1
|
Rossi L, Mota BI, Valadão PAC, Magalhães-Gomes MPS, Oliveira BS, Guatimosim S, Navegantes LCC, Miranda AS, Prado MAM, Prado VF, Guatimosim C. Influence of β 2-adrenergic selective agonist formoterol on the motor unit of a mouse model of a congenital myasthenic syndrome with complete VAChT deletion. Neuropharmacology 2024; 260:110116. [PMID: 39151654 DOI: 10.1016/j.neuropharm.2024.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Congenital Myasthenic Syndromes (CMS) are a set of genetic diseases that affect the neuromuscular transmission causing muscular weakness. The standard pharmacological treatment aims at ameliorating the myasthenic symptom by acetylcholinesterase inhibitors. Most patients respond well in the short and medium term, however, over time the beneficial effects rapidly fade, and the efficacy of the treatment diminishes. Increasing evidence shows that β2-adrenergic agonists can be a suitable choice for the treatment of neuromuscular disorders, including CMS, as they promote beneficial effects in the neuromuscular system. The exact mechanism on which they rely is not completely understood, although patients and animal models respond well to the treatment, especially over extended periods. Here, we report the use of the long-lasting specific β2-adrenergic agonist formoterol in a myasthenic mouse model (mnVAChT-KD), featuring deletion of VAChT (Vesicular Acetylcholine Transporter) specifically in the α-motoneurons. Our findings demonstrate that formoterol treatment (300 μg/kg/day; sc) for 30 days increased the neuromuscular junction area, induced skeletal muscle hypertrophy and altered fibre type composition in myasthenic mice. Interestingly, β2-adrenergic agonists have shown efficacy even in the absence of ACh (acetylcholine). Our data provide important evidence supporting the potential of β2-adrenergic agonists in treating neuromuscular disorders of pre-synaptic origin and characterized by disruptions in nerve-muscle communication, through a direct and beneficial action within the motor unit.
Collapse
Affiliation(s)
- Leonardo Rossi
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara I Mota
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Priscila A C Valadão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Matheus P S Magalhães-Gomes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Ciências Básicas, Faculdade Ciências Médicas de Minas Gerais, FCMMG, Belo Horizonte, Brazil
| | - Bruna S Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Silvia Guatimosim
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz C C Navegantes
- Departamento de Fisiologia, Escola de Medicina, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aline S Miranda
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada; Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Vânia F Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada; Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Cristina Guatimosim
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Swiderski K, Chan AS, Herold MJ, Kueh AJ, Chung JD, Hardee JP, Trieu J, Chee A, Naim T, Gregorevic P, Lynch GS. The BALB/c.mdx62 mouse exhibits a dystrophic muscle pathology and is a model of Duchenne muscular dystrophy. Dis Model Mech 2024; 17:dmm050502. [PMID: 38602028 PMCID: PMC11095634 DOI: 10.1242/dmm.050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating monogenic skeletal muscle-wasting disorder. Although many pharmacological and genetic interventions have been reported in preclinical studies, few have progressed to clinical trials with meaningful benefit. Identifying therapeutic potential can be limited by availability of suitable preclinical mouse models. More rigorous testing across models with varied background strains and mutations can identify treatments for clinical success. Here, we report the generation of a DMD mouse model with a CRISPR-induced deletion within exon 62 of the dystrophin gene (Dmd) and the first generated in BALB/c mice. Analysis of mice at 3, 6 and 12 months of age confirmed loss of expression of the dystrophin protein isoform Dp427 and resultant dystrophic pathology in limb muscles and the diaphragm, with evidence of centrally nucleated fibers, increased inflammatory markers and fibrosis, progressive decline in muscle function, and compromised trabecular bone development. The BALB/c.mdx62 mouse is a novel model of DMD with associated variations in the immune response and muscle phenotype, compared with those of existing models. It represents an important addition to the preclinical model toolbox for developing therapeutic strategies.
Collapse
Affiliation(s)
- Kristy Swiderski
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Audrey S. Chan
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marco J. Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Andrew J. Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Jin D. Chung
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Justin P. Hardee
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Annabel Chee
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Timur Naim
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gordon S. Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
3
|
Zhou S, Lei S, She Y, Shi H, Li Y, Zhou X, Chen R. Running improves muscle mass by activating autophagic flux and inhibiting ubiquitination degradation in mdx mice. Gene 2024; 899:148136. [PMID: 38185293 DOI: 10.1016/j.gene.2024.148136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
BACKGROUND Exercise therapy can improve muscle mass, strengthen muscle and cardiorespiratory function, and may be an excellent adjunctive treatment option for Duchenne muscular dystrophy. METHODS This article investigates the effects of 10 weeks of treadmill training on skeletal muscle in control and mdx mice. Hematoxylin and eosin (H&E) staining was used to detect the morphometry of skeletal muscle; the grip strength test, suspension test, and rotarod test were used to detect limb muscle strength of mice, and Aurora Scientific Instruments were used to detect in vivo Muscle Stimulation Measuring Maximum Force of pre-fatigue and post-fatigue. The expression levels of myogenic proteins, ubiquitination markers, autophagy pathway proteins, and the proportion of different muscle fiber types were detected. RESULTS The experimental results show that running exercise can significantly improve the muscle mass of mdx mice, promote muscle strength, endurance, and anti-fatigue ability, reverse the pathological state of skeletal muscle destruction in mdx mice, and promote muscle regeneration. WB experiments showed that running inhibited the ubiquitination and degradation of muscle protein in mdx mice, inhibited AKT activation, decreased phosphorylated FoxO1 and FoxO3a, and restored the suppressed autophagic flux. Running enhances muscle strength and endurance by comprehensively promoting the expression of Myh1/2/4/7 fast and slow muscle fibers in mdx mice. CONCLUSIONS Running can inhibit the degradation of muscle protein in mdx mice, and promote the reuse and accumulation of proteins, thereby slowing down muscle loss. Running improves skeletal muscle mass by activating autophagic flux and inhibiting ubiquitination degradation in mdx mice.
Collapse
Affiliation(s)
- Shanyao Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China
| | - Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China
| | - Yang Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China
| | - Xin Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China.
| |
Collapse
|
4
|
Hassani M, Moutachi D, Lemaitre M, Boulinguiez A, Furling D, Agbulut O, Ferry A. Beneficial effects of resistance training on both mild and severe mouse dystrophic muscle function as a preclinical option for Duchenne muscular dystrophy. PLoS One 2024; 19:e0295700. [PMID: 38457407 PMCID: PMC10923407 DOI: 10.1371/journal.pone.0295700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/27/2023] [Indexed: 03/10/2024] Open
Abstract
Mechanical overloading (OVL) resulting from the ablation of muscle agonists, a supra-physiological model of resistance training, reduces skeletal muscle fragility, i.e. the immediate maximal force drop following lengthening contractions, and increases maximal force production, in mdx mice, a murine model of Duchene muscular dystrophy (DMD). Here, we further analyzed these beneficial effects of OVL by determining whether they were blocked by cyclosporin, an inhibitor of the calcineurin pathway, and whether there were also observed in the D2-mdx mice, a more severe murine DMD model. We found that cyclosporin did not block the beneficial effect of 1-month OVL on plantaris muscle fragility in mdx mice, nor did it limit the increases in maximal force and muscle weight (an index of hypertrophy). Fragility and maximal force were also ameliorated by OVL in the plantaris muscle of D2-mdx mice. In addition, OVL increased the expression of utrophin, cytoplamic γ-actin, MyoD, and p-Akt in the D2-mdx mice, proteins playing an important role in fragility, maximal force gain and muscle growth. In conclusion, OVL reduced fragility and increased maximal force in the more frequently used mild mdx model but also in D2-mdx mice, a severe model of DMD, closer to human physiopathology. Moreover, these beneficial effects of OVL did not seem to be related to the activation of the calcineurin pathway. Thus, this preclinical study suggests that resistance training could have a potential benefit in the improvement of the quality of life of DMD patients.
Collapse
Affiliation(s)
- Medhi Hassani
- Sorbonne Université, Institut de Biologie Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, F-75013 France
| | - Dylan Moutachi
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | | | - Alexis Boulinguiez
- Department of Biological Sciences, Royal Holloway University of London, Surrey, United Kingdom
| | - Denis Furling
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, F-75013 France
| | - Arnaud Ferry
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
- Université Paris Cité, F-75006 Paris, France
| |
Collapse
|
5
|
Membrez M, Migliavacca E, Christen S, Yaku K, Trieu J, Lee AK, Morandini F, Giner MP, Stiner J, Makarov MV, Garratt ES, Vasiloglou MF, Chanvillard L, Dalbram E, Ehrlich AM, Sanchez-Garcia JL, Canto C, Karagounis LG, Treebak JT, Migaud ME, Heshmat R, Razi F, Karnani N, Ostovar A, Farzadfar F, Tay SKH, Sanders MJ, Lillycrop KA, Godfrey KM, Nakagawa T, Moco S, Koopman R, Lynch GS, Sorrentino V, Feige JN. Trigonelline is an NAD + precursor that improves muscle function during ageing and is reduced in human sarcopenia. Nat Metab 2024; 6:433-447. [PMID: 38504132 DOI: 10.1038/s42255-024-00997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/26/2024] [Indexed: 03/21/2024]
Abstract
Mitochondrial dysfunction and low nicotinamide adenine dinucleotide (NAD+) levels are hallmarks of skeletal muscle ageing and sarcopenia1-3, but it is unclear whether these defects result from local changes or can be mediated by systemic or dietary cues. Here we report a functional link between circulating levels of the natural alkaloid trigonelline, which is structurally related to nicotinic acid4, NAD+ levels and muscle health in multiple species. In humans, serum trigonelline levels are reduced with sarcopenia and correlate positively with muscle strength and mitochondrial oxidative phosphorylation in skeletal muscle. Using naturally occurring and isotopically labelled trigonelline, we demonstrate that trigonelline incorporates into the NAD+ pool and increases NAD+ levels in Caenorhabditis elegans, mice and primary myotubes from healthy individuals and individuals with sarcopenia. Mechanistically, trigonelline does not activate GPR109A but is metabolized via the nicotinate phosphoribosyltransferase/Preiss-Handler pathway5,6 across models. In C. elegans, trigonelline improves mitochondrial respiration and biogenesis, reduces age-related muscle wasting and increases lifespan and mobility through an NAD+-dependent mechanism requiring sirtuin. Dietary trigonelline supplementation in male mice enhances muscle strength and prevents fatigue during ageing. Collectively, we identify nutritional supplementation of trigonelline as an NAD+-boosting strategy with therapeutic potential for age-associated muscle decline.
Collapse
Affiliation(s)
- Mathieu Membrez
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | | | - Stefan Christen
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Alaina K Lee
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Francesco Morandini
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maria Pilar Giner
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Jade Stiner
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mikhail V Makarov
- Mitchell Cancer Institute, Department of Pharmacology, F. P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Emma S Garratt
- Institute of Developmental Sciences, Human Developmental and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Maria F Vasiloglou
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Lucie Chanvillard
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy M Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Carles Canto
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Leonidas G Karagounis
- Nestlé Health Science, Translation Research, Lausanne, Switzerland
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie E Migaud
- Mitchell Cancer Institute, Department of Pharmacology, F. P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Science Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Farzadfar
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Stacey K H Tay
- KTP-National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Matthew J Sanders
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Karen A Lillycrop
- Institute of Developmental Sciences, Human Developmental and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Keith M Godfrey
- Institute of Developmental Sciences, Human Developmental and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Medical Research Council Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Sofia Moco
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - René Koopman
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Vincenzo Sorrentino
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland.
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Benasutti H, Maricelli JW, Seto J, Hall J, Halbert C, Wicki J, Heusgen L, Purvis N, Regnier M, Lin DC, Rodgers BD, Chamberlain JS. Efficacy and muscle safety assessment of fukutin-related protein gene therapy. Mol Ther Methods Clin Dev 2023; 30:65-80. [PMID: 37361354 PMCID: PMC10285450 DOI: 10.1016/j.omtm.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Limb-girdle muscular dystrophy type R9 (LGMDR9) is a muscle-wasting disease that begins in the hip and shoulder regions of the body. This disease is caused by mutations in fukutin-related protein (FKRP), a glycosyltransferase critical for maintaining muscle cell integrity. Here we investigated potential gene therapies for LGMDR9 containing an FKRP expression construct with untranslated region (UTR) modifications. Initial studies treated an aged dystrophic mouse model (FKRPP448L) with adeno-associated virus vector serotype 6 (AAV6). Grip strength improved in a dose- and time-dependent manner, injected mice exhibited fewer central nuclei and serum creatine kinase levels were 3- and 5-fold lower compared to those in non-injected FKRPP448L mice. Treatment also partially stabilized the respiratory pattern during exercise and improved treadmill running, partially protecting muscle from exercise-induced damage. Western blotting of C2C12 myotubes using a novel rabbit antibody confirmed heightened translation with the UTR modifications. We further explored the question of FKRP toxicity in wild-type mice using high doses of two additional muscle-tropic capsids: AAV9 and AAVMYO1. No toxic effects were detected with either therapeutic agent. These data further support the feasibility of gene therapy to treat LGMDR9.
Collapse
Affiliation(s)
- Halli Benasutti
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Joseph W. Maricelli
- School of Molecular Biosciences, Washington State University College of Veterinary Medicine, Pullman, WA 99164, USA
- Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| | - Jane Seto
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | - John Hall
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Christine Halbert
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | - Jacqueline Wicki
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Lydia Heusgen
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Nicholas Purvis
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA, USA
| | - David C. Lin
- Department of Integrative Physiology and Neuroscience and the Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Buel D. Rodgers
- School of Molecular Biosciences, Washington State University College of Veterinary Medicine, Pullman, WA 99164, USA
- Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| | - Jeffrey S. Chamberlain
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
7
|
Effects of Low-Intensity and Long-Term Aerobic Exercise on the Psoas Muscle of mdx Mice: An Experimental Model of Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:ijms23094483. [PMID: 35562874 PMCID: PMC9105402 DOI: 10.3390/ijms23094483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a muscle disease characterized by the absence of the protein dystrophin, which causes a loss of sarcolemma integrity, determining recurrent muscle injuries, decrease in muscle function, and progressive degeneration. Currently, there is a need for therapeutic treatments to improve the quality of life of DMD patients. Here, we investigated the effects of a low-intensity aerobic training (37 sessions) on satellite cells, peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α protein (PGC-1α), and different types of fibers of the psoas muscle from mdx mice (DMD experimental model). Wildtype and mdx mice were randomly divided into sedentary and trained groups (n = 24). Trained animals were subjected to 37 sessions of low-intensity running on a motorized treadmill. Subsequently, the psoas muscle was excised and analyzed by immunofluorescence for dystrophin, satellite cells, myosin heavy chain (MHC), and PGC-1α content. The minimal Feret’s diameters of the fibers were measured, and light microscopy was applied to observe general morphological features of the muscles. The training (37 sessions) improved morphological features in muscles from mdx mice and caused an increase in the number of quiescent/activated satellite cells. It also increased the content of PGC-1α in the mdx group. We concluded that low-intensity aerobic exercise (37 sessions) was able to reverse deleterious changes determined by DMD.
Collapse
|
8
|
The beneficial effect of chronic muscular exercise on muscle fragility is increased by Prox1 gene transfer in dystrophic mdx muscle. PLoS One 2022; 17:e0254274. [PMID: 35436319 PMCID: PMC9015141 DOI: 10.1371/journal.pone.0254274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 04/05/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose Greater muscle fragility is thought to cause the exhaustion of the muscle stem cells during successive degeneration/repair cycles, leading to muscle wasting and weakness in Duchenne muscular dystrophy. Chronic voluntary exercise can partially reduce the susceptibility to contraction induced-muscle damage, i.e., muscle fragility, as shown by a reduced immediate maximal force drop following lengthening contractions, in the dystrophic mdx mice. Here, we studied the effect of Prospero-related homeobox factor 1 gene (Prox1) transfer (overexpression) using an AAV on fragility in chronically exercised mdx mice, because Prox1 promotes slower type fibres in healthy mice and slower fibres are less fragile in mdx muscle. Methods Both tibialis anterior muscles of the same mdx mouse received the transfer of Prox1 and PBS and the mice performed voluntary running into a wheel during 1 month. We also performed Prox1 transfer in sedentary mdx mice. In situ maximal force production of the muscle in response to nerve stimulation was assessed before, during and after 10 lengthening contractions. Molecular muscle parameters were also evaluated. Results Interestingly, Prox1 transfer reduced the isometric force drop following lengthening contractions in exercised mdx mice (p < 0.05 to 0.01), but not in sedentary mdx mice. It also increased the muscle expression of Myh7 (p < 0.001), MHC-2x (p < 0.01) and Trpc1 (p < 0.01), whereas it reduced that one of Myh4 (p < 0.001) and MHC-2b (p < 0.01) in exercised mdx mice. Moreover, Prox1 transfer decreased the absolute maximal isometric force (p < 0.01), but not the specific maximal isometric force, before lengthening contraction in exercised (p < 0.01) and sedentary mdx mice. Conclusion Our results indicate that Prox1 transfer increased the beneficial effect of chronic exercise on muscle fragility in mdx mice, but reduced absolute maximal force. Thus, the potential clinical benefit of the transfer of Prox1 into exercised dystrophic muscle can merit further investigation.
Collapse
|
9
|
Fast and slow myofiber-specific expression profiles are affected by noncoding RNAs in Mongolian horses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100942. [PMID: 34823143 DOI: 10.1016/j.cbd.2021.100942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
The heterogeneity and plasticity of muscle fibers are essential for the athletic performance of horses, mainly at the adaption of exercises and the effect on muscle diseases. Skeletal muscle fibers can be generally distinguished by their characteristics of contraction as slow and fast type myofibers. The diversity of contractile properties and metabolism enable skeletal muscles to respond to the variable functional requirements. We investigated the muscle fiber composition and metabolic enzyme activities of splenius muscle and gluteus medius muscle from Mongolian horses. The deep RNA-seq analysis of detecting differentially expressed mRNAs, lncRNAs, circRNAs and their correlation analysis from two muscles were performed. Splenius muscle and gluteus medius muscle from Mongolian horses showed a high divergence of myofiber compositions and metabolic enzyme activities. Corresponding to their phenotypic characteristics, 57 differentially expressed long noncoding RNAs and 12 differentially expressed circle RNAs were found between two muscles. The analysis results indicate multiple binding sites were detected in lncRNAs and circRNAs with myofiber-specific expressed miRNAs. Among which we found significant correlations between the above noncoding RNAs, miRNAs, their target genes, myofiber-specific developmental transcript factors, and sarcomere genes. We suggest that the ceRNA mechanism of differentially expressed noncoding RNAs by acting as miRNA sponges could be fine tuners in regulating skeletal muscle fiber composition and transition in horses, which will operate new protective measures of muscle disease and locomotor adaption for racehorses.
Collapse
|
10
|
Haas G, Dunn A, Madsen J, Genovese P, Chauvin H, Au J, Ziemkiewicz N, Johnson D, Paoli A, Lin A, Pullen N, Garg K. Biomimetic sponges improve muscle structure and function following volumetric muscle loss. J Biomed Mater Res A 2021; 109:2280-2293. [PMID: 33960118 PMCID: PMC9838030 DOI: 10.1002/jbm.a.37212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 01/17/2023]
Abstract
Skeletal muscle is inept in regenerating after traumatic injuries such as volumetric muscle loss (VML) due to significant loss of various cellular and acellular components. Currently, there are no approved therapies for the treatment of muscle tissue following trauma. In this study, biomimetic sponges composed of gelatin, collagen, laminin-111, and FK-506 were used for the treatment of VML in a rodent model. We observed that biomimetic sponge treatment improved muscle structure and function while modulating inflammation and limiting the extent of fibrotic tissue deposition. Specifically, sponge treatment increased the total number of myofibers, type 2B fiber cross-sectional area, myosin: collagen ratio, myofibers with central nuclei, and peak isometric torque compared to untreated VML injured muscles. As an acellular scaffold, biomimetic sponges may provide a promising clinical therapy for VML.
Collapse
Affiliation(s)
- Gabriel Haas
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Josh Madsen
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Peter Genovese
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Hannah Chauvin
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Jeffrey Au
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Natalia Ziemkiewicz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - David Johnson
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Allison Paoli
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Andrew Lin
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Nicholas Pullen
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, Colorado
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
11
|
Chang WCW, Yen CC, Liu WY, Hsieh YS, Hsu MC, Wu YT. Blood-to-muscle distribution and urinary excretion of higenamine in rats. Drug Test Anal 2021; 13:1776-1782. [PMID: 34309209 DOI: 10.1002/dta.3132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/17/2021] [Accepted: 07/18/2021] [Indexed: 11/11/2022]
Abstract
Higenamine is a β2 -agonist that has been prohibited in sports by the World Anti-Doping Agency. Higenamine could potentially promote anabolism and lipolysis; however, its crucial pharmacokinetics data, particularly muscle distribution, remain unavailable. The present study aims to investigate the blood-to-muscle distribution as well as the urinary excretion of higenamine in laboratory rats. In the first experiment, the microdialysis technique was employed to continuously measure free, protein-unbound concentrations in blood and muscle for 90 min (sampling at a 5-min interval) after rats received IV infusion of higenamine. The mean half-lives of higenamine in blood and muscle were 17.9 and 19.0 min, respectively. The blood-to-muscle distribution ratio (AUCmuscle /AUCblood ) of higenamine was estimated to be 22%. In the second experiment, rats were orally administered with a single-dose higenamine and their urine samples were profiled at a 12-h interval for up to 48 h. Results showed only a small portion of total consumption (1.44%, ranging 0.71%-2.50%) was excreted in the urine. Among these time points, about 43% cumulative amount of higenamine was eliminated within the first 12 h. Our data suggested that one-quarter of the unbound higenamine rapidly penetrates from the vessels into muscle, distributes to the interstitial fluid, then eliminates from the rat in a short span of time. The muscle tissue is likely to have a low binding affinity for higenamine, and renal excretion plays a minor role in its elimination. Together, our findings provide valuable pharmacokinetics data that may gain deeper insights into higenamine's role in skeletal muscle functions.
Collapse
Affiliation(s)
| | - Ching-Chi Yen
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Yi Liu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Shan Hsieh
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Tse Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Hardee JP, Martins KJB, Miotto PM, Ryall JG, Gehrig SM, Reljic B, Naim T, Chung JD, Trieu J, Swiderski K, Philp AM, Philp A, Watt MJ, Stroud DA, Koopman R, Steinberg GR, Lynch GS. Metabolic remodeling of dystrophic skeletal muscle reveals biological roles for dystrophin and utrophin in adaptation and plasticity. Mol Metab 2020; 45:101157. [PMID: 33359740 PMCID: PMC7811171 DOI: 10.1016/j.molmet.2020.101157] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives Preferential damage to fast, glycolytic myofibers is common in many muscle-wasting diseases, including Duchenne muscular dystrophy (DMD). Promoting an oxidative phenotype could protect muscles from damage and ameliorate the dystrophic pathology with therapeutic relevance, but developing efficacious strategies requires understanding currently unknown biological roles for dystrophin and utrophin in dystrophic muscle adaptation and plasticity. Methods Combining whole transcriptome RNA sequencing and mitochondrial proteomics with assessments of metabolic and contractile function, we investigated the roles of dystrophin and utrophin in fast-to-slow muscle remodeling with low-frequency electrical stimulation (LFS, 10 Hz, 12 h/d, 7 d/wk, 28 d) in mdx (dystrophin null) and dko (dystrophin/utrophin null) mice, two established preclinical models of DMD. Results Novel biological roles in adaptation were demonstrated by impaired transcriptional activation of estrogen-related receptor alpha-responsive genes supporting oxidative phosphorylation in dystrophic muscles. Further, utrophin expression in dystrophic muscles was required for LFS-induced remodeling of mitochondrial respiratory chain complexes, enhanced fiber respiration, and conferred protection from eccentric contraction-mediated damage. Conclusions These findings reveal novel roles for dystrophin and utrophin during LFS-induced metabolic remodeling of dystrophic muscle and highlight the therapeutic potential of LFS to ameliorate the dystrophic pathology and protect from contraction-induced injury with important implications for DMD and related muscle disorders. Transcriptional remodeling to chronic low-frequency electrical stimulation (LFS) is impaired in dystrophic muscles. Loss of dystrophin and utrophin in dystrophic muscles disrupts remodeling of mitochondrial complexes I-III to chronic LFS. Loss of dystrophin and utrophin in dystrophic muscles abrogates improvements in fiber respiration after chronic LFS. Loss of dystrophin and utrophin in dystrophic muscles compromises protection from contraction-induced injury after chronic LFS.
Collapse
Affiliation(s)
- Justin P Hardee
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Karen J B Martins
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Paula M Miotto
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - James G Ryall
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Stefan M Gehrig
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Boris Reljic
- Department of Biochemistry and Molecular Biology, The Bio21 Institute, The University of Melbourne, Melbourne, 3010, Victoria, Australia
| | - Timur Naim
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Jin D Chung
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Jen Trieu
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Kristy Swiderski
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Ashleigh M Philp
- Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia; St Vincent's Clinical School, UNSW Medicine, UNSW Sydney, Sydney, 2010, New South Wales, Australia
| | - Andrew Philp
- Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia; St Vincent's Clinical School, UNSW Medicine, UNSW Sydney, Sydney, 2010, New South Wales, Australia
| | - Matthew J Watt
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology, The Bio21 Institute, The University of Melbourne, Melbourne, 3010, Victoria, Australia
| | - Rene Koopman
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, the Department of Biochemistry and Biomedical Sciences and the Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
13
|
Segatto M, Szokoll R, Fittipaldi R, Bottino C, Nevi L, Mamchaoui K, Filippakopoulos P, Caretti G. BETs inhibition attenuates oxidative stress and preserves muscle integrity in Duchenne muscular dystrophy. Nat Commun 2020; 11:6108. [PMID: 33257646 PMCID: PMC7705749 DOI: 10.1038/s41467-020-19839-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/31/2020] [Indexed: 12/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) affects 1 in 3500 live male births. To date, there is no effective cure for DMD, and the identification of novel molecular targets involved in disease progression is important to design more effective treatments and therapies to alleviate DMD symptoms. Here, we show that protein levels of the Bromodomain and extra-terminal domain (BET) protein BRD4 are significantly increased in the muscle of the mouse model of DMD, the mdx mouse, and that pharmacological inhibition of the BET proteins has a beneficial outcome, tempering oxidative stress and muscle damage. Alterations in reactive oxygen species (ROS) metabolism are an early event in DMD onset and they are tightly linked to inflammation, fibrosis, and necrosis in skeletal muscle. By restoring ROS metabolism, BET inhibition ameliorates these hallmarks of the dystrophic muscle, translating to a beneficial effect on muscle function. BRD4 direct association to chromatin regulatory regions of the NADPH oxidase subunits increases in the mdx muscle and JQ1 administration reduces BRD4 and BRD2 recruitment at these regions. JQ1 treatment reduces NADPH subunit transcript levels in mdx muscles, isolated myofibers and DMD immortalized myoblasts. Our data highlight novel functions of the BET proteins in dystrophic skeletal muscle and suggest that BET inhibitors may ameliorate the pathophysiology of DMD.
Collapse
Affiliation(s)
- Marco Segatto
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.,Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche (Is), Italy
| | - Roberta Szokoll
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Raffaella Fittipaldi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Cinzia Bottino
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Lorenzo Nevi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, U974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013, Paris, France
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Old Road Campus Research Building, Nuffield Department of Medicine, Oxford, OX3 7DQ, UK
| | - Giuseppina Caretti
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
14
|
Ballerini A, Chua CYX, Rhudy J, Susnjar A, Di Trani N, Jain PR, Laue G, Lubicka D, Shirazi‐Fard Y, Ferrari M, Stodieck LS, Cadena SM, Grattoni A. Counteracting Muscle Atrophy on Earth and in Space via Nanofluidics Delivery of Formoterol. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Andrea Ballerini
- Department of Nanomedicine Houston Methodist Research Institute 6670 Bertner Ave Houston TX 77030 USA
- Department of Medical Biotechnology and Translational Medicine University of Milan Milan 20122 Italy
| | - Corrine Ying Xuan Chua
- Department of Nanomedicine Houston Methodist Research Institute 6670 Bertner Ave Houston TX 77030 USA
| | - Jessica Rhudy
- Department of Nanomedicine Houston Methodist Research Institute 6670 Bertner Ave Houston TX 77030 USA
| | - Antonia Susnjar
- Department of Nanomedicine Houston Methodist Research Institute 6670 Bertner Ave Houston TX 77030 USA
| | - Nicola Di Trani
- Department of Nanomedicine Houston Methodist Research Institute 6670 Bertner Ave Houston TX 77030 USA
- College of Materials Science and Opta‐Electronic Technology University of Chinese Academy of Science Shijingshan, 19 Yuquan Road Beijing 100049 China
| | - Priya R. Jain
- Department of Nanomedicine Houston Methodist Research Institute 6670 Bertner Ave Houston TX 77030 USA
| | - Grit Laue
- Novartis Institutes for Biomedical Research Novartis Campus Basel 4056 Switzerland
| | - Danuta Lubicka
- Novartis Institutes for Biomedical Research 181 Massachusetts Avenue Cambridge MA 02139 USA
| | - Yasaman Shirazi‐Fard
- Bone and Signaling Laboratory Space BioSciences Division NASA Ames Research Center Mail‐Stop 236‐7, Moffett Field, CA, 94035 USA
| | - Mauro Ferrari
- University of Washington Box 357630H375 Health Science Building Seattle WA 98195‐7630 USA
| | - Louis S. Stodieck
- BioServe Space Technologies Department of Aerospace Engineering Sciences University of Colorado Boulder CO 80309 USA
| | - Samuel M. Cadena
- Novartis Institutes for Biomedical Research 181 Massachusetts Avenue Cambridge MA 02139 USA
| | - Alessandro Grattoni
- Department of Nanomedicine Houston Methodist Research Institute 6670 Bertner Ave Houston TX 77030 USA
- Department of Surgery Houston Methodist Research Institute 6670 Bertner Ave Houston TX 77030 USA
- Department of Radiation Oncology Houston Methodist Research Institute 6670 Bertner Ave Houston TX 77030 USA
| |
Collapse
|
15
|
Bahri OA, Naldaiz-Gastesi N, Kennedy DC, Wheatley AM, Izeta A, McCullagh KJA. The panniculus carnosus muscle: A novel model of striated muscle regeneration that exhibits sex differences in the mdx mouse. Sci Rep 2019; 9:15964. [PMID: 31685850 PMCID: PMC6828975 DOI: 10.1038/s41598-019-52071-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/10/2019] [Indexed: 01/12/2023] Open
Abstract
The dermal striated muscle panniculus carnosus (PC), prevalent in lower mammals with remnants in humans, is highly regenerative, and whose function is purported to be linked to defence and shivering thermogenesis. Given the heterogeneity of responses of different muscles to disease, we set out to characterize the PC in wild-type and muscular dystrophic mdx mice. The mouse PC contained mainly fast-twitch type IIB myofibers showing body wide distribution. The PC exemplified heterogeneity in myofiber sizes and a prevalence of central nucleated fibres (CNFs), hallmarks of regeneration, in wild-type and mdx muscles, which increased with age. PC myofibers were hypertrophic in mdx compared to wild-type mice. Sexual dimorphism was apparent with a two-fold increase in CNFs in PC from male versus female mdx mice. To evaluate myogenic potential, PC muscle progenitors were isolated from 8-week old wild-type and mdx mice, grown and differentiated for 7-days. Myogenic profiling of PC-derived myocytes suggested that male mdx satellite cells (SCs) were more myogenic than female counterparts, independent of SC density in PC muscles. Muscle regenerative differences in the PC were associated with alterations in expression of calcium handling regulatory proteins. These studies highlight unique aspects of the PC muscle and its potential as a model to study mechanisms of striated muscle regeneration in health and disease.
Collapse
MESH Headings
- Animals
- Biomarkers
- Calcium-Binding Proteins/metabolism
- Cell Differentiation
- Dermis/metabolism
- Dermis/pathology
- Disease Models, Animal
- Female
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred mdx
- Muscle Development
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Striated/pathology
- Muscle, Striated/physiology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Regeneration
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/metabolism
- Sex Factors
- Stem Cells
Collapse
Affiliation(s)
- Ola A Bahri
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland Galway, Galway, H91 W5P7, Ireland
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | | | - Donna C Kennedy
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Antony M Wheatley
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Ander Izeta
- Biodonostia Health Research Institute, San Sebastian, Spain
| | - Karl J A McCullagh
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland Galway, Galway, H91 W5P7, Ireland.
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
16
|
Kelley EF, Cross TJ, Snyder EM, McDonald CM, Hoffman EP, Bello L. Influence of β 2 adrenergic receptor genotype on risk of nocturnal ventilation in patients with Duchenne muscular dystrophy. Respir Res 2019; 20:221. [PMID: 31619245 PMCID: PMC6796481 DOI: 10.1186/s12931-019-1200-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/25/2019] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease resulting in severe respiratory derangements. As such, DMD patients are at a high risk of nocturnal hypoventilation, thereby requiring nocturnal ventilation (NV). To this end, NV is an important clinical milestone in the management of DMD. Emerging evidence suggests that ß2 adrenergic receptors (ADRB2) may play a role in determining respiratory function, whereby more functional ADRB2 genotype variants (e.g., Gly16) are associated with improved pulmonary function and respiratory muscle strength. These findings suggest that the more functional ADRB2 genotype may help to preserve respiratory function in patients with DMD. The purpose of this study was to identify the influence of ADRB2 genotype on the risk of NV use in DMD. Data from the CINRG Duchenne Natural History Study including 175 DMD patients (3–25 yrs) were analyzed focusing on ADRB2 genotype variants. Time-to-event analyses were used to examine differences in the age at prescription of full-time NV use between genotypes. There were no differences between genotype groups in age, height, weight, corticosteroid use, proportion of ambulatory patients, or age at loss of ambulation. DMD patients expressing the Gly16 polymorphism had a significantly (P < 0.05) lower mean age at NV prescription compared with those patients expressing the Arg16 polymorphism (21.80 ± 0.59 yrs. vs 25.91 ± 1.31 yrs., respectively). In addition, a covariate-adjusted Cox model revealed that the Gly16 variant group possessed a 6.52-fold higher risk of full-time NV use at any given age compared with the Arg16 polymorphism group. These data suggest that genetic variations in the ADRB2 gene may influence the age at which DMD patients are first prescribed NV, whereby patients with the Gly16 polymorphism are more likely to require NV assistance at an earlier age than their Arg16 counterparts.
Collapse
Affiliation(s)
- Eli F Kelley
- Department of Kinesiology, University of Minnesota, Minneapolis, MN, USA. .,Department of Cardiovascular Diseases, Mayo Clinic, RO_GE_MN_10, 1216 2nd Street SW, Rochester, MN, 55902, USA.
| | - Troy J Cross
- Department of Cardiovascular Diseases, Mayo Clinic, RO_GE_MN_10, 1216 2nd Street SW, Rochester, MN, 55902, USA
| | - Eric M Snyder
- Department of Kinesiology, University of Minnesota, Minneapolis, MN, USA
| | - Craig M McDonald
- University of California Davis Medical Center, Sacramento, CA, USA
| | | | - Eric P Hoffman
- Binghamton University - SUNY, Binghamton, NY, USA.,Center for Genetic Medicine, Children's Research Institute, Children's National Health System, Washington, DC, USA
| | - Luca Bello
- Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Glycine administration attenuates progression of dystrophic pathology in prednisolone-treated dystrophin/utrophin null mice. Sci Rep 2019; 9:12982. [PMID: 31506484 PMCID: PMC6736947 DOI: 10.1038/s41598-019-49140-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked genetic disease characterized by progressive muscle wasting and weakness and premature death. Glucocorticoids (e.g. prednisolone) remain the only drugs with a favorable impact on DMD patients, but not without side effects. We have demonstrated that glycine preserves muscle in various wasting models. Since glycine effectively suppresses the activity of pro-inflammatory macrophages, we investigated the potential of glycine treatment to ameliorate the dystrophic pathology. Dystrophic mdx and dystrophin-utrophin null (dko) mice were treated with glycine or L-alanine (amino acid control) for up to 15 weeks and voluntary running distance (a quality of life marker and strong correlate of lifespan in dko mice) and muscle morphology were assessed. Glycine increased voluntary running distance in mdx mice by 90% (P < 0.05) after 2 weeks and by 60% (P < 0.01) in dko mice co-treated with prednisolone over an 8 week treatment period. Glycine treatment attenuated fibrotic deposition in the diaphragm by 28% (P < 0.05) after 10 weeks in mdx mice and by 22% (P < 0.02) after 14 weeks in dko mice. Glycine treatment augmented the prednisolone-induced reduction in fibrosis in diaphragm muscles of dko mice (23%, P < 0.05) after 8 weeks. Our findings provide strong evidence that glycine supplementation may be a safe, simple and effective adjuvant for improving the efficacy of prednisolone treatment and improving the quality of life for DMD patients.
Collapse
|
18
|
Hostrup M, Reitelseder S, Jessen S, Kalsen A, Nyberg M, Egelund J, Kreiberg M, Kristensen CM, Thomassen M, Pilegaard H, Backer V, Jacobson GA, Holm L, Bangsbo J. Beta 2 -adrenoceptor agonist salbutamol increases protein turnover rates and alters signalling in skeletal muscle after resistance exercise in young men. J Physiol 2018; 596:4121-4139. [PMID: 29968301 DOI: 10.1113/jp275560] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/29/2018] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Animal models have shown that beta2 -adrenoceptor stimulation increases protein synthesis and attenuates breakdown processes in skeletal muscle. Thus, the beta2 -adrenoceptor is a potential target in the treatment of disuse-, disease- and age-related muscle atrophy. In the present study, we show that a few days of oral treatment with the commonly prescribed beta2 -adrenoceptor agonist, salbutamol, increased skeletal muscle protein synthesis and breakdown during the first 5 h after resistance exercise in young men. Salbutamol also counteracted a negative net protein balance in skeletal muscle after resistance exercise. Changes in protein turnover rates induced by salbutamol were associated with protein kinase A-signalling, activation of Akt2 and modulation of mRNA levels of growth-regulating proteins in skeletal muscle. These findings indicate that protein turnover rates can be augmented by beta2 -adrenoceptor agonist treatment during recovery from resistance exercise in humans. ABSTRACT The effect of beta2 -adrenoceptor stimulation on skeletal muscle protein turnover and intracellular signalling is insufficiently explored in humans, particularly in association with exercise. In a randomized, placebo-controlled, cross-over study investigating 12 trained men, the effects of beta2 -agonist (6 × 4 mg oral salbutamol) on protein turnover rates, intracellular signalling and mRNA response in skeletal muscle were investigated 0.5-5 h after quadriceps resistance exercise. Each trial was preceded by a 4-day lead-in treatment period. Leg protein turnover rates were assessed by infusion of [13 C6 ]-phenylalanine and sampling of arterial and venous blood, as well as vastus lateralis muscle biopsies 0.5 and 5 h after exercise. Furthermore, myofibrillar fractional synthesis rate, intracellular signalling and mRNA response were measured in muscle biopsies. The mean (95% confidence interval) myofibrillar fractional synthesis rate was higher for salbutamol than placebo [0.079 (95% CI, 0.064 to 0.093) vs. 0.066 (95% CI, 0.056 to 0.075%) × h-1 ] (P < 0.05). Mean net leg phenylalanine balance 0.5-5 h after exercise was higher for salbutamol than placebo [3.6 (95% CI, 1.0 to 6.2 nmol) × min-1 × 100 gLeg Lean Mass-1 ] (P < 0.01). Phosphorylation of Akt2, cAMP response element binding protein and PKA substrate 0.5 and 5 h after exercise, as well as phosphorylation of eEF2 5 h after exercise, was higher (P < 0.05) for salbutamol than placebo. Calpain-1, Forkhead box protein O1, myostatin and Smad3 mRNA content was higher (P < 0.01) for salbutamol than placebo 0.5 h after exercise, as well as Forkhead box protein O1 and myostatin mRNA content 5 h after exercise, whereas ActivinRIIB mRNA content was lower (P < 0.01) for salbutamol 5 h after exercise. These observations suggest that beta2 -agonist increases protein turnover rates in skeletal muscle after resistance exercise in humans, with concomitant cAMP/PKA and Akt2 signalling, as well as modulation of mRNA response of growth-regulating proteins.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Søren Reitelseder
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Søren Jessen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Anders Kalsen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Michael Nyberg
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jon Egelund
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kreiberg
- Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | | | - Martin Thomassen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Department of Biology, University of Copenhagen, Copenhagen, Copenhagen, Denmark
| | - Vibeke Backer
- Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Glenn A Jacobson
- Division of Pharmacy, School of Medicine, University of Tasmania, Hobart, Australia
| | - Lars Holm
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg University Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,School of Sport Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Abstract
The World Anti-Doping Agency (WADA) currently allows therapeutic use of the beta2-agonists salbutamol, formoterol and salmeterol when delivered via inhalation despite some evidence suggesting these anti-asthma drugs may be performance enhancing. Beta2-agonists are usually administered as 50:50 racemic mixtures of two enantiomers (non-superimposable mirror images), one of which demonstrates significant beta2-adrenoceptor-mediated bronchodilation while the other appears to have little or no pharmacological activity. For salbutamol and formoterol, urine thresholds have been adopted to limit supratherapeutic dosing and to discriminate between inhaled (permitted) and oral (prohibited) use. However, chiral switches have led to the availability of enantiopure (active enantiomer only) preparations of salbutamol and formoterol, which effectively doubles their urine thresholds and provides a means for athletes to take supratherapeutic doses for doping purposes. Given the availability of these enantiopure beta2-agonists, the analysis of these drugs using enantioselective assays should now become routine. For salmeterol, there is currently only a therapeutic dose threshold and adoption of a urinary threshold should be a high priority for doping control.
Collapse
|
20
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
21
|
Pauly M, Angebault-Prouteau C, Dridi H, Notarnicola C, Scheuermann V, Lacampagne A, Matecki S, Fauconnier J. ER stress disturbs SR/ER-mitochondria Ca 2+ transfer: Implications in Duchenne muscular dystrophy. Biochim Biophys Acta Mol Basis Dis 2017. [PMID: 28625916 DOI: 10.1016/j.bbadis.2017.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Besides its role in calcium (Ca2+) homeostasis, the sarco-endoplamic reticulum (SR/ER) controls protein folding and is tethered to mitochondria. Under pathophysiological conditions the unfolded protein response (UPR) is associated with disturbance in SR/ER-mitochondria crosstalk. Here, we investigated whether ER stress altered SR/ER-mitochondria links, Ca2+ handling and muscle damage in WT (Wild Type) and mdx mice, the murine model of Duchenne Muscular Dystrophy (DMD). In WT mice, the SR/ER-mitochondria links were decreased in isolated FDB muscle fibers after injection of ER stress activator tunicamycin (TM). Ca2+ imaging revealed an increase of cytosolic Ca2+ transient and a decrease of mitochondrial Ca2+ uptake. The force generating capacity of muscle dropped after TM. This impaired contractile function was accompanied by an increase in autophagy markers and calpain-1 activation. Conversely, ER stress inhibitors restored SR/ER-mitochondria links, mitochondrial Ca2+ uptake and improved diaphragm contractility in mdx mice. Our findings demonstrated that ER stress-altered SR/ER-mitochondria links, disturbed Ca2+ handling and muscle function in WT and mdx mice. Thus, ER stress may open up a prospect of new therapeutic targets in DMD.
Collapse
Affiliation(s)
- Marion Pauly
- Inserm U1055, Hypoxie et Physiopathologies, Université Grenoble Alpes, Grenoble, France; Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France
| | | | - Haikel Dridi
- Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France
| | - Cécile Notarnicola
- Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France
| | - Valérie Scheuermann
- Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France
| | - Alain Lacampagne
- Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France
| | - Stefan Matecki
- Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France
| | - Jérémy Fauconnier
- Inserm U1046, UMR CNRS 9214, Université Montpellier, CHRU Montpellier, Montpellier, France.
| |
Collapse
|
22
|
Capogrosso RF, Mantuano P, Cozzoli A, Sanarica F, Massari AM, Conte E, Fonzino A, Giustino A, Rolland JF, Quaranta A, De Bellis M, Camerino GM, Grange RW, De Luca A. Contractile efficiency of dystrophic mdx mouse muscle: in vivo and ex vivo assessment of adaptation to exercise of functional end points. J Appl Physiol (1985) 2017; 122:828-843. [PMID: 28057817 DOI: 10.1152/japplphysiol.00776.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 11/22/2022] Open
Abstract
Progressive weakness is a typical feature of Duchenne muscular dystrophy (DMD) patients and is exacerbated in the benign mdx mouse model by in vivo treadmill exercise. We hypothesized a different threshold for functional adaptation of mdx muscles in response to the duration of the exercise protocol. In vivo weakness was confirmed by grip strength after 4, 8, and 12 wk of exercise in mdx mice. Torque measurements revealed that exercise-related weakness in mdx mice correlated with the duration of the protocol, while wild-type (WT) mice were stronger. Twitch and tetanic forces of isolated diaphragm and extensor digitorum longus (EDL) muscles were lower in mdx compared with WT mice. In mdx, both muscle types exhibited greater weakness after a single exercise bout, but only in EDL after a long exercise protocol. As opposite to WT muscles, mdx EDL ones did not show any exercise-induced adaptations against eccentric contraction force drop. qRT-PCR analysis confirmed the maladaptation of genes involved in metabolic and structural remodeling, while damage-related genes remained significantly upregulated and angiogenesis impaired. Phosphorylated AMP kinase level increased only in exercised WT muscle. The severe histopathology and the high levels of muscular TGF-β1 and of plasma matrix metalloproteinase-9 confirmed the persistence of muscle damage in mdx mice. Therefore, dystrophic muscles showed a partial degree of functional adaptation to chronic exercise, although not sufficient to overcome weakness nor signs of damage. The improved understanding of the complex mechanisms underlying maladaptation of dystrophic muscle paves the way to a better managment of DMD patients.NEW & NOTEWORTHY We focused on the adaptation/maladaptation of dystrophic mdx mouse muscles to a standard protocol of exercise to provide guidance in the development of more effective drug and physical therapies in Duchenne muscular dystrophy. The mdx muscles showed a modest functional adaptation to chronic exercise, but it was not sufficient to overcome the progressive in vivo weakness, nor to counter signs of muscle damage. Therefore, a complex involvement of multiple systems underlies the maladaptive response of dystrophic muscle.
Collapse
Affiliation(s)
- Roberta Francesca Capogrosso
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy.,Department of Chemical, Toxicological and Pharmacological Drug Studies, Catholic University "Our Lady of Good Counsel," Tirana, Albany
| | - Paola Mantuano
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy
| | - Anna Cozzoli
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy
| | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy
| | - Ada Maria Massari
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy
| | - Adriano Fonzino
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro," Bari, Italy
| | - Jean-Francois Rolland
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy
| | - Angelo Quaranta
- Department of Veterinary Medicine, University of Bari "Aldo Moro," Valenzano (BA), Italy
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy
| | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech University, Blacksburg, Virginia; and
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro," Bari, Italy;
| |
Collapse
|
23
|
Osteoprotegerin and β 2-Agonists Mitigate Muscular Dystrophy in Slow- and Fast-Twitch Skeletal Muscles. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:498-504. [PMID: 28041995 DOI: 10.1016/j.ajpath.2016.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 01/20/2023]
Abstract
Our recent work showed that daily injections of osteoprotegerin (OPG)-immunoglobulin fragment complex (OPG-Fc) completely restore the function of fast-twitch extensor digitorum longus muscles in dystrophic mdx mice, a murine model of Duchenne muscular dystrophy. However, despite marked improvements, OPG-Fc was not as effective in preventing the loss of function of slow-twitch soleus and diaphragm muscles. Because β2-agonists enhance the function of slow- and fast-twitch dystrophic muscles and because their use is limited by their adverse effects on bone and cardiac tissues, we hypothesized that OPG-Fc, a bone and skeletal muscle protector, acts synergistically with β2-agonists and potentiates their positive effects on skeletal muscles. We observed that the content of β2-adrenergic receptors, which are mainly expressed in skeletal muscle, is significantly reduced in dystrophic muscles but is rescued by the injection of OPG-Fc. Most important, OPG-Fc combined with a low dose of formoterol, a member of a new generation of β2-agonists, histologically and functionally rescued slow-twitch dystrophic muscles. This combination of therapeutic agents, which have already been tested and approved for human use, may open up new therapeutic avenues for Duchenne muscular dystrophy and possibly other neuromuscular diseases.
Collapse
|
24
|
Ikeda T, Ichii O, Otsuka-Kanazawa S, Nakamura T, Elewa YHA, Kon Y. Degenerative and regenerative features of myofibers differ among skeletal muscles in a murine model of muscular dystrophy. J Muscle Res Cell Motil 2016; 37:153-164. [DOI: 10.1007/s10974-016-9452-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
|
25
|
Marks ED, Kumar A. Thymosin β4: Roles in Development, Repair, and Engineering of the Cardiovascular System. VITAMINS AND HORMONES 2016; 102:227-49. [PMID: 27450737 DOI: 10.1016/bs.vh.2016.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The burden of cardiovascular disease is a growing worldwide issue that demands attention. While many clinical trials are ongoing to test therapies for treating the heart after myocardial infarction (MI) and heart failure, there are few options doctors able to currently give patients to repair the heart. This eventually leads to decreased ventricular contractility and increased systemic disease, including vascular disorders that could result in stroke. Small peptides such as thymosin β4 (Tβ4) are upregulated in the cardiovascular niche during fetal development and after injuries such as MI, providing increased neovasculogenesis and paracrine signals for endogenous stem cell recruitment to aid in wound repair. New research is looking into the effects of in vivo administration of Tβ4 through injections and coatings on implants, as well as its effect on cell differentiation. Results so far demonstrate Tβ4 administration leads to robust increases in angiogenesis and wound healing in the heart after MI and the brain after stroke, and can differentiate adult stem cells toward the cardiac lineage for implantation to the heart to increase contractility and survival. Future work, some of which is currently in clinical trials, will demonstrate the in vivo effect of these therapies on human patients, with the goal of helping the millions of people worldwide affected by cardiovascular disease.
Collapse
Affiliation(s)
- E D Marks
- Nanomedicine Research Laboratory, University of Delaware, Newark, DE, United States
| | - A Kumar
- Nanomedicine Research Laboratory, University of Delaware, Newark, DE, United States.
| |
Collapse
|
26
|
Beedle AM. Distribution of myosin heavy chain isoforms in muscular dystrophy: insights into disease pathology. MUSCULOSKELETAL REGENERATION 2016; 2:e1365. [PMID: 27430020 PMCID: PMC4943764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Myosin heavy chain isoforms are an important component defining fiber type specific properties in skeletal muscle, such as oxidative versus glycolytic metabolism, rate of contraction, and fatigability. While the molecular mechanisms that underlie specification of the different fiber types are becoming clearer, how this programming becomes disrupted in muscular dystrophy and the functional consequences of fiber type changes in disease are not fully resolved. Fiber type changes in disease, with specific focus on muscular dystrophies caused by defects in the dystrophin glycoprotein complex, are discussed.
Collapse
Affiliation(s)
- Aaron M Beedle
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602 USA
| |
Collapse
|
27
|
Mechanical Overloading Increases Maximal Force and Reduces Fragility in Hind Limb Skeletal Muscle from Mdx Mouse. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2012-24. [DOI: 10.1016/j.ajpath.2015.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/30/2015] [Accepted: 03/09/2015] [Indexed: 12/20/2022]
|
28
|
Ham DJ, Kennedy TL, Caldow MK, Chee A, Lynch GS, Koopman R. Citrulline does not prevent skeletal muscle wasting or weakness in limb-casted mice. J Nutr 2015; 145:900-6. [PMID: 25740910 DOI: 10.3945/jn.114.203737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/20/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Increasing arginine (Arg) availability reduces atrophy in cultured skeletal muscle cells. Supplementation with its metabolic precursor citrulline (Cit) is more effective at improving skeletal muscle Arg concentrations. OBJECTIVE We tested the hypothesis that Cit supplementation would attenuate skeletal muscle atrophy and loss of function during hindlimb immobilization in mice. METHODS Male C57BL/6JArc mice underwent 14 d of unilateral hindlimb immobilization/plaster casting and were supplemented with ~0.81 g Cit · kg⁻¹ · d⁻¹ (CIT group) or Ala (ALA group) mixed into their food. The uncasted contralateral limb (internal control) and an uncasted group (CON) served as controls. Muscle atrophy was evaluated with mass, fiber area, and in situ muscle function. RESULTS Tibialis anterior (TA) muscle mass [ALA: 37.6 ± 0.92 mg; CIT: 38.3 ± 1.25 mg] and peak tetanic force (ALA: 1150 ± 38.5 mN; CIT: 1150 ± 52.0 mN) were lower (P < 0.001) in the ALA (53.9 ± 0.42 mg) and CIT (1760 ± 28.5 mN) groups than in the CON group. No difference was found between ALA and CIT groups for TA mass, fiber area, or peak force. The mRNA expression of the nitric oxide synthase 2, inducible (Nos2; ~15-fold) and B-cell chronic lymphoid leukemia/lymphoma 2/adenovirus E1B 19 kDa interacting protein 3 (Bnip3; ~17-fold) genes and the ratio of microtubule-associated protein light chain 3BII to 3BI (LC3BII:LC3BI) (50.5% ± 17.7%) were higher (P < 0.05) in the ALA group than in the CON group, suggesting increased autophagy. In the CIT group, Bnip3 mRNA was lower (-70%; P < 0.05) and Nos2 mRNA tended to be lower (-45%; P = 0.05) than in the ALA group, whereas LC3BII:LC3BI was not different from the CON group. CONCLUSIONS Cit treatment of male mice did not affect therapeutically relevant outcome measures such as skeletal muscle mass and peak muscle force after 14 d of hindlimb immobilization.
Collapse
Affiliation(s)
- Daniel J Ham
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Parkville, Australia
| | - Tahnee L Kennedy
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Parkville, Australia
| | - Marissa K Caldow
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Parkville, Australia
| | - Annabel Chee
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Parkville, Australia
| | - Gordon S Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Parkville, Australia
| | - René Koopman
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
29
|
Pant M, Sopariwala DH, Bal NC, Lowe J, Delfín DA, Rafael-Fortney J, Periasamy M. Metabolic dysfunction and altered mitochondrial dynamics in the utrophin-dystrophin deficient mouse model of duchenne muscular dystrophy. PLoS One 2015; 10:e0123875. [PMID: 25859846 PMCID: PMC4393257 DOI: 10.1371/journal.pone.0123875] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/23/2015] [Indexed: 12/02/2022] Open
Abstract
The utrophin-dystrophin deficient (DKO) mouse model has been widely used to understand the progression of Duchenne muscular dystrophy (DMD). However, it is unclear as to what extent muscle pathology affects metabolism. Therefore, the present study was focused on understanding energy expenditure in the whole animal and in isolated extensor digitorum longus (EDL) muscle and to determine changes in metabolic enzymes. Our results show that the 8 week-old DKO mice consume higher oxygen relative to activity levels. Interestingly the EDL muscle from DKO mouse consumes higher oxygen per unit integral force, generates less force and performs better in the presence of pyruvate thus mimicking a slow twitch muscle. We also found that the expression of hexokinase 1 and pyruvate kinase M2 was upregulated several fold suggesting increased glycolytic flux. Additionally, there is a dramatic increase in dynamin-related protein 1 (Drp 1) and mitofusin 2 protein levels suggesting increased mitochondrial fission and fusion, a feature associated with increased energy demand and altered mitochondrial dynamics. Collectively our studies point out that the dystrophic disease has caused significant changes in muscle metabolism. To meet the increased energetic demand, upregulation of metabolic enzymes and regulators of mitochondrial fusion and fission is observed in the dystrophic muscle. A better understanding of the metabolic demands and the accompanied alterations in the dystrophic muscle can help us design improved intervention therapies along with existing drug treatments for the DMD patients.
Collapse
Affiliation(s)
- Meghna Pant
- Department of Physiology and Cell Biology The Ohio State University, Columbus, OH 43210, United States of America
| | - Danesh H. Sopariwala
- Department of Physiology and Cell Biology The Ohio State University, Columbus, OH 43210, United States of America
| | - Naresh C. Bal
- Department of Physiology and Cell Biology The Ohio State University, Columbus, OH 43210, United States of America
| | - Jeovanna Lowe
- Department of Molecular & Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, OH 43210, United States of America
| | - Dawn A. Delfín
- Department of Molecular & Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, OH 43210, United States of America
| | - Jill Rafael-Fortney
- Department of Molecular & Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, OH 43210, United States of America
| | - Muthu Periasamy
- Department of Physiology and Cell Biology The Ohio State University, Columbus, OH 43210, United States of America
- * E-mail:
| |
Collapse
|
30
|
Affiliation(s)
- Irena A Rebalka
- Department of Pathology & Molecular Medicine, McMaster University, 1280 Main St West, Hamilton, ON, L8S 4L8, Canada
| | | |
Collapse
|
31
|
Church JE, Trieu J, Sheorey R, Chee AYM, Naim T, Baum DM, Ryall JG, Gregorevic P, Lynch GS. Functional β-adrenoceptors are important for early muscle regeneration in mice through effects on myoblast proliferation and differentiation. PLoS One 2014; 9:e101379. [PMID: 25000590 PMCID: PMC4084885 DOI: 10.1371/journal.pone.0101379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 06/05/2014] [Indexed: 12/25/2022] Open
Abstract
Muscles can be injured in different ways and the trauma and subsequent loss of function and physical capacity can impact significantly on the lives of patients through physical impairments and compromised quality of life. The relative success of muscle repair after injury will largely determine the extent of functional recovery. Unfortunately, regenerative processes are often slow and incomplete, and so developing novel strategies to enhance muscle regeneration is important. While the capacity to enhance muscle repair by stimulating β2-adrenoceptors (β-ARs) using β2-AR agonists (β2-agonists) has been demonstrated previously, the exact role β-ARs play in regulating the regenerative process remains unclear. To investigate β-AR-mediated signaling in muscle regeneration after myotoxic damage, we examined the regenerative capacity of tibialis anterior and extensor digitorum longus muscles from mice lacking either β1-AR (β1-KO) and/or β2-ARs (β2-KO), testing the hypothesis that muscles from mice lacking the β2-AR would exhibit impaired functional regeneration after damage compared with muscles from β1-KO or β1/β2-AR null (β1/β2-KO) KO mice. At 7 days post-injury, regenerating muscles from β1/β2-KO mice produced less force than those of controls but muscles from β1-KO or β2-KO mice did not exhibit any delay in functional restoration. Compared with controls, β1/β2-KO mice exhibited an enhanced inflammatory response to injury, which delayed early muscle regeneration, but an enhanced myoblast proliferation later during regeneration ensured a similar functional recovery (to controls) by 14 days post-injury. This apparent redundancy in the β-AR signaling pathway was unexpected and may have important implications for manipulating β-AR signaling to improve the rate, extent and efficacy of muscle regeneration to enhance functional recovery after injury.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Proliferation
- Gene Knockout Techniques
- Mice
- Muscle Strength
- Muscle, Skeletal/anatomy & histology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Myoblasts/cytology
- Organ Size
- Receptors, Adrenergic, beta-1/deficiency
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/deficiency
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Regeneration
Collapse
Affiliation(s)
- Jarrod E. Church
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Jennifer Trieu
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Radhika Sheorey
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Annabel Y. -M. Chee
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Timur Naim
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Dale M. Baum
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - James G. Ryall
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Paul Gregorevic
- Laboratory for Muscle Research & Therapeutics Development, Baker IDI Heart and Diabetes Institute, Victoria, Australia
| | - Gordon S. Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
32
|
Stapleton DI, Lau X, Flores M, Trieu J, Gehrig SM, Chee A, Naim T, Lynch GS, Koopman R. Dysfunctional muscle and liver glycogen metabolism in mdx dystrophic mice. PLoS One 2014; 9:e91514. [PMID: 24626262 PMCID: PMC3953428 DOI: 10.1371/journal.pone.0091514] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/11/2014] [Indexed: 12/25/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a severe, genetic muscle wasting disorder characterised by progressive muscle weakness. DMD is caused by mutations in the dystrophin (dmd) gene resulting in very low levels or a complete absence of the dystrophin protein, a key structural element of muscle fibres which is responsible for the proper transmission of force. In the absence of dystrophin, muscle fibres become damaged easily during contraction resulting in their degeneration. DMD patients and mdx mice (an animal model of DMD) exhibit altered metabolic disturbances that cannot be attributed to the loss of dystrophin directly. We tested the hypothesis that glycogen metabolism is defective in mdx dystrophic mice. Results Dystrophic mdx mice had increased skeletal muscle glycogen (79%, (P<0.01)). Skeletal muscle glycogen synthesis is initiated by glycogenin, the expression of which was increased by 50% in mdx mice (P<0.0001). Glycogen synthase activity was 12% higher (P<0.05) but glycogen branching enzyme activity was 70% lower (P<0.01) in mdx compared with wild-type mice. The rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 62% lower activity (P<0.01) in mdx mice resulting from a 24% reduction in PKA activity (P<0.01). In mdx mice glycogen debranching enzyme expression was 50% higher (P<0.001) together with starch-binding domain protein 1 (219% higher; P<0.01). In addition, mdx mice were glucose intolerant (P<0.01) and had 30% less liver glycogen (P<0.05) compared with control mice. Subsequent analysis of the enzymes dysregulated in skeletal muscle glycogen metabolism in mdx mice identified reduced glycogenin protein expression (46% less; P<0.05) as a possible cause of this phenotype. Conclusion We identified that mdx mice were glucose intolerant, and had increased skeletal muscle glycogen but reduced amounts of liver glycogen.
Collapse
Affiliation(s)
- David I Stapleton
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Xianzhong Lau
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marcelo Flores
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jennifer Trieu
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stefan M Gehrig
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Annabel Chee
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Timur Naim
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gordon S Lynch
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - René Koopman
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
33
|
Swiderski K, Todorov M, Gehrig SM, Naim T, Chee A, Stapleton DI, Koopman R, Lynch GS. Tranilast administration reduces fibrosis and improves fatigue resistance in muscles of mdx dystrophic mice. FIBROGENESIS & TISSUE REPAIR 2014; 7:1. [PMID: 24476069 PMCID: PMC3909382 DOI: 10.1186/1755-1536-7-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 01/14/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a severe and progressive muscle-wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilising protein dystrophin. Dystrophic muscle fibres are susceptible to injury and degeneration, and impaired muscle regeneration is associated with fibrotic deposition that limits the efficacy of potential pharmacological, cell- and gene-based therapies. Novel treatments that can prevent or attenuate fibrosis have important clinical merit for DMD and related neuromuscular diseases. We investigated the therapeutic potential for tranilast, an orally bioavailable anti-allergic agent, to prevent fibrosis in skeletal muscles of mdx dystrophic mice. RESULTS Three-week-old C57Bl/10 and mdx mice received tranilast (~300 mg/kg) in their food for 9 weeks, after which fibrosis was assessed through histological analyses, and functional properties of tibialis anterior muscles were assessed in situ and diaphragm muscle strips in vitro. Tranilast administration did not significantly alter the mass of any muscles in control or mdx mice, but it decreased fibrosis in the severely affected diaphragm muscle by 31% compared with untreated mdx mice (P < 0.05). A similar trend of decreased fibrosis was observed in the tibialis anterior muscles of mdx mice (P = 0.10). These reductions in fibrotic deposition were not associated with improvements in maximum force-producing capacity, but we did observe small but significant improvements in the resistance to fatigue in both the diaphragm and TA muscles of mdx mice treated with tranilast. CONCLUSION Together these findings demonstrate that administration of potent antifibrotic compounds such as tranilast could help preserve skeletal muscle structure, which could ultimately increase the efficacy of pharmacological, cell and gene replacement/correction therapies for muscular dystrophy and related disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gordon S Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
34
|
Church JE, Trieu J, Chee A, Naim T, Gehrig SM, Lamon S, Angelini C, Russell AP, Lynch GS. Alterations in Notch signalling in skeletal muscles frommdxanddkodystrophic mice and patients with Duchenne muscular dystrophy. Exp Physiol 2014; 99:675-87. [DOI: 10.1113/expphysiol.2013.077255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jarrod E. Church
- Basic and Clinical Myology Laboratory; Department of Physiology; The University of Melbourne; Victoria Australia
| | - Jennifer Trieu
- Basic and Clinical Myology Laboratory; Department of Physiology; The University of Melbourne; Victoria Australia
| | - Annabel Chee
- Basic and Clinical Myology Laboratory; Department of Physiology; The University of Melbourne; Victoria Australia
| | - Timur Naim
- Basic and Clinical Myology Laboratory; Department of Physiology; The University of Melbourne; Victoria Australia
| | - Stefan M. Gehrig
- Basic and Clinical Myology Laboratory; Department of Physiology; The University of Melbourne; Victoria Australia
| | - Séverine Lamon
- Centre for Physical Activity and Nutrition Research; School of Exercise and Nutrition Sciences; Deakin University; Victoria Australia
| | - Corrado Angelini
- Neurosciences Department; IRCCS San Camillo Hospital; Lido Venice Italy
| | - Aaron P. Russell
- Centre for Physical Activity and Nutrition Research; School of Exercise and Nutrition Sciences; Deakin University; Victoria Australia
| | - Gordon S. Lynch
- Basic and Clinical Myology Laboratory; Department of Physiology; The University of Melbourne; Victoria Australia
| |
Collapse
|
35
|
D'Arcy CE, Feeney SJ, McLean CA, Gehrig SM, Lynch GS, Smith JE, Cowling BS, Mitchell CA, McGrath MJ. Identification of FHL1 as a therapeutic target for Duchenne muscular dystrophy. Hum Mol Genet 2013; 23:618-36. [PMID: 24087791 DOI: 10.1093/hmg/ddt449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Utrophin is a potential therapeutic target for the fatal muscle disease, Duchenne muscular dystrophy (DMD). In adult skeletal muscle, utrophin is restricted to the neuromuscular and myotendinous junctions and can compensate for dystrophin loss in mdx mice, a mouse model of DMD, but requires sarcolemmal localization. NFATc1-mediated transcription regulates utrophin expression and the LIM protein, FHL1 which promotes muscle hypertrophy, is a transcriptional activator of NFATc1. By generating mdx/FHL1-transgenic mice, we demonstrate that FHL1 potentiates NFATc1 activation of utrophin to ameliorate the dystrophic pathology. Transgenic FHL1 expression increased sarcolemmal membrane stability, reduced muscle degeneration, decreased inflammation and conferred protection from contraction-induced injury in mdx mice. Significantly, FHL1 expression also reduced progressive muscle degeneration and fibrosis in the diaphragm of aged mdx mice. FHL1 enhanced NFATc1 activation of the utrophin promoter and increased sarcolemmal expression of utrophin in muscles of mdx mice, directing the assembly of a substitute utrophin-glycoprotein complex, and revealing a novel FHL1-NFATc1-utrophin signaling axis that can functionally compensate for dystrophin.
Collapse
Affiliation(s)
- Colleen E D'Arcy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Joassard OR, Amirouche A, Gallot YS, Desgeorges MM, Castells J, Durieux AC, Berthon P, Freyssenet DG. Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in response to formoterol administration in rat skeletal muscle. Int J Biochem Cell Biol 2013; 45:2444-55. [PMID: 23916784 DOI: 10.1016/j.biocel.2013.07.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/10/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
Abstract
Administration of β2-agonists triggers skeletal muscle anabolism and hypertrophy. We investigated the time course of the molecular events responsible for rat skeletal muscle hypertrophy in response to 1, 3 and 10 days of formoterol administration (i.p. 2000μg/kg/day). A marked hypertrophy of rat tibialis anterior muscle culminated at day 10. Phosphorylation of Akt, ribosomal protein S6, 4E-BP1 and ERK1/2 was increased at day 3, but returned to control level at day 10. This could lead to a transient increase in protein translation and could explain previous studies that reported increase in protein synthesis following β2-agonist administration. Formoterol administration was also associated with a significant reduction in MAFbx/atrogin-1 mRNA level (day 3), suggesting that formoterol can also affect protein degradation of MAFbx/atrogin1 targeted substrates, including MyoD and eukaryotic initiation factor-3f (eIF3-f). Surprisingly, mRNA level of autophagy-related genes, light chain 3 beta (LC3b) and gamma-aminobutyric acid receptor-associated protein-like 1 (Gabarapl1), as well as lysosomal hydrolases, cathepsin B and cathepsin L, was significantly and transiently increased after 1 and/or 3 days, suggesting that autophagosome formation would be increased in response to formoterol administration. However, this has to be relativized since the mRNA level of Unc-51-like kinase1 (Ulk1), BCL2/adenovirus E1B interacting protein3 (Bnip3), and transcription factor EB (TFEB), as well as the protein content of Ulk1, Atg13, Atg5-Atg12 complex and p62/Sqstm1 remained unchanged or was even decreased in response to formoterol administration. These results demonstrate that the effects of formoterol are mediated, in part, through the activation of Akt-mTOR pathway and that other signaling pathways become more important in the regulation of skeletal muscle mass with chronic administration of β2-agonists.
Collapse
Affiliation(s)
- Olivier Roger Joassard
- Laboratoire de Physiologie de l'Exercice, Université de Lyon, F-42023 Saint-Etienne, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Joassard OR, Durieux AC, Freyssenet DG. β2-Adrenergic agonists and the treatment of skeletal muscle wasting disorders. Int J Biochem Cell Biol 2013; 45:2309-21. [PMID: 23845739 DOI: 10.1016/j.biocel.2013.06.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/14/2013] [Accepted: 06/26/2013] [Indexed: 02/04/2023]
Abstract
β2-Agonists are traditionally used for the treatment of bronchospasm associated with asthma and the treatment of symptomatic patients with COPD. However, β2-agonists are also powerful anabolic agents that trigger skeletal muscle hypertrophy. Investigating the effects of β2-agonists in skeletal muscle over the past 30 years in different animal models has led to the identification of potential therapeutic applications in several muscle wasting disorders, including neuromuscular diseases, cancer cachexia, sepsis or thermal injury. In these conditions, numerous studies indicate that β2-agonists can attenuate and/or reverse the decrease in skeletal muscle mass and associated weakness in animal models of muscle wasting but also in human patients. The purpose of this review is to present the biological and clinical significance of β2-agonists for the treatment of skeletal muscle wasting. After the description of the molecular mechanisms involved in the hypertrophy and anti-atrophy effect of β2-agonists, we will review the anti-atrophy effects of β2-agonist administration in several animal models and human pathologies associated with or leading to skeletal muscle wasting. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Olivier R Joassard
- Laboratoire de Physiologie de l'Exercice, Université de Lyon, F-42023 Saint-Etienne, France
| | | | | |
Collapse
|
38
|
Schneider JS, Shanmugam M, Gonzalez JP, Lopez H, Gordan R, Fraidenraich D, Babu GJ. Increased sarcolipin expression and decreased sarco(endo)plasmic reticulum Ca2+ uptake in skeletal muscles of mouse models of Duchenne muscular dystrophy. J Muscle Res Cell Motil 2013; 34:349-56. [DOI: 10.1007/s10974-013-9350-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 05/27/2013] [Indexed: 02/02/2023]
|
39
|
GLPG0492, a novel selective androgen receptor modulator, improves muscle performance in the exercised-mdx mouse model of muscular dystrophy. Pharmacol Res 2013; 72:9-24. [PMID: 23523664 DOI: 10.1016/j.phrs.2013.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 11/22/2022]
Abstract
Anabolic drugs may counteract muscle wasting and dysfunction in Duchenne muscular dystrophy (DMD); however, steroids have unwanted side effects. We focused on GLPG0492, a new non-steroidal selective androgen receptor modulator that is currently under development for musculo-skeletal diseases such as sarcopenia and cachexia. GLPG0492 was tested in the exercised mdx mouse model of DMD in a 4-week trial at a single high dose (30 mg/kg, 6 day/week s.c.), and the results were compared with those from the administration of α-methylprednisolone (PDN; 1 mg/kg, i.p.) and nandrolone (NAND, 5 mg/kg, s.c.). This assessment was followed by a 12-week dose-dependence study (0.3-30 mg/kg s.c.). The outcomes were evaluated in vivo and ex vivo on functional, histological and biochemical parameters. Similar to PDN and NAND, GLPG0492 significantly increased mouse strength. In acute exhaustion tests, a surrogate of the 6-min walking test used in DMD patients, GLPG0492 preserved running performance, whereas vehicle- or comparator-treated animals showed a significant increase in fatigue (30-50%). Ex vivo, all drugs resulted in a modest but significant increase of diaphragm force. In parallel, a decrease in the non-muscle area and markers of fibrosis was observed in GLPG0492- and NAND-treated mice. The drugs exerted minor effects on limb muscles; however, electrophysiological biomarkers were ameliorated in extensor digitorum longus muscle. The longer dose-dependence study confirmed the effect on mdx mouse strength and resistance to fatigue and demonstrated the efficacy of lower drug doses on in vivo and ex vivo functional parameters. These results support the interest of further studies of GLPG0492 as a potential treatment for DMD.
Collapse
|
40
|
Kostrominova TY, Reiner DS, Haas RH, Ingermanson R, McDonough PM. Automated methods for the analysis of skeletal muscle fiber size and metabolic type. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:275-332. [PMID: 24016528 DOI: 10.1016/b978-0-12-407694-5.00007-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
It is of interest to quantify the size, shape, and metabolic subtype of skeletal muscle fibers in many areas of biomedical research. To do so, skeletal muscle samples are sectioned transversely to the length of the muscle and labeled for extracellular or membrane proteins to delineate the fiber boundaries and additionally for biomarkers related to function or metabolism. The samples are digitally photographed and the fibers "outlined" for quantification of fiber cross-sectional area (CSA) using pointing devices interfaced to a computer, which is tedious, prone to error, and can be nonobjective. Here, we review methods for characterizing skeletal muscle fibers and describe new automated techniques, which rapidly quantify CSA and biomarkers. We discuss the applications of these methods to the characterization of mitochondrial dysfunctions, which underlie a variety of human afflictions, and we present a novel approach, utilizing images from the online Human Protein Atlas to predict relationships between fiber-specific protein expression, function, and metabolism.
Collapse
|
41
|
Enwere EK, Boudreault L, Holbrook J, Timusk K, Earl N, LaCasse E, Renaud JM, Korneluk RG. Loss of cIAP1 attenuates soleus muscle pathology and improves diaphragm function in mdx mice. Hum Mol Genet 2012. [PMID: 23184147 DOI: 10.1093/hmg/dds493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cellular inhibitor of apoptosis 1 (cIAP1) protein is an essential regulator of canonical and noncanonical nuclear factor κB (NF-κB) signaling pathways. NF-κB signaling is known to play important roles in myogenesis and degenerative muscle disorders such as Duchenne muscular dystrophy (DMD), but the involvement of cIAP1 in muscle disease has not been studied directly. Here, we asked whether the loss of cIAP1 would influence the pathology of skeletal muscle in the mdx mouse model of DMD. Double-mutant cIAP1(-/-);mdx mice exhibited reduced muscle damage and decreased fiber centronucleation in the soleus, compared with single-mutant cIAP1(+/+);mdx mice. This improvement in pathology was associated with a reduction in muscle infiltration by macrophages and diminished expression of inflammatory cytokines such as IL-6 and tumor necrosis factor-α. Furthermore, the cIAP1(-/-);mdx mice exhibited reduced serum creatine kinase, and improved exercise endurance associated with improved exercise resilience by the diaphragm. Mechanistically, the loss of cIAP1 was sufficient to drive constitutive activation of the noncanonical NF-κB pathway, which led to increased myoblast fusion in vitro and in vivo. Collectively, these results show that the loss of cIAP1 protects skeletal muscle from the degenerative pathology resulting from systemic loss of dystrophin.
Collapse
Affiliation(s)
- Emeka K Enwere
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Voltarelli VA, Bacurau AVN, Bechara LRG, Bueno CR, Bozi LHM, Mattos KC, Salemi VMC, Brum PC. Lack of β2-AR improves exercise capacity and skeletal muscle oxidative phenotype in mice. Scand J Med Sci Sports 2012; 22:e125-32. [PMID: 22913394 DOI: 10.1111/j.1600-0838.2012.01519.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2012] [Indexed: 01/05/2023]
Abstract
β(2)-adrenergic receptor (β(2)-AR) agonists have been used as ergogenics by athletes involved in training for strength and power in order to increase the muscle mass. Even though anabolic effects of β(2)-AR activation are highly recognized, less is known about the impact of β(2)-AR in endurance capacity. We presently used mice lacking β(2)-AR [β(2)-knockout (β(2) KO)] to investigate the role of β(2)-AR on exercise capacity and skeletal muscle metabolism and phenotype. β(2) KO mice and their wild-type controls (WT) were studied. Exercise tolerance, skeletal muscle fiber typing, capillary-to-fiber ratio, citrate synthase activity and glycogen content were evaluated. When compared with WT, β(2) KO mice displayed increased exercise capacity (61%) associated with higher percentage of oxidative fibers (21% and 129% of increase in soleus and plantaris muscles, respectively) and capillarity (31% and 20% of increase in soleus and plantaris muscles, respectively). In addition, β(2) KO mice presented increased skeletal muscle citrate synthase activity (10%) and succinate dehydrogenase staining. Likewise, glycogen content (53%) and periodic acid-Schiff staining (glycogen staining) were also increased in β(2) KO skeletal muscle. Altogether, these data provide evidence that disruption of β(2)-AR improves oxidative metabolism in skeletal muscle of β(2) KO mice and this is associated with increased exercise capacity.
Collapse
Affiliation(s)
- V A Voltarelli
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Murphy KT, Allen AM, Chee A, Naim T, Lynch GS. Disruption of muscle renin-angiotensin system in AT1a-/- mice enhances muscle function despite reducing muscle mass but compromises repair after injury. Am J Physiol Regul Integr Comp Physiol 2012; 303:R321-31. [PMID: 22673782 DOI: 10.1152/ajpregu.00007.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of the renin-angiotensin system (RAS) in vasoregulation is well established, but a localized RAS exists in multiple tissues and exerts diverse functions including autonomic control and thermogenesis. The role of the RAS in the maintenance and function of skeletal muscle is not well understood, especially the role of angiotensin peptides, which appear to contribute to muscle atrophy. We tested the hypothesis that mice lacking the angiotensin type 1A receptor (AT(1A)(-/-)) would exhibit enhanced whole body and skeletal muscle function and improved regeneration after severe injury. Despite 18- to 20-wk-old AT(1A)(-/-) mice exhibiting reduced muscle mass compared with controls (P < 0.05), the tibialis anterior (TA) muscles produced a 25% higher maximum specific (normalized) force (P < 0.05). Average fiber cross-sectional area (CSA) and fiber oxidative capacity was not different between groups, but TA muscles from AT(1A)(-/-) mice had a reduced number of muscle fibers as well as a higher proportion of type IIx/b fibers and a lower proportion of type IIa fibers (P < 0.05). Measures of whole body function (grip strength, rotarod performance, locomotor activity) were all improved in AT(1A)(-/-) mice (P < 0.05). Surprisingly, the recovery of muscle mass and fiber CSA following myotoxic injury was impaired in AT(1A)(-/-) mice, in part by impaired myoblast fusion, prolonged collagen infiltration and inflammation, and delayed expression of myogenic regulatory factors. The findings support the therapeutic potential of RAS inhibition for enhancing whole body and skeletal muscle function, but they also reveal the importance of RAS signaling in the maintenance of muscle mass and for normal fiber repair after injury.
Collapse
Affiliation(s)
- Kate T Murphy
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
44
|
Murphy KT, Ham DJ, Church JE, Naim T, Trieu J, Williams DA, Lynch GS. Parvalbumin gene transfer impairs skeletal muscle contractility in old mice. Hum Gene Ther 2012; 23:824-36. [PMID: 22455364 DOI: 10.1089/hum.2011.210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sarcopenia is the progressive age-related loss of skeletal muscle mass associated with functional impairments that reduce mobility and quality of life. Overt muscle wasting with sarcopenia is usually preceded by a slowing of the rate of relaxation and a reduction in maximum force production. Parvalbumin (PV) is a cytosolic Ca(2+) buffer thought to facilitate relaxation in muscle. We tested the hypothesis that restoration of PV levels in muscles of old mice would increase the magnitude and hasten relaxation of submaximal and maximal force responses. The tibialis anterior (TA) muscles of young (6 month), adult (13 month), and old (26 month) C57BL/6 mice received electroporation-assisted gene transfer of plasmid encoding PV or empty plasmid (pcDNA3.1). Contractile properties of TA muscles were assessed in situ 14 days after transfer. In old mice, muscles with increased PV expression had a 40% slower rate of tetanic force development (p<0.01), and maximum twitch and tetanic force were 22% and 16% lower than control values, respectively (p<0.05). Muscles with increased PV expression from old mice had an 18% lower maximum specific (normalized) force than controls, and absolute force was `26% lower at higher stimulation frequencies (150-300 Hz, p<0.05). In contrast, there was no effect of increased PV expression on TA muscle contractile properties in young and adult mice. The impairments in skeletal muscle function in old mice argue against PV overexpression as a therapeutic strategy for ameliorating aspects of contractile dysfunction with sarcopenia and help clarify directions for therapeutic interventions for age-related changes in skeletal muscle structure and function.
Collapse
Affiliation(s)
- Kate T Murphy
- Basic and Clinical Myology Laboratory, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
45
|
DE LUCA ANNAMARIA. Pre-clinical drug tests in the mdx mouse as a model of dystrophinopathies: an overview. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2012; 31:40-7. [PMID: 22655516 PMCID: PMC3440805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Duchenne muscular dystrophy is a lethal X-linked muscle disease affecting 1/3500 live male birth. It results from defects in the subsarcolemmal protein dystrophin, a component of the dystrophin-glycoprotein complex (DGC) which links the intracellular cytoskeleton to the extracellular matrix. The absence of dystrophin leads to muscle membrane fragility, muscle necrosis and gradual replacement of skeletal muscle by fat and connective tissue, through a complex and still unclear cascade of interconnecting events. No cure is currently available, with glucocorticoids being the sole drugs in clinical use in spite of their remarkable side effects. A great effort is devoted at performing pre-clinical tests on the mdx mouse, the mostly used homologous animal model for DMD, with the final aim to identify drugs safer than steroids and able to target the pathogenic mechanisms so to delay pathology progression. This review updates the efforts on this topic, focusing on the open issues about the animal model and highlighting the classes of pharmaceuticals that are more promising as disease-modifiers, while awaiting for more corrective therapies. Although caution is necessary in data transfer from mdx model to DMD patients, the implementation of standard operating procedures and the growing understanding of the pathology may allow a more accurate evaluation of therapeutics, alone or in combination, in pre-clinical settings. A continuous cross-talk with clinicians and patients associations are also crucial points for proper translation of data from mouse to bedside.
Collapse
Affiliation(s)
- ANNAMARIA DE LUCA
- Address for correspondence: Annamaria De Luca, Sezione di Farmacologia, Dipartimento di Bioscienze, Biotecnologie e Scienze Farmacologiche, Università di Bari "Aldo Moro", via Orabona 4 Campus, 70125 Bari, Italy. Tel. +39 080 5442245. Fax +39 080 5442801. E-mail:
| |
Collapse
|
46
|
Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature 2012; 484:394-8. [PMID: 22495301 DOI: 10.1038/nature10980] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/21/2012] [Indexed: 11/08/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilizing protein dystrophin. Dystrophin-deficient muscle fibres are fragile and susceptible to an influx of Ca(2+), which activates inflammatory and muscle degenerative pathways. At present there is no cure for DMD, and existing therapies are ineffective. Here we show that increasing the expression of intramuscular heat shock protein 72 (Hsp72) preserves muscle strength and ameliorates the dystrophic pathology in two mouse models of muscular dystrophy. Treatment with BGP-15 (a pharmacological inducer of Hsp72 currently in clinical trials for diabetes) improved muscle architecture, strength and contractile function in severely affected diaphragm muscles in mdx dystrophic mice. In dko mice, a phenocopy of DMD that results in severe spinal curvature (kyphosis), muscle weakness and premature death, BGP-15 decreased kyphosis, improved the dystrophic pathophysiology in limb and diaphragm muscles and extended lifespan. We found that the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA, the main protein responsible for the removal of intracellular Ca(2+)) is dysfunctional in severely affected muscles of mdx and dko mice, and that Hsp72 interacts with SERCA to preserve its function under conditions of stress, ultimately contributing to the decreased muscle degeneration seen with Hsp72 upregulation. Treatment with BGP-15 similarly increased SERCA activity in dystrophic skeletal muscles. Our results provide evidence that increasing the expression of Hsp72 in muscle (through the administration of BGP-15) has significant therapeutic potential for DMD and related conditions, either as a self-contained therapy or as an adjuvant with other potential treatments, including gene, cell and pharmacological therapies.
Collapse
|
47
|
Gehrig SM, van der Poel C, Hoeflich A, Naim T, Lynch GS, Metzger F. Therapeutic potential of PEGylated insulin-like growth factor I for skeletal muscle disease evaluated in two murine models of muscular dystrophy. Growth Horm IGF Res 2012; 22:69-75. [PMID: 22424862 DOI: 10.1016/j.ghir.2012.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/08/2012] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Duchenne muscular dystrophy (DMD) is a fatal monogenetic disease with affected males displaying severe and progressive muscle wasting and weakness eventually leading to premature death. Possible therapeutic benefits of insulin-like growth factor I (IGF-I) have been studied extensively in various models of muscle disease and DMD with IGF-I as a mediator of improved skeletal muscle regeneration by enhancing myoblast proliferation and differentiation. DESIGN We tested the efficacy of a novel IGF-I analogue, a polyethylene glycol modified IGF-I (PEG-IGF-I), to ameliorate the pathophysiology of muscular dystrophy in two mouse models of DMD. We used mdx mice which lack dystrophin (as in DMD) but exhibit only a relatively mild phenotype, and the dko mouse which is a transgenic model lacking utrophin in addition to dystrophin, and which exhibits a more severe, lethal phenotype like that in DMD. RESULTS In young mdx mice, twice-weekly PEG-IGF-I s.c. injections for 6 weeks protected the diaphragm muscle against fatigue and the tibialis anterior (TA) muscle against contraction-induced injury. However, this beneficial effect of PEG-IGF-I was less pronounced in mdx mice when treatment was initiated later in adulthood. In severely affected dko mice PEG-IGF-I treatment did not affect pathophysiological parameters including animal survival. CONCLUSIONS These data suggest a therapeutic benefit with PEG-IGF-I treatment only in mild muscle pathologies, since its potential to ameliorate the pathophysiology in models of severe muscular dystrophies was limited. Treatment should be initiated only for mild muscle pathologies if functional benefits are to be realised and therefore may be relevant as a short-term therapy to hasten the functional repair of otherwise healthy muscles after injury.
Collapse
Affiliation(s)
- Stefan M Gehrig
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Gonçalves DAP, Silveira WA, Lira EC, Graça FA, Paula-Gomes S, Zanon NM, Kettelhut IC, Navegantes LCC. Clenbuterol suppresses proteasomal and lysosomal proteolysis and atrophy-related genes in denervated rat soleus muscles independently of Akt. Am J Physiol Endocrinol Metab 2012; 302:E123-33. [PMID: 21952035 DOI: 10.1152/ajpendo.00188.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although it is well known that administration of the selective β(2)-adrenergic agonist clenbuterol (CB) protects muscle following denervation (DEN), the underlying molecular mechanism remains unclear. We report that in vivo treatment with CB (3 mg/kg sc) for 3 days induces antiproteolytic effects in normal and denervated rat soleus muscle via distinct mechanisms. In normal soleus muscle, CB treatment stimulates protein synthesis, inhibits Ca(2+)-dependent proteolysis, and increases the levels of calpastatin protein. On the other hand, the administration of CB to DEN rats ameliorates the loss of muscle mass, enhances the rate of protein synthesis, attenuates hyperactivation of proteasomal and lysosomal proteolysis, and suppresses the transcription of the lysosomal protease cathepsin L and of atrogin-1/MAFbx and MuRF1, two ubiquitin (Ub) ligases involved in muscle atrophy. These effects were not associated with alterations in either IGF-I content or Akt phosphorylation levels. In isolated muscles, CB (10(-6) M) treatment significantly attenuated DEN-induced overall proteolysis and upregulation in the mRNA levels of the Ub ligases. Similar responses were observed in denervated muscles exposed to 6-BNZ-cAMP (500 μM), a PKA activator. The in vitro addition of triciribine (10 μM), a selective Akt inhibitor, did not block the inhibitory effects of CB on proteolysis and Ub ligase mRNA levels. These data indicate that short-term treatment with CB mitigates DEN-induced atrophy of the soleus muscle through the stimulation of protein synthesis, downregulation of cathepsin L and Ub ligases, and consequent inhibition of lysosomal and proteasomal activities and that these effects are independent of Akt and possibly mediated by the cAMP/PKA signaling pathway.
Collapse
Affiliation(s)
- Dawit A P Gonçalves
- Dept. of Physiology, School of Medicine, Ribeirão Preto University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Murphy KT, Chee A, Gleeson BG, Naim T, Swiderski K, Koopman R, Lynch GS. Antibody-directed myostatin inhibition enhances muscle mass and function in tumor-bearing mice. Am J Physiol Regul Integr Comp Physiol 2011; 301:R716-26. [DOI: 10.1152/ajpregu.00121.2011] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer cachexia describes the progressive skeletal muscle wasting and weakness in many cancer patients and accounts for >20% of cancer-related deaths. We tested the hypothesis that antibody-directed myostatin inhibition would attenuate the atrophy and loss of function in muscles of tumor-bearing mice. Twelve-week-old C57BL/6 mice received a subcutaneous injection of saline (control) or Lewis lung carcinoma (LLC) tumor cells. One week later, mice received either once weekly injections of saline (control, n = 12; LLC, n = 9) or a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg·kg−1·wk−1, LLC+PF-354, n = 11) for 5 wk. Injection of LLC cells reduced muscle mass and maximum force of tibialis anterior (TA) muscles by 8–10% ( P < 0.05), but the muscle atrophy and weakness were prevented with PF-354 treatment ( P > 0.05). Maximum specific (normalized) force of diaphragm muscle strips was reduced with LLC injection ( P < 0.05) but was not improved with PF-354 treatment ( P > 0.05). PF-354 enhanced activity of oxidative enzymes in TA and diaphragm muscles of tumor-bearing mice by 118% and 89%, respectively ( P < 0.05). Compared with controls, apoptosis that was not of myofibrillar or satellite cell origin was 140% higher in TA muscle cross sections from saline-treated LLC tumor-bearing mice ( P < 0.05) but was not different in PF-354-treated tumor-bearing mice ( P > 0.05). Antibody-directed myostatin inhibition attenuated the skeletal muscle atrophy and loss of muscle force-producing capacity in a murine model of cancer cachexia, in part by reducing apoptosis. The improvements in limb muscle mass and function highlight the therapeutic potential of antibody-directed myostatin inhibition for cancer cachexia.
Collapse
Affiliation(s)
- Kate T. Murphy
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Annabel Chee
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Ben G. Gleeson
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Timur Naim
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Kristy Swiderski
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - René Koopman
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Gordon S. Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| |
Collapse
|
50
|
Church JE, Gehrig SM, Chee A, Naim T, Trieu J, McConell GK, Lynch GS. Early functional muscle regeneration after myotoxic injury in mice is unaffected by nNOS absence. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1358-66. [PMID: 21849632 DOI: 10.1152/ajpregu.00096.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is an important signaling molecule produced in skeletal muscle primarily via the neuronal subtype of NO synthase (NOS1, or nNOS). While many studies have reported NO production to be important in muscle regeneration, none have examined the contribution of nNOS-derived NO to functional muscle regeneration (i.e., restoration of the muscle's ability to produce force) after acute myotoxic injury. In the present study, we tested the hypothesis that genetic deletion of nNOS would impair functional muscle regeneration after myotoxic injury in nNOS(-/-) mice. We found that nNOS(-/-) mice had lower body mass, lower muscle mass, and smaller myofiber cross-sectional area and that their tibialis anterior (TA) muscles produced lower absolute tetanic forces than those of wild-type littermate controls but that normalized or specific force was identical between the strains. In addition, muscles from nNOS(-/-) mice were more resistant to fatigue than those of wild-type littermates (P < 0.05). To determine whether deletion of nNOS affected muscle regeneration, TA muscles from nNOS(-/-) mice and wild-type littermates were injected with the myotoxin notexin to cause complete fiber degeneration, and muscle structure and function were assessed at 7 and 10 days postinjury. Myofiber cross-sectional area was lower in regenerating nNOS(-/-) mice than wild-type controls at 7 and 10 days postinjury; however, contrary to our original hypothesis, no difference in force-producing capacity of the TA muscle was evident between the two groups at either time point. Our findings reveal that nNOS is not essential for functional muscle regeneration after acute myotoxic damage.
Collapse
Affiliation(s)
- Jarrod E Church
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|