1
|
Hu B, Wang J, Wang Y, Li Y, Wang B, Xiang C, Xing Y, Han S, Yuan G, He H. The First Report of Sphaerirostris picae Infection in the Oriental Magpie ( Pica serica) in Beijing, China. Vector Borne Zoonotic Dis 2024. [PMID: 39263731 DOI: 10.1089/vbz.2023.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Background: Sphaerirostris picae is a parasitic species known for its ability to infect and transmit between hosts in the gastrointestinal tracts of wild avian species. However, there is limited information on its presence and impact on urban avian populations, particularly in China. Materials and Methods: In this study, morphological observations were conducted to detect the presence of Sphaerirostris sp. within the intestinal tract of the Oriental Magpie (Pica serica) collected in Beijing, China. Further confirmation of the parasite's identity was achieved through phylogenetic analysis using COX1 gene sequencing to compare with previously documented Sphaerirostris picae isolates. Results: The morphological and molecular analyses confirmed the presence of Sphaerirostris picae in the Oriental Magpie. Phylogenetic analysis indicated a close relationship with known Sphaerirostris picae isolates. This represents the first reported case of Sphaerirostris picae infection in magpies from Beijing, China. Conclusion: The findings highlight the potential health hazards posed by Sphaerirostris picae to urban avian populations and public health. The study suggests that additional research and surveillance efforts are necessary to better understand the risks associated with this parasite and to develop effective mitigation strategies.
Collapse
Affiliation(s)
- Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences. Beijing, China
- Henan Institute of Science and Technology, Xinxiang, China
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jiamin Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences. Beijing, China
| | - Ye Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences. Beijing, China
| | - Yi Li
- Hebei Agricultural University, Baoding, China
| | - Bo Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences. Beijing, China
| | - Chen Xiang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences. Beijing, China
| | - Yanan Xing
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences. Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences. Beijing, China
| | - Guohui Yuan
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences. Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences. Beijing, China
| |
Collapse
|
2
|
Lu X, Ji L, Wang H, Zhang Q, Wang X, Liu Y, Shen Q, Yang S, Ma X, Zhang W, Shan T. Highly diverse RNA viruses and phage sequences concealed within birds. Microbiol Spectr 2024; 12:e0080224. [PMID: 38860816 PMCID: PMC11218532 DOI: 10.1128/spectrum.00802-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
The diversity of birds in most parts of the world is very high, and thus, they may carry different types of highly differentiated and unknown viruses. Thanks to advanced sequencing technologies, studies on the diversity of bird-associated viruses have increased over the past few years. In this study, a large-scale viral metagenomics survey was performed on cloacal swabs of 2,990 birds from nine provinces of the Chinese mainland. To detect undescribed RNA viruses in birds, more than 1,800 sequences sharing relatively low (<60%) amino acid sequence identity with the best match in the GenBank database were screened. Potentially novel viruses related to vertebrates have been identified, and several potential recombination signals were found. Additionally, hundreds of RNA viral sequences related to plants, fungi, and insects were detected, including previously unknown viruses. Furthermore, we investigated the novelty, functionality, and classification of the phages examined in this study. These viruses occupied topological positions on the evolutionary trees to a certain extent and might form novel putative families, genera, or species, thus providing information to fill the phylogenetic gaps of related viruses. These findings provided new insights into bird-associated viruses, but the interactions among these viruses remain unknown and require further investigation.IMPORTANCEStudying the diversity of RNA viruses in birds and mammals is crucial due to their potential impact on human health and the global ecosystem. Many RNA viruses, such as influenza and coronaviruses, have been shown to cross the species barrier and cause zoonotic diseases. In this metagenomics study involving 2,990 birds from at least 82 species, we identified over 1,800 RNA sequences with distant relationships to known viruses, some of which are rare in birds. The study highlights the scope and diversity of RNA viruses in birds, providing data to predict disease risks and monitor potential viral threats to wildlife, livestock, and human health. This information can aid in the development of strategies for disease prevention and control.
Collapse
Affiliation(s)
- Xiang Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haoning Wang
- School of Geography and Tourism, Harbin University, Harbin, Heilongjiang, China
| | - Qing Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuwei Liu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao Ma
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
3
|
Love AC, Tabb V, Youssef NH, Wilder SM, DuRant SE. Effect of dietary macronutrients and immune challenge on gut microbiota, physiology and feeding behaviour in zebra finches. Mol Ecol 2024; 33:e17428. [PMID: 38837812 DOI: 10.1111/mec.17428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
Macronutrients play a vital role in host immunity and can influence host-pathogen dynamics, potentially through dietary effects on gut microbiota. To increase our understanding of how dietary macronutrients affect physiology and gut microbiota and investigate whether feeding behaviour is influenced by an immune threat, we conducted two experiments. First, we determined whether zebra finches (Taeniopygia guttata) exhibit shifts in physiology and gut microbiota when fed diets differing in macronutrient ratios. We found the type and amount of diet consumed affected gut microbiota alpha diversity, where microbial richness and Shannon diversity increased with caloric intake in birds fed a high-fat diet and decreased with caloric intake in birds fed a high protein diet. Diet macronutrient content did not affect physiological metrics, but lower caloric intake was associated with higher complement activity. In our second experiment, we simulated an infection in birds using the bacterial endotoxin lipopolysaccharide (LPS) and quantified feeding behaviour in immune challenged and control individuals, as well as birds housed near either a control pair (no immune threat), or birds housed near a pair given an immune challenge with LPS (social cue of heightened infection risk). We also examined whether social cues of infection alter physiological responses relevant to responding to an immune threat, an effect that could be mediated through shifts in feeding behaviour. LPS induced a reduction in caloric intake driven by a decrease in protein, but not fat consumption. No evidence was found for socially induced shifts in feeding behaviour, physiology or gut microbiota. Our findings carry implications for host health, as sickness-induced anorexia and diet-induced shifts in the microbiome could shape host-pathogen interactions.
Collapse
Affiliation(s)
- Ashley C Love
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Victoria Tabb
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Shawn M Wilder
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sarah E DuRant
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
4
|
Al-Eitan L, Khair I, Shakhatreh Z, Almahdawi D, Alahmad S. Epidemiology, biosafety, and biosecurity of Avian Influenza: Insights from the East Mediterranean region. Rev Med Virol 2024; 34:e2559. [PMID: 38886173 DOI: 10.1002/rmv.2559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
The World Organization for Animal Health defines Avian Influenza Virus as a highly infectious disease caused by diverse subtypes that continue to evolve rapidly, impacting poultry species, pet birds, wild birds, non-human mammals, and occasionally humans. The effects of Avian influenza viruses have been recognised as a precursor for serious health concerns among affected birds, poultry, and human populations in the Middle East. Furthermore, low and high pathogenic avian influenza viruses lead to respiratory illness with varying severity, depending on the virus subtype (e.g., H5, H7, H9, etc.). Possible future outbreaks and endemics of newly emerging subtypes are expected to occur, as many studies have reported the emergence of novel mutations and viral subtypes. However, proper surveillance programs and biosecurity applications should be developed, and countries with incapacitated defences against such outbreaks should be encouraged to undergo complete reinstation and reinforcement in their health and research sectors. Public education regarding biosafety and virus prevention is necessary to ensure minimal spread of avian influenza endemic.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Iliya Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Zaid Shakhatreh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Diana Almahdawi
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Saif Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
5
|
Saivish MV, Nogueira ML, Rossi SL, Vasilakis N. Exploring Iguape Virus-A Lesser-Known Orthoflavivirus. Viruses 2024; 16:960. [PMID: 38932252 PMCID: PMC11209261 DOI: 10.3390/v16060960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Brazil has earned the moniker "arbovirus hotspot", providing an ideal breeding ground for a multitude of arboviruses thriving in various zoonotic and urban cycles. As the planet warms and vectors expand their habitat range, a nuanced understanding of lesser-known arboviruses and the factors that could drive their emergence becomes imperative. Among these viruses is the Iguape virus (IGUV), a member of the Orthoflavivirus aroaense species, which was first isolated in 1979 from a sentinel mouse in the municipality of Iguape, within the Vale do Ribeira region of São Paulo State. While evidence suggests that IGUV circulates among birds, wild rodents, marsupials, bats, and domestic birds, there is no information available on its pathogenesis in both humans and animals. The existing literature on IGUV spans decades, is outdated, and is often challenging to access. In this review, we have curated information from the known literature, clarifying its elusive nature and investigating the factors that may influence its emergence. As an orthoflavivirus, IGUV poses a potential threat, which demands our attention and vigilance, considering the serious outbreaks that the Zika virus, another neglected orthoflavivirus, has unleashed in the recent past.
Collapse
Affiliation(s)
- Marielena V. Saivish
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil; (M.V.S.); (M.L.N.)
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Maurício L. Nogueira
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil; (M.V.S.); (M.L.N.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| |
Collapse
|
6
|
Alabí Córdova AS, Fecchio A, Calchi AC, Dias CM, Machado RZ, André MR. Molecular evidence of Bartonella spp. in tropical wild birds from the Brazilian Pantanal, the largest wetland in South America. Vet Res Commun 2024; 48:1631-1640. [PMID: 38443588 DOI: 10.1007/s11259-024-10341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Despite the worldwide occurrence of bartonellae in a broad range of mammal species, in which they usually cause a long-lasting erythrocytic bacteremia, few studies reported Bartonella spp. in avian hosts. The present work aimed to investigate the occurrence and molecular identity of Bartonella spp. infecting birds in the Pantanal wetland, central-western Brazil using a multigene approach. For this purpose, blood samples were collected from 517 individuals from 13 avian orders in the states of Mato Grosso and Mato Groso do Sul. DNA was extracted from avian blood and 500/517 (96.7%) samples were positive in a conventional PCR targeting the avian β-actin gene. Nineteen (3.8%) out of 500 avian blood samples were positive in a qPCR assay for Bartonella spp. based on the nuoG gene. Among 19 avian blood DNA samples positive in the qPCR for Bartonella spp., 12 were also positive in the qPCR for Bartonella based on the 16S-23S RNA Intergenic region (ITS). In the PCR assays performed for molecular characterization, one 16S rRNA, three ribC, and one nuoG sequences were obtained. Based on BLASTn results, while 1 nuoG, 2 ribC, and 2 ITS sequences showed high identity to Bartonella henselae, one 16S rRNA and 2 ITS showed high similarity to Bartonella machadoae in the sampled birds. Bartonella spp. related to B. henselae and B. machadoae were detected, for the first time, in wild birds from the Brazilian Pantanal.
Collapse
Affiliation(s)
- Amir Salvador Alabí Córdova
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução E Saúde Única, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual "Júlio de Mesquita Filho", (FCAV/UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, São Paulo, Jaboticabal, CEP: 14884-900, Brazil
| | - Alan Fecchio
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
| | - Ana Cláudia Calchi
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução E Saúde Única, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual "Júlio de Mesquita Filho", (FCAV/UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, São Paulo, Jaboticabal, CEP: 14884-900, Brazil
| | - Clara Morato Dias
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução E Saúde Única, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual "Júlio de Mesquita Filho", (FCAV/UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, São Paulo, Jaboticabal, CEP: 14884-900, Brazil
| | - Rosangela Zacarias Machado
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução E Saúde Única, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual "Júlio de Mesquita Filho", (FCAV/UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, São Paulo, Jaboticabal, CEP: 14884-900, Brazil
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução E Saúde Única, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual "Júlio de Mesquita Filho", (FCAV/UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, São Paulo, Jaboticabal, CEP: 14884-900, Brazil.
| |
Collapse
|
7
|
Sievers BL, Hyder S, Claes F, Karlsson EA. Ingrained: Rice farming and the risk of zoonotic spillover, examples from Cambodia. One Health 2024; 18:100696. [PMID: 39010950 PMCID: PMC11247301 DOI: 10.1016/j.onehlt.2024.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/27/2024] [Indexed: 07/17/2024] Open
Abstract
Rice cultivation in Southeast Asia is a One Health interface intersecting human, animal, and environmental health. This complexity creates a potential for zoonotic transmission between diverse reservoirs. Bats harbor viruses like Nipah; mosquitoes transmit arboviruses; rodents spread hantaviruses. Domestic animals- including pigs with influenza and dogs with rabies and aquatic animals can also transmit pathogens. Climate change and urbanization may further disrupt rice agro-ecologies. This paper explores animal viral reservoirs, vectors, and historical practices associated with risk in rice farming. Climate and land use changes could enhance spillover. Solutions are proposed, including surveillance of animals, vectors, water, and air to detect threats before major outbreaks, such as improved biosecurity, hygiene, and livestock vaccinations. Ecological viral surveillance and agricultural interventions together can reduce zoonotic transmission from rice farming.
Collapse
Affiliation(s)
- Benjamin L Sievers
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh 12201, Cambodia
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sudipta Hyder
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh 12201, Cambodia
- Columbia University Irving Medical Center, Infectious Disease Unit, New York, NY 10032, United States
| | - Filip Claes
- Food and Agriculture Organization of the United Nations, Emergency Centre for Transboundary Animal Diseases, Asia Pacific Region, Bangkok, Thailand
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh 12201, Cambodia
| |
Collapse
|
8
|
Alabí Córdova AS, Fecchio A, Calchi AC, Dias CM, Mongruel ACB, das Neves LF, Lee DAB, Machado RZ, André MR. Novel Tick-Borne Anaplasmataceae Genotypes in Tropical Birds from the Brazilian Pantanal Wetland. Microorganisms 2024; 12:962. [PMID: 38792791 PMCID: PMC11124045 DOI: 10.3390/microorganisms12050962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Despite numerous reports of Anaplasmataceae agents in mammals worldwide, few studies have investigated their occurrence in birds. The present study aimed to investigate the occurrence and molecular identity of Anaplasmataceae agents in birds from the Pantanal wetland, Brazil. Blood samples were collected from 93 different species. After DNA extraction, samples positive for the avian β-actin gene were subjected to both a multiplex quantitative real-time (q)PCR for Anaplasma and Ehrlichia targeting the groEL gene and to a conventional PCR for Anaplasmataceae agents targeting the 16S rRNA gene. As a result, 37 (7.4%) birds were positive for Anaplasma spp. and 4 (0.8%) for Ehrlichia spp. in the qPCR assay; additionally, 13 (2.6%) were positive for Anaplasmataceae agents in the PCR targeting the 16S rRNA gene. The Ehrlichia 16S rRNA sequences detected in Arundinicola leucocephala, Ramphocelus carbo, and Elaenia albiceps were positioned closely to Ehrlichia sp. Magellanica. Ehrlichia dsb sequences detected in Agelasticus cyanopus and Basileuterus flaveolus grouped with Ehrlichia minasensis. The 16S rRNA genotypes detected in Crax fasciolata, Pitangus sulphuratus and Furnarius leucopus grouped with Candidatus Allocryptoplasma. The 23S-5S genotypes detected in C. fasciolata, Basileuterus flaveolus, and Saltator coerulescens were related to Anaplasma phagocytophilum. In conclusion, novel genotypes of Anaplasma, Ehrlichia, and Candidatus Allocryptoplasma were detected in birds from the Pantanal wetland.
Collapse
Affiliation(s)
- Amir Salvador Alabí Córdova
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Alan Fecchio
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA 19103, USA;
| | - Ana Cláudia Calchi
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Clara Morato Dias
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Anna Claudia Baumel Mongruel
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Lorena Freitas das Neves
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Daniel Antonio Braga Lee
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Rosangela Zacarias Machado
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| |
Collapse
|
9
|
Bayles BR, George MF, Christofferson RC. Long-term trends and spatial patterns of West Nile Virus emergence in California, 2004-2021. Zoonoses Public Health 2024; 71:258-266. [PMID: 38110854 DOI: 10.1111/zph.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
AIMS West Nile Virus (WNV) has remained a persistent source of vector-borne disease risk in California since first being identified in the state in 2003. The geographic distribution of WNV activity is relatively widespread, but varies considerably across different regions within the state. Spatial variation in human WNV infection depends upon social-ecological factors that influence mosquito populations and virus transmission dynamics. Measuring changes in spatial patterns over time is necessary for uncovering the underlying regional drivers of disease risk. METHODS AND RESULTS In this study, we utilized statewide surveillance data to quantify temporal changes and spatial patterns of WNV activity in California. We obtained annual WNV mosquito surveillance data from 2004 through 2021 from the California Arbovirus Surveillance Program. Geographic coordinates for mosquito pools were analysed using a suite of spatial statistics to identify and classify patterns in WNV activity over time. CONCLUSIONS We detected clear patterns of non-random WNV risk during the study period, including emerging hot spots in the Central Valley and non-random periods of oscillating WNV risk in Southern and Northern California subregions. Our findings offer new insights into 18 years of spatio-temporal variation in WNV activity across California, which may be used for targeted surveillance efforts and public health interventions.
Collapse
Affiliation(s)
- Brett R Bayles
- Department of Global Public Health, Dominican University of California, San Rafael, California, USA
- Department of Natural Sciences and Mathematics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Michaela F George
- Department of Global Public Health, Dominican University of California, San Rafael, California, USA
| | | |
Collapse
|
10
|
Hacioglu S, Ozkul A. Do birds play a role in the transmission of Toscana virus? Initial isolation results from birds in northernmost Türkiye. Zoonoses Public Health 2024; 71:225-235. [PMID: 38041213 DOI: 10.1111/zph.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
AIMS Recent research has prioritized emerging and re-emerging diseases that affect human and animal health, particularly to describe how these diseases enter countries and determine their transmission cycles. Given that migratory birds play a significant role in spreading infections, the present study analysed their migration paths and specimens to investigate Orthoflavivirus, Orthonairovirus, Alphavirus and Phlebovirus in birds in Samsun province, Türkiye. METHODS AND RESULTS For these viruses, 312 samples from 56 birds were analysed using RT-PCR and qRT-PCR. Toscana virus (TOSV) was identified in 14 birds (four mallards, five partridges, four quails and one pigeon), representing 25% of the birds sampled. Genotype B was reported in all 14 birds. After inoculating the positive tissues in cell cultures, TOSV was isolated from the organs of pigeons, mallards and partridges. CONCLUSIONS This is the first time TOSV has been isolated in cell culture from birds and indicates that they may play a role in spreading TOSV in Türkiye. The results also suggest that TOSV might be carried between countries by migratory birds.
Collapse
Affiliation(s)
- Sabri Hacioglu
- Virological Diagnostic Laboratory, Veterinary Control Central Research Institute, Ankara, Turkey
| | - Aykut Ozkul
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
11
|
Cendejas PM, Goodman AG. Vaccination and Control Methods of West Nile Virus Infection in Equids and Humans. Vaccines (Basel) 2024; 12:485. [PMID: 38793736 PMCID: PMC11125624 DOI: 10.3390/vaccines12050485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
West Nile virus (WNV) is capable of causing severe neurologic disease in both humans and equines, making it a disease of importance in both human medicine and veterinary medicine. No targeted treatments exist for WNV infection in either humans or equines. Infection is treated symptomatically through management of symptoms like fever and seizures. As treatment for WNV is purely supportive, the response to WNV has focused primarily on methods of disease prevention. To this end, research efforts have yielded several effective vaccines for equine use as well as numerous conventional mosquito control techniques. Even with the implementation of these techniques, disease caused by WNV remains a concern since no human vaccine exists. Due to the lack of a human vaccine, novel preventative strategies are under active research and development. Of these strategies, some of the most conceptually promising are techniques using genetically modified mosquitoes, addressing the disease at the vector level with minimal ecological side effects. Taken together, the use of combined, synergistic methods, such as physical barriers, transgenic mosquitoes, and immunological targets, will be the best way to prevent WNV disease.
Collapse
Affiliation(s)
- Parker M. Cendejas
- Doctor of Veterinary Medicine Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
12
|
Gargano V, Gambino D, Oddo AM, Pizzo M, Sucato A, Cammilleri G, La Russa F, Di Pasquale ML, Parisi MG, Cassata G, Giangrosso G. Scolopax rusticola Carrying Enterobacterales Harboring Antibiotic Resistance Genes. Antibiotics (Basel) 2024; 13:234. [PMID: 38534669 DOI: 10.3390/antibiotics13030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
The Eurasian woodcock (Scolopax rusticola) belongs to those bird species that make systematic migratory flights in spring and autumn in search of favorable breeding and wintering areas. These specimens arrive in the Mediterranean Area from northeastern European countries during the autumn season. The purpose of this study was to assess whether woodcocks can carry antibiotic resistance genes (ARGs) along their migratory routes. Although the role of migratory birds in the spread of some zoonotic diseases (of viral and bacterial etiology) has been elucidated, the role of these animals in the spread of antibiotic resistance has not yet been clarified. In this study, we analyzed the presence of beta-lactam antibiotic resistance genes. The study was conducted on 69 strains from 60 cloacal swabs belonging to an equal number of animals shot during the 2022-2023 hunting season in Sicily, Italy. An antibiogram was performed on all strains using the microdilution method (MIC) and beta-lactam resistance genes were investigated. The strains tested showed no phenotypic resistance to any of the 13 antibiotics tested; however, four isolates of Enterobacter cloacae and three of Klebsiella oxytoca were found to carry the blaIMP-70, blaVIM-35, blaNDM-5 and blaOXA-1 genes. Our results confirm the importance of monitoring antimicrobial resistance among migratory animals capable of long-distance bacteria spread.
Collapse
Affiliation(s)
- Valeria Gargano
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | - Delia Gambino
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | | | | | | | - Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | - Francesco La Russa
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | | | - Maria Giovanna Parisi
- Marine Immunobiology Laboratory, Dipartimento di Scienze della Terra e del Mare, University of Palermo, 90100 Palermo, Italy
| | - Giovanni Cassata
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | | |
Collapse
|
13
|
Martín-Vélez V, Navarro J, Figuerola J, Aymí R, Sabaté S, Planell R, Vila J, Montalvo T. A spatial analysis of urban gulls contribution to the potential spread of zoonotic and antibiotic-resistant bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168762. [PMID: 38007121 DOI: 10.1016/j.scitotenv.2023.168762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Wildlife human interactions within cities are becoming more common with consequences for pathogen transmission and human health. Large gulls are opportunistic feeders, adapted to coexist with humans in urban environments, and are potential vectors for spread and transmission of pathogens, including antimicrobial-resistant bacteria. We investigated the potential role that urban gulls play in the spread and dispersal of these bacteria. We analysed 129 faecal swabs from yellow-legged gulls (Larus michahellis) of different ages (56 adults and 73 immatures) during the breeding period from three years in the highly populated city of Barcelona (northeastern Spain). Thirteen individuals tested positive for the pathogenic bacteria (Escherichia coli, Listeria monocytogenes, Campylobacter jejuni), including antibiotic-resistant strains. We modelled the potential spatial spread of pathogens using the GPS trajectories of 58 yellow-legged gulls (23 adults, 35 immature individuals), which included the thirteen individuals that tested positive for pathogenic bacteria. By overlapping the spatially explicit pathogen dispersal maps with the distribution of urban installations sensitive at risk of possible pathogen spillover (e.g. elder and medical centres, markets, food industries, kindergartens, or public water sources), we identified potential areas at risk of pathogen spillover. Pathogens may be potentially spread to municipalities beyond Barcelona city borders. The results revealed that immature gulls dispersed pathogens over larger areas than adults (maximum dispersal distances of 167 km versus 53.2 km, respectively). Recreational urban water sources were the most sensitive habitats visited by GPS-tagged gulls that tested positive, followed by schools. Combining GPS movement data with pathogen analytics allows spatially explicit maps to be generated using a One Health approach that can help urban and public health management within large cities, such as Barcelona, and identify areas used by humans that are sensitive to pathogen spillover from gulls.
Collapse
Affiliation(s)
- Víctor Martín-Vélez
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain; Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Joan Navarro
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Jordi Figuerola
- Estación Biológica de Doñana (EBD), CSIC, Avenida Américo Vespucio 26, 41092 Sevilla, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Raül Aymí
- Institut Català d'Ornitologia, Museu de Ciències Naturals de Barcelona, Pl. Leonardo da Vinci, 4-5, a, Barcelona 08019, Spain
| | - Sara Sabaté
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Agencia de Salud Pública de Barcelona, Pl. Lesseps, 1, 08023 Barcelona, Spain
| | - Raquel Planell
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Agencia de Salud Pública de Barcelona, Pl. Lesseps, 1, 08023 Barcelona, Spain
| | - Jordi Vila
- Department of Clinical Microbiology, Center for Biomedical Diagnosis (CDB), Hospital Clinic-Universitat de Barcelona, Barcelona, Spain.; ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, Madrid, Spain
| | - Tomás Montalvo
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Agencia de Salud Pública de Barcelona, Pl. Lesseps, 1, 08023 Barcelona, Spain
| |
Collapse
|
14
|
Fair JM, Al-Hmoud N, Alrwashdeh M, Bartlow AW, Balkhamishvili S, Daraselia I, Elshoff A, Fakhouri L, Javakhishvili Z, Khoury F, Muzyka D, Ninua L, Tsao J, Urushadze L, Owen J. Transboundary determinants of avian zoonotic infectious diseases: challenges for strengthening research capacity and connecting surveillance networks. Front Microbiol 2024; 15:1341842. [PMID: 38435695 PMCID: PMC10907996 DOI: 10.3389/fmicb.2024.1341842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
As the climate changes, global systems have become increasingly unstable and unpredictable. This is particularly true for many disease systems, including subtypes of highly pathogenic avian influenzas (HPAIs) that are circulating the world. Ecological patterns once thought stable are changing, bringing new populations and organisms into contact with one another. Wild birds continue to be hosts and reservoirs for numerous zoonotic pathogens, and strains of HPAI and other pathogens have been introduced into new regions via migrating birds and transboundary trade of wild birds. With these expanding environmental changes, it is even more crucial that regions or counties that previously did not have surveillance programs develop the appropriate skills to sample wild birds and add to the understanding of pathogens in migratory and breeding birds through research. For example, little is known about wild bird infectious diseases and migration along the Mediterranean and Black Sea Flyway (MBSF), which connects Europe, Asia, and Africa. Focusing on avian influenza and the microbiome in migratory wild birds along the MBSF, this project seeks to understand the determinants of transboundary disease propagation and coinfection in regions that are connected by this flyway. Through the creation of a threat reduction network for avian diseases (Avian Zoonotic Disease Network, AZDN) in three countries along the MBSF (Georgia, Ukraine, and Jordan), this project is strengthening capacities for disease diagnostics; microbiomes; ecoimmunology; field biosafety; proper wildlife capture and handling; experimental design; statistical analysis; and vector sampling and biology. Here, we cover what is required to build a wild bird infectious disease research and surveillance program, which includes learning skills in proper bird capture and handling; biosafety and biosecurity; permits; next generation sequencing; leading-edge bioinformatics and statistical analyses; and vector and environmental sampling. Creating connected networks for avian influenzas and other pathogen surveillance will increase coordination and strengthen biosurveillance globally in wild birds.
Collapse
Affiliation(s)
- Jeanne M. Fair
- Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Nisreen Al-Hmoud
- Bio-Safety and Bio-Security Center, Royal Scientific Society, Amman, Jordan
| | - Mu’men Alrwashdeh
- Bio-Safety and Bio-Security Center, Royal Scientific Society, Amman, Jordan
| | - Andrew W. Bartlow
- Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | | | - Ivane Daraselia
- Center of Wildlife Disease Ecology, Ilia State University, Tbilisi, Georgia
| | | | | | - Zura Javakhishvili
- Center of Wildlife Disease Ecology, Ilia State University, Tbilisi, Georgia
| | - Fares Khoury
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
| | - Denys Muzyka
- National Scientific Center, Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | | | - Jean Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States
| | - Lela Urushadze
- National Center for Disease Control and Public Health (NCDC) of Georgia, Tbilisi, Georgia
| | - Jennifer Owen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
15
|
Byrd AJ, Talbott KM, Smiley TM, Verrett TB, Gross MS, Hladik ML, Ketterson ED, Becker DJ. Determinants of spring migration departure dates in a New World sparrow: Weather variables reign supreme. Ecol Evol 2024; 14:e10874. [PMID: 38390000 PMCID: PMC10883105 DOI: 10.1002/ece3.10874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
Numerous factors influence the timing of spring migration in birds, yet the relative importance of intrinsic and extrinsic variables on migration initiation remains unclear. To test for interactions among weather, migration distance, parasitism, and physiology in determining spring departure date, we used the Dark-eyed Junco (Junco hyemalis) as a model migratory species known to harbor diverse and common haemosporidian parasites. Prior to spring migration departure from their wintering grounds in Indiana, USA, we quantified the intrinsic variables of fat, body condition (i.e., mass ~ tarsus residuals), physiological stress (i.e., ratio of heterophils to lymphocytes), cellular immunity (i.e., leukocyte composition and total count), migration distance (i.e., distance to the breeding grounds) using stable isotopes of hydrogen from feathers, and haemosporidian parasite intensity. We then attached nanotags to determine the timing of spring migration departure date using the Motus Wildlife Tracking System. We used additive Cox proportional hazard mixed models to test how risk of spring migratory departure was predicted by the combined intrinsic measures, along with meteorological predictors on the evening of departure (i.e., average wind speed and direction, relative humidity, and temperature). Model comparisons found that the best predictor of spring departure date was average nightly wind direction and a principal component combining relative humidity and temperature. Juncos were more likely to depart for spring migration on nights with largely southwestern winds and on warmer and drier evenings (relative to cooler and more humid evenings). Our results indicate that weather conditions at take-off are more critical to departure decisions than the measured physiological and parasitism variables.
Collapse
Affiliation(s)
- Allison J. Byrd
- Environmental Resilience InstituteIndiana UniversityBloomingtonIndianaUSA
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
| | | | - Tara M. Smiley
- Department of Ecology and EvolutionStony Brook UniversityStony BrookNew YorkUSA
| | - Taylor B. Verrett
- School of Biological SciencesUniversity of OklahomaNormanOklahomaUSA
| | - Michael S. Gross
- U.S. Geological SurveyCalifornia Water Science CenterSacramentoCaliforniaUSA
| | - Michelle L. Hladik
- U.S. Geological SurveyCalifornia Water Science CenterSacramentoCaliforniaUSA
| | - Ellen D. Ketterson
- Environmental Resilience InstituteIndiana UniversityBloomingtonIndianaUSA
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
| | - Daniel J. Becker
- School of Biological SciencesUniversity of OklahomaNormanOklahomaUSA
| |
Collapse
|
16
|
Hoetzinger M, Hahn MW, Andersson LY, Buckley N, Ramsin C, Buck M, Nuy JK, Garcia SL, Puente-Sánchez F, Bertilsson S. Geographic population structure and distinct intra-population dynamics of globally abundant freshwater bacteria. THE ISME JOURNAL 2024; 18:wrae113. [PMID: 38959851 PMCID: PMC11283720 DOI: 10.1093/ismejo/wrae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/09/2024] [Indexed: 07/05/2024]
Abstract
Implications of geographic separation and temporal dynamics on the evolution of free-living bacterial species are widely unclear. However, the vast amount of metagenome sequencing data generated during the last decades from various habitats around the world provides an unprecedented opportunity for such investigations. Here, we exploited publicly available and new freshwater metagenomes in combination with the genomes of abundant freshwater bacteria to reveal geographic and temporal population structure. We focused on species that were detected across broad geographic ranges at high enough sequence coverage for meaningful population genomic analyses, associated with the predominant freshwater taxa acI, LD12, Polynucleobacter, and Candidatus Methylopumilus. Despite the broad geographic ranges, each species appeared as a sequence-discrete cluster, in contrast to abundant marine taxa, for which continuous diversity structures were reported on a global scale. Population differentiation increased significantly with spatial distance in all species, but notable dispersal barriers (e.g. oceanic) were not apparent. Yet, the different species showed contrasting rates of geographic divergence and strikingly different intra-population dynamics in time series within individual habitats. The change in an LD12 population over 7 years was minor (FST = 0.04) compared to differentiation between lakes, whereas a Polynucleobacter population displayed strong changes within merely 2 months (FST up to 0.54), similar in scale to differentiation between populations separated by thousands of kilometers. The slowly and steadily evolving LD12 population showed high strain diversity, whereas the dynamic Polynucleobacter population exhibited alternating clonal expansions of mostly two strains only. Based on the contrasting population structures, we propose distinct models of speciation.
Collapse
Affiliation(s)
- Matthias Hoetzinger
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, 5310 Mondsee, Austria
| | - Linnéa Y Andersson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Nathaniel Buckley
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Chelsea Ramsin
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Julia K Nuy
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, 104 05 Stockholm, Sweden
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Germany
| | - Sarahi L Garcia
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, 104 05 Stockholm, Sweden
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Fernando Puente-Sánchez
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
17
|
Lawrence P, Heung M, Nave J, Henkel C, Escudero-Pérez B. The natural virome and pandemic potential: Disease X. Curr Opin Virol 2023; 63:101377. [PMID: 37995425 DOI: 10.1016/j.coviro.2023.101377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Over the last decade, the emergence of several zoonotic viruses has demonstrated that previously unknown or neglected pathogens have the potential to cause epidemics and therefore to pose a threat to global public health. Even more concerning are the estimated 1.7 million still-undiscovered viruses present in the natural environment or 'global virome', with many of these as-yet uncharacterized viruses predicted to be pathogenic for humans. Thus, in order to mitigate disease emergence and prevent future pandemics, it is crucial to identify the global extent of viral threats to which humans may become exposed. This requires cataloguing the viruses that exist in the environment within their various and diverse host species, and also understanding the viral, host, and environmental factors that dictate the circumstances that result in viral spillover into humans. We also address here which strategies can be implemented as countermeasure initiatives to reduce the risk of emergence of new diseases.
Collapse
Affiliation(s)
- Philip Lawrence
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA1598), Lyon, France
| | - Michelle Heung
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Julia Nave
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christoph Henkel
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, Braunschweig, Germany.
| |
Collapse
|
18
|
Chauhan RP, Fogel R, Limson J. Nanopore MinION Sequencing Generates a White Spot Syndrome Virus Genome from a Pooled Cloacal Swab Sample of Domestic Chickens in South Africa. Microorganisms 2023; 11:2802. [PMID: 38004813 PMCID: PMC10672864 DOI: 10.3390/microorganisms11112802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
White spot syndrome virus is a highly contagious pathogen affecting shrimp farming worldwide. The host range of this virus is primarily limited to crustaceans, such as shrimps, crabs, prawns, crayfish, and lobsters; however, several species of non-crustaceans, including aquatic insects, piscivorous birds, and molluscs may serve as the vectors for ecological dissemination. The present study was aimed at studying the faecal virome of domestic chickens (Gallus gallus domesticus) in Makhanda, Eastern Cape, South Africa. The cloacal swab specimens (n = 35) were collected from domestic chickens in December 2022. The cloacal swab specimens were pooled-each pool containing five cloacal swabs-for metagenomic analysis using a sequence-independent single-primer amplification protocol, followed by Nanopore MinION sequencing. While the metagenomic sequencing generated several contigs aligning with reference genomes of animal viruses, one striking observation was the presence of a White spot syndrome virus genome in one pool of cloacal swab specimens. The generated White spot syndrome virus genome was 273,795 bp in size with 88.5% genome coverage and shared 99.94% nucleotide sequence identity with a reference genome reported in China during 2018 (GenBank accession: NC_003225.3). The Neighbour-Joining tree grouped South African White spot syndrome virus genome with other White spot syndrome virus genomes reported from South East Asia. To our knowledge, this is the first report of a White spot syndrome virus genome generated from domestic chickens. The significance of White spot syndrome virus infection in domestic chickens is yet to be determined.
Collapse
Affiliation(s)
| | | | - Janice Limson
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, Eastern Cape, South Africa; (R.P.C.); (R.F.)
| |
Collapse
|
19
|
Barkhasbaatar A, Gilbert M, Fine AE, Shiilegdamba E, Damdinjav B, Buuveibaatar B, Khishgee B, Johnson CK, Leung CYH, Ankhanbaatar U, Purevtseren D, Tuttle JM, Mazet JAK, Peiris JSM, Jambal L, Shatar M, Sukhbaatar T, Olson SH. Ecological characterization of 175 low-pathogenicity avian influenza viruses isolated from wild birds in Mongolia, 2009-2013 and 2016-2018. Vet Med Sci 2023; 9:2676-2685. [PMID: 37771165 PMCID: PMC10650234 DOI: 10.1002/vms3.1281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Since 2005, highly pathogenic avian influenza A H5N1 viruses have spread from Asia worldwide, infecting poultry, humans and wild birds. Subsequently, global interest in avian influenza (AI) surveillance increased. OBJECTIVES Mongolia presents an opportunity to study viruses in wild birds because the country has very low densities of domestic poultry and supports large concentrations of migratory water birds. METHODS We conducted AI surveillance in Mongolia over two time periods, 2009-2013 and 2016-2018, utilizing environmental fecal sampling. Fresh fecal samples were collected from water bird congregation sites. Hemagglutinin (HA) and neuraminidase (NA) subtypes of positive samples were identified through viral isolation or molecular assays, with pathogenicity determined by HA subtype or sequencing the HA cleavage site. RESULTS A total of 10,222 samples were collected. Of these, 7,025 fecal samples were collected from 2009 to 2013, and 3,197 fecal samples were collected from 2016 to 2018. Testing revealed 175 (1.7%) positive samples for low-pathogenicity influenza A, including 118 samples from 2009 to 2013 (1.7%) and 57 samples from 2016 to 2018 (1.8%). HA and NA subtyping of all positives identified 11 subtypes of HA and nine subtypes of NA in 29 different combinations. Within periods, viruses were detected more frequently during the fall season than in the early summer. CONCLUSION Mongolia's critical wild bird habitat is positioned as a crossroad of multiple migratory flyways. Our work demonstrates the feasibility of using an affordable environmental fecal sampling approach for AI surveillance and contributes to understanding the prevalence and ecology of low-pathogenicity avian influenza viruses in this important location, where birds from multiple flyways mix.
Collapse
Affiliation(s)
| | - Martin Gilbert
- Cornell Wildlife Health CenterCollege of Veterinary MedicineCornell University, New YorkIthacaUSA
| | - Amanda E. Fine
- Wildlife Conservation SocietyHealth ProgramBronxNew YorkUSA
| | | | - Batchuluun Damdinjav
- Division of Transboundary Animal Viral Diseases Diagnosis and SurveillanceState Central Veterinary LaboratoryUlaanbaatarMongolia
| | | | | | - Christine K. Johnson
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Connie Y. H. Leung
- Centre for Comparative Medicine Research, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongPeople's Republic of China
| | - Ulaankhuu Ankhanbaatar
- Division of Transboundary Animal Viral Diseases Diagnosis and SurveillanceState Central Veterinary LaboratoryUlaanbaatarMongolia
| | - Dulam Purevtseren
- Division of Transboundary Animal Viral Diseases Diagnosis and SurveillanceState Central Veterinary LaboratoryUlaanbaatarMongolia
| | - James M. Tuttle
- Southern Arizona Veterinary Specialty & Emergency CenterTucsonArizonaUSA
| | - Jonna A. K. Mazet
- Karen C. Drayer Wildlife Health Center, One Health InstituteUniversity of CaliforniaDavisCaliforniaUSA
| | - Joseph S. Malik Peiris
- School of Public Health, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongPeople's Republic of China
| | - Losolmaa Jambal
- Wildlife Conservation SocietyMongolia ProgramUlaanbaatarMongolia
| | - Munkhduuren Shatar
- Division of Transboundary Animal Viral Diseases Diagnosis and SurveillanceState Central Veterinary LaboratoryUlaanbaatarMongolia
| | | | - Sarah H. Olson
- Wildlife Conservation SocietyHealth ProgramBronxNew YorkUSA
| |
Collapse
|
20
|
Krchlíková V, Lotke R, Haußmann I, Reinišová M, Kučerová D, Pecnová Ľ, Ungrová L, Hejnar J, Sauter D, Elleder D. Independent loss events of a functional tetherin gene in galliform birds. J Virol 2023; 97:e0080323. [PMID: 37712707 PMCID: PMC10617486 DOI: 10.1128/jvi.00803-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/19/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Birds represent important hosts for numerous viruses, including zoonotic viruses and pathogens with the potential to cause major economic losses to the poultry industry. Viral replication and transmission can be inhibited or blocked by the action of antiviral restriction factors (RFs) encoded by the host. One well-characterized RF is tetherin, a protein that directly blocks the release of newly formed viral particles from infected cells. Here, we describe the evolutionary loss of a functional tetherin gene in two galliform birds, turkey (Meleagris gallopavo) and Mikado pheasant (Syrmaticus mikado). Moreover, we demonstrate that the structurally related protein TMCC(aT) exerts antiviral activity in several birds, albeit by a mechanism different from that of tetherin. The evolutionary scenario described here represents the first documented loss-of-tetherin cases in vertebrates.
Collapse
Affiliation(s)
- Veronika Krchlíková
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rishikesh Lotke
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Isabell Haußmann
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Markéta Reinišová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dana Kučerová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ľubomíra Pecnová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Ungrová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Hejnar
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Daniel Elleder
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
21
|
Karim S, Zenzal TJ, Beati L, Sen R, Adegoke A, Kumar D, Downs LP, Keko M, Nussbaum A, Becker DJ, Moore FR. Ticks without borders: Microbial communities of immature Neotropical tick species parasitizing migratory landbirds along northern Gulf of Mexico. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563347. [PMID: 37961388 PMCID: PMC10634713 DOI: 10.1101/2023.10.22.563347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The long-distance, seasonal migrations of birds make them an effective ecological bridge for the movement of ticks. The introduction of exotic tick species to new geographical regions can lead to the emergence of novel tick-borne pathogens or the re-emergence of previously eradicated ones. This study assessed the prevalence of exotic tick species parasitizing resident, short-distance, and long-distance songbirds during spring and autumn at stopover sites in the northern Gulf of Mexico using the mitochondrial 12S rDNA gene. Birds were captured for tick collection from six different sites from late August to early November in both 2018 and 2019. The highest number of ticks were collected in the 2019 season. Most ticks were collected off the Yellow-breasted Chat (Icteria virens) and Common Yellowthroat (Geothlypis trichas), and 54% of the total ticks collected were from Grand Chenier, LA. A high throughput 16S ribosomal RNA sequencing approach was followed to characterize the microbial communities and identify pathogenic microbes in all tick samples. Tick microbial communities, diversity, and community structure were determined using quantitative insight into microbial ecology (QIIME). The sparse correlations for compositional data (SparCC) approach was then used to construct microbial network maps and infer microbial correlations. A total of 421 individual ticks in the genera Amblyomma, Haemaphysalis, and Ixodes were recorded from 28 songbird species, of which Amblyomma and Amblyomma longirostre was the most abundant tick genus and species, respectively. Microbial profiles showed that Proteobacteria was the most abundant phylum. The most abundant bacteria include the pathogenic Rickettsia and endosymbiont Francisella, Candidatus Midichloria, and Spiroplasma. BLAST analysis and phylogenetic reconstruction of the Rickettsia sequences revealed the highest similarities to pathogenic spotted and non-spotted fever groups, including R. buchneri, R. conorii, R. prowazekii, R. bellii, R. australis, R. parkeri, R. monacensis, and R. monteiroi. Permutation multivariate analysis of variance revealed that the relative abundance of Francisella and Rickettsia drives microbial patterns across the tick genera. We also observed a higher percentage of positive correlations in microbe-microbe interactions among members of the microbial communities. Network analysis suggested a negative correlation between a) Francisella and Rickettsia and, b) Francisella and Cutibacterium. Lastly, mapping the distributions of bird species parasitized during spring migrations highlighted geographic hotspots where migratory songbirds could disperse ticks and their pathogens at stopover sites or upon arrival to their breeding grounds, the latter showing means dispersal distances from 421-5003 kilometers. These findings strongly highlight the potential role of migratory birds in the epidemiology of tick-borne pathogens.
Collapse
Affiliation(s)
- Shahid Karim
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Theodore J. Zenzal
- United States Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA 70506
| | - Lorenza Beati
- Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA 20460
| | - Raima Sen
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Abdulsalam Adegoke
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Latoyia P. Downs
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Mario Keko
- Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA 20460
| | - Ashly Nussbaum
- Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA 20460
| | - Daniel J. Becker
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Frank R. Moore
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
22
|
García-Carrasco JM, Muñoz AR, Olivero J, Segura M, García-Bocanegra I, Real R. West Nile virus in the Iberian Peninsula: using equine cases to identify high-risk areas for humans. Euro Surveill 2023; 28:2200844. [PMID: 37796440 PMCID: PMC10557382 DOI: 10.2807/1560-7917.es.2023.28.40.2200844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/28/2023] [Indexed: 10/06/2023] Open
Abstract
BackgroundWest Nile virus (WNV) is a flavivirus with an enzootic cycle between birds and mosquitoes; humans and horses are incidental dead-end hosts. In 2020, the largest outbreak of West Nile virus infection in the Iberian Peninsula occurred, with 141 clusters in horses and 77 human cases.AimWe analysed which drivers influence spillover from the cycle to humans and equines and identified areas at risk for WNV transmission.MethodsBased on data on WNV cases in horses and humans in 2020 in Portugal and Spain, we developed logistic regression models using environmental and anthropic variables to highlight risk areas. Models were adapted to a high-resolution risk map.ResultsCases of WNV in horses could be used as indicators of viral activity and thus predict cases in humans. The risk map of horses was able to define high-risk areas for previous cases in humans and equines in Portugal and Spain, as well as predict human and horse cases in the transmission seasons of 2021 and 2022. We found that the spatial patterns of the favourable areas for outbreaks correspond to the main hydrographic basins of the Iberian Peninsula, jointly affecting Portugal and Spain.ConclusionA risk map highlighting the risk areas for potential future cases could be cost-effective as a means of promoting preventive measures to decrease incidence of WNV infection in Europe, based on a One Health surveillance approach.
Collapse
Affiliation(s)
- José-María García-Carrasco
- Biogeography, Diversity and Conservation Lab, Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Antonio-Román Muñoz
- Biogeography, Diversity and Conservation Lab, Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Jesús Olivero
- Biogeography, Diversity and Conservation Lab, Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Marina Segura
- International Vaccination Center of Malaga, Maritime Port of Malaga, Ministry of Health, Consumption and Social Welfare, Government of Spain, Málaga, Spain
| | | | - Raimundo Real
- Biogeography, Diversity and Conservation Lab, Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| |
Collapse
|
23
|
Abdel-Glil MY, Braune S, Bouwhuis S, Sprague LD. First Description of Mergibacter septicus Isolated from a Common Tern ( Sterna hirundo) in Germany. Pathogens 2023; 12:1096. [PMID: 37764904 PMCID: PMC10536934 DOI: 10.3390/pathogens12091096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Mergibacter septicus (M. septicus), previously known as Bisgaard Taxon 40, is a recently described species within the Pasteurellaceae family. In this study, we present a M. septicus strain isolated from a common tern (Sterna hirundo) chick that died just after fledging from the Banter See in Wilhelmshaven, Germany. The recovered M. septicus strain underwent microbiological phenotypic characterization, followed by whole genome sequencing on Illumina and Nanopore platforms. Phenotypically, M. septicus 19Y0039 demonstrated resistance to colistin, cephalexin, clindamycin, oxacillin, and penicillin G. The genome analysis revealed a circular 1.8 Mbp chromosome without any extrachromosomal elements, containing 1690 coding DNA sequences. The majority of these coding genes were associated with translation, ribosomal structure and biogenesis, followed by RNA processing and modification, and transcription. Genetic analyses revealed that the German M. septicus strain 19Y0039 is related to the American strain M. septicus A25201T. Through BLAST alignment, twelve putative virulence genes previously identified in the M. septicus type strain A25201T were also found in the German strain. Additionally, 84 putative virulence genes distributed across nine categories, including immune modulation, effector delivery system, nutrition/metabolic factors, regulation, stress survival, adherence, biofilm, exotoxin, and motility, were also identified.
Collapse
Affiliation(s)
- Mostafa Y. Abdel-Glil
- Institut für Bakterielle Infektionen und Zoonosen (IBIZ), Friedrich-Loeffler-Institut, 07743 Jena, Germany;
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Silke Braune
- Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit (LAVES), Lebensmittel- und Veterinärinstitut Braunschweig/Hannover, 30173 Hannover, Germany;
| | | | - Lisa D. Sprague
- Institut für Bakterielle Infektionen und Zoonosen (IBIZ), Friedrich-Loeffler-Institut, 07743 Jena, Germany;
| |
Collapse
|
24
|
Hale GL. Flaviviruses and the Traveler: Around the World and to Your Stage. A Review of West Nile, Yellow Fever, Dengue, and Zika Viruses for the Practicing Pathologist. Mod Pathol 2023; 36:100188. [PMID: 37059228 DOI: 10.1016/j.modpat.2023.100188] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Flaviviruses are a genus of single-stranded RNA viruses that impose an important and growing burden to human health. There are over 3 billion individuals living in areas where flaviviruses are endemic. Flaviviruses and their arthropod vectors (which include mosquitoes and ticks) take advantage of global travel to expand their distribution and cause severe disease in humans, and they can be grouped according to their vector and pathogenicity. The mosquito-borne flaviviruses cause a spectrum of diseases from encephalitis to hepatitis and vascular shock syndrome, congenital abnormalities, and fetal death. Neurotropic infections such as Zika virus and West Nile virus cross the blood-brain barrier and infect neurons and other cells, leading to meningoencephalitis. In the hemorrhagic fever clade, there are yellow fever virus, the prototypical hemorrhagic fever virus that infects hepatocytes, and dengue virus, which infects cells of the reticuloendothelial system and can lead to a dramatic plasma cell leakage and shock syndrome. Zika virus also causes congenital infections and fetal death and is the first and only example of a teratogenic arbovirus in humans. Diagnostic testing for flaviviruses broadly includes the detection of viral RNA in serum (particularly within the first 10 days of symptoms), viral isolation by cell culture (rarely performed due to complexity and biosafety concerns), and histopathologic evaluation with immunohistochemistry and molecular testing on formalin-fixed paraffin-embedded tissue blocks. This review focuses on 4 mosquito-borne flaviviruses-West Nile, yellow fever, dengue, and Zika virus-and discusses the mechanisms of transmission, the role of travel in geographic distribution and epidemic emergence, and the clinical and histopathologic features of each. Finally, prevention strategies such as vector control and vaccination are discussed.
Collapse
Affiliation(s)
- Gillian L Hale
- Department of Pathology, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
25
|
Fang Y, Hang T, Yang LM, Xue JB, Fujita R, Feng XS, Jiang TG, Zhang Y, Li SZ, Zhou XN. Long-distance spread of Tembusu virus, and its dispersal in local mosquitoes and domestic poultry in Chongming Island, China. Infect Dis Poverty 2023; 12:52. [PMID: 37218001 DOI: 10.1186/s40249-023-01098-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Chongming Island in China serves as a breeding and shelter point on the East Asian-Australasian Flyway. The resting frequency of migratory birds, abundance of mosquito populations, and the popular domestic poultry industry pose a potential risk of mosquito-borne zoonotic diseases. The aim of this study is to explore the role of migratory birds in the spread of mosquito-borne pathogens and their prevalent status on the island. METHODS We conducted a mosquito-borne pathogen surveillance in 2021, in Chongming, Shanghai, China. Approximately 67,800 adult mosquitoes belonging to ten species were collected to investigate the presence of flaviviruses, alphaviruses, and orthobunyaviruses by RT-PCR. Genetic and phylogenetic analyses were conducted to explore the virus genotype and potential nature source. Serological survey was performed by ELISA to characterize Tembusu virus (TMUV) infection among domestic poultry. RESULTS Two strains of TMUV and Chaoyang virus (CHAOV) and 47 strains of Quang Binh virus (QBV) were detected in 412 mosquito pools, with the infection rate of 0.16, 0.16, and 3.92 per 1000 Culex tritaeniorhynchus, respectively. Furthermore, TMUVs viral RNA was found in serum samples of domestic chickens and faecal samples of migratory birds. Antibodies against TMUV were detected in domestic avian serum samples, generally ranging from 44.07% in pigeons to 55.71% in ducks. Phylogenetic analyses indicated that the TMUV detected in Chongming belonged to Cluster 3, Southeast Asia origin, and most closely related to the CTLN strain, which caused a TMUV outbreak in chickens in Guangdong Province in 2020, but distant from strains obtained previously in Shanghai, which were involved in the 2010 TMUV outbreak in China. CONCLUSIONS We speculate that the TMUV was imported to Chongming Island through long-distance spreading by migratory birds from Southeast Asia, followed by spill over and transmission in mosquitoes and domestic avian species, threatening the local domestic poultry. In addition, the expansion and prevalence of insect-specific flaviviruses and its simultaneous circulation with mosquito-borne virus are worthy of close attention and further study.
Collapse
Affiliation(s)
- Yuan Fang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases,, Shanghai, China
| | - Tian Hang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Min Yang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases,, Shanghai, China
| | - Jing-Bo Xue
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases,, Shanghai, China
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Xue-Song Feng
- Shanghai Chongming Dongtan National Nature Reserve, Shanghai, China
| | - Tian-Ge Jiang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases,, Shanghai, China.
| | - Shi-Zhu Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases,, Shanghai, China.
| | - Xiao-Nong Zhou
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases,, Shanghai, China.
| |
Collapse
|
26
|
Olvera-Ramírez AM, McEwan NR, Stanley K, Nava-Diaz R, Aguilar-Tipacamú G. A Systematic Review on the Role of Wildlife as Carriers and Spreaders of Campylobacter spp. Animals (Basel) 2023; 13:1334. [PMID: 37106897 PMCID: PMC10135385 DOI: 10.3390/ani13081334] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Campylobacter spp. are important zoonotic pathogens and can cause one of the main bacterial diarrheal diseases worldwide. Research in the context of infection arising from transmission from other humans and other vertebrates has been extensive. A large fraction of these investigations has focused on domestic animals; however, there are also a number of publications which either totally, or at least in part, consider the role of wild or feral animals as carriers or spreaders of Campylobacter spp. Here, we carry out a systematic review to explore the role played by wild vertebrates as sources of Campylobacter spp. with a compilation of prevalence data for more than 150 species including reptiles, mammals and birds. We found that numerous vertebrate species can act as carriers of Campylobacter species, but we also found that some host specificity may exist, reducing the risk of spread from wildlife to domestic animals or humans.
Collapse
Affiliation(s)
- Andrea Margarita Olvera-Ramírez
- Cuerpo Académico Salud Animal y Microbiología Ambiental, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N, Juriquilla, Delegación Santa Rosa Jáuregui, Querétaro C.P. 76230, Mexico
| | - Neil Ross McEwan
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Karen Stanley
- Department of Biosciences and Chemistry, Sheffield Hallam University City Campus, Howard Street, Sheffield S1 1WB, UK
| | - Remedios Nava-Diaz
- Posdoctoral CONACyT Program, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N, Juriquilla, Delegación Santa Rosa Jáuregui, Querétaro C.P. 76230, Mexico
| | - Gabriela Aguilar-Tipacamú
- Cuerpo Académico Salud Animal y Microbiología Ambiental, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N, Juriquilla, Delegación Santa Rosa Jáuregui, Querétaro C.P. 76230, Mexico
| |
Collapse
|
27
|
Solarczyk P, Wojtkowiak-Giera A, Heddergott M. Migrating Anatidae as Sources of Environmental Contamination with Zoonotic Giardia, Cryptosporidium, Cyclospora and Microsporidia. Pathogens 2023; 12:pathogens12030487. [PMID: 36986409 PMCID: PMC10057910 DOI: 10.3390/pathogens12030487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Giardia, Cryptosporidium, Cyclospora, and microsporidia are gastrointestinal pathogens that can cause various disease symptoms in both animals and humans. Numerous studies worldwide have confirmed the presence of these eukaryotic pathogens in nesting and migrating wild geese, ducks, and swans. Migration spreads these zoonotic enteric pathogens to distant locations, which could have public health implications. Soils and water bodies (lakes, ponds, rivers and wetlands) in urban and suburban areas have been shown to be vulnerable to contamination by waterfowl droppings. This review addresses the epidemiology of these enteric pathogens in wild migratory bird species (Anatidae) and some consequences of their spread in the environment. To date, both zoonotic pathogens and genotypes restricted to avian hosts have been found in faecal samples from 21 anatid species worldwide. One of the routes of infection for these zoonotic gastrointestinal micropathogens is the indirect route. For example, shared water bodies (e.g., for drinking or recreational purposes) previously contaminated by birds during the migratory season may facilitate infections of humans through water. However, it is unclear how much wild waterfowl contribute to the transmission of giardiasis, cryptosporidiosis, cyclosporosis, and microsporidiosis in many regions through contaminated environmental sources. Comprehensive epidemiological surveillance based on molecular data on gastrointestinal pathogens is crucial to take measures to control infections in the future.
Collapse
Affiliation(s)
- Piotr Solarczyk
- Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, 10 Fredry Street, 61-701 Poznan, Poland
| | - Agnieszka Wojtkowiak-Giera
- Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, 10 Fredry Street, 61-701 Poznan, Poland
| | - Mike Heddergott
- Department of Zoology, Musée National d'Historire Naturelle, 25, Rue Münster, 2160 Luxembourg, Luxembourg
| |
Collapse
|
28
|
The Surveillance of Borrelia Species in Camelus dromedarius and Associated Ticks: The First Detection of Borrelia miyamotoi in Egypt. Vet Sci 2023; 10:vetsci10020141. [PMID: 36851446 PMCID: PMC9961693 DOI: 10.3390/vetsci10020141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Tick-borne diseases (TBDs) are emerging and re-emerging infections that have a worldwide impact on human and animal health. Lyme borreliosis (LB) is a severe zoonotic disease caused by the spirochete Borrelia burgdorferi sensu lato (s.l.) transmitted to humans by the bite of infected Ixodes ticks. Borrelia miyamotoi is a spirochete that causes relapsing fever (RF) and is genetically related to Borrelia burgdorferi s.l. However, there have been no reports of B. miyamotoi in Egypt, and the data on LB in camels is scarce. Thus, the present study was conducted to screen and genetically identify Borrelia spp. and B. miyamotoi in Egyptian camels and associated ticks using polymerase chain reaction (PCR). METHODS A total of 133 blood samples and 1596 adult hard ticks were collected from Camelus dromedaries at Cairo and Giza slaughterhouses in Egypt. Tick species were identified by examining their morphology and sequencing the cytochrome C oxidase subunit 1 (cox1) gene. Borrelia spp. was detected using nested PCR on the IGS (16S-23S) gene, and positive samples were genotyped using 16S rRNA and glpQ spp. genes specific for Borrelia burgdorferi and Borrelia miyamotoi, respectively. The positive PCR products were sequenced and analyzed by phylogenetic tree. RESULTS Analysis of the cox1 gene sequence revealed that the adult ticks belonged to three genera; Hyalomma (H), Amblyomma (Am), and Rhipicephalus (R), as well as 12 species, including H. dromedarii, H. marginatum, H. excavatum, H. anatolicum, R. annulatus, R. pulchellus, Am. testudinarium, Am. hebraeum, Am. lipidium, Am. variegatum, Am. cohaerens and Am. gemma. Borrelia spp. was found in 8.3% (11/133) of the camel blood samples and 1.3% (21/1596) of the ticks, respectively. Sequencing of the IGS (16S-23S) gene found that B. afzelii, detected from H. dromedarii and H. marginatum, and B. crocidurae, which belongs to the RF group, was detected from one blood sample. B. burgdorferi and B. miyamotoi were discovered in the blood samples and tick species. Phylogenetic analysis of the glpQ gene showed that the B. miyamotoi in this study was of the Asian and European types. CONCLUSIONS These results suggest that the camels can be infected by Lyme borrelia and other Borrelia bacteria species. This study also provides the first insight into the presence of Borrelia miyamotoi and B. afzelii DNA in camels and associated ticks in Egypt.
Collapse
|
29
|
Giesen C, Herrador Z, Fernandez B, Figuerola J, Gangoso L, Vazquez A, Gómez-Barroso D. A systematic review of environmental factors related to WNV circulation in European and Mediterranean countries. One Health 2023. [DOI: 10.1016/j.onehlt.2022.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
30
|
Petherbridge G, Gadzhiev AA, Shestopalov АМ, Alekseev AY, Sharshov KA, Daudova MG. An early warning system for highly pathogenic viruses borne by waterbird species and related dynamics of climate change in the Caspian Sea region: Outlines of a concept. SOUTH OF RUSSIA: ECOLOGY, DEVELOPMENT 2022. [DOI: 10.18470/1992-1098-2022-2-233-263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aim. Formulation of the outlines of the concept of ViEW (Viral Early Warning) which is intended as a long term system of multidisciplinary transboundary cooperation between specialist institutions of all five Caspian region states to research, regularly monitor and share data about the generation, transmission and epidemiology of avian‐borne pathogens and their vectors in the region, and the ways climate change may affect these processes.Material and Methods. The concept is based on the multidisciplinary experience of the authors in researching the processes incorporated in the ViEW concept and on an in‐depth survey of the literature involved.Results. The outlines of the ViEW concept are presented in this study for review and comment by interested parties and stakeholders.Conclusion. Review of activities and opinions of specialists and organizations with remits relating to the development, establishment and maintenance of ViEW, indicates that such a system is a necessity for global animal and human health because of the role that the Caspian region plays in the mass migration of species of waterbird known as vectors for avian influenza and the already evident impacts of climate change on their phenologies. Waterbirds frequenting the Caspian Sea littorals and their habitats together constitute a major potential global hotspot or High Risk region for the generation and transmission of highly pathogenic avian influenza viruses and other dangerous zoonotic diseases.
Collapse
Affiliation(s)
| | | | - А. М. Shestopalov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | - A. Yu. Alekseev
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | - K. A. Sharshov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | | |
Collapse
|
31
|
Šujanová A, Čužiová Z, Václav R. The Infection Rate of Bird-Feeding Ixodes ricinus Ticks with Borrelia garinii and B. valaisiana Varies with Host Haemosporidian Infection Status. Microorganisms 2022; 11:60. [PMID: 36677352 PMCID: PMC9861293 DOI: 10.3390/microorganisms11010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Birds are known to maintain and spread human pathogenic borreliae, but they are common hosts of diverse parasite communities, notably haemosporidians. Only a few studies examined whether tick infestation and/or Borrelia prevalences vary with hosts' haemosporidian infection status. METHODS Here, we study whether Ixodes ricinus infestation rates and Borrelia infection rates in bird-feeding ticks vary according to haemosporidian infection status in a community of free-living avian tick hosts. RESULTS Birds of six avian species harbored the majority of ticks. Both the tick infestation prevalence and the intensity peaked during spring and summer, but while bird-feeding nymphs prevailed in spring, bird-feeding larvae dominated in summer. Almost half of the bird-feeding ticks were found to be positive for B. burgdorferi s.l. Although the majority of infections involved bird-associated B. garinii and B. valaisiana, B. garinii appears to be the dominant Borrelia strain circulating in locally breeding avian species. We detected a negative link between the hosts' haemosporidian infection status and the Borrelia infection rate of bird-feeding ticks, but the association was dependent on the host's age. CONCLUSIONS Our results on tick infestation intensity support the idea that more immunologically vulnerable hosts harbor more ticks but suggest that different mechanisms may be responsible for tick infestation rates among immunologically naïve and experienced avian hosts. The results on Borrelia infection rates in bird-feeding ticks are consistent with studies revealing that intracellular parasites, such as haemosporidians, can benefit from the host immune system prioritizing immune responses against extracellular parasites at the expense of immune responses against intracellular parasites. The findings of our study urge for a more robust design of parasitological studies to understand the ecology of interactions among hosts and their parasites.
Collapse
Affiliation(s)
| | | | - Radovan Václav
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská Cesta 9, 84506 Bratislava, Slovakia
| |
Collapse
|
32
|
Piche-Ovares M, Romero-Vega M, Vargas-González D, Murillo DFB, Soto-Garita C, Francisco-Llamas J, Alfaro-Alarcón A, Jiménez C, Corrales-Aguilar E. Serosurvey in Two Dengue Hyperendemic Areas of Costa Rica Evidence Active Circulation of WNV and SLEV in Peri-Domestic and Domestic Animals and in Humans. Pathogens 2022; 12:7. [PMID: 36678356 PMCID: PMC9863573 DOI: 10.3390/pathogens12010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Costa Rica harbors several flaviviruses, including Dengue (DENV), Zika (ZIKV), West Nile virus (WNV), and Saint Louis encephalitis virus (SLEV). While DENV and ZIKV are hyperendemic, previous research indicates restricted circulation of SLEV and WNV in animals. SLEV and WNV seroprevalence and high transmission areas have not yet been measured. To determine the extents of putative WNV and SLEV circulation, we sampled peri-domestic and domestic animals, humans, and mosquitoes in rural households located in two DENV and ZIKV hyperendemic regions during the rainy and dry seasons of 2017-2018 and conducted plaque reduction neutralization test assay for serology (PRNT) and RT-PCR for virus detection. In Cuajiniquil, serological evidence of WNV and SLEV was found in equines, humans, chickens, and wild birds. Additionally, five seroconversion events were recorded for WNV (2 equines), SLEV (1 human), and DENV-1 (2 humans). In Talamanca, WNV was not found, but serological evidence of SLEV circulation was recorded in equines, humans, and wild birds. Even though no active viral infection was detected, the seroconversion events recorded here indicate recent circulation of SLEV and WNV in these two regions. This study thus provides clear-cut evidence for WNV and SLEV presence in these areas, and therefore, they should be considered in arboviruses differential diagnostics and future infection prevention campaigns.
Collapse
Affiliation(s)
- Marta Piche-Ovares
- Virology-CIET (Research Center for Tropical Diseases), Universidad de Costa Rica, San José 11501-2060, Costa Rica
- PIET (Tropical Disease Research Program), Department of Virology, School of Veterinary Medicine, Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Mario Romero-Vega
- Department of Pathology, School of Veterinary Medicine, Universidad Nacional, Heredia 86-3000, Costa Rica
- Laboratorio de Investigación en Vectores-CIET (Research Center for Tropical Disease), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Diana Vargas-González
- PIET (Tropical Disease Research Program), Department of Virology, School of Veterinary Medicine, Universidad Nacional, Heredia 86-3000, Costa Rica
| | | | - Claudio Soto-Garita
- Virology-CIET (Research Center for Tropical Diseases), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | | | - Alejandro Alfaro-Alarcón
- Department of Pathology, School of Veterinary Medicine, Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Carlos Jiménez
- PIET (Tropical Disease Research Program), Department of Virology, School of Veterinary Medicine, Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Eugenia Corrales-Aguilar
- Virology-CIET (Research Center for Tropical Diseases), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
33
|
Effects of predator modulation and vector preference on pathogen transmission in plant populations. Biosystems 2022; 222:104794. [DOI: 10.1016/j.biosystems.2022.104794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022]
|
34
|
Seva J, Sanes JM, Mas A, Ramis G, Sánchez J, Párraga-Ros E. Prevalence of Mycobacterium avium Subsp. paratuberculosis in Feral Pigeons ( Columba livia) Associated with Difficulties Controlling Paratuberculosis in a Bovine Herd (Fighting Bull Breed). Animals (Basel) 2022; 12:ani12233314. [PMID: 36496835 PMCID: PMC9739979 DOI: 10.3390/ani12233314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
A bovine herd with a high prevalence of paratuberculosis (PTB) cohabiting with a population of pigeons was studied (2011−2020). After finding the disease in 2011, annual monitoring was performed in 2012−2014 by obtaining blood samples for ELISA and intradermal tuberculinization (IT) tests for Mycobacterium avium subsp. paratuberculosis (MAP). Positive animals were eliminated. PTB prevalence dropped from 10% to 0% but returned to similar values (9.5%) after 6 years without tests. In all animals, Ac values according to the optical density (OD) determined by ELISA increased each year and could be used to isolate herds close to the cutoff point to improve PTB control. Possible reservoirs were considered after evaluating the little success of the PTB control program, and the population of feral pigeons was studied. Specifically, 10% of the pigeon population (n = 13) was necropsied. Samples of intestine, feces, and foot skin for PCR study for MAP and samples of terminal intestine for histopathological analysis were taken. Eleven pigeons were PCR-positive against MAP, in the intestine (10/11), foot skin (3/11), and feces (1/11). The presence of MAP in pigeon feet could demonstrate its role as a mechanical disseminator of PTB, while the presence in pigeon intestine and feces could also suggest its role as a reservoir.
Collapse
Affiliation(s)
- Juan Seva
- Department of Anatomy and Comparative Pathological Anatomy, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
- Correspondence:
| | - J. Manuel Sanes
- Department of Anatomy and Comparative Pathological Anatomy, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Alberto Mas
- Department of Anatomy and Comparative Pathological Anatomy, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Guillermo Ramis
- Department of Animal Production, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Joaquín Sánchez
- Department of Anatomy and Comparative Pathological Anatomy, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Ester Párraga-Ros
- Department of Anatomy and Comparative Pathological Anatomy, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
35
|
Retrospective Molecular Survey on Bacterial and Protozoan Abortive Agents in Roe Deer (Capreolus capreolus) from Central Italy. Animals (Basel) 2022; 12:ani12223202. [PMID: 36428429 PMCID: PMC9686506 DOI: 10.3390/ani12223202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Bacterial and protozoan agents can determine abortion and other reproductive disorders in domestic ruminants, but data regarding their occurrence in wild ruminants are scanty worldwide, including in Italy. The aim of this retrospective study was to verify the occurrence of the main bacterial and protozoan abortive agents in 72 spleen samples previously collected from roe deer (Capreolus capreolus) living in mountain areas of Central Italy. All samples were collected and submitted to DNA extraction for other investigations. Molecular analyses were carried out on the DNA samples to detect Brucella spp., Chlamydia abortus, Coxiella burnetii, Salmonella enterica, Listeria monocytogenes, Neospora caninum, and Toxoplasma gondii. Three (4.16%) roe deer resulted PCR positive for C. burnetii and one (1.38%) for T. gondii. These findings suggest that roe deer living in the investigated areas do not act as important reservoirs of the searched agents. However, the tested animals lived in a closed area without contact with domestic animals that are usually involved in the epidemiology of the investigated pathogens. Monitoring of wild ruminants is pivotal to verify changes in the epidemiological scenario from a One Health perspective, too.
Collapse
|
36
|
Pelletier J, Rocheleau JP, Aenishaenslin C, Dimitri Masson G, Lindsay LR, Ogden NH, Bouchard C, Leighton PA. Fluralaner Baits Reduce the Infestation of Peromyscus spp. Mice (Rodentia: Cricetidae) by Ixodes scapularis (Acari: Ixodidae) Larvae and Nymphs in a Natural Environment. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:2080-2089. [PMID: 35980603 DOI: 10.1093/jme/tjac106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Indexed: 06/15/2023]
Abstract
The development of interventions that reduce Lyme disease incidence remains a challenge. Reservoir-targeted approaches aiming to reduce tick densities or tick infection prevalence with Borrelia burgdorferi have emerged as promising ways to reduce the density of infected ticks. Acaricides of the isoxazoline family offer high potential for reducing infestation of ticks on small mammals as they have high efficacy at killing feeding ticks for a long period. Fluralaner baits were recently demonstrated as effective, in the laboratory, at killing Ixodes scapularis larvae infesting Peromyscus mice, the main reservoir for B. burgdorferi in northeastern North America. Here, effectiveness of this approach for reducing the infestation of small mammals by immature stages of I. scapularis was tested in a natural environment. Two densities of fluralaner baits (2.1 baits/1,000 m2 and 4.4 baits/1,000 m2) were used during three years in forest plots. The number of I. scapularis larvae and nymphs per mouse from treated and control plots were compared. Fluralaner baiting reduced the number of larvae per mouse by 68% (CI95: 51-79%) at 2.1 baits/1,000 m2 and by 86% (CI95: 77-92%) at 4.4 baits/1,000 m2. The number of nymphs per mouse was reduced by 72% (CI95: 22-90%) at 4.4 baits/1,000 m2 but was not significantly reduced at 2.1 baits/1,000 m2. Reduction of Peromyscus mouse infestation by immature stages of I. scapularis supports the hypothesis that an approach targeting reservoirs of B. burgdorferi with isoxazolines has the potential to reduce tick-borne disease risk by decreasing the density of infected ticks in the environment.
Collapse
Affiliation(s)
- Jérôme Pelletier
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Jean-Philippe Rocheleau
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Département de santé animale, CÉGEP de Saint-Hyacinthe, Saint-Hyacinthe, Québec, Canada
| | - Cécile Aenishaenslin
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Gabrielle Dimitri Masson
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - L Robbin Lindsay
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Nicholas H Ogden
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Catherine Bouchard
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Patrick A Leighton
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| |
Collapse
|
37
|
de Seixas MMM, de Araújo J, Krauss S, Fabrizio T, Walker D, Ometto T, Matsumiya Thomazelli L, Vanstreels RET, Hurtado RF, Krüger L, Piuco R, Petry MV, Webster RG, Webby RJ, Lee DH, Chung DH, Ferreira HL, Durigon EL. H6N8 avian influenza virus in Antarctic seabirds demonstrates connectivity between South America and Antarctica. Transbound Emerg Dis 2022; 69:e3436-e3446. [PMID: 36217218 DOI: 10.1111/tbed.14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 02/04/2023]
Abstract
Wild aquatic birds are the natural reservoirs of avian influenza viruses (AIVs). It is estimated that 100 million seabirds live in the Antarctic Peninsula and adjacent islands, regularly encountering migratory birds that use the islands to nest. Between 2010 and 2013, we collected samples from 865 seabirds in Elephant, King George and Livingston islands, around Antarctica Peninsula: chinstrap penguin (n = 143); gentoo penguin (n = 208); Adelie penguin (n = 46); brown skua (n = 90); Cape petrel (n = 115) and southern giant petrel (n = 263). Serum (n = 673) samples were analysed by competitive ELISA and swabs (n = 614) were tested by one step real-time RT-PCR for avian influenza virus (AIV). Sera from 30 chinstrap penguins, 76 brown skuas and a single Adelie penguin were seropositive for AIV. Thirteen swab samples were AIV positive by RT-PCR, and complete genome sequences of H6N8 AIVs isolated from brown skua and chinstrap penguin in 2011 were obtained. Phylogenetic analyses indicated that all gene segments of the H6N8 viruses were closely related to Argentinian and Chilean AIVs. The prevalence with which we identified evidence for AIVs infection in various Antarctic seabirds suggest viral circulation in Antarctic avifauna and interspecies viral transmission in the sub-Antarctic region.
Collapse
Affiliation(s)
- Marina Maria Moraes de Seixas
- BSL3+ Laboratory of Clinical and Molecular Virology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - Jansen de Araújo
- BSL3+ Laboratory of Clinical and Molecular Virology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Thomas Fabrizio
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - David Walker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tatiana Ometto
- BSL3+ Laboratory of Clinical and Molecular Virology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - Luciano Matsumiya Thomazelli
- BSL3+ Laboratory of Clinical and Molecular Virology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - Ralph Eric Thijl Vanstreels
- Laboratory of Wildlife of Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Renata Ferreira Hurtado
- Laboratory of Wildlife of Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Lucas Krüger
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile.,Grupo de Trabajo en Ciencia para la Toma de Decisiones en Conservación de la Biodiversidad, Fundación Instituto Milénio de Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Santiago, Chile
| | - Roberta Piuco
- Laboratory of Ornithology and Marine Animals, University of the Sinos River Valley, Rio Grande do Sul, Brazil
| | - Maria Virginia Petry
- Laboratory of Ornithology and Marine Animals, University of the Sinos River Valley, Rio Grande do Sul, Brazil
| | - Robert G Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea.,Department of Pathobiology, University of Connecticut, Storrs, Connecticut
| | | | - Helena Lage Ferreira
- Department of Veterinary Medicine, Faculty of Animal Science & Food Engineering (FZEA-USP), University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Edison Luiz Durigon
- BSL3+ Laboratory of Clinical and Molecular Virology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
SEIR-Metapopulation model of potential spread of West Nile virus. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Al Hakeem WG, Fathima S, Shanmugasundaram R, Selvaraj RK. Campylobacter jejuni in Poultry: Pathogenesis and Control Strategies. Microorganisms 2022; 10:2134. [PMID: 36363726 PMCID: PMC9697106 DOI: 10.3390/microorganisms10112134] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
C. jejuni is the leading cause of human foodborne illness associated with poultry, beef, and pork consumption. C. jejuni is highly prevalent in commercial poultry farms, where horizontal transmission from the environment is considered to be the primary source of C. jejuni. As an enteric pathogen, C. jejuni expresses virulence factors regulated by a two-component system that mediates C. jejuni's ability to survive in the host. C. jejuni survives and reproduces in the avian intestinal mucus. The avian intestinal mucus is highly sulfated and sialylated compared with the human mucus modulating C. jejuni pathogenicity into a near commensal bacteria in poultry. Birds are usually infected from two to four weeks of age and remain colonized until they reach market age. A small dose of C. jejuni (around 35 CFU/mL) is sufficient for successful bird colonization. In the U.S., where chickens are raised under antibiotic-free environments, additional strategies are required to reduce C. jejuni prevalence on broilers farms. Strict biosecurity measures can decrease C. jejuni prevalence by more than 50% in broilers at market age. Vaccination and probiotics, prebiotics, synbiotics, organic acids, bacteriophages, bacteriocins, and quorum sensing inhibitors supplementation can improve gut health and competitively exclude C. jejuni load in broilers. Most of the mentioned strategies showed promising results; however, they are not fully implemented in poultry production. Current knowledge on C. jejuni's morphology, source of transmission, pathogenesis in poultry, and available preharvest strategies to decrease C. jejuni colonization in broilers are addressed in this review.
Collapse
Affiliation(s)
| | - Shahna Fathima
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
40
|
Moreira LM, Meyer W, Chame M, Brandão ML, Vivoni AM, Portugal J, Wanke B, Trilles L. Molecular Detection of Histoplasma capsulatum in Antarctica. Emerg Infect Dis 2022; 28:2100-2104. [PMID: 36148943 PMCID: PMC9514353 DOI: 10.3201/eid2810.220046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We detected Histoplasma capsulatum in soil and penguin excreta in the Antarctic Peninsula by sequencing after performing species-specific PCR, confirming previous observations that this pathogen occurs more broadly than suspected. This finding highlights the need for surveillance of emerging agents of systemic mycoses and their transmission among regions, animals, and humans in Antarctica.
Collapse
|
41
|
Flavivirus-Host Interaction Landscape Visualized through Genome-Wide CRISPR Screens. Viruses 2022; 14:v14102164. [PMID: 36298718 PMCID: PMC9609550 DOI: 10.3390/v14102164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/25/2022] [Accepted: 09/25/2022] [Indexed: 11/14/2022] Open
Abstract
Flaviviruses comprise several important human pathogens which cause significant morbidity and mortality worldwide. Like any other virus, they are obligate intracellular parasites. Therefore, studying the host cellular factors that promote or restrict their replication and pathogenesis becomes vital. Since inhibiting the host dependency factors or activating the host restriction factors can suppress the viral replication and propagation in the cell, identifying them reveals potential targets for antiviral therapeutics. Clustered regularly interspaced short palindromic repeats (CRISPR) technology has provided an effective means of producing customizable genetic modifications and performing forward genetic screens in a broad spectrum of cell types and organisms. The ease, rapidity, and high reproducibility of CRISPR technology have made it an excellent tool for carrying out genome-wide screens to identify and characterize viral host dependency factors systematically. Here, we review the insights from various Genome-wide CRISPR screens that have advanced our understanding of Flavivirus-Host interactions.
Collapse
|
42
|
Shestopalov AM, Alekseev AY, Glupov VV, Voevoda MI. Wild Animal Migration As a Potential Threat of Introduction of New Viruses into Russia. HERALD OF THE RUSSIAN ACADEMY OF SCIENCES 2022; 92:497-504. [PMID: 36091847 PMCID: PMC9447979 DOI: 10.1134/s1019331622040220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 03/27/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
The SARS-CoV-2 pandemic has shown how serious the problem of re-emerging zoonotic infections is for our existence. Migrations of animals, which are natural reservoirs of a particular virus, play a colossal role in the spread of pathogens to new territories. Examples are the migrations of both land animals (carnivores, rodents, and ungulates) and many marine mammals (pinnipeds and cetaceans). Yet the most interesting from the point of view of the speed and range of the spread of viral infections are migrations associated with flights. In nature, these can be migrations of insects, bats, and, of course, birds. Unfortunately, there are very few studies on the migration of these animals in Russia. Considering the problems related to climate change and other environmental factors, it is important to obtain up-to-date data on the changing animal migration routes and, as a consequence, to develop domestic equipment, particularly transmitters, to fix them.
Collapse
Affiliation(s)
- A. M. Shestopalov
- Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| | - A. Yu. Alekseev
- Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| | - V. V. Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - M. I. Voevoda
- Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
43
|
Abstract
Purpose of Review West Nile virus (WNV) is an arbovirus transmitted by mosquitos of the genus Culex. Manifestations of WNV infection range from asymptomatic to devastating neuroinvasive disease leading to flaccid paralysis and death. This review examines WNV epidemiology and ecology, with an emphasis on travel-associated infection. Recent Findings WNV is widespread, including North America and Europe, where its range has expanded in the past decade. Rising temperatures in temperate regions are predicted to lead to an increased abundance of Culex mosquitoes and an increase in their ability to transmit WNV. Although the epidemiologic patterns of WNV appear variable, its geographic distribution most certainly will continue to increase. Travelers are at risk for WNV infection and its complications. Literature review identified 39 cases of documented travel-related WNV disease, the majority of which resulted in adverse outcomes, such as neuroinvasive disease, prolonged recovery period, or death. Summary The prediction of WNV risk is challenging due to the complex interactions of vector, pathogen, host, and environment. Travelers planning to visit endemic areas should be advised regarding WNV risk and mosquito bite prevention. Evaluation of ill travelers with compatible symptoms should consider the diagnosis of WNV for those visiting in endemic areas as well as for those returning from destinations with known WNV circulation.
Collapse
|
44
|
Seabirds Health and Conservation Medicine in Brazil. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Sofia M, Giannakopoulos A, Giantsis IA, Touloudi A, Birtsas P, Papageorgiou K, Athanasakopoulou Z, Chatzopoulos DC, Vrioni G, Galamatis D, Diamantopoulos V, Mpellou S, Petridou E, Kritas SK, Palli M, Georgakopoulos G, Spyrou V, Tsakris A, Chaskopoulou A, Billinis C. West Nile Virus Occurrence and Ecological Niche Modeling in Wild Bird Species and Mosquito Vectors: An Active Surveillance Program in the Peloponnese Region of Greece. Microorganisms 2022; 10:1328. [PMID: 35889046 PMCID: PMC9320058 DOI: 10.3390/microorganisms10071328] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
West Nile Virus (WNV) is maintained in nature in a bird-mosquito cycle and human infections follow a seasonal pattern, favored by climatic conditions. Peloponnese Region, located in Southern Greece, initiated an active WNV surveillance program to protect public health during 2019-2020. The project included monitoring of avian hosts and mosquito vectors, while sampling locations were prioritized after consideration of WNV circulation in birds, mosquitos and humans during previous seasons. Biological materials were collected from 493 wild birds of 25 species and 678 mosquito pools, which were molecularly screened for WNV presence. In this case, 14 environmental variables were associated with WNV detection in wild birds and mosquitos by using two separate MaxEnt models. Viral RNA was not detected in the target species during 2019, although in 2020, it was reported on 46 wild birds of ten species and 22 mosquito pools (Culex pipiens and Aedes albopictus). Altitude and land uses were significant predictors for both models and in fact, suitable conditions for virus occurrence were identified in low altitude zones. Bird- and mosquito-based surveillance systems yielded similar results and allowed for targeted vector control applications in cases of increased virus activity. Human cases were not reported on Peloponnese in 2020.
Collapse
Affiliation(s)
- Marina Sofia
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.S.); (A.G.); (A.T.); (Z.A.)
| | - Alexios Giannakopoulos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.S.); (A.G.); (A.T.); (Z.A.)
| | - Ioannis A. Giantsis
- European Biological Control Laboratory, USDA-ARS—U.S. Department of Agriculture Agricultural Research Service, 57001 Thessaloniki, Greece; (I.A.G.); (A.C.)
| | - Antonia Touloudi
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.S.); (A.G.); (A.T.); (Z.A.)
| | - Periklis Birtsas
- Faculty of Forestry, Wood Science and Design, 43100 Karditsa, Greece;
| | - Kontantinos Papageorgiou
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (K.P.); (D.C.C.)
- Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.P.); (S.K.K.)
| | - Zoi Athanasakopoulou
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.S.); (A.G.); (A.T.); (Z.A.)
| | - Dimitris C. Chatzopoulos
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (K.P.); (D.C.C.)
| | - Georgia Vrioni
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece; (G.V.); (A.T.)
| | - Dimitrios Galamatis
- Hellenic Agricultural Organization DIMITRA (ELGO DIMITRA), 54248 Thessaloniki, Greece;
| | | | - Spyridoula Mpellou
- Bioefarmoges Eleftheriou LP-Integrated Mosquito Control, 19007 Marathon, Greece;
| | - Evanthia Petridou
- Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.P.); (S.K.K.)
| | - Spyridon K. Kritas
- Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.P.); (S.K.K.)
| | - Matina Palli
- Wildlife Protection & Rehabilitation Center, 24400 Gargalianoi, Greece; (M.P.); (G.G.)
| | | | - Vassiliki Spyrou
- Faculty of Animal Science, University of Thessaly, 41110 Larissa, Greece;
| | - Athanassios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece; (G.V.); (A.T.)
| | - Alexandra Chaskopoulou
- European Biological Control Laboratory, USDA-ARS—U.S. Department of Agriculture Agricultural Research Service, 57001 Thessaloniki, Greece; (I.A.G.); (A.C.)
| | - Charalambos Billinis
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.S.); (A.G.); (A.T.); (Z.A.)
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (K.P.); (D.C.C.)
| |
Collapse
|
46
|
Rubeck LM, Wells JE, Hanford KJ, Durso LM, Schacht WH, Berry ED. Management-intensive grazing impacts on total Escherichia coli, E. coli O157:H7, and antibiotic resistance genes in a riparian stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152611. [PMID: 34995584 DOI: 10.1016/j.scitotenv.2021.152611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
The impacts of management-intensive grazing (MIG) of cattle on concentrations of total Escherichia coli, total suspended solids (TSS), and nitrate-nitrite nitrogen (NO3 + NO2-N), and occurrence of E. coli O157:H7 and selected antibiotic resistance genes (ARGs) in stream water and/or sediments were evaluated. Cattle were grazed for two-week periods in May in each of three years. Overall, grazing increased total E. coli in downstream water by 0.89 log10 MPN/100 mL (p < 0.0001), and downstream total E. coli concentrations were higher than upstream over all sampling intervals. Downstream TSS levels also increased (p ≤ 0.0294) during grazing. In contrast, there was a main effect of treatment for downstream NO3 + NO2-N to be lower than upstream (3.59 versus 3.70 mg/L; p = 0.0323). Overwintering mallard ducks increased total E. coli and TSS concentrations in January and February (p < 0.05). For precipitation events during the 24 h before sampling, each increase of 1.00 cm of rainfall increased total E. coli by 0.49 log10 MPN/100 mL (p = 0.0005). In contrast, there was no association of previous 24 h precipitation volume on TSS (p = 0.1540), and there was a negative linear effect on NO3 + NO2-N (p = 0.0002). E. coli O157:H7 prevalence was low, but the pathogen was detected downstream up to 2½ months after grazing. Examination of ARGs sul1, ermB, blactx-m-32, and intI1 identified the need for additional research to understand the impact of grazing on the ecology of these resistance determinants in pasture-based cattle production. While E. coli remained higher in downstream water compared to upstream, MIG may reduce the magnitude of the downstream E. coli concentrations. Likewise, the MIG strategy may prevent large increases in TSS and NO3 + NO2-N concentrations during heavy rain events. Results indicate that MIG can limit the negative effects of cattle grazing on stream water quality.
Collapse
Affiliation(s)
- Laura M Rubeck
- University of Nebraska-Lincoln, U.S. Meat Animal Research Center, 844 Road 313, Clay Center, NE 68933, USA
| | - James E Wells
- USDA, Agricultural Research Service, U.S. Meat Animal Research Center, 844 Road 313, Clay Center, NE 68933, USA
| | - Kathryn J Hanford
- University of Nebraska-Lincoln, Department of Statistics, 343A Hardin Hall, Lincoln, NE 68583, USA
| | - Lisa M Durso
- USDA, Agricultural Research Service, Agroecosystem Management Research Unit, 251 Filley Hall, University of Nebraska-Lincoln East Campus, Lincoln, NE 68583, USA
| | - Walter H Schacht
- University of Nebraska-Lincoln, Department of Agronomy and Horticulture, 202 Keim Hall, Lincoln, NE 68583, USA
| | - Elaine D Berry
- USDA, Agricultural Research Service, U.S. Meat Animal Research Center, 844 Road 313, Clay Center, NE 68933, USA.
| |
Collapse
|
47
|
Shan T, Yang S, Wang H, Wang H, Zhang J, Gong G, Xiao Y, Yang J, Wang X, Lu J, Zhao M, Yang Z, Lu X, Dai Z, He Y, Chen X, Zhou R, Yao Y, Kong N, Zeng J, Ullah K, Wang X, Shen Q, Deng X, Zhang J, Delwart E, Tong G, Zhang W. Virome in the cloaca of wild and breeding birds revealed a diversity of significant viruses. MICROBIOME 2022; 10:60. [PMID: 35413940 PMCID: PMC9001828 DOI: 10.1186/s40168-022-01246-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/16/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Wild birds may harbor and transmit viruses that are potentially pathogenic to humans, domestic animals, and other wildlife. RESULTS Using the viral metagenomic approach, we investigated the virome of cloacal swab specimens collected from 3182 birds (the majority of them wild species) consisting of > 87 different species in 10 different orders within the Aves classes. The virus diversity in wild birds was higher than that in breeding birds. We acquired 707 viral genomes from 18 defined families and 4 unclassified virus groups, with 265 virus genomes sharing < 60% protein sequence identities with their best matches in GenBank comprising new virus families, genera, or species. RNA viruses containing the conserved RdRp domain with no phylogenetic affinity to currently defined virus families existed in different bird species. Genomes of the astrovirus, picornavirus, coronavirus, calicivirus, parvovirus, circovirus, retrovirus, and adenovirus families which include known avian pathogens were fully characterized. Putative cross-species transmissions were observed with viruses in wild birds showing > 95% amino acid sequence identity to previously reported viruses in domestic poultry. Genomic recombination was observed for some genomes showing discordant phylogenies based on structural and non-structural regions. Mapping the next-generation sequencing (NGS) data respectively against the 707 genomes revealed that these viruses showed distribution pattern differences among birds with different habitats (breeding or wild), orders, and sampling sites but no significant differences between birds with different behavioral features (migratory and resident). CONCLUSIONS The existence of a highly diverse virome highlights the challenges in elucidating the evolution, etiology, and ecology of viruses in wild birds. Video Abstract.
Collapse
Affiliation(s)
- Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Shixing Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Haoning Wang
- School of Geography and Tourism, Harbin University, Harbin, 150886, Heilongjiang, China
- Key Laboratory of Wildlife diseases and Biosecurity Management of Heilongjiang Province, Harbin, 150886, Heilongjiang, China
| | - Hao Wang
- Department of Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, China
| | - Ju Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Ga Gong
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, Tibet, China
| | - Yuqing Xiao
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Jie Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Xiaolong Wang
- Wildlife and Protected Area College/Center of Conservation Medicine and Ecological Safety Northeast Forestry University, Harbin, 150006, Heilongjiang, China
| | - Juan Lu
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Min Zhao
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Zijun Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Xiang Lu
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Ziyuan Dai
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Yumin He
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Xu Chen
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Rui Zhou
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Yuxin Yao
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jian Zeng
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Kalim Ullah
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Xiaochun Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Quan Shen
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA, 94118, USA
| | - Jianmin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94118, USA
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China.
- International Center for Genomics Research, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
48
|
Wagner E, Shin A, Tukhanova N, Turebekov N, Nurmakhanov T, Sutyagin V, Berdibekov A, Maikanov N, Lezdinsh I, Shapiyeva Z, Shevtsov A, Freimüller K, Peintner L, Ehrhardt C, Essbauer S. First Indications of Omsk Haemorrhagic Fever Virus beyond Russia. Viruses 2022; 14:v14040754. [PMID: 35458484 PMCID: PMC9030969 DOI: 10.3390/v14040754] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023] Open
Abstract
Omsk haemorrhagic fever virus (OHFV) is the agent leading to Omsk haemorrhagic fever (OHF), a viral disease currently only known in Western Siberia in Russia. The symptoms include fever, headache, nausea, muscle pain, cough and haemorrhages. The transmission cycle of OHFV is complex. Tick bites or contact with infected small mammals are the main source of infection. The Republic of Kazakhstan is adjacent to the endemic areas of OHFV in Russia and febrile diseases with haemorrhages occur throughout the country—often with unclear aetiology. In this study, we examined human cerebrospinal fluid samples of patients with suspected meningitis or meningoencephalitis with unknown origins for the presence of OHFV RNA. Further, reservoir hosts such as rodents and ticks from four Kazakhstan regions were screened for OHFV RNA to clarify if this virus could be the causative agent for many undiagnosed cases of febrile diseases in humans in Kazakhstan. Out of 130 cerebrospinal fluid samples, two patients (1.53%) originating from Almaty city were positive for OHFV RNA. Screening of tick samples revealed positive pools from different areas in the Akmola region. Of the caught rodents, 1.1% out of 621 were positive for OHFV at four trapping areas from the West Kazakhstan region. In this paper, we present a broad investigation of the spread of OHFV in Kazakhstan in human cerebrospinal fluid samples, rodents and ticks. Our study shows for the first time that OHFV can not only be found in the area of Western Siberia in Russia, but can also be detected up to 1.600 km away in the Almaty region in patients and natural foci.
Collapse
Affiliation(s)
- Edith Wagner
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, 07743 Jena, Germany; (E.W.); (C.E.)
- Department of Virology and Intracellular Agents, Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (K.F.); (S.E.)
| | - Anna Shin
- Center for International Health, University Hospital, LMU, 80336 Munich, Germany; (A.S.); (N.T.)
- Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty 050000, Kazakhstan; (N.T.); (T.N.)
| | - Nur Tukhanova
- Center for International Health, University Hospital, LMU, 80336 Munich, Germany; (A.S.); (N.T.)
- Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty 050000, Kazakhstan; (N.T.); (T.N.)
| | - Nurkeldi Turebekov
- Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty 050000, Kazakhstan; (N.T.); (T.N.)
| | - Talgat Nurmakhanov
- Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty 050000, Kazakhstan; (N.T.); (T.N.)
| | - Vitaliy Sutyagin
- Antiplague Station Taldykorgan, Branch Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Taldykorgan 040000, Kazakhstan; (V.S.); (A.B.); (I.L.)
| | - Almas Berdibekov
- Antiplague Station Taldykorgan, Branch Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Taldykorgan 040000, Kazakhstan; (V.S.); (A.B.); (I.L.)
| | - Nurbek Maikanov
- Oral Antiplague Station, Branch Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Oral 090002, Kazakhstan;
| | - Ilmars Lezdinsh
- Antiplague Station Taldykorgan, Branch Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Taldykorgan 040000, Kazakhstan; (V.S.); (A.B.); (I.L.)
| | - Zhanna Shapiyeva
- Scientific Practical Center of Sanitary Epidemiological Expertise and Monitoring, Almaty 050000, Kazakhstan;
| | | | - Klaus Freimüller
- Department of Virology and Intracellular Agents, Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (K.F.); (S.E.)
| | - Lukas Peintner
- Department of Virology and Intracellular Agents, Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (K.F.); (S.E.)
- Correspondence: ; Tel.: +49-89-992-692-3813
| | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, 07743 Jena, Germany; (E.W.); (C.E.)
| | - Sandra Essbauer
- Department of Virology and Intracellular Agents, Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (K.F.); (S.E.)
| |
Collapse
|
49
|
García-Carrasco JM, Muñoz AR, Olivero J, Segura M, Real R. Mapping the Risk for West Nile Virus Transmission, Africa. Emerg Infect Dis 2022; 28:777-785. [PMID: 35318911 PMCID: PMC8962882 DOI: 10.3201/eid2804.211103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
West Nile virus (WNV) is an emergent arthropodborne virus that is transmitted from bird to bird by mosquitoes. Spillover events occur when infected mosquitoes bite mammals. We created a geopositioned database of WNV presence in Africa and considered reports of the virus in all animal components: reservoirs, vectors, and nonhuman dead-end hosts. We built various biogeographic models to determine which drivers explain the distribution of WNV throughout Africa. Wetlands of international importance for birds accounted for the detection of WNV in all animal components, whereas human-related drivers played a key role in the epizootic cases. We combined these models to obtain an integrative and large-scale perspective of the areas at risk for WNV spillover. Understanding which areas pose the highest risk would enable us to address the management of this spreading disease and to comprehend the translocation of WNV outside Africa through avian migration routes.
Collapse
|
50
|
Mishra C, Samelius G, Khanyari M, Srinivas PN, Low M, Esson C, Venkatachalam S, Johansson Ö. Increasing risks for emerging infectious diseases within a rapidly changing High Asia. AMBIO 2022; 51:494-507. [PMID: 34292521 PMCID: PMC8297435 DOI: 10.1007/s13280-021-01599-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/24/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The cold and arid mountains and plateaus of High Asia, inhabited by a relatively sparse human population, a high density of livestock, and wildlife such as the iconic snow leopard Panthera uncia, are usually considered low risk for disease outbreaks. However, based on current knowledge about drivers of disease emergence, we show that High Asia is rapidly developing conditions that favor increased emergence of infectious diseases and zoonoses. This is because of the existing prevalence of potentially serious pathogens in the system; intensifying environmental degradation; rapid changes in local ecological, socio-ecological, and socio-economic factors; and global risk intensifiers such as climate change and globalization. To better understand and manage the risks posed by diseases to humans, livestock, and wildlife, there is an urgent need for establishing a disease surveillance system and improving human and animal health care. Public health must be integrated with conservation programs, more ecologically sustainable development efforts and long-term disease surveillance.
Collapse
Affiliation(s)
- Charudutt Mishra
- Snow Leopard Trust, 4649 Sunnyside Avenue North, Seattle, USA
- Nature Conservation Foundation, 3076/5, IV Cross Gokulam Park, Mysore, India
| | - Gustaf Samelius
- Snow Leopard Trust, 4649 Sunnyside Avenue North, Seattle, USA
- Nordens Ark, Åby Säteri, 456 93 Hunnebostrand, Sweden
| | - Munib Khanyari
- Snow Leopard Trust, 4649 Sunnyside Avenue North, Seattle, USA
- Nature Conservation Foundation, 3076/5, IV Cross Gokulam Park, Mysore, India
- Interdisciplinary Center for Conservation Sciences, Oxford, University UK
- Department of Biological Sciences, University of Bristol, Bristol, UK
| | | | - Matthew Low
- Department of Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Carol Esson
- 41 Walnut Close, Speewah, Queensland, 4881 Australia
| | - Suri Venkatachalam
- Snow Leopard Trust, 4649 Sunnyside Avenue North, Seattle, USA
- Nature Conservation Foundation, 3076/5, IV Cross Gokulam Park, Mysore, India
| | - Örjan Johansson
- Snow Leopard Trust, 4649 Sunnyside Avenue North, Seattle, USA
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, 73091 Riddarhyttan, Sweden
| |
Collapse
|