1
|
McGrail JP, Mondolfi AP, Ramírez JD, Vidal S, García-Sastre A, Palacios G, Sanchez-Seco MP, Guerra S. Comparative Analysis of 2022 Outbreak MPXV and Previous Clade II MPXV. J Med Virol 2024; 96:e70023. [PMID: 39466906 DOI: 10.1002/jmv.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
The 2022-2024 outbreak of MPOX is an important worldwide public health issue that has triggered significant concerns in the scientific community. MPOX is caused by monkeypox virus (MPXV) belonging to the Poxviridae family. The study of MPXV presents a multifaceted challenge due to the diverse viral formThis study was supported by ISIDORe consortium and Agencia Estatal de Investigación.s produced by this pathogen. Notably the intracellular mature viruses (MVs) primarily contribute to localized lesions and host-to-host transmission, while the extracellular enveloped viruses (EVs) are associated with systemic infection. Clinically, MPOX manifests as a vesiculopustular rash that initially emerges on the face and trunk, subsequently spreading throughout the body, with heightened severity observed in immunocompromised individuals. Results obtained in this manuscript indicate that the 2022 outbreak MPXV has a significantly slower viral cycle compared with previous Clade II strains, with WRAIR 7-61 being more intermediate and USA 2003 producing highest viral titers. Additionally, proteomic and phospho-proteomic analysis displays differences in protein expression between these three strains. These findings highlight key differences between the current Lineage B.1 MPXV and previous strains. Further studies will be undertaken to demonstrate if these differences are important for the apparent increased human-to-human transmission mechanisms observed in the Clade IIb MPXV outbreak.
Collapse
Affiliation(s)
- Joseph Patrick McGrail
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Paniz Mondolfi
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Juan David Ramírez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Santiago Vidal
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mari Paz Sanchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
2
|
Garcia-Atutxa I, Mondragon-Teran P, Huerta-Saquero A, Villanueva-Flores F. Advancements in monkeypox vaccines development: a critical review of emerging technologies. Front Immunol 2024; 15:1456060. [PMID: 39464881 PMCID: PMC11502315 DOI: 10.3389/fimmu.2024.1456060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024] Open
Abstract
Monkeypox (mpox) is a zoonotic illness caused by the monkeypox virus (MPXV), with higher health concerns among people who are pregnant, children, and persons who are immunocompromised, including people with untreated and advanced HIV disease. Significant progress has been made in developing vaccines against mpox, yet critical challenges and limitations persist in ensuring their effectiveness, safety, and accessibility. The pertinence of this review is highlighted by the World Health Organization's declaration of a global health emergency on August 14, 2024, due to the recent mpox outbreak, underscoring the critical necessity for effective vaccine solutions in the face of a rapidly evolving virus. Here, we comprehensively analyze various vaccine platforms utilized in mpox prevention, including attenuated and non-replicating virus vaccines, viral vector-based vaccines, recombinant protein vaccines, and DNA and mRNA vaccines. We evaluate the advantages and limitations of each platform, highlighting the urgent need for ongoing research and innovation to enhance vaccine efficacy and safety. Recent advancements, such as incorporating immunostimulatory sequences, improved delivery systems, and developing polyvalent vaccines, are explored for their potential to offer broader protection against diverse orthopoxvirus strains. This work underscores the need to optimize currently available vaccines and investigate novel vaccination strategies to address future public health emergencies effectively. By focusing on these advanced methodologies, we aim to contribute to the development of robust and adaptable vaccine solutions for mpox and other related viral threats.
Collapse
Affiliation(s)
- Igor Garcia-Atutxa
- Computer Science Department, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - Paul Mondragon-Teran
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Xochitepec, Morelos, Mexico
| | - Alejandro Huerta-Saquero
- Departamento de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Ensenada, Mexico
| | - Francisca Villanueva-Flores
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Xochitepec, Morelos, Mexico
| |
Collapse
|
3
|
Park SW, Cobey S, Metcalf CJE, Levine JM, Grenfell BT. Predicting pathogen mutual invasibility and co-circulation. Science 2024; 386:175-179. [PMID: 39388572 DOI: 10.1126/science.adq0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Observations of pathogen community structure provide evidence for both the coexistence and replacement of related strains. Despite many studies of specific host-pathogen systems, a unifying framework for predicting the outcomes of interactions among pathogens has remained elusive. We address this gap by developing a pathogen invasion theory (PIT) based on modern ecological coexistence theory and testing the resulting framework against empirical systems. Across major human pathogens, PIT predicts near-universal mutual susceptibility of one strain to invasion by another strain. However, predicting co-circulation from mutual invasion also depends on the degree to which susceptible abundance is reduced below the invasion threshold by overcompensatory epidemic dynamics, and the time it takes for susceptibles to replenish. The transmission advantage of an invading strain and the strength and duration of immunity are key determinants of susceptible dynamics. PIT unifies existing ideas about pathogen co-circulation, offering a quantitative framework for predicting the emergence of novel pathogen strains.
Collapse
Affiliation(s)
- Sang Woo Park
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA
| | - Jonathan M Levine
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
4
|
Jokelainen P, Wyllie AL, Gupta N, Barac A, Gkrania-Klotsas E, Bulescu C, Paño-Pardo JR, Mora-Rillo M, Grobusch MP, Lescure FX. Complex mpox situation, 2024. Clin Microbiol Infect 2024:S1198-743X(24)00475-0. [PMID: 39374648 DOI: 10.1016/j.cmi.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Affiliation(s)
- Pikka Jokelainen
- Infectious Disease Preparedness and One Health, Statens Serum Institut, Copenhagen, Denmark; Emerging Infections Subcommittee, European Society of Clinical Microbiology and Infectious Diseases, Basel, Switzerland.
| | - Anne L Wyllie
- Emerging Infections Subcommittee, European Society of Clinical Microbiology and Infectious Diseases, Basel, Switzerland; Department of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Nitin Gupta
- Emerging Infections Subcommittee, European Society of Clinical Microbiology and Infectious Diseases, Basel, Switzerland; Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Aleksandra Barac
- Emerging Infections Subcommittee, European Society of Clinical Microbiology and Infectious Diseases, Basel, Switzerland; Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Effrossyni Gkrania-Klotsas
- Emerging Infections Subcommittee, European Society of Clinical Microbiology and Infectious Diseases, Basel, Switzerland; Department of Infectious Diseases, Cambridge University Hospitals & The Clinical School, University of Cambridge, Cambridge, United Kingdom
| | - Casandra Bulescu
- Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania; Trainee Association of ESCMID, European Society of Clinical Microbiology and Infectious Diseases, Basel, Switzerland
| | - José Ramón Paño-Pardo
- Hospital Clínico Universitario Zaragoza, Zaragoza, Spain; Executive Committee, European Society of Clinical Microbiology and Infectious Diseases, Basel, Switzerland
| | - Marta Mora-Rillo
- Emerging Infections Subcommittee, European Society of Clinical Microbiology and Infectious Diseases, Basel, Switzerland; High Level Isolation Unit, Infectious Diseases Unit, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Martin P Grobusch
- Emerging Infections Subcommittee, European Society of Clinical Microbiology and Infectious Diseases, Basel, Switzerland; Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Infection and Immunity, Amsterdam Public Health, Amsterdam University Medical Centers, Location University of Amsterdam, Amsterdam, The Netherlands
| | - F-Xavier Lescure
- Emerging Infections Subcommittee, European Society of Clinical Microbiology and Infectious Diseases, Basel, Switzerland; Infectious and Tropical Diseases Department, APHP, Bichat Hospital and Université Paris Cité, Inserm, IAME, Paris, France
| |
Collapse
|
5
|
Breban R. The Peculiar Emergence of Mpox (Monkeypox): Directions for the Search for the Natural Reservoir and Vaccination Strategies. Vaccines (Basel) 2024; 12:1142. [PMID: 39460309 PMCID: PMC11511542 DOI: 10.3390/vaccines12101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Mpox (monkeypox) is a zoonosis with origins in a currently unknown African reservoir. The first epidemiological accounts of mpox date back to the early 1980s, yet mpox only emerged as a pandemic threat in 2022-2023, more than 40 years later. This scenario is very different from those of other emerging diseases such as HIV and SARS, which immediately spread globally, in fully susceptible populations, starting from patients zero. Methods: We use mathematical modeling to illustrate the dynamics of mpox herd immunity in small communities in touch with the mpox natural reservoir. In particular, we employ an SEIR stochastic model. Results: The peculiar emergence of mpox can be explained by its relationship with smallpox, which was eradicated through universal mass vaccination in 1980. Mpox first emerged in small rural communities in touch with mpox's animal reservoir and then spread globally. The relative isolation of these communities and their herd-immunity dynamics against mpox worked to delay the introduction of mpox in large urban centers. Conclusions: Mathematical modeling suggests that the search for the mpox animal reservoir would be most fruitful in communities with high mpox seroprevalence and small outbreaks. These are communities is tight contact with the mpox natural reservoir. We propose vaccinating individuals in communities in these communities to severely reduce the importation of cases elsewhere.
Collapse
Affiliation(s)
- Romulus Breban
- Institut Pasteur, Unité d'Epidémiologie des Maladies Emergentes, 75015 Paris, France
| |
Collapse
|
6
|
Alsaiari AA, Hakami MA, Alotaibi BS, Alkhalil SS, Alkhorayef N, Khan K, Jalal K. Delineating multi-epitopes vaccine designing from membrane protein CL5 against all monkeypox strains: a pangenome reverse vaccinology approach. J Biomol Struct Dyn 2024; 42:8385-8406. [PMID: 37599459 DOI: 10.1080/07391102.2023.2248301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
The recently identified monkeypox virus (MPXV or mpox) is a zoonotic orthopox virus that infects humans and causes diseases with traits like smallpox. The world health organization (WHO) estimates that 3-6% of MPXV cases result in death. As it might impact everyone globally, like COVID, and become the next pandemic, the cure for this disease is important for global public health. The high incidence and disease ratio of MPXV necessitates immediate efforts to design a unique vaccine candidate capable of addressing MPXV diseases. Here, we used a computational pan-genome-based vaccine design strategy for all currently reported 19 MPXV strains acquired from different regions of the world. Thus, this study's objective was to develop a new and safe vaccine candidate against MPXV by targeting the membrane CL5 protein; identified after the pangenome analysis. Proteomics and reverse vaccinology have covered up all of the MPXV epitopes that would usually stimulate robust host immune responses. Following this, only two mapped (MHC-I, MHC-II, and B-cell) epitopes were observed to be extremely effective that can be used in the construction of CL5 protein vaccine candidates. The suggested vaccine (V5) candidate from eight vaccine models was shown to be antigenic, non-allergenic, and stable (with 213 amino acids). The vaccine's candidate efficacy was evaluated by using many in silico methods to predict, improve, and validate its 3D structure. Molecular docking and molecular dynamics simulations further reveal that the proposed vaccine candidate ensemble has a high interaction energy with the HLAs and TRL2/4 immunological receptors under study. Later, the vaccine sequence was used to generate an expression vector for the E. coli K12 strain. Further study uncovers that V5 was highly immunogenic because it produced robust primary, secondary, and tertiary immune responses. Eventually, the use of computer-aided vaccine designing may significantly reduce costs and speed up the process of developing vaccines. Although, the results of this research are promising, however, more research (experimental; in vivo, and in vitro studies) is needed to verify the biological efficacy of the proposed vaccine against MPXV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Samia S Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Nada Alkhorayef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
7
|
Li Y, Wang L, Chen S. An overview of the progress made in research into the Mpox virus. Med Res Rev 2024. [PMID: 39318037 DOI: 10.1002/med.22085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/26/2024]
Abstract
Mpox is a zoonotic illness caused by the Mpox virus (MPXV), a member of the Orthopoxvirus family. Although a few cases have been reported outside Africa, it was originally regarded as an endemic disease limited to African countries. However, the Mpox outbreak of 2022 was remarkable in that the infection spread to more than 123 countries worldwide, causing thousands of infections and deaths. The ongoing Mpox outbreak has been declared as a public health emergency of international concern by the World Health Organization. For a better management and control of the epidemic, this review summarizes the research advances and important scientific findings on MPXV by reviewing the current literature on epidemiology, clinical characteristics, diagnostic methods, prevention and treatment measures, and animal models of MPXV. This review provides useful information to raise awareness about the transmission, symptoms, and protective measures of MPXV, serving as a theoretical guide for relevant institutions to control MPXV.
Collapse
Affiliation(s)
- Yansheng Li
- Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound lmaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Department of Critical Care Medicine, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Shi Chen
- Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound lmaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Department of Critical Care Medicine, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
Kamaratos-Sevdalis N, Kourampi I, Ozturk NB, Mavromanoli AC, Tsagkaris C. Mpox and Surgery: Protocols, Precautions, and Recommendations. Microorganisms 2024; 12:1900. [PMID: 39338574 PMCID: PMC11434558 DOI: 10.3390/microorganisms12091900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Mpox, also known as Monkeypox, is an infectious disease known to spread via direct contact and fomites, which poses a significant contagion risk in surgical settings and may increase the challenges already posed by COVID-19. Within the three years following the outbreak of Mpox, we conducted a review of the impact of Mpox on surgical practice. We searched Pubmed/Medline and Scopus, focusing on original studies and case reports in English or German. Our search terms included "Mpox", "Monkeypox", and "Surgery". Out of 60 clinical or epidemiological studies, as well as expert opinions, brief reports, and pertinent literature reviews, eight were included after full-text assessment. We also incorporated two pertinent literature reviews, including a total of 10 papers, in this analysis. The main topics addressed by the literature are 1. manifestations of Mpox for surgical consideration or urgent management, for which it is important to consider whether a surgical approach is needed to address long-term Mpox-related lesions and 2. infection control in surgical settings, especially considering its impact on elective surgery and the well-being of healthcare workers. Mpox could affect surgical services and access to operating theaters. Unlike COVID-19, Mpox, compared to initial concerns, has not substantially compromised surgical delivery. However, limited reports exist on the surgical impact of Mpox. It is crucial to involve surgeons in Mpox diagnosis, educate surgical practitioners on its mimicry of common surgical conditions, enhance infection control during surgery, and ensure access to corrective surgery as a means of tackling the stigmatization associated with Mpox and sexually transmitted diseases in general.
Collapse
Affiliation(s)
| | - Islam Kourampi
- Faculty of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Nazli Begum Ozturk
- Department of Internal Medicine, Beaumont Health, Royal Oak, MI 48073, USA;
| | - Anna C. Mavromanoli
- European Student Think Tank, Public Health and Policy Working Group, 1058 Amsterdam, The Netherlands;
| | - Christos Tsagkaris
- European Student Think Tank, Public Health and Policy Working Group, 1058 Amsterdam, The Netherlands;
- Faculty of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
9
|
Desai AN, Koopmans M, Otter A, Grobusch MP, Jokelainen P, Atkinson B, Cunha F, Valdoleiros SR, Preda VG, Fusco FM, Rovers CP, Greub G, Di Caro A, Simonsen L, Ntoumi F, Petersen E. Implications of the 2023-2024 MPXV clade I outbreak in the Democratic Republic of Congo to global public health. Clin Microbiol Infect 2024; 30:1092-1094. [PMID: 38697394 DOI: 10.1016/j.cmi.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Affiliation(s)
- Angel N Desai
- Division of Infectious Diseases, University of California Davis, Sacramento, CA, USA; ESCMID, Switzerland
| | - Marion Koopmans
- ESCMID, Switzerland; Erasmus MC, Department of Viroscience and Pandemic and Disaster Research Centre, Rotterdam, The Netherlands
| | - Ashley Otter
- ESCMID, Switzerland; Emerging Pathogen Serology Group, UK Health Security Agency, Porton Down, Wiltshire, UK
| | - Martin P Grobusch
- ESCMID, Switzerland; Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam Infection and Immunity, Amsterdam Public Health, University of Amsterdam, AZ, Amsterdam, The Netherlands; Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and German Center for Infection Research (DZIF), Tubingen, Germany
| | - Pikka Jokelainen
- ESCMID, Switzerland; Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Barry Atkinson
- ESCMID, Switzerland; Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK
| | - Flavia Cunha
- ESCMID, Switzerland; Department of Infectious Diseases, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Sofia R Valdoleiros
- ESCMID, Switzerland; Department of Infectious Diseases, Centro Hospitalar Universitário de São João, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal
| | - Veronica G Preda
- ESCMID, Switzerland; Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, St Mary's Campus, London, UK
| | - Francesco Maria Fusco
- ESCMID, Switzerland; D. Cotugno Hospital, Azienda Ospedaliera Specialistica Dei Colli, Naples, Italy
| | - Chantal P Rovers
- ESCMID, Switzerland; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, HB Nijmegen, The Netherlands
| | - Gilbert Greub
- ESCMID, Switzerland; Institute of Microbiology, University of Lausanne and University Hospital Center (CHUV), 1005 Lausanne, Switzerland; Service of Infectious Diseases, University Hospital Center (CHUV), Lausanne, Switzerland
| | - Antonino Di Caro
- ESCMID, Switzerland; Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy; Unicamillus, International Medical University of Rome, Rome, Italy
| | - Lone Simonsen
- PandemiX Center, Department of Science and Environment, Roskilde University, Denmark
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, People's Republic of Congo; Institute of Tropical Medicine, University of Tübinge, Germany
| | - Eskild Petersen
- ESCMID, Switzerland; PandemiX Center, Department of Science and Environment, Roskilde University, Denmark; Institute for Clinical Medicine, Faculty of Health Science, University of Aarhus, Denmark.
| |
Collapse
|
10
|
Aiman S, Ali Y, Malik A, Alkholief M, Ahmad A, Akhtar S, Ali S, Khan A, Li C, Shams S. Immunoinformatic-guided novel mRNA vaccine designing to elicit immunogenic responses against the endemic Monkeypox virus. J Biomol Struct Dyn 2024; 42:6292-6306. [PMID: 37424185 DOI: 10.1080/07391102.2023.2233627] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Monkeypox virus (MPXV) is an orthopoxvirus, causing zoonotic infections in humans with smallpox-like symptoms. The WHO reported MPXV cases in May 2022 and the outbreak caused significant morbidity threats to immunocompromised individuals and children. Currently, no clinically validated therapies are available against MPXV infections. The present study is based on immunoinformatics approaches to design mRNA-based novel vaccine models against MPXV. Three proteins were prioritized based on high antigenicity, low allergenicity, and toxicity values to predict T- and B-cell epitopes. Lead T- and B-cell epitopes were used to design vaccine constructs, linked with epitope-specific linkers and adjuvant to enhance immune responses. Additional sequences, including Kozak sequence, MITD sequence, tPA sequence, Goblin 5', 3' UTRs, and a poly(A) tail were added to design stable and highly immunogenic mRNA vaccine construct. High-quality structures were predicted by molecular modeling and 3D-structural validation of the vaccine construct. Population coverage and epitope-conservancy speculated broader protection of designed vaccine model against multiple MPXV infectious strains. MPXV-V4 was eventually prioritized based on its physicochemical and immunological parameters and docking scores. Molecular dynamics and immune simulations analyses predicted significant structural stability and binding affinity of the top-ranked vaccine model with immune receptors to elicit cellular and humoral immunogenic responses against the MPXV. The pursuance of experimental and clinical follow-up of these prioritized constructs may lay the groundwork to develop safe and effective vaccine against MPXV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sara Aiman
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yasir Ali
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abbas Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Suhail Akhtar
- A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - Sajid Ali
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
11
|
Kaftan D, Kim HY, Ko C, Howard JS, Dalal P, Yamamoto N, Braithwaite RS, Bershteyn A. Performance analysis of mathematical methods used to forecast the 2022 New York City Mpox outbreak. J Med Virol 2024; 96:e29791. [PMID: 39092792 DOI: 10.1002/jmv.29791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
In mid-2022, New York City (NYC) became the epicenter of the US mpox outbreak. We provided real-time mpox case forecasts to the NYC Department of Health and Mental Hygiene to aid in outbreak response. Forecasting methodologies evolved as the epidemic progressed. Initially, lacking knowledge of at-risk population size, we used exponential growth models to forecast cases. Once exponential growth slowed, we used a Susceptible-Exposed-Infectious-Recovered (SEIR) model. Retrospectively, we explored if forecasts could have been improved using an SEIR model in place of our early exponential growth model, with or without knowing the case detection rate. Early forecasts from exponential growth models performed poorly, as 2-week mean absolute error (MAE) grew from 53 cases/week (July 1-14) to 457 cases/week (July 15-28). However, when exponential growth slowed, providing insight into susceptible population size, an SEIR model was able to accurately predict the remainder of the outbreak (7-week MAE: 13.4 cases/week). Retrospectively, we found there was not enough known about the epidemiological characteristics of the outbreak to parameterize an SEIR model early on. However, if the at-risk population and case detection rate were known, an SEIR model could have improved accuracy over exponential growth models early in the outbreak.
Collapse
Affiliation(s)
- David Kaftan
- NYU Grossman School of Medicine, New York, New York, USA
| | - Hae-Young Kim
- NYU Grossman School of Medicine, New York, New York, USA
| | - Charles Ko
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| | - James S Howard
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| | - Prachi Dalal
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| | - Nao Yamamoto
- NYU Grossman School of Medicine, New York, New York, USA
| | | | - Anna Bershteyn
- NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
12
|
McNaughton A, Karsenti N, Kwan J, Adawi A, Mansuri S, Boggild AK. Primary Varicella Infection in a Young Adult from the Democratic Republic of the Congo: A Case Report and Mini-Review. Infect Dis Rep 2024; 16:628-637. [PMID: 39051248 PMCID: PMC11270367 DOI: 10.3390/idr16040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
We describe a case of an immunocompetent adult male patient originally from the Democratic Republic of Congo (DRC), who was referred to our unit for a several-day history of fever and a pruritic, vesicular rash. There was initial concern in the Emergency Department for Mpox (formerly known as "monkeypox") given the current epidemiology versus other viral etiologies. Primary varicella zoster virus (pVZV) infection was ultimately diagnosed by PCR from a swabbed, unroofed lesion, and he recovered completely with supportive management and without antiviral therapy. We herein describe how common viral exanthems may best be differentiated in an emergency or outpatient setting.
Collapse
Affiliation(s)
- Andrew McNaughton
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nessika Karsenti
- Department of Medicine, Memorial University, Saint John’s, NF A1B 3V6, Canada
| | - Jason Kwan
- Department of Medicine, University of British Columbia, Vancouver, BC V1Y 1T3, Canada
| | - Asal Adawi
- Tropical Disease Unit, Toronto General Hospital, Toronto, ON M5G 2C4, Canada
| | - Saniya Mansuri
- TMC Innovation, Texas Medical Center, Houston, TX 77030, USA
| | - Andrea K. Boggild
- Tropical Disease Unit, Toronto General Hospital, Toronto, ON M5G 2C4, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
13
|
Chaturvedi M, Rodiah I, Kretzschmar M, Scholz S, Lange B, Karch A, Jaeger VK. Estimating the relative importance of epidemiological and behavioural parameters for epidemic mpox transmission: a modelling study. BMC Med 2024; 22:297. [PMID: 39020322 PMCID: PMC11256368 DOI: 10.1186/s12916-024-03515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Many European countries experienced outbreaks of mpox in 2022, and there was an mpox outbreak in 2023 in the Democratic Republic of Congo. There were many apparent differences between these outbreaks and previous outbreaks of mpox; the recent outbreaks were observed in men who have sex with men after sexual encounters at common events, whereas earlier outbreaks were observed in a wider population with no identifiable link to sexual contacts. These apparent differences meant that data from previous outbreaks could not reliably be used to parametrise infectious disease models during the 2022 and 2023 mpox outbreaks, and modelling efforts were hampered by uncertainty around key transmission and immunity parameters. METHODS We developed a stochastic, discrete-time metapopulation model for mpox that allowed for sexual and non-sexual transmission and the implementation of non-pharmaceutical interventions, specifically contact tracing and pre- and post-exposure vaccinations. We calibrated the model to case data from Berlin and used Sobol sensitivity analysis to identify parameters that mpox transmission is especially sensitive to. We also briefly analysed the sensitivity of the effectiveness of non-pharmaceutical interventions to various efficacy parameters. RESULTS We found that variance in the transmission probabilities due to both sexual and non-sexual transmission had a large effect on mpox transmission in the model, as did the level of immunity to mpox conferred by a previous smallpox vaccination. Furthermore, variance in the number of pre-exposure vaccinations offered was the dominant contributor to variance in mpox dynamics in men who have sex with men. If pre-exposure vaccinations were not available, both the accuracy and timeliness of contact tracing had a large impact on mpox transmission in the model. CONCLUSIONS Our results are valuable for guiding epidemiological studies for parameter ascertainment and identifying key factors for success of non-pharmaceutical interventions.
Collapse
Affiliation(s)
- Madhav Chaturvedi
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Isti Rodiah
- Department of Epidemiology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Mirjam Kretzschmar
- Department of Epidemiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stefan Scholz
- Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Berit Lange
- Department of Epidemiology, Helmholtz Centre for Infection Research, Brunswick, Germany
- German Center for Infection Research, Brunswick, Germany
| | - André Karch
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Veronika K Jaeger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany.
| |
Collapse
|
14
|
Chakravarty N, Hemani D, Paravastu R, Ahmad Z, Palani SN, Arumugaswami V, Kumar A. Mpox Virus and its ocular surface manifestations. Ocul Surf 2024; 34:108-121. [PMID: 38972544 DOI: 10.1016/j.jtos.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The Mpox virus (MPXV) is the causative agent of human Mpox disease - a debilitating rash illness similar to smallpox. Although Clade I MPXV has remained endemic to West and Central Africa, Clade II MPXV has been responsible for many outbreaks worldwide. The most recent outbreak in 2022 resulted from the rapid spread of a new clade of MPXV, classified into Clade IIb - a distinct lineage from the previously circulating viral strains. The rapid spread and increased severity of Mpox disease by the Clade IIb strain have raised the serious public health imperative of better understanding the host and viral determinants during MPXV infection. In addition to typical skin rashes, including in the periorbital area, MPXV causes moderate to severe ophthalmic manifestations - most commonly, ocular surface complications (e.g., keratitis, conjunctivitis, blepharitis). While ocular manifestations of Clade I Mpox within the Congo basin have been well-reported, global incidence trends of ocular Mpox cases by Clade IIb are still emerging. Given the demonstrated ability of all MPXV strains to auto-inoculate ocular tissue, alongside the enhanced transmissibility of the Clade IIb virus, there is an urgent need to elucidate the mechanisms by which MPXV causes ocular anomalies. In this review, we discuss the viral and genomic structures of MPXV, the epidemiology, and pathology of systemic and ocular Mpox, as well as potential prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Nikhil Chakravarty
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; School of Medicine, California University of Science and Medicine, Colton, CA, USA
| | - Darshi Hemani
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Ramya Paravastu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zeeshan Ahmad
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Sankara Naynar Palani
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
15
|
Cao X, Zheng N. How Does Disgust Affect Mpox Prevention? Examining the Underlying Mechanisms of Perceived Severity and Perceived Susceptibility Moderated by Stigma. HEALTH COMMUNICATION 2024:1-12. [PMID: 38916051 DOI: 10.1080/10410236.2024.2364377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The study aims to examine the influencing mechanism of incidental exposure to Disgusting Graphics Information (DGI) about Monkeypox (Mpox) on the intention of prevention behavior. This study first investigates the components of disgust and then examines the mechanism of disgust's influence. The study uses a cross-sectional survey design among respondents who have been incidentally exposed to DGI about Mpox (N = 368). The results showed that disgust toward Mpox is the most effective component among other proposed ones (disgust toward graphics, information sources, and patients). Disgust not only positively influences prevention intention, but also indirectly influences prevention intention through perceived severity rather than perceived susceptibility. Moreover, moderated mediation was found, indicating that stigma toward patients prevents people from adopting preventive behaviors. Both theoretical and practical implications are discussed.
Collapse
Affiliation(s)
- Xueyan Cao
- School of Journalism and Communication, The Chinese University of Hong Kong
| | - Nanxiao Zheng
- School of Journalism and Communication, The Chinese University of Hong Kong
| |
Collapse
|
16
|
Ponce L, Linton NM, Toh WH, Cheng HY, Thompson RN, Akhmetzhanov AR, Dushoff J. Incubation Period and Serial Interval of Mpox in 2022 Global Outbreak Compared with Historical Estimates. Emerg Infect Dis 2024; 30:1173-1181. [PMID: 38781950 PMCID: PMC11138990 DOI: 10.3201/eid3006.231095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Understanding changes in the transmission dynamics of mpox requires comparing recent estimates of key epidemiologic parameters with historical data. We derived historical estimates for the incubation period and serial interval for mpox and contrasted them with pooled estimates from the 2022 outbreak. Our findings show the pooled mean infection-to-onset incubation period was 8.1 days for the 2022 outbreak and 8.2 days historically, indicating the incubation periods remained relatively consistent over time, despite a shift in the major mode of transmission. However, we estimated the onset-to-onset serial interval at 8.7 days using 2022 data, compared with 14.2 days using historical data. Although the reason for this shortening of the serial interval is unclear, it may be because of increased public health interventions or a shift in the mode of transmission. Recognizing such temporal shifts is essential for informed response strategies, and public health measures remain crucial for controlling mpox and similar future outbreaks.
Collapse
|
17
|
Tang Z, Han Y, Meng Y, Li J, Qiu X, Bajinka O, Wu G, Tan Y. A bioinformatics approach to systematically analyze the molecular patterns of monkeypox virus-host cell interactions. Heliyon 2024; 10:e30483. [PMID: 38737277 PMCID: PMC11088324 DOI: 10.1016/j.heliyon.2024.e30483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Monkeypox has been spreading worldwide since May 2022, when the World Health Organization (WHO) declared the outbreak a "public health emergency of international concern." The spread of monkeypox has posed a serious threat to the health of people around the world, but few studies have been conducted, and the molecular mechanism of monkeypox after infection remains unclear. We therefore implemented a transcriptome analysis to identify signaling pathways and biomarkers in monkeypox-infected cells to help understand monkeypox-host cell interactions. In this study, datasets GSE36854 and GSE11234 were obtained from GEO. Of these, 84 significantly different genes were identified in the dataset GSE36854, followed by KEGG, GO analysis protein-protein interaction (PPI) construction, and Hub gene extraction. We also analyzed the expression regulation of hub genes and screened for drugs targeting hub genes. The results showed that monkeypox-infected cells significantly activated the cellular immune response. The top 10 hub genes are IER3, IFIT2, IL11, ZC3H12A, EREG, IER2, NFKBIE, FST, IFIT1 and AREG. AP-26113 and itraconazole can be used to counteract the inhibitory effect of monkeypox on IFIT1 and IFIT2 and serve as candidate drugs for the treatment of monkeypox virus infection. IRF1 may also be a transcription factor of IFIT. Our results provide a new entry point for understanding how monkeypox virus interacts with its host.
Collapse
Affiliation(s)
- Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Ying Han
- Department of Stomatology, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuting Meng
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Jiani Li
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xiangjie Qiu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
- China-Africa Research Center for Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Guojun Wu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
- China-Africa Research Center for Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
- China-Africa Research Center for Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| |
Collapse
|
18
|
da Silva GB, de Carvalho Braga G, Simões JLB, Kempka AP, Bagatini MD. Cytokine storm in human monkeypox: A possible involvement of purinergic signaling. Cytokine 2024; 177:156560. [PMID: 38447385 DOI: 10.1016/j.cyto.2024.156560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
Some evidence has indicated that monkeypox can induce a cytokine storm. Purinergic signaling is a cell pathway related to the cytokine storm. However, the precise mechanisms that lead to cytokine storms in monkeypox infections and the possible involvement of purinergic signaling in the immune response to this virus remain unknown. In this review article, we aimed to highlight a body of scientific evidence that consolidates the role of the cytokine storm in monkeypox infection and proposes a new hypothesis regarding the roles of purinergic signaling in this immune-mediated mechanism. We further suggested some purinergic signaling modulators to mitigate the deleterious and aggravating effects of immune dysregulation in human monkeypox virus infection by inhibiting P2X3, P2X7, P2Y2, and P2Y12, reducing inflammation, and activating A1 and A2A receptors to promote an anti-inflammatory response.
Collapse
Affiliation(s)
- Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil.
| | | | | | - Aniela Pinto Kempka
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Margarete Dulce Bagatini
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil; Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
19
|
Chakraborty C, Bhattacharya M, Islam MA, Zayed H, Ohimain EI, Lee SS, Bhattacharya P, Dhama K. Reverse Zoonotic Transmission of SARS-CoV-2 and Monkeypox Virus: A Comprehensive Review. J Microbiol 2024; 62:337-354. [PMID: 38777985 DOI: 10.1007/s12275-024-00138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Reverse zoonosis reveals the process of transmission of a pathogen through the human-animal interface and the spillback of the zoonotic pathogen. In this article, we methodically demonstrate various aspects of reverse zoonosis, with a comprehensive discussion of SARS-CoV-2 and MPXV reverse zoonosis. First, different components of reverse zoonosis, such as humans, different pathogens, and numerous animals (poultry, livestock, pets, wild animals, and zoo animals), have been demonstrated. Second, it explains the present status of reverse zoonosis with different pathogens during previous occurrences of various outbreaks, epidemics, and pandemics. Here, we present 25 examples from literature. Third, using several examples, we comprehensively illustrate the present status of the reverse zoonosis of SARS-CoV-2 and MPXV. Here, we have provided 17 examples of SARS-CoV-2 reverse zoonosis and two examples of MPXV reverse zoonosis. Fourth, we have described two significant aspects of reverse zoonosis: understanding the fundamental aspects of spillback and awareness. These two aspects are required to prevent reverse zoonosis from the current infection with two significant viruses. Finally, the One Health approach was discussed vividly, where we urge scientists from different areas to work collaboratively to solve the issue of reverse zoonosis.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, VyasaVihar, Balasore, 756020, Odisha, India
| | - Md Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - Elijah Ige Ohimain
- Microbiology Department, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 24252, Republic of Korea.
| | - Prosun Bhattacharya
- COVID-19 Research, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| |
Collapse
|
20
|
Monzón S, Varona S, Negredo A, Vidal-Freire S, Patiño-Galindo JA, Ferressini-Gerpe N, Zaballos A, Orviz E, Ayerdi O, Muñoz-Gómez A, Delgado-Iribarren A, Estrada V, García C, Molero F, Sánchez-Mora P, Torres M, Vázquez A, Galán JC, Torres I, Causse Del Río M, Merino-Diaz L, López M, Galar A, Cardeñoso L, Gutiérrez A, Loras C, Escribano I, Alvarez-Argüelles ME, Del Río L, Simón M, Meléndez MA, Camacho J, Herrero L, Jiménez P, Navarro-Rico ML, Jado I, Giannetti E, Kuhn JH, Sanchez-Lockhart M, Di Paola N, Kugelman JR, Guerra S, García-Sastre A, Cuesta I, Sánchez-Seco MP, Palacios G. Monkeypox virus genomic accordion strategies. Nat Commun 2024; 15:3059. [PMID: 38637500 PMCID: PMC11026394 DOI: 10.1038/s41467-024-46949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
The 2023 monkeypox (mpox) epidemic was caused by a subclade IIb descendant of a monkeypox virus (MPXV) lineage traced back to Nigeria in 1971. Person-to-person transmission appears higher than for clade I or subclade IIa MPXV, possibly caused by genomic changes in subclade IIb MPXV. Key genomic changes could occur in the genome's low-complexity regions (LCRs), which are challenging to sequence and are often dismissed as uninformative. Here, using a combination of highly sensitive techniques, we determine a high-quality MPXV genome sequence of a representative of the current epidemic with LCRs resolved at unprecedented accuracy. This reveals significant variation in short tandem repeats within LCRs. We demonstrate that LCR entropy in the MPXV genome is significantly higher than that of single-nucleotide polymorphisms (SNPs) and that LCRs are not randomly distributed. In silico analyses indicate that expression, translation, stability, or function of MPXV orthologous poxvirus genes (OPGs), including OPG153, OPG204, and OPG208, could be affected in a manner consistent with the established "genomic accordion" evolutionary strategies of orthopoxviruses. We posit that genomic studies focusing on phenotypic MPXV differences should consider LCR variability.
Collapse
Affiliation(s)
- Sara Monzón
- Unidad de Bioinformática, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sarai Varona
- Unidad de Bioinformática, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Escuela Internacional de Doctorado de la UNED (EIDUNED), Universidad Nacional de Educación a Distancia (UNED), 2832, Madrid, Spain
| | - Anabel Negredo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Santiago Vidal-Freire
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | - Angel Zaballos
- Unidad de Genómica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Eva Orviz
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Oskar Ayerdi
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Ana Muñoz-Gómez
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | | | - Vicente Estrada
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Cristina García
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Francisca Molero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Patricia Sánchez-Mora
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Montserrat Torres
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ana Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Juan-Carlos Galán
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Ignacio Torres
- Servicio de Microbiología, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, 46010, Valencia, Spain
| | - Manuel Causse Del Río
- Unidad de Microbiología, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain
| | - Laura Merino-Diaz
- Unidad Clínico de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, 41013, Sevilla, Spain
| | - Marcos López
- Servicio de Microbiología y Parasitología, Hospital Universitario Puerta de Hierro Majadahonda, 28222, Madrid, Spain
| | - Alicia Galar
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
| | - Laura Cardeñoso
- Servicio de Microbiología, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, 28006, Madrid, Spain
| | - Almudena Gutiérrez
- Servicio de Microbiología y Parasitología Clínica, Hospital Universitario La Paz, 28046, Madrid, Spain
| | - Cristina Loras
- Servicio de Microbiología, Hospital General y Universitario, 13005, Ciudad Real, Spain
| | - Isabel Escribano
- Servicio de Microbiología, Hospital General Universitario Dr. Balmis, 03010, Alicante, Spain
| | | | | | - María Simón
- Servicio de Microbiología, Hospital Central de la Defensa "Gómez Ulla", 28947, Madrid, Spain
| | - María Angeles Meléndez
- Servicio de Microbiología y Parasitología, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - Juan Camacho
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Laura Herrero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pilar Jiménez
- Unidad de Genómica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Luisa Navarro-Rico
- Unidad de Genómica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Isabel Jado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Elaina Giannetti
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, 21702, USA
| | - Mariano Sanchez-Lockhart
- United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD, 21702, USA
| | - Nicholas Di Paola
- United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD, 21702, USA
| | - Jeffrey R Kugelman
- United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD, 21702, USA
| | - Susana Guerra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Departmento de Medicina Preventiva, Salud Publica y Microbiología, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Isabel Cuesta
- Unidad de Bioinformática, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Maripaz P Sánchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
21
|
Piparva KG, Fichadiya N, Joshi T, Malek S. Monkeypox: From Emerging Trends to Therapeutic Concerns. Cureus 2024; 16:e58866. [PMID: 38800170 PMCID: PMC11116278 DOI: 10.7759/cureus.58866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Monkeypox is a zoonotic viral disease. Monkeypox was first reported in humans about 54 years ago. Prior to the global outbreak, monkeypox was endemic to the rainforests of central and western African countries. In the last three years, increasing numbers of human monkeypox have been reported from various countries. Responding to the severity, monkeypox was declared a Public Health Emergency of International Concern by the World Health Organization. In the absence of approved drugs or clinical studies, repurposed drugs and therapeutic medical countermeasures effective against other orthopoxviruses have been utilized to treat severe human monkeypox cases. Currently, clinical trials are underway exploring the potential therapeutic effectiveness of tecovirimate in human monkeypox cases. Monoclonal antibodies, IFN-β, resveratrol, and 15 triple-targeting FDA-approved drugs represent potential new drug targets for human monkeypox, necessitating further research.
Collapse
Affiliation(s)
- Kiran G Piparva
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS) Rajkot, Rajkot, IND
| | - Nilesh Fichadiya
- Department of Preventive and Social Medicine, Pandit Deendayal Upadhyay (PDU) Government Medical College, Rajkot, IND
| | - Tejal Joshi
- Department of Microbiology, Pandit Deendayal Upadhyay (PDU) Government Medical College, Rajkot, IND
| | - Shahenaz Malek
- Department of Pharmacology, Government Medical College, Surat, IND
| |
Collapse
|
22
|
Ashley CN, Broni E, Wood CM, Okuneye T, Ojukwu MPT, Dong Q, Gallagher C, Miller WA. Identifying potential monkeypox virus inhibitors: an in silico study targeting the A42R protein. Front Cell Infect Microbiol 2024; 14:1351737. [PMID: 38500508 PMCID: PMC10945028 DOI: 10.3389/fcimb.2024.1351737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Monkeypox (now Mpox), a zoonotic disease caused by the monkeypox virus (MPXV) is an emerging threat to global health. In the time span of only six months, from May to October 2022, the number of MPXV cases breached 80,000 and many of the outbreaks occurred in locations that had never previously reported MPXV. Currently there are no FDA-approved MPXV-specific vaccines or treatments, therefore, finding drugs to combat MPXV is of utmost importance. The A42R profilin-like protein of the MPXV is involved in cell development and motility making it a critical drug target. A42R protein is highly conserved across orthopoxviruses, thus A42R inhibitors may work for other family members. This study sought to identify potential A42R inhibitors for MPXV treatment using computational approaches. The energy minimized 3D structure of the A42R profilin-like protein (PDB ID: 4QWO) underwent virtual screening using a library of 36,366 compounds from Traditional Chinese Medicine (TCM), AfroDb, and PubChem databases as well as known inhibitor tecovirimat via AutoDock Vina. A total of seven compounds comprising PubChem CID: 11371962, ZINC000000899909, ZINC000001632866, ZINC000015151344, ZINC000013378519, ZINC000000086470, and ZINC000095486204, predicted to have favorable binding were shortlisted. Molecular docking suggested that all seven proposed compounds have higher binding affinities to A42R (-7.2 to -8.3 kcal/mol) than tecovirimat (-6.7 kcal/mol). This was corroborated by MM/PBSA calculations, with tecovirimat demonstrating the highest binding free energy of -68.694 kJ/mol (lowest binding affinity) compared to the seven shortlisted compounds that ranged from -73.252 to -97.140 kJ/mol. Furthermore, the 7 compounds in complex with A42R demonstrated higher stability than the A42R-tecovirimat complex when subjected to 100 ns molecular dynamics simulations. The protein-ligand interaction maps generated using LigPlot+ suggested that residues Met1, Glu3, Trp4, Ile7, Arg127, Val128, Thr131, and Asn133 are important for binding. These seven compounds were adequately profiled to be potential antivirals via PASS predictions and structural similarity searches. All seven potential lead compounds were scored Pa > Pi for antiviral activity while ZINC000001632866 and ZINC000015151344 were predicted as poxvirus inhibitors with Pa values of 0.315 and 0.215, and Pi values of 0.052 and 0.136, respectively. Further experimental validations of the identified lead compounds are required to corroborate their predicted activity. These seven identified compounds represent solid footing for development of antivirals against MPXV and other orthopoxviruses.
Collapse
Affiliation(s)
- Carolyn N. Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
| | - Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
| | - Chanyah M. Wood
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Department of Chemistry and Physics, Lincoln University, Lincoln, PA, United States
| | - Tunmise Okuneye
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Department of Biology, Lincoln University, Lincoln, PA, United States
| | - Mary-Pearl T. Ojukwu
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Department of Chemistry and Physics, Lincoln University, Lincoln, PA, United States
- College of Pharmacy, University of Florida, Orlando, FL, United States
| | - Qunfeng Dong
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Center for Biomedical Informatics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Carla Gallagher
- Department of Chemistry and Physics, Lincoln University, Lincoln, PA, United States
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
23
|
Jiang W, Hu Y, Yang X, Hou L, Zhang J, Niu H, Hu C, Lin J. Breakthrough infection and reinfection in patients with mpox. Rev Med Virol 2024; 34:e2522. [PMID: 38348583 DOI: 10.1002/rmv.2522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 02/15/2024]
Abstract
Recently, patients with Mpox breakthrough infection or reinfection were constantly reported. However, the induction, risk factors, and important clinical symptoms of breakthrough infection and reinfection of Mpox virus (MPXV), as well as the factors affecting the effectiveness of Mpox vaccine are not characterized. Herein, a literature review was preformed to summarize the risk factors and important clinical symptoms of patients with Mpox breakthrough infection or reinfection, as well as the factors affecting the effectiveness of smallpox vaccine against Mpox. Results showed that MSM sexual behavior, condomless sexual behavior, multiple sexual partners, close contact, HIV infection, and the presence of comorbidity are important risk factors for Mpox breakthrough infection and reinfection. Genital ulcers, proctitis, and lymphadenopathy are the important clinical symptoms of Mpox breakthrough infection and reinfection. The effectiveness of emergent vaccination of smallpox vaccine for post-exposure of MPXV is associated with smallpox vaccination history, interval between exposure and vaccination, and history of HIV infection. This review provides a better understanding for the risk factors and important clinical symptoms of Mpox breakthrough infection and reinfection, as well as the formulation of Mpox vaccine vaccination strategies.
Collapse
Affiliation(s)
- Wenyi Jiang
- Wound Healing Basic Research and Clinical Application Key Laboratory of LuZhou, School of Nursing, Southwest Medical University, Luzhou, Sichuan, China
| | - Yibo Hu
- Department of Stomatology, School of Medicine, Nankai University, Tianjin, China
| | - Xiu Yang
- Wound Healing Basic Research and Clinical Application Key Laboratory of LuZhou, School of Nursing, Southwest Medical University, Luzhou, Sichuan, China
| | - Lingli Hou
- Wound Healing Basic Research and Clinical Application Key Laboratory of LuZhou, School of Nursing, Southwest Medical University, Luzhou, Sichuan, China
| | - Jingjing Zhang
- Wound Healing Basic Research and Clinical Application Key Laboratory of LuZhou, School of Nursing, Southwest Medical University, Luzhou, Sichuan, China
| | - Hong Niu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Congxia Hu
- Wound Healing Basic Research and Clinical Application Key Laboratory of LuZhou, School of Nursing, Southwest Medical University, Luzhou, Sichuan, China
| | - Jihui Lin
- Wound Healing Basic Research and Clinical Application Key Laboratory of LuZhou, School of Nursing, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
24
|
Mazur-Melewska K. Poxviruses in Children. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:205-217. [PMID: 38801580 DOI: 10.1007/978-3-031-57165-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The family Poxviridae is a large family of viruses with a ubiquitous distribution, subdivided into two subfamilies: Chordopoxvirinae (poxviruses of vertebrates) and Entomopoxvirinae (poxviruses of insects). Only three species from the first subfamily, Orthopoxvirus (OPV), Molluscipoxvirus and Parapoxvirus, can infect the human being. In the paediatric population, viruses belonging to the first two subfamilies have the greatest importance. Following the eradication of smallpox in 1980, vaccination of the general population was discontinued after careful consideration of the risks and benefits. However, nearly all children and most of the world's population had little to no protection against OPV. The aim of this chapter is to review the current evidence on the aetiology, clinical manifestations, diagnosis and management of Poxviridae infections in children.
Collapse
Affiliation(s)
- Katarzyna Mazur-Melewska
- Department of Infectious Diseases and Child Neurology, Karol Marcinkowski University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
25
|
Nguyen MM, Freedman AS, Ozbay SA, Levin SA. Fundamental bound on epidemic overshoot in the SIR model. J R Soc Interface 2023; 20:20230322. [PMID: 38053384 PMCID: PMC10698490 DOI: 10.1098/rsif.2023.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
We derive an exact upper bound on the epidemic overshoot for the Kermack-McKendrick SIR model. This maximal overshoot value of 0.2984 · · · occurs at [Formula: see text]. In considering the utility of the notion of overshoot, a rudimentary analysis of data from the first wave of the COVID-19 pandemic in Manaus, Brazil highlights the public health hazard posed by overshoot for epidemics with R0 near 2. Using the general analysis framework presented within, we then consider more complex SIR models that incorporate vaccination.
Collapse
Affiliation(s)
| | - Ari S. Freedman
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sinan A. Ozbay
- Bendheim Center for Finance, Princeton University, Princeton, NJ 08544, USA
| | - Simon A. Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
26
|
Affiliation(s)
- Daniel Miranda
- Pharmaceutical Sciences Department, Western University of Health Sciences, Pomona, California, USA
| | - David Jesse Sanchez
- Pharmaceutical Sciences Department, Western University of Health Sciences, Pomona, California, USA,
| |
Collapse
|
27
|
de la Calle-Prieto F, Estébanez Muñoz M, Ramírez G, Díaz-Menéndez M, Velasco M, Azkune Galparsoro H, Salavert Lletí M, Mata Forte T, Blanco JL, Mora-Rillo M, Arsuaga M, de Miguel Buckley R, Arribas JR, Membrillo FJ. Treatment and prevention of monkeypox. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2023; 41:629-634. [PMID: 36624034 PMCID: PMC9823286 DOI: 10.1016/j.eimce.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/08/2023]
Abstract
Monkeypox is a zoonosis that is spread mainly through direct contact with fluids and skin lesions of infected people with vesicles still active. Although the virus was isolated for the first time in 1958 and the first human case was identified in a child in 1970, in the Democratic Republic of the Congo, the disease has progressively increased its incidence in Africa reaching in May 2022 sustained transmission outside this continent. As it is a newly introduced virus in our health system, it is necessary to learn the epidemiological pattern in a different environment from that of traditionally endemic areas and to know the available antiviral treatments, as well as the prophylactic measures that could be considered, knowing that as a virus emerging in our regions, scientific evidence is still limited. There are antivirals that have been shown, in animal models, to effectively combat the disease with very good clinical tolerance. This disease has also forced us to review the characteristics of smallpox vaccines, because they have shown a protective effect against monkeypox. For this reason, it is important to have a document that compiles all the scientific information published in this regard.
Collapse
Affiliation(s)
- Fernando de la Calle-Prieto
- Unidad de Patología Importada y Salud Internacional, CSUR para Patología Tropical Importada Adultos y Pediatría, Unidad de Aislamiento de Alto Nivel, Hospital Universitario La Paz-Carlos III-Cantoblanco, IdiPAZ, CIBERINFEC, Madrid, Spain.
| | - Miriam Estébanez Muñoz
- Unidad NRBQ-Infecciosas, Sección de Infecciosas, Unidad de Aislamiento de Alto Nivel, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain
| | - Germán Ramírez
- Unidad NRBQ-Infecciosas, Sección de Infecciosas, Unidad de Aislamiento de Alto Nivel, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain
| | - Marta Díaz-Menéndez
- Unidad de Patología Importada y Salud Internacional, CSUR para Patología Tropical Importada Adultos y Pediatría, Unidad de Aislamiento de Alto Nivel, Hospital Universitario La Paz-Carlos III-Cantoblanco, IdiPAZ, CIBERINFEC, Madrid, Spain
| | - María Velasco
- Enfermedades Infecciosas y Medicina Tropical, Hospital Universitario Fundación Alcorcón, Universidad Rey Juan Carlos, Madrid, Spain
| | - Harkaitz Azkune Galparsoro
- Servicio de Enfermedades Infecciosas, Unidad de Aislamiento de Alto Nivel, Hospital Universitario Donostia, Biodonostia, Universidad del Pais Vasco, Gipuzkoa, Spain
| | - Miguel Salavert Lletí
- Unidad de Enfermedades Infecciosas, Área Clínica Médica, Unidad de Aislamiento de Alto Nivel La Fe, Hospital Universitario y Politécnico La Fe de Valencia, Valencia, Spain
| | - Tatiana Mata Forte
- Unidad NRBQ-Infecciosas, Sección de Infecciosas, Unidad de Aislamiento de Alto Nivel, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain
| | - José Luis Blanco
- Departamento de Enfermedades Infecciosas, Unidad de Aislamiento de Alto Nivel, Hospital Clínic-IDIBAPS, Universidad de Barcelona, CIBERINFEC, Barcelona, Spain
| | - Marta Mora-Rillo
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Unidad de Aislamiento de Alto Nivel, Hospital Universitario La Paz-Carlos III-Cantoblanco, IdiPAZ, CIBERINFEC, Madrid, Spain
| | - Marta Arsuaga
- Unidad de Patología Importada y Salud Internacional, CSUR para Patología Tropical Importada Adultos y Pediatría, Unidad de Aislamiento de Alto Nivel, Hospital Universitario La Paz-Carlos III-Cantoblanco, IdiPAZ, CIBERINFEC, Madrid, Spain
| | - Rosa de Miguel Buckley
- Unidad de Patología Importada y Salud Internacional, CSUR para Patología Tropical Importada Adultos y Pediatría, Unidad de Aislamiento de Alto Nivel, Hospital Universitario La Paz-Carlos III-Cantoblanco, IdiPAZ, CIBERINFEC, Madrid, Spain
| | - Jose Ramón Arribas
- Unidad de Enfermedades Infecciosas, Departamento de Medicina Interna, Hospital Universitario La Paz-Carlos III-Cantoblanco, Escuela de Medicina, Universidad Autónoma de Madrid, IdiPAZ, CIBERINFEC, Madrid, Spain
| | - Francisco Javier Membrillo
- Unidad NRBQ-Infecciosas, Sección de Infecciosas, Unidad de Aislamiento de Alto Nivel, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain
| |
Collapse
|
28
|
Khan S, Irfan M, Hameed AR, Ullah A, Abideen SA, Ahmad S, Haq MU, El Bakri Y, Al-Harbi AI, Ali M, Haleem A. Vaccinomics to design a multi-epitope-based vaccine against monkeypox virus using surface-associated proteins. J Biomol Struct Dyn 2023; 41:10859-10868. [PMID: 36533379 DOI: 10.1080/07391102.2022.2158942] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
In 2022, the ongoing multi-country outbreak of monkeypox virus-now occurring outside Africa, too is a global health concern. Monkeypox is a zoonotic virus, which causes disease mainly in animals, and then it is transferred to humans. Recently, in the monkeypox epidemic, a large number of human cases emerged while the global health community worked to tackle the outbreak and save lives. Herein, a multi-epitope-based vaccine is designed against monkeypox virus using two surface-associated proteins: MPXVgp002 accession number > YP_010377003.1 and MPXVgp008 accession number > YP_010377007.1 proteins. These proteins were utilized for B- and T-cell epitopes prediction. The epitopes were further screened, and the screen filtered KCKDNEYRSR, RSCNTTHNR, and RTRRETGAS with the antigenicity scores of 0.5279, 0.5604, and 0.7628, respectively. Overall, the epitopes can induce immunity in 99.74% population of the world. Further, GPGPG linkers were used for joining the epitopes and EAAAK linker was used for adjuvant attachment. It has a three-dimensional structure modelled for retaining the structural stability. Three pairs of amino acid residues that were able to make disulfide bonds were chosen: Gly1-Ser82, Cys7-Tyr10, and Phe51-Ile55. Molecular docking of vaccine was done with toll-like receptors, viz., 2, 3, 4, and 8 immune cell receptors. The docking results revealed that the vaccine as potential molecule due to its better binding affinity with toll-like receptors 2, 3, 4 and 8. Top complex in docking in with each receptor was selected based on lowest energy scores- -888.7 kcal/mol (TLR-2), -976.3 kcal/mol (TLR-3), -801.9 kcal/mol (TLR-4), and -955.4 kcal/mol (TLR-4)-were subjected to simulation. The docked complexes were evaluated in 500 ns of MD simulation. Throughout the simulation time, no significant deviation occurred. This confirmed that the vaccine as potential vaccine candidate to interact with immune cell receptors. This interaction is important for the immune system activation. In conclusion, the proposed vaccine construct against monkeypox could induce an effective immune response and speed up the vaccine development process. However, the study is completely based on the computational approach, hence, the experimental validation is required.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saifullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Pakistan
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Alaa R Hameed
- Department of Medical Laboratory Techniques, School of Life Sciences, Dijlah University College, Baghdad, Iraq
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Syed Ainul Abideen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Mahboob Ul Haq
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk, Russian Federation
| | - Alhanouf I Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Mahwish Ali
- Department of Biological Science, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Abdul Haleem
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
29
|
Lucena-Neto FD, Falcão LFM, Vieira-Junior AS, Moraes ECS, David JPF, Silva CC, Sousa JR, Duarte MIS, Vasconcelos PFC, Quaresma JAS. Monkeypox Virus Immune Evasion and Eye Manifestation: Beyond Eyelid Implications. Viruses 2023; 15:2301. [PMID: 38140542 PMCID: PMC10747317 DOI: 10.3390/v15122301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Monkeypox virus (MPXV), belonging to the Poxviridae family and Orthopoxvirus genus, is closely related to the smallpox virus. Initial prodromal symptoms typically include headache, fever, and lymphadenopathy. This review aims to detail various ocular manifestations and immune evasion associated with the monkeypox viral infection and its complications, making it appropriate as a narrative review. Common external ocular manifestations of MPXV typically involve a generalized pustular rash, keratitis, discharges, and dried secretions related to conjunctival pustules, photophobia, and lacrimation. Orthopoxviruses can evade host immune responses by secreting proteins that antagonize the functions of host IFNγ, CC and CXC chemokines, IL-1β, and the complement system. One of the most important transcription factors downstream of pattern recognition receptors binding is IRF3, which controls the expression of the crucial antiviral molecules IFNα and IFNβ. We strongly recommend that ophthalmologists include MPXV as part of their differential diagnosis when they encounter similar cases presenting with ophthalmic manifestations such as conjunctivitis, blepharitis, or corneal lesions. Furthermore, because non-vaccinated individuals are more likely to exhibit these symptoms, it is recommended that healthcare administrators prioritize smallpox vaccination for at-risk groups, including very young children, pregnant women, older adults, and immunocompromised individuals, especially those in close contact with MPXV cases.
Collapse
Affiliation(s)
- Francisco D. Lucena-Neto
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Luiz F. M. Falcão
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Adolfo S. Vieira-Junior
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Evelly C. S. Moraes
- Department of Infectious Disease, School of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (E.C.S.M.); (J.P.F.D.)
| | - Joacy P. F. David
- Department of Infectious Disease, School of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (E.C.S.M.); (J.P.F.D.)
| | - Camilla C. Silva
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Jorge R. Sousa
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Maria I. S. Duarte
- Department of Infectious Disease, School of Medicine, São Paulo University, São Paulo 01246-904, SP, Brazil;
| | - Pedro F. C. Vasconcelos
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Juarez A. S. Quaresma
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
- Department of Infectious Disease, School of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (E.C.S.M.); (J.P.F.D.)
- Department of Infectious Disease, School of Medicine, São Paulo University, São Paulo 01246-904, SP, Brazil;
- Virology Section, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil
| |
Collapse
|
30
|
Aggarwal S, Agarwal P, Nigam K, Vijay N, Yadav P, Gupta N. Mapping the Landscape of Health Research Priorities for Effective Pandemic Preparedness in Human Mpox Virus Disease. Pathogens 2023; 12:1352. [PMID: 38003816 PMCID: PMC10674790 DOI: 10.3390/pathogens12111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
The global re-emergence of monkeypox (Mpox) in non-endemic regions in 2022 has highlighted the critical importance of timely virus detection and robust public health surveillance in assessing outbreaks and their impact. Despite significant Mpox research being conducted worldwide, there is an urgent need to identify knowledge gaps and prioritize key research areas in order to create a roadmap that maximizes the utilization of available resources. The present research article provides a comprehensive mapping of health research priorities aimed at advancing our understanding of Mpox and developing effective interventions for managing its outbreaks, and, as evidenced by the fact that achieving this objective requires close interdisciplinary collaboration. The key research priorities observed were identifying variants responsible for outbreaks; discovering novel biomarkers for diagnostics; establishing suitable animal models; investigating reservoirs and transmission routes; promoting the One Health approach; identifying targets for vaccination; gaining insight into the attitudes, experiences, and practices of key communities, including stigma; and ensuring equity during public health emergencies. The findings of this study hold significant implications for decision making by multilateral partners, including research funders, public health practitioners, policy makers, clinicians, and civil society, which will facilitate the development of a comprehensive plan not only for Mpox but also for other similar life-threatening viral infections.
Collapse
Affiliation(s)
- Sumit Aggarwal
- Indian Council of Medical Research, New Delhi 110029, India; (S.A.)
| | - Pragati Agarwal
- Indian Council of Medical Research, New Delhi 110029, India; (S.A.)
| | - Kuldeep Nigam
- Indian Council of Medical Research, New Delhi 110029, India; (S.A.)
| | - Neetu Vijay
- Indian Council of Medical Research, New Delhi 110029, India; (S.A.)
| | - Pragya Yadav
- ICMR-National Institute of Virology, Pune 411001, India
| | - Nivedita Gupta
- Indian Council of Medical Research, New Delhi 110029, India; (S.A.)
| |
Collapse
|
31
|
Alkalash SH, Marzouk MM, Farag NA, Elesrigy FA, Barakat AM, Ahmed FA, Mohamed RA, Almowafy AA. Evaluation of human monkeypox knowledge and beliefs regarding emerging viral infections among healthcare workers. Int J Emerg Med 2023; 16:75. [PMID: 37853310 PMCID: PMC10583353 DOI: 10.1186/s12245-023-00547-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
OBJECTIVES The purpose of this study was to evaluate possible factors that might be accompanied by high level of human monkey pox (HMPX) knowledge and to explain the relationship between HMPX knowledge and Beliefs regarding emerging viral infections. STUDY DESIGN A descriptive cross-sectional study was conducted for the implementation of this study. METHODS Study was conducted at two general hospitals in Mansoura City (Old General Hospital and International Hospital) El Dakahlia Governorate among 620 healthcare workers (HCWs) using a self-managed questionnaire for 1 week (1 to 7 January 2023). The questionnaire has items adapted from the previously published literature to assess HMPX knowledge and Beliefs regarding emerging viral infections. RESULTS The mean age of the study sample was 27.97 years and most of them were female (86.1%). Physicians and other HCWs (nurses, laboratory technicians, radiographer technicians, and pharmacists) had significantly different levels of knowledge of monkeypox for the majority of the questions. A higher belief was found among two items: viruses are biological weapons manufactured by the superpowers to take global control and the government is misleading the public about the cause of the virus. CONCLUSION This study discovered lower levels of knowledge of HMPX among HCWs in Egypt. Beliefs about emerging viral infections were widespread, and future research should look into their potential negative impact on health behavior.
Collapse
Affiliation(s)
- Safa H Alkalash
- Department of Community Medicine and Healthcare, Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah, Kingdom of Saudi Arabia
- Family Medicine Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Marzouk M Marzouk
- Department of Public Health and Community Medicine, Damietta Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Nagwa A Farag
- Family Medicine Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Fatma A Elesrigy
- Family Medicine Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Ayah M Barakat
- Family Medicine Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Faransa A Ahmed
- College of Applied Medical Sciences in Alnamas, University of Bisha, Bisha, Kingdom of Saudi Arabia
- Pediatric Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
| | - Rasha A Mohamed
- Community Health Nursing Department, Faculty of Nursing, Mansoura University, Mansoura, Egypt
- College of Applied Medical Sciences, University of Bisha, Bisha, Kingdom of Saudi Arabia
| | - Abeer A Almowafy
- International Islamic Center for Population Studies and Research, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
32
|
Sahoo AK, Augusthian PD, Muralitharan I, Vivek-Ananth RP, Kumar K, Kumar G, Ranganathan G, Samal A. In silico identification of potential inhibitors of vital monkeypox virus proteins from FDA approved drugs. Mol Divers 2023; 27:2169-2184. [PMID: 36331784 PMCID: PMC9638297 DOI: 10.1007/s11030-022-10550-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
The World Health Organization (WHO) recently declared the monkeypox outbreak 'A public health emergency of international concern'. The monkeypox virus belongs to the same Orthopoxvirus genus as smallpox. Although smallpox drugs are recommended for use against monkeypox, monkeypox-specific drugs are not yet available. Drug repurposing is a viable and efficient approach in the face of such an outbreak. Therefore, we present a computational drug repurposing study to identify the existing approved drugs which can be potential inhibitors of vital monkeypox virus proteins, thymidylate kinase and D9 decapping enzyme. The target protein structures of the monkeypox virus were modelled using the corresponding protein structures in the vaccinia virus. We identified four potential inhibitors namely, Tipranavir, Cefiderocol, Doxorubicin, and Dolutegravir as candidates for repurposing against monkeypox virus from a library of US FDA approved antiviral and antibiotic drugs using molecular docking and molecular dynamics simulations. The main goal of this in silico study is to identify potential inhibitors against monkeypox virus proteins that can be further experimentally validated for the discovery of novel therapeutic agents against monkeypox disease.
Collapse
Affiliation(s)
- Ajaya Kumar Sahoo
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | | | | | - R P Vivek-Ananth
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Kishan Kumar
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
| | - Gaurav Kumar
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
| | | | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India.
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India.
| |
Collapse
|
33
|
Betti MI, Farrell L, Heffernan J. A pair formation model with recovery: Application to mpox. Epidemics 2023; 44:100693. [PMID: 37348377 DOI: 10.1016/j.epidem.2023.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/24/2023] Open
Abstract
The current global outbreaks of mpox is a unique infectious disease in the way it seems to be transmitting: it has been observed to be highly concentrated in communities of men who have sex with men (MSM) through pair formation, and also provides long lasting immunity. This framework of mostly close, prolonged contact spreading a disease that admits immunity after infection is unlike similar infections which either offer little to no immunity post-infection or are lifelong infections. This creates the need for a new model framework that incorporates pair formation structure with recovery. While seemingly a straight forward model, we show how new dynamics arise from the combination of pair formation and recovery that are not present in a standard model with recovery and also not present in a pair formation model without recovery. We see that the combination of these two properties allows for waves of infection that are not seen in a standard SIR model. These dynamics suggest that outbreaks of mpox around the world may require special attention from public health. We also derive a reproduction number for this model and estimate the reproduction number of human mpox to be ≈2.3 using global and Canadian data. The expression derived for R0 can help estimate key parameters for diseases transmission and public health interventions and compare to equivalent models without pair formation.
Collapse
Affiliation(s)
- Matthew I Betti
- Mount Allison University, Sackville, Canada; Centre for Disease Modeling, Toronto, Canada.
| | | | - Jane Heffernan
- York University, Toronto, Canada; Centre for Disease Modeling, Toronto, Canada
| |
Collapse
|
34
|
Yano R, Terada-Hirashima J, Uemura Y, Tomita N, Shimizu Y, Iwasaki H, Okumura N, Suzuki T, Saito S, Ujiie M, Sugiura W, Ohmagari N. Efficacy and Safety of the Smallpox Vaccine for Postexposure Prophylaxis in Monkeypox: Protocol for an Open-Labeled, Single-Armed Study. JMIR Res Protoc 2023; 12:e46955. [PMID: 37624623 PMCID: PMC10492167 DOI: 10.2196/46955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND In May 2022, a case of monkeypox (currently known as "mpox") with no history of overseas travel was reported in the United Kingdom, followed by reports of infections reported in Europe, the United States, and other countries worldwide. Due to the significant overlap in immune responses among viruses of the genus Orthopoxvirus (including smallpox virus, mpox virus, and vaccinia virus), it is believed that cross-immunity can be achieved by administering the smallpox virus vaccine. In Japan, a smallpox vaccine (LC16m8 strain vaccine) has been approved; however, there was no regulatory approval for the mpox vaccine during the design of this study. Although it is believed that individuals exposed to the mpox virus may receive smallpox vaccination as mpox prophylaxis, the existing evidence is not clear. OBJECTIVE The primary objective was to evaluate the efficacy of the LC16m8 strain vaccine, approved for smallpox in Japan, for postexposure prophylaxis against mpox when administered to close contacts of individuals with mpox. The secondary objective was to investigate the safety of the vaccine for postexposure prophylaxis against mpox. METHODS The study aimed to enroll 100 vaccinated participants who had been identified as close contacts of individuals with mpox. Consent was obtained, and the participants are inoculated with the vaccine. Daily recordings of symptoms (body temperature, headache, rash, and side effects) were made until day 21 and then again on day 28. Furthermore, additional evaluations of adverse events were performed by the investigators on days 7, 14, 21, and 28. Considering that the maximum incubation period for mpox is 21 days, the primary end point is the presence or absence of the disease 21 days after close contact. The primary analysis focused on cases within 4 days of intense contact as it has been reported that vaccination within this timeframe can reduce the incidence of the disease. RESULTS The first trial participant was enrolled on July 28, 2022, and the research period concluded in March 2023. The study results will be published in a peer-reviewed scientific journal. CONCLUSIONS This study allowed us to investigate the efficacy and safety of the LC16m8 strain vaccine in postexposure prophylaxis against mpox. TRIAL REGISTRATION Japan Registry of Clinical Trials jRCTs031220137; https://jrct.niph.go.jp/en-latest-detail/jRCTs031220137. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/46955.
Collapse
Affiliation(s)
- Rina Yano
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Junko Terada-Hirashima
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukari Uemura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Noriko Tomita
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Shimizu
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Haruka Iwasaki
- Disease Control and Prevention Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Nobumasa Okumura
- Disease Control and Prevention Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Tetsuya Suzuki
- Disease Control and Prevention Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Sho Saito
- Disease Control and Prevention Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Mugen Ujiie
- Disease Control and Prevention Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Wataru Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Elhusseiny SM, Bebawy AS, Saad BT, Aboshanab KM. Insights on monkeypox disease and its recent outbreak with evidence of nonsynonymous missense mutation. Future Sci OA 2023; 9:FSO877. [PMID: 37485445 PMCID: PMC10357398 DOI: 10.2144/fsoa-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
The 2022 monkeypox outbreak has created a new global health threat and pandemic. Monkeypox virus is a descendant of the genus Orthopoxvirus, producing a febrile skin rash disease in humans. Monkeypox is zoonotic transmitted and transmitted from human to human in several ways. Even though this disease is self-limited, it creates important community health worries due to its inconvenience and widespread complications. Herein, we discussed the up-to-date current situation of monkeypox regarding its epidemiology, clinical manifestations, current in-use therapeutics, necessary protective measures, and response to potential occurrences considering the recent pandemic. Also, in this review, a comparative genomic analysis of the recent circulating strains that have been recovered from various countries including, Egypt, USA, Spain, Japan and South Africa has been investigated.
Collapse
Affiliation(s)
- Shaza M Elhusseiny
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), 4th Industrial Area, 6th of October City, Cairo, 12566, Egypt
| | - Abraam S Bebawy
- Department of Genomics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Bishoy T Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Cairo, Abbassia, 11566, Egypt
| |
Collapse
|
36
|
Zahmatyar M, Fazlollahi A, Motamedi A, Zolfi M, Seyedi F, Nejadghaderi SA, Sullman MJM, Mohammadinasab R, Kolahi AA, Arshi S, Safiri S. Human monkeypox: history, presentations, transmission, epidemiology, diagnosis, treatment, and prevention. Front Med (Lausanne) 2023; 10:1157670. [PMID: 37547598 PMCID: PMC10397518 DOI: 10.3389/fmed.2023.1157670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Human monkeypox is a zoonotic infection that is similar to the diseases caused by other poxviruses. It is endemic among wild rodents in the rainforests of Central and Western Africa, and can be transmitted via direct skin contact or mucosal exposure to infected animals. The initial symptoms include fever, headache, myalgia, fatigue, and lymphadenopathy, the last of which is the main symptom that distinguishes it from smallpox. In order to prevent and manage the disease, those who are infected must be rapidly diagnosed and isolated. Several vaccines have already been developed (e.g., JYNNEOS, ACAM2000 and ACAM3000) and antiviral drugs (e.g., cidofovir and tecovirimat) can also be used to treat the disease. In the present study, we reviewed the history, morphology, clinical presentations, transmission routes, diagnosis, prevention, and potential treatment strategies for monkeypox, in order to enable health authorities and physicians to better deal with this emerging crisis.
Collapse
Affiliation(s)
- Mahdi Zahmatyar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asra Fazlollahi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Motamedi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maedeh Zolfi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Seyedi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Aria Nejadghaderi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mark J. M. Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahnam Arshi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safiri
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Martínez-Fernández DE, Fernández-Quezada D, Casillas-Muñoz FAG, Carrillo-Ballesteros FJ, Ortega-Prieto AM, Jimenez-Guardeño JM, Regla-Nava JA. Human Monkeypox: A Comprehensive Overview of Epidemiology, Pathogenesis, Diagnosis, Treatment, and Prevention Strategies. Pathogens 2023; 12:947. [PMID: 37513794 PMCID: PMC10384102 DOI: 10.3390/pathogens12070947] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Monkeypox virus (MPXV) is an emerging zoonotic virus that belongs to the Orthopoxvirus genus and presents clinical symptoms similar to those of smallpox, such as fever and vesicular-pustular skin lesions. However, the differential diagnosis between smallpox and monkeypox is that smallpox does not cause lymphadenopathy but monkeypox generates swelling in the lymph nodes. Since the eradication of smallpox, MPXV has been identified as the most common Orthopoxvirus to cause human disease. Despite MPXV being endemic to certain regions of Africa, the current MPXV outbreak, which began in early 2022, has spread to numerous countries worldwide, raising global concern. As of the end of May 2023, over 87,545 cases and 141 deaths have been reported, with most cases identified in non-endemic countries, primarily due to human-to-human transmission. To better understand this emerging threat, this review presents an overview of key aspects of MPXV infection, including its animal reservoirs, modes of transmission, animal models, epidemiology, clinical and immunological features, diagnosis, treatments, vaccines, and prevention strategies. The material presented here provides a comprehensive understanding of MPXV as a disease, while emphasizing the significance and unique characteristics of the 2022 outbreak. This offers valuable information that can inform future research and aid in the development of effective interventions.
Collapse
Affiliation(s)
| | - David Fernández-Quezada
- Department of Neurosciences, University Center for Health Science (CUCS), University of Guadalajara, Guadalajara 44340, Mexico
| | | | | | - Ana Maria Ortega-Prieto
- Department of Microbiology, University of Málaga, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Jose M Jimenez-Guardeño
- Department of Microbiology, University of Málaga, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Jose Angel Regla-Nava
- Department of Microbiology and Pathology, University Center for Health Science (CUCS), University of Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
38
|
Qudus MS, Cui X, Tian M, Afaq U, Sajid M, Qureshi S, Liu S, Ma J, Wang G, Faraz M, Sadia H, Wu K, Zhu C. The prospective outcome of the monkeypox outbreak in 2022 and characterization of monkeypox disease immunobiology. Front Cell Infect Microbiol 2023; 13:1196699. [PMID: 37533932 PMCID: PMC10391643 DOI: 10.3389/fcimb.2023.1196699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
A new threat to global health re-emerged with monkeypox's advent in early 2022. As of November 10, 2022, nearly 80,000 confirmed cases had been reported worldwide, with most of them coming from places where the disease is not common. There were 53 fatalities, with 40 occurring in areas that had never before recorded monkeypox and the remaining 13 appearing in the regions that had previously reported the disease. Preliminary genetic data suggest that the 2022 monkeypox virus is part of the West African clade; the virus can be transmitted from person to person through direct interaction with lesions during sexual activity. It is still unknown if monkeypox can be transmitted via sexual contact or, more particularly, through infected body fluids. This most recent epidemic's reservoir host, or principal carrier, is still a mystery. Rodents found in Africa can be the possible intermediate host. Instead, the CDC has confirmed that there are currently no particular treatments for monkeypox virus infection in 2022; however, antivirals already in the market that are successful against smallpox may mitigate the spread of monkeypox. To protect against the disease, the JYNNEOS (Imvamune or Imvanex) smallpox vaccine can be given. The spread of monkeypox can be slowed through measures such as post-exposure immunization, contact tracing, and improved case diagnosis and isolation. Final Thoughts: The latest monkeypox epidemic is a new hazard during the COVID-19 epidemic. The prevailing condition of the monkeypox epidemic along with coinfection with COVID-19 could pose a serious condition for clinicians that could lead to the global epidemic community in the form of coinfection.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xianghua Cui
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Sajid
- RNA Therapeutics Institute, Chan Medical School, University of Massachusetts Worcester, Worcester, MA, United States
| | - Sonia Qureshi
- Krembil Research Institute, University of Health Network, Toronto, ON, Canada
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - June Ma
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guolei Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Muhammad Faraz
- Department of Microbiology, Quaid-I- Azam University, Islamabad, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
39
|
Smoliga JM. Mpox and Monkeypox Virus: Special Considerations for Athletes in Contact Sports. Sports Med 2023; 53:1301-1313. [PMID: 36848020 PMCID: PMC9969948 DOI: 10.1007/s40279-023-01812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2023] [Indexed: 03/01/2023]
Abstract
Monkeypox virus infections (mpox) in humans have become increasingly common since the virus was first identified in 1970. Coverage of the ongoing mpox outbreak has emphasized the role of skin-to-skin contact in monkeypox virus transmission and has focused on the community of men who have sex with men. While close contact from sexual activity is currently the main mechanism of monkeypox virus transmission, the potential for contact sports to exacerbate the 2022 outbreak has largely been overlooked. Infectious diseases rapidly spread in sports with significant skin-to-skin contact (i.e., wrestling and other combat sports, American football, and rugby). Mpox has not yet reached the athletic community, but once it does, it may follow a similar pattern of other infectious skin diseases in sports. Thus, it is critical to initiate a discussion of the risk of mpox and potential preventive measures within a sports context. This Current Opinion aims to provide stakeholders within the sports community with a brief review of infectious skin diseases in athletes, an overview of mpox and why it is relevant to athletes, and recommendations to reduce the risk of monkeypox virus transmission within sports settings. Guidelines for sports participation in athletes exposed to mpox and those with suspected, probable, and confirmed cases of monkeypox are provided.
Collapse
Affiliation(s)
- James M Smoliga
- Department of Physical Therapy, High Point University, One University Parkway, High Point, NC, 27268, USA.
| |
Collapse
|
40
|
Srivastava S, Kumar S, Jain S, Mohanty A, Thapa N, Poudel P, Bhusal K, Al-Qaim ZH, Barboza JJ, Padhi BK, Sah R. The Global Monkeypox (Mpox) Outbreak: A Comprehensive Review. Vaccines (Basel) 2023; 11:1093. [PMID: 37376482 DOI: 10.3390/vaccines11061093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023] Open
Abstract
Monkeypox (Mpox) is a contagious illness that is caused by the monkeypox virus, which is part of the same family of viruses as variola, vaccinia, and cowpox. It was first detected in the Democratic Republic of the Congo in 1970 and has since caused sporadic cases and outbreaks in a few countries in West and Central Africa. In July 2022, the World Health Organization (WHO) declared a public-health emergency of international concern due to the unprecedented global spread of the disease. Despite breakthroughs in medical treatments, vaccines, and diagnostics, diseases like monkeypox still cause death and suffering around the world and have a heavy economic impact. The 85,189 reported cases of Mpox as of 29 January 2023 have raised alarm bells. Vaccines for the vaccinia virus can protect against monkeypox, but these immunizations were stopped after smallpox was eradicated. There are, however, treatments available once the illness has taken hold. During the 2022 outbreak, most cases occurred among men who had sex with men, and there was a range of 7-10 days between exposure and the onset of symptoms. Three vaccines are currently used against the Monkeypox virus. Two of these vaccines were initially developed for smallpox, and the third is specifically designed for biological-terrorism protection. The first vaccine is an attenuated, nonreplicating smallpox vaccine that can also be used for immunocompromised individuals, marketed under different names in different regions. The second vaccine, ACAM2000, is a recombinant second-generation vaccine initially developed for smallpox. It is recommended for use in preventing monkeypox infection but is not recommended for individuals with certain health conditions or during pregnancy. The third vaccine, LC16m8, is a licensed attenuated smallpox vaccine designed to lack the B5R envelope-protein gene to reduce neurotoxicity. It generates neutralizing antibodies to multiple poxviruses and broad T-cell responses. The immune response takes 14 days after the second dose of the first two vaccines and 4 weeks after the ACAM2000 dose for maximal immunity development. The efficacy of these vaccines in the current outbreak of monkeypox is uncertain. Adverse events have been reported, and a next generation of safer and specific vaccines is needed. Although some experts claim that developing vaccines with a large spectrum of specificity can be advantageous, epitope-focused immunogens are often more effective in enhancing neutralization.
Collapse
Affiliation(s)
- Shriyansh Srivastava
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi 110017, India
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi 110017, India
| | - Shagun Jain
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi 110017, India
| | - Aroop Mohanty
- Department of Clinical Microbiology, All India Institute of Medical Sciences, Gorakhpur 273008, India
| | - Neeraj Thapa
- Nepal Medical College, Jorpati, Kathmandu 44600, Nepal
| | | | - Krishna Bhusal
- Lumbini Medical College, Tansen-11, Pravas, Palpa 32500, Nepal
| | - Zahraa Haleem Al-Qaim
- Department of Anesthesia Techniques, Al-Mustaqbal University College, Hilla 51001, Iraq
| | - Joshuan J Barboza
- Escuela de Medicina, Universidad César Vallejo, Trujillo 13007, Peru
| | - Bijaya Kumar Padhi
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu 44600, Nepal
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune 411018, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune 411018, India
| |
Collapse
|
41
|
Perdiguero B, Pérez P, Marcos-Villar L, Albericio G, Astorgano D, Álvarez E, Sin L, Elena Gómez C, García-Arriaza J, Esteban M. Highly attenuated poxvirus-based vaccines against emerging viral diseases. J Mol Biol 2023:168173. [PMID: 37301278 DOI: 10.1016/j.jmb.2023.168173] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Although one member of the poxvirus family, variola virus, has caused one of the most devastating human infections worldwide, smallpox, the knowledge gained over the last 30 years on the molecular, virological and immunological mechanisms of these viruses has allowed the use of members of this family as vectors for the generation of recombinant vaccines against numerous pathogens. In this review, we cover different aspects of the history and biology of poxviruses with emphasis on their application as vaccines, from first- to fourth-generation, against smallpox, monkeypox, emerging viral diseases highlighted by the World Health Organization (COVID-19, Crimean-Congo haemorrhagic fever, Ebola and Marburg virus diseases, Lassa fever, Middle East respiratory syndrome and severe acute respiratory syndrome, Nipah and other henipaviral diseases, Rift Valley fever and Zika), as well as against one of the most concerning prevalent virus, the Human Immunodeficiency Virus, the causative agent of AcquiredImmunodeficiency Syndrome. We discuss the implications in human health of the 2022 monkeypox epidemic affecting many countries, and the rapid prophylactic and therapeutic measures adopted to control virus dissemination within the human population. We also describe the preclinical and clinical evaluation of the Modified Vaccinia virus Ankara and New York vaccinia virus poxviral strains expressing heterologous antigens from the viral diseases listed above. Finally, we report different approaches to improve the immunogenicity and efficacy of poxvirus-based vaccine candidates, such as deletion of immunomodulatory genes, insertion of host-range genes and enhanced transcription of foreign genes through modified viral promoters. Some future prospects are also highlighted.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Enrique Álvarez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Sin
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
42
|
Nyame J, Punniyakotti S, Khera K, Pal RS, Varadarajan N, Sharma P. Challenges in the treatment and prevention of Monkeypox infection; a comprehensive review. Acta Trop 2023:106960. [PMID: 37276922 PMCID: PMC10239200 DOI: 10.1016/j.actatropica.2023.106960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Human monkeypox (HMPX) is a zoonotic disease, literally meaning that it can be passed on from animals (non-primate) to human (primate). All the reported and recorded cases have been traced back either to international travel or import of African animals. In the Unites states, sporadic monkeypox cases have been reported in specific over the past 50 years, starting its first identification in the Democratic Republic of the Congo (D.R.C.) in 1970. Due to its extreme versatility, this disease poses threat as a serious public health issue that needs to be monitored, researched and prevented. Data indicate that prior immunization with the smallpox vaccine is beneficial and may provide protection against the monkeypox virus. JYNNEOSTM is a live viral vaccine that has been approved to improve clinical manifestations of the infection. On the other hand, public ignorance about safety precaution towards monkeypox post-COVID is another challenge that needs to be overcome in tackling HMPX as a possible re-emergent infection. This review is a collation of the epidemiology, etiology, transmission, clinical features and treatment of human monkeypox (HMPX).
Collapse
Affiliation(s)
- Jennifer Nyame
- Lovely Institute of Technology, Lovely School of Pharmaceutical Sciences, Lovely Professional University, Punjab, 144411, India
| | - Saranya Punniyakotti
- Department of Pharmacy Practice, Lovely Institute of Technology, Lovely School of Pharmaceutical Sciences, Lovely Professional University, Punjab, 144411, India.
| | - Kanav Khera
- Department of Pharmacy Practice, Lovely Institute of Technology, Lovely School of Pharmaceutical Sciences, Lovely Professional University, Punjab, 144411, India
| | - Rashmi Saxena Pal
- Department of Pharmacognosy, Lovely Institute of Technology, Lovely School of Pharmaceutical Sciences, Lovely Professional University, Punjab, 144411, India
| | - Nithya Varadarajan
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai
| | - Prachi Sharma
- Department of Pharmacology, Lovely Institute of Technology, Lovely School of Pharmaceutical Sciences Lovely Professional University, Punjab, 144411, India
| |
Collapse
|
43
|
Gentry Z, Zhao L, Faust RA, David RE, Norton J, Xagoraraki I. Wastewater surveillance beyond COVID-19: a ranking system for communicable disease testing in the tri-county Detroit area, Michigan, USA. Front Public Health 2023; 11:1178515. [PMID: 37333521 PMCID: PMC10272568 DOI: 10.3389/fpubh.2023.1178515] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Throughout the coronavirus disease 2019 (COVID-19) pandemic, wastewater surveillance has been utilized to monitor the disease in the United States through routine national, statewide, and regional monitoring projects. A significant canon of evidence was produced showing that wastewater surveillance is a credible and effective tool for disease monitoring. Hence, the application of wastewater surveillance can extend beyond monitoring SARS-CoV-2 to encompass a diverse range of emerging diseases. This article proposed a ranking system for prioritizing reportable communicable diseases (CDs) in the Tri-County Detroit Area (TCDA), Michigan, for future wastewater surveillance applications at the Great Lakes Water Authority's Water Reclamation Plant (GLWA's WRP). Methods The comprehensive CD wastewater surveillance ranking system (CDWSRank) was developed based on 6 binary and 6 quantitative parameters. The final ranking scores of CDs were computed by summing the multiplication products of weighting factors for each parameter, and then were sorted based on decreasing priority. Disease incidence data from 2014 to 2021 were collected for the TCDA. Disease incidence trends in the TCDA were endowed with higher weights, prioritizing the TCDA over the state of Michigan. Results Disparities in incidences of CDs were identified between the TCDA and state of Michigan, indicating epidemiological differences. Among 96 ranked CDs, some top ranked CDs did not present relatively high incidences but were prioritized, suggesting that such CDs require significant attention by wastewater surveillance practitioners, despite their relatively low incidences in the geographic area of interest. Appropriate wastewater sample concentration methods are summarized for the application of wastewater surveillance as per viral, bacterial, parasitic, and fungal pathogens. Discussion The CDWSRank system is one of the first of its kind to provide an empirical approach to prioritize CDs for wastewater surveillance, specifically in geographies served by centralized wastewater collection in the area of interest. The CDWSRank system provides a methodological tool and critical information that can help public health officials and policymakers allocate resources. It can be used to prioritize disease surveillance efforts and ensure that public health interventions are targeted at the most potentially urgent threats. The CDWSRank system can be easily adopted to geographical locations beyond the TCDA.
Collapse
Affiliation(s)
- Zachary Gentry
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | - Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | | | - Randy E. David
- Wayne State University School of Medicine, Detroit, MI, United States
| | - John Norton
- Great Lakes Water Authority, Detroit, MI, United States
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
44
|
William A, Madan M. Monkeypox scenario in India: a review study. MEDICAL REVIEW (2021) 2023; 3:270-276. [PMID: 37789959 PMCID: PMC10542878 DOI: 10.1515/mr-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/26/2023] [Indexed: 10/05/2023]
Abstract
The monkeypox virus, which causes the viral zoonotic disease, is known as the most significant orthopoxvirus infection following the elimination of smallpox. The monkeypox virus, which was previously exclusive to West and Central African nations and caused endemic diseases in monkeys and people, has recently been linked to human infections in non-endemic areas including the United States of America (USA) and more than 30 additional countries. Guidelines for the diagnosis and treatment of monkeypox have also recently been made available by the Ministry of Health and Family Welfare of India and the Indian Government. The monkeypox outbreak continues to be a worldwide health emergency, the highest degree of alert recognised by the World Health Organization. The Centers for Disease Control and Prevention (CDC) advises vaccination for those who have been exposed to the disease as well as those who may be at higher risk of contracting it, such as those who have been identified by public health officials as a contact of someone who has the disease.
Collapse
Affiliation(s)
- Ashish William
- Department of Microbiology, Al-Falah School of Medical Science & Research Centre, Al-Falah University, Faridabad, Haryana, India
| | - Molly Madan
- Department of Microbiology, Al-Falah School of Medical Science & Research Centre, Al-Falah University, Faridabad, Haryana, India
| |
Collapse
|
45
|
Ajmal A, Mahmood A, Hayat C, Hakami MA, Alotaibi BS, Umair M, Abdalla AN, Li P, He P, Wadood A, Hu J. Computer-assisted drug repurposing for thymidylate kinase drug target in monkeypox virus. Front Cell Infect Microbiol 2023; 13:1159389. [PMID: 37313340 PMCID: PMC10258308 DOI: 10.3389/fcimb.2023.1159389] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction Monkeypox is a zoonotic disease caused by brick-shaped enveloped monkeypox (Mpox) virus that belongs to the family of ancient viruses known as Poxviridae. Subsequently, the viruses have been reported in various countries. The virus is transmitted by respiratory droplets, skin lesions, and infected body fluids. The infected patients experience fluid-filled blisters, maculopapular rash, myalgia, and fever. Due to the lack of effective drugs or vaccines, there is a need to identify the most potent and effective drugs to reduce the spread of monkeypox. The current study aimed to use computational methods to quickly identify potentially effective drugs against the Mpox virus. Methods In our study, the Mpox protein thymidylate kinase (A48R) was targeted because it is a unique drug target. We screened a library of 9000 FDA-approved compounds of the DrugBank database by using various in silico approaches, such as molecular docking and molecular dynamic (MD) simulation. Results Based on docking score and interaction analysis, compounds DB12380, DB13276, DB13276, DB11740, DB14675, DB11978, DB08526, DB06573, DB15796, DB08223, DB11736, DB16250, and DB16335 were predicted as the most potent. To examine the dynamic behavior and stability of the docked complexes, three compounds-DB16335, DB15796, and DB16250 -along with the Apo state were simulated for 300ns. The results revealed that compound DB16335 revealed the best docking score (-9.57 kcal/mol) against the Mpox protein thymidylate kinase. Discussion Additionally, during the 300 ns MD simulation period, thymidylate kinase DB16335 showed great stability. Further, in vitro and in vivo study is recommended for the final predicted compounds.
Collapse
Affiliation(s)
- Amar Ajmal
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, Abdul Wali Khan University, Mardan, Pakistan
| | - Arif Mahmood
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Chandni Hayat
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, Abdul Wali Khan University, Mardan, Pakistan
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader S. Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Muhammad Umair
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ping Li
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Pei He
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Abdul Wadood
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, Abdul Wali Khan University, Mardan, Pakistan
| | - Junjian Hu
- Department of Central Laboratory, SSL Central Hospital of Dongguan City, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, China
| |
Collapse
|
46
|
Banuet-Martinez M, Yang Y, Jafari B, Kaur A, Butt ZA, Chen HH, Yanushkevich S, Moyles IR, Heffernan JM, Korosec CS. Monkeypox: a review of epidemiological modelling studies and how modelling has led to mechanistic insight. Epidemiol Infect 2023; 151:e121. [PMID: 37218612 PMCID: PMC10468816 DOI: 10.1017/s0950268823000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Human monkeypox (mpox) virus is a viral zoonosis that belongs to the Orthopoxvirus genus of the Poxviridae family, which presents with similar symptoms as those seen in human smallpox patients. Mpox is an increasing concern globally, with over 80,000 cases in non-endemic countries as of December 2022. In this review, we provide a brief history and ecology of mpox, its basic virology, and the key differences in mpox viral fitness traits before and after 2022. We summarize and critique current knowledge from epidemiological mathematical models, within-host models, and between-host transmission models using the One Health approach, where we distinguish between models that focus on immunity from vaccination, geography, climatic variables, as well as animal models. We report various epidemiological parameters, such as the reproduction number, R0, in a condensed format to facilitate comparison between studies. We focus on how mathematical modelling studies have led to novel mechanistic insight into mpox transmission and pathogenesis. As mpox is predicted to lead to further infection peaks in many historically non-endemic countries, mathematical modelling studies of mpox can provide rapid actionable insights into viral dynamics to guide public health measures and mitigation strategies.
Collapse
Affiliation(s)
- Marina Banuet-Martinez
- Climate Change and Global Health Research Group, School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Yang Yang
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Behnaz Jafari
- Mathematics and Statistics Department, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Avneet Kaur
- Irving K. Barber School of Arts and Sciences, Department of Computer Science, Mathematics, Physics and Statistics, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Zahid A. Butt
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Helen H. Chen
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Svetlana Yanushkevich
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Iain R. Moyles
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, Toronto, ON, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, Toronto, ON, Canada
| | - Jane M. Heffernan
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, Toronto, ON, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, Toronto, ON, Canada
| | - Chapin S. Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, Toronto, ON, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, Toronto, ON, Canada
| |
Collapse
|
47
|
Sanami S, Nazarian S, Ahmad S, Raeisi E, Tahir Ul Qamar M, Tahmasebian S, Pazoki-Toroudi H, Fazeli M, Ghatreh Samani M. In silico design and immunoinformatics analysis of a universal multi-epitope vaccine against monkeypox virus. PLoS One 2023; 18:e0286224. [PMID: 37220125 DOI: 10.1371/journal.pone.0286224] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Monkeypox virus (MPXV) outbreaks have been reported in various countries worldwide; however, there is no specific vaccine against MPXV. In this study, therefore, we employed computational approaches to design a multi-epitope vaccine against MPXV. Initially, cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), linear B lymphocytes (LBL) epitopes were predicted from the cell surface-binding protein and envelope protein A28 homolog, both of which play essential roles in MPXV pathogenesis. All of the predicted epitopes were evaluated using key parameters. A total of 7 CTL, 4 HTL, and 5 LBL epitopes were chosen and combined with appropriate linkers and adjuvant to construct a multi-epitope vaccine. The CTL and HTL epitopes of the vaccine construct cover 95.57% of the worldwide population. The designed vaccine construct was found to be highly antigenic, non-allergenic, soluble, and to have acceptable physicochemical properties. The 3D structure of the vaccine and its potential interaction with Toll-Like receptor-4 (TLR4) were predicted. Molecular dynamics (MD) simulation confirmed the vaccine's high stability in complex with TLR4. Finally, codon adaptation and in silico cloning confirmed the high expression rate of the vaccine constructs in strain K12 of Escherichia coli (E. coli). These findings are very encouraging; however, in vitro and animal studies are needed to ensure the potency and safety of this vaccine candidate.
Collapse
Affiliation(s)
- Samira Sanami
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahin Nazarian
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Elham Raeisi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Muhammad Tahir Ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shahram Tahmasebian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Fazeli
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Ghatreh Samani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
48
|
Ahmed SK, Mohamed MG, Dabou EA, Abuijlan I, Chandran D, El-Shall NA, Chopra H, Dhama K. Monkeypox (mpox) in immunosuppressed patients. F1000Res 2023; 12:127. [PMID: 37089133 PMCID: PMC10113800 DOI: 10.12688/f1000research.130272.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
The World Health Organization (WHO) proclaimed a public health emergency in July 2022 due to the emergence of Mpox (formerly monkeypox) while the globe was still dealing with the COVID-19 epidemic. The characteristics of mpox in immunocompetent individuals are well-characterized, despite difficulties in diagnostics, immunization, and access to treatment that persist in low-income countries. Patients with weakened immune systems are more likely to spread an illness and die from it than healthy people because they cannot mount a protective immune response against it, such as a neutralizing IgG and poxvirus-specific Th1 response. A health warning on severe mpox in people who are immunocompromised due to Human Immunodeficiency virus (HIV) and other illnesses was released by the U.S. Centers for Disease Control and Prevention (CDC) on September 29, 2022. The advice does not specifically include primary immunodeficiency, but it does define other immunocompromising disorders as “having autoimmune disease with immunodeficiency as a clinical component”. Both those with healthy immune systems and those with weakened immune systems, such as those who are immunosuppressed, older people, children, etc., have encountered serious health issues, but the latter group is more likely to do so. According to the advisory, “of the people with severe mpox manifestations for whom CDC has been consulted, the majority have had HIV with CD4 counts 200 cells/ml, indicating substantial immunosuppression”. However, new cases are still expected to be discovered, especially in low-income countries with limited access to diagnosis, treatment, and prevention, and where a large percentage of the mpox-infected population also has advanced HIV infection. Thus, further research is always needed to determine the best way to treat mpox in immunocompromised people. In this context, we discussed /reviewed the mpox clinical presentation, available treatment options and current preventive guidelines in immunocompromised patients.
Collapse
Affiliation(s)
- Sirwan Khalid Ahmed
- Department of Pediatrics, Rania Pediatric & Maternity Teaching Hospital, Rania, Sulaymaniyah, Kurdistan Region, 46012, Iraq
| | - Mona Gamal Mohamed
- RAK College of Nursing, RAK Medical and Health Sciences University, Ras Al Khiamah, United Arab Emirates
| | - Eman Abdelaziz Dabou
- RAK College of Nursing, RAK Medical and Health Sciences University, Ras Al Khiamah, United Arab Emirates
| | - Israa Abuijlan
- RAK College of Nursing, RAK Medical and Health Sciences University, Ras Al Khiamah, United Arab Emirates
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, 642109, India
| | - Nahed A. El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, El-Beheira, 22758, Egypt
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
49
|
Sohal P, Gupta A, Gupta S, Gupta V, Jain R, Jain R. Monkeypox: another pandemic in the making? Proc AMIA Symp 2023; 36:370-374. [PMID: 37091775 PMCID: PMC10120548 DOI: 10.1080/08998280.2023.2188542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Monkeypox is a zoonotic disease caused by the monkeypox virus, which is a member of the Poxviridae family of viruses. It is transmitted through direct or indirect contact with fluid secretions. Initial symptoms include fever, chills, headache, and malaise, followed by a maculopapular rash that starts on the face and progresses centrifugally. Polymerase chain reaction is the preferred laboratory test for the diagnosis, and management is mostly supportive. The clinical presentation of monkeypox is quite similar to that of another member of the Poxviridae family: smallpox, which wreaked havoc in the 20th century, before being eradicated with the help of the vaccinia virus vaccine in 1977. This vaccine protects not only against smallpox but also monkeypox; therefore, when use of this vaccine was discontinued, monkeypox had a new susceptible population to infect and way to proliferate and evolve. Initially the disease spread in Africa, but now the more evolved monkeypox is quickly spreading to other countries. On July 23, 2022, the World Health Organization declared this multicountry outbreak a public health emergency of international concern. Given its mutating ability and high transmissibility, we need to quickly devise measures to control this virus before it turns into a pandemic.
Collapse
Affiliation(s)
- Prinay Sohal
- Dayanand Medical College and Hospital, Ludhiana, India
| | | | - Shefali Gupta
- Department of Microbiology, All India Institute of Medical Sciences, AIIMS Raebareli, Raebareli, India
| | - Vasu Gupta
- Dayanand Medical College and Hospital, Ludhiana, India
| | - Ridhimaa Jain
- Department of Paediatrics, Centre of Excellence-Early Intervention Centre, Lok Nayak Hospital and Maulana Azad Medical College, New Delhi, India
| | - Rohit Jain
- Department of Medicine, Penn State Health Milton S. Hershey Medical Centre, Hershey, Pennsylvania
| |
Collapse
|
50
|
Pattnaik H, Surani S, Goyal L, Kashyap R. Making Sense of Monkeypox: A Comparison of Other Poxviruses to the Monkeypox. Cureus 2023; 15:e38083. [PMID: 37252521 PMCID: PMC10212748 DOI: 10.7759/cureus.38083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 05/31/2023] Open
Abstract
The current monkeypox (MPX) outbreak has been declared a public health emergency of international concern (PHEIC) by the World Health Organization (WHO). It is a zoonotic disease that has persisted in the African basin for decades but suddenly exploded into the international sphere this year. In this paper, we provide a comprehensive overview of monkeypox, including a hypothesis of the rapid spread of the virus, its epidemiology and clinical features, a comparison with other orthopoxviruses such as chickenpox and smallpox, past and present outbreaks, and strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Harsha Pattnaik
- Medicine, Lady Hardinge Medical College, University of Delhi, New Delhi, IND
| | - Salim Surani
- Anesthesiology, Mayo Clinic, Rochester, USA
- Medicine, Texas A&M University, College Station, USA
- Medicine, University of North Texas, Dallas, USA
- Internal Medicine, Pulmonary Associates, Corpus Christi, USA
- Clinical Medicine, University of Houston, Houston, USA
| | - Lokesh Goyal
- Hospital Medicine, Christus Spohn Hospital, Corpus Christi, USA
| | - Rahul Kashyap
- Global Clinical Scholars Research Training (GCSRT), Harvard Medical School, Boston, USA
- Research, Global Remote Research Program, St. Paul, USA
- Critical Care Medicine, Mayo Clinic, Rochester, USA
- Research, WellSpan Health, York, USA
| |
Collapse
|