1
|
Li MY, Liu LZ, Xin Q, Zhou J, Zhang X, Zhang R, Wu Z, Yi J, Dong M. Downregulation of mTORC1 and Mcl-1 by lipid-oversupply contributes to islet β-cell apoptosis and dysfunction. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159332. [PMID: 37196823 DOI: 10.1016/j.bbalip.2023.159332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023]
Abstract
Pancreatic β-cell apoptosis is a key feature of diabetes and can be induced by chronic exposure to saturated fatty acids (FAs). However, the underlying mechanisms remain poorly understood. We presently evaluated the role of Mcl-1 and mTOR in mice fed with high-fat-diet (HFD) and β-cells exposed to the overloaded palmitic acid (PA). Compared with normal-chow-diet (NCD)-fed mice, HFD group showed impaired glucose tolerance after two months. Along with the diabetes progression, pancreatic islets first became hypertrophic and then atrophic, the ratio of β-cell:α-cell increased in the islets of four months HFD-fed mice while decreased after six months. This process was accompanied by significantly increased β-cell apoptosis and AMPK activity, and decreased Mcl-1 expression and mTOR activity. Consistently, glucose-induced insulin secretion dropped. In terms of mechanism, PA with lipotoxic dose could activate AMPK, which in turn inhibited ERK-stimulated Mcl-1Thr163 phosphorylation. Meanwhile, AMPK blocked Akt activity to release Akt inhibition on GSK3β, followed by GSK3β-initiated Mcl-1Ser159 phosphorylation. The context of Mcl-1 phosphorylation finally led to its degradation by ubiquitination. Also, AMPK inhibited the activity of mTORC1, resulting in a lower level of Mcl-1. Suppression of mTORC1 activity and Mcl-1 expression positively related to β-cell failure. Alteration of Mcl-1 or mTOR expression rendered different tolerance of β-cell to different dose of PA. In conclusion, lipid oversupply-induced dual modulation of mTORC1 and Mcl-1 finally led to β-cell apoptosis and impaired insulin secretion. The study may help further understand the pathogenesis of β-cell dysfunction in case of dyslipidemia, and provide promising therapeutic targets for diabetes.
Collapse
Affiliation(s)
- Ming-Yue Li
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China; GuangZhou Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, China
| | - Li-Zhong Liu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Qihang Xin
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Jiaying Zhou
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Xiaoyang Zhang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Rui Zhang
- GuangZhou Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, China
| | - Zangshu Wu
- GuangZhou Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, China
| | - Junbo Yi
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Ming Dong
- GuangZhou Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, China.
| |
Collapse
|
2
|
Moens C, Muller CJF, Bouwens L. In vitro comparison of various antioxidants and flavonoids from Rooibos as beta cell protectants against lipotoxicity and oxidative stress-induced cell death. PLoS One 2022; 17:e0268551. [PMID: 35580081 PMCID: PMC9113568 DOI: 10.1371/journal.pone.0268551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 01/09/2023] Open
Abstract
Oxidative stress and lipotoxicity effects on pancreatic β cells play a major role in the pathogenesis of type 2 diabetes (T2D). Flavonoids and antioxidants are under study for their cytoprotective effects and antidiabetic potential. In this study, we aimed to compare the protective effect of the Rooibos components aspalathin, isoorientin, 3-hydroxyphloretin (3-OH) and green Rooibos extract (GRT) itself, and exendin-4 and N-acetylcysteine (NAC) as reference molecules, against lipotoxicity and oxidative stress. The insulin-producing β cell line INS1E was exposed to hydrogen peroxide or streptozotocin (STZ) to induce oxidative stress, and palmitate to induce lipotoxicity. Cell viability was assessed by a MTS cell viability assay. Antioxidant response and antiapoptotic gene expression was performed by qRT-PCR. Glucose transporter 2 (GLUT 2) transporter inhibition was assessed through 2-NBDG uptake. GRT and the flavonoids aspalathin and 3-hydroxyphloretin offered significant protection against oxidative stress and lipotoxicity. GRT downregulated expression of pro-apoptotic genes Txnip and Ddit3. The flavonoids aspalathin and 3-hydroxyphloretin also downregulated these genes and in addition upregulated expression of antioxidant response genes Hmox1, Nqo1 and Sod1. Isoorientin gave no cytoprotection. Cytoprotection by Rooibos components was significantly higher than by NAC or exendin-4. Rooibos components strongly protect INS1E β cells against diabetogenic stress. Cytoprotection was associated with the upregulation of antioxidant response genes of the NRF2/KEAP1 pathway or suppression of the TXN system. The Rooibos molecules offered better protection against these insults than exendin-4 and NAC, making them interesting candidates as β cell cytoprotectants for therapeutic or nutraceutical applications.
Collapse
Affiliation(s)
- Céline Moens
- Cell Differentiation Lab, Vrije Universiteit Brussel, Jette, Brussels, Belgium
- * E-mail:
| | - Christo J. F. Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (MRC), Western Cape, Tygerberg, South Africa
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, South Africa
| | - Luc Bouwens
- Cell Differentiation Lab, Vrije Universiteit Brussel, Jette, Brussels, Belgium
| |
Collapse
|
3
|
Qin W, Ren X, Zhao L, Guo L. Exposure to perfluorooctane sulfonate reduced cell viability and insulin release capacity of β cells. J Environ Sci (China) 2022; 115:162-172. [PMID: 34969446 DOI: 10.1016/j.jes.2021.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 05/20/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are found to have multiple adverse outcomes on human health. Recently, epidemiological and toxicological studies showed that exposure to PFAS had adverse impacts on pancreas and showed association with insulin abnormalities. To explore how PFAS may contribute to diabetes, we studied impacts of perfluorooctane sulfonate (PFOS) on cell viability and insulin release capacity of pancreatic β cells by using in vivo and in vitro methods. We found that 28-day administration with PFOS (10 mg/(kg body weight•day)) caused reductions of pancreas weight and islet size in male mice. PFOS administration also led to lower serum insulin level both in fasting state and after glucose infusion among male mice. For cell-based in vitro bioassay, we used mouse β-TC-6 cancer cells and found 48-hr exposure to PFOS decreased the cell viability at 50 μmol/L. By measuring insulin content in supernatant, 48-hr pretreatment of PFOS (100 μmol/L) decreased the insulin release capacity of β-TC-6 cells after glucose stimulation. Although these concentrations were higher than the environmental concentration of PFOS, it might be reasonable for high concentration of PFOS to exert observable toxic effects in mice considering mice had a faster removal efficiency of PFOS than human. PFOS exposure (50 μmol/L) to β-TC-6 cells induced intracellular accumulation of reactive oxidative specie (ROS). Excessive ROS induced the reactive toxicity of cells, which eventually invoke apoptosis and necrosis. Results in this study provide evidence for the possible causal link of exposure to PFOS and diabetes risk.
Collapse
Affiliation(s)
- Weiping Qin
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaomin Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lianghong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
4
|
TXNIP: A Double-Edged Sword in Disease and Therapeutic Outlook. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7805115. [PMID: 35450411 PMCID: PMC9017576 DOI: 10.1155/2022/7805115] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/17/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Thioredoxin-interacting protein (TXNIP) was originally named vitamin D3 upregulated protein-1 (VDUP1) because of its ability to bind to thioredoxin (TRX) and inhibit TRX function and expression. TXNIP is an alpha-arrestin protein that is essential for redox homeostasis in the human body. TXNIP may act as a double-edged sword in the cell. The balance of TXNIP is crucial. A study has shown that TXNIP can travel between diverse intracellular locations and bind to different proteins to play different roles under oxidative stress. The primary function of TXNIP is to induce apoptosis or pyroptosis under oxidative stress. TXNIP also inhibits proliferation and migration in cancer cells, although TXNIP levels decrease, and function diminishes in various cancers. In this review, we summarized the main structure, binding proteins, pathways, and the role of TXNIP in diseases, aiming to explore the double-edged sword role of TXNIP, and expect it to be helpful for future treatment using TXNIP as a therapeutic target.
Collapse
|
5
|
Hu TT, Yang JW, Yan Y, Chen YY, Xue HB, Xiang YQ, Ye LC. Detection of genes responsible for cetuximab sensitization in colorectal cancer cells using CRISPR-Cas9. Biosci Rep 2020; 40:BSR20201125. [PMID: 33048115 PMCID: PMC7578620 DOI: 10.1042/bsr20201125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor in digestive tract with highly invasive and metastatic capacity. Drug sensitivity remains a significant obstacle to successful chemotherapy in CRC patients. The present study aimed to explore genes related to cetuximab (CTX) sensitivity in CRC by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9. Celigo image cytometer was used to detect suitable cells and optimal dosage of CTX. Inhibition rate of CTX on Caco-2 cells was evaluated by cell counting kit-8 (CCK-8) method before and after transfection. 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide (MTT) was performed to explore suitable concentration of puromycin and multiplicity of infection (MOI). CRISPR-Cas9, sequencing data quality analysis and cell viability test were used for the selection of genes related to CTX sensitivity in CRC cells. Finally, the selected genes associated with CTX sensitivity in CRC cells were further validated by colony formation and CCK-8 assays. In the present study, Caco-2 cells had a better prolificacy, and CTX 100 μg/ml exhibited a good inhibition trend on the 7th and 14th days of infection. MTT assay indicated that the minimum lethal concentration of puromycin was 2.5 μg/ml. Forty-six candidate genes were preliminarily screened via sequencing data quality analysis. Subsequently, we found that knockout of any of the four genes (MMP15, MRPL48, CALN1 and HADHB) could enhance CTX sensitivity in Caco-2 cells, which was further confirmed by colony formation assay. In summary, MMP15, MRPL48, CALN1 and HADHB genes are related to the mediation of CTX sensitivity in CRC.
Collapse
Affiliation(s)
- Ting-ting Hu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, P.R. China
| | - Jia-wen Yang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, P.R. China
- Zhejiang Clinical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Wenzhou 325000, P.R. China
| | - Ye Yan
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, P.R. China
| | - Ying-ying Chen
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, P.R. China
| | - Hai-bo Xue
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, P.R. China
| | - You-qun Xiang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, P.R. China
- Zhejiang Clinical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Wenzhou 325000, P.R. China
| | - Le-chi Ye
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, P.R. China
- Zhejiang Clinical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Wenzhou 325000, P.R. China
| |
Collapse
|
6
|
Oshima M, Pechberty S, Bellini L, Göpel SO, Campana M, Rouch C, Dairou J, Cosentino C, Fantuzzi F, Toivonen S, Marchetti P, Magnan C, Cnop M, Le Stunff H, Scharfmann R. Stearoyl CoA desaturase is a gatekeeper that protects human beta cells against lipotoxicity and maintains their identity. Diabetologia 2020; 63:395-409. [PMID: 31796987 PMCID: PMC6946759 DOI: 10.1007/s00125-019-05046-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/14/2019] [Indexed: 01/02/2023]
Abstract
AIMS/HYPOTHESIS During the onset of type 2 diabetes, excessive dietary intake of saturated NEFA and fructose lead to impaired insulin production and secretion by insulin-producing pancreatic beta cells. The majority of data on the deleterious effects of lipids on functional beta cell mass were obtained either in vivo in rodent models or in vitro using rodent islets and beta cell lines. Translating data from rodent to human beta cells remains challenging. Here, we used the human beta cell line EndoC-βH1 and analysed its sensitivity to a lipotoxic and glucolipotoxic (high palmitate with or without high glucose) insult, as a way to model human beta cells in a type 2 diabetes environment. METHODS EndoC-βH1 cells were exposed to palmitate after knockdown of genes related to saturated NEFA metabolism. We analysed whether and how palmitate induces apoptosis, stress and inflammation and modulates beta cell identity. RESULTS EndoC-βH1 cells were insensitive to the deleterious effects of saturated NEFA (palmitate and stearate) unless stearoyl CoA desaturase (SCD) was silenced. SCD was abundantly expressed in EndoC-βH1 cells, as well as in human islets and human induced pluripotent stem cell-derived beta cells. SCD silencing induced markers of inflammation and endoplasmic reticulum stress and also IAPP mRNA. Treatment with the SCD products oleate or palmitoleate reversed inflammation and endoplasmic reticulum stress. Upon SCD knockdown, palmitate induced expression of dedifferentiation markers such as SOX9, MYC and HES1. Interestingly, SCD knockdown by itself disrupted beta cell identity with a decrease in mature beta cell markers INS, MAFA and SLC30A8 and decreased insulin content and glucose-stimulated insulin secretion. CONCLUSIONS/INTERPRETATION The present study delineates an important role for SCD in the protection against lipotoxicity and in the maintenance of human beta cell identity. DATA AVAILABILITY Microarray data and all experimental details that support the findings of this study have been deposited in in the GEO database with the GSE130208 accession code.
Collapse
Affiliation(s)
- Masaya Oshima
- Université Paris Descartes, Institut Cochin, Inserm U1016, 123 bd du Port-Royal, 75014, Paris, France
| | - Séverine Pechberty
- Université Paris Descartes, Institut Cochin, Inserm U1016, 123 bd du Port-Royal, 75014, Paris, France
| | - Lara Bellini
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Sven O Göpel
- Bioscience Metabolism, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mélanie Campana
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Claude Rouch
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Julien Dairou
- Université Paris Descartes CNRS UMR 8601, Paris, France
| | - Cristina Cosentino
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Federica Fantuzzi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Sanna Toivonen
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Piero Marchetti
- University of Pisa, Department of Clinical and Experimental Medicine, Pisa, Italy
| | - Christophe Magnan
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, ULB Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Hervé Le Stunff
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
- Université Paris-Sud, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay (Neuro-PSI) - CNRS UMR 9197, Orsay, France
| | - Raphaël Scharfmann
- Université Paris Descartes, Institut Cochin, Inserm U1016, 123 bd du Port-Royal, 75014, Paris, France.
| |
Collapse
|
7
|
Dimova LG, Battista S, Plösch T, Kampen RA, Liu F, Verkaik-Schakel RN, Pratico D, Verkade HJ, Tietge UJF. Gestational oxidative stress protects against adult obesity and insulin resistance. Redox Biol 2019; 28:101329. [PMID: 31550664 PMCID: PMC6812053 DOI: 10.1016/j.redox.2019.101329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 01/06/2023] Open
Abstract
Pregnancy complications such as preeclampsia cause increased fetal oxidative stress and fetal growth restriction, and associate with a higher incidence of adult metabolic syndrome. However, the pathophysiological contribution of oxidative stress per se is experimentally difficult to discern and has not been investigated. This study determined, if increased intrauterine oxidative stress (IUOx) affects adiposity, glucose and cholesterol metabolism in adult Ldlr−/−xSod2+/+ offspring from crossing male Ldlr−/−xSod2+/+ mice with Ldlr−/−xSod2 +/- dams (IUOx) or Ldlr−/−xSod2 +/- males with Ldlr−/−xSod2+/+ dams (control). At 12 weeks of age mice received Western diet for an additional 12 weeks. Adult male IUOx offspring displayed lower body weight and reduced adiposity associated with improved glucose tolerance compared to controls. Reduced weight gain in IUOx was conceivably due to increased energy dissipation in white adipose tissue conveyed by higher expression of Ucp1 and an accompanying decrease in DNA methylation in the Ucp1 enhancer region. Female offspring did not show comparable phenotypes. These results demonstrate that fetal oxidative stress protects against the obesogenic effects of Western diet in adulthood by programming energy dissipation in white adipose tissue at the level of Ucp1. Intrauterine oxidative stress (IUOx) in absence of growth restriction was induced. IUOx results in less obesity and improved glucose tolerance in adult male mice. Reduced adiposity in adult males is due to browning of white adipose tissue (WAT). Increased UCP-1 expression in WAT of IUOx mice is explained by lower methylation.
Collapse
Affiliation(s)
- Lidiya G Dimova
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Simone Battista
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Rosalie A Kampen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Fan Liu
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Alle 8, Stockholm, Sweden
| | - Rikst Nynke Verkaik-Schakel
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA, USA
| | - Henkjan J Verkade
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Alle 8, Stockholm, Sweden; Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
8
|
Sabatini PV, Speckmann T, Lynn FC. Friend and foe: β-cell Ca 2+ signaling and the development of diabetes. Mol Metab 2019; 21:1-12. [PMID: 30630689 PMCID: PMC6407368 DOI: 10.1016/j.molmet.2018.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/03/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The divalent cation Calcium (Ca2+) regulates a wide range of processes in disparate cell types. Within insulin-producing β-cells, increases in cytosolic Ca2+ directly stimulate insulin vesicle exocytosis, but also initiate multiple signaling pathways. Mediated through activation of downstream kinases and transcription factors, Ca2+-regulated signaling pathways leverage substantial influence on a number of critical cellular processes within the β-cell. Additionally, there is evidence that prolonged activation of these same pathways is detrimental to β-cell health and may contribute to Type 2 Diabetes pathogenesis. SCOPE OF REVIEW This review aims to briefly highlight canonical Ca2+ signaling pathways in β-cells and how β-cells regulate the movement of Ca2+ across numerous organelles and microdomains. As a main focus, this review synthesizes experimental data from in vitro and in vivo models on both the beneficial and detrimental effects of Ca2+ signaling pathways for β-cell function and health. MAJOR CONCLUSIONS Acute increases in intracellular Ca2+ stimulate a number of signaling cascades, resulting in (de-)phosphorylation events and activation of downstream transcription factors. The short-term stimulation of these Ca2+ signaling pathways promotes numerous cellular processes critical to β-cell function, including increased viability, replication, and insulin production and secretion. Conversely, chronic stimulation of Ca2+ signaling pathways increases β-cell ER stress and results in the loss of β-cell differentiation status. Together, decades of study demonstrate that Ca2+ movement is tightly regulated within the β-cell, which is at least partially due to its dual roles as a potent signaling molecule.
Collapse
Affiliation(s)
- Paul V Sabatini
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thilo Speckmann
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
9
|
Kaneto H, Obata A, Kimura T, Shimoda M, Okauchi S, Shimo N, Matsuoka TA, Kaku K. Beneficial effects of sodium-glucose cotransporter 2 inhibitors for preservation of pancreatic β-cell function and reduction of insulin resistance. J Diabetes 2017; 9:219-225. [PMID: 27754601 DOI: 10.1111/1753-0407.12494] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/29/2016] [Accepted: 10/12/2016] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus is characterized by insulin resistance in various insulin target tissues, such as the liver, adipose tissue, and skeletal muscle, and insufficient insulin secretion from pancreatic β-cells. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, which are newly developed antidiabetic agents, decrease blood glucose levels by enhancing urinary glucose excretion and thereby function in an insulin-independent manner. Sodium-glucose cotransporter 2 inhibitors exert beneficial effects to reduce insulin resistance and preserve pancreatic β-cell function. In addition, SGLT2 inhibitors exhibit a variety of beneficial effects in various insulin target tissues, such as amelioration of fatty liver, reduction of visceral fat mass, and increasing glucose uptake in skeletal muscle. Furthermore, SGLT2 inhibitors protect pancreatic β-cells against glucose toxicity and preserve insulin secretory capacity. Together, these observations indicate that SGLT2 inhibitors are promising newly developed antidiabetic agents that are gaining attention in both clinical medicine and basic research.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Departments of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Atsushi Obata
- Departments of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Tomohiko Kimura
- Departments of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Masashi Shimoda
- Departments of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Seizo Okauchi
- Departments of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Naoki Shimo
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taka-Aki Matsuoka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kohei Kaku
- General Internal Medicine 1, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
10
|
Sato T, Kaneko YK, Sawatani T, Noguchi A, Ishikawa T. Obligatory Role of Early Ca(2+) Responses in H2O2-Induced β-Cell Apoptosis. Biol Pharm Bull 2016; 38:1599-605. [PMID: 26424020 DOI: 10.1248/bpb.b15-00396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous study using apoptosis analysis suggested that Ca(2+) release through inositol 1,4,5-trisphosphate (IP3) receptors and the subsequent Ca(2+) influx through store-operated channels (SOCs) constitute a triggering signal for H2O2-induced β-cell apoptosis. In the present study, we further examined the obligatory role of early Ca(2+) responses in β-cell apoptosis induction. H2O2 induced elevation of the cytosolic Ca(2+) concentration ([Ca(2+)]c) consisting of two phases: an initial transient [Ca(2+)]c elevation within 30 min and a slowly developing one thereafter. The first phase was almost abolished by 2-aminoethoxydiphenylborate (2-APB), which blocks IP3 receptors and cation channels including SOCs, while the second phase was only partially inhibited by 2-APB. The inhibition by 2-APB of the second phase was not observed when 2-APB was added 30 min after the treatment with H2O2. 2-APB also largely inhibited elevation of the mitochondrial Ca(2+) concentration ([Ca(2+)]m) induced by H2O2 when 2-APB was applied simultaneously with H2O2, but not when applied 30 min after H2O2 application. In addition, 2-APB inhibited the release of mitochondrial cytochrome c to the cytosol induced by H2O2 when 2-APB was applied simultaneously with H2O2 but not 30 min post-treatment. H2O2-induced [Ca(2+)]m elevation and cell death were not inhibited by Ru360, an inhibitor of the mitochondrial calcium uniporter (MCU). These results suggest that the H2O2-induced initial [Ca(2+)]c elevation, occurring within 30 min and mediated by Ca(2+) release through IP3 receptors and subsequent Ca(2+) influx through SOCs, leads to [Ca(2+)]m elevation, possibly through a mechanism independent of MCU, thereby inducing cytochrome c release and consequent apoptosis.
Collapse
Affiliation(s)
- Taiji Sato
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka
| | | | | | | | | |
Collapse
|
11
|
Saad MI, Abdelkhalek TM, Haiba MM, Saleh MM, Hanafi MY, Tawfik SH, Kamel MA. Maternal obesity and malnourishment exacerbate perinatal oxidative stress resulting in diabetogenic programming in F1 offspring. J Endocrinol Invest 2016; 39:643-55. [PMID: 26667119 DOI: 10.1007/s40618-015-0413-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/15/2015] [Indexed: 01/22/2023]
Abstract
The effect of in-utero environment on fetal health and survival is long-lasting, and this is known as the fetal origin hypothesis. The oxidative stress state during gestation could play a pivotal role in fetal programming and development of diseases such as diabetes. In this study, we investigated the effect of intra-uterine obesity and malnutrition on oxidative stress markers in pancreatic and peripheral tissues of F1 offspring both prenatally and postnatally. Furthermore, the effect of postnatal diet on oxidative stress profile was evaluated. The results indicated that intra-uterine obesity and malnourishment significantly increased oxidative stress in F1 offspring. Moreover, the programming effect of obesity was more pronounced and protracted than malnutrition. The obesity-induced programming of offspring tissues was independent of high-caloric environment that the offspring endured; however, high-caloric diet potentiated its effect. In addition, pancreas and liver were the most affected tissues by fetal reprogramming both prenatally and postnatally. In conclusion, maternal obesity and malnutrition-induced oxidative stress could predispose offspring to insulin resistance and diabetes.
Collapse
Affiliation(s)
- M I Saad
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt.
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Melbourne, VIC, Australia.
| | - T M Abdelkhalek
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - M M Haiba
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - M M Saleh
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - M Y Hanafi
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - S H Tawfik
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - M A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Kaneto H, Matsuoka TA, Kimura T, Obata A, Shimoda M, Kamei S, Mune T, Kaku K. Appropriate therapy for type 2 diabetes mellitus in view of pancreatic β-cell glucose toxicity: "the earlier, the better". J Diabetes 2016. [PMID: 26223490 DOI: 10.1111/1753-0407.12331] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pancreatic β-cells secrete insulin when blood glucose levels become high; however, when β-cells are chronically exposed to hyperglycemia, β-cell function gradually deteriorates, which is known as β-cell glucose toxicity. In the diabetic state, nuclear expression of the pancreatic transcription factors pancreatic and duodenal homeobox 1 (PDX-1) and v-Maf musculoaponeurotic fibrosarcoma oncogene family, protein A (MafA) is decreased. In addition, incretin receptor expression in β-cells is decreased, which is likely involved in the impairment of incretin effects in diabetes. Clinically, it is important to select appropriate therapy for type 2 diabetes mellitus (T2DM) so that β-cell function can be preserved. In addition, when appropriate pharmacological interventions against β-cell glucose toxicity are started at the early stages of diabetes, β-cell function is substantially restored, which is not observed if treatment is started at advanced stages. These observations indicate that it is likely that downregulation of pancreatic transcription factors and/or incretin receptors is involved in β-cell dysfunction observed in T2DM and it is very important to start appropriate pharmacological intervention against β-cell glucose toxicity in the early stages of diabetes.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Kurashiki
| | - Taka-Aki Matsuoka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomohiko Kimura
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Kurashiki
| | - Atsushi Obata
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Kurashiki
| | - Masashi Shimoda
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Kurashiki
| | - Shinji Kamei
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Kurashiki
| | - Tomoatsu Mune
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Kurashiki
| | - Kohei Kaku
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Kurashiki
| |
Collapse
|
13
|
Abstract
Type 2 diabetes is a complex disease. It results from a failure of the body to maintain energy homoeostasis. Multicellular organisms have evolved complex strategies to preserve a relatively stable internal nutrient environment, despite fluctuations in external nutrient availability. This complex strategy involves the co-ordinated responses of multiple organs to promote storage or mobilization of energy sources according to the availability of nutrients and cellular bioenergetics needs. The endocrine pancreas plays a central role in these processes by secreting insulin and glucagon. When this co-ordinated effort fails, hyperglycaemia and hyperlipidaemia develops, characterizing a state of metabolic imbalance and ultimately overt diabetes. Although diabetes is most likely a collection of diseases, scientists are starting to identify genetic components and environmental triggers. Genome-wide association studies revealed that by and large, gene variants associated with type 2 diabetes are implicated in pancreatic β-cell function, suggesting that the β-cell may be the weakest link in the chain of events that results in diabetes. Thus, it is critical to understand how environmental cues affect the β-cell. Phosphoinositides are important 'decoders' of environmental cues. As such, these lipids have been implicated in cellular responses to a wide range of growth factors, hormones, stress agents, nutrients and metabolites. Here we will review some of the well-established and potential new roles for phosphoinositides in β-cell function/dysfunction and discuss how our knowledge of phosphoinositide signalling could aid in the identification of potential strategies for treating or preventing type 2 diabetes.
Collapse
Affiliation(s)
- Lucia E Rameh
- Department of Medicine, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, U.S.A.
| | - Jude T Deeney
- Department of Medicine, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, U.S.A
| |
Collapse
|
14
|
Luo ZC, Bilodeau JF, Nuyt AM, Fraser WD, Julien P, Audibert F, Xiao L, Garofalo C, Levy E. Perinatal Oxidative Stress May Affect Fetal Ghrelin Levels in Humans. Sci Rep 2015; 5:17881. [PMID: 26643495 PMCID: PMC4672324 DOI: 10.1038/srep17881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/06/2015] [Indexed: 11/17/2022] Open
Abstract
In vitro cell model studies have shown that oxidative stress may affect beta-cell function. It is unknown whether oxidative stress may affect metabolic health in human fetuses/newborns. In a singleton pregnancy cohort (n = 248), we studied maternal (24–28 weeks gestation) and cord plasma biomarkers of oxidative stress [malondialdehyde (MDA), F2-isoprostanes] in relation to fetal metabolic health biomarkers including cord plasma glucose-to-insulin ratio (an indicator of insulin sensitivity), proinsulin-to-insulin ratio (an indicator of beta-cell function), insulin, IGF-I, IGF-II, leptin, adiponectin and ghrelin concentrations. Strong positive correlations were observed between maternal and cord plasma biomarkers of oxidative stress (r = 0.33 for MDA, r = 0.74 for total F2-isoprostanes, all p < 0.0001). Adjusting for gestational age at blood sampling, cord plasma ghrelin concentrations were consistently negatively correlated to oxidative stress biomarkers in maternal (r = −0.32, p < 0.0001 for MDA; r = −0.31, p < 0.0001 for F2-isoprostanes) or cord plasma (r = −0.13, p = 0.04 for MDA; r = −0.32, p < 0.0001 for F2-isoprostanes). Other fetal metabolic health biomarkers were not correlated to oxidative stress. Adjusting for maternal and pregnancy characteristics, similar associations were observed. Our study provides the first preliminary evidence suggesting that oxidative stress may affect fetal ghrelin levels in humans. The implications in developmental “programming” the vulnerability to metabolic syndrome related disorders remain to be elucidated.
Collapse
Affiliation(s)
- Zhong-Cheng Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China 200092.,Departments of Obstetrics and Gynecology, Pediatrics University of Montreal, Montreal, Canada H3T 1C5
| | - Jean-François Bilodeau
- Departments of Obstetrics, Gynecology and Reproductive Medicine, Medicine University of Montreal, Montreal, Canada H3T 1C5
| | - Anne Monique Nuyt
- Departments of Obstetrics and Gynecology, Nutrition University of Montreal, Montreal, Canada H3T 1C5
| | - William D Fraser
- Department of Obstetrics and Gynecology, University of Sherbrooke, Sherbrooke, Canada J1H 5N4
| | - Pierre Julien
- Departments of Obstetrics and Gynecology, Molecular and Oncologic Endocrinology and Human Genomics Research Center, Quebec City, Canada G1V 4G2.,Departments of Obstetrics and Gynecology, University Hospital Research Center, Laval University, Quebec City, Canada G1V 4G2
| | - Francois Audibert
- Departments of Obstetrics and Gynecology, Pediatrics University of Montreal, Montreal, Canada H3T 1C5
| | - Lin Xiao
- Departments of Obstetrics and Gynecology, Pediatrics University of Montreal, Montreal, Canada H3T 1C5
| | - Carole Garofalo
- Departments of Obstetrics and Gynecology, Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Canada H3T 1C5
| | - Emile Levy
- Departments of Obstetrics and Gynecology, Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Canada H3T 1C5
| |
Collapse
|
15
|
Chen CY, Chiu FY, Lin Y, Huang WJ, Hsieh PS, Hsu FL. Chemical constituents analysis and antidiabetic activity validation of four fern species from Taiwan. Int J Mol Sci 2015; 16:2497-516. [PMID: 25622260 PMCID: PMC4346848 DOI: 10.3390/ijms16022497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/13/2015] [Indexed: 12/29/2022] Open
Abstract
Pterosins are abundant in ferns, and pterosin A was considered a novel activator of adenosine monophosphate-activated protein kinase, which is crucial for regulating blood glucose homeostasis. However, the distribution of pterosins in different species of ferns from various places in Taiwan is currently unclear. To address this question, the distribution of pterosins, glucose-uptake efficiency, and protective effects of pterosin A on β-cells were examined. Our results showed that three novel compounds, 13-chloro-spelosin 3-O-β-d-glucopyranoside (1), (3R)-Pterosin D 3-O-β-d-(3'-p-coumaroyl)-glucopyranoside (2), and (2R,3R)-Pterosin L 3-O-β-d-(3'-p-coumaroyl)-glucopyranoside (3), were isolated for the first time from four fern species (Ceratopteris thalictroides, Hypolepis punctata, Nephrolepis multiflora, and Pteridium revolutum) along with 27 known compounds. We also examined the distribution of these pterosin compounds in the mentioned fern species (except N. multiflora). Although all pterosin analogs exhibited the same effects in glucose uptake assays, pterosin A prevented cell death and reduced reactive oxygen species (ROS) production. This paper is the first report to provide new insights into the distribution of pterosins in ferns from Taiwan. The potential anti-diabetic activity of these novel phytocompounds warrants further functional studies.
Collapse
Affiliation(s)
- Chen-Yu Chen
- College of Pharmacy, School of Pharmacy, Taipei Medical University, 250 Wuxing St., Taipei 110, Taiwan.
| | - Fu-Yu Chiu
- Department of Life Science, National Taiwan Normal University, No. 162, Sec. 1, Heping E. Rd., Taipei 106, Taiwan.
| | - Yenshou Lin
- Department of Life Science, National Taiwan Normal University, No. 162, Sec. 1, Heping E. Rd., Taipei 106, Taiwan.
| | - Wei-Jan Huang
- College of Pharmacy, School of Pharmacy, Taipei Medical University, 250 Wuxing St., Taipei 110, Taiwan.
| | - Po-Shiuan Hsieh
- Department of Physiology and Biophysics, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Taipei 114, Taiwan.
| | - Feng-Lin Hsu
- College of Pharmacy, School of Pharmacy, Taipei Medical University, 250 Wuxing St., Taipei 110, Taiwan.
| |
Collapse
|
16
|
Intermittent hypoxia-induced rat pancreatic β-cell apoptosis and protective effects of antioxidant intervention. Nutr Diabetes 2014; 4:e131. [PMID: 25177911 PMCID: PMC4183969 DOI: 10.1038/nutd.2014.28] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 06/23/2014] [Accepted: 06/29/2014] [Indexed: 12/21/2022] Open
Abstract
Purpose: Obstructive sleep apnea hypopnea syndrome (OSAHS), a common sleep and breathing disorder, is independently associated with metabolic dysfunction, including impaired glucose tolerance and insulin resistance. Intermittent hypoxia (IH), a pathological component of OSAHS, increases oxidative stress damage to pancreatic β-cells in animal models resembling patients with OSAHS. However, the precise mechanisms of IH-induced pancreatic β-cell dysfunction are not fully understood. In the present study, we established a mice model to investigate the underlying mechanisms of oxidative stress in IH-induced pancreatic β-cell apoptosis through antioxidant N-acetylcysteine (NAC) pretreatment. Methods: Twenty-four Wistar rats were randomly divided into four experimental groups: normal control group, intermittent normoxia group, IH group and antioxidant intervention group. Pancreatic β-cell apoptosis rates were detected by terminal deoxynucleotidyl transferase-mediated dUTP-nick end-labeling; Bcl-2 and Bax protein expressions were detected by immunohistochemistry staining and western blotting. Results: In our study, we demonstrated that IH exposure causes an increased activation of pancreatic β-cell apoptosis compared with that in the normal control group and intermittent normoxia group, accompanied by the downregulation of Bcl-2 and upregulation of Bax (P<0.05). Furthermore, compared with the IH group, antioxidant (NAC) pretreatment significantly decreased IH-mediated β-cell apoptosis and reversed the ratio of Bcl-2/Bax expression (P<0.05). Conclusion: Taken together, these results demonstrate a critical role of oxidative stress in the regulation of apoptosis through Bcl-2 and Bax signaling. The antioxidant NAC has a protective effect against IH-induced pancreatic β-cell apoptosis.
Collapse
|
17
|
Chen K, Zhao L, He H, Wan X, Wang F, Mo Z. Silibinin protects β cells from glucotoxicity through regulation of the Insig-1/SREBP-1c pathway. Int J Mol Med 2014; 34:1073-80. [PMID: 25109869 DOI: 10.3892/ijmm.2014.1883] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/04/2014] [Indexed: 11/05/2022] Open
Abstract
Exposure to high glucose may cause glucotoxicity, leading to pancreatic β cell dysfunction including cell apoptosis, impaired glucose‑stimulated insulin secretion (GSIS) and intracellular lipid accumulation. Sterol regulatory element binding protein-1c (SREBP-1c), a key nuclear transcription factor that regulates lipid metabolism, has been proven to play a role in insulin secretion. Insulin induced gene-1 (Insig-1) is an upstream regulatory factor of SREBP-1c. The overexpression of Insig-1 significantly inhibits SREBP-1c expression and thereby blocks the expression of downstream genes. It has been proven that silibinin, a natural flavanone, is involved in a variety of biological functions. In the present study, we examined whether silibinin protects high glucose-induced β cell dysfunction through the Insig-1/SREBP-1c pathway. Our data demonstrated that 30.0 µM of silibinin significantly improved cell viability (P<0.05) after rat insulinoma INS-1 cells were exposed to high glucose for 72 h. Silibinin partially attenuated GSIS following exposure to high glucose for either 24 or 72 h (both P<0.05). As shown by reverse transcription quantitative PCR, silibinin upregulated the mRNA expression of insulin secretion‑related genes [insulin receptor substrate 2 (IRS-2), pancreatic and duodenal homeobox 1 (PDX-1) and insulin], but downregulated uncoupling protein‑2 (UCP-2) expression. Silibinin inhibited intracellular lipid accumulation and free fatty acid (FFA) synthesis. Further experiments revealed that silibinin improved β cell function through the regulation of the Insig-1/SREBP-1c pathway. In conclusion, these results clearly suggest that the protection of β cells from glucotoxicity can be significantly enhanced through the regulation of the Insig-1/SREBP-1c pathway. Thus, silibinin may be a novel therapeutic agent for β cell dysfunction.
Collapse
Affiliation(s)
- Ke Chen
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Liling Zhao
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Honghui He
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xinxing Wan
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Fang Wang
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhaohui Mo
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
18
|
Song H, Wohltmann M, Tan M, Ladenson JH, Turk J. Group VIA phospholipase A2 mitigates palmitate-induced β-cell mitochondrial injury and apoptosis. J Biol Chem 2014; 289:14194-210. [PMID: 24648512 DOI: 10.1074/jbc.m114.561910] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Palmitate (C16:0) induces apoptosis of insulin-secreting β-cells by processes that involve generation of reactive oxygen species, and chronically elevated blood long chain free fatty acid levels are thought to contribute to β-cell lipotoxicity and the development of diabetes mellitus. Group VIA phospholipase A2 (iPLA2β) affects β-cell sensitivity to apoptosis, and here we examined iPLA2β effects on events that occur in β-cells incubated with C16:0. Such events in INS-1 insulinoma cells were found to include activation of caspase-3, expression of stress response genes (C/EBP homologous protein and activating transcription factor 4), accumulation of ceramide, loss of mitochondrial membrane potential, and apoptosis. All of these responses were blunted in INS-1 cells that overexpress iPLA2β, which has been proposed to facilitate repair of oxidized mitochondrial phospholipids, e.g. cardiolipin (CL), by excising oxidized polyunsaturated fatty acid residues, e.g. linoleate (C18:2), to yield lysophospholipids, e.g. monolysocardiolipin (MLCL), that can be reacylated to regenerate the native phospholipid structures. Here the MLCL content of mouse pancreatic islets was found to rise with increasing iPLA2β expression, and recombinant iPLA2β hydrolyzed CL to MLCL and released oxygenated C18:2 residues from oxidized CL in preference to native C18:2. C16:0 induced accumulation of oxidized CL species and of the oxidized phospholipid (C18:0/hydroxyeicosatetraenoic acid)-glycerophosphoethanolamine, and these effects were blunted in INS-1 cells that overexpress iPLA2β, consistent with iPLA2β-mediated removal of oxidized phospholipids. C16:0 also induced iPLA2β association with INS-1 cell mitochondria, consistent with a role in mitochondrial repair. These findings indicate that iPLA2β confers significant protection of β-cells against C16:0-induced injury.
Collapse
Affiliation(s)
- Haowei Song
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine and
| | - Mary Wohltmann
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine and
| | - Min Tan
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine and
| | - Jack H Ladenson
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - John Turk
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine and
| |
Collapse
|
19
|
Hong IS, Lee HY, Kim HP. Anti-oxidative effects of Rooibos tea (Aspalathus linearis) on immobilization-induced oxidative stress in rat brain. PLoS One 2014; 9:e87061. [PMID: 24466326 PMCID: PMC3897768 DOI: 10.1371/journal.pone.0087061] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/09/2013] [Indexed: 11/26/2022] Open
Abstract
Exposure to chronic psychological stress may be related to increased reactive oxygen species (ROS) or free radicals, and thus, long-term exposure to high levels of oxidative stress may cause the accumulation of oxidative damage and eventually lead to many neurodegenerative diseases. Compared with other organs, the brain appears especially susceptible to excessive oxidative stress due to its high demand for oxygen. In the case of excessive ROS production, endogenous defense mechanisms against ROS may not be sufficient to suppress ROS-associated oxidative damage. Dietary antioxidants have been shown to protect neurons against a variety of experimental neurodegenerative conditions. In particular, Rooibos tea might be a good source of antioxidants due to its larger proportion of polyphenolic compounds. An optimal animal model for stress should show the features of a stress response and should be able to mimic natural stress progression. However, most animal models of stress, such as cold-restraint, electric foot shock, and burn shock, usually involve physical abuse in addition to the psychological aspects of stress. Animals subjected to chronic restraint or immobilization are widely believed to be a convenient and reliable model to mimic psychological stress. Therefore, in the present study, we propose that immobilization-induced oxidative stress was significantly attenuated by treatment with Rooibos tea. This conclusion is demonstrated by Rooibos tea's ability to (i) reverse the increase in stress-related metabolites (5-HIAA and FFA), (ii) prevent lipid peroxidation (LPO), (iii) restore stress-induced protein degradation (PD), (iv) regulate glutathione metabolism (GSH and GSH/GSSG ratio), and (v) modulate changes in the activities of antioxidant enzymes (SOD and CAT).
Collapse
Affiliation(s)
- In-Sun Hong
- Adult Stem Cell Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Veterinary Public Health, Laboratory of Stem Cell and Tumor Biology, Seoul National University, Seoul, Republic of Korea
| | - Hwa-Yong Lee
- Adult Stem Cell Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Veterinary Public Health, Laboratory of Stem Cell and Tumor Biology, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Pyo Kim
- Department of Biomedical Science, Jungwon University, Chungbuk, Korea
| |
Collapse
|
20
|
Jin HM, Zhou DC, Gu HF, Qiao QY, Fu SK, Liu XL, Pan Y. Antioxidant N-acetylcysteine protects pancreatic β-cells against aldosterone-induced oxidative stress and apoptosis in female db/db mice and insulin-producing MIN6 cells. Endocrinology 2013; 154:4068-77. [PMID: 24008345 DOI: 10.1210/en.2013-1115] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Previous studies have shown that primary aldosteronism is associated with glucose-related metabolic disorders. However, the mechanisms by which aldosterone (ALDO) triggers β-cell dysfunction remains unclear. This study aimed to investigate whether oxidative stress is involved in and whether the antioxidant N-acetylcysteine (NAC) or the mineralocorticoid receptor antagonist spironolactone (SPL) could prevent or delay β-cell damage in vivo and in vitro. As expected, 8 weeks after ALDO treatment, 12-week-old female diabetic db/db mice exhibited impaired oral glucose tolerance, decreased β-cell mass, and heightened levels of oxidative stress marker (urinary 8-hydroxy-2'-deoxyguanosine). NAC reversed these symptoms completely, whereas SPL treatment did so only partially. After exposure to ALDO, the mouse pancreatic β-cell line MIN6 exhibited decreased viability and increased caspase-3 activity, as well as reduced expression of Bcl-2/Bax and p-AKT, even if mineralocorticoid receptor was completely suppressed with small interfering RNA. NAC, but not SPL, suppressed oxidative stress in MIN6 cells, as revealed by the decrease in inducible NOS levels and expression of the proteins p22-phox and p67-phox. These findings suggest that oxidative stress may be involved in ALDO-induced β-cell dysfunction and that NAC, but not SPL, may protect pancreatic β-cells of mice from ALDO-induced oxidative stress and apoptosis in a manner independent of its receptor.
Collapse
Affiliation(s)
- Hui Min Jin
- Division of Nephrology, Shanghai No. 3 People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Road, Shanghai 201900, China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Luu L, Dai FF, Prentice KJ, Huang X, Hardy AB, Hansen JB, Liu Y, Joseph JW, Wheeler MB. The loss of Sirt1 in mouse pancreatic beta cells impairs insulin secretion by disrupting glucose sensing. Diabetologia 2013; 56:2010-20. [PMID: 23783352 DOI: 10.1007/s00125-013-2946-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS Sirtuin 1 (SIRT1) has emerged as a key metabolic regulator of glucose homeostasis and insulin secretion. Enhanced SIRT1 activity has been shown to be protective against diabetes, although the mechanisms remain largely unknown. The aim of this study was to determine how SIRT1 regulates insulin secretion in the pancreatic beta cell. METHODS Pancreatic beta cell-specific Sirt1 deletion was induced by tamoxifen injection in 9-week-old Pdx1CreER:floxSirt1 mice (Sirt1BKO). Controls were injected with vehicle. Mice were assessed metabolically via glucose challenge, insulin tolerance tests and physical variables. In parallel, Sirt1 short interfering RNA-treated MIN6 cells (SIRT1KD) and isolated Sirt1BKO islets were used to investigate the effect of SIRT1 inactivation on insulin secretion and gene expression. RESULTS OGTTs showed impaired glucose disposal in Sirt1BKO mice due to insufficient insulin secretion. Isolated Sirt1BKO islets and SIRT1KD MIN6 cells also exhibited impaired glucose-stimulated insulin secretion. Subsequent analyses revealed impaired α-ketoisocaproic acid-induced insulin secretion and attenuated glucose-induced Ca(2+) influx, but normal insulin granule exocytosis in Sirt1BKO beta cells. Microarray studies revealed a large cluster of mitochondria-related genes, the expression of which was dysregulated in SIRT1KD MIN6 cells. Upon further analysis, we demonstrated an explicit defect in mitochondrial function: the inability to couple nutrient metabolism to mitochondrial membrane hyperpolarisation and reduced oxygen consumption rates. CONCLUSIONS/INTERPRETATION Taken together, these findings indicate that in beta cells the deacetylase SIRT1 regulates the expression of specific mitochondria-related genes that control metabolic coupling, and that a decrease in beta cell Sirt1 expression impairs glucose sensing and insulin secretion.
Collapse
Affiliation(s)
- L Luu
- Department of Physiology, University of Toronto, 1 King's College Circle Room 3352, Toronto, ON M5S 1A8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Koulajian K, Ivovic A, Ye K, Desai T, Shah A, Fantus IG, Ran Q, Giacca A. Overexpression of glutathione peroxidase 4 prevents β-cell dysfunction induced by prolonged elevation of lipids in vivo. Am J Physiol Endocrinol Metab 2013; 305:E254-62. [PMID: 23695217 DOI: 10.1152/ajpendo.00481.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have shown that oxidative stress is a mechanism of free fatty acid (FFA)-induced β-cell dysfunction. Unsaturated fatty acids in membranes, including plasma and mitochondrial membranes, are substrates for lipid peroxidation, and lipid peroxidation products are known to cause impaired insulin secretion. Therefore, we hypothesized that mice overexpressing glutathione peroxidase-4 (GPx4), an enzyme that specifically reduces lipid peroxides, are protected from fat-induced β-cell dysfunction. GPx4-overexpressing mice and their wild-type littermate controls were infused intravenously with saline or oleate for 48 h, after which reactive oxygen species (ROS) were imaged, using dihydrodichlorofluorescein diacetate in isolated islets, and β-cell function was assessed ex vivo in isolated islets and in vivo during hyperglycemic clamps. Forty-eight-hour FFA elevation in wild-type mice increased ROS and the lipid peroxidation product malondialdehyde and impaired β-cell function ex vivo in isolated islets and in vivo, as assessed by decreased disposition index. Also, islets of wild-type mice exposed to oleate for 48 h had increased ROS and lipid peroxides and decreased β-cell function. In contrast, GPx4-overexpressing mice showed no FFA-induced increase in ROS and lipid peroxidation and were protected from the FFA-induced impairment of β-cell function assessed in vitro, ex vivo and in vivo. These results implicate lipid peroxidation in FFA-induced β-cell dysfunction.
Collapse
Affiliation(s)
- Khajag Koulajian
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Koulajian K, Desai T, Liu GC, Ivovic A, Patterson JN, Tang C, El-Benna J, Joseph JW, Scholey JW, Giacca A. NADPH oxidase inhibition prevents beta cell dysfunction induced by prolonged elevation of oleate in rodents. Diabetologia 2013; 56:1078-87. [PMID: 23429921 PMCID: PMC3622749 DOI: 10.1007/s00125-013-2858-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/21/2013] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS The activation of NADPH oxidase has been implicated in NEFA-induced beta cell dysfunction. However, the causal role of this activation in vivo remains unclear. Here, using rodents, we investigated whether pharmacological or genetic inhibition of NADPH oxidase could prevent NEFA-induced beta cell dysfunction in vivo. METHODS Normal rats were infused for 48 h with saline or oleate with or without the NADPH oxidase inhibitor apocynin. In addition, NADPH oxidase subunit p47(phox)-null mice and wild-type littermate controls were infused with saline or oleate for 48 h. This was followed by measurement of NADPH oxidase activity, reactive oxygen species (ROS) and superoxide imaging and assessment of beta cell function in isolated islets and hyperglycaemic clamps. RESULTS Oleate infusion in rats increased NADPH oxidase activity, consistent with increased total but not mitochondrial superoxide in islets and impaired beta cell function in isolated islets and during hyperglycaemic clamps. Co-infusion of apocynin with oleate normalised NADPH oxidase activity and total superoxide levels and prevented beta cell dysfunction. Similarly, 48 h NEFA elevation in wild-type mice increased total but not mitochondrial superoxide and impaired beta cell function in isolated islets. p47(phox)-null mice were protected against these effects when subjected to 48 h oleate infusion. Finally, oleate increased the levels of total ROS, in both models, whereas inhibition of NADPH oxidase prevented this increase, suggesting that NADPH oxidase is the main source of ROS in this model. CONCLUSIONS/INTERPRETATION These data show that NADPH-oxidase-derived cytosolic superoxide is increased in islets upon oleate infusion in vivo; and whole-body NADPH-oxidase inhibition decreases superoxide in concert with restoration of islet function.
Collapse
Affiliation(s)
- K. Koulajian
- Department of Physiology, University of Toronto, Medical Sciences Building, Room 3336-1 King’s College Circle, Toronto, ON Canada M5S 1A8
| | - T. Desai
- Department of Physiology, University of Toronto, Medical Sciences Building, Room 3336-1 King’s College Circle, Toronto, ON Canada M5S 1A8
| | - G. C. Liu
- Institute of Medical Sciences, University of Toronto, Toronto, ON Canada
| | - A. Ivovic
- Department of Physiology, University of Toronto, Medical Sciences Building, Room 3336-1 King’s College Circle, Toronto, ON Canada M5S 1A8
| | - J. N. Patterson
- School of Pharmacy, University of Waterloo, Waterloo, ON Canada
| | - C. Tang
- Department of Physiology, University of Toronto, Medical Sciences Building, Room 3336-1 King’s College Circle, Toronto, ON Canada M5S 1A8
| | - J. El-Benna
- Inserm, U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Paris, France
- Université Paris 7 site Bichat, UMRS 773, Paris, France
| | - J. W. Joseph
- School of Pharmacy, University of Waterloo, Waterloo, ON Canada
| | - J. W. Scholey
- Institute of Medical Sciences, University of Toronto, Toronto, ON Canada
- Division of Nephrology, University of Toronto, Toronto, ON Canada
| | - A. Giacca
- Department of Physiology, University of Toronto, Medical Sciences Building, Room 3336-1 King’s College Circle, Toronto, ON Canada M5S 1A8
- Institute of Medical Sciences, University of Toronto, Toronto, ON Canada
- Department of Medicine, University of Toronto, Toronto, ON Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON Canada
| |
Collapse
|
24
|
Boutzios G, Livadas S, Piperi C, Vitoratos N, Adamopoulos C, Hassiakos D, Iavazzo C, Diamanti-Kandarakis E. Polycystic ovary syndrome offspring display increased oxidative stress markers comparable to gestational diabetes offspring. Fertil Steril 2013. [DOI: 10.1016/j.fertnstert.2012.10.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Abstract
Type 2 diabetes is characterized by pancreatic β-cell dysfunction and insulin resistance, and the number of patients has markedly increased worldwide. In the diabetic state, hyperglycemia per se and subsequent induction of oxidative stress decrease insulin biosynthesis and secretion, leading to the aggravation of Type 2 diabetes. In addition, there is substantial reduction in expression and/or activities of several insulin gene transcription factors. This process is known as β-cell glucose toxicity, which is often observed under diabetic conditions. Taken together, it is likely that oxidative stress explains, at least in part, the molecular mechanism for β-cell glucose toxicity, which is often observed in Type 2 diabetes.
Collapse
|
26
|
Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line. Toxicol Appl Pharmacol 2012; 264:274-83. [DOI: 10.1016/j.taap.2012.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 12/27/2022]
|
27
|
Impairment of Proinsulin Processing in β-Cells Exposed to Saturated Free Fatty Acid Is Dependent on Uncoupling Protein-2 Expression. Can J Diabetes 2012. [DOI: 10.1016/j.jcjd.2012.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Baldwin AC, Green CD, Olson LK, Moxley MA, Corbett JA. A role for aberrant protein palmitoylation in FFA-induced ER stress and β-cell death. Am J Physiol Endocrinol Metab 2012; 302:E1390-8. [PMID: 22436701 PMCID: PMC3378068 DOI: 10.1152/ajpendo.00519.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exposure of insulin-producing cells to elevated levels of the free fatty acid (FFA) palmitate results in the loss of β-cell function and induction of apoptosis. The induction of endoplasmic reticulum (ER) stress is one mechanism proposed to be responsible for the loss of β-cell viability in response to palmitate treatment; however, the pathways responsible for the induction of ER stress by palmitate have yet to be determined. Protein palmitoylation is a major posttranslational modification that regulates protein localization, stability, and activity. Defects in, or dysregulation of, protein palmitoylation could be one mechanism by which palmitate may induce ER stress in β-cells. The purpose of this study was to evaluate the hypothesis that palmitate-induced ER stress and β-cell toxicity are mediated by excess or aberrant protein palmitoylation. In a concentration-dependent fashion, palmitate treatment of RINm5F cells results in a loss of viability. Similar to palmitate, stearate also induces a concentration-related loss of RINm5F cell viability, while the monounsaturated fatty acids, such as palmoleate and oleate, are not toxic to RINm5F cells. 2-Bromopalmitate (2BrP), a classical inhibitor of protein palmitoylation that has been extensively used as an inhibitor of G protein-coupled receptor signaling, attenuates palmitate-induced RINm5F cell death in a concentration-dependent manner. The protective effects of 2BrP are associated with the inhibition of [(3)H]palmitate incorporation into RINm5F cell protein. Furthermore, 2BrP does not inhibit, but appears to enhance, the oxidation of palmitate. The induction of ER stress in response to palmitate treatment and the activation of caspase activity are attenuated by 2BrP. Consistent with protective effects on insulinoma cells, 2BrP also attenuates the inhibitory actions of prolonged palmitate treatment on insulin secretion by isolated rat islets. These studies support a role for aberrant protein palmitoylation as a mechanism by which palmitate enhances ER stress activation and causes the loss of insulinoma cell viability.
Collapse
Affiliation(s)
- Aaron C Baldwin
- Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
29
|
Briand O, Helleboid-Chapman A, Ploton M, Hennuyer N, Carpentier R, Pattou F, Vandewalle B, Moerman E, Gmyr V, Kerr-Conte J, Eeckhoute J, Staels B, Lefebvre P. The nuclear orphan receptor Nur77 is a lipotoxicity sensor regulating glucose-induced insulin secretion in pancreatic β-cells. Mol Endocrinol 2012; 26:399-413. [PMID: 22301783 DOI: 10.1210/me.2011-1317] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The NR4A orphan nuclear receptors Nur77, Nurr1, and Nor1 exert multiple cellular and metabolic functions. These transcriptional regulators are activated in response to extracellular stresses, including lipotoxic fatty acids (FA) and proinflammatory cytokines. The contribution of NR4As to β-cell pathophysiology is, however, unknown. We have therefore examined the role of NR4As as downstream contributors to FA-induced β-cell dysfunctions. Human pancreatic islets and insulinoma β-cells were used to determine transcriptional programs elicited by NR4A, which were compared to those triggered by palmitate treatment. Functional studies evaluated the consequence of an increased NR4A expression on insulin biosynthesis and secretion and cell viability in insulinoma β-cells. FA and cytokine treatment increased NR4A expression in pancreatic β-cells, with Nur77 being most highly inducible in murine β-cells. Nur77, Nurr1, or Nor1 modulated common and distinct clusters of genes involved notably in cation homeostasis and insulin gene transcription. By altering zinc homeostasis, insulin gene transcription, and secretion, Nur77 was found to be a major transcriptional mediator of part of FA-induced β-cell dysfunctions. The repressive role of Nur77 in insulin gene regulation was tracked down to protein-protein interaction with FoxO1, a pivotal integrator of the insulin gene regulatory network. The present study identifies a member of the NR4A nuclear receptor subclass, Nur77/NR4A1, as a modulator of pancreatic β-cell biology. Together with its previously documented role in liver and muscle, its role in β-cells establishes Nur77 as an important integrator of glucose metabolism.
Collapse
Affiliation(s)
- Olivier Briand
- Institut Pasteur de Lille, Faculté de Médecine de Lille-Pôle Recherche; Institut National de la Santé et de la Recherche Médicale (INSERM) U1011-Bâtiment J&K; Boulevard du Pr Leclerc, Lille cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Reactive oxygen species stimulate insulin secretion in rat pancreatic islets: studies using mono-oleoyl-glycerol. PLoS One 2012; 7:e30200. [PMID: 22272304 PMCID: PMC3260220 DOI: 10.1371/journal.pone.0030200] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 12/12/2011] [Indexed: 11/25/2022] Open
Abstract
Chronic exposure (24–72 hrs) of pancreatic islets to elevated glucose and fatty acid leads to glucolipoxicity characterized by basal insulin hypersecretion and impaired glucose-stimulated insulin secretion (GSIS). Our aim was to determine the mechanism for basal hypersecretion of insulin. We used mono-oleoyl-glycerol (MOG) as a tool to rapidly increase lipids in isolated rat pancreatic ß-cells and in the clonal pancreatic ß-cell line INS-1 832/13. MOG (25–400 µM) stimulated basal insulin secretion from ß-cells in a concentration dependent manner without increasing intracellular Ca2+ or O2 consumption. Like GSIS, MOG increased NAD(P)H and reactive oxygen species (ROS). The mitochondrial reductant ß-hydroxybutyrate (ß-OHB) also increased the redox state and ROS production, while ROS scavengers abrogated secretion. Diazoxide (0.4 mM) did not prevent the stimulatory effect of MOG, confirming that the effect was independent of the KATP-dependent pathway of secretion. MOG was metabolized to glycerol and long-chain acyl-CoA (LC-CoA), whereas, acute oleate did not similarly increase LC-CoA. Inhibition of diacylglycerol kinase (DGK) did not mimic the effect of MOG on insulin secretion, indicating that MOG did not act primarily by inhibiting DGK. Inhibition of acyl-CoA synthetase (ACS) reduced the stimulatory effect of MOG on basal insulin secretion by 30% indicating a role for LC-CoA. These data suggest that basal insulin secretion is stimulated by increased ROS production, due to an increase in the mitochondrial redox state independent of the established components of GSIS.
Collapse
|
31
|
Takada M, Noguchi A, Sayama Y, Kurohane Kaneko Y, Ishikawa T. Inositol 1,4,5-trisphosphate receptor-mediated initial Ca(2+) mobilization constitutes a triggering signal for hydrogen peroxide-induced apoptosis in INS-1 β-cells. Biol Pharm Bull 2011; 34:954-8. [PMID: 21719997 DOI: 10.1248/bpb.34.954] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species, including hydrogen peroxide (H(2)O(2)), are known to induce β-cell apoptosis. The present study investigated the role of Ca(2+) in H(2)O(2)-induced apoptosis of the β-cell line INS-1. Annexin V assay with flow cytometry and DNA ladder assay demonstrated that treatment of INS-1 cells with 100 µM H(2)O(2) for 18 h significantly increased apoptotic cells. A comparable level of apoptosis was also observed after 18 h when the cells were treated with 100 µM H(2)O(2) only for initial 30 min. The H(2)O(2)-induced apoptosis was abolished by 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl)ester (BAPTA/AM), a chelator of intracellular Ca(2+), by 2-aminoethoxydiphenylborate (2-APB), a blocker of inositol 1,4,5-trisphosphate (IP(3)) receptors and cation channels, and by xestospongin D, a blocker of IP(3) receptors, and was partially blocked by SKF-96365, a non-selective cation channel blocker. However, nicardipine, an L-type voltage-dependent Ca(2+) channel blocker, or N-(p-amylcinnamoyl)anthranilic acid (ACA), a TRPM2 blocker, had little effect on the apoptosis. The inhibitory effect of BAPTA/AM or 2-APB on the H(2)O(2)-induced apoptosis was largely attenuated when the drug was added 30 min or 1 h after start of the treatment with H(2)O(2). These results suggest that the initial intracellular Ca(2+) elevation induced by H(2)O(2), which is mediated via IP(3) receptors and store-operated cation channels, plays an obligatory role in the induction of β-cell apoptosis.
Collapse
Affiliation(s)
- Masahiro Takada
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52–1 Yada, Surugaku, Shizuoka, Shizuoka 422–8526, Japan
| | | | | | | | | |
Collapse
|
32
|
A lipidomic screen of palmitate-treated MIN6 β-cells links sphingolipid metabolites with endoplasmic reticulum (ER) stress and impaired protein trafficking. Biochem J 2011; 435:267-76. [PMID: 21265737 DOI: 10.1042/bj20101867] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Saturated fatty acids promote lipotoxic ER (endoplasmic reticulum) stress in pancreatic β-cells in association with Type 2 diabetes. To address the underlying mechanisms we employed MS in a comprehensive lipidomic screen of MIN6 β-cells treated for 48 h with palmitate. Both the overall mass and the degree of saturation of major neutral lipids and phospholipids were only modestly increased by palmitate. The mass of GlcCer (glucosylceramide) was augmented by 70% under these conditions, without any significant alteration in the amounts of either ceramide or sphingomyelin. However, flux into ceramide (measured by [3H]serine incorporation) was augmented by chronic palmitate, and inhibition of ceramide synthesis decreased both ER stress and apoptosis. ER-to-Golgi protein trafficking was also reduced by palmitate pre-treatment, but was overcome by overexpression of GlcCer synthase. This was accompanied by increased conversion of ceramide into GlcCer, and reduced ER stress and apoptosis, but no change in phospholipid desaturation. Sphingolipid alterations due to palmitate were not secondary to ER stress since they were neither reproduced by pharmacological ER stressors nor overcome using the chemical chaperone phenylbutyric acid. In conclusion, alterations in sphingolipid, rather than phospholipid, metabolism are more likely to be implicated in the defective protein trafficking and enhanced ER stress and apoptosis of lipotoxic β-cells.
Collapse
|
33
|
Luo ZC, Xiao L, Nuyt AM. Mechanisms of developmental programming of the metabolic syndrome and related disorders. World J Diabetes 2010; 1:89-98. [PMID: 21537432 PMCID: PMC3083886 DOI: 10.4239/wjd.v1.i3.89] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/22/2010] [Accepted: 06/29/2010] [Indexed: 02/05/2023] Open
Abstract
There is consistent epidemiological evidence linking low birth weight, preterm birth and adverse fetal growth to an elevated risk of the metabolic syndrome (obesity, raised blood pressure, raised serum triglycerides, lowered serum high-density lipoprotein cholesterol and impaired glucose tolerance or insulin resistance) and related disorders. This “fetal or developmental origins/programming of disease” concept is now well accepted but the “programming” mechanisms remain poorly understood. We reviewed the major evidence, implications and limitations of current hypotheses in interpreting developmental programming and discuss future research directions. Major current hypotheses to interpret developmental programming include: (1) thrifty phenotype; (2) postnatal accelerated or catch-up growth; (3) glucocorticoid effects; (4) epigenetic changes; (5) oxidative stress; (6) prenatal hypoxia; (7) placental dysfunction; and (8) reduced stem cell number. Some hypothetical mechanisms (2, 4 and 8) could be driven by other upstream “driver” mechanisms. There is a lack of animal studies addressing multiple mechanisms simultaneously and a lack of strong evidence linking clinical outcomes to biomarkers of the proposed programming mechanisms in humans. There are needs for (1) experimental studies addressing multiple hypothetical mechanisms simultaneously; and (2) prospective pregnancy cohort studies linking biomarkers of the proposed mechanisms to clinical outcomes or surrogate biomarker endpoints. A better understanding of the programming mechanisms is a prerequisite for developing early life interventions to arrest the increasing epidemic of the metabolic syndrome, type 2 diabetes and other related disorders.
Collapse
Affiliation(s)
- Zhong-Cheng Luo
- Zhong-Cheng Luo, Lin Xiao, Department of Obstetrics and Gynecology, CHU Sainte Justine, University of Montreal, Quebec H3T 1C5, Canada
| | | | | |
Collapse
|
34
|
van Raalte DH, van der Zijl NJ, Diamant M. Pancreatic steatosis in humans: cause or marker of lipotoxicity? Curr Opin Clin Nutr Metab Care 2010; 13:478-85. [PMID: 20489606 DOI: 10.1097/mco.0b013e32833aa1ef] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Type 2 diabetes mellitus (T2DM) is characterized by impaired insulin secretion. Chronically increased levels of plasma nonesterified fatty acids (NEFA) and triglyceride-rich lipoproteins impair beta-cell function, a process referred to as lipotoxicity. Furthermore, when NEFA supply exceeds metabolic capacity, lipids accumulate in nonadipose tissues, such as pancreatic islets, inducing organ dysfunction. The purpose of this review is to describe the mechanisms underlying lipotoxicity in vitro, to discuss the evidence for lipotoxicity in vivo and to address whether pancreatic lipid accumulation interferes with insulin secretion in humans. RECENT FINDINGS Although numerous in-vitro studies have shown that chronically elevated NEFA levels induce beta-cell dysfunction and apoptosis, studies in humans are less conclusive. It has been acknowledged that concurrent hyperglycaemia amplifies the adverse effects of elevated plasma NEFA levels on beta-cell function; therefore glucolipotoxicity should be the preferred term. Lipid accumulation in pancreatic islets impaired beta-cell secretory capacity in leptin-deficient rodents. In humans, recent studies employing noninvasive magnetic resonance-technology and computed tomography-technology, lipid accumulation in the pancreas was increased in individuals with impaired glucose metabolism and T2DM. However, there was no clear association with beta-cell dysfunction. SUMMARY To date, it is difficult to provide evidence that intraislet lipid accumulation truly exists in humans and that it is indeed causal to beta-cell dysfunction. Additional research is warranted to further detail the nature and role of pancreatic lipid content in humans, its consequence for the postulated processes pertinent to glucolipotoxicity and its contribution to the progressive nature of beta-cell dysfunction in prediabetes.
Collapse
Affiliation(s)
- Daniël H van Raalte
- Diabetes Centre, Department of Internal Medicine, VU University Medical Centre, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
35
|
El-Assaad W, Joly E, Barbeau A, Sladek R, Buteau J, Maestre I, Pepin E, Zhao S, Iglesias J, Roche E, Prentki M. Glucolipotoxicity alters lipid partitioning and causes mitochondrial dysfunction, cholesterol, and ceramide deposition and reactive oxygen species production in INS832/13 ss-cells. Endocrinology 2010; 151:3061-73. [PMID: 20444946 DOI: 10.1210/en.2009-1238] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Elevated glucose and saturated fatty acids synergize in inducing apoptosis in INS832/13 cells and in human islet cells. In order to gain insight into the molecular mechanism(s) of glucolipotoxicity (Gltox), gene profiling and metabolic analyses were performed in INS832/13 cells cultured at 5 or 20 mm glucose in the absence or presence of palmitate. Expression changes were observed for transcripts involved in mitochondrial, lipid, and glucose metabolism. At 24 h after Gltox, increased expression of lipid partitioning genes suggested a promotion of fatty acid esterification and reduced lipid oxidation/detoxification, whereas changes in the expression of energy metabolism genes suggested mitochondrial dysfunction. These changes were associated with decreased glucose-induced insulin secretion, total insulin content, ATP levels, AMP-kinase activity, mitochondrial membrane potential and fat oxidation, unchanged de novo fatty acid synthesis, and increased reactive oxygen species, cholesterol, ceramide, and triglyceride levels. However, the synergy between elevated glucose and palmitate to cause ss-cell toxicity in term of apoptosis and reduced glucose-induced insulin secretion only correlated with triglyceride and ceramide depositions. Overexpression of endoplasmic reticulum glycerol-3-phosphate acyl transferase to enhance lipid esterification amplified Gltox at intermediate glucose (11 mm), whereas reducing acetyl-coenzyme A carboxylase 1 expression by small interfering RNA to shift lipid partitioning to fat oxidation reduced Gltox. The results suggest that Gltox entails alterations in lipid partitioning, sterol and ceramide accumulation, mitochondrial dysfunction, and reactive oxygen species production, all contributing to altering ss-cell function. The data also suggest that the early promotion of lipid esterification processes is instrumental in the Gltox process.
Collapse
Affiliation(s)
- Wissal El-Assaad
- Molecular Nutrition Unit and the Montreal Diabetes Research Center, the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada H1W 4A4
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang X, Bao Y, Ke L, Yu Y. Elevated circulating free fatty acids levels causing pancreatic islet cell dysfunction through oxidative stress. J Endocrinol Invest 2010; 33:388-94. [PMID: 19915385 DOI: 10.1007/bf03346609] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Elevated plasma free fatty acids (FFA) concentration is predictive of the conversion from normal glucose tolerance and impaired glucose tolerance to diabetes. AIMS To evaluate the effects of prolonged exposure to FFA on basal and glucose-stimulated insulin secretion (GSIS) of pancreatic beta-cell, and to investigate the role of oxidative stress in FFA-induced decrease in beta-cell function. METHODS Rats were assigned to 3 groups and underwent 96-h infusions of normal saline (NS), intralipid plus heparin (IH), or intralipid plus heparin and N-acetylcysteine (IH+NAC). The plasma insulin, malonyldialdehyde (MDA), reduced glutathione (GSH), and oxidized glutathione (GSSG) were measured. In vivo intravenous glucose tolerance test (IVGTT) and ex vivo isolated pancreatic tissues perfusion were performed. RESULTS In IH group GSIS both in IVGTT and perifused pancreatic tissues were impaired (p<0.05), the GSH/GSSG ratio was declined and MDA levels increased (p<0.05), the volume density score of nuclear factor kappaB and inducible nitric oxide synthase in pancreatic islets were increased compared to the NS group (p<0.01). In IH+NAC group, NAC intervention partly restored the GSH/GSSG ratio and MDA level, and improved FFA induced GSIS impairment. CONCLUSION Elevated circulating FFA levels may contribute to causing the abnormalities of pancreatic islet cell function through active oxidative stress and oxidative stress-sensitive signaling pathway, which may play a key role in the development of impaired insulin secretion seen in obese Type 2 diabetes.
Collapse
Affiliation(s)
- X Zhang
- Division of Endocrinology and Metabolism, Sichuan University, West China Hospital, Cheng Du, China
| | | | | | | |
Collapse
|
37
|
Andrikopoulos S. Obesity and type 2 diabetes: slow down!--Can metabolic deceleration protect the islet beta cell from excess nutrient-induced damage? Mol Cell Endocrinol 2010; 316:140-6. [PMID: 19815054 DOI: 10.1016/j.mce.2009.09.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 09/08/2009] [Accepted: 09/28/2009] [Indexed: 01/09/2023]
Abstract
Islet beta-cell dysfunction is a characteristic and the main cause of hyperglycaemia of Type 2 diabetes. Understanding the mechanisms that cause beta-cell dysfunction will lead to better therapeutic outcomes for patients with Type 2 diabetes. Chronic fatty acid exposure of susceptible islet beta-cells causes dysfunction and death and this is associated with increased reactive oxygen species production leading to oxidative stress and increased endoplasmic reticulum stress. We present the hypothesis that metabolic deceleration can reduce both oxidative and endoplasmic reticulum stress and lead to improved beta-cell function and viability when exposed to a deleterious fat milieu. This is illustrated by the C57BL/6J mouse which is characterised by reduced insulin secretion and glucose intolerance associated with a mutation in nicotinamide nucleotide transhydrogenase (Nnt) but is resistant to obesity induced diabetes. On the other hand the DBA/2 mouse has comparatively higher insulin secretion and better glucose tolerance associated with increased Nnt activity but is susceptible to obesity-induced diabetes, possibly as a result of increased oxidative stress. We therefore suggest that in states of excess nutrient load, a reduced ability to metabolise this load may protect both the function and viability of beta-cells. Strategies that reduce metabolic flux when beta-cells are exposed to nutrient excess need to be considered when treating Type 2 diabetes.
Collapse
Affiliation(s)
- S Andrikopoulos
- Department of Medicine (AH/NH), University of Melbourne, Heidelberg Repatriation Hospital, Heidelberg Heights, Victoria, Australia.
| |
Collapse
|
38
|
Li J, Liu X, Ran X, Chen J, Li X, Wu W, Huang H, Huang H, Long Y, Liang J, Cheng J, Tian H. Sterol regulatory element-binding protein-1c knockdown protected INS-1E cells from lipotoxicity. Diabetes Obes Metab 2010; 12:35-46. [PMID: 19758361 DOI: 10.1111/j.1463-1326.2009.01093.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The reduction in insulin secretory capacity and beta-cell mass has been attributed, at least partially, to lipotoxicity, which may contribute to the development of type 2 diabetes. Chronic free fatty acids (FFA) exposure impairs pancreatic beta-cell function and induces beta-cell apoptosis. This study is to elucidate the underlying molecular mechanisms. RESEARCH DESIGN AND METHODS We exposed INS-1E pancreatic beta-cell line to palmitate or oleate, and measured the glucose stimulated insulin secretion (GSIS). The effect of FFA on sterol regulatory element-binding protein (SREBP)-1c lipogenic pathway, and expression of genes involved in beta-cell functions, including AMPK (AMP-activated protein kinase), UCP-2 (uncoupling protein-2), IRS-2 (insulin receptor substrate-2), PDX-1 (pancreatic duodenal homeobox-1), GLUT-2 (glucose transporter-2) and B cell lymphoma/leukaemia-2 (Bcl-2) were investigated. Apoptosis of these exposed cells was determined by MitoCapture, Annexin V-Cy3 or terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. Cell lipid accumulation was measured by oil red O staining or TG extraction. Also SREBP-1c expression knockdown were used. RESULTS FFA treatment resulted in SREBP-1c overexpression, impaired GSIS, lipid accumulation, apoptosis of INS-1E cells. In addition, the expression of lipogenic genes and UCP-2 were upregulated, but AMPK, IRS-2, PDX-1, GLUT-2 and Bcl-2 were downregulated in the exposed cells. However, these lipotoxic effects of FFA were largely prevented by induction of a SREBP-1c small interfering RNA. CONCLUSIONS These data suggest a strong correlation between FFA treatment and SREBP-1c activation in INS-1E cells. SREBP-1c might be a major factor responsible for beta-cell lipotoxicity, and SREBP-1c knockdown could protect INS-1E cells from lipotoxicity, which is implicating a therapeutic potential for treating diabetes related to lipotoxicity.
Collapse
Affiliation(s)
- J Li
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm 2010; 2010:453892. [PMID: 20182627 PMCID: PMC2825658 DOI: 10.1155/2010/453892] [Citation(s) in RCA: 348] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 11/13/2009] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes is the most prevalent and serious metabolic disease all over the world, and its hallmarks are pancreatic beta-cell dysfunction and insulin resistance. Under diabetic conditions, chronic hyperglycemia and subsequent augmentation of reactive oxygen species (ROS) deteriorate beta-cell function and increase insulin resistance which leads to the aggravation of type 2 diabetes. In addition, chronic hyperglycemia and ROS are also involved in the development of atherosclerosis which is often observed under diabetic conditions. Taken together, it is likely that ROS play an important role in the development of type 2 diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
40
|
|
41
|
Poitout V, Amyot J, Semache M, Zarrouki B, Hagman D, Fontés G. Glucolipotoxicity of the pancreatic beta cell. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1801:289-98. [PMID: 19715772 DOI: 10.1016/j.bbalip.2009.08.006] [Citation(s) in RCA: 274] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/13/2009] [Accepted: 08/13/2009] [Indexed: 02/07/2023]
Abstract
The concept of glucolipotoxicity refers to the combined, deleterious effects of elevated glucose and fatty acid levels on pancreatic beta-cell function and survival. Significant progress has been made in recent years towards a better understanding of the cellular and molecular basis of glucolipotoxicity in the beta cell. The permissive effect of elevated glucose on the detrimental actions of fatty acids stems from the influence of glucose on intracellular fatty acid metabolism, promoting the synthesis of cellular lipids. The combination of excessive levels of fatty acids and glucose therefore leads to decreased insulin secretion, impaired insulin gene expression, and beta-cell death by apoptosis, all of which probably have distinct underlying mechanisms. Recent studies from our laboratory have identified several pathways implicated in fatty acid inhibition of insulin gene expression, including the extracellular-regulated kinase (ERK1/2) pathway, the metabolic sensor Per-Arnt-Sim kinase (PASK), and the ATF6 branch of the unfolded protein response. We have also confirmed in vivo in rats that the decrease in insulin gene expression is an early defect which precedes any detectable abnormality in insulin secretion. While the role of glucolipotoxicity in humans is still debated, the inhibitory effects of chronically elevated fatty acid levels has been clearly demonstrated in several studies, at least in individuals genetically predisposed to developing type 2 diabetes. It is therefore likely that glucolipotoxicity contributes to beta-cell failure in type 2 diabetes as well as to the decline in beta-cell function observed after the onset of the disease.
Collapse
Affiliation(s)
- Vincent Poitout
- Montreal Diabetes Research Center, CRCHUM, Department of Medicine, University of Montreal, Montreal, QC, Canada.
| | | | | | | | | | | |
Collapse
|
42
|
Choi SE, Lee SM, Lee YJ, Li LJ, Lee SJ, Lee JH, Kim Y, Jun HS, Lee KW, Kang Y. Protective role of autophagy in palmitate-induced INS-1 beta-cell death. Endocrinology 2009; 150:126-34. [PMID: 18772242 DOI: 10.1210/en.2008-0483] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Autophagy, a vacuolar degradative pathway, constitutes a stress adaptation that avoids cell death or elicits the alternative cell-death pathway. This study was undertaken to determine whether autophagy is activated in palmitate (PA)-treated beta-cells and, if activated, what the role of autophagy is in the PA-induced beta-cell death. The enhanced formation of autophagosomes and autolysosomes was observed by exposure of INS-1 beta-cells to 400 microm PA in the presence of 25 mm glucose for 12 h. The formation of green fluorescent protein-LC3-labeled structures (green fluorescent protein-LC3 dots), with the conversion from LC3-I to LC3-II, was also distinct in the PA-treated cells. The phospho-mammalian target of rapamycin level, a typical signal pathway that inhibits activation of autophagy, was gradually decreased by PA treatment. Blockage of the mammalian target of rapamycin signaling pathway by treatment with rapamycin augmented the formation of autophagosomes but reduced PA-induced INS-1 cell death. In contrast, reduction of autophagosome formation by knocking down the ATG5, inhibition of fusion between autophagosome and lysosome by treatment with bafilomycin A1, or inhibition of proteolytic degradation by treatment with E64d/pepstatin A, significantly augmented PA-induced INS-1 cell death. These findings showed that the autophagy system could be activated in PA-treated INS-1 beta-cells, and suggested that the induction of autophagy might play an adaptive and protective role in PA-induced cell death.
Collapse
Affiliation(s)
- Sung-E Choi
- Institute for Medical Science, Ajou University School of Medicine, Wonchon-dong san5, Yongtong-gu, Suwon, Gyeonggi-do 442-749, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Glucotoxicity plays a major role in pancreatic β-cell apoptosis and diabetes progression, but the factors involved have remained largely unknown. Our recent studies have identified TXNIP (thioredoxin-interacting protein) as a novel pro-apoptotic β-cell factor that is induced by glucose, suggesting that TXNIP may play a role in β-cell glucotoxicity. Incubation of INS-1 β-cells and isolated primary mouse and human islets at high glucose levels led to a significant increase in TXNIP as well as in apoptosis. Very similar results were obtained in vivo in islets of diabetic mice. To determine whether TXNIP plays a causative role in glucotoxic β-cell death, we used TXNIP-deficient islets of HcB-19 mice harbouring a natural nonsense mutation in the TXNIP gene. We incubated islets of HcB-19 and C3H control mice at low and high glucose levels and assessed them for TXNIP expression and apoptosis. Interestingly, whereas in C3H islets, high glucose levels led again to significant elevation of TXNIP and apoptosis levels as measured by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) and cleaved caspase 3, no increase in apoptosis was observed in TXNIP-deficient HcB-19 islets, indicating that TXNIP is required for β-cell death caused by glucotoxicity. Thus inhibition of TXNIP protects against glucotoxic β-cell apoptosis and therefore may represent a novel therapeutic approach to halt diabetes progression.
Collapse
|
44
|
The sensitivity of pancreatic β-cells to mitochondrial injuries triggered by lipotoxicity and oxidative stress. Biochem Soc Trans 2008; 36:930-4. [DOI: 10.1042/bst0360930] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pancreatic β-cells are essential for the maintenance of glucose homoeostasis, and dysfunction of these insulin-secreting cells results in the development of diabetes. In the course of events leading from obesity to Type 2 diabetes, several mechanisms are currently envisaged. Among them, lipids and oxidative stress are considered as toxic candidates for the β-cell. The cellular link between fatty acids and ROS (reactive oxygen species) is essentially the mitochondrion, a key organelle for the control of insulin secretion. Mitochondria are the main source of ROS and are also the primary target of oxidative attacks. The present review presents the current knowledge of lipotoxicity related to oxidative stress in the context of mitochondrial function in the β-cell.
Collapse
|
45
|
Shen W, Liu K, Tian C, Yang L, Li X, Ren J, Packer L, Head E, Sharman E, Liu J. Protective effects of R-alpha-lipoic acid and acetyl-L-carnitine in MIN6 and isolated rat islet cells chronically exposed to oleic acid. J Cell Biochem 2008; 104:1232-43. [PMID: 18260126 DOI: 10.1002/jcb.21701] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mitochondrial dysfunction due to oxidative stress and concomitant impaired beta-cell function may play a key role in type 2 diabetes. Preventing and/or ameliorating oxidative mitochondrial dysfunction with mitochondria-specific nutrients may have preventive or therapeutic potential. In the present study, the oxidative mechanism of mitochondrial dysfunction in pancreatic beta-cells exposed to sublethal levels of oleic acid (OA) and the protective effects of mitochondrial nutrients [R-alpha-lipoic acid (LA) and acetyl-L-carnitine (ALC)] were investigated. Chronic exposure (72 h) of insulinoma MIN6 cells to OA (0.2-0.8 mM) increased intracellular oxidant formation, decreased mitochondrial membrane potential (MMP), enhanced uncoupling protein-2 (UCP-2) mRNA and protein expression, and consequently, decreased glucose-induced ATP production and suppressed glucose-stimulated insulin secretion. Pretreatment with LA and/or ALC reduced oxidant formation, increased MMP, regulated UCP-2 mRNA and protein expression, increased glucose-induced ATP production, and restored glucose-stimulated insulin secretion. The key findings on ATP production and insulin secretion were verified with isolated rat islets. These results suggest that mitochondrial dysfunction is involved in OA-induced pancreatic beta-cell dysfunction and that pretreatment with mitochondrial protective nutrients could be an effective strategy to prevent beta-cell dysfunction.
Collapse
Affiliation(s)
- Weili Shen
- Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
UCP2 is highly expressed in pancreatic alpha-cells and influences secretion and survival. Proc Natl Acad Sci U S A 2008; 105:12057-62. [PMID: 18701716 DOI: 10.1073/pnas.0710434105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In pancreatic beta-cells, uncoupling protein 2 (UCP2) influences mitochondrial oxidative phosphorylation and insulin secretion. Here, we show that alpha-cells express significantly higher levels of UCP2 than do beta-cells. Greater mitochondrial UCP2-related uncoupling was observed in alpha-cells compared with beta-cells and was accompanied by a lower oxidative phosphorylation efficiency (ATP/O). Conversely, reducing UCP2 activity in alpha-cells was associated with higher mitochondrial membrane potential generated by glucose oxidation and with increased ATP synthesis, indicating more efficient metabolic coupling. In vitro, the suppression of UCP2 activity led to reduced glucagon secretion in response to low glucose; however, in vivo, fasting glucagon levels were normal in UCP2(-/-) mice. In addition to its effects on secretion, UCP2 played a cytoprotective role in islets, with UCP2(-/-) alpha-cells being more sensitive to specific death stimuli. In summary, we demonstrate a direct role for UCP2 in maintaining alpha-cell function at the level of glucose metabolism, glucagon secretion, and cytoprotection.
Collapse
|
47
|
Abstract
Glucotoxicity, lipotoxicity, and glucolipotoxicity are secondary phenomena that are proposed to play a role in all forms of type 2 diabetes. The underlying concept is that once the primary pathogenesis of diabetes is established, probably involving both genetic and environmental forces, hyperglycemia and very commonly hyperlipidemia ensue and thereafter exert additional damaging or toxic effects on the beta-cell. In addition to their contribution to the deterioration of beta-cell function after the onset of the disease, elevations of plasma fatty acid levels that often accompany insulin resistance may, as glucose levels begin to rise outside of the normal range, also play a pathogenic role in the early stages of the disease. Because hyperglycemia is a prerequisite for lipotoxicity to occur, the term glucolipotoxicity, rather than lipotoxicity, is more appropriate to describe deleterious effects of lipids on beta-cell function. In vitro and in vivo evidence supporting the concept of glucotoxicity is presented first, as well as a description of the underlying mechanisms with an emphasis on the role of oxidative stress. Second, we discuss the functional manifestations of glucolipotoxicity on insulin secretion, insulin gene expression, and beta-cell death, and the role of glucose in the mechanisms of glucolipotoxicity. Finally, we attempt to define the role of these phenomena in the natural history of beta-cell compensation, decompensation, and failure during the course of type 2 diabetes.
Collapse
Affiliation(s)
- Vincent Poitout
- Montreal Diabetes Research Center, CR-CHUM, Technopole Angus, 2901 Rachel Est, Montreal, Quebec, Canada H1W 4A4.
| | | |
Collapse
|
48
|
Lu H, Yang Y, Allister EM, Wijesekara N, Wheeler MB. The identification of potential factors associated with the development of type 2 diabetes: a quantitative proteomics approach. Mol Cell Proteomics 2008; 7:1434-51. [PMID: 18448419 DOI: 10.1074/mcp.m700478-mcp200] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type 2 diabetes (T2D) arises when pancreatic beta-cells fail to compensate for systemic insulin resistance with appropriate insulin secretion. However, the link between insulin resistance and beta-cell failure in T2D is not fully understood. To explore this association, we studied transgenic MKR mice that initially develop insulin resistance in skeletal muscle but by 8 weeks of age have T2D. In the present study, global islet protein and gene expression changes were characterized in diabetic MKR versus non-diabetic control mice at 10 weeks of age. Using a quantitative proteomics approach (isobaric tags for relative and absolute quantification (iTRAQ)), 159 proteins were differentially expressed in MKR compared with control islets. Marked up-regulation of protein biosynthesis and endoplasmic reticulum stress pathways and parallel down-regulation in insulin processing/secretion, energy utilization, and metabolism were observed. A fraction of the differentially expressed proteins identified (including GLUT2, DNAJC3, VAMP2, RAB3A, and PC1/3) were linked previously to insulin-secretory defects and T2D. However, many proteins for the first time were associated with islet dysfunction, including the unfolded protein response proteins (ERP72, ERP44, ERP29, PPIB, FKBP2, FKBP11, and DNAJB11), endoplasmic reticulum-associated degradation proteins (VCP and UFM1), and multiple proteins associated with mitochondrial energy metabolism (NDUFA9, UQCRH, COX2, COX4I1, COX5A, ATP6V1B2, ATP6V1H, ANT1, ANT2, ETFA, and ETFB). The mRNA expression level corresponding to these proteins was examined by microarray, and then a small subset was validated using quantitative real time PCR and Western blot analyses. Importantly approximately 54% of differentially expressed proteins in MKR islets (including proteins involved in proinsulin processing, protein biosynthesis, and mitochondrial oxidation) showed changes in the proteome but not transcriptome, suggesting post-transcriptional regulation. These results underscore the importance of integrated mRNA and protein expression measurements and validate the use of the iTRAQ method combined with microarray to assess global protein and gene changes involved in the development of T2D.
Collapse
Affiliation(s)
- Hongfang Lu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
49
|
Chen J, Saxena G, Mungrue IN, Lusis AJ, Shalev A. Thioredoxin-interacting protein: a critical link between glucose toxicity and beta-cell apoptosis. Diabetes 2008; 57:938-44. [PMID: 18171713 PMCID: PMC3618659 DOI: 10.2337/db07-0715] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE In diabetes, glucose toxicity affects different organ systems, including pancreatic islets where it leads to beta-cell apoptosis, but the mechanisms are not fully understood. Recently, we identified thioredoxin-interacting protein (TXNIP) as a proapoptotic beta-cell factor that is induced by glucose, raising the possibility that TXNIP may play a role in beta-cell glucose toxicity. RESEARCH DESIGN AND METHODS To assess the effects of glucose on TXNIP expression and apoptosis and define the role of TXNIP, we used INS-1 beta-cells; primary mouse islets; obese, diabetic BTBR.ob mice; and a unique mouse model of TXNIP deficiency (HcB-19) that harbors a natural nonsense mutation in the TXNIP gene. RESULTS Incubation of INS-1 cells at 25 mmol/l glucose for 24 h led to an 18-fold increase in TXNIP protein, as assessed by immunoblotting. This was accompanied by increased apoptosis, as demonstrated by a 12-fold induction of cleaved caspase-3. Overexpression of TXNIP revealed that TXNIP induces the intrinsic mitochondrial pathway of apoptosis. Islets of diabetic BTBR.ob mice also demonstrated increased TXNIP and apoptosis as did isolated wild-type islets incubated at high glucose. In contrast, TXNIP-deficient HcB-19 islets were protected against glucose-induced apoptosis as measured by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and caspase-3, indicating that TXNIP is a required causal link between glucose toxicity and beta-cell death. CONCLUSIONS These findings shed new light onto the molecular mechanisms of beta-cell glucose toxicity and apoptosis, demonstrate that TXNIP induction plays a critical role in this vicious cycle, and suggest that inhibition of TXNIP may represent a novel approach to reduce glucotoxic beta-cell loss.
Collapse
Affiliation(s)
- Junqin Chen
- Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Geetu Saxena
- Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Imran N. Mungrue
- Department of Medicine, University of California, Los Angeles, California
| | - Aldons J. Lusis
- Department of Medicine, University of California, Los Angeles, California
| | - Anath Shalev
- Department of Medicine, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
50
|
Koshkin V, Dai FF, Robson-Doucette CA, Chan CB, Wheeler MB. Limited Mitochondrial Permeabilization Is an Early Manifestation of Palmitate-induced Lipotoxicity in Pancreatic β-Cells. J Biol Chem 2008; 283:7936-48. [DOI: 10.1074/jbc.m705652200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|