1
|
Singh J, Kumar V, Bala K, Aneja A, Singh J. Associations of INPPL1 (+1893CC/AA and + 2945AA/GG) exonic polymorphisms with the risk of type 2 diabetes mellitus in North Indian population: A case control study. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
2
|
Liu YH, Guo C, Sun YQ, Li Q. Polymorphisms in HIF-1a gene are not associated with diabetic retinopathy in China. World J Diabetes 2021; 12:1304-1311. [PMID: 34512895 PMCID: PMC8394233 DOI: 10.4239/wjd.v12.i8.1304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/09/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It has been reported that vascular endothelial growth factor (VEGF) is a susceptibility gene for both type 2 diabetes mellitus (T2DM) and diabetic retinopathy (DR). In response to hypoxia, VEGF mRNA levels are increased, which is mainly mediated by the binding of hypoxia-inducible factor-1 (HIF-1) and hypoxia response element upstream of the transcriptional start site of VEGF. Therefore, HIF-1a is supposed to be involved in pathology of DR.
AIM To investigate whether the polymorphisms in HIF-1a gene are associated with DR.
METHODS Two hundred and ninety-nine type 2 diabetic patients (128 males and 171 females) and 144 healthy volunteers were recruited. Mean age was 56.04 ± 21.05 years. According to the results of fundus fluorescein angiography and examination of ophthalmoscopy, patients were divided into two groups, DNR group (diabetes without retinopathy) and DR group (diabetes with retinopathy). There are 150 cases in DNR group and 149 cases in DR group. Two single nucleotide polymorphisms (SNP) of the HIF-1a gene were tested using matrix-assisted laser desorption/Ionization time of flight mass spectrometry. The frequency of genotypes and alleles, and odds ratio were measured.
RESULTS The mean age of the cases with diabetes was 55.84 ± 3.66 years, the mean age of the cases with DR was 55.97 ± 4.66 years and that of controls was 56.32 ± 4.70 years. Two variations were found in 76 patients. Rs11549465 is the change of C-T base, rs11549467 is the change of G-A base. The rs11549467 G/A genotype was 5.33% in diabetes and 6.04% in DR patients, respectively. The rs11549465 C/T genotype was 10% and 12.75% in patients with diabetes and DR. The rs11549467 A allele frequencies and rs11549465 T frequencies was similar to that of controls. Paired SNP linkage disequilibrium analysis indicated that rs11549467 was in linkage disequilibrium with rs11549465. Haplotype association analysis denoted that the haplotype association exhibited similar distribution in the patients compared to the normal controls.
CONCLUSION This study suggests that there is no relationship between the genetic variations of HIF1a and diabetes or DR.
Collapse
Affiliation(s)
- Yue-Hong Liu
- Department of Endocrinology, Hainan Cancer Hospital, Haikou 570312, Hainan Province, China
| | - Chang Guo
- Department of Endocrinology, Shenzhen University General Hospital, Shenzhen 518055,Guangdong Province, China
| | - Yi-Qiong Sun
- Department of Endocrinology, Shenzhen University General Hospital, Shenzhen 518055,Guangdong Province, China
| | - Qiang Li
- Department of Endocrinology, Shenzhen University General Hospital, Shenzhen 518055,Guangdong Province, China
| |
Collapse
|
3
|
Zafar U, Khaliq S, Ahmad HU, Manzoor S, Lone KP. Metabolic syndrome: an update on diagnostic criteria, pathogenesis, and genetic links. Hormones (Athens) 2018; 17:299-313. [PMID: 30171523 DOI: 10.1007/s42000-018-0051-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome (MetS), today a major global public health problem, is a cluster of clinical, metabolic, and biochemical abnormalities, such as central adiposity, hypertension, insulin resistance, and dyslipidemias. These MetS-related traits significantly increase the risk of type 2 diabetes mellitus, adverse cardiac events, stroke, and hepatic steatosis. The pathogenesis of MetS is multifactorial, with the interplay of environmental, nutritional, and genetic factors. Chronic low-grade inflammation together with visceral adipose tissue, adipocyte dysfunction, and insulin resistance plays a major role in the progression of the syndrome by impairing lipid and glucose homeostasis in insulin-sensitive tissues, such as the liver, muscle, and adipocytes. Adipose-derived inflammatory cytokines and non-esterified fatty acids establish the link between central obesity IR, inflammation, and atherogenesis. Various studies have reported an association between MetS and related traits with single-nucleotide polymorphisms of different susceptibility genes. Modulation of cytokine levels, pro-oxidants, and disturbed energy homeostasis, in relation to the genetic variations, is described in this review of the recent literature, which also provides updated data regarding the epidemiology, diagnostic criteria, and pathogenesis of MetS.
Collapse
Affiliation(s)
- Uzma Zafar
- Department of Physiology & Cell Biology, University of Health Sciences, Lahore, Pakistan.
- Department of Physiology, Lahore Medical and Dental College, Lahore, Pakistan.
| | - Saba Khaliq
- Department of Physiology & Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Hafiz Usman Ahmad
- Department of Physiology & Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Sobia Manzoor
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, NUST, Islamabad, Pakistan
| | - Khalid P Lone
- Department of Physiology & Cell Biology, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
4
|
Pichu S, Vimalraj S, Sathiyamoorthy J, Viswanathan V. Association of hypoxia inducible factor-1 alpha exon 12 mutation in diabetic patients with and without diabetic foot ulcer. Int J Biol Macromol 2018; 119:833-837. [PMID: 30086330 DOI: 10.1016/j.ijbiomac.2018.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 02/07/2023]
Abstract
Hypoxia inducible factor 1 alpha (HIF-1α) is a key regulator of the genes involved in the cellular response to hypoxia. This study aims to determine the HIF-1α gene polymorphism and its association with protein expression in diabetic subjects with and without diabetic foot ulcers (DFU). A total of 529 patients with T2DM (N = 185), DFU (N = 199) and Control (N = 145) were accounted for the study. PCR-RFLP experiment was carried out in order to find the allelic and genotypic comparison of HIF-1α gene in various groups of patients. There was a highly increased frequency of GA, RR value of 3.533(2.099-5.950) with p-value of 0.0001 on DFU patients when compared to that of control subjects with risk allele of GA, RR value of 1.756 (1.294-2.384) with p-value of 0.00001. Thus, we found that there was a significant association of HIF-1α polymorphism in exon 12 among DFU patients when compared to control groups. The circulatory HIF-1α protein expression study indicated a decreased expression in DFU levels when compared to T2DM and control. Overall, the study showed that there is an association of HIF-1α polymorphism (G1970A) in diabetes and DFU patients when compared to the healthy group.
Collapse
Affiliation(s)
| | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu 600 025, India.
| | - Jayalalitha Sathiyamoorthy
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute University, Chennai, Tamil Nadu, India
| | - Vijay Viswanathan
- Department of Genetics and Molecular Biology, Prof M. Viswanathan Diabetes Research Centre, MV Hospital for Diabetes, Royapuram, Chennai, India
| |
Collapse
|
5
|
Zhang T, Liu Y, Hu Y, Zhang X, Zhong L, Fan J, Peng Z. Association of donor and recipient SUMO4 rs237025 genetic variant with new-onset diabetes mellitus after liver transplantation in a Chinese population. Gene 2017; 627:428-433. [PMID: 28689037 DOI: 10.1016/j.gene.2017.06.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUNDS & AIMS New-onset diabetes mellitus (NODM) is a common complication after liver transplantation (LT). The small ubiquitin-like modifier 4 (SUMO4) rs237025 polymorphism has been reported to be associated with type 2 diabetes mellitus (T2DM). In this study, we aimed to evaluate the association of donor and recipient SUMO4 rs237025 polymorphisms with NODM and the long-term consequences of NODM after LT. METHODS A total of 126 liver transplant patients were enrolled in the study. One single nucleotide polymorphism, SUMO4 rs237025, was genotyped in both donors and recipients. RESULTS Both donor and recipient SUMO4 rs237025 polymorphisms were found to be significantly associated with NODM after LT. In multivariate analysis, recipient age>50 years, tacrolimus trough concentrations>10ng/mL at 1month after LT, donor and recipient rs237025 genetic variant, and the combined donor and recipient rs237025 genetic variant were independent predictive factors of NODM. Area under the receiver operating characteristic curve (AUROC) analysis indicated the higher predictive ability of the model containing combined donor and recipient rs237025 polymorphisms than the clinical model (p=0.046). Furthermore, Kaplan-Meier survival analysis demonstrated that NODM was related to significantly poorer patient survival in comparison with non-NODM patients (p=0.041). CONCLUSIONS Both donor and recipient SUMO4 rs237025 polymorphisms contribute to the development of NODM after LT and NODM is a frequent complication that negatively affects patient survival.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Liu
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yibo Hu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoqing Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Zhong
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junwei Fan
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhihai Peng
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Li YY, Wang H, Yang XX, Geng HY, Gong G, Kim HJ, Zhou YH, Wu JJ. Small Ubiquitin-Like Modifier 4 (SUMO4) Gene M55V Polymorphism and Type 2 Diabetes Mellitus: A Meta-analysis Including 6,823 Subjects. Front Endocrinol (Lausanne) 2017; 8:303. [PMID: 29163370 PMCID: PMC5673665 DOI: 10.3389/fendo.2017.00303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/17/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Many studies suggest that the small ubiquitin-like modifier 4 (SUMO4) M55V gene polymorphism (rs237025) may be associated with an increased risk of type 2 diabetes mellitus (T2DM). However, due to other conflicting results, a clear consensus is lacking in the matter. OBJECTIVE AND METHODS A meta-analysis consisting of 6,823 subjects from 10 studies was conducted to elucidate relationship between the SUMO4 M55V gene polymorphism and T2DM. Depending on the heterogeneity of the data, either a fixed or random-effects model would be used to assess the combined odds ratio (ORs) and their corresponding 95% confidence interval (CI). RESULTS SUMO4 gene M55V polymorphism was significantly associated with T2DM in the whole population under allelic (OR: 1.18, 95% CI: 1.10-1.28, P = 1.63 × 10-5), recessive (OR: 1.59, 95% CI: 1.14-2.23, P = 0.006), dominant (OR: 0.815, 95% CI: 0.737-0.901, P = 6.89 × 10-5), homozygous (OR: 1.415, 95% CI: 1.170-1.710, P = 0.0003), heterozygous (OR: 1.191, 95% CI: 1.072-1.323, P = 0.001), and additive genetic models (OR: 1.184, 95% CI: 1.097-1.279, P = 1.63 × 10-5). In our subgroup analysis, a significant association was found again in the Chinese population, but not in Japanese or Iranian population. CONCLUSION SUMO4 gene M55V polymorphism may correlate with increased T2DM risk. Chinese carriers of the V allele of the SUMO4 gene M55V polymorphism may be predisposed to developing T2DM.
Collapse
Affiliation(s)
- Yan-yan Li
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Institute of Clinical Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yan-yan Li,
| | - Hui Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin-xing Yang
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-yu Geng
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ge Gong
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Gerontology, Nanjing General Hospital, Nanjing, China
| | - Hyun Jun Kim
- Department of Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Yan-hong Zhou
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing-jing Wu
- Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Ahn M, Yoder SM, Wang Z, Oh E, Ramalingam L, Tunduguru R, Thurmond DC. The p21-activated kinase (PAK1) is involved in diet-induced beta cell mass expansion and survival in mice and human islets. Diabetologia 2016; 59:2145-55. [PMID: 27394663 PMCID: PMC5266538 DOI: 10.1007/s00125-016-4042-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/10/2016] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Human islets from type 2 diabetic donors are reportedly 80% deficient in the p21 (Cdc42/Rac)-activated kinase, PAK1. PAK1 is implicated in beta cell function and maintenance of beta cell mass. We questioned the mechanism(s) by which PAK1 deficiency potentially contributes to increased susceptibility to type 2 diabetes. METHODS Non-diabetic human islets and INS 832/13 beta cells cultured under diabetogenic conditions (i.e. with specific cytokines or under glucolipotoxic [GLT] conditions) were evaluated for changes to PAK1 signalling. Combined effects of PAK1 deficiency with GLT stress were assessed using classic knockout (Pak1 (-/-) ) mice fed a 45% energy from fat/palmitate-based, 'western' diet (WD). INS 832/13 cells overexpressing or depleted of PAK1 were also assessed for apoptosis and signalling changes. RESULTS Exposure of non-diabetic human islets to diabetic stressors attenuated PAK1 protein levels, concurrent with increased caspase 3 cleavage. WD-fed Pak1 knockout mice exhibited fasting hyperglycaemia and severe glucose intolerance. These mice also failed to mount an insulin secretory response following acute glucose challenge, coinciding with a 43% loss of beta cell mass when compared with WD-fed wild-type mice. Pak1 knockout mice had fewer total beta cells per islet, coincident with decreased beta cell proliferation. In INS 832/13 beta cells, PAK1 deficiency combined with GLT exposure heightened beta cell death relative to either condition alone; PAK1 deficiency resulted in decreased extracellular signal-related kinase (ERK) and B cell lymphoma 2 (Bcl2) phosphorylation levels. Conversely, PAK1 overexpression prevented GLT-induced cell death. CONCLUSIONS/INTERPRETATION These findings suggest that PAK1 deficiency may underlie an increased diabetic susceptibility. Discovery of ways to remediate glycaemic dysregulation via altering PAK1 or its downstream effectors offers promising opportunities for disease intervention.
Collapse
Affiliation(s)
- Miwon Ahn
- Department of Molecular & Cellular Endocrinology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Stephanie M Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhanxiang Wang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eunjin Oh
- Department of Molecular & Cellular Endocrinology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Latha Ramalingam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ragadeepthi Tunduguru
- Department of Molecular & Cellular Endocrinology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debbie C Thurmond
- Department of Molecular & Cellular Endocrinology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA.
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
8
|
Abstract
Adhesion G protein-coupled receptors (aGPCRs) have a long evolutionary history dating back to very basal unicellular eukaryotes. Almost every vertebrate is equipped with a set of different aGPCRs. Genomic sequence data of several hundred extinct and extant species allows for reconstruction of aGPCR phylogeny in vertebrates and non-vertebrates in general but also provides a detailed view into the recent evolutionary history of human aGPCRs. Mining these sequence sources with bioinformatic tools can unveil many facets of formerly unappreciated aGPCR functions. In this review, we extracted such information from the literature and open public sources and provide insights into the history of aGPCR in humans. This includes comprehensive analyses of signatures of selection, variability of human aGPCR genes, and quantitative traits at human aGPCR loci. As indicated by a large number of genome-wide genotype-phenotype association studies, variations in aGPCR contribute to specific human phenotypes. Our survey demonstrates that aGPCRs are significantly involved in adaptation processes, phenotype variations, and diseases in humans.
Collapse
Affiliation(s)
- Peter Kovacs
- Integrated Research and Treatment Center (IFB) AdiposityDiseases, Medical Faculty, University of Leipzig, Liebigstr. 21, Leipzig, 04103, Germany.
| | - Torsten Schöneberg
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, Leipzig, 04103, Germany.
| |
Collapse
|
9
|
Pichu S, Sathiyamoorthy J, Krishnamoorthy E, Umapathy D, Viswanathan V. Impact of the hypoxia inducible factor-1α (HIF-1α) pro582ser polymorphism and its gene expression on diabetic foot ulcers. Diabetes Res Clin Pract 2015; 109:533-40. [PMID: 26113285 DOI: 10.1016/j.diabres.2015.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 04/08/2015] [Accepted: 05/03/2015] [Indexed: 12/18/2022]
Abstract
AIM Adaptation to low oxygen tension (hypoxia) in cells and tissues leads to the transcriptional induction of series of genes and the primary factor mediating this response is the hypoxia-inducible factor-1α. This study was designed in order to examine the HIF-1α gene polymorphism, p582s (rs11549465) in Exon-12 of HIF-1α gene in diabetic subjects with and without foot ulcers (DFU) and to find its expression under these pathological conditions. METHODS A total of 224 subjects from our tertiary care centre were included, which consists of healthy controls (N=66), type 2 diabetes mellitus (T2DM) (N=79) and T2DM with foot ulcers (DFU) (N=79). Allelic and genotypic comparisons between the different groups were evaluated by PCR-RFLP. The gene expression studies on selected samples (N=15 of each group) were done by Semi-quantitative real time PCR. RESULTS AND DISCUSSIONS Genotype analysis showed a significant increase in presence of 'T' allele in T2DM & DFU when compared to that of control subjects. Allele wise analysis showed a higher frequency of 'T' allele in the T2DM (62.03%) when compared to that of control subjects (53.79%). Interestingly, semi-quantitative RT-PCR results showed decreased expression of HIF-1α gene on DFU when compared to that of T2DM and control subjects. CONCLUSION Our findings predict that there is an association of HIF-1α gene polymorphism on foot ulcer patients when compare to that of healthy controls. Semi-quantitative real time studies showed decreased HIF-1α gene expression on foot ulcer patients suggesting its possible role on the pathogenesis.
Collapse
Affiliation(s)
- Sivakamasundari Pichu
- Prof. M. Viswanathan Diabetes Research Centre, MV Hospital for Diabetes, Royapuram, Chennai 600013, Tamil Nadu, India.
| | - Jayalalitha Sathiyamoorthy
- Prof. M. Viswanathan Diabetes Research Centre, MV Hospital for Diabetes, Royapuram, Chennai 600013, Tamil Nadu, India
| | - Ezhilarasi Krishnamoorthy
- Prof. M. Viswanathan Diabetes Research Centre, MV Hospital for Diabetes, Royapuram, Chennai 600013, Tamil Nadu, India
| | - Dhamodharan Umapathy
- Prof. M. Viswanathan Diabetes Research Centre, MV Hospital for Diabetes, Royapuram, Chennai 600013, Tamil Nadu, India
| | - Vijay Viswanathan
- Prof. M. Viswanathan Diabetes Research Centre, MV Hospital for Diabetes, Royapuram, Chennai 600013, Tamil Nadu, India.
| |
Collapse
|
10
|
Signaling of the p21-activated kinase (PAK1) coordinates insulin-stimulated actin remodeling and glucose uptake in skeletal muscle cells. Biochem Pharmacol 2014; 92:380-8. [PMID: 25199455 DOI: 10.1016/j.bcp.2014.08.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 11/22/2022]
Abstract
Skeletal muscle accounts for ∼ 80% of postprandial glucose clearance, and skeletal muscle glucose clearance is crucial for maintaining insulin sensitivity and euglycemia. Insulin-stimulated glucose clearance/uptake entails recruitment of glucose transporter 4 (GLUT4) to the plasma membrane (PM) in a process that requires cortical F-actin remodeling; this process is dysregulated in Type 2 Diabetes. Recent studies have implicated PAK1 as a required element in GLUT4 recruitment in mouse skeletal muscle in vivo, although its underlying mechanism of action and requirement in glucose uptake remains undetermined. Toward this, we have employed the PAK1 inhibitor, IPA3, in studies using L6-GLUT4-myc muscle cells. IPA3 fully ablated insulin-stimulated GLUT4 translocation to the PM, corroborating the observation of ablated insulin-stimulated GLUT4 accumulation in the PM of skeletal muscle from PAK1(-/-) knockout mice. IPA3-treatment also abolished insulin-stimulated glucose uptake into skeletal myotubes. Mechanistically, live-cell imaging of myoblasts expressing the F-actin biosensor LifeAct-GFP treated with IPA3 showed blunting of the normal insulin-induced cortical actin remodeling. This blunting was underpinned by a loss of normal insulin-stimulated cofilin dephosphorylation in IPA3-treated myoblasts. These findings expand upon the existing model of actin remodeling in glucose uptake, by placing insulin-stimulated PAK1 signaling as a required upstream step to facilitate actin remodeling and subsequent cofilin dephosphorylation. Active, dephosphorylated cofilin then provides the G-actin substrate for continued F-actin remodeling to facilitate GLUT4 vesicle translocation for glucose uptake into the skeletal muscle cell.
Collapse
|
11
|
Ader M, Stefanovski D, Richey JM, Kim SP, Kolka CM, Ionut V, Kabir M, Bergman RN. Failure of homeostatic model assessment of insulin resistance to detect marked diet-induced insulin resistance in dogs. Diabetes 2014; 63:1914-9. [PMID: 24353184 PMCID: PMC4876683 DOI: 10.2337/db13-1215] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Accurate quantification of insulin resistance is essential for determining efficacy of treatments to reduce diabetes risk. Gold-standard methods to assess resistance are available (e.g., hyperinsulinemic clamp or minimal model), but surrogate indices based solely on fasting values have attractive simplicity. One such surrogate, the homeostatic model assessment of insulin resistance (HOMA-IR), is widely applied despite known inaccuracies in characterizing resistance across groups. Of greater significance is whether HOMA-IR can detect changes in insulin sensitivity induced by an intervention. We tested the ability of HOMA-IR to detect high-fat diet-induced insulin resistance in 36 healthy canines using clamp and minimal model analysis of the intravenous glucose tolerance test (IVGTT) to document progression of resistance. The influence of pancreatic function on HOMA-IR accuracy was assessed using the acute insulin response during the IVGTT (AIRG). Diet-induced resistance was confirmed by both clamp and minimal model (P < 0.0001), and measures were correlated with each other (P = 0.001). In striking contrast, HOMA-IR ([fasting insulin (μU/mL) × fasting glucose (mmol)]/22.5) did not detect reduced sensitivity induced by fat feeding (P = 0.22). In fact, 13 of 36 animals showed an artifactual decrease in HOMA-IR (i.e., increased sensitivity). The ability of HOMA-IR to detect diet-induced resistance was particularly limited under conditions when insulin secretory function (AIRG) is less than robust. In conclusion, HOMA-IR is of limited utility for detecting diet-induced deterioration of insulin sensitivity quantified by glucose clamp or minimal model. Caution should be exercised when using HOMA-IR to detect insulin resistance when pancreatic function is compromised. It is necessary to use other accurate indices to detect longitudinal changes in insulin resistance with any confidence.
Collapse
Affiliation(s)
- Marilyn Ader
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Darko Stefanovski
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Joyce M. Richey
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Stella P. Kim
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Cathryn M. Kolka
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Viorica Ionut
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Morvarid Kabir
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Richard N. Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
12
|
Sirovich L. Genomic data and disease forecasting: application to type 2 diabetes (T2D). PLoS One 2014; 9:e85684. [PMID: 24465649 PMCID: PMC3895003 DOI: 10.1371/journal.pone.0085684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 12/06/2013] [Indexed: 11/24/2022] Open
Abstract
A general approach is presented for the extraction of a classifier of disease risk that is latent in large scale disease/control databases. Novel features are the following: (1) a data reorganization into a regularized standard form that emphasizes individual alleles instead of the single nucleotide polymorphism (Snp) allele pair to which they belong; (2) from this a procedure that significantly enhances the discovery of high value genomic loci; (3) an investigative analysis based on the hypothesis that disease represents a very small signal (small signal-to-noise) that is latent in the data. The resulting analyses applied to the FUSION T2D database leads to the polling of thousands of genomic loci to classify disease. This large genomic kernel of loci is shared by non-diabetics at nearly the same high level; but a small well defined separation exists and it is speculated that this might be due to unconventional disease mechanisms. Another analysis demonstrates that the FUSION database size limits its disease predictability, and only one third of the resulting classifier loci are estimated to relate to T2D. The remainder is associated with hidden features that might contrast the disease and control populations and that more data would eliminate.
Collapse
Affiliation(s)
- Lawrence Sirovich
- Center for Studies in Physics & Biology, Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Variants of insulin-signaling inhibitor genes in type 2 diabetes and related metabolic abnormalities. Int J Genomics 2013; 2013:376454. [PMID: 23762820 PMCID: PMC3674720 DOI: 10.1155/2013/376454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/23/2013] [Indexed: 02/08/2023] Open
Abstract
Insulin resistance has a central role in the pathogenesis of several metabolic diseases, including type 2 diabetes, obesity, glucose intolerance, metabolic syndrome, atherosclerosis, and cardiovascular diseases. Insulin resistance and related traits are likely to be caused by abnormalities in the genes encoding for proteins involved in the composite network of insulin-signaling; in this review we have focused our attention on genetic variants of insulin-signaling inhibitor molecules. These proteins interfere with different steps in insulin-signaling: ENPP1/PC-1 and the phosphatases PTP1B and PTPRF/LAR inhibit the insulin receptor activation; INPPL1/SHIP-2 hydrolyzes PI3-kinase products, hampering the phosphoinositide-mediated downstream signaling; and TRIB3 binds the serine-threonine kinase Akt, reducing its phosphorylation levels. While several variants have been described over the years for all these genes, solid evidence of an association with type 2 diabetes and related diseases seems to exist only for rs1044498 of the ENPP1 gene and for rs2295490 of the TRIB3 gene. However, overall the data recapitulated in this Review article may supply useful elements to interpret the results of novel, more technically advanced genetic studies; indeed it is becoming increasingly evident that genetic information on metabolic diseases should be interpreted taking into account the complex biological pathways underlying their pathogenesis.
Collapse
|
14
|
Meiloud G, Arfa I, Kefi R, Abdelhamid I, Veten F, Lasram K, Ben Halim N, Sidi Mhamed A, Samb A, Abdelhak S, Houmeida AO. Type 2 diabetes in Mauritania: prevalence of the undiagnosed diabetes, influence of family history and maternal effect. Prim Care Diabetes 2013; 7:19-24. [PMID: 23380050 DOI: 10.1016/j.pcd.2012.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/13/2012] [Accepted: 12/16/2012] [Indexed: 02/01/2023]
Abstract
AIM We estimated the prevalence of undiagnosed diabetes, analyzed the influence of family history on the occurrence of T2D and evaluated its aggregation pattern in the Mauritanian population. METHODS The prevalence of unknown diabetes was obtained using data compiled from 1278 Mauritanian adults applying a questionnaire and fasting serum glucose tests. Detailed family history of diabetes and clinical characteristics were gathered from 421 T2D patients. RESULTS The prevalence of undiagnosed diabetes was 4.7 ± 1.2% in the studied population (3.1% in men and 6.4% in women). 27% of T2D patients reported at least one relative with diabetes. Association between family history and diabetes was higher among first degree compared to second degree relatives (p=0.003). We observed more probands with an affected mother than those who have a father with diabetes (p = 0.002), suggesting a preferential maternal effect which did not extend to second degree relatives. CONCLUSIONS These results show that the prevalence of diabetes in the Mauritanian population could be higher than currently thought. Family history screening may be used in the management of this condition in Mauritania.
Collapse
Affiliation(s)
- Ghlana Meiloud
- Laboratory of Biochemistry and Molecular Biology, Faculté des Sciences et Techniques, B.P. 5026, Nouakchott, Mauritania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
A p21-activated kinase (PAK1) signaling cascade coordinately regulates F-actin remodeling and insulin granule exocytosis in pancreatic β cells. Biochem Pharmacol 2012; 85:808-16. [PMID: 23246867 DOI: 10.1016/j.bcp.2012.12.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 12/21/2022]
Abstract
Human islet studies implicate an important signaling role for the Cdc42 effector protein p21-activated kinase (PAK1) in the sustained/second-phase of insulin secretion. Because human islets from type 2 diabetic donors lack ∼80% of normal PAK1 protein levels, the mechanistic requirement for PAK1 signaling in islet function was interrogated. Similar to MIN6 β cells, human islets elicited glucose-stimulated PAK1 activation that was sensitive to the PAK1 inhibitor, IPA3. Given that sustained insulin secretion has been correlated with glucose-induced filamentous actin (F-actin) remodeling, we tested the hypothesis that a Cdc42-activated PAK1 signaling cascade is required to elicit F-actin remodeling to mobilize granules to the cell surface. Live-cell imaging captured the glucose-induced cortical F-actin remodeling in MIN6 β cells; IPA3-mediated inhibition of PAK1 abolished this remodeling. IPA3 also ablated glucose-stimulated insulin granule accumulation at the plasma membrane, consistent with its role in sustained/second-phase insulin release. Both IPA3 and a selective inhibitor of the Cdc42 GTPase, ML-141, blunted the glucose-stimulated activation of Raf-1, suggesting Raf-1 to be downstream of Cdc42→PAK1. IPA3 also inhibited MEK1/2 activation, implicating the MEK1/2→ERK1/2 cascade to occur downstream of PAK1. Importantly, PD0325901, a new selective inhibitor of MEK1/2→ERK1/2 activation, impaired F-actin remodeling and the sustained/amplification pathway of insulin release. Taken together, these data suggest that glucose-mediated activation of Cdc42 leads to activation of PAK1 and prompts activation of its downstream targets Raf-1, MEK1/2 and ERK1/2 to elicit F-actin remodeling and recruitment of insulin granules to the plasma membrane to support the sustained phase of insulin release.
Collapse
|
16
|
Wu C, Gong Y, Yuan J, Gong H, Zou Y, Ge J. Identification of shared genetic susceptibility locus for coronary artery disease, type 2 diabetes and obesity: a meta-analysis of genome-wide studies. Cardiovasc Diabetol 2012; 11:68. [PMID: 22697793 PMCID: PMC3481354 DOI: 10.1186/1475-2840-11-68] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 05/28/2012] [Indexed: 01/10/2023] Open
Abstract
Type 2 diabetes (2DM), obesity, and coronary artery disease (CAD) are frequently coexisted being as key components of metabolic syndrome. Whether there is shared genetic background underlying these diseases remained unclear. We performed a meta-analysis of 35 genome screens for 2DM, 36 for obesity or body mass index (BMI)-defined obesity, and 21 for CAD using genome search meta-analysis (GSMA), which combines linkage results to identify regions with only weak evidence and provide genetic interactions among different diseases. For each study, 120 genomic bins of approximately 30 cM were defined and ranked according to the best linkage evidence within each bin. For each disease, bin 6.2 achieved genomic significanct evidence, and bin 9.3, 10.5, 16.3 reached suggestive level for 2DM. Bin 11.2 and 16.3, and bin 10.5 and 9.3, reached suggestive evidence for obesity and CAD respectively. In pooled all three diseases, bin 9.3 and 6.5 reached genomic significant and suggestive evidence respectively, being relatively much weaker for 2DM/CAD or 2DM/obesity or CAD/obesity. Further, genomewide significant evidence was observed of bin 16.3 and 4.5 for 2DM/obesity, which is decreased when CAD was added. These findings indicated that bin 9.3 and 6.5 are most likely to be shared by 2DM, obesity and CAD. And bin 16.3 and 4.5 are potentially common regions to 2DM and obesity only. The observed shared susceptibility regions imply a partly overlapping genetic aspects of disease development. Fine scanning of these regions will definitely identify more susceptibility genes and causal variants.
Collapse
Affiliation(s)
- Chaoneng Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
17
|
High fat feeding exacerbates endoplasmic reticulum stress and beta cell demise. EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201200058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Chang CL, Cai JJ, Cheng PJ, Chueh HY, Hsu SYT. Identification of metabolic modifiers that underlie phenotypic variations in energy-balance regulation. Diabetes 2011; 60:726-34. [PMID: 21300845 PMCID: PMC3046833 DOI: 10.2337/db10-1331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Although recent studies have shown that human genomes contain hundreds of loci that exhibit signatures of positive selection, variants that are associated with adaptation in energy-balance regulation remain elusive. We reasoned that the difficulty in identifying such variants could be due to heterogeneity in selection pressure and that an integrative approach that incorporated experiment-based evidence and population genetics-based statistical judgments would be needed to reveal important metabolic modifiers in humans. RESEARCH DESIGN AND METHODS To identify common metabolic modifiers that underlie phenotypic variation in diabetes-associated or obesity-associated traits in humans, or both, we screened 207 candidate loci for regulatory single nucleotide polymorphisms (SNPs) that exhibited evidence of gene-environmental interactions. RESULTS Three SNPs (rs3895874, rs3848460, and rs937301) at the 5' gene region of human GIP were identified as prime metabolic-modifier candidates at the enteroinsular axis. Functional studies have shown that GIP promoter reporters carrying derived alleles of these three SNPs (haplotype GIP(-1920A)) have significantly lower transcriptional activities than those with ancestral alleles at corresponding positions (haplotype GIP(-1920G)). Consistently, studies of pregnant women who have undergone a screening test for gestational diabetes have shown that patients with a homozygous GIP(-1920A/A) genotype have significantly lower serum concentrations of glucose-dependent insulinotropic polypeptide (GIP) than those carrying an ancestral GIP(-1920G) haplotype. After controlling for a GIPR variation, we showed that serum glucose concentrations of patients carrying GIP(-1920A/A) homozygotes are significantly higher than that of those carrying an ancestral GIP(-1920G) haplotype (odds ratio 3.53). CONCLUSIONS Our proof-of-concept study indicates that common regulatory GIP variants impart a difference in GIP and glucose metabolism. The study also provides a rare example that identified the common variant-common phenotypic variation pattern based on evidence of moderate gene-environmental interactions.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - James J. Cai
- Department of Biology, Stanford University, Stanford, California
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Po Jen Cheng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ho Yen Chueh
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Sheau Yu Teddy Hsu
- Reproductive Biology and Stem Cell Research Program, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California
- Corresponding author: Sheau Yu Teddy Hsu,
| |
Collapse
|
19
|
Fallah S, Jafarzadeh M, Hedayati M. No association of the SUMO4 polymorphism M55V variant in type 2 diabetes in Iranian subjects. Diabetes Res Clin Pract 2010; 90:191-5. [PMID: 20728233 DOI: 10.1016/j.diabres.2010.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 05/02/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Diabetes mellitus incidence has an increasing rate and it's genetic aspect is an important approach as a risk factor and predictive value in this disorder. In some population, SUMO4, a regulator of NF-κB, gene polymorphism is associated with diabetes. A single-nucleotide polymorphism was detected in SUMO4; substituting a highly conserved methionine with a valine residue (M55V). We studied the association between M55V polymorphism in the SUMO4 gene insusceptibility of type 2 diabetes in patients with type 2 diabetes. MATERIALS AND METHODS Participants were 50 patients with type 2 diabetes and 50 control Iranian subjects. Genotyping was done using polymorphism chain reaction (PCR) technique and subsequent cleavage by restriction endonuclease (RFLP) for the M55V SUMO4 gene variant. RESULTS The frequency of SUMO4 AA, AG and GG were 13%, 25% and 12% in control group and 20%, 22%, 18% in the type 2 diabetes patients respectively. The SUMO4 M55V variant was not associated with the susceptibility of type 2 diabetes. CONCLUSION The study indicates that the SUMO4 gene M55V variant was not associated with the susceptibility of the type 2 diabetes polymorphism.
Collapse
Affiliation(s)
- Soudabeh Fallah
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
20
|
Yoo YJ, Bull SB, Paterson AD, Waggott D, Sun L. Were genome-wide linkage studies a waste of time? Exploiting candidate regions within genome-wide association studies. Genet Epidemiol 2010; 34:107-18. [PMID: 19626703 DOI: 10.1002/gepi.20438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A central issue in genome-wide association (GWA) studies is assessing statistical significance while adjusting for multiple hypothesis testing. An equally important question is the statistical efficiency of the GWA design as compared to the traditional sequential approach in which genome-wide linkage analysis is followed by region-wise association mapping. Nevertheless, GWA is becoming more popular due in part to cost efficiency: commercially available 1M chips are nearly as inexpensive as a custom-designed 10 K chip. It is becoming apparent, however, that most of the on-going GWA studies with 2,000-5,000 samples are in fact underpowered. As a means to improve power, we emphasize the importance of utilizing prior information such as results of previous linkage studies via a stratified false discovery rate (FDR) control. The essence of the stratified FDR control is to prioritize the genome and maintain power to interrogate candidate regions within the GWA study. These candidate regions can be defined as, but are by no means limited to, linkage-peak regions. Furthermore, we theoretically unify the stratified FDR approach and the weighted P-value method, and we show that stratified FDR can be formulated as a robust version of weighted FDR. Finally, we demonstrate the utility of the methods in two GWA datasets: Type 2 diabetes (FUSION) and an on-going study of long-term diabetic complications (DCCT/EDIC). The methods are implemented as a user-friendly software package, SFDR. The same stratification framework can be readily applied to other type of studies, for example, using GWA results to improve the power of sequencing data analyses.
Collapse
Affiliation(s)
- Yun J Yoo
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ont., Canada
| | | | | | | | | | | |
Collapse
|
21
|
Nagy G, Kovacs-Nagy R, Kereszturi E, Somogyi A, Szekely A, Nemeth N, Hosszufalusi N, Panczel P, Ronai Z, Sasvari-Szekely M. Association of hypoxia inducible factor-1 alpha gene polymorphism with both type 1 and type 2 diabetes in a Caucasian (Hungarian) sample. BMC MEDICAL GENETICS 2009; 10:79. [PMID: 19691832 PMCID: PMC2736933 DOI: 10.1186/1471-2350-10-79] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 08/19/2009] [Indexed: 12/20/2022]
Abstract
Background Hypoxia inducible factor-1 alpha (HIF-1α) is a transcription factor that plays an important role in neo-vascularisation, embryonic pancreas beta-cell mass development, and beta cell protection. Recently a non synonymous single nucleotide polymorphism (g.C45035T SNP, rs11549465) of HIF-1α gene, resulting in the p.P582S amino acid change has been shown to be associated with type 2 diabetes (T2DM) in a Japanese population. Our aim was to replicate these findings on a Caucasian (Hungarian) population, as well as to study whether this genetic effect is restricted to T2DM or can be expanded to diabetes in general. Methods A large Caucasian sample (N = 890) was recruited including 370 T2DM, 166 T1DM and 354 healthy subjects. Genotyping was validated by two independent methods: a restriction fragment analysis (RFLP) and a real time PCR using TaqMan probes. An overestimation of heterozygotes by RFLP was observed as a consequence of a nearby SNP (rs34005929). Therefore genotyping results of the justified TaqMan system were accepted. The measured genotype distribution corresponded to Hardy-Weinberg equilibrium (P = 0.740) Results As the TT genotype was extremely rare in the population (0.6% in clinical sample and 2.5% in controls), the genotypes were grouped as T absent (CC) and T present (CT and TT). Genotype-wise analysis showed a significant increase of T present group in controls (24.0%) as compared to patients (16.8%, P = 0.008). This genetic effect was demonstrated in the separated samples of type 1 (15.1%, P = 0.020), and also in type 2 (17.6%, P = 0.032) diabetes. Allele-wise analysis gave identical results showing a higher frequency of the T allele in the control sample (13.3%) than in the clinical sample (8.7%, P = 0.002) with similar results in type 1 (7.8%, P = 0.010) and type 2 (9.1%, P = 0.011) diabetes. The odds ratio for diabetes (either type 1 or 2) was 1.56 in the presence of the C allele. Conclusion We confirmed the protective effect of a rare genetic variant of HIF-1α gene against type 2 diabetes in a Caucasian sample. Moreover we demonstrated a genetic contribution of the same polymorphism in type 1 diabetes as well, supporting a possible overlap in pathomechanism for T2DM and a T1DM.
Collapse
Affiliation(s)
- Geza Nagy
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lillioja S, Wilton A. Agreement among type 2 diabetes linkage studies but a poor correlation with results from genome-wide association studies. Diabetologia 2009; 52:1061-74. [PMID: 19296077 DOI: 10.1007/s00125-009-1324-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/13/2009] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS Little of the genetic basis for type 2 diabetes has been explained, despite numerous genetic linkage studies and the discovery of multiple genes in genome-wide association (GWA) studies. To begin to resolve the genetic component of this disease, we searched for sites at which genetic results had been corroborated in different studies, in the expectation that replication among studies should direct us to the genomic locations of causative genes with more confidence than the results of individual studies. METHODS We have mapped the physical location of results from 83 linkage reports (for type 2 diabetes and diabetes precursor quantitative traits [QTs, e.g. plasma insulin levels]) and recent large GWA reports (for type 2 diabetes) onto the same human genome sequence to identify replicated results in diabetes genetic 'hot spots'. RESULTS Genetic linkage has been found at least ten times at 18 different locations, and at least five times in 56 locations. All replication clusters contained study populations from more than one ethnic background and most contained results for both diabetes and QTs. There is no close relationship between the GWA results and linkage clusters, and the nine best replication clusters have no nearby GWA result. CONCLUSIONS/INTERPRETATION Many of the genes for type 2 diabetes remain unidentified. This analysis identifies the broad location of yet to be identified genes on 6q, 1q, 18p, 2q, 20q, 17pq, 8p, 19q and 9q. The discrepancy between the linkage and GWA studies may be explained by the presence of multiple, uncommon, mildly deleterious polymorphisms scattered throughout the regulatory and coding regions of genes for type 2 diabetes.
Collapse
Affiliation(s)
- S Lillioja
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.
| | | |
Collapse
|
23
|
Abstract
Myopia, or nearsightedness, is the most common human eye disorder in the world, and is a significant global public health concern. Along with cataract, macular degeneration, infectious disease, and vitamin A deficiency, myopia is one of the most important causes of visual impairment worldwide. Severe or high-grade myopia is a leading cause of blindness because of its associated ocular morbidities of retinal detachment, macular choroidal degeneration, premature cataract, and glaucoma. Ample evidence documents the heritability of the non-syndromic forms of this condition, especially for high-grade myopia, commonly referred to as myopic spherical refractive power of 5 to 6 diopters or higher. Multiple high-grade myopia genetic loci have been identified, and confirmatory studies identifying high-grade and moderate myopia loci have also occurred. In general, myopia susceptibility genes are unknown with few association studies performed, and without confirmation in other research laboratories or testing of separate patient cohorts.
Collapse
Affiliation(s)
- Terri L Young
- Department of Ophthalmology and Pediatrics, The Duke Eye Center and the Center for Human Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
24
|
Gaulton KJ, Willer CJ, Li Y, Scott LJ, Conneely KN, Jackson AU, Duren WL, Chines PS, Narisu N, Bonnycastle LL, Luo J, Tong M, Sprau AG, Pugh EW, Doheny KF, Valle TT, Abecasis GR, Tuomilehto J, Bergman RN, Collins FS, Boehnke M, Mohlke KL. Comprehensive association study of type 2 diabetes and related quantitative traits with 222 candidate genes. Diabetes 2008; 57:3136-44. [PMID: 18678618 PMCID: PMC2570412 DOI: 10.2337/db07-1731] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Type 2 diabetes is a common complex disorder with environmental and genetic components. We used a candidate gene-based approach to identify single nucleotide polymorphism (SNP) variants in 222 candidate genes that influence susceptibility to type 2 diabetes. RESEARCH DESIGN AND METHODS In a case-control study of 1,161 type 2 diabetic subjects and 1,174 control Finns who are normal glucose tolerant, we genotyped 3,531 tagSNPs and annotation-based SNPs and imputed an additional 7,498 SNPs, providing 99.9% coverage of common HapMap variants in the 222 candidate genes. Selected SNPs were genotyped in an additional 1,211 type 2 diabetic case subjects and 1,259 control subjects who are normal glucose tolerant, also from Finland. RESULTS Using SNP- and gene-based analysis methods, we replicated previously reported SNP-type 2 diabetes associations in PPARG, KCNJ11, and SLC2A2; identified significant SNPs in genes with previously reported associations (ENPP1 [rs2021966, P = 0.00026] and NRF1 [rs1882095, P = 0.00096]); and implicated novel genes, including RAPGEF1 (rs4740283, P = 0.00013) and TP53 (rs1042522, Arg72Pro, P = 0.00086), in type 2 diabetes susceptibility. CONCLUSIONS Our study provides an effective gene-based approach to association study design and analysis. One or more of the newly implicated genes may contribute to type 2 diabetes pathogenesis. Analysis of additional samples will be necessary to determine their effect on susceptibility.
Collapse
Affiliation(s)
- Kyle J Gaulton
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen WM, Erdos MR, Jackson AU, Saxena R, Sanna S, Silver KD, Timpson NJ, Hansen T, Orrù M, Grazia Piras M, Bonnycastle LL, Willer CJ, Lyssenko V, Shen H, Kuusisto J, Ebrahim S, Sestu N, Duren WL, Spada MC, Stringham HM, Scott LJ, Olla N, Swift AJ, Najjar S, Mitchell BD, Lawlor DA, Smith GD, Ben-Shlomo Y, Andersen G, Borch-Johnsen K, Jørgensen T, Saramies J, Valle TT, Buchanan TA, Shuldiner AR, Lakatta E, Bergman RN, Uda M, Tuomilehto J, Pedersen O, Cao A, Groop L, Mohlke KL, Laakso M, Schlessinger D, Collins FS, Altshuler D, Abecasis GR, Boehnke M, Scuteri A, Watanabe RM. Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. J Clin Invest 2008; 118:2620-8. [PMID: 18521185 DOI: 10.1172/jci34566] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 04/23/2008] [Indexed: 12/19/2022] Open
Abstract
Identifying the genetic variants that regulate fasting glucose concentrations may further our understanding of the pathogenesis of diabetes. We therefore investigated the association of fasting glucose levels with SNPs in 2 genome-wide scans including a total of 5,088 nondiabetic individuals from Finland and Sardinia. We found a significant association between the SNP rs563694 and fasting glucose concentrations (P = 3.5 x 10(-7)). This association was further investigated in an additional 18,436 nondiabetic individuals of mixed European descent from 7 different studies. The combined P value for association in these follow-up samples was 6.9 x 10(-26), and combining results from all studies resulted in an overall P value for association of 6.4 x 10(-33). Across these studies, fasting glucose concentrations increased 0.01-0.16 mM with each copy of the major allele, accounting for approximately 1% of the total variation in fasting glucose. The rs563694 SNP is located between the genes glucose-6-phosphatase catalytic subunit 2 (G6PC2) and ATP-binding cassette, subfamily B (MDR/TAP), member 11 (ABCB11). Our results in combination with data reported in the literature suggest that G6PC2, a glucose-6-phosphatase almost exclusively expressed in pancreatic islet cells, may underlie variation in fasting glucose, though it is possible that ABCB11, which is expressed primarily in liver, may also contribute to such variation.
Collapse
Affiliation(s)
- Wei-Min Chen
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Holmkvist J, Anthonsen S, Wegner L, Andersen G, Jørgensen T, Borch-Johnsen K, Sandbaek A, Lauritzen T, Pedersen O, Hansen T. Polymorphisms in AHI1 are not associated with type 2 diabetes or related phenotypes in Danes: non-replication of a genome-wide association result. Diabetologia 2008; 51:609-14. [PMID: 18227995 DOI: 10.1007/s00125-008-0925-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 12/14/2007] [Indexed: 11/27/2022]
Abstract
AIMS/HYPOTHESIS A genome-wide association study recently identified an association between common variants, rs1535435 and rs9494266, in the AHI1 gene and type 2 diabetes. The aim of the present study was to investigate the putative association between these polymorphisms and type 2 diabetes or type 2 diabetes-related metabolic traits in Danish individuals. METHODS The previously associated polymorphisms were genotyped in the population-based Inter99 cohort (n=6162), the Danish ADDITION study (n=8428), a population-based sample of young healthy participants (n=377) and in additional type 2 diabetes (n=2107) and glucose-tolerant participants (n=483) using Taqman allelic discrimination. The case-control study involved 4,104 type 2 diabetic patients and 5,050 glucose-tolerant control participants. Type 2 diabetes-related traits were investigated in 17,521 individuals. RESULTS rs1535435 and rs9494266 were not associated with type 2 diabetes. Odds ratios (OR) were OR(add) 1.0 (95% C.I. 0.9-1.2; p(add)=0.7) and OR(add) 1.1 (0.9-1.2; p(add)=0.4), respectively, a finding supported by meta-analyses: OR(add) 1.0 (0.9-1.1; p(add)=0.6) and OR(add) 1.0 (0.9-1.1; p(add)=0.6), respectively. Neither rs1535435 nor rs9494266 were consistently associated with any of the tested type 2 diabetes-related metabolic traits. CONCLUSIONS/INTERPRETATION Data from large samples of Danish individuals do not support a role for AHI1 rs1535435 nor rs9494266 as major type 2 diabetes variants. This study highlights the importance of independent and well-powered replication studies of the recent genome-wide association scans before a locus is robustly validated as being associated with type 2 diabetes.
Collapse
Affiliation(s)
- J Holmkvist
- Steno Diabetes Center, Niels Steensens Vej 1, NLC2.12, 2820 Gentofte, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sjakste T, Kalis M, Poudziunas I, Pirags V, Lazdins M, Groop L, Sjakste N. Association of Microsatellite Polymorphisms of the Human 14q13.2 Region with Type 2 Diabetes Mellitus in Latvian and Finnish Populations. Ann Hum Genet 2007; 71:772-6. [PMID: 17535269 DOI: 10.1111/j.1469-1809.2007.00372.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A polymorphic microsatellite in intron 6 of the human proteasome core particle PSMA6 gene (HSMS006), and four other microsatellites localized upstream on human chromosome 14q13.2 (HSMS801, HSMS702, HSMS701, HSMS602), were genotyped in 104 type 2 diabetic patients and 129 age-matched control subjects from Latvia and replicated in 91 type 2 diabetic patients and 88 age-matched healthy control subjects from the Botnia Study in Finland. In type 2 diabetic patients from both populations the HSMS006 (TG)22 allele was two times more frequent compared to the control group. In the Latvian population the (CAA)8 allele of the HSMS602 marker was less frequent in the diabetic group, as was the (AC)24 allele of microsatellite HSMS801. Allele frequencies of the HSMS701 and 702 repeats were similar in healthy controls and type 2 diabetic patients. In conclusion, our data suggest that variants in the PSMA6 gene on chromosome 14q13.2 are associated with type 2 diabetes.
Collapse
Affiliation(s)
- T Sjakste
- Institute of Biology of the University of Latvia, Miera iela 3, Salaspils LV2169, Latvia.
| | | | | | | | | | | | | |
Collapse
|
28
|
Saunders CL, Chiodini BD, Sham P, Lewis CM, Abkevich V, Adeyemo AA, de Andrade M, Arya R, Berenson GS, Blangero J, Boehnke M, Borecki IB, Chagnon YC, Chen W, Comuzzie AG, Deng HW, Duggirala R, Feitosa MF, Froguel P, Hanson RL, Hebebrand J, Huezo-Dias P, Kissebah AH, Li W, Luke A, Martin LJ, Nash M, Ohman M, Palmer LJ, Peltonen L, Perola M, Price RA, Redline S, Srinivasan SR, Stern MP, Stone S, Stringham H, Turner S, Wijmenga C, Collier DA. Meta-analysis of genome-wide linkage studies in BMI and obesity. Obesity (Silver Spring) 2007; 15:2263-75. [PMID: 17890495 DOI: 10.1038/oby.2007.269] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The objective was to provide an overall assessment of genetic linkage data of BMI and BMI-defined obesity using a nonparametric genome scan meta-analysis. RESEARCH METHODS AND PROCEDURES We identified 37 published studies containing data on over 31,000 individuals from more than >10,000 families and obtained genome-wide logarithm of the odds (LOD) scores, non-parametric linkage (NPL) scores, or maximum likelihood scores (MLS). BMI was analyzed in a pooled set of all studies, as a subgroup of 10 studies that used BMI-defined obesity, and for subgroups ascertained through type 2 diabetes, hypertension, or subjects of European ancestry. RESULTS Bins at chromosome 13q13.2- q33.1, 12q23-q24.3 achieved suggestive evidence of linkage to BMI in the pooled analysis and samples ascertained for hypertension. Nominal evidence of linkage to these regions and suggestive evidence for 11q13.3-22.3 were also observed for BMI-defined obesity. The FTO obesity gene locus at 16q12.2 also showed nominal evidence for linkage. However, overall distribution of summed rank p values <0.05 is not different from that expected by chance. The strongest evidence was obtained in the families ascertained for hypertension at 9q31.1-qter and 12p11.21-q23 (p < 0.01). CONCLUSION Despite having substantial statistical power, we did not unequivocally implicate specific loci for BMI or obesity. This may be because genes influencing adiposity are of very small effect, with substantial genetic heterogeneity and variable dependence on environmental factors. However, the observation that the FTO gene maps to one of the highest ranking bins for obesity is interesting and, while not a validation of this approach, indicates that other potential loci identified in this study should be investigated further.
Collapse
Affiliation(s)
- Catherine L Saunders
- King's College London, Guy's, King's & St. Thomas' School of Medicine, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Goodarzi MO, Lehman DM, Taylor KD, Guo X, Cui J, Quiñones MJ, Clee SM, Yandell BS, Blangero J, Hsueh WA, Attie AD, Stern MP, Rotter JI. SORCS1: a novel human type 2 diabetes susceptibility gene suggested by the mouse. Diabetes 2007; 56:1922-9. [PMID: 17426289 DOI: 10.2337/db06-1677] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE A small number of susceptibility genes for human type 2 diabetes have been identified by candidate gene analysis or positional cloning. Genes found to influence diabetes or related traits in mice are likely to be susceptibility genes in humans. SorCS1 is the gene identified as responsible for the mouse chromosome 19 T2dm2 quantitative trait locus for fasting insulin levels, acting via impaired insulin secretion and increased islet disruption in obese females. Genes that impair compensatory insulin secretion in response to obesity-induced insulin resistance may be particularly relevant to human diabetes. Thus, we sought to determine whether variation in the human SORCS1 gene was associated with diabetes-related traits. RESEARCH DESIGN AND METHODS We assessed the contribution of variation in SORCS1 to human insulin-related traits in two distinct Mexican-American cohorts. One cohort (the Mexican-American Coronary Artery Disease [MACAD] cohort) consisted of nondiabetic individuals, allowing assessment of genetic association with subclinical intermediate insulin-related traits; the second cohort (the San Antonio Family Diabetes Study [SAFADS]) contained individuals with diabetes, allowing association analyses with overt disease. RESULTS We first found association of SORCS1 single nucleotide polymorphisms and haplotypes with fasting insulin levels and insulin secretion in the MACAD cohort. Similar to our results in the mice, the genetic association was strongest in overweight women. We then observed association with diabetes risk and age at diagnosis in women of the SAFADS cohort. CONCLUSIONS Identification of SORCS1 as a novel gene affecting insulin secretion and diabetes risk is likely to provide important insight into the biology of obesity-induced type 2 diabetes.
Collapse
Affiliation(s)
- Mark O Goodarzi
- Cedars-Sinai Medical Center, Division of Endocrinology, Diabetes, and Metabolism, 8700 Beverly Blvd., Becker B-131, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU, Prokunina-Olsson L, Ding CJ, Swift AJ, Narisu N, Hu T, Pruim R, Xiao R, Li XY, Conneely KN, Riebow NL, Sprau AG, Tong M, White PP, Hetrick KN, Barnhart MW, Bark CW, Goldstein JL, Watkins L, Xiang F, Saramies J, Buchanan TA, Watanabe RM, Valle TT, Kinnunen L, Abecasis GR, Pugh EW, Doheny KF, Bergman RN, Tuomilehto J, Collins FS, Boehnke M. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007; 316:1341-5. [PMID: 17463248 PMCID: PMC3214617 DOI: 10.1126/science.1142382] [Citation(s) in RCA: 2028] [Impact Index Per Article: 119.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Identifying the genetic variants that increase the risk of type 2 diabetes (T2D) in humans has been a formidable challenge. Adopting a genome-wide association strategy, we genotyped 1161 Finnish T2D cases and 1174 Finnish normal glucose-tolerant (NGT) controls with >315,000 single-nucleotide polymorphisms (SNPs) and imputed genotypes for an additional >2 million autosomal SNPs. We carried out association analysis with these SNPs to identify genetic variants that predispose to T2D, compared our T2D association results with the results of two similar studies, and genotyped 80 SNPs in an additional 1215 Finnish T2D cases and 1258 Finnish NGT controls. We identify T2D-associated variants in an intergenic region of chromosome 11p12, contribute to the identification of T2D-associated variants near the genes IGF2BP2 and CDKAL1 and the region of CDKN2A and CDKN2B, and confirm that variants near TCF7L2, SLC30A8, HHEX, FTO, PPARG, and KCNJ11 are associated with T2D risk. This brings the number of T2D loci now confidently identified to at least 10.
Collapse
Affiliation(s)
- Laura J. Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karen L. Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lori L. Bonnycastle
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Cristen J. Willer
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yun Li
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - William L. Duren
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael R. Erdos
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Heather M. Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter S. Chines
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Anne U. Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Chia-Jen Ding
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy J. Swift
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Narisu Narisu
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Tianle Hu
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Randall Pruim
- Department of Mathematics and Statistics, Calvin College, Grand Rapids, MI 49546, USA
| | - Rui Xiao
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiao-Yi Li
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karen N. Conneely
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nancy L. Riebow
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Andrew G. Sprau
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Maurine Tong
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Peggy P. White
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kurt N. Hetrick
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Michael W. Barnhart
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Craig W. Bark
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Janet L. Goldstein
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Lee Watkins
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Fang Xiang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Thomas A. Buchanan
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Richard M. Watanabe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Timo T. Valle
- Diabetes Unit, Department of Epidemiology and Health Promotion, National Public Health Institute, 00300 Helsinki, Finland
| | - Leena Kinnunen
- Diabetes Unit, Department of Epidemiology and Health Promotion, National Public Health Institute, 00300 Helsinki, Finland
- Department of Public Health, University of Helsinki, 00014 Helsinki, Finland
| | - Gonçalo R. Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth W. Pugh
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Kimberly F. Doheny
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Richard N. Bergman
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jaakko Tuomilehto
- Diabetes Unit, Department of Epidemiology and Health Promotion, National Public Health Institute, 00300 Helsinki, Finland
- Department of Public Health, University of Helsinki, 00014 Helsinki, Finland
- South Ostrobothnia Central Hospital, 60220 Seinäjoki, Finland
| | - Francis S. Collins
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Noso S, Fujisawa T, Kawabata Y, Asano K, Hiromine Y, Fukai A, Ogihara T, Ikegami H. Association of small ubiquitin-like modifier 4 (SUMO4) variant, located in IDDM5 locus, with type 2 diabetes in the Japanese population. J Clin Endocrinol Metab 2007; 92:2358-62. [PMID: 17374705 DOI: 10.1210/jc.2007-0031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTEXT Despite distinct differences in the pathogenesis, epidemiological data have indicated familial clustering of type 1 and type 2 diabetes, suggesting a common genetic basis between these two types of diabetes. Few shared susceptibility genes, however, have been reported to date. OBJECTIVE Small ubiquitin-like modifier 4 (SUMO4) has been identified as a candidate gene for the IDDM5 locus and suggested to have possible involvement in immune responses, such as autoimmunity and inflammation. Recent reports demonstrated that a polymorphism with an amino acid substitution (Met55Val) in SUMO4 was associated with type 1 diabetes in Asian populations, although no association was reproduced in subjects of Caucasian descent. The present study aimed to clarify the contribution of SUMO4 to type 2 diabetes susceptibility in the Japanese population. SUBJECTS The 753 subjects included 355 cases and 398 control subjects. METHODS The SUMO4 Met55Val (rs237025) and 001Msp (rs577001) polymorphisms were genotyped. RESULTS Strong linkage disequilibrium (D': 1.0 in each pair of single-nucleotide polymorphisms) across the MAP3K7IP2/SUMO4 region was shown in the Japanese population. The frequency of genotypes with the G allele of the SUMO4 Met55Val polymorphism was significantly higher in patients with type 2 diabetes [odds ratio, 1.46; 95% confidence interval (CI), 1.08-1.93; P = 0.01, chi(2) test]. The association was concentrated in patients without insulin therapy (odds ratio, 1.56; 95% CI, 1.13-2.15; P = 0.0072), but not in those with insulin (odds ratio, 1.24; 95% CI, 0.81-1.89; not significant). CONCLUSIONS These data, together with previous reports, suggest the contribution of the SUMO4 Met55Val polymorphism to both type 1 and type 2 diabetes susceptibility in the Japanese population.
Collapse
Affiliation(s)
- Shinsuke Noso
- Department of Endocrinology, Metabolism, and Diabetes, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Richard N Bergman
- Department of Physiology and Biophysics, Keck School of Medicine, Los Angeles, CA 90033, USA.
| |
Collapse
|
33
|
Chen G, Adeyemo AA, Zhou J, Chen Y, Doumatey A, Lashley K, Huang H, Amoah A, Agyenim-Boateng K, Eghan BA, Okafor G, Acheampong J, Oli J, Fasanmade O, Johnson T, Rotimi C. A genome-wide search for linkage to renal function phenotypes in West Africans with type 2 diabetes. Am J Kidney Dis 2007; 49:394-400. [PMID: 17336700 DOI: 10.1053/j.ajkd.2006.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 12/11/2006] [Indexed: 11/11/2022]
Abstract
BACKGROUND Reduced renal function often is a major consequence of diabetes and hypertension. Although several indices of renal function (eg, creatinine clearance) are clearly heritable and show linkage to several genomic regions, the specific underlying genetic determinants are still being sought. The purpose of this study is to conduct a genome-wide search for regions linked to 3 renal function phenotypes, serum creatinine, creatinine clearance, and glomerular filtration rate (GFR), in persons with type 2 diabetes. METHODS A genome-wide panel of 372 autosomal short tandem repeat markers at an average spacing of 9 centimorgan were typed in 691 patients with type 2 diabetes (321 sib pairs and 36 half-sib pairs) in an affected sib pair study in West Africa. Linkage analysis was conducted with the 3 phenotypes by using a multipoint variance components linkage method. RESULTS Creatinine clearance showed higher logarithm of odds (LOD) score than the other 2 phenotypes. Linkage to creatinine clearance was observed on chromosomes 16 (marker D16S539, LOD score of 3.56, empirical P = 0.0001), 17 (D17S1298, LOD score of 2.08, empirical P = 0.0018), and 7 (D7S1818, LOD score of 1.84, nominal P = 0.00181, empirical P = 0.0022). Maximum LOD scores for serum creatinine were observed on chromosomes 10 (D10S1432, LOD score of 2.53, empirical P = 0.0001) and 3 (D3S2418, LOD score of 2.21, empirical P = 0.0003) and for GFR on chromosomes 6 (D6S1040, LOD score of 2.08, empirical P = 0.0001) and 8 (D8S256, LOD score of 1.80, empirical P = 0.0001). Several of these results are replications of significant findings from other genome scans. CONCLUSION A genome-wide scan for serum creatinine, creatinine clearance, and GFR in a West African sample showed linkage regions that may harbor genes influencing variation in these phenotypes. Potential candidate genes in these regions that have been implicated in diabetic nephropathy and/or renal damage in models of hypertension include CYBA (or P22PHOX) (16q24), NOX1 (10q22), and NOX3 (6q25.1-q26).
Collapse
Affiliation(s)
- Guanjie Chen
- National Human Genome Center at Howard University, College of Medicine, Washington, DC 20059, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kovac IP, Havlik RJ, Foley D, Peila R, Hernandez D, Wavrant-De Vrièze F, Singleton A, Egan J, Taub D, Rodriguez B, Masaki K, Curb JD, Fujimoto WY, Wilson AF. Linkage and association analyses of type 2 diabetes/impaired glucose metabolism and adiponectin serum levels in Japanese Americans from Hawaii. Diabetes 2007; 56:537-40. [PMID: 17259404 PMCID: PMC2435496 DOI: 10.2337/db06-0443] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Type 2 diabetes is a common disorder associated with obesity. Lower plasma levels of adiponectin were associated with type 2 diabetes. Candidate regions on chromosomes 1 ( approximately 70 cM) and 14 ( approximately 30 cM) were evaluated for replication of suggestive linkage results for type 2 diabetes/impaired glucose homeostasis in an independent sample of Japanese Americans. Replication of independent linkage evidence for serum levels of adiponectin on chromosome 14 was also evaluated. We investigated 529 subjects from 175 sibships who were originally part of the Honolulu Heart Program. Analyses included nonparametric linkage and association using SAGE (Statistical Analysis for Genetic Epidemiology) and FBAT (family-based test of association) programs and Monte Carlo simulation of Fisher's exact test in SAS. For type 2 diabetes/impaired glucose metabolism, nominal linkage evidence (P < 0.02) followed-up by genotypic association (P = 0.016) was found with marker D14S297 at 31.8 cM; linkage analyses using only diabetes phenotype were also nominally significant at this marker (P < 0.02). Nominal evidence for genotypic association to adiponectin serum level phenotype (P = 0.04) was found with the marker D14S1032 at 23.2 cM. The present study was limited by relatively small sample size. Nevertheless, these results corroborate earlier studies, suggesting that further research is warranted in the candidate region approximately 30 cM on chromosome 14.
Collapse
Affiliation(s)
- Ilija P Kovac
- Department of Psychiatry, McGill University, Alan Memorial Institute, R&T Building, 1033 Pine Avenue West, Montreal H3A 1A1, Quebec, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Inbred mouse strains provide genetic diversity comparable to that of the human population. Like humans, mice have a wide range of diabetes-related phenotypes. The inbred mouse strains differ in the response of their critical physiological functions, such as insulin sensitivity, insulin secretion, beta-cell proliferation and survival, and fuel partitioning, to diet and obesity. Most of the critical genes underlying these differences have not been identified, although many loci have been mapped. The dramatic improvements in genomic and bioinformatics resources are accelerating the pace of gene discovery. This review describes how mouse genetics can be used to discover diabetes-related genes, summarizes how the mouse strains differ in their diabetes-related phenotypes, and describes several examples of how loci identified in the mouse may directly relate to human diabetes.
Collapse
Affiliation(s)
- Susanne M Clee
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, USA
| | | |
Collapse
|
36
|
Guan W, Pluzhnikov A, Cox NJ, Boehnke M, for the International Type 2 Diabetes Linkage Analysis Consortium. Meta-analysis of 23 type 2 diabetes linkage studies from the International Type 2 Diabetes Linkage Analysis Consortium. Hum Hered 2007; 66:35-49. [PMID: 18223311 PMCID: PMC2855874 DOI: 10.1159/000114164] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 09/05/2007] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The International Type 2 Diabetes Linkage Analysis Consortium was formed to localize type 2 diabetes predisposing variants based on 23 autosomal linkage scans. METHODS We carried out meta-analysis using the genome scan meta-analysis (GSMA) method which divides the genome into bins of approximately 30 cM, ranks the best linkage results in each bin for each sample, and then sums the ranks across samples. We repeated the meta-analysis using 2 cM bins, and/or replacing bin ranks with measures of linkage evidence: bin maximum LOD score or bin minimum p value for bins with p value <0.05 (truncated p value). We also carried out computer simulations to assess the empirical type I error rates of these meta-analysis methods. RESULTS Our analyses provided modest evidence for type 2 diabetes-predisposing variants on chromosomes 4, 10, and 14 (using LOD scores or truncated p values), or chromosome 10 and 16 (using ranks). Our simulation results suggested that uneven marker density across studies results in substantial variation in empirical type I error rates for all meta-analysis methods, but that 2 cM bins and scores that make more explicit use of linkage evidence, especially the truncated p values, reduce this problem. CONCLUSION We identified regions modestly linked with type 2 diabetes by summarizing results from 23 autosomal genome scans.
Collapse
Affiliation(s)
- Weihua Guan
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, Mich., USA
| | - Anna Pluzhnikov
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Ill., USA
| | - Nancy J. Cox
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Ill., USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, Mich., USA
| | | |
Collapse
|
37
|
Sáez ME, Martínez-Larrad MT, Ramírez-Lorca R, González-Sánchez JL, Zabena C, Martinez-Calatrava MJ, González A, Morón FJ, Ruiz A, Serrano-Ríos M. Calpain-5 gene variants are associated with diastolic blood pressure and cholesterol levels. BMC MEDICAL GENETICS 2007; 8:1. [PMID: 17227582 PMCID: PMC1783645 DOI: 10.1186/1471-2350-8-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 01/16/2007] [Indexed: 11/16/2022]
Abstract
Background Genes implicated in common complex disorders such as obesity, type 2 diabetes mellitus (T2DM) or cardiovascular diseases are not disease specific, since clinically related disorders also share genetic components. Cysteine protease Calpain 10 (CAPN10) has been associated with T2DM, hypertension, hypercholesterolemia, increased body mass index (BMI) and polycystic ovary syndrome (PCOS), a reproductive disorder of women in which isunlin resistance seems to play a pathogenic role. The calpain 5 gene (CAPN5) encodes a protein homologue of CAPN10. CAPN5 has been previously associated with PCOS by our group. In this new study, we have analysed the association of four CAPN5 gene variants(rs948976A>G, rs4945140G>A, rs2233546C>T and rs2233549G>A) with several cardiovascular risk factors related to metabolic syndrome in general population. Methods Anthropometric measurements, blood pressure, insulin, glucose and lipid profiles were determined in 606 individuals randomly chosen from a cross-sectional population-based epidemiological survey in the province of Segovia in Central Spain (Castille), recruited to investigate the prevalence of anthropometric and physiological parameters related to obesity and other components of the metabolic syndrome. Genotypes at the four polymorphic loci in CAPN5 gene were detected by polymerase chain reaction (PCR). Results Genotype association analysis was significant for BMI (p ≤ 0.041), diastolic blood pressure (p = 0.015) and HDL-cholesterol levels (p = 0.025). Different CAPN5 haplotypes were also associated with diastolic blood pressure (DBP) (0.0005 ≤ p ≤ 0.006) and total cholesterol levels (0.001 ≤ p ≤ 0.029). In addition, the AACA haplotype, over-represented in obese individuals, is also more frequent in individuals with metabolic syndrome defined by ATPIII criteria (p = 0.029). Conclusion As its homologue CAPN10, CAPN5 seems to influence traits related to increased risk for cardiovascular diseases. Our results also may suggest CAPN5 as a candidate gene for metabolic syndrome.
Collapse
Affiliation(s)
- María E Sáez
- Departamento de Genómica Estructural. Neocodex. Sevilla, Spain
| | | | | | | | - Carina Zabena
- Departamento de Medicina Interna II. Hospital Clínico San Carlos. Madrid, Spain
| | | | - Alejandro González
- Unidad de reproducción y genética humana. Centro Avanzado de Fertilidad (CAF). Jerez de la Frontera, Cádiz, Spain
| | | | - Agustín Ruiz
- Departamento de Genómica Estructural. Neocodex. Sevilla, Spain
| | - Manuel Serrano-Ríos
- Departamento de Medicina Interna II. Hospital Clínico San Carlos. Madrid, Spain
| |
Collapse
|
38
|
Willer CJ, Bonnycastle LL, Conneely KN, Duren WL, Jackson AU, Scott LJ, Narisu N, Chines PS, Skol A, Stringham HM, Petrie J, Erdos MR, Swift AJ, Enloe ST, Sprau AG, Smith E, Tong M, Doheny KF, Pugh EW, Watanabe RM, Buchanan TA, Valle TT, Bergman RN, Tuomilehto J, Mohlke KL, Collins FS, Boehnke M. Screening of 134 single nucleotide polymorphisms (SNPs) previously associated with type 2 diabetes replicates association with 12 SNPs in nine genes. Diabetes 2007; 56:256-64. [PMID: 17192490 DOI: 10.2337/db06-0461] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
More than 120 published reports have described associations between single nucleotide polymorphisms (SNPs) and type 2 diabetes. However, multiple studies of the same variant have often been discordant. From a literature search, we identified previously reported type 2 diabetes-associated SNPs. We initially genotyped 134 SNPs on 786 index case subjects from type 2 diabetes families and 617 control subjects with normal glucose tolerance from Finland and excluded from analysis 20 SNPs in strong linkage disequilibrium (r(2) > 0.8) with another typed SNP. Of the 114 SNPs examined, we followed up the 20 most significant SNPs (P < 0.10) on an additional 384 case subjects and 366 control subjects from a population-based study in Finland. In the combined data, we replicated association (P < 0.05) for 12 SNPs: PPARG Pro12Ala and His447, KCNJ11 Glu23Lys and rs5210, TNF -857, SLC2A2 Ile110Thr, HNF1A/TCF1 rs2701175 and GE117881_360, PCK1 -232, NEUROD1 Thr45Ala, IL6 -598, and ENPP1 Lys121Gln. The replication of 12 SNPs of 114 tested was significantly greater than expected by chance under the null hypothesis of no association (P = 0.012). We observed that SNPs from genes that had three or more previous reports of association were significantly more likely to be replicated in our sample (P = 0.03), although we also replicated 4 of 58 SNPs from genes that had only one previous report of association.
Collapse
Affiliation(s)
- Cristen J Willer
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor 48109-2029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Elbers CC, Onland-Moret NC, Franke L, Niehoff AG, van der Schouw YT, Wijmenga C. A strategy to search for common obesity and type 2 diabetes genes. Trends Endocrinol Metab 2007; 18:19-26. [PMID: 17126559 DOI: 10.1016/j.tem.2006.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 11/01/2006] [Accepted: 11/14/2006] [Indexed: 12/24/2022]
Abstract
Worldwide, the incidence of type 2 diabetes is rising rapidly, mainly because of the increase in the incidence of obesity, which is an important risk factor for this condition. Both obesity and type 2 diabetes are complex genetic traits but they also share some nongenetic risk factors. Hence, it is tempting to speculate that the susceptibility to type 2 diabetes and obesity might also partly be due to shared genes. By comparing all of the published genome scans for type 2 diabetes and obesity, five overlapping chromosomal regions for both diseases (encompassing 612 candidate genes) have been identified. By analysing these five susceptibility loci for type 2 diabetes and obesity, using six freely available bioinformatics tools for disease gene identification, 27 functional candidate genes have been pinpointed that are involved in eating behaviour, metabolism and inflammation. These genes might reveal a molecular link between the two disorders.
Collapse
Affiliation(s)
- Clara C Elbers
- Complex Genetics Section, Department of Biomedical Genetics, University Medical Centre Utrecht, PO Box 85060, 3508 AB Utrecht, the Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Shtir C, Nagakawa IS, Duren WL, Conneely KN, Scott LJ, Silander K, Valle TT, Tuomilehto J, Buchanan TA, Bergman RN, Collins FS, Boehnke M, Watanabe RM. Subsets of Finns with high HDL to total cholesterol ratio show evidence for linkage to type 2 diabetes on chromosome 6q. Hum Hered 2006; 63:17-25. [PMID: 17179727 PMCID: PMC2923439 DOI: 10.1159/000097927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 09/26/2006] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES The purpose of this study was to examine carefully heterogeneity underlying evidence for linkage to type 2 diabetes (T2DM) on chromosome 6q from two sets of FUSION families. METHODS Ordered subsets analysis (OSA) was performed on two sets of FUSION families. For OSA results showing significant improvement in evidence for linkage, T2DM-related phenotypes were compared between individuals with T2DM within the subset versus the complement. RESULTS OSA analysis revealed 105 families with the highest average HDL to total cholesterol ratio (HDL ratio) that had strongly increased evidence for linkage (MLS = 7.91 at 78.0 cM; uncorrected p = 0.00002). Subjects with T2DM within this subset were significantly leaner, had lower fasting glucose, insulin, and C-peptide, and more favorable cardiovascular risk profile compared to the complement set of subjects with T2DM. OSA also revealed 33 families with the lowest average fasting insulin that had increased evidence for linkage at a second locus (MLS = 3.45 at 128 cM; uncorrected p = 0.017) coincident with quantitative trait locus linkage analysis results for fasting and 2-hour insulin in subjects without T2DM. CONCLUSIONS These results suggest two diabetes susceptibility loci on chromosome 6q that may affect subsets of individuals with a milder form of T2DM.
Collapse
Affiliation(s)
- Corina Shtir
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, Calif
| | - I. Sharon Nagakawa
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, Calif
| | - William L. Duren
- Center for Statistical Genetics, Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Mich
| | - Karen N. Conneely
- Center for Statistical Genetics, Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Mich
| | - Laura J. Scott
- Center for Statistical Genetics, Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Mich
| | - Kaisa Silander
- Genome Technology Branch, National Human Genome Research Center, National Institutes of Health, Bethesda, Md., USA
| | - Timo T. Valle
- Diabetes and Genetic Epidemiology Unit, Department of Epidemiology and Health Promotion, National Public Health Institute, Helsinki
| | - Jaakko Tuomilehto
- Diabetes and Genetic Epidemiology Unit, Department of Epidemiology and Health Promotion, National Public Health Institute, Helsinki
- Department of Public Health, University of Helsinki, Helsinki
- South Ostrobothnia Central Hospital, Seinäjoki, Finland
| | - Thomas A. Buchanan
- Division of Endocrinology and Diabetes, Department of Medicine, Keck School of Medicine of USC, Los Angeles, Calif
- Department of Physiology & Biophysics, Keck School of Medicine of USC, Los Angeles, Calif
| | - Richard N. Bergman
- Department of Physiology & Biophysics, Keck School of Medicine of USC, Los Angeles, Calif
| | - Francis S. Collins
- Genome Technology Branch, National Human Genome Research Center, National Institutes of Health, Bethesda, Md., USA
| | - Michael Boehnke
- Center for Statistical Genetics, Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Mich
| | - Richard M. Watanabe
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, Calif
- Department of Physiology & Biophysics, Keck School of Medicine of USC, Los Angeles, Calif
| |
Collapse
|
41
|
Bonnycastle LL, Willer CJ, Conneely KN, Jackson AU, Burrill CP, Watanabe RM, Chines PS, Narisu N, Scott LJ, Enloe ST, Swift AJ, Duren WL, Stringham HM, Erdos MR, Riebow NL, Buchanan TA, Valle TT, Tuomilehto J, Bergman RN, Mohlke KL, Boehnke M, Collins FS. Common variants in maturity-onset diabetes of the young genes contribute to risk of type 2 diabetes in Finns. Diabetes 2006; 55:2534-40. [PMID: 16936201 DOI: 10.2337/db06-0178] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Prior reports have suggested that variants in the genes for maturity-onset diabetes of the young (MODY) may confer susceptibility to type 2 diabetes, but results have been conflicting and coverage of the MODY genes has been incomplete. To complement our previous studies of HNF4A, we examined the other five known MODY genes for association with type 2 diabetes in Finnish individuals. For each of the five genes, we selected 1) nonredundant single nucleotide polymorphisms (SNPs) (r(2)< 0.8 with other SNPs) from the HapMap database or another linkage disequilibrium map, 2) SNPs with previously reported type 2 diabetes association, and 3) nonsynonymous coding SNPs. We tested 128 SNPs for association with type 2 diabetes in 786 index cases from type 2 diabetic families and 619 normal glucose-tolerant control subjects. We followed up 35 of the most significant SNPs by genotyping them on another 384 case subjects and 366 control subjects from Finland. We also supplemented our previous HNF4A results by genotyping 12 SNPs on additional Finnish samples. After correcting for testing multiple correlated SNPs within a gene, we find evidence of type 2 diabetes association with SNPs in five of the six known MODY genes: GCK, HNF1A, HNF1B, NEUROD1, and HNF4A. Our data suggest that common variants in several MODY genes play a modest role in type 2 diabetes susceptibility.
Collapse
Affiliation(s)
- Lori L Bonnycastle
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Scott LJ, Bonnycastle LL, Willer CJ, Sprau AG, Jackson AU, Narisu N, Duren WL, Chines PS, Stringham HM, Erdos MR, Valle TT, Tuomilehto J, Bergman RN, Mohlke KL, Collins FS, Boehnke M. Association of transcription factor 7-like 2 (TCF7L2) variants with type 2 diabetes in a Finnish sample. Diabetes 2006; 55:2649-53. [PMID: 16936217 DOI: 10.2337/db06-0341] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transcription factor 7-like 2 (TCF7L2) is part of the Wnt signaling pathway. Genetic variants within TCF7L2 on chromosome 10q were recently reported to be associated with type 2 diabetes in Icelandic, Danish, and American (U.S.) samples. We previously observed a modest logarithm of odds score of 0.61 on chromosome 10q, approximately 1 Mb from TCF7L2, in the Finland-United States Investigation of NIDDM Genetics study. We tested the five associated TCF7L2 single nucleotide polymorphism (SNP) variants in a Finnish sample of 1,151 type 2 diabetic patients and 953 control subjects. We confirmed the association with the same risk allele (P value <0.05) for all five SNPs. Our strongest results were for rs12255372 (odds ratio [OR] 1.36 [95% CI 1.15-1.61], P = 0.00026) and rs7903146 (1.33 [1.14-1.56], P = 0.00042). Based on the CEU HapMap data, we selected and tested 12 additional SNPs to tag SNPs in linkage disequilibrium with rs12255372. None of these SNPs showed stronger evidence of association than rs12255372 or rs7903146 (OR < or =1.26, P > or = 0.0054). Our results strengthen the evidence that one or more variants in TCF7L2 are associated with increased risk of type 2 diabetes.
Collapse
Affiliation(s)
- Laura J Scott
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gloyn AL, Mackay DJG, Weedon MN, McCarthy MI, Walker M, Hitman G, Knight BA, Owen KR, Hattersley AT, Frayling TM. Assessment of the role of common genetic variation in the transient neonatal diabetes mellitus (TNDM) region in type 2 diabetes: a comparative genomic and tagging single nucleotide polymorphism approach. Diabetes 2006; 55:2272-6. [PMID: 16873690 DOI: 10.2337/db06-0216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recent evidence supports the strong overlap between genes implicated in monogenic diabetes and susceptibility to type 2 diabetes. Transient neonatal diabetes mellitus (TNDM) is a rare disorder associated with overexpression of genes at a paternally expressed imprinted locus on chromosome 6q24. There are two overlapping genes in this region: the transcription factor zinc finger protein associated with cell cycle control and apoptosis (ZAC also known as PLAGL1) and HYMA1, which encodes an untranslated mRNA. Several type 2 diabetes linkage studies have reported linkage to chromosome 6q22-25. We hypothesized that common genetic variation at this TNDM region influences type 2 diabetes susceptibility. In addition to the coding regions, we used comparative genomic analysis to identify conserved noncoding regions, which were resequenced for single nucleotide polymorphism (SNP) discovery in 47 individuals. Twenty-six SNPs were identified. Fifteen tag SNPs (tSNPs) were successfully genotyped in a large case-control (n = 3,594) and family-based (n = 1,654) study. We did not find any evidence of association or overtransmission of any tSNP to affected offspring or of a parent-of-origin effect. Using a study sufficiently powered to detect odds ratios of <1.2, we conclude that common variation in the TNDM region does not play an important role in the genetic susceptibility to type 2 diabetes.
Collapse
Affiliation(s)
- Anna L Gloyn
- Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology & Metabolism, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Huang QY, Cheng MR, Ji SL. Linkage and Association Studies of the Susceptibility Genes for Type 2 Diabetes. ACTA ACUST UNITED AC 2006; 33:573-89. [PMID: 16875315 DOI: 10.1016/s0379-4172(06)60087-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disease characterized by hyperglycemia, insulin resistance, and impaired insulin secretion. T2DM is under strong genetic control. Identification and characterization of genes involved in determining T2DM will contribute to a greater understanding of the pathogenesis of T2DM, and ultimately might lead to the development of better diagnosis, prevention and treatment strategies. Efforts to identify T2DM susceptibility genes have focused on candidate gene approach (association studies) and genome-wide scans (linkage analyses). In this article, we review the current status for mapping and identification of genes for T2DM, with a focus on some promising regions (or genes) and future prospects.
Collapse
Affiliation(s)
- Qing-Yang Huang
- College of Life Science, Central China Normal University, Wuhan 430079, China.
| | | | | |
Collapse
|
45
|
Ishida S, Funakoshi A, Miyasaka K, Shimokata H, Ando F, Takiguchi S. Association of SH-2 containing inositol 5'-phosphatase 2 gene polymorphisms and hyperglycemia. Pancreas 2006; 33:63-7. [PMID: 16804414 DOI: 10.1097/01.mpa.0000222317.82231.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES SH-2 containing inositol 5'-phosphatase 2 (SHIP2) is a family of inositol 5'-phosphatases, which possess the 5'-phosphatase activity that hydrolyzes phosphatidylinositol-3, 4, 5-trisphosphate to phosphatidylinositol-3, 4-bisphosphate and is suspected to negatively regulates the metabolic signaling of insulin. To clarify the possible involvement of SHIP2 in physiological abnormalities, we examined the human SHIP2 gene polymorphism in a Japanese cohort. METHODS We searched single-nucleotide polymorphisms (SNPs) on the human SHIP2 gene promoter and 5'-untranslated region (5'-UTR) and investigated their relationship with impaired fasting glycemia (IFG) in a Japanese cohort. Next, the effect of the SNPs on promoter activity was examined in HeLa and HL60 cells. RESULTS Among the several SNPs detected on the human SHIP2 gene promoter and 5'-UTR, 3 SNPs (-405 C/A, +57 G/A, and +334 C/T) formed the haplotypes CGC and AAT and were found at a relatively high frequency in the Japanese population. The frequency of genotypes (+334 CT and TT) was significantly higher in the group with IFG than in the normal group (P < 0.0001, odds ratio = 2.23, 95% confidence interval = 1.50-3.32). This association was not affected by age and gender. Furthermore, one haplotype (+57 A, +334 T) which was inserted into a luciferase reporter plasmid and existed more frequently in the IFG group than in the normal group exhibited increased promoter activity in the culture cells compared with the other haplotype (+57 G, +334 C). CONCLUSIONS The SNPs in the SHIP2 gene promoter and the 5'-UTR may account partly for the IFG and may be a marker for the risk of diabetes.
Collapse
Affiliation(s)
- Satoru Ishida
- Institute for Clinical Research, National Kyushu Cancer Center, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Tiffin N, Adie E, Turner F, Brunner HG, van Driel MA, Oti M, Lopez-Bigas N, Ouzounis C, Perez-Iratxeta C, Andrade-Navarro MA, Adeyemo A, Patti ME, Semple CAM, Hide W. Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes. Nucleic Acids Res 2006; 34:3067-81. [PMID: 16757574 PMCID: PMC1475747 DOI: 10.1093/nar/gkl381] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genome-wide experimental methods to identify disease genes, such as linkage analysis and association studies, generate increasingly large candidate gene sets for which comprehensive empirical analysis is impractical. Computational methods employ data from a variety of sources to identify the most likely candidate disease genes from these gene sets. Here, we review seven independent computational disease gene prioritization methods, and then apply them in concert to the analysis of 9556 positional candidate genes for type 2 diabetes (T2D) and the related trait obesity. We generate and analyse a list of nine primary candidate genes for T2D genes and five for obesity. Two genes, LPL and BCKDHA, are common to these two sets. We also present a set of secondary candidates for T2D (94 genes) and for obesity (116 genes) with 58 genes in common to both diseases.
Collapse
Affiliation(s)
- Nicki Tiffin
- South African National Bioinformatics Institute, University of the Western Cape, Bellville, 7535, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Einarsdottir E, Mayans S, Ruikka K, Escher SA, Lindgren P, Agren A, Eliasson M, Holmberg D. Linkage but not association of calpain-10 to type 2 diabetes replicated in northern Sweden. Diabetes 2006; 55:1879-83. [PMID: 16731857 DOI: 10.2337/db05-1495] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We present data from a genome-wide scan identifying genetic factors conferring susceptibility to type 2 diabetes. The linkage analysis was based on 59 families from northern Sweden, consisting of a total of 129 cases of type 2 diabetes and 19 individuals with impaired glucose tolerance. Model-free linkage analysis revealed a maximum multipoint logarithm of odds score of 3.19 for D2S2987 at 267.7 cM (P=0.00058), suggesting that a gene conferring susceptibility to type 2 diabetes in the northern Swedish population resides in the 2q37 region. These data replicate, in a European population, previously identified linkage of marker loci in this region to type 2 diabetes in Mexican Americans. In contrast, no evidence in support of association to the previously identified single nucleotide polymorphisms in the calpain-10 gene was observed in a case-control cohort derived from the same population.
Collapse
Affiliation(s)
- Elisabet Einarsdottir
- Department of Medical Biosciences, Division of Medical and Clinical Genetics, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Willer CJ, Scott LJ, Bonnycastle LL, Jackson AU, Chines P, Pruim R, Bark CW, Tsai YY, Pugh EW, Doheny KF, Kinnunen L, Mohlke KL, Valle TT, Bergman RN, Tuomilehto J, Collins FS, Boehnke M. Tag SNP selection for Finnish individuals based on the CEPH Utah HapMap database. Genet Epidemiol 2006; 30:180-90. [PMID: 16374835 DOI: 10.1002/gepi.20131] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pattern and nature of linkage disequilibrium in the human genome is being studied and catalogued as part of the International HapMap Project [:2003 Nature 426:789-796]. A key goal of the HapMap Project is to enable identification of tag single nucleotide polymorphisms (SNPs) that capture a substantial portion of common human genetic variability while requiring only a small fraction of SNPs to be genotyped [International HapMap Consortium, 2005: Nature 437:1299-1320]. In the current study, we examined the effectiveness of using the CEU HapMap database to select tag SNPs for a Finnish sample. We selected SNPs in a 17.9-Mb region of chromosome 14 based on pairwise linkage disequilibrium (r(2)) estimates from the HapMap CEU sample, and genotyped 956 of these SNPs in 1,425 Finnish individuals. An excess of SNPs showed significantly different allele frequencies between the HapMap CEU and the Finnish samples, consistent with population-specific differences. However, we observed strong correlations between the two samples for estimates of allele frequencies, r(2) values, and haplotype frequencies. Our results demonstrate that the HapMap CEU samples provide an adequate basis for tag SNP selection in Finnish individuals, without the need to create a map specifically for the Finnish population, and suggest that the four-population HapMap data will provide useful information for tag SNP selection beyond the specific populations from which they were sampled.
Collapse
Affiliation(s)
- Cristen J Willer
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1420 Washington Heights, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Palmer ND, Langefeld CD, Campbell JK, Williams AH, Saad M, Norris JM, Haffner SM, Rotter JI, Wagenknecht LE, Bergman RN, Rich SS, Bowden DW. Genetic mapping of disposition index and acute insulin response loci on chromosome 11q. The Insulin Resistance Atherosclerosis Study (IRAS) Family Study. Diabetes 2006; 55:911-8. [PMID: 16567510 DOI: 10.2337/diabetes.55.04.06.db05-0813] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucose homeostasis, a defining characteristic of physiological glucose metabolism, is the result of complex feedback relationships with both genetic and environmental determinants that influence insulin sensitivity and beta-cell function. Relatively little is known about the genetic basis of glucose homeostasis phenotypes or their relationship to risk of diabetes. Our group previously published a genome scan for glucose homeostasis traits in 284 African-American subjects from 21 pedigrees in the Insulin Resistance Atherosclerosis Study Family Study (IRASFS) and presented evidence for linkage to disposition index (DI) on chromosome 11q with a logarithm of odds (LOD) of 3.21 at 81 cM flanked by markers D11S2371 and D11S2002 (support interval from 71 to 96 cM). In this study, genotyping and analysis of an additional 214 African-American subjects in 21 pedigrees from the IRASFS yielded independent evidence of linkage to DI. When these two datasets were combined, a DI linkage peak was observed with an LOD of 3.89 at 78 cM (support interval from 67 to 89 cM). Fine mapping with 15 additional microsatellite markers in this 11q region for the entire 42 pedigrees resulted in an LOD score of 4.80 at 80 cM near marker D11S937 (support interval from 76 to 84 cM). In these 42 pedigrees, there was also suggestive evidence for linkage to acute insulin response (AIR) at two separate locations flanking the DI peak (64 cM, LOD 2.77, flanked by markers D11S4076 and D11S981; and 85 cM, LOD 2.54, flanked by markers D11S4172 and D11S2002). No evidence of linkage to the insulin sensitivity index (S(i)) was observed. Nine positional candidate genes were evaluated for association to DI and AIR. Among these candidates, single nucleotide polymorphisms (SNPs) in muscle glycogen phosphorylase showed evidence of association with DI (P < 0.011). In addition, SNPs in the pyruvate carboxylase gene showed evidence of association (P < 0.002) with AIR. Further analysis of these candidate genes, however, did not provide evidence that these SNPs accounted for the evidence of linkage to either DI or AIR. These detailed genetic analyses provide strong evidence of a DI locus on 11q in African-American pedigrees, with additional suggestive evidence of independent AIR loci in the same region.
Collapse
Affiliation(s)
- Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mohlke KL, Jackson AU, Scott LJ, Peck EC, Suh YD, Chines PS, Watanabe RM, Buchanan TA, Conneely KN, Erdos MR, Narisu N, Enloe S, Valle TT, Tuomilehto J, Bergman RN, Boehnke M, Collins FS. Mitochondrial polymorphisms and susceptibility to type 2 diabetes-related traits in Finns. Hum Genet 2005; 118:245-54. [PMID: 16142453 DOI: 10.1007/s00439-005-0046-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 07/12/2005] [Indexed: 12/29/2022]
Abstract
Mitochondria play an integral role in ATP production in cells and are involved in glucose metabolism and insulin secretion, suggesting that variants in the mitochondrial genome may contribute to diabetes susceptibility. In a study of Finnish families ascertained for type 2 diabetes mellitus (T2DM), we genotyped single nucleotide polymorphisms (SNPs) based on phylogenetic networks. These SNPs defined eight major haplogroups and subdivided groups H and U, which are common in Finns. We evaluated association with both diabetes disease status and up to 14 diabetes-related traits for 762 cases, 402 non-diabetic controls, and 465 offspring of genotyped females. Haplogroup J showed a trend toward association with T2DM affected status (OR 1.69, P=0.056) that became slightly more significant after excluding cases with affected fathers (OR 1.77, P=0.045). We also genotyped non-haplogroup-tagging SNPs previously reported to show evidence for association with diabetes or related traits. Our data support previous evidence for association of T16189C with reduced ponderal index at birth and also show evidence for association with reduced birthweight but not with diabetes status. Given the multiple tests performed and the significance levels obtained, this study suggests that mitochondrial genome variants may play at most a modest role in glucose metabolism in the Finnish population. Furthermore, our data do not support a reported maternal inheritance pattern of T2DM but instead show a strong effect of recall bias.
Collapse
Affiliation(s)
- Karen L Mohlke
- Department of Genetics, University of North Carolina, 4109-F Neurosciences Research Building, 103 Mason Farm Road, CB#7264, 27599-7264, Chapel Hill, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|