1
|
Huber K. Review: Welfare in farm animals from an animal-centred point of view. Animal 2024; 18:101311. [PMID: 39265500 DOI: 10.1016/j.animal.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/14/2024] Open
Abstract
This review aimed to enlighten aspects of welfare from the farm animal-centred point of view rarely addressed such as those anatomical and physiological alterations induced in farm animals to obtain high performance. Hence, the major working hypothesis was that high-producing farm animals developed an imbalance between body structural and functional capacities and the genetic procedures applied to obtain industrial production of animal protein. This is called "disproportionality", a feature which cannot be compensated by feeding and management approaches. Consequences of disproportionality are the insidious development of disturbances of the metabolism, low-grade systemic inflammation and as a final stage, production diseases, developing throughout the productive life span of a farm animal and affecting animal welfare. Based on scientific evidence from literature, the review discusses disproportional conditions in broilers, laying hens, sows, piglets, dairy cows, bulls and calves as the most important farm animals for production of milk, meat, foetuses and eggs. As a conclusion, farm animal welfare must consider analysing issues from an animal-centered point of view because it seems evident that, due to genetics and management pressures, most of farm animals are already beyond their physiological limitations. Animal welfare from an animal-centered point must be addressed as an ethical step to establish limits to the strength placed on the animal's anatomical and physiological functionality. It may allow more sustainable and efficient farm animal production and the availability of healthy animal-derived protein for human nutrition worldwide.
Collapse
Affiliation(s)
- K Huber
- Institute of Animal Science (460d), University of Hohenheim, Fruwirthstrasse 35, 70599 Stuttgart, Germany.
| |
Collapse
|
2
|
Christofaro Fernandes A, Beline M, Polizel GHG, Cavalcante Cracco R, Ferreira Dias EF, Furlan É, da Luz e Silva S, de Almeida Santana MH. Fetal Programming and Its Effects on Meat Quality of Nellore Bulls. Vet Sci 2023; 10:672. [PMID: 38133223 PMCID: PMC10748345 DOI: 10.3390/vetsci10120672] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
This work aimed to evaluate the effects of prenatal nutritional stimulation at different pregnancy stages on carcass traits and meat quality in bovine progeny. For this purpose, 63 Nellore bulls, born from cows submitted to three nutritional plans, were used: not programmed (NP), which did not receive protein supplementation; partially programmed (PP), which had protein-energy supplementation (0.3% of mean body weight of each batch) only in the final third of pregnancy; and full programming (FP), which received supplementation (0.3% of mean body weight of each batch) throughout pregnancy. The averages of parameters were submitted to the ANOVA, and the supplementation periods, which were different when p value < 0.05, were compared. Carcass weights and rib eye area (REA) did not differ between treatments (p > 0.05), but subcutaneous fat thickness (SFT) showed a tendency (p = 0.08) between groups. For lipids and marbling, no differences were found (p > 0.05). In the analyses of maturation time and shelf life, no difference was observed between treatments. However, there was a tendency between treatments at 14 days of maturation time for cooking loss (CL) (p = 0.08). Treatments did not affect shear force in the progenies (p > 0.05). Fetal programming had no effect on the meat quality of Nellore bulls.
Collapse
Affiliation(s)
- Arícia Christofaro Fernandes
- Department of Animal Science, College of Animal Science and Food Engineering—USP, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.B.); (G.H.G.P.); (É.F.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Wang W, Chen S, Qiao L, Zhang S, Liu Q, Yang K, Pan Y, Liu J, Liu W. Four Markers Useful for the Distinction of Intrauterine Growth Restriction in Sheep. Animals (Basel) 2023; 13:3305. [PMID: 37958061 PMCID: PMC10648371 DOI: 10.3390/ani13213305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is a common perinatal complication in animal reproduction, with long-lasting negative effects on neonates and postnatal animals, which seriously negatively affects livestock production. In this study, we aimed to identify potential genes associated with the diagnosis of IUGR through bioinformatics analysis. Based on the 73 differentially expressed related genes obtained by differential analysis and weighted gene co-expression network analysis, we used three machine learning algorithms to identify 4 IUGR-related hub genes (IUGR-HGs), namely, ADAM9, CRYL1, NDP52, and SERPINA7, whose ROC curves showed that they are a good diagnostic target for IUGR. Next, we identified two molecular subtypes of IUGR through consensus clustering analysis and constructed a gene scoring system based on the IUGR-HGs. The results showed that the IUGR score was positively correlated with the risk of IUGR. The AUC value of IUGR scoring accuracy was 0.970. Finally, we constructed a new artificial neural network model based on the four IUGR-HGs to diagnose sheep IUGR, and its accuracy reached 0.956. In conclusion, the IUGR-HGs we identified provide new potential molecular markers and models for the diagnosis of IUGR in sheep; they can better diagnose whether sheep have IUGR. The present findings provide new perspectives on the diagnosis of IUGR.
Collapse
Affiliation(s)
- Wannian Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Sijia Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Liying Qiao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Siying Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Qiaoxia Liu
- Shanxi Animal Husbandry Technology Extension Service Center, Taiyuan 030001, China;
| | - Kaijie Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Yangyang Pan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Jianhua Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Wenzhong Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
- Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Jinzhong 030801, China
| |
Collapse
|
4
|
Veit W, Browning H. Developmental Programming, Evolution, and Animal Welfare: A Case for Evolutionary Veterinary Science. J APPL ANIM WELF SCI 2023; 26:552-564. [PMID: 34913795 DOI: 10.1080/10888705.2021.2014838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The conditions animals experience during the early developmental stages of their lives can have critical ongoing effects on their future health, welfare, and proper development. In this paper we draw on evolutionary theory to improve our understanding of the processes of developmental programming, particularly Predictive Adaptive Responses (PAR) that serve to match offspring phenotype with predicted future environmental conditions. When these predictions fail, a mismatch occurs between offspring phenotype and the environment, which can have long-lasting health and welfare effects. Examples include metabolic diseases resulting from maternal nutrition and behavioral changes from maternal stress. An understanding of these processes and their evolutionary origins will help in identifying and providing appropriate developmental conditions to optimize offspring welfare. This serves as an example of the benefits of using evolutionary thinking within veterinary science and we suggest that in the same way that evolutionary medicine has helped our understanding of human health, the implementation of evolutionary veterinary science (EvoVetSci) could be a useful way forward for research in animal health and welfare.
Collapse
|
5
|
Zhu Q, Azad MAK, Dong H, Li C, Li R, Cheng Y, Liu Y, Yin Y, Kong X. Sow-Offspring Diets Supplemented with Probiotics and Synbiotics Are Associated with Offspring's Growth Performance and Meat Quality. Int J Mol Sci 2023; 24:ijms24087668. [PMID: 37108828 PMCID: PMC10144797 DOI: 10.3390/ijms24087668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Probiotics and synbiotics supplementation have been shown to play potential roles in animal production. The present study aimed to evaluate the effects of dietary probiotics and synbiotics supplementation to sows during gestation and lactation and to offspring pigs (sow-offspring) on offspring pigs' growth performance and meat quality. Sixty-four healthy Bama mini-pigs were selected and randomly allocated into four groups after mating: the control, antibiotics, probiotics, and synbiotics groups. After weaning, two offspring pigs per litter were selected, and four offspring pigs from two litters were merged into one pen. The offspring pigs were fed a basal diet and the same feed additive according to their corresponding sows, representing the control group (Con group), sow-offspring antibiotics group (S-OA group), sow-offspring probiotics group (S-OP group), and sow-offspring synbiotics group (S-OS group). Eight pigs per group were euthanized and sampled at 65, 95, and 125 d old for further analyses. Our findings showed that probiotics supplementation in sow-offspring diets promoted growth and feed intake of offspring pigs during 95-125 d old. Moreover, sow-offspring diets supplemented with probiotics and synbiotics altered meat quality (meat color, pH45min, pH24h, drip loss, cooking yield, and shear force), plasma UN and AMM levels, and gene expressions associated with muscle-fiber types (MyHCI, MyHCIIa, MyHCIIx, and MyHCIIb) and muscle growth and development (Myf5, Myf6, MyoD, and MyoG). This study provides a theoretical basis for the maternal-offspring integration regulation of meat quality by dietary probiotics and synbiotics supplementation.
Collapse
Affiliation(s)
- Qian Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Md Abul Kalam Azad
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibo Dong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Chenjian Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Ruixuan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Cheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center of Mini-Pig, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| |
Collapse
|
6
|
He Y, Liu Y, Guan P, He L, Zhou X. Serine Administration Improves Selenium Status, Oxidative Stress, and Mitochondrial Function in Longissimus Dorsi Muscle of Piglets with Intrauterine Growth Retardation. Biol Trace Elem Res 2023; 201:1740-1747. [PMID: 35661959 DOI: 10.1007/s12011-022-03304-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/26/2022] [Indexed: 01/16/2023]
Abstract
Intrauterine growth retardation (IUGR) causes oxidative stress in the skeletal muscle. Serine and selenoproteins are involved in anti-oxidative processes; however, whether IUGR affects selenium status and whether serine has beneficial effects remain elusive. Here, we investigated the effects of serine administration on selenium nutritional status and oxidative stress in the longissimus dorsi muscle of piglets with IUGR. Six newborn Min piglets having normal birth weight were administered saline, and 12 IUGR piglets were either administered saline or 0.8% serine. The results showed a lower selenium content in skeletal muscle in IUGR piglets, which was restored after serine administration. IUGR piglets showed a disturbed expression of genes encoding selenoproteins, with decreased expression of GPX2, GPX4, TXNRD1, and TXNRD3 and increased expression of DIO1, DIO2, SELF, SELM, SELP, and SELW. Notably, serine administration restored the expression levels of these genes. In accordance with the changes in gene expression, the activity of GPX, TXNRD, and DIO and the content of GSH and SELP were also altered, whereas serine administration restored their contents and activities. Moreover, we observed severe oxidative stress in the skeletal muscle of IUGR piglets, as indicated by decreased GSH content and increased MDA and PC content, whereas serine administration alleviated these changes. In conclusion, our results indicate that IUGR piglets showed a disturbed expression of genes encoding selenoproteins, accompanied by severe oxidative stress. Serine administration can improve selenium status, oxidative stress, and mitochondrial function in the longissimus dorsi muscle of piglets with IUGR. These results suggest that serine could potentially be used in the treatment of IUGR in piglets.
Collapse
Affiliation(s)
- Yiwen He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
| | - Yonghui Liu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
| | - Peng Guan
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
| | - Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xihong Zhou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
7
|
Wu Z, Nie J, Wu D, Huang S, Chen J, Liang H, Hao X, Feng L, Luo H, Tan C. Dietary adenosine supplementation improves placental angiogenesis in IUGR piglets by up-regulating adenosine A2a receptor. ANIMAL NUTRITION 2023; 13:282-288. [PMID: 37168450 PMCID: PMC10165186 DOI: 10.1016/j.aninu.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/09/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
Abnormal placental angiogenesis is associated with the occurrence of intrauterine growth restriction (IUGR) in piglets, and effective treatment strategies against this occurrence remain to be explored. Adenosine has been reported to play an important role in angiogenesis, but its role in placental angiogenesis is still unknown. Here, we investigated the effect of dietary adenosine supplementation on IUGR occurrence in piglets by analyzing the role of adenosine in placental angiogenesis for Normal and IUGR piglets. Specifically, 88 sows were allotted to 2 treatments (n = 44) and fed a basal diet supplemented with 0% or 0.1% of adenosine from day 65 of gestation until farrowing, followed by collecting the placental samples of Normal and IUGR piglets, and recording their characteristics. The results showed that adenosine supplementation increased the mean birth weight of piglets (P < 0.05) and placental efficiency (P < 0.05), while decreasing the IUGR piglet rate (P < 0.05). Expectedly, the placenta for IUGR neonates showed a down-regulated vascular density (P < 0.05) and angiogenesis as evidenced by the expression level of vascular cell adhesion molecule-1 (VCAM1) (P < 0.05). Notably, dietary adenosine supplementation promoted angiogenesis (P < 0.05) both in the Normal and IUGR placenta. More importantly, the expression level of adenosine A2a receptor (ADORA2A) was lower (P < 0.05) in the IUGR placenta than in Normal placenta, whereas adenosine treatment could significantly increase ADORA2A expression, and also had an interaction effect between factors IUGR and Ado. Collectively, placentae for IUGR piglets showed impaired angiogenesis and down-regulated expression level of ADORA2A, while dietary adenosine supplementation could activate ADORA2A expression, improve the placental angiogenesis, and ultimately decrease the occurrence of IUGR in piglets.
Collapse
Affiliation(s)
- Zifang Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiawei Nie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Deyuan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jianzhao Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Huajin Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiangyu Hao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Li Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hefeng Luo
- Dekon Food and Agriculture Group, Chengdu, China
- Corresponding authors.
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Corresponding authors.
| |
Collapse
|
8
|
Zhang JF, Xu W, Yang YX, Zhang LL, Wang T. Leucine Alters Blood Parameters and Regulates Hepatic Protein Synthesis via mTOR Activation in Intrauterine Growth Restriction Piglets. J Anim Sci 2022; 100:6562689. [PMID: 35366314 PMCID: PMC9053099 DOI: 10.1093/jas/skac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 11/12/2022] Open
Abstract
Neonatal piglets often suffer low birth weights and poor growth performance accompanied by the disruption of protein metabolism, when intrauterine growth restriction (IUGR) takes place during pregnancy, leading to a higher mortality and bigger economic loss than expected. Leucine has been proposed to function as a nutritional signal regulating protein synthesis in numerous studies. The aim of this study was to determine the effect of dietary leucine supplementation on the blood parameters and hepatic protein metabolism in IUGR piglets. Weaned piglets were assigned to one of four to treatments in a 2 × 2 factorial arrangement: (1) piglets fed a basal diet with normal birth weight; (2) piglets fed a basal diet plus 0.35% L-leucine with normal birth weight; (3) IUGR piglets fed a basal diet with low birth weight; (4) IUGR piglets fed a basal diet plus 0.35% L-leucine with low birth weight. The results showed that IUGR decreased serum aspartate aminotransferase and alkaline phosphatase activities, increased serum cortisol and prostaglandin E2 levels at 35 days of age (P < 0.05), suggesting the occurrence of liver dysfunction and stress response. Leucine supplementation increased serum alkaline phosphatase activity, and decreased serum cortisol levels at 35 days of age (P < 0.05). IUGR decreased the lysozyme activity and complement 3 level in serum (P < 0.05), which were prevented by dietary leucine supplementation. IUGR piglets showed increased hepatic DNA contents while showing reduced RNA/DNA ratio (P < 0.05). Piglets supplied with leucine had decreased RNA/DNA ratio in the liver (P < 0.05). Leucine supplementation stimulated hepatic protein anabolism through up-regulating protein synthesis related genes expression and activating the phosphorylation of mammalian/mechanistic target of rapamycin (mTOR) (P < 0.05). Moreover, IUGR inhibited the mRNA expression of hepatic protein degradation related genes, indicating a compensatory mechanism for the metabolic response. Dietary leucine supplementation attenuated the suppression of the protein catabolism induced by IUGR in liver. These results demonstrate that dietary leucine supplementation could alter the blood parameters, alleviated the disrupted protein metabolism induced by IUGR via enhanced mTOR phosphorylation to promote protein synthesis in weaned piglets.
Collapse
Affiliation(s)
- J F Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - W Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Y X Yang
- Bluestar Adisseo Nanjing Co. Ltd., Nanjing 210000, China
| | - L L Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - T Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Cheng Y, Song M, Zhu Q, Azad MAK, Gao Q, Kong X. Dietary Betaine Addition Alters Carcass Traits, Meat Quality, and Nitrogen Metabolism of Bama Mini-Pigs. Front Nutr 2021; 8:728477. [PMID: 34513907 PMCID: PMC8429818 DOI: 10.3389/fnut.2021.728477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Betaine is widely used as feed additives in animal husbandry as it can cause many benefits such as improving antioxidant ability, growth performance, and carcass traits. However, there are limited studies about the effects of betaine on the Bama mini-pigs. The present study was conducted to evaluate the effects of dietary betaine on carcass traits, meat quality, and nitrogen metabolism of pigs. Twenty-six pregnant Bama mini-pigs and then 104 weaned piglets were assigned for experimental treatments. The plasma and muscle samples were collected at 65-, 95-, and 125-d-old pigs, respectively. The results showed that betaine addition in the sow-offspring diets increased the lean meat rate in the 65-d-old pigs, whereas carcass weight, carcass yield, and loin-eye area were increased in the 95-d-old pigs, and carcass weight and backfat thickness in the 125-d-old pigs. Dietary betaine addition in the sow-offspring diets increased the contents of plasma Asp of 65-d-old, Met of 95- and 125-d-old, and Sar of 125-d-old pigs. Moreover, betaine addition increased the contents of Met, His, Ile, and Phe in Longissimus thoracis et lumborum, whereas those contents were decreased in biceps femoris and psoas major muscles at different stages. Betaine addition in the sow and piglets' diets regulated the muscle fiber-type and myogenic regulatory gene expressions. In summary, betaine addition in the sow and sow-offspring diets could improve the carcass traits and meat quality by altering the plasma biochemical parameters, amino acid composition, and gene expressions of skeletal muscle.
Collapse
Affiliation(s)
- Yating Cheng
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijng, China
| | - Mingtong Song
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qian Zhu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijng, China
| | - Md Abul Kalam Azad
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijng, China
| | - Qiankun Gao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijng, China.,Research Center of Mini-Pig, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Chen J, Song Y, Chen D, Yu B, He J, Mao X, Huang Z, Luo J, Yu J, Luo Y, Yan H, Zheng P. Low Birth Weight Disturbs the Intestinal Redox Status and Mitochondrial Morphology and Functions in Newborn Piglets. Animals (Basel) 2021; 11:ani11092561. [PMID: 34573527 PMCID: PMC8469446 DOI: 10.3390/ani11092561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Low birth-weight piglets normally have a higher growth retardation and are more prone to disease such as diarrhea compared to NBW piglets, which are strongly associated with intestinal health, body redox status and mitochondrial morphology and function. The present study showed that low birth-weight piglets exhibited abnormal intestinal development and impaired intestinal barrier function and redox status when compared to normal- birth-weight piglets. Furthermore, we found that the impaired mitochondrial structure and functions may be one of the main causes of intestinal dysfunction in low birth-weight piglets. These results provided insights for the mechanisms of intestinal dysfunction in low birth-weight piglets. Abstract Low birth-weight (LBW) neonates exhibit a lower growth rate and impaired intestinal development. However, the reasons for abnormal development of small intestine in LBW piglets have not been widely studied. The present study focused on the redox status and mitochondrial morphology and functions of the small intestine in LBW newborn piglets. Ten newborn normal birth-weight (NBW) piglets and LBW piglets from 10 primiparous sows with the same parturition day were selected and sampled immediately without sucking colostrum. The small intestine tissues were collected and measured. Compared with NBW newborn piglets, LBW newborn piglets had a significantly decreased length and weight of the small intestine (p < 0.05) as well as the villus height/crypt depth (V/C) index in the jejunum (p < 0.05). Furthermore, LBW piglets had a lower gene expression of tight junction protein zonula occluden-1 (ZO1), claudin 1, antioxidant enzyme catalase (CAT), glutathione peroxidase (GPX) and heme oxygenase-1 (HO-1) in jejunum (p < 0.05). Meanwhile, LBW induced mitochondrial vacuolation and significantly decreased the mRNA expression of PPARγ coactivator-1α (PGC-1α) (p < 0.05) and tended to decrease the expression of cytochrome coxidase IV (Ccox IV) (p = 0.07) and cytochrome C (Cytc) (p = 0.08). In conclusion, LBW newborn piglets showed an abnormal development of the small intestine and disturbed redox status, and this may be caused by impaired morphology and the functions of mitochondria in the jejunum.
Collapse
|
11
|
Ding S, Yan W, Ma Y, Fang J. The impact of probiotics on gut health via alternation of immune status of monogastric animals. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:24-30. [PMID: 33997328 PMCID: PMC8110871 DOI: 10.1016/j.aninu.2020.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/25/2020] [Accepted: 11/04/2020] [Indexed: 12/29/2022]
Abstract
The intestinal immune system is affected by various factors during its development, such as maternal antibodies, host genes, intestinal microbial composition and activity, and various stresses (such as weaning stress). Intestinal microbes may have an important impact on the development of the host immune system. Appropriate interventions such as probiotics may have a positive effect on intestinal immunity by regulating the composition and activity of intestinal microbes. Moreover, probiotics participate in the regulation of host health in many ways; for instance, by improving digestion and the absorption of nutrients, immune response, increasing the content of intestinal-beneficial microorganisms, and inhibiting intestinal-pathogenic bacteria, and they participate in regulating intestinal diseases in various ways. Probiotics are widely used as additives in livestock and the poultry industry and bring health benefits to hosts by improving intestinal microbes and growth performance, which provides more choices for promoting strong and efficient productivity.
Collapse
Affiliation(s)
- Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Wenxin Yan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
12
|
Hoyle AS, Menezes ACB, Nelson MA, Swanson KC, Vonnahme KA, Berg EP, Ward AK. Fetal expression of genes related to metabolic function is impacted by supplementation of ground beef and sucrose during gestation in a swine model. J Anim Sci 2020; 98:skaa232. [PMID: 32687162 PMCID: PMC7431213 DOI: 10.1093/jas/skaa232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/14/2020] [Indexed: 11/13/2022] Open
Abstract
To determine the effects of maternal supplementation on the mRNA abundance of genes associated with metabolic function in fetal muscle and liver, pregnant sows (Landrace × Yorkshire; initial body weight (BW) 221.58 ± 33.26 kg; n = 21) fed a complete gestation diet (corn-soybean meal based diet, CSM) were randomly assigned to 1 of 4 isocaloric supplementation treatments: control (CON, 378 g/d CSM, n = 5), sucrose (SUGAR, 255 g/d crystalized sugar, n = 5), cooked ground beef (BEEF, 330 g/d n = 6), or BEEF + SUGAR (B+S, 165 g/d cooked ground beef and 129 g/d crystalized sugar, n = 5), from days 40 to 110 of gestation. Sows were euthanized on day 111 of gestation. Two male and 2 female fetuses of median BW were selected from each litter, and samples of the longissimus dorsi muscle and liver were collected. Relative transcript level was quantified via qPCR with HPRT1 as the reference gene for both muscle and liver samples. The following genes were selected and analyzed in the muscle: IGF1R, IGF2, IGF2R, GYS-1, IRS-1, INSR, SREBP-1C, and LEPR; while the following were analyzed in the liver: IGF2, IGF2R, FBFase, G6PC, PC, PCK1, FGF21, and LIPC. No effect of fetal sex by maternal treatment interaction was observed in mRNA abundance of any of the genes evaluated (P > 0.11). In muscle, the maternal nutritional treatment influenced (P = 0.02) IGF2 mRNA abundance, with B+S and SUGAR fetuses having lower abundance than CON, which was not different from BEEF. Additionally, SREBP-1 mRNA abundance was greater (P < 0.01) for B+S compared with CON, BEEF, or SUGAR fetuses; and females tended (P = 0.06) to have an increased abundance of SREBP-1 than males. In fetal liver, IGF2R mRNA abundance was greater (P = 0.01) for CON and BEEF than SUGAR and B+S; while FBPase mRNA abundance was greater (P = 0.03) for B+S compared with the other groups. In addition, maternal nutritional tended (P = 0.06) to influence LIPC mRNA abundance, with increased abundance in CON compared with SUGAR and B+S. These data indicate limited changes in transcript abundance due to substitution of supplemental sugar by ground beef during mid to late gestation. However, the differential expression of FBPase and SREBP-1c in response to the simultaneous supplementation of sucrose and ground beef warrants further investigations, since these genes may play important roles in determining the offspring susceptibility to metabolic diseases.
Collapse
Affiliation(s)
- Ashley S Hoyle
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Megan A Nelson
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Kendall C Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Eric P Berg
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Alison K Ward
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
13
|
Vázquez-Gómez M, Garcia-Contreras C, Pesantez-Pacheco JL, Torres-Rovira L, Heras-Molina A, Astiz S, Óvilo C, Isabel B, Gonzalez-Bulnes A. Differential Effects of Litter Size and Within-Litter Birthweight on Postnatal Traits of Fatty Pigs. Animals (Basel) 2020; 10:ani10050870. [PMID: 32429595 PMCID: PMC7278408 DOI: 10.3390/ani10050870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The current work evaluated the relative effects of the number of piglets in the litter of origin (high vs. low litter size) and the birthweight (low (LBW) vs. normal (NBW) in large litters) on postnatal performance and quality of carcasses and meat in purebred Iberian pigs. The results indicated that NBW piglets born in large litters had disparities in developmental patterns in weight and size, back-fat deposition, and fatty acid composition of viscerae compared to NBW piglets from small litters, which again were different from those found in LBW piglets when compared to their NBW counterparts. However, both growth patterns were altered and might indicate previous phases of metabolic disorders. Abstract Fatty pigs are characterized by a thrifty genotype, adapted to harsh environments based on changes in metabolism and energy saving. Thus, we hypothesized that feto-maternal energy partitioning in large litters might have postnatal effects that might be independent of intrauterine growth restriction (IUGR) processes. Hence, the current work reported the influence of two effects on postnatal performance and carcass and meat quality of purebred Iberian pigs: (a) the effects of the number of piglets in the litter (high vs. low litter size), and (b) the effects of birthweight (low (LBW) vs. normal (NBW)) in large litters. The results confirmed that NBW piglets born in large litters had differences in developmental patterns of weight, back-fat deposition, and fatty acid (FA) composition when compared to NBW piglets from small litters. These results were different from those found in LBW piglets when compared to their NBW counterparts, which showed an initial asymmetrical growth and altered muscle FA composition at slaughtering. The assessment of FA composition indicated better metabolic status in NBW piglets from large litters than in LBW piglets. These data support the concept that the prenatal environment, even when the individual may cope with it, inescapably affects postnatal life.
Collapse
Affiliation(s)
- Marta Vázquez-Gómez
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (M.V.-G.); (B.I.)
| | - Consolacion Garcia-Contreras
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda Pta. de Hierro s/n, 28040 Madrid, Spain; (C.G.-C.); (C.Ó.)
| | - José Luis Pesantez-Pacheco
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda Pta. de Hierro s/n, 28040 Madrid, Spain; (J.L.P.-P.); (L.T.-R.); (A.H.-M.); (S.A.)
- Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Avda. Doce de Octubre, Cuenca 010220, Ecuador
| | - Laura Torres-Rovira
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda Pta. de Hierro s/n, 28040 Madrid, Spain; (J.L.P.-P.); (L.T.-R.); (A.H.-M.); (S.A.)
| | - Ana Heras-Molina
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda Pta. de Hierro s/n, 28040 Madrid, Spain; (J.L.P.-P.); (L.T.-R.); (A.H.-M.); (S.A.)
| | - Susana Astiz
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda Pta. de Hierro s/n, 28040 Madrid, Spain; (J.L.P.-P.); (L.T.-R.); (A.H.-M.); (S.A.)
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda Pta. de Hierro s/n, 28040 Madrid, Spain; (C.G.-C.); (C.Ó.)
| | - Beatriz Isabel
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (M.V.-G.); (B.I.)
| | - Antonio Gonzalez-Bulnes
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (M.V.-G.); (B.I.)
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda Pta. de Hierro s/n, 28040 Madrid, Spain; (J.L.P.-P.); (L.T.-R.); (A.H.-M.); (S.A.)
- Correspondence:
| |
Collapse
|
14
|
Pereira LP, Hilgemberg JO, Mass APH, Lehnen CR. Implications of nutritional modulators in productive performance of pregnant and lactating sows. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Felicioni F, Pereira AD, Caldeira-Brant AL, Santos TG, Paula TMD, Magnabosco D, Bortolozzo FP, Tsoi S, Dyck MK, Dixon W, Martinelli PM, Jorge EC, Chiarini-Garcia H, Almeida FRCL. Postnatal development of skeletal muscle in pigs with intrauterine growth restriction: morphofunctional phenotype and molecular mechanisms. J Anat 2020; 236:840-853. [PMID: 31997379 DOI: 10.1111/joa.13152] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a serious condition which impairs the achievement of the fetus' full growth potential and occurs in a natural and severe manner in pigs as a result of placental insufficiency. Reduced skeletal muscle mass in the fetus with IUGR persists into adulthood and may contribute to increased metabolic disease risk. To investigate skeletal muscle postnatal development, histomorphometrical patterns of the semitendinosus muscle, myosin heavy chain (MyHC; embryonic I, IIA, IIB and IIX isoforms) fiber composition and the relative expression of genes related to myogenesis, adipogenesis and growth during three specific periods: postnatal myogenesis (newborn to 100 days old), hypertrophy (100-150 days old), and postnatal development (newborn to 150 days old) were evaluated in female pigs with IUGR and normal birth weight (NW) female littermates. NW females presented higher body weights compared to their IUGR counterparts at all ages evaluated (P < 0.05). Moreover, growth restriction in utero affected the semitendinosus muscle weight, muscle fiber diameter, and muscle cross-sectional area, which were smaller in IUGR pigs at birth (P < 0.05). Notwithstanding the effects on muscle morphology, IUGR also affected muscle fiber composition, as the percentage of MyHC-I myofibers was higher at birth (P < 0.05), and, in 150-day-old gilts, a lower percentage of MyHC-IIX isoform (P < 0.05) and the presence of embryonic MyHC isoform were also observed. Regarding the pattern of gene expression in both the postnatal myogenesis and postnatal development periods, IUGR led to the downregulation of myogenic factors, which delayed skeletal muscle myogenesis (PAX7, MYOD, MYOG, MYF5 and DES). Altogether, growth restriction in utero affects muscle fiber number and size at birth and muscle fiber composition through the downregulation of myogenic factors, which determines the individual´s postnatal growth rate. This fact, associated with delayed myofiber development in growth-restricted animals, may affect meat quality characteristics in animal production. Hence, knowledge of the morphofunctional phenotype of the skeletal muscle throughout postnatal development in individuals with IUGR, and the mechanism that governs it, may provide a better understanding of the mechanisms that limit postnatal muscle growth, and help the establishment of potential strategies to improve muscle development and prevent the onset of later-life metabolic diseases.
Collapse
Affiliation(s)
- Fernando Felicioni
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andreia D Pereira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andre L Caldeira-Brant
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thais G Santos
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thais M D Paula
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Diogo Magnabosco
- Faculty of Veterinary, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando P Bortolozzo
- Faculty of Veterinary, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Stephen Tsoi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Michael K Dyck
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Walter Dixon
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Patricia M Martinelli
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Erika C Jorge
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Helio Chiarini-Garcia
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda R C L Almeida
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
16
|
Hu L, Peng X, Han F, Wu F, Chen D, Wu D, Feyera T, Zhang K, Che L. Effects of Birth Weight and Postnatal Nutritional Restriction on Skeletal Muscle Development, Myofiber Maturation, and Metabolic Status of Early-Weaned Piglets. Animals (Basel) 2020; 10:E156. [PMID: 31963382 PMCID: PMC7022288 DOI: 10.3390/ani10010156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
Piglets with light weaning weight commonly have a slow post-weaning growth rate due to impaired skeletal muscle development. Therefore, the present study aimed to investigate the impact of birth weight and nutrient intake on skeletal muscle development, myofiber maturation, and metabolic status of early-weaned piglets. Twelve pairs of normal birth weight and intrauterine growth-retarded (IUGR) piglets (seven days old) were randomly assigned to receive adequate nutrient intake or restricted nutrient intake for 21 days. Serum and muscle samples were collected for further analysis. The results indicated that muscle weight, cross-sectional areas, and muscular glycogen were lower (p < 0.05) in both IUGR and restricted fed piglets. Nutrient restriction decreased the contents of RNA, the RNA to DNA ratio, and the percentages of myosin heavy chain (MyHC) IIx (p < 0.05), whereas increased the activity of β-hydroxy-acyl-CoA-dehydrogenase (HAD), the ratio of HAD to citrate synthase, as well as the percentages of MyHC I (p < 0.05). In addition, nutrient restriction significantly decreased muscular glycogen, mRNA levels of fatty acid transport protein 1, cationic amino acid transporter 1, and glucose transporter 4 in IUGR piglets compared with the other groups (p < 0.05). The results of the present study showed that IUGR impaired skeletal muscle growth and disturbed the hormone and mRNA expression of genes related to energy metabolism, which led to a more severe energy deficit when receiving postnatal nutritional restriction. Postnatal nutritional restriction resulted in delayed myofiber maturation of the piglets, which may be associated with the transformation of MyHC isoform and the change of metabolic status.
Collapse
Affiliation(s)
- Liang Hu
- Institute of Animal Nutrition, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Xie Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Fei Han
- Institute of Animal Nutrition, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Fali Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China
| | - De Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Takele Feyera
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Keying Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Lianqiang Che
- Institute of Animal Nutrition, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China
| |
Collapse
|
17
|
Hines EA, Romoser MR, Kiefer ZE, Keating AF, Baumgard LH, Niemi J, Gabler NK, Patience JF, Haberl B, Williams NH, Kerr BJ, Touchette KJ, Ross JW. The impact of dietary supplementation of arginine during gestation in a commercial swine herd: I. Gilt reproductive performance. J Anim Sci 2019; 97:3617-3625. [PMID: 31298271 DOI: 10.1093/jas/skz233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/09/2019] [Indexed: 11/15/2022] Open
Abstract
Supplemental arginine (Arg) during gestation purportedly benefits fetal development. However, the benefits of a gestational Arg dietary strategy in commercial production are unclear. Therefore, the objectives of this study examined Arg supplementation during different gestational stages and the effects on gilt reproductive performance. Pubertal gilts (n = 548) were allocated into 4 treatment groups: Control (n = 143; 0% supplemental Arg) or 1 of 3 supplemental Arg (1% as fed) treatments: from 15 to 45 d of gestation (n = 138; Early-Arg); from 15 d of gestation until farrowing (n = 139; Full-Arg); or from 85 d of gestation until farrowing (n = 128; Late-Arg). At farrowing, the number of total born (TB), born alive (BA), stillborn piglets (SB), mummified fetuses (MM), and individual piglet birth weights (BiWt) were recorded. The wean-to-estrus interval (WEI) and subsequent sow reproductive performance (to third parity) were also monitored. No significant effect of supplemental Arg during any part of P0 gestation was observed for TB, BA, SB, or MM (P ≥ 0.29). Offspring BiWt and variation among individual piglet birth weights did not differ (P = 0.42 and 0.89, respectively) among treatment groups. Following weaning, the WEI was similar among treatments (average of 8.0 ± 0.8 d; P = 0.88). Litter performance over 3 parities revealed a decrease (P = 0.02) in BA for Early-Arg fed gilts compared with all other treatments, whereas TB and WEI were similar among treatments over 3 parities (P > 0.05). There was an increased proportion of sows with average size litters (12 to 16 TB) from the Full-Arg treatment sows (76.8% ± 3.7%) when compared with Control (58.7% ± 4.2%; P = 0.01); however, the proportion of sows with high (>16 TB) and low (<12 TB) litters was not different among treatments (P = 0.20). These results suggest that gestational Arg supplementation had a minimal impact on reproductive performance in first parity sows. These data underscore the complexity of AA supplementation and the need for continued research into understanding how and when utilizing a gestational dietary Arg strategy can optimize fetal development and sow performance.
Collapse
Affiliation(s)
| | | | - Zoë E Kiefer
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | | - Jarad Niemi
- Department of Statistics, Iowa State University, Ames, IA
| | | | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | | - Brian J Kerr
- USDA-ARS-National Laboratory for Agriculture and the Environment, Ames, IA
| | | | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
18
|
Review: Enhancing intramuscular fat development via targeting fibro-adipogenic progenitor cells in meat animals. Animal 2019; 14:312-321. [PMID: 31581971 DOI: 10.1017/s175173111900209x] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the livestock industry, subcutaneous and visceral fat pads are considered as wastes, while intramuscular fat or marbling fat is essential for improving flavor and palatability of meat. Thus, strategies for optimizing fat deposition are needed. Intramuscular adipocytes provide sites for lipid deposition and marbling formation. In the present article, we addressed the origin and markers of intramuscular adipocyte progenitors - fibro-adipogenic progenitors (FAPs), as well as the latest progresses in mechanisms regulating the proliferation and differentiation of intramuscular FAPs. Finally, by targeting intramuscular FAPs, possible nutritional manipulations to improve marbling fat deposition are discussed. Despite recent progresses, the properties and regulation of intramuscular FAPs in livestock remain poorly understood and deserve further investigation.
Collapse
|
19
|
Superchi P, Saleri R, Menčik S, Dander S, Cavalli V, Izzi C, Ablondi M, Sabbioni A. Relationships among maternal backfat depth, plasma adipokines and the birthweight of piglets. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Oksbjerg N, Krogh U, Jensen JA, Møller HS, Ramaekers P, Rasmussen MK, Therkildsen M, Theil PK. Supplementation of sows with L-Arginine during gestating and lactation affects muscle traits of offspring related with postnatal growth and meat quality: From conception to consumption. Meat Sci 2019; 152:58-64. [PMID: 30807928 DOI: 10.1016/j.meatsci.2019.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 11/29/2022]
Abstract
This study investigated the effect of dietary inclusion of 25 g/day of L-Arginine (n = 7) or iso‑nitrogenous amounts of alanine (n = 6) from d 30 of gestation to d 28 of lactation of sows on performance, muscle traits and meat quality in offspring. From each litter, heaviest and smallest littermate of both sexes were reared from d 28 and slaughtered at d 140 in accordance with a 23factorial design. A response to L-Arginine were obtained on small females where L-Arginine increased birth weight, however this effect disappeared at weaning. L-Arginine increased daily gain by 7% and increased the cross-sectional area of the M. semitendinosus in small females by 14%, suggesting an increased lean ratio. Mechanistic studies showed firstly, that small female littermates had increased number of muscle fibres (myogenesis) after L-Arginine treatment (11%) and secondly increased total DNA (12%) as a consequence of satellite cell proliferation. Traits describing tenderness seem to be affected by L-Arginine but further studies are needed.
Collapse
Affiliation(s)
- Niels Oksbjerg
- Aarhus University, Department of Food Science, AU-Foulum, Blichers Allé 20, 8830 Tjele, Denmark
| | - Uffe Krogh
- Aarhus University, Department of Animal Science, AU-Foulum, Blichers Allé 20, 8830 Tjele, Denmark
| | - Jens A Jensen
- Aarhus University, Department of Food Science, AU-Foulum, Blichers Allé 20, 8830 Tjele, Denmark
| | - Hanne S Møller
- Aarhus University, Department of Food Science, AU-Foulum, Blichers Allé 20, 8830 Tjele, Denmark
| | | | - Martin Krøyer Rasmussen
- Aarhus University, Department of Food Science, AU-Foulum, Blichers Allé 20, 8830 Tjele, Denmark
| | - Margrethe Therkildsen
- Aarhus University, Department of Food Science, AU-Foulum, Blichers Allé 20, 8830 Tjele, Denmark.
| | - Peter K Theil
- Aarhus University, Department of Animal Science, AU-Foulum, Blichers Allé 20, 8830 Tjele, Denmark
| |
Collapse
|
21
|
Alves K, Schenkel FS, Brito LF, Robinson A. Estimation of direct and maternal genetic parameters for individual birth weight, weaning weight, and probe weight in Yorkshire and Landrace pigs. J Anim Sci 2018; 96:2567-2578. [PMID: 29762734 DOI: 10.1093/jas/sky172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022] Open
Abstract
As a result of selecting for increased litter size, newborn piglets are being born lighter and have a lower chance of survival. Raising fewer pigs to market weight would have a negative impact on the industry and farmer profitability; thus, understanding the genetics of individual growth performance traits will determine whether these traits will play an important role in pig breeding schemes. This study aimed to estimate genetic parameters for individual birth weight (BW), weaning weight (WW), and probe weight (PW) in Canadian-purebred Yorkshire and Landrace pigs. PW is a live weight taken at the time of the ultrasound measurements, when pigs weigh about 100 kg. Data were collected from 2 large and related breeding herds from 2003 to 2015. Four linear animal models were used, which included the following: Model 1-direct additive genetic effect; Model 2-direct additive genetic and maternal genetic effect; Model 3-direct additive genetic and common litter effect; and Model 4-direct additive genetic, maternal genetic, and common litter effect. The model which included all 3 random effects (Model 4) was determined to be the best fit to the data. Low to moderate direct heritability estimates were observed as follows: 0.15 ± 0.03 for BW, 0.04 ± 0.01 for WW, and 0.33 ± 0.03 for PW for the Yorkshire breed; and 0.05 ± 0.01 for BW, 0.01 ± 0.01 for WW, and 0.27 ± 0.03 for PW in the Landrace breed. As expected, the direct heritability estimates increased with age as a result of decreased maternal influence on the trait. Bivariate animal models were also used to estimate genetic and environmental correlations between traits. Strong direct genetic correlations were observed between BW and WW in both breeds. Based on the estimates of genetic parameters, individual BW could be evaluated and considered in breeding programs aiming to increase BW and improve subsequent performance. Different selection emphasis could also be applied on direct and maternal additive genetic effects on BW to optimize the breeding programs and improve selection efficiency.
Collapse
Affiliation(s)
- Kristen Alves
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| | - Flavio S Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| | - Luiz F Brito
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| | - Andy Robinson
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
22
|
Matheson SM, Walling GA, Edwards SA. Genetic selection against intrauterine growth retardation in piglets: a problem at the piglet level with a solution at the sow level. Genet Sel Evol 2018; 50:46. [PMID: 30227828 PMCID: PMC6145367 DOI: 10.1186/s12711-018-0417-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 09/10/2018] [Indexed: 01/21/2023] Open
Abstract
Background In polytocous livestock species, litter size and offspring weight act antagonistically; in modern pig breeds, selection for increased litter size has resulted in lower mean birth weights, an increased number of small piglets and an increased number of those affected by varying degrees of intrauterine growth retardation (IUGR). IUGR poses life-long challenges, both mental, with morphological brain changes and altered cognition, and physical, such as immaturity of organs, reduced colostrum intake and weight gain. In pigs, head morphology of newborn piglets is a good phenotypic marker for identifying such compromised piglets. Growth retardation could be considered as a property of the dam, in part due to either uterine capacity or insufficiency. A novel approach to this issue is to consider the proportion of IUGR-affected piglets in a litter as an indirect measure of uterine capacity. However, uterine capacity or sufficiency cannot be equated solely to litter size and thus is a trait difficult to measure on farm. Results A total of 21,159 Landrace × Large White or Landrace × White Duroc piglets (born over 52 weeks) with recorded head morphology and birth weights were followed from birth until death or weaning. At the piglet level, the estimated heritability for IUGR (as defined by head morphology) was low at 0.01 ± 0.01. Piglet direct genetic effects of birth weight (h2 = 0.07 ± 0.02) were strongly negatively correlated with head morphology (− 0.93), in that IUGR-affected piglets tended to have lower birth weights. At the sow level, analysis of the proportion of IUGR-affected piglets in a litter gave a heritability of 0.20 ± 0.06, with high and negative genetic correlations of the proportion of IUGR-affected piglets with average offspring birth weight (− 0.90) and with the proportion of piglets surviving until 24 h (− 0.80). Conclusions This suggests that the proportion of IUGR-affected piglets in a litter is a suitable indirect measure of uterine capacity for inclusion in breeding programmes that aim at reducing IUGR in piglets and improving piglet survival.
Collapse
Affiliation(s)
- Stephanie M Matheson
- Agriculture, School of Natural and Environmental Sciences, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK.
| | - Grant A Walling
- JSR Genetics, Southburn, Driffield, East Yorkshire, YO25 9ED, UK
| | - Sandra A Edwards
- Agriculture, School of Natural and Environmental Sciences, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
23
|
Yates DT, Petersen JL, Schmidt TB, Cadaret CN, Barnes TL, Posont RJ, Beede KA. ASAS-SSR Triennnial Reproduction Symposium: Looking Back and Moving Forward-How Reproductive Physiology has Evolved: Fetal origins of impaired muscle growth and metabolic dysfunction: Lessons from the heat-stressed pregnant ewe. J Anim Sci 2018; 96:2987-3002. [PMID: 29701769 PMCID: PMC6095381 DOI: 10.1093/jas/sky164] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is the second leading cause of perinatal mortality and predisposes offspring to metabolic disorders at all stages of life. Muscle-centric fetal adaptations reduce growth and yield metabolic parsimony, beneficial for IUGR fetal survival but detrimental to metabolic health after birth. Epidemiological studies have reported that IUGR-born children experience greater prevalence of insulin resistance and obesity, which progresses to diabetes, hypertension, and other metabolic disorders in adulthood that reduce quality of life. Similar adaptive programming in livestock results in decreased birth weights, reduced and inefficient growth, decreased carcass merit, and substantially greater mortality rates prior to maturation. High rates of glucose consumption and metabolic plasticity make skeletal muscle a primary target for nutrient-sparing adaptations in the IUGR fetus, but at the cost of its contribution to proper glucose homeostasis after birth. Identifying the mechanisms underlying IUGR pathophysiology is a fundamental step in developing treatments and interventions to improve outcomes in IUGR-born humans and livestock. In this review, we outline the current knowledge regarding the adaptive restriction of muscle growth and alteration of glucose metabolism that develops in response to progressively exacerbating intrauterine conditions. In addition, we discuss the evidence implicating developmental changes in β adrenergic and inflammatory systems as key mechanisms for dysregulation of these processes. Lastly, we highlight the utility and importance of sheep models in developing this knowledge.
Collapse
Affiliation(s)
- Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Taylor L Barnes
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
24
|
Vázquez-Gómez M, García-Contreras C, Torres-Rovira L, Astiz S, Óvilo C, González-Bulnes A, Isabel B. Maternal undernutrition and offspring sex determine birth-weight, postnatal development and meat characteristics in traditional swine breeds. J Anim Sci Biotechnol 2018; 9:27. [PMID: 29560268 PMCID: PMC5858148 DOI: 10.1186/s40104-018-0240-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/26/2018] [Indexed: 12/28/2022] Open
Abstract
Background The aim of this study was to determine how maternal undernutrition during pregnancy and offspring birth-weight can affect the postnatal development of offspring under farm conditions, which may lead to consequences in its meat and carcass quality. The current study involved a total of 80 litters from Iberian sows fed a diet fulfilling daily requirements (n = 47; control) or providing 70% daily requirements (n = 33; underfed) from d 38 to d 90 of gestation when fetal tissue development begins. After birth, piglets born live were classified as low birth-weight (LBW; < 1 kg) and normal birth-weight (NBW; ≥1 kg). During the growing phase, 240 control and 230 underfed pigs (50% males and females) distributed by BW category and sex were studied until the slaughter. Results At birth and weaning, there were significant differences in all morphological measures and weight between NBW and LBW piglets as expected (P < 0.0005), but few effects of the gestational feed restriction. During the growing phase, NBW pigs continued with higher weight than LBW pigs on all the days of evaluation (P < 0.05), even though control-LBW-females and LBW-males showed a catch-up growth. However, underfed pigs showed slower growth and higher feed conversion ratio than control pigs (P < 0.0001) at 215 days old. Moreover, the average daily weight gain (ADWG) for the overall period was greater for NBW, male and control pigs than for their LBW, female and underfed pigs (P < 0.0001, P< 0.0005 and P< 0.05, respectively) and NBW pigs were slaughtered at a younger age than LBW pigs (P < 0.0001). After slaughtering, control pigs also had higher carcass yield and backfat depth than underfed pigs (P < 0.0005) and the maternal nutritional effect caused main changes in the polar lipid fraction of liver and loin. The fatty acid composition of loin in control pigs had higher C18:1n-9 and n-3 FA concentrations, as well as lower ∑n-6/∑n-3 ratio, than in underfed pigs (P < 0.005). Conclusions In brief, results showed that the effects of maternal nutritional restriction appeared and increased with offspring age, causing worse developmental patterns for underfed pigs than for control pigs. Electronic supplementary material The online version of this article (10.1186/s40104-018-0240-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - B Isabel
- 1Faculty of Veterinary Medicine, UCM, Madrid, Spain
| |
Collapse
|
25
|
Li Y, Zhang H, Chen YP, Ying ZX, Su WP, Zhang LL, Wang T. Effects of dietary l-methionine supplementation on the growth performance, carcass characteristics, meat quality, and muscular antioxidant capacity and myogenic gene expression in low birth weight pigs1. J Anim Sci 2017. [DOI: 10.2527/jas.2017.1652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Y. Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| | - H. Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| | - Y. P. Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| | - Z. X. Ying
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| | - W. P. Su
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| | - L. L. Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| | - T. Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China 210095
| |
Collapse
|
26
|
Gao CQ, Xu YL, Jin CL, Hu XC, Li HC, Xing GX, Yan HC, Wang XQ. Differentiation capacities of skeletal muscle satellite cells in Lantang and Landrace piglets. Oncotarget 2017; 8:43192-43200. [PMID: 28574820 PMCID: PMC5522138 DOI: 10.18632/oncotarget.17860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/03/2017] [Indexed: 01/31/2023] Open
Abstract
We isolated and cultured satellite cells (SCs) from the longissimus dorsi muscles of 1-day-old male Landrace and Lantang piglets to compare the SC differentiation capacity in the two breeds. Lantang piglets yielded more (P < 0.05) SCs per gram of muscle than Landrace piglets (5.2 ± 0.9×104 vs. 2.4 ± 0.2×104). Transcription of the differentiation markers myogenin and myosin heavy chain I (MyHC I) in the longissimus dorsi muscle was higher in Lantang than Landrace piglets (P < 0.05). Protein levels of myogenin (P < 0.05), MyHC I (P < 0.05), and myogenic regulatory factor 4 (P = 0.07) were higher in Lantang than Landrace piglet SCs after 72 h of differentiation. Creatine kinase activity was higher in Lantang than Landrace piglet SCs after 24, 48, and 72 h of differentiation (P < 0.05), and there was a greater fusion index in Landrace piglet SCs after 72 h of differentiation. In addition, phosphorylation of Akt, mTOR, S6K1, S6, and 4EBP1 was lower in Lantang than Landrace piglet SCs (P < 0.05). Thus differentiation was more extensive in Lantang than Landrace piglet SCs, but expression of the mTOR signaling pathway was lower in Lantang piglet SCs, suggesting mTOR signaling may inhibit myogenic differentiation. These findings reveal that mTOR signaling is a factor in myogenesis and imply that mTOR could potentially serve as an activator of myoblast differentiation and muscle regeneration.
Collapse
Affiliation(s)
- Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation/ National Engineering Research Center for Breeding Swine Industry, Guangdong, China
| | - Yin-Long Xu
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation/ National Engineering Research Center for Breeding Swine Industry, Guangdong, China
- Guangzhou United Bio-Technology Feed Co., Ltd, Guangzhou, China
| | - Cheng-Long Jin
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation/ National Engineering Research Center for Breeding Swine Industry, Guangdong, China
| | - Xiao-Chao Hu
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation/ National Engineering Research Center for Breeding Swine Industry, Guangdong, China
| | - Hai-Chang Li
- Davis Heart & Lung Research Institute, Wexner Medical Center at the Ohio State University, Columbus, OH, USA
| | - Guang-Xu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation/ National Engineering Research Center for Breeding Swine Industry, Guangdong, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation/ National Engineering Research Center for Breeding Swine Industry, Guangdong, China
| |
Collapse
|
27
|
Ji Y, Wu Z, Dai Z, Wang X, Li J, Wang B, Wu G. Fetal and neonatal programming of postnatal growth and feed efficiency in swine. J Anim Sci Biotechnol 2017; 8:42. [PMID: 28484595 PMCID: PMC5420136 DOI: 10.1186/s40104-017-0173-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 04/18/2017] [Indexed: 01/10/2023] Open
Abstract
Maternal undernutrition or overnutrition during pregnancy alters organ structure, impairs prenatal and neonatal growth and development, and reduces feed efficiency for lean tissue gains in pigs. These adverse effects may be carried over to the next generation or beyond. This phenomenon of the transgenerational impacts is known as fetal programming, which is mediated by stable and heritable alterations of gene expression through covalent modifications of DNA and histones without changes in DNA sequences (namely, epigenetics). The mechanisms responsible for the epigenetic regulation of protein expression and functions include chromatin remodeling; DNA methylation (occurring at the 5´-position of cytosine residues within CpG dinucleotides); and histone modifications (acetylation, methylation, phosphorylation, and ubiquitination). Like maternal malnutrition, undernutrition during the neonatal period also reduces growth performance and feed efficiency (weight gain:feed intake; also known as weight-gain efficiency) in postweaning pigs by 5-10%, thereby increasing the days necessary to reach the market body-weight. Supplementing functional amino acids (e.g., arginine and glutamine) and vitamins (e.g., folate) play a key role in activating the mammalian target of rapamycin signaling and regulating the provision of methyl donors for DNA and protein methylation. Therefore, these nutrients are beneficial for the dietary treatment of metabolic disorders in offspring with intrauterine growth restriction or neonatal malnutrition. The mechanism-based strategies hold great promise for the improvement of the efficiency of pork production and the sustainability of the global swine industry.
Collapse
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 China
| | - Xiaolong Wang
- Henan Yinfa Animal Husbandry Co., Ltd., Xinzheng, Henan 451100 China
| | - Ju Li
- Henan Yinfa Animal Husbandry Co., Ltd., Xinzheng, Henan 451100 China
| | - Binggen Wang
- Henan Yinfa Animal Husbandry Co., Ltd., Xinzheng, Henan 451100 China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 China.,Department of Animal Science and Center for Animal Genomics, Texas A&M University, Room 212, College Station, TX 77843 USA
| |
Collapse
|
28
|
Kalbe C, Lösel D, Block J, Lefaucheur L, Brüssow KP, Bellmann O, Pfuhl R, Puppe B, Otten W, Metges CC, Rehfeldt C. Moderate high or low maternal protein diets change gene expression but not the phenotype of skeletal muscle from porcine fetuses. Domest Anim Endocrinol 2017; 58:63-75. [PMID: 27664381 DOI: 10.1016/j.domaniend.2016.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
The aim of our study was to characterize the immediate phenotypic and adaptive regulatory responses of fetuses to different in utero conditions reflecting inadequate maternal protein supply during gestation. The gilts fed high- (250% above control) or low- (50% under control) protein diets isoenergetically adjusted at the expense of carbohydrates from the day of insemination until the fetuses were collected at day 64 or 94 of gestation. We analyzed body composition, histomorphology, biochemistry, and messenger RNA (mRNA) expression of fetal skeletal muscle. Both diets had only marginal effects on body composition and muscular cellularity of fetuses including an unchanged total number of myofibers. However, mRNA expression of myogenic regulatory factors (MYOG, MRF4, P ≤ 0.1), IGF system (IGF1, IGF1R, P ≤ 0.05) and myostatin antagonist FST (P = 0.6, in males only) was reduced in the fetal muscle exposed to a maternal low-protein diet. As a result of excess protein, MYOD, MYOG, IGF1R, and IGFBP5 mRNA expression (P ≤ 0.05) was upregulated in fetal muscle. Differences in muscular mRNA expression indicate in utero regulatory adaptive responses to maternal diet. Modulation of gene expression immediately contributes to the maintenance of an appropriate fetal phenotype that would be similar to that observed in the control fetuses. Moreover, we suggest that the modified gene expression in fetal skeletal muscle can be viewed as the origin of developmental muscular plasticity involved in the concept of fetal programming.
Collapse
Affiliation(s)
- C Kalbe
- Institute of Muscle Biology & Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| | - D Lösel
- Institute of Muscle Biology & Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - J Block
- Institute of Muscle Biology & Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - L Lefaucheur
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1348 sur la Physiologie, l'Environnement et la Génétique pour l'Animal et les Systèmes d'Elevage, F-35590 Saint-Gilles, France
| | - K-P Brüssow
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - O Bellmann
- Institutional Veterinarian of the Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - R Pfuhl
- Institute of Muscle Biology & Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - B Puppe
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - W Otten
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C C Metges
- Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C Rehfeldt
- Institute of Muscle Biology & Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| |
Collapse
|
29
|
Gonzalez-Bulnes A, Astiz S, Ovilo C, Lopez-Bote CJ, Torres-Rovira L, Barbero A, Ayuso M, Garcia-Contreras C, Vazquez-Gomez M. Developmental Origins of Health and Disease in swine: implications for animal production and biomedical research. Theriogenology 2016; 86:110-9. [PMID: 27238437 DOI: 10.1016/j.theriogenology.2016.03.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/02/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022]
Abstract
The concept of Developmental Origins of Health and Disease (DOHaD) addresses, from a large set of epidemiological evidences in human beings and translational studies in animal models, both the importance of genetic predisposition and the determinant role of maternal nutrition during pregnancy on adult morphomics and homeostasis. Compelling evidences suggest that both overnutrition and undernutrition may modify the intrauterine environment of the conceptus and may alter the expression of its genome and therefore its phenotype during prenatal and postnatal life. In fact, the DOHaD concept is an extreme shift in the vision of the factors conditioning adult phenotype and supposes a drastic change from a gene-centric perspective, only modified by lifestyle and nutritional strategies during juvenile development and adulthood, to a more holistic approach in which environmental, parental, and prenatal conditions are strongly determining postnatal development and homeostasis. The implications of DOHaD are profound in all the mammalian species and the present review summarizes current knowledge on causes and consequences of DOHaD in pigs, both for meat production and as a well-recognized model for biomedicine research.
Collapse
Affiliation(s)
- A Gonzalez-Bulnes
- Comparative Physiology Lab-RA, SGIT-INIA, Madrid, Spain; Department of Veterinary Medicine, University of Sassari, Sassari, Italy.
| | - S Astiz
- Comparative Physiology Lab-RA, SGIT-INIA, Madrid, Spain
| | - C Ovilo
- Department of Animal Genetics, SGIT-INIA, Madrid, Spain
| | | | - L Torres-Rovira
- Comparative Physiology Lab-RA, SGIT-INIA, Madrid, Spain; INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | - A Barbero
- Faculty of Veterinary, UCM, Madrid, Spain
| | - M Ayuso
- Faculty of Veterinary, UCM, Madrid, Spain
| | | | | |
Collapse
|
30
|
Dodson MV, Allen RE, Du M, Bergen WG, Velleman SG, Poulos SP, Fernyhough-Culver M, Wheeler MB, Duckett SK, Young MRI, Voy BH, Jiang Z, Hausman GJ. INVITED REVIEW: Evolution of meat animal growth research during the past 50 years: Adipose and muscle stem cells. J Anim Sci 2016; 93:457-81. [PMID: 26020737 DOI: 10.2527/jas.2014-8221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
If one were to compare today's animal growth research to research from a mere 50 yr ago, one would see programs with few similarities. The evolution of this research from whole-animal through cell-based and finally molecular and genomic studies has been enhanced by the identification, isolation, and in vitro evaluation of adipose- and muscle-derived stem cells. This paper will highlight the struggles and the milestones that make this evolving area of research what it is today. The contribution of adipose and muscle stem cell research to development and growth, tissue regeneration, and final carcass composition are reviewed.
Collapse
|
31
|
Gonzalez-Bulnes A, Astiz S, Vazquez-Gomez M, Garcia-Contreras C. Developmental origins of metabolic disorders: The need for biomarker candidates and therapeutic targets from adequate preclinical models. EUPA OPEN PROTEOMICS 2016; 10:50-55. [PMID: 29900100 PMCID: PMC5988611 DOI: 10.1016/j.euprot.2016.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/20/2015] [Accepted: 01/05/2016] [Indexed: 12/17/2022]
Abstract
The research on obesity and associated disorders should rely on contrasted biomarkers. The discovery of biomarkers is flawed by inherent variability of human data. Hence, preclinical studies in animal models are essential.
The investigation on obesity and associated disorders have changed from an scenario in which genome drove the phenotype to a dynamic setup in which prenatal and early-postnatal conditions are determinant. However, research in human beings is difficult due to confounding factors (lifestyle and socioeconomic heterogeneity) plus ethical issues. Hence, there is currently an intensive effort for developing adequate preclinical models, aiming for an adequate combination of basic studies in rodent models and specific preclinical studies in large animals. The results of these research strategies may increase the identification and development of contrasted biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Antonio Gonzalez-Bulnes
- Comparative Physiology Lab-RA, SGIT-INIA, Madrid, Spain.,Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Susana Astiz
- Comparative Physiology Lab-RA, SGIT-INIA, Madrid, Spain
| | | | | |
Collapse
|
32
|
de Greeff A, Bikker P, Smit-Heinsbroek A, Bruininx E, Zwolschen H, Fijten H, Zetteler P, Vastenhouw S, Smits M, Rebel J. Increased fat and polyunsaturated fatty acid content in sow gestation diet has no effect on gene expression in progeny during the first 7 days of life. J Anim Physiol Anim Nutr (Berl) 2015; 100:127-35. [PMID: 25962343 DOI: 10.1111/jpn.12345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/14/2015] [Indexed: 11/26/2022]
Abstract
The 'developmental origins of health and disease' hypothesis proposes not only that we are what we eat, but also that we could be what our parents ate. Here, we aimed to improve health and performance of young piglets via maternal diets based on the hypothesis that maternal nutritional interventions change metabolic programming in piglets, reflected by differential gene expression early in life. Therefore, sows were fed either a regular diet, based on barley, wheat and wheat by-products, sugar beet pulp, palm oil and oilseed meal, or a high-fat (HF) diet consisting of the regular diet supplemented with an additional amount of 3.5% soybean oil and 1% fish oil at the expense of palm oil and wheat. Performance results, physiological parameters and gene expression in liver of piglets and blood of piglets and sows at day 7 after farrowing from both diet groups were compared. The HF diet tended to enhance growth rate of the offspring in the first week of life. No significant differences in gene expression in liver tissue and blood could be detected between the two groups, neither with whole-genome microarray analysis, nor with gene specific qPCR analysis. In this study, the feeding of a high-fat diet with increased amounts of polyunsaturated fatty acid (PUFA) to gestating sows under practical farm settings did not induce significant changes in gene expression in sows and offspring.
Collapse
Affiliation(s)
- A de Greeff
- Central Veterinary Institute, part of Wageningen UR, Lelystad, the Netherlands
| | - P Bikker
- Wageningen UR Livestock Research, Wageningen, the Netherlands
| | | | - E Bruininx
- Agrifirm, Apeldoorn, the Netherlands.,Animal Nutrition Group of Wageningen UR, Wageningen, the Netherlands
| | | | - H Fijten
- Central Veterinary Institute, part of Wageningen UR, Lelystad, the Netherlands
| | | | - S Vastenhouw
- Central Veterinary Institute, part of Wageningen UR, Lelystad, the Netherlands
| | - M Smits
- Central Veterinary Institute, part of Wageningen UR, Lelystad, the Netherlands.,Wageningen UR Livestock Research, Wageningen, the Netherlands
| | - J Rebel
- Central Veterinary Institute, part of Wageningen UR, Lelystad, the Netherlands
| |
Collapse
|
33
|
Shishkin SS, Kovalev LI, Kovaleva MA, Ivanov AV, Eremina LS, Sadykhov EG. The application of proteomic technologies for the analysis of muscle proteins of farm animals used in the meat industry (Review). APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814050093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
DelCurto H, Wu G, Satterfield MC. Nutrition and reproduction: links to epigenetics and metabolic syndrome in offspring. Curr Opin Clin Nutr Metab Care 2013; 16:385-91. [PMID: 23703295 DOI: 10.1097/mco.0b013e328361f96d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Inappropriate exposure of gametes and/or products of conception to nutritional imbalance alters critical metabolic set points in the offspring and increases propensity to disease. This review will focus on recent findings highlighting clear links to epigenetic modifications in response to dietary manipulations as well as nutritional strategies with the potential to mitigate the effects of an otherwise poor nutritional environment. RECENT FINDINGS Maternal nutritional imbalance, either through global nutritional manipulation or deficiencies in select nutrients, predisposes the offspring to metabolic disease. Disease susceptibility is linked to global and/or specific modifications of the epigenome at key metabolic regulatory genes. Paternal nutritional imbalance also increases the likelihood of metabolic disease in offspring through similar epigenetic mechanisms. Finally, dietary intervention with select nutrients has been shown to ameliorate postnatal disease phenotypes in offspring, although the exact molecular mechanisms have not been elucidated. SUMMARY Select nutrients, such as amino acids and vitamins, not only serve as building blocks for growth but also mediate a myriad of physiological functions, including providing substrates for DNA synthesis. These nutrients hold great promise as intervention strategies to combat a suboptimal developmental environment.
Collapse
Affiliation(s)
- Hannah DelCurto
- Department of Animal Science, Texas A&M University, College Station, TX 77843–2471, USA
| | | | | |
Collapse
|
35
|
Bowker BC. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM: In utero factors that influence postnatal muscle growth, carcass composition, and meat quality1. J Anim Sci 2013; 91:1417-8. [DOI: 10.2527/jas.2013-6289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- B. C. Bowker
- USDA-ARS, Quality and Safety Assessment Research Unit, Athens, GA 30605
| |
Collapse
|