigs. Runs of homozygosity (ROH) were identified in the 2077 purebred Ningxiang pigs. The number and length of ROH varied between individuals, with an average of 32.14 ROH per animal and an average total length of 202.4 Mb per animal. Short ROH (1-5 Mb) was the most abundant, representing 66.5% of all ROH and 32.6% of total ROH coverage. The genomic inbreeding estimate was low (0.089) in purebred Ningxiang pigs compared to imported western pig breeds. Nine ROH islands were identified, pinpointing candidate genes and QTLs associated with economic traits of interest, such as reproduction, carcass and growth traits, lipid metabolism, and fat deposition. Further investigation of these ROH islands and candidate genes is anticipated to better understand the genomics of Ningxiang pigs.
Collapse
Affiliation(s)
- Shishu Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
| | - Zhi Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
| | - Fang Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
| | - Haimin Guo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
| | - Qinghua Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Pigs) of the Ministry of Agriculture and Rural Affairs, Changsha 410128, China;
| | - Yulong Yin
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Pigs) of the Ministry of Agriculture and Rural Affairs, Changsha 410128, China;
- Animal Nutrition Genome and Germplasm Innovation Research Center, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| | - Xiaolin Wu
- Council on Dairy Cattle Breeding, Bowie, MD 20716, USA
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Pigs) of the Ministry of Agriculture and Rural Affairs, Changsha 410128, China;
| |
Collapse
|
9
|
Calamita G, Delporte C. Insights into the Function of Aquaporins in Gastrointestinal Fluid Absorption and Secretion in Health and Disease. Cells 2023; 12:2170. [PMID: 37681902 PMCID: PMC10486417 DOI: 10.3390/cells12172170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins (AQPs), transmembrane proteins permeable to water, are involved in gastrointestinal secretion. The secretory products of the glands are delivered either to some organ cavities for exocrine glands or to the bloodstream for endocrine glands. The main secretory glands being part of the gastrointestinal system are salivary glands, gastric glands, duodenal Brunner's gland, liver, bile ducts, gallbladder, intestinal goblet cells, exocrine and endocrine pancreas. Due to their expression in gastrointestinal exocrine and endocrine glands, AQPs fulfill important roles in the secretion of various fluids involved in food handling. This review summarizes the contribution of AQPs in physiological and pathophysiological stages related to gastrointestinal secretion.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
10
|
Trinchese G, Gena P, Cimmino F, Cavaliere G, Fogliano C, Garra S, Catapano A, Petrella L, Di Chio S, Avallone B, Calamita G, Mollica MP. Hepatocyte Aquaporins AQP8 and AQP9 Are Engaged in the Hepatic Lipid and Glucose Metabolism Modulating the Inflammatory and Redox State in Milk-Supplemented Rats. Nutrients 2023; 15:3651. [PMID: 37630841 PMCID: PMC10459073 DOI: 10.3390/nu15163651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Milk is an important source of nutrients and energy, but there are still many uncertainties regarding the health effects of milk and dairy products consumption. Milk from different species varies in physicochemical and nutritional properties. We previously showed that dietary supplements with different milks in rats trigger significant differences in metabolic and inflammatory states, modulating mitochondrial functions in metabolically active organs such as the liver and skeletal muscle. Here, we have deepened the effects of isoenergetic supplementation of milk (82 kJ) from cow (CM), donkey (DM) or human (HM) on hepatic metabolism to understand the interlink between mitochondrial metabolic flexibility, lipid storage and redox state and to highlight the possible role of two hepatocyte aquaporins (AQPs) of metabolic relevance, AQP8 and AQP9, in this crosstalk. Compared with rats with no milk supplementation, DM- and HM-fed rats had reduced hepatic lipid content with enhanced mitochondrial function and decreased oxidative stress. A marked reduction in AQP8, a hydrogen peroxide channel, was seen in the liver mitochondria of DM-fed rats compared with HM-fed, CM-fed and control animals. DM-fed or HM-fed rats also showed reduced hepatic inflammatory markers and less collagen and Kupffer cells. CM-fed rats showed higher hepatic fat content and increased AQP9 and glycerol permeability. A role of liver AQP8 and AQP9 is suggested in the different metabolic profiles resulting from milk supplementation.
Collapse
Affiliation(s)
- Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
| | - Patrizia Gena
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (P.G.); (S.G.)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy;
| | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
| | - Sabino Garra
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (P.G.); (S.G.)
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
| | - Silvia Di Chio
- Azienda Sociosanitaria Territoriale Fatebenefratelli (ASST FBF) SACCO, University of Milan, 20157 Milan, Italy;
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (P.G.); (S.G.)
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
11
|
Li Q, Wang O, Ji B, Zhao L, Zhao L. Alcohol, White Adipose Tissue, and Brown Adipose Tissue: Mechanistic Links to Lipogenesis and Lipolysis. Nutrients 2023; 15:2953. [PMID: 37447280 PMCID: PMC10346806 DOI: 10.3390/nu15132953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
According to data from the World Health Organization, there were about 3 million deaths caused by alcohol consumption worldwide in 2016, of which about 50% were related to liver disease. Alcohol consumption interfering with the normal function of adipocytes has an important impact on the pathogenesis of alcoholic liver disease. There has been increasing recognition of the crucial role of adipose tissue in regulating systemic metabolism, far beyond that of an inert energy storage organ in recent years. The endocrine function of adipose tissue is widely recognized, and the significance of the proteins it produces and releases is still being investigated. Alcohol consumption may affect white adipose tissue (WAT) and brown adipose tissue (BAT), which interact with surrounding tissues such as the liver and intestines. This review briefly introduces the basic concept and classification of adipose tissue and summarizes the mechanism of alcohol affecting lipolysis and lipogenesis in WAT and BAT. The adipose tissue-liver axis is crucial in maintaining lipid homeostasis within the body. Therefore, this review also demonstrates the effects of alcohol consumption on the adipose tissue-liver axis to explore the role of alcohol consumption in the crosstalk between adipose tissue and the liver.
Collapse
Affiliation(s)
- Qing Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China;
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Lei Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
12
|
Malloy CR, Sherry AD, Alger JR, Jin ES. Recent progress in analysis of intermediary metabolism by ex vivo 13 C NMR. NMR IN BIOMEDICINE 2023; 36:e4817. [PMID: 35997012 DOI: 10.1002/nbm.4817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Advanced imaging technologies, large-scale metabolomics, and the measurement of gene transcripts or enzyme expression all enable investigations of intermediary metabolism in human patients. Complementary information about fluxes in individual metabolic pathways may be obtained by ex vivo 13 C NMR of blood or tissue biopsies. Simple molecules such as 13 C-labeled glucose are readily administered to patients prior to surgical biopsies, and 13 C-labeled glycerol is easily administered orally to outpatients. Here, we review recent progress in practical applications of 13 C NMR to study cancer biology, the response to oxidative stress, gluconeogenesis, triglyceride synthesis in patients, as well as new insights into compartmentation of metabolism in the cytosol. The technical aspects of obtaining the sample, preparing material for analysis, and acquiring the spectra are relatively simple. This approach enables convenient, valuable, and quantitative insights into intermediary metabolism in patients.
Collapse
Affiliation(s)
- Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Veterans Affairs North Texas Healthcare System, Dallas, Texas, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas, USA
| | - Jeffry R Alger
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology, Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
13
|
Calamita G, Delporte C. Aquaporins in Glandular Secretion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:225-249. [PMID: 36717498 DOI: 10.1007/978-981-19-7415-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Exocrine and endocrine glands deliver their secretory product, respectively, at the surface of the target organs or within the bloodstream. The release of their products has been shown to rely on secretory mechanisms often involving aquaporins (AQPs). This chapter will provide insight into the role of AQPs in secretory glands located within the gastrointestinal tract, including salivary glands, gastric glands, duodenal Brunner's glands, liver, gallbladder, intestinal goblets cells, and pancreas, as well and in other parts of the body, including airway submucosal glands, lacrimal glands, mammary glands, and eccrine sweat glands. The involvement of AQPs in both physiological and pathophysiological conditions will also be highlighted.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
14
|
da Silva IV, Soveral G. Aquaporins in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:289-302. [PMID: 36717502 DOI: 10.1007/978-981-19-7415-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Obesity is one of the most important metabolic disorders of this century and is associated with a cluster of the most dangerous cardiovascular disease risk factors, such as insulin resistance and diabetes, dyslipidemia, and hypertension, collectively named Metabolic Syndrome. The role of aquaporins (AQP) in glycerol metabolism facilitating glycerol release from the adipose tissue and distribution to various tissues and organs unveils these membrane channels as important players in lipid balance and energy homeostasis and points to their involvement in a variety of pathophysiological mechanisms including insulin resistance, obesity, and diabetes. This review summarizes the physiologic role of aquaglyceroporins in glycerol metabolism and lipid homeostasis, describing their specific tissue distribution, involvement in glycerol balance, and implication in obesity and fat-related metabolic complications. The development of specify pharmacologic modulators able to regulate aquaglyceroporins expression and function, in particular AQP7 in adipose tissue, might constitute a novel approach for controlling obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
- Department Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
15
|
Li X, Yang B. Non-Transport Functions of Aquaporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:65-80. [PMID: 36717487 DOI: 10.1007/978-981-19-7415-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although it has been more than 20 years since the first aquaporin was discovered, the specific functions of many aquaporins are still under investigation, because various mice lacking aquaporins have no significant phenotypes. And in many studies, the function of aquaporin is not directly related to its transport function. Therefore, this chapter will focus on some unexpected functions of aquaporins, such the decreased tumor angiogenesis in AQP1 knockout mice, and AQP1 promotes cell migration, possibly by accelerating the water transport in lamellipodia of migrating cells. AQP transports glycerol, and water regulates glycerol content in epidermis and fat, thereby regulating skin hydration/biosynthesis and fat metabolism. AQPs may also be involved in neural signal transduction, cell volume regulation, and organelle physiology. AQP1, AQP3, and AQP5 are also involved in cell proliferation. In addition, AQPs have also been reported to play roles in inflammation in various tissues and organs. The functions of these AQPs may not depend on the permeability of small molecules such as water and glycerol, suggesting AQPs may play more roles in different biological processes in the body.
Collapse
Affiliation(s)
- Xiaowei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
16
|
Florio M, Engfors A, Gena P, Larsson J, Massaro A, Timpka S, Reimer MK, Kjellbom P, Beitz E, Johanson U, Rützler M, Calamita G. Characterization of the Aquaporin-9 Inhibitor RG100204 In Vitro and in db/db Mice. Cells 2022; 11:3118. [PMID: 36231080 PMCID: PMC9562188 DOI: 10.3390/cells11193118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Aquaporin-9 (AQP9) is a facilitator of glycerol and other small neutral solute transmembrane diffusion. Identification of specific inhibitors for aquaporin family proteins has been difficult, due to high sequence similarity between the 13 human isoforms, and due to the limited channel surface areas that permit inhibitor binding. The few AQP9 inhibitor molecules described to date were not suitable for in vivo experiments. We now describe the characterization of a new small molecule AQP9 inhibitor, RG100204 in cell-based calcein-quenching assays, and by stopped-flow light-scattering recordings of AQP9 permeability in proteoliposomes. Moreover, we investigated the effects of RG100204 on glycerol metabolism in mice. In cell-based assays, RG100204 blocked AQP9 water permeability and glycerol permeability with similar, high potency (~5 × 10-8 M). AQP9 channel blocking by RG100204 was confirmed in proteoliposomes. After oral gavage of db/db mice with RG100204, a dose-dependent elevation of plasma glycerol was observed. A blood glucose-lowering effect was not statistically significant. These experiments establish RG100204 as a direct blocker of the AQP9 channel, and suggest its use as an experimental tool for in vivo experiments on AQP9 function.
Collapse
Affiliation(s)
- Marilina Florio
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Angelica Engfors
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Patrizia Gena
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | | | - Alessandro Massaro
- Department of Management, Finance and Technology, Libera Università Mediterranea (LUM) “Giuseppe Degennaro” LUM University, 70010 Casamassima, Italy
- LUM Enterprise Srl, S.S. 100-Km18, Parco il Baricentro, 70010 Bari, Italy
| | - Stella Timpka
- Red Glead Discovery AB, Medicon Village, 22381 Lund, Sweden
| | | | - Per Kjellbom
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Urban Johanson
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Michael Rützler
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22100 Lund, Sweden
- Apoglyx AB, Medicon Village, 22381 Lund, Sweden
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
17
|
Immunolocalization of Metabolite Transporter Proteins in a Model Cnidarian-Dinoflagellate Symbiosis. Appl Environ Microbiol 2022; 88:e0041222. [PMID: 35678605 DOI: 10.1128/aem.00412-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bidirectional nutrient flow between partners is integral to the cnidarian-dinoflagellate endosymbiosis. However, our current knowledge of the transporter proteins that regulate nutrient and metabolite trafficking is nascent. Four transmembrane transporters that likely play an important role in interpartner nitrogen and carbon exchange were investigated with immunocytochemistry in the model sea anemone Exaiptasia diaphana ("Aiptasia"; strain NZ1): ammonium transporter 1 (AMT1), V-type proton ATPase (VHA), facilitated glucose transporter member 8 (GLUT8), and aquaporin-3 (AQP3). Anemones lacking symbionts were compared with those in symbiosis with either their typical, homologous dinoflagellate symbiont, Breviolum minutum, or the heterologous species, Durusdinium trenchii and Symbiodinium microadriaticum. AMT1 and VHA were only detected in symbiotic Aiptasia, irrespective of symbiont type. However, GLUT8 and AQP3 were detected in both symbiotic and aposymbiotic states. All transporters were localized to both the epidermis and gastrodermis, though localization patterns in host tissues were heavily influenced by symbiont identity, with S. microadriaticum-colonized anemones showing the most distinct patterns. These patterns suggested disruption of fixed carbon and inorganic nitrogen fluxes when in symbiosis with heterologous versus homologous symbionts. This study enhances our understanding of nutrient transport and host-symbiont integration, while providing a platform for further investigation of nutrient transporters and the host-symbiont interface in the cnidarian-dinoflagellate symbiosis. IMPORTANCE Coral reefs are in serious decline, in particular due to the thermally induced dysfunction of the cnidarian-dinoflagellate symbiosis that underlies their success. Yet our ability to react to this crisis is hindered by limited knowledge of how this symbiosis functions. Indeed, we still have much to learn about the cellular integration that determines whether a particular host-symbiont combination can persist, and hence whether corals might be able to adapt by acquiring new, more thermally resistant symbionts. Here, we employed immunocytochemistry to localize and quantify key nutrient transporters in tissues of the sea anemone Aiptasia, a globally adopted model system for this symbiosis, and compared the expression of these transporters when the host is colonized by native versus nonnative symbionts. We showed a clear link between transporter expression and symbiont identity, elucidating the cellular events that dictate symbiosis success, and we provide a methodological platform for further examination of cellular integration in this ecologically important symbiosis.
Collapse
|
18
|
da Silva IV, Garra S, Calamita G, Soveral G. The Multifaceted Role of Aquaporin-9 in Health and Its Potential as a Clinical Biomarker. Biomolecules 2022; 12:biom12070897. [PMID: 35883453 PMCID: PMC9313442 DOI: 10.3390/biom12070897] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
Aquaporins (AQPs) are transmembrane channels essential for water, energy, and redox homeostasis, with proven involvement in a variety of pathophysiological conditions such as edema, glaucoma, nephrogenic diabetes insipidus, oxidative stress, sepsis, cancer, and metabolic dysfunctions. The 13 AQPs present in humans are widely distributed in all body districts, drawing cell lineage-specific expression patterns closely related to cell native functions. Compelling evidence indicates that AQPs are proteins with great potential as biomarkers and targets for therapeutic intervention. Aquaporin-9 (AQP9) is the most expressed in the liver, with implications in general metabolic and redox balance due to its aquaglyceroporin and peroxiporin activities, facilitating glycerol and hydrogen peroxide (H2O2) diffusion across membranes. AQP9 is also expressed in other tissues, and their altered expression is described in several human diseases, such as liver injury, inflammation, cancer, infertility, and immune disorders. The present review compiles the current knowledge of AQP9 implication in diseases and highlights its potential as a new biomarker for diagnosis and prognosis in clinical medicine.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Sabino Garra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
- Correspondence: (G.C.); (G.S.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Correspondence: (G.C.); (G.S.)
| |
Collapse
|
19
|
Bystrup M, Login FH, Edamana S, Borgquist S, Tramm T, Kwon TH, Nejsum LN. Aquaporin-5 in breast cancer. APMIS 2022; 130:253-260. [PMID: 35114014 PMCID: PMC9314690 DOI: 10.1111/apm.13212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 01/14/2023]
Abstract
The water channel aquaporin‐5 (AQP5) is essential in transepithelial water transport in secretory glands. AQP5 is ectopically overexpressed in breast cancer, where expression is associated with lymph node metastasis and poor prognosis. Besides the role in water transport, AQP5 has been found to play a role in cancer metastasis, migration, and proliferation. AQP5 has also been shown to be involved in the dysregulation of epithelial cell–cell adhesion; frequently observed in cancers. Insight into the underlying molecular mechanisms of how AQP5 contributes to cancer development and progression is essential for potentially implementing AQP5 as a prognostic biomarker and to develop targeted intervention strategies for the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Malte Bystrup
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Signe Borgquist
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Pathology, Aarhus University Hospital, Aarhus N, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
20
|
Chazarin B, Benhaim-Delarbre M, Brun C, Anzeraey A, Bertile F, Terrien J. Molecular Liver Fingerprint Reflects the Seasonal Physiology of the Grey Mouse Lemur ( Microcebus murinus) during Winter. Int J Mol Sci 2022; 23:4254. [PMID: 35457071 PMCID: PMC9028843 DOI: 10.3390/ijms23084254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
Grey mouse lemurs (Microcebus murinus) are primates that respond to environmental energetic constraints through strong physiological seasonality. They notably fatten during early winter (EW), and mobilize their lipid reserves while developing glucose intolerance during late winter (LW), when food availability is low. To decipher how the hepatic mechanisms may support such metabolic flexibility, we analyzed the liver proteome of adult captive male mouse lemurs, whose seasonal regulations are comparable to their wild counterparts. We highlight profound hepatic changes that reflect fat accretion in EW at the whole-body level, without triggering an ectopic storage of fat in the liver, however. Moreover, molecular regulations are consistent with the decrease in liver glucose utilization in LW, and therefore with reduced tolerance to glucose. However, no major regulation was seen in insulin signaling/resistance pathways. Fat mobilization in LW appeared possibly linked to the reactivation of the reproductive system while enhanced liver detoxification may reflect an anticipation to return to summer levels of food intake. Overall, these results show that the physiology of mouse lemurs during winter relies on solid molecular foundations in liver processes to adapt fuel partitioning while opposing the development of a pathological state despite large lipid fluxes.
Collapse
Affiliation(s)
- Blandine Chazarin
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS, UMR 7178, 25 Rue Becquerel, 67087 Strasbourg, France; (B.C.); (M.B.-D.); (C.B.)
- Infrastructure Nationale de Protéomique ProFI—FR 2048, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Margaux Benhaim-Delarbre
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS, UMR 7178, 25 Rue Becquerel, 67087 Strasbourg, France; (B.C.); (M.B.-D.); (C.B.)
- Infrastructure Nationale de Protéomique ProFI—FR 2048, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Charlotte Brun
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS, UMR 7178, 25 Rue Becquerel, 67087 Strasbourg, France; (B.C.); (M.B.-D.); (C.B.)
- Infrastructure Nationale de Protéomique ProFI—FR 2048, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Aude Anzeraey
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), UMR 7179, CNRS, Muséum National d’Histoire Naturelle, 1 Avenue du Petit Château, 91800 Brunoy, France;
| | - Fabrice Bertile
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS, UMR 7178, 25 Rue Becquerel, 67087 Strasbourg, France; (B.C.); (M.B.-D.); (C.B.)
- Infrastructure Nationale de Protéomique ProFI—FR 2048, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Jérémy Terrien
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), UMR 7179, CNRS, Muséum National d’Histoire Naturelle, 1 Avenue du Petit Château, 91800 Brunoy, France;
| |
Collapse
|
21
|
Plaza A, Merino B, Ruiz-Gayo M. Cholecystokinin promotes functional expression of the aquaglycerol channel aquaporin 7 in adipocytes. Br J Pharmacol 2022; 179:4092-4106. [PMID: 35366004 DOI: 10.1111/bph.15848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Cholecystokinin (CCK) promotes triglyceride storage and adiponectin production in white adipose tissue (WAT), suggesting that CCK modulates WAT homeostasis. Our goal was to investigate the role of CCK in regulating the expression and function of the aquaglycerol channel aquaporin 7 (AQP7), a protein that is pivotal for maintaining adipocyte homeostasis and preserving insulin responsiveness. EXPERIMENTAL APPROACH The effect of the bioactive fragment of CCK, CCK-8, in regulating adipose AQP7 expression and glycerol efflux was assessed in rats as well as in pre-adipocytes. Moreover, the involvement of insulin receptors in the effects of CCK-8 was characterized in pre-adipocytes lacking insulin receptors. KEY RESULTS CCK-8 induced AQP7 gene expression in rat WAT, concomitantly increasing plasma glycerol concentration. In isolated pre-adipocytes, CCK-8 also enhanced both AQP7 expression and glycerol leakage. The effect of CCK-8 was independent of the lipolysis rate, as CCK-8 failed to promote fatty acid release by adipocytes. In addition, CCK-8 did not enhance hormone sensitive lipase phosphorylation, which is the rate-limiting step of lipolysis. Moreover, the effects of CCK-8 were dependent on the activation of protein kinase B and PPARγ. Silencing insulin receptor (IR) expression inhibited CCK-8-induced Aqp7 expression in pre-adipocytes. Furthermore, insulin enhanceded the effect of CCK-8. CONCLUSIONS AND IMPLICATIONS CCK regulates AQP7 expression and function, and this effect is dependent on insulin. Accordingly, CCK receptor agonists could be suitable for preserving and improving insulin responsiveness in WAT.
Collapse
Affiliation(s)
- Adrián Plaza
- Departamento de Ciencias Farmacéuticas y de la Salud. Facultad de Farmacia. Universidad CEU - San Pablo. CEU Universities, Madrid, Spain.,Laboratory of Bioactive Products and Metabolic Syndrome, IMDEA Food Institute, Madrid, Spain
| | - Beatriz Merino
- Departamento de Ciencias Farmacéuticas y de la Salud. Facultad de Farmacia. Universidad CEU - San Pablo. CEU Universities, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud. Facultad de Farmacia. Universidad CEU - San Pablo. CEU Universities, Madrid, Spain
| |
Collapse
|
22
|
Zhang B, Lv D, Chen Y, Nie W, Jiao Y, Zhang J, Zhou X, Wu X, Chen S, Ma T. Aquaporin-9 facilitates liver regeneration following hepatectomy. Redox Biol 2022; 50:102246. [PMID: 35086002 PMCID: PMC8802049 DOI: 10.1016/j.redox.2022.102246] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Aquaporin-9 (AQP9) is an aquaglyceroporin strongly expressed in the basolateral membrane of hepatocytes facing the sinusoids. AQP9 is permeable to hydrogen peroxide (H2O2) and glycerol as well as to water. Here, we report impaired liver regeneration in AQP9−/− mice which involves altered steady-state H2O2 concentration and glucose metabolism in hepatocytes. AQP9−/− mice showed remarkably delayed liver regeneration and increased mortality following 70% or 90% partial hepatectomy. Compared to AQP9+/+ littermates, AQP9−/− mice showed significantly greater hepatic H2O2 concentration and more severe liver injury. Fluorescence measurements indicated impaired H2O2 transport across plasma membrane of primary cultured hepatocytes from AQP9−/− mice, supporting the hypothesis that AQP9 deficiency results in H2O2 accumulation and oxidative injury in regenerating liver because of reduced export of intracellular H2O2 from hepatocytes. The H2O2 overload in AQP9−/− hepatocytes reduced PI3K-Akt and insulin signaling, inhibited autophagy and promoted apoptosis, resulting in impaired proliferation and increased cell death. In addition, hepatocytes from AQP9−/− mice had low liver glycerol and high blood glycerol levels, suggesting decreased glycerol uptake and gluconeogenesis in AQP9−/− hepatocytes. Adeno-associated virus (AAV)-mediated expression of hepatic expression of aquaglyceroporins AQP9 and AQP3 in AQP9−/− mice, but not water-selective channel AQP4, fully rescued the impaired liver regeneration phenotype as well as the oxidative injury and abnormal glucose metabolism. Our data revealed a pivotal role of AQP9 in liver regeneration by regulating hepatocyte H2O2 homeostasis and glucose metabolism, suggesting AQP9 as a novel target to enhance liver regeneration following injury, surgical resection or transplantation. AQP9 mediates H2O2 and glycerol transport across hepatocytes plasma membrane AQP9−/− mice exhibit retained liver regeneration and higher mortality after PH Elevated H2O2 and reduced glucose levels appear in AQP9−/− regenerating liver Replacement of aquaglyceroporin rescued impaired AQP9−/− mouse liver regeneration AQP9 may become a novel target to improve liver regeneration
Collapse
|
23
|
Markou A, Unger L, Abir-Awan M, Saadallah A, Halsey A, Balklava Z, Conner M, Törnroth-Horsefield S, Greenhill SD, Conner A, Bill RM, Salman MM, Kitchen P. Molecular mechanisms governing aquaporin relocalisation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183853. [PMID: 34973181 PMCID: PMC8825993 DOI: 10.1016/j.bbamem.2021.183853] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
The aquaporins (AQPs) form a family of integral membrane proteins that facilitate the movement of water across biological membrane by osmosis, as well as facilitating the diffusion of small polar solutes. AQPs have been recognised as drug targets for a variety of disorders associated with disrupted water or solute transport, including brain oedema following stroke or trauma, epilepsy, cancer cell migration and tumour angiogenesis, metabolic disorders, and inflammation. Despite this, drug discovery for AQPs has made little progress due to a lack of reproducible high-throughput assays and difficulties with the druggability of AQP proteins. However, recent studies have suggested that targetting the trafficking of AQP proteins to the plasma membrane is a viable alternative drug target to direct inhibition of the water-conducting pore. Here we review the literature on the trafficking of mammalian AQPs with a view to highlighting potential new drug targets for a variety of conditions associated with disrupted water and solute homeostasis.
Collapse
Affiliation(s)
- Andrea Markou
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Mohammed Abir-Awan
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ahmed Saadallah
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Andrea Halsey
- MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Zita Balklava
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Matthew Conner
- School of Sciences, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | | | - Stuart D Greenhill
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Alex Conner
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Roslyn M Bill
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Mootaz M Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
24
|
Pimpão C, Wragg D, da Silva IV, Casini A, Soveral G. Aquaglyceroporin Modulators as Emergent Pharmacological Molecules for Human Diseases. Front Mol Biosci 2022; 9:845237. [PMID: 35187089 PMCID: PMC8850838 DOI: 10.3389/fmolb.2022.845237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 12/26/2022] Open
Abstract
Aquaglyceroporins, a sub-class of aquaporins that facilitate the diffusion of water, glycerol and other small uncharged solutes across cell membranes, have been recognized for their important role in human physiology and their involvement in multiple disorders, mostly related to disturbed energy homeostasis. Aquaglyceroporins dysfunction in a variety of pathological conditions highlighted their targeting as novel therapeutic strategies, boosting the search for potent and selective modulators with pharmacological properties. The identification of selective inhibitors with potential clinical applications has been challenging, relying on accurate assays to measure membrane glycerol permeability and validate effective functional blockers. Additionally, biologicals such as hormones and natural compounds have been revealed as alternative strategies to modulate aquaglyceroporins via their gene and protein expression. This review summarizes the current knowledge of aquaglyceroporins’ involvement in several pathologies and the experimental approaches used to evaluate glycerol permeability and aquaglyceroporin modulation. In addition, we provide an update on aquaglyceroporins modulators reported to impact disease, unveiling aquaglyceroporin pharmacological targeting as a promising approach for innovative therapeutics.
Collapse
Affiliation(s)
- Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Darren Wragg
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, Munich, Germany
- *Correspondence: Angela Casini, ; Graça Soveral,
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Angela Casini, ; Graça Soveral,
| |
Collapse
|
25
|
Dutta A, Das M. Deciphering the Role of Aquaporins in Metabolic Diseases: A Mini Review. Am J Med Sci 2022; 364:148-162. [DOI: 10.1016/j.amjms.2021.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 06/16/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022]
|
26
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
27
|
Lechasseur A, Mouchiroud M, Tremblay F, Bouffard G, Milad N, Pineault M, Maranda‐Robitaille M, Routhier J, Beaulieu M, Aubin S, Laplante M, Morissette MC. Glycerol contained in vaping liquids affects the liver and aspects of energy homeostasis in a sex-dependent manner. Physiol Rep 2022; 10:e15146. [PMID: 35075822 PMCID: PMC8787618 DOI: 10.14814/phy2.15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022] Open
Abstract
Vaping is increasingly popular among the young and adult population. Vaping liquids contained in electronic cigarettes (e-cigarettes) are mainly composed of propylene glycol and glycerol, to which nicotine and flavors are added. Among several biological processes, glycerol is a metabolic substrate used for lipid synthesis in fed state as well as glucose synthesis in fasting state. We aimed to investigate the effects of glycerol e-cigarette aerosol exposure on the aspects of glycerol and glucose homeostasis. Adult and young male and female mice were exposed to e-cigarette aerosols with glycerol as vaping liquid using an established whole-body exposure system. Mice were exposed acutely (single 2-h exposure) or chronically (2 h/day, 5 days/week for 9 weeks). Circulating glycerol and glucose levels were assessed and glycerol as well as glucose tolerance tests were performed. The liver was also investigated to assess changes in the histology, lipid content, inflammation, and stress markers. Lung functions were also assessed as well as hepatic mRNA expression of genes controlling the circadian rhythm. Acute exposure to glycerol aerosols generated by an e-cigarette increased circulating glycerol levels in female mice. Increased hepatic triglyceride and phosphatidylcholine concentrations were observed in female mice with no increase in circulating alanine aminotransferase or evidence of inflammation, fibrosis, or endoplasmic reticulum stress. Chronic exposure to glycerol e-cigarette aerosols mildly impacted glucose tolerance test in young female and male mice. Fasting glycerol, glucose, and insulin remained unchanged. Increased pulmonary resistance was observed in young male mice. Taken together, this study shows that the glycerol contained in vaping liquids can affect the liver as well as the aspects of glucose and glycerol homeostasis. Additional work is required to translate these observations to humans and determine the biological and potential pathological impacts of these findings.
Collapse
Affiliation(s)
- Ariane Lechasseur
- Quebec Heart and Lung InstituteUniversité LavalQuebecQuebecCanada
- Faculty of MedicineUniversité LavalQuebecQuebecCanada
| | - Mathilde Mouchiroud
- Quebec Heart and Lung InstituteUniversité LavalQuebecQuebecCanada
- Faculty of MedicineUniversité LavalQuebecQuebecCanada
| | - Félix Tremblay
- Quebec Heart and Lung InstituteUniversité LavalQuebecQuebecCanada
- Faculty of MedicineUniversité LavalQuebecQuebecCanada
| | - Gabrielle Bouffard
- Quebec Heart and Lung InstituteUniversité LavalQuebecQuebecCanada
- Faculty of MedicineUniversité LavalQuebecQuebecCanada
| | - Nadia Milad
- Quebec Heart and Lung InstituteUniversité LavalQuebecQuebecCanada
- Faculty of MedicineUniversité LavalQuebecQuebecCanada
| | - Marie Pineault
- Quebec Heart and Lung InstituteUniversité LavalQuebecQuebecCanada
- Faculty of MedicineUniversité LavalQuebecQuebecCanada
| | - Michaël Maranda‐Robitaille
- Quebec Heart and Lung InstituteUniversité LavalQuebecQuebecCanada
- Faculty of MedicineUniversité LavalQuebecQuebecCanada
| | - Joanie Routhier
- Quebec Heart and Lung InstituteUniversité LavalQuebecQuebecCanada
| | | | - Sophie Aubin
- Quebec Heart and Lung InstituteUniversité LavalQuebecQuebecCanada
| | - Mathieu Laplante
- Quebec Heart and Lung InstituteUniversité LavalQuebecQuebecCanada
- Department of MedicineUniversité LavalQuebecQuebecCanada
| | - Mathieu C. Morissette
- Quebec Heart and Lung InstituteUniversité LavalQuebecQuebecCanada
- Department of MedicineUniversité LavalQuebecQuebecCanada
| |
Collapse
|
28
|
Aquaporins 8 and 9 as Possible Markers for Adult Murine Lacrimal Gland Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6888494. [PMID: 34540996 PMCID: PMC8445729 DOI: 10.1155/2021/6888494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022]
Abstract
Aquaporins (AQPs) are proteins that selectively transport water across the cell membrane. Although AQPs play important roles in secretion in the lacrimal gland, the expression and localization of AQPs have not been clarified yet. In the current study, we investigated the expression pattern of AQP family members in the murine lacrimal gland during development. Lacrimal gland tissues were harvested from E13.5 and E17.5 murine embryos and from mice 8 weeks of age (adults). Corneal and conjunctival tissues from the latter served as controls. Total RNA was isolated and analyzed for the expression of AQP family members using qPCR. The localization of AQPs in the adult lacrimal gland in adult murine lacrimal glands was also analyzed. Expression of Aqp8 and Aqp9 mRNAs was detected in the adult lacrimal gland but not in the cornea, conjunctiva, or fetal lacrimal gland. AQP8 and AQP9 and α-SMA partially colocalized around the basal regions of the acinar unit. The levels of Aqp3 mRNAs and protein were much lower in the adult lacrimal gland but were readily detected in the adult cornea and conjunctiva. Our study suggests that AQP8 and AQP9 may serve as markers for adult murine lacrimal gland, ductal, and myoepithelial cells.
Collapse
|
29
|
Song WY, Wang Y, Hou XM, Tian CC, Wu L, Ma XS, Jin HX, Yao GD, Sun YP. Different expression and localization of aquaporin 7 and aquaporin 9 in granulosa cells, oocytes, and embryos of patients with polycystic ovary syndrome and the negatively correlated relationship with insulin regulation. Fertil Steril 2021; 115:463-473. [PMID: 33579525 DOI: 10.1016/j.fertnstert.2020.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To investigate the expression of aquaporin 7 (AQP7) and aquaporin 9 (AQP9) in the granulosa cells of patients with polycystic ovary syndrome (PCOS) and healthy women and detect their localization in oocytes at the germinal vesicle (GV), metaphase I (MI), MII, embryo, and blastocyst stages and the in vitro response to insulin stimulation. DESIGN Randomized, assessor-blinded study. SETTING Reproductive medical center. PATIENT(S) A total of 40 women (aged 20-38 years) comprising 29 cases of primary infertility and 11 cases of secondary infertility, of whom 17 had an initial diagnosis of PCOS and three received a PCOS diagnosis after an infertility examination. INTERVENTION(S) Controlling different concentrations of insulin and different treatment times in cultures of normal human granulosa cells in vitro. MAIN OUTCOME MEASURE(S) Expression of AQP7 and AQP9 genes and proteins in granulosa cells detected by real-time quantitative polymerase chain reaction, and localization in oocytes at the GV, MI, MII, embryo, and blastocyst stages by Western blot, immunohistochemical, and immunofluorescence assays, and concentrations of insulin in follicular fluid by enzyme-linked immunosorbent assay. RESULT(S) The expression levels of the AQP7 mRNA and protein in the granulosa cells of patients with PCOS were higher than found in healthy controls. We found AQP7 protein expressed in human oocytes at GV, MI, MII, embryo, and blastocyst stages; it was mainly located in the nucleoplasm. In the PCOS group, the expression level of AQP9 mRNA and protein in granulosa cells was lower, and AQP9 protein was expressed in oocytes at the GV, MI, MII, embryo, and blastocyst stages; it was localized on the nuclear membrane. Compared with healthy women, the insulin expression in patients with PCOS was higher. In cultures of normal human granulosa cells in vitro, the expression of AQP7 and AQP9 mRNA and protein decreased with the increase in insulin concentration; expression statistically significantly decreased when the insulin concentration was 100 nmol/L, and after 6 to 24 hours of exposure the lowest expression levels were found at 12 hours. CONCLUSION(S) The different localization and expression of AQP7 and AQP9 between the two groups suggests that they might be involved in oocyte maturation and embryonic development through different regulatory pathways. The expression levels of AQP7 and AQP9 were negatively correlated with insulin regulation, suggesting that insulin might affect the maturation of PCOS follicles by changing AQP7 and AQP9 expression.
Collapse
Affiliation(s)
- Wen-Yan Song
- Center for Reproductive Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuan Wang
- Center for Reproductive Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiao-Man Hou
- Department of Reproductive Medicine, Nanyang Central Hospital, Nanyang, People's Republic of China
| | - Cheng-Cheng Tian
- Department of Reproductive Medicine, Nanyang Central Hospital, Nanyang, People's Republic of China
| | - Liang Wu
- Center for Reproductive Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xue-Shan Ma
- Center for Reproductive Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hai-Xia Jin
- Center for Reproductive Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Gui-Dong Yao
- Center for Reproductive Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
30
|
Galli M, Hameed A, Żbikowski A, Zabielski P. Aquaporins in insulin resistance and diabetes: More than channels! Redox Biol 2021; 44:102027. [PMID: 34090243 PMCID: PMC8182305 DOI: 10.1016/j.redox.2021.102027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Aquaporins (AQPs) are part of the family of the integral membrane proteins. Their function is dedicated to the transport of water, glycerol, ammonia, urea, H2O2, and other small molecules across the biological membranes. Although for many years they were scarcely considered, AQPs have a relevant role in the development of many diseases. Recent discoveries suggest, that AQPs may play an important role in the process of fat accumulation and regulation of oxidative stress, two crucial aspects of insulin resistance and type-2 diabetes (T2D). Insulin resistance (IR) and T2D are multi-faceted systemic diseases with multiple connections to obesity and other comorbidities such as hypertension, dyslipidemia and metabolic syndrome. Both IR and T2D transcends different tissues and organs, creating the maze of mutual relationships between adipose fat depots, skeletal muscle, liver and other insulin-sensitive organs. AQPs with their heterogenous properties, distinctive tissue distribution and documented involvement in both the lipid metabolism and regulation of the oxidative stress appear to be feasible candidates in the search for the explanation to this third-millennium plague. A lot of research has been assigned to adipose tissue AQP7 and liver tissue AQP9, clarifying their relationship and coordinated work in the induction of hepatic insulin resistance. Novel research points also to other aquaporins, such as AQP11 which may be associated with the induction of insulin resistance and T2D through its involvement in hydrogen peroxide transport. In this review we collected recent discoveries in the field of AQP's involvement in the insulin resistance and T2D. Novel paths which connect AQPs with metabolic disorders can give new fuel to the research on obesity, insulin resistance and T2D - one of the most worrying problems of the modern society.
Collapse
Affiliation(s)
- Mauro Galli
- Department of Medical Biology, Medical University of Bialystok, 15-089, Bialystok, Poland.
| | - Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, 15-089, Bialystok, Poland.
| | - Arkadiusz Żbikowski
- Department of Medical Biology, Medical University of Bialystok, 15-089, Bialystok, Poland.
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 15-089, Bialystok, Poland.
| |
Collapse
|
31
|
Tardelli M, Stulnig TM. Aquaporin regulation in metabolic organs. VITAMINS AND HORMONES 2021; 112:71-93. [PMID: 32061350 DOI: 10.1016/bs.vh.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aquaporins (AQPs) are a family of 13 small trans-membrane proteins, which facilitate shuttling of glycerol, water and urea. The peculiar role of AQPs in glycerol transport makes them attractive targets in metabolic organs since glycerol represents the backbone of triglyceride synthesis. Importantly, AQPs are known to be regulated by various nuclear receptors which in turn govern lipid and glucose metabolism as well as inflammatory cascades. Here, we review the role of AQPs regulation in metabolic organs exploring their physiological impact in health and disease.
Collapse
Affiliation(s)
- Matteo Tardelli
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Cornell Department of Medicine, Weill Cornell Medical College, New York, NY, United States; Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas M Stulnig
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Calamita G, Delporte C. Involvement of aquaglyceroporins in energy metabolism in health and disease. Biochimie 2021; 188:20-34. [PMID: 33689852 DOI: 10.1016/j.biochi.2021.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 11/27/2022]
Abstract
Aquaglyceroporins are a group of the aquaporin (AQP) family of transmembrane water channels. While AQPs facilitate the passage of water, small solutes, and gases across biological membranes, aquaglyceroporins allow passage of water, glycerol, urea and some other solutes. Thanks to their glycerol permeability, aquaglyceroporins are involved in energy homeostasis. This review provides an overview of what is currently known concerning the functional implication and control of aquaglyceroporins in tissues involved in energy metabolism, i.e. liver, adipose tissue and endocrine pancreas. The expression, role and (dys)regulation of aquaglyceroporins in disorders affecting energy metabolism, and the potential relevance of aquaglyceroporins as drug targets to treat the alterations of the energy balance is also addressed.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
33
|
Associations between Aquaglyceroporin Gene Polymorphisms and Risk of Stroke among Patients with Hypertension. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9358290. [PMID: 32309443 PMCID: PMC7136773 DOI: 10.1155/2020/9358290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 02/06/2020] [Accepted: 03/19/2020] [Indexed: 11/17/2022]
Abstract
Background Dysregulations of AQP7 and AQP9 were found to be related to lipid metabolism abnormality, which had been proven to be one of the mechanisms of stroke. However, limited epidemiological studies explore the associations between AQP7 and AQP9 and the risk of stroke among patients with hypertension in China. Aims We aimed to investigate the associations between genetic variants in AQP7 and AQP9 and the risk of stroke among patients with hypertension, as well as to explore gene-gene and gene-environment interactions. Methods Baseline blood samples were drawn from 211 cases with stroke and 633 matched controls. Genomic DNA was extracted by a commercially available kit. Genotyping of 5 single nucleotide polymorphisms (SNPs) in AQP7 (rs2989924, rs3758269, and rs2542743) and AQP9 (rs57139208, rs16939881) was performed by the polymerase chain reaction assay with TaqMan probes. Results Participants with the rs2989924 GG genotype were found to be with a 1.74-fold increased risk of stroke compared to those with the AA+AG genotype, and this association remained significant after adjustment for potential confounders (odds ratio (OR): 1.74, 95% confidence interval (CI): 1.23-2.46). The SNP rs3758269 CC+TT genotype was found to be with a 33% decreased risk of stroke after multivariate adjustment (OR: 0.67, 95% CI: 0.45-0.99) compared to the rs3758269 CC genotype. The significantly increased risk of stroke was prominent among males, patients aged 60 or above, and participants who were overweight and with a harbored genetic variant in SNP rs2989924. After adjusting potential confounders, the SNP rs3758269 CT+TT genotype was found to be significantly associated with a decreased risk of stroke compared to the CC genotype among participants younger than 60 years old or overweight. No statistically significant associations were observed between genotypes of rs2542743, rs57139208, or rs16939881 with the risk of stroke. Neither interactions nor linkage disequilibrium had been observed in this study. Conclusions This study suggests that SNPs rs2989924 and rs3758269 are associated with the risk of stroke among patients with hypertension, while there were no statistically significant associations between rs2542743, rs57139208, and rs16939881 and the risk of stroke being observed.
Collapse
|
34
|
Liao S, Gan L, Lv L, Mei Z. The regulatory roles of aquaporins in the digestive system. Genes Dis 2020; 8:250-258. [PMID: 33997172 PMCID: PMC8093583 DOI: 10.1016/j.gendis.2019.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/15/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Aquaporins (AQPs) are highly conserved small transmembrane proteins, which are responsible for the water transport across the cell membrane. AQPs are abundantly expressed in numerous types of cells such as epithelial and endothelial cells. The expression of AQP-1, -3, -4, -5, -8 and -9 were found in the digestive system, where these six AQP isoforms serve essential roles including mediating the transmembrane water transport and regulating the secretion of gastrointestinal (GI) fluids, consequently facilitating the digestion and absorption of GI contents. In addition, the expression levels of AQPs are controlled by various factors, and AQPs can stimulate numerous signaling pathways; however, aberrant expression of AQPs in the GI tracts are associated with the initiation and development of numerous diseases. Thus, this review provides an overview of the expression and functions of AQPs in the digestive system.
Collapse
Affiliation(s)
- Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Li Gan
- Teaching and Research Section of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| |
Collapse
|
35
|
Iena FM, Jul JB, Vegger JB, Lodberg A, Thomsen JS, Brüel A, Lebeck J. Sex-Specific Effect of High-Fat Diet on Glycerol Metabolism in Murine Adipose Tissue and Liver. Front Endocrinol (Lausanne) 2020; 11:577650. [PMID: 33193093 PMCID: PMC7609944 DOI: 10.3389/fendo.2020.577650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/30/2020] [Indexed: 12/25/2022] Open
Abstract
Obesity is associated with increased plasma glycerol levels. The coordinated regulation of glycerol channels in adipose tissue (AQP7) and the liver (AQP9) has been suggested as an important contributor to the pathophysiology of type-2-diabetes mellitus, as it would provide glycerol for hepatic synthesis of glucose and triglycerides. The regulation of AQP7 and AQP9 is influenced by sex. This study investigates the effect of a high-fat diet (HFD) on glycerol metabolism in mice and the influence of sex and GLP-1-receptor agonist treatment. Female and male C57BL/6JRj mice were fed either a control diet or a HFD for 12 or 24 weeks. Liraglutide was administered (1 mg/kg/day) to a subset of female mice. After 12 weeks of HFD, females had gained less weight than males. In adipose tissue, only females demonstrated an increased abundance of AQP7, whereas only males demonstrated a significant increase in glycerol kinase abundance and adipocyte size. 24 weeks of HFD resulted in a more comparable effect on weight gain and adipose tissue in females and males. HFD resulted in marked hepatic steatosis in males only and had no significant effect on the hepatic abundance of AQP9. Liraglutide treatment generally attenuated the effects of HFD on glycerol metabolism. In conclusion, no coordinated upregulation of glycerol channels in adipose tissue and liver was observed in response to HFD. The effect of HFD on glycerol metabolism is sex-specific in mice, and we propose that the increased AQP7 abundance in female adipose tissue could contribute to their less severe response to HFD.
Collapse
|
36
|
Zhang J, Tan J, Zhang C, Wang Y, Chen X, Lei C, Chen H, Fang X. Research on associations between variants and haplotypes of Aquaporin 9 (AQP9) gene with growth traits in three cattle breeds. Anim Biotechnol 2019; 32:185-193. [PMID: 31680615 DOI: 10.1080/10495398.2019.1675681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aquaporin 9 plays critical roles in aspects of energy homeostasis, metabolism, gluconeogenesis, fat synthesis and even the individual growth and development. So the Aquaporin 9 (AQP9) gene is a potential candidate gene for bovine growth traits. In this study, we detected the polymorphism of the bovine AQP9 gene including all exons by PCR-SSCP and DNA sequencing methods with six pairs of PCR primers in 555 individuals from three cattle breeds. Three novel SNPs (NC_007308:g.47575 C > T, 47615 C > T, 47690A > G) were detected using P6 primer. The linkage disequilibrium analysis indicated that the three SNPs were completely linked (r2 = 1), which constructed three genotypes (AA, AB, BB). The genotype AB was dominant in all three breeds. The frequencies of haplotype A and haplotype B were almost equivalent between each other. The individuals with genotype AB were significantly higher than those individuals with genotype BB in body weight (p < 0.01), chest circumference (p < 0.05) and rump length (p < 0.05). Moreover, individuals with genotype AA were significantly higher than those of individuals with genotype BB in body height (p < 0.01). These results suggested that the novel SNPs could be a perfect molecular marker for marker-assisted selection (MAS) breeding.
Collapse
Affiliation(s)
- Jingmin Zhang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, P. R. China.,Shanghai Vocational College of Agriculture and Forestry, Shanghai, P. R. China
| | - Jiaoyan Tan
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, P. R. China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, P. R. China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, P. R. China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, P. R. China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, P. R. China
| | - Hong Chen
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, P. R. China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, P. R. China
| |
Collapse
|
37
|
Usui S, Soda M, Iguchi K, Abe N, Oyama M, Nakayama T, Kitaichi K. Down-regulation of aquaporin 9 gene transcription by 10-hydroxy-2-decenoic acid: A major fatty acid in royal jelly. Food Sci Nutr 2019; 7:3819-3826. [PMID: 31763031 PMCID: PMC6848832 DOI: 10.1002/fsn3.1246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 01/06/2023] Open
Abstract
10-Hydroxy-trans-2-decenoic acid (10H2DA) is a unique lipid component of royal jelly produced by worker honeybees that exerts insulin-like effects. We herein investigated the effects of 10H2DA on the gene expression of aquaporin 9 (AQP9), which functions as a glycerol transporter in the liver, to clarify whether 10H2DA modulates energy metabolism. 10H2DA suppressed AQP9 gene expression in HepG2 cells by promoting the phosphorylation of Akt and AMP-activated protein kinase (AMPK). This suppression was partially recovered by the treatment of cells with inhibitors for Akt and AMPK. Based on the result showing that leptomycin B partially recovered the suppression of AQP9 gene expression, 10H2DA inhibited the expression of Foxa2, a transcription factor for the AQP9 gene, and also induced its nuclear exclusion. Although 10H2DA up-regulated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase gene expression, this was suppressed through the modulation of Foxa2 by insulin. These results suggest that 10H2DA suppresses AQP9 gene expression through the phosphorylation of Akt and AMPK and down-regulation of Foxa2 expression.
Collapse
Affiliation(s)
- Shigeyuki Usui
- Department of Biomedical PharmaceuticsGifu Pharmaceutical UniversityGifuJapan
- Instrumental Analysis CenterGifu Pharmaceutical UniversityGifuJapan
| | - Midori Soda
- Department of Biomedical PharmaceuticsGifu Pharmaceutical UniversityGifuJapan
| | - Kazuhiro Iguchi
- Department of Community PharmacyGifu Pharmaceutical UniversityGifuJapan
| | - Naohito Abe
- Department of PharmacognosyGifu Pharmaceutical UniversityGifuJapan
| | - Masayoshi Oyama
- Department of PharmacognosyGifu Pharmaceutical UniversityGifuJapan
| | | | - Kiyoyuki Kitaichi
- Department of Biomedical PharmaceuticsGifu Pharmaceutical UniversityGifuJapan
| |
Collapse
|
38
|
Nishizawa H, Shimomura I. Population Approaches Targeting Metabolic Syndrome Focusing on Japanese Trials. Nutrients 2019; 11:nu11061430. [PMID: 31242621 PMCID: PMC6627423 DOI: 10.3390/nu11061430] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 12/02/2022] Open
Abstract
The clinical importance of assessment of metabolic syndrome lies in the selection of individuals with multiple risk factors based on visceral fat accumulation, and helping them to reduce visceral fat. Behavioral modification by population approach is important, which adds support to the personal approach. The complexity of visceral fat accumulation requires multicomponent and multilevel intervention. Preparation of food and physical environments could be useful strategies for city planners. Furthermore, actions on various frameworks, including organizational, community, and policy levels, have been recently reported. There are universal public health screening programs and post-screening health educational systems in Japan, and diseases management programs in Germany. Understanding one’s own health status is important for motivation for lifestyle modification. The U.S. Preventive Services Task Force recommends that primary care practitioners screen all adults for obesity and offer behavioral interventions and intensive counseling. Established evidence-based guidelines for behavioral counseling are needed within the primary care setting.
Collapse
Affiliation(s)
- Hitoshi Nishizawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka 565-0871, Japan.
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
39
|
Low temperature-induced variation in plasma biochemical indices and aquaglyceroporin gene expression in the large yellow croaker Larimichthys crocea. Sci Rep 2019; 9:2717. [PMID: 30804360 PMCID: PMC6389880 DOI: 10.1038/s41598-018-37274-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022] Open
Abstract
Low temperature influences multiple physiological processes in fish. To explore the adaptability of the large yellow croaker (Larimichthys crocea) to low temperature, the concentrations of glycerol, blood urea nitrogen (BUN), and triglycerides (TG) in plasma, as well as the expression levels of metabolism-related genes aqp7 and aqp10, were measured after exposure to low temperature stress and during subsequent rewarming. In addition, tissue samples from the intestine and liver were histologically analyzed. We found that the concentrations of plasma glycerol, BUN, and TG, decreased under low temperature stress, suggesting the metabolism of fat and protein slowed at low temperature. The expression levels of aqp7 and aqp10 mRNA were also downregulated under exposure to low temperature. Interestingly, above plasma indices and gene expression returned to basic levels within 24 h after rewarming. Furthermore, the liver and the intestine were damaged under continuous low temperature stress, whereas they were repaired upon rewarming. From the above results, we concluded that aqp7 and aqp10 genes were sensitive to low temperature, and that the decrease in their expression levels at low temperature might reduce energy consumption by L. crocea. However, the adaptation to low temperature was limited because the key metabolic tissues were damaged under continuous exposure to low temperature. Interestingly, the metabolism of L. crocea was basically back to normal within 24 h of rewarming, showing that it has high capacity of self-recovery.
Collapse
|
40
|
Associations between Aquaglyceroporin Gene Polymorphisms and Risk of Type 2 Diabetes Mellitus. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8167538. [PMID: 30598999 PMCID: PMC6288565 DOI: 10.1155/2018/8167538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022]
Abstract
Objectives AQP7 and AQP9 represent glycerol channel in adipose tissue and liver and have been associated with metabolic diseases. We aimed to investigate the associations between genetic variants in AQP7 and AQP9 genes and the risk of type 2 diabetes (T2DM) in Chinese population. Methods Blood samples were drawn from 400 T2DM patients and 400 age- and gender-matched controls. Genomic DNA was extracted by proteinase K digestion and phenol–chloroform extraction. Genotyping of 5 single nucleotide polymorphisms (SNPs) in AQP7 (rs2989924, rs3758269, and rs62542743) and AQP9 (rs57139208, rs16939881) was performed by the polymerase chain reaction assay with TaqMan probes. Results The subjects with rs2989924 GA+AA genotypes had 1.47-fold increased risk of T2DM (odds ratio [OR] 1.47, 95% confidence interval [CI] 1.06-2.04), compared to those with GG genotype, and this association remained significant after adjustment for covariates (OR 1.66, 95% CI 1.07-2.57). When compared with rs3758269 CC genotype, the subjects with CT+TT genotypes had 45% decreased T2DM risk after multivariate adjustment (OR 0.55, 95% CI 0.35-0.85). The associations were evident in elder and overweight subjects and those with central obesity. No association was observed between AQP9 SNPs and T2DM risk. Conclusions AQP7 SNP rs2989924 and rs3758269 were associated with T2DM risk in Chinese Han population.
Collapse
|
41
|
Oikonomou E, Kostopoulou E, Rojas-Gil AP, Georgiou G, Spiliotis BE. Adipocyte aquaporin 7 (AQP7) expression in lean children and children with obesity. Possible involvement in molecular mechanisms of childhood obesity. J Pediatr Endocrinol Metab 2018; 31:1081-1089. [PMID: 30226208 DOI: 10.1515/jpem-2018-0281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
Abstract
Background Aquaporin 7 (AQP7), a water/glycerol transporting protein, regulates adipocyte glycerol efflux and influences lipid and glucose homeostasis. Altered AQP7 expression in adults leads to impaired glycerol dynamics, adipocyte hypertrophy and it predisposes them to obesity and diabetes. To assess its possible involvement in childhood obesity, this study investigated the expression of adipocyte AQP7 in cultured adipocytes of children. Methods Primary in vitro differentiated adipocyte cultures were developed from surgical biopsies of subcutaneous abdominal adipose tissue from 61 (46 prepubertal, 15 pubertal) lean children (body mass index [BMI] <85%) and 41 (22 prepubertal, 19 pubertal) children with obesity (BMI >95%). AQP7 expression was studied by reverse transcription polymerase chain reaction and Western immunoblotting and insulin by enzyme-linked immunosorbent assay. Results AQP7 messenger RNA (mRNA) was increased in the younger obese prepubertal (YOP) children but decreased in the obese adolescents (OA) (p=0.014) who also had increased insulin and homeostatic model assessment - insulin resistance (HOMA-IR). Lean pubertal (LP) children and YOP had increased 41 kDa AQP7 protein expression (p=0.001 and p=0.005, respectively). The OA who expressed 34 kDa AQP7 had lower triglyceride (TG) levels than those who did not express it (p=0.013). In the lean children, TG were negatively correlated with 34 kDa AQP7 (p=0.033). Conclusions The lower AQP7 mRNA expression in the OA may reflect a predisposition to adipocyte hypertrophy and metabolic dysfunction, as in the adults, whereas the YOP may be protected from this. The increased 41 kDa AQP7 protein expression in the LP may reflect the increased energy requirements of puberty for glycerol while in the YOP it may also be protective against the development of adipocyte hypertrophy.
Collapse
Affiliation(s)
- Eleni Oikonomou
- Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Patras School of Medicine, Patras, Greece
| | - Eirini Kostopoulou
- Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Patras School of Medicine, Patras, Greece
| | - Andrea Paola Rojas-Gil
- Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Patras School of Medicine, Patras, Greece.,Faculty of Human Movement and Quality of Life Sciences, Department of Nursing, University of Peloponnese, Sparta, Lakonias, Greece
| | - George Georgiou
- Department of Paediatric Surgery, Karamandaneio Children's Hospital, Patras, Greece
| | - Bessie E Spiliotis
- Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Patras School of Medicine, Patras, Greece
| |
Collapse
|
42
|
Cafeteria Diet Feeding in Young Rats Leads to Hepatic Steatosis and Increased Gluconeogenesis under Fatty Acids and Glucagon Influence. Nutrients 2018; 10:nu10111571. [PMID: 30360555 PMCID: PMC6266290 DOI: 10.3390/nu10111571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023] Open
Abstract
Gluconeogenesis overstimulation due to hepatic insulin resistance is the best-known mechanism behind elevated glycemia in obese subjects with hepatic steatosis. This suggests that glucose production in fatty livers may differ from that of healthy livers, also in response to other gluconeogenic determinant factors, such as the type of substrate and modulators. Thus, the aim of this study was to investigate the effects of these factors on hepatic gluconeogenesis in cafeteria diet-induced obese adult rats submitted to a cafeteria diet at a young age. The livers of the cafeteria group exhibited higher gluconeogenesis rates when glycerol was the substrate, but lower rates were found when lactate and pyruvate were the substrates. Stearate or glucagon caused higher stimulations in gluconeogenesis in cafeteria group livers, irrespective of the gluconeogenic substrates. An increased mitochondrial NADH/NAD+ ratio and a reduced rate of 14CO2 production from [14C] fatty acids suggested restriction of the citric acid cycle. The higher glycogen and lipid levels were possibly the cause for the reduced cellular and vascular spaces found in cafeteria group livers, likely contributing to oxygen consumption restriction. In conclusion, specific substrates and gluconeogenic modulators contribute to a higher stimulation of gluconeogenesis in livers from the cafeteria group.
Collapse
|
43
|
Lebeck J, Søndergaard E, Nielsen S. Increased AQP7 abundance in skeletal muscle from obese men with type 2 diabetes. Am J Physiol Endocrinol Metab 2018; 315:E367-E373. [PMID: 29783856 DOI: 10.1152/ajpendo.00468.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aquaglyceroporin 7 (AQP7) facilitates the transport of glycerol across cell membranes. In mice, fasting and refeeding regulate adipose tissue AQP7 abundance, and a role in controlling triglyceride accumulation in adipose tissue has been proposed. AQP7 is also expressed in skeletal muscle, where its function remains to be determined. Here, the abundance of AQP7 in abdominal subcutaneous adipose tissue (SAT) and skeletal muscle was evaluated in the overnight fasted and postprandial state in eight lean and eight obese men with type 2 diabetes (T2D). A biopsy from SAT and muscle was collected after an overnight fast and 2 h after ingestion of a low-fat test meal. Palmitate turnover was evaluated using a [9,10-3H] palmitate dilution technique. Tissue samples were analyzed by immunoblotting. Meal intake did not affect AQP7 expression in SAT or skeletal muscle. No association between the SAT AQP7 abundance and palmitate turnover was found. SAT AQP7 abundance was similar in lean and obese T2D men, whereas muscle AQP7 abundance was more than fourfold higher in obese T2D men. In conclusion, meal intake did not affect AQP7 protein abundance in SAT or skeletal muscle. In addition, SAT AQP7 expression does not appear to be involved in the regulation of adipose tissue lipolysis. However, in contrast to SAT AQP7, skeletal muscle AQP7 protein abundance is markedly increased in obese T2D men, potentially contributing to the excess lipid accumulation in skeletal muscle in type 2 diabetes.
Collapse
Affiliation(s)
- Janne Lebeck
- The Danish Diabetes Academy, Odense University Hospital , Odense , Denmark
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Aarhus , Denmark
| | - Esben Søndergaard
- The Danish Diabetes Academy, Odense University Hospital , Odense , Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital , Aarhus , Denmark
| | - Søren Nielsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
44
|
Calamita G, Perret J, Delporte C. Aquaglyceroporins: Drug Targets for Metabolic Diseases? Front Physiol 2018; 9:851. [PMID: 30042691 PMCID: PMC6048697 DOI: 10.3389/fphys.2018.00851] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Aquaporins (AQPs) are a family of transmembrane channel proteins facilitating the transport of water, small solutes, and gasses across biological membranes. AQPs are expressed in all tissues and ensure multiple roles under normal and pathophysiological conditions. Aquaglyceroporins are a subfamily of AQPs permeable to glycerol in addition to water and participate thereby to energy metabolism. This review focalizes on the present knowledge of the expression, regulation and physiological roles of AQPs in adipose tissue, liver and endocrine pancreas, that are involved in energy metabolism. In addition, the review aims at summarizing the involvement of AQPs in metabolic disorders, such as obesity, diabetes and liver diseases. Finally, challenges and recent advances related to pharmacological modulation of AQPs expression and function to control and treat metabolic diseases are discussed.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
45
|
Cheung CY, Roberts VHJ, Frias AE, Brace RA. High-fat diet effects on amniotic fluid volume and amnion aquaporin expression in non-human primates. Physiol Rep 2018; 6:e13792. [PMID: 30033659 PMCID: PMC6055028 DOI: 10.14814/phy2.13792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Western style, high-fat diet (HFD) and associated high lipid levels have deleterious effects on fetal and placental development independent of maternal obesity and/or diabetes. Our objectives were to determine whether HFD without development of obesity would alter amniotic fluid volume (AFV) and amnion aquaporin (AQP) expression in a non-human primate model. Japanese macaques were fed either a control diet or HFD before and during pregnancy. The four quadrant amniotic fluid index (AFI) was used as an ultrasonic estimate of AFV at 120 days gestation. Amnion samples were collected at 130 days gestation by cesarean section and AQP mRNA levels were determined by quantitative RT-PCR. Similar to that in human, AQP1, AQP3, AQP8, AQP9, and AQP11 were expressed in the macaque amnion with significant differences in levels among AQPs. In macaque, neither individual AQPs nor expression profiles of the five AQPs differed between control and non-obese HFD animals. There were regional differences in AQP expression in that, AQP1 mRNA levels were highest and AQP8 lowest in reflected amnion while AQP3, AQP9, and AQP11 were not different among amnion regions. When subdivided into control and HFD groups, AQP1 mRNA levels remain highest in the reflected amnion of both groups. The HFD did not significantly affect the AFI, but AFI was positively correlated with AQP11 mRNA levels independent of diet. Collectively, these data suggest that HFD in pregnant non-obese individuals may have at most modest effects on AFV as the AFI and amnion AQP expression are not substantially altered.
Collapse
Affiliation(s)
- Cecilia Y. Cheung
- Division of Maternal‐Fetal MedicineDepartment of Obstetrics and GynecologyOregon Health and Science UniversityPortlandOregon
| | - Victoria H. J. Roberts
- Division of Reproductive and Developmental SciencesOregon National Primate Research CenterPortlandOregon
| | - Antonio E. Frias
- Division of Maternal‐Fetal MedicineDepartment of Obstetrics and GynecologyOregon Health and Science UniversityPortlandOregon
- Division of Reproductive and Developmental SciencesOregon National Primate Research CenterPortlandOregon
| | - Robert A. Brace
- Division of Maternal‐Fetal MedicineDepartment of Obstetrics and GynecologyOregon Health and Science UniversityPortlandOregon
| |
Collapse
|
46
|
Tardelli M, Claudel T, Bruschi FV, Trauner M. Nuclear Receptor Regulation of Aquaglyceroporins in Metabolic Organs. Int J Mol Sci 2018; 19:E1777. [PMID: 29914059 PMCID: PMC6032257 DOI: 10.3390/ijms19061777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
Nuclear receptors, such as the farnesoid X receptor (FXR) and the peroxisome proliferator-activated receptors gamma and alpha (PPAR-γ, -α), are major metabolic regulators in adipose tissue and the liver, where they govern lipid, glucose, and bile acid homeostasis, as well as inflammatory cascades. Glycerol and free fatty acids are the end products of lipid droplet catabolism driven by PPARs. Aquaporins (AQPs), a family of 13 small transmembrane proteins, facilitate the shuttling of water, urea, and/or glycerol. The peculiar role of AQPs in glycerol transport makes them pivotal targets in lipid metabolism, especially considering their tissue-specific regulation by the nuclear receptors PPARγ and PPARα. Here, we review the role of nuclear receptors in the regulation of glycerol shuttling in liver and adipose tissue through the function and expression of AQPs.
Collapse
Affiliation(s)
- Matteo Tardelli
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Francesca Virginia Bruschi
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
47
|
da Silva IV, Rodrigues JS, Rebelo I, Miranda JPG, Soveral G. Revisiting the metabolic syndrome: the emerging role of aquaglyceroporins. Cell Mol Life Sci 2018; 75:1973-1988. [PMID: 29464285 PMCID: PMC11105723 DOI: 10.1007/s00018-018-2781-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/05/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
The metabolic syndrome (MetS) includes a group of medical conditions such as insulin resistance (IR), dyslipidemia and hypertension, all associated with an increased risk for cardiovascular disease. Increased visceral and ectopic fat deposition are also key features in the development of IR and MetS, with pathophysiological sequels on adipose tissue, liver and muscle. The recent recognition of aquaporins (AQPs) involvement in adipose tissue homeostasis has opened new perspectives for research in this field. The members of the aquaglyceroporin subfamily are specific glycerol channels implicated in energy metabolism by facilitating glycerol outflow from adipose tissue and its systemic distribution and uptake by liver and muscle, unveiling these membrane channels as key players in lipid balance and energy homeostasis. Being involved in a variety of pathophysiological mechanisms including IR and obesity, AQPs are considered promising drug targets that may prompt novel therapeutic approaches for metabolic disorders such as MetS. This review addresses the interplay between adipose tissue, liver and muscle, which is the basis of the metabolic syndrome, and highlights the involvement of aquaglyceroporins in obesity and related pathologies and how their regulation in different organs contributes to the features of the metabolic syndrome.
Collapse
Affiliation(s)
- Inês Vieira da Silva
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Joana S Rodrigues
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Toxicological and Bromatological Sciences, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Irene Rebelo
- UCIBIO, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, Universidade do Porto, Porto, Portugal
| | - Joana P G Miranda
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Toxicological and Bromatological Sciences, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Graça Soveral
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal.
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
| |
Collapse
|
48
|
De Ieso ML, Yool AJ. Mechanisms of Aquaporin-Facilitated Cancer Invasion and Metastasis. Front Chem 2018; 6:135. [PMID: 29922644 PMCID: PMC5996923 DOI: 10.3389/fchem.2018.00135] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 01/02/2023] Open
Abstract
Cancer is a leading cause of death worldwide, and its incidence is rising with numbers expected to increase 70% in the next two decades. The fact that current mainline treatments for cancer patients are accompanied by debilitating side effects prompts a growing demand for new therapies that not only inhibit growth and proliferation of cancer cells, but also control invasion and metastasis. One class of targets gaining international attention is the aquaporins, a family of membrane-spanning water channels with diverse physiological functions and extensive tissue-specific distributions in humans. Aquaporins−1,−2,−3,−4,−5,−8, and−9 have been linked to roles in cancer invasion, and metastasis, but their mechanisms of action remain to be fully defined. Aquaporins are implicated in the metastatic cascade in processes of angiogenesis, cellular dissociation, migration, and invasion. Cancer invasion and metastasis are proposed to be potentiated by aquaporins in boosting tumor angiogenesis, enhancing cell volume regulation, regulating cell-cell and cell-matrix adhesions, interacting with actin cytoskeleton, regulating proteases and extracellular-matrix degrading molecules, contributing to the regulation of epithelial-mesenchymal transitions, and interacting with signaling pathways enabling motility and invasion. Pharmacological modulators of aquaporin channels are being identified and tested for therapeutic potential, including compounds derived from loop diuretics, metal-containing organic compounds, plant natural products, and other small molecules. Further studies on aquaporin-dependent functions in cancer metastasis are needed to define the differential contributions of different classes of aquaporin channels to regulation of fluid balance, cell volume, small solute transport, signal transduction, their possible relevance as rate limiting steps, and potential values as therapeutic targets for invasion and metastasis.
Collapse
Affiliation(s)
- Michael L De Ieso
- Department of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrea J Yool
- Department of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
49
|
Méndez-Giménez L, Ezquerro S, da Silva IV, Soveral G, Frühbeck G, Rodríguez A. Pancreatic Aquaporin-7: A Novel Target for Anti-diabetic Drugs? Front Chem 2018; 6:99. [PMID: 29675407 PMCID: PMC5895657 DOI: 10.3389/fchem.2018.00099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/26/2022] Open
Abstract
Aquaporins comprise a family of 13 members of water channels (AQP0-12) that facilitate a rapid transport of water across cell membranes. In some cases, these pores are also permeated by small solutes, particularly glycerol, urea or nitric oxide, among other solutes. Several aquaporins have been identified in the pancreas, an exocrine and endocrine organ that plays an essential role in the onset of insulin resistance and type 2 diabetes. The exocrine pancreas, which accounts for 90% of the total pancreas, secretes daily large volumes of a near-isotonic fluid containing digestive enzymes into the duodenum. AQP1, AQP5, and AQP8 contribute to fluid secretion especially from ductal cells, whereas AQP12 allows the proper maturation and exocytosis of secretory granules in acinar cells of the exocrine pancreas. The endocrine pancreas (10% of the total pancreatic cells) is composed by the islets of Langerhans, which are distributed in α, β, δ, ε, and pancreatic polypeptide (PP) cells that secrete glucagon, insulin, somatostatin, ghrelin and PP, respectively. AQP7, an aquaglyceroporin permeated by water and glycerol, is expressed in pancreatic β-cells and murine studies have confirmed its participation in insulin secretion, triacylglycerol synthesis and proliferation of these endocrine cells. In this regard, transgenic AQP7-knockout mice develop adult-onset obesity, hyperinsulinemia, increased intracellular triacylglycerol content and reduced β-cell mass in Langerhans islets. Moreover, we have recently reported that AQP7 upregulation in β-cells after bariatric surgery, an effective weight loss surgical procedure, contributes, in part, to the improvement of pancreatic steatosis and insulin secretion through the increase of intracytoplasmic glycerol in obese rats. Human studies remain scarce and controversial, with some rare cases of loss-of function mutations of the AQP7 gene being associated with the onset of type 2 diabetes. The present Review is focused on the role of aquaporins in the physiology and pathophysiology of the pancreas, highlighting the role of pancreatic AQP7 as a novel player in the control of β-cell function and a potential anti-diabetic-drug.
Collapse
Affiliation(s)
- Leire Méndez-Giménez
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Ezquerro
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Inês V da Silva
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisboa, Portugal
| | - Graça Soveral
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisboa, Portugal
| | - Gema Frühbeck
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.,Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
50
|
Stahl K, Rahmani S, Prydz A, Skauli N, MacAulay N, Mylonakou MN, Torp R, Skare Ø, Berg T, Leergaard TB, Paulsen RE, Ottersen OP, Amiry-Moghaddam M. Targeted deletion of the aquaglyceroporin AQP9 is protective in a mouse model of Parkinson's disease. PLoS One 2018; 13:e0194896. [PMID: 29566083 PMCID: PMC5864064 DOI: 10.1371/journal.pone.0194896] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
More than 90% of the cases of Parkinson’s disease have unknown etiology. Gradual loss of dopaminergic neurons of substantia nigra is the main cause of morbidity in this disease. External factors such as environmental toxins are believed to play a role in the cell loss, although the cause of the selective vulnerability of dopaminergic neurons remains unknown. We have previously shown that aquaglyceroporin AQP9 is expressed in dopaminergic neurons and astrocytes of rodent brain. AQP9 is permeable to a broad spectrum of substrates including purines, pyrimidines, and lactate, in addition to water and glycerol. Here we test our hypothesis that AQP9 serves as an influx route for exogenous toxins and, hence, may contribute to the selective vulnerability of nigral dopaminergic (tyrosine hydroxylase-positive) neurons. Using Xenopus oocytes injected with Aqp9 cRNA, we show that AQP9 is permeable to the parkinsonogenic toxin 1-methyl-4-phenylpyridinium (MPP+). Stable expression of AQP9 in HEK cells increases their vulnerability to MPP+ and to arsenite—another parkinsonogenic toxin. Conversely, targeted deletion of Aqp9 in mice protects nigral dopaminergic neurons against MPP+ toxicity. A protective effect of Aqp9 deletion was demonstrated in organotypic slice cultures of mouse midbrain exposed to MPP+in vitro and in mice subjected to intrastriatal injections of MPP+in vivo. Seven days after intrastriatal MPP+ injections, the population of tyrosine hydroxylase-positive cells in substantia nigra is reduced by 48% in Aqp9 knockout mice compared with 67% in WT littermates. Our results show that AQP9 –selectively expressed in catecholaminergic neurons—is permeable to MPP+ and suggest that this aquaglyceroporin contributes to the selective vulnerability of nigral dopaminergic neurons by providing an entry route for parkinsonogenic toxins. To our knowledge this is the first evidence implicating a toxin permeable membrane channel in the pathophysiology of Parkinson’s disease.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacokinetics
- Animals
- Aquaporins/genetics
- Disease Models, Animal
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Female
- Gene Deletion
- HEK293 Cells
- Humans
- MPTP Poisoning/genetics
- MPTP Poisoning/metabolism
- MPTP Poisoning/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutagenesis, Site-Directed
- Neuroprotection/genetics
- Neuroprotective Agents/metabolism
- Parkinson Disease/genetics
- Parkinson Disease/pathology
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/genetics
- Parkinson Disease, Secondary/metabolism
- Parkinson Disease, Secondary/pathology
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
- Xenopus laevis
Collapse
Affiliation(s)
- Katja Stahl
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Soulmaz Rahmani
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Agnete Prydz
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nadia Skauli
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nanna MacAulay
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria N. Mylonakou
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, Norway Biotechnology Centre, University of Oslo, Oslo, Norway
| | - Reidun Torp
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Øivind Skare
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Torill Berg
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B. Leergaard
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ragnhild E. Paulsen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ole P. Ottersen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Karolinska Institutet, Stockholm, Sweden
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|