1
|
Graf K, Jamous R, Mückschel M, Bluschke A, Beste C. Delayed modulation of alpha band activity increases response inhibition deficits in adolescents with AD(H)D. Neuroimage Clin 2024; 44:103677. [PMID: 39362044 PMCID: PMC11474224 DOI: 10.1016/j.nicl.2024.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Deficiencies in inhibitory control are one of the hallmarks of attention-deficit-(hyperactivity) disorder (AD(H)D). Response inhibition demands can become increased through additional conflicts, namely when already integrated representations of perception-action associations have to be updated. Yet, the neural mechanisms of how such conflicts worsen response inhibition in AD(H)D are unknown, but, if identified, could help to better understand the complex nature of AD(H)D-associated impulsivity. We investigated both behavioral performance and EEG activity in the theta and alpha band of adolescents (10-18 years of age) with AD(H)D (n = 28) compared to neurotypical (NT) controls (n = 33) in a conflict-modulated Go/Nogo paradigm. We used multivariate pattern analysis (MVPA) and EEG-beamforming to examine how changes in representational content are coded by oscillatory activity and to delineate the cortical structures involved in it. The presented behavioral and neurophysiological data show that adolescents with AD(H)D are more strongly affected by increased response inhibition demands through additional conflicts than NT controls. Precisely, AD(H)D participants showed higher false alarm rates than NT controls in both, non-overlapping and overlapping Nogo trials, but performed even worse in the latter. This is likely due to an inefficient updating of representations related to delayed modulations of alpha band activity in the ventral stream and orbitofrontal regions. Theta band activity is also modulated by conflict but was not differentially affected in the two groups. By this, the present study provides novel insights into underlying neurophysiological mechanisms of the complex nature of response inhibition deficits in adolescents with AD(H)D, stressing the importance to examine the interplay of theta and alpha band activity more closely to better understand inhibitory control deficits in AD(H)D.
Collapse
Affiliation(s)
- Katharina Graf
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany.
| |
Collapse
|
2
|
Ozarkar SS, Patel RKR, Vulli T, Smith AL, Shen MD, Burette AC, Philpot BD, Styner MA, Hazlett HC. Comparative profiling of white matter development in the human and mouse brain reveals volumetric deficits and delayed myelination in Angelman syndrome. RESEARCH SQUARE 2024:rs.3.rs-4681861. [PMID: 39149488 PMCID: PMC11326408 DOI: 10.21203/rs.3.rs-4681861/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background Angelman syndrome (AS), a severe neurodevelopmental disorder resulting from the loss of the maternal UBE3A gene, is marked by changes in the brain's white matter (WM). The extent of WM abnormalities seems to correlate with the severity of clinical symptoms, but these deficits are still not well characterized or understood. This study provides the first large-scale measurement of WM volume reduction in children with AS. Furthermore, we probed the underlying neuropathology by examining the progression of myelination in an AS mouse model. Methods We conducted magnetic resonance imaging (MRI) on children with AS (n=32) and neurotypical controls (n=99) aged 0.5-12 years. In parallel, we examined myelination in postnatal Ube3a maternal-null mice (Ube3a m-/p+; AS model), Ube3a paternal-null mice (Ube3a m+/p-), and wildtype controls (Ube3a m+/p+) using immunohistochemistry, Western blotting, and electron microscopy. Results Our data revealed that AS individuals exhibit significant reductions in brain volume by ~1 year of age, with WM reduced by 26% and gray matter by 21% by 6-12 years of age-approximately twice the reductions observed in the adult AS mouse model. In our AS mouse model, we saw a global delay in the onset of myelination, which normalized within days (likely corresponding to months or years in human development). This myelination delay is caused by the loss of UBE3A in neurons rather than UBE3A haploinsufficiency in oligodendrocytes. Interestingly, ultrastructural analyses did not reveal any abnormalities in myelinated or unmyelinated axons. Limitations It is difficult to extrapolate the timing and duration of the myelination delay observed in AS model mice to individuals with AS. Conclusions This study reveals WM deficits as a hallmark in children with AS, demonstrating for the first time that these deficits are already apparent at 1 year of age. Parallel studies in a mouse model of AS show that these deficits may be associated with delayed onset of myelination due to the loss of neuronal (but not glial) UBE3A. These findings emphasize the potential of WM as both a therapeutic target for interventions and a valuable biomarker for tracking the progression of AS and the effectiveness of potential treatments.
Collapse
Affiliation(s)
- Siddhi S Ozarkar
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ridthi K-R Patel
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Tasmai Vulli
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Audrey L Smith
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark D Shen
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Alain C Burette
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Benjamin D Philpot
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Martin A Styner
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel
| | - Heather C Hazlett
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
3
|
van der Es T, Soheili-Nezhad S, Roth Mota N, Franke B, Buitelaar J, Sprooten E. Exploring the genetic architecture of brain structure and ADHD using polygenic neuroimaging-derived scores. Am J Med Genet B Neuropsychiatr Genet 2024:e32987. [PMID: 39016115 DOI: 10.1002/ajmg.b.32987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/24/2024] [Accepted: 05/11/2024] [Indexed: 07/18/2024]
Abstract
Genome-wide association studies (GWAS) have provided valuable insights into the genetic basis of neuropsychiatric disorders and highlighted their complexity. Careful consideration of the polygenicity and complex genetic architecture could aid in the understanding of the underlying brain mechanisms. We introduce an innovative approach to polygenic scoring, utilizing imaging-derived phenotypes (IDPs) to predict a clinical phenotype. We leveraged IDP GWAS data from the UK Biobank, to create polygenic imaging-derived scores (PIDSs). As a proof-of-concept, we assessed genetic variations in brain structure between individuals with ADHD and unaffected controls across three NeuroIMAGE waves (n = 954). Out of the 94 PIDS, 72 exhibited significant associations with their corresponding IDPs in an independent sample. Notably, several global measures, including cerebellum white matter, cerebellum cortex, and cerebral white matter, displayed substantial variance explained for their respective IDPs, ranging from 3% to 5.7%. Conversely, the associations between each IDP and the clinical ADHD phenotype were relatively weak. These findings highlight the growing power of GWAS in structural neuroimaging traits, enabling the construction of polygenic scores that accurately reflect the underlying polygenic architecture. However, to establish robust connections between PIDS and behavioral or clinical traits such as ADHD, larger samples are needed. Our novel approach to polygenic risk scoring offers a valuable tool for researchers in the field of psychiatric genetics.
Collapse
Affiliation(s)
- Tim van der Es
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | | | - Nina Roth Mota
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emma Sprooten
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Knežević M. Temporal Course of Interference Control from Early to Late Young Adulthood: An ERP Study. Brain Sci 2024; 14:536. [PMID: 38928537 PMCID: PMC11202022 DOI: 10.3390/brainsci14060536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
In the present study, we aimed to investigate the neural dynamics of interference control using event-related potentials (ERPs) to reveal time course of interference control from the beginning to the end of young adulthood. Three groups of participants aged 19-21, 23-27 and 28-44 performed a Stroop task. The results revealed age differences in both accuracy and ERP amplitudes during all aspects of interreference control processing that reflect selective attention (P2), conflict monitoring (N2), conflict evaluation (P3) and interference control (N450). Both younger groups made more errors on incongruent trials compared to participants in their early 30s. The presence of higher P2 and N2 amplitudes, diminished P3 and again higher N450 amplitudes in participants in their early 20s points to a shortage of available resources for top-down control at this age. These results are in accordance with structural and functional studies that show that development of the frontoparietal network, which underlies interference control, continues after adolescence. While brain mechanisms are still developing, the use of accompanying cognitive abilities is still not optimal. The findings that change in neural dynamics and related performance continues into early adulthood challenge current models of cognitive development and call for new directions in developmental theorizing.
Collapse
Affiliation(s)
- Martina Knežević
- Department of Psychology, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Farrher E, Grinberg F, Khechiashvili T, Neuner I, Konrad K, Shah NJ. Spatiotemporal Patterns of White Matter Maturation after Pre-Adolescence: A Diffusion Kurtosis Imaging Study. Brain Sci 2024; 14:495. [PMID: 38790472 PMCID: PMC11119177 DOI: 10.3390/brainsci14050495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Diffusion tensor imaging (DTI) enables the assessment of changes in brain tissue microstructure during maturation and ageing. In general, patterns of cerebral maturation and decline render non-monotonic lifespan trajectories of DTI metrics with age, and, importantly, the rate of microstructural changes is heterochronous for various white matter fibres. Recent studies have demonstrated that diffusion kurtosis imaging (DKI) metrics are more sensitive to microstructural changes during ageing compared to those of DTI. In a previous work, we demonstrated that the Cohen's d of mean diffusional kurtosis (dMK) represents a useful biomarker for quantifying maturation heterochronicity. However, some inferences on the maturation grades of different fibre types, such as association, projection, and commissural, were of a preliminary nature due to the insufficient number of fibres considered. Hence, the purpose of this follow-up work was to further explore the heterochronicity of microstructural maturation between pre-adolescence and middle adulthood based on DTI and DKI metrics. Using the effect size of the between-group parametric changes and Cohen's d, we observed that all commissural fibres achieved the highest level of maturity, followed by the majority of projection fibres, while the majority of association fibres were the least matured. We also demonstrated that dMK strongly correlates with the maxima or minima of the lifespan curves of DTI metrics. Furthermore, our results provide substantial evidence for the existence of spatial gradients in the timing of white matter maturation. In conclusion, our data suggest that DKI provides useful biomarkers for the investigation of maturation spatial heterogeneity and heterochronicity.
Collapse
Affiliation(s)
- Ezequiel Farrher
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, 52425 Jülich, Germany; (F.G.); (T.K.); (I.N.); (N.J.S.)
| | - Farida Grinberg
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, 52425 Jülich, Germany; (F.G.); (T.K.); (I.N.); (N.J.S.)
- Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany
| | - Tamara Khechiashvili
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, 52425 Jülich, Germany; (F.G.); (T.K.); (I.N.); (N.J.S.)
| | - Irene Neuner
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, 52425 Jülich, Germany; (F.G.); (T.K.); (I.N.); (N.J.S.)
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
- JARA—BRAIN—Translational Medicine, 52074 Aachen, Germany;
| | - Kerstin Konrad
- JARA—BRAIN—Translational Medicine, 52074 Aachen, Germany;
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry and Psychotherapy, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Neuroscience and Medicine 3, INM-3, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, 52425 Jülich, Germany; (F.G.); (T.K.); (I.N.); (N.J.S.)
- Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany
- JARA—BRAIN—Translational Medicine, 52074 Aachen, Germany;
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
6
|
Calixto C, Soldatelli MD, Jaimes C, Warfield SK, Gholipour A, Karimi D. A detailed spatio-temporal atlas of the white matter tracts for the fetal brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.590815. [PMID: 38712296 PMCID: PMC11071632 DOI: 10.1101/2024.04.26.590815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This study presents the construction of a comprehensive spatiotemporal atlas detailing the development of white matter tracts in the fetal brain using diffusion magnetic resonance imaging (dMRI). Our research leverages data collected from fetal MRI scans conducted between 22 and 37 weeks of gestation, capturing the dynamic changes in the brain's microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers. We employed advanced fetal dMRI processing techniques and tractography to map and characterize the developmental trajectories of these tracts. Our findings reveal that the development of these tracts is characterized by complex patterns of fractional anisotropy (FA) and mean diffusivity (MD), reflecting key neurodevelopmental processes such as axonal growth, involution of the radial-glial scaffolding, and synaptic pruning. This atlas can serve as a useful resource for neuroscience research and clinical practice, improving our understanding of the fetal brain and potentially aiding in the early diagnosis of neurodevelopmental disorders. By detailing the normal progression of white matter tract development, the atlas can be used as a benchmark for identifying deviations that may indicate neurological anomalies or predispositions to disorders.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| | | | - Camilo Jaimes
- Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
| | - Simon K Warfield
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| | - Ali Gholipour
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| | - Davood Karimi
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| |
Collapse
|
7
|
Fatemi SH, Otte ED, Folsom TD, Eschenlauer AC, Roper RJ, Aman JW, Thuras PD. Early Chronic Fluoxetine Treatment of Ts65Dn Mice Rescues Synaptic Vesicular Deficits and Prevents Aberrant Proteomic Alterations. Genes (Basel) 2024; 15:452. [PMID: 38674386 PMCID: PMC11049293 DOI: 10.3390/genes15040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Down syndrome (DS) is the most common form of inherited intellectual disability caused by trisomy of chromosome 21, presenting with intellectual impairment, craniofacial abnormalities, cardiac defects, and gastrointestinal disorders. The Ts65Dn mouse model replicates many abnormalities of DS. We hypothesized that investigation of the cerebral cortex of fluoxetine-treated trisomic mice may provide proteomic signatures that identify therapeutic targets for DS. Subcellular fractionation of synaptosomes from cerebral cortices of age- and brain-area-matched samples from fluoxetine-treated vs. water-treated trisomic and euploid male mice were subjected to HPLC-tandem mass spectrometry. Analysis of the data revealed enrichment of trisomic risk genes that participate in regulation of synaptic vesicular traffic, pre-synaptic and post-synaptic development, and mitochondrial energy pathways during early brain development. Proteomic analysis of trisomic synaptic fractions revealed significant downregulation of proteins involved in synaptic vesicular traffic, including vesicular endocytosis (CLTA, CLTB, CLTC), synaptic assembly and maturation (EXOC1, EXOC3, EXOC8), anterograde axonal transport (EXOC1), neurotransmitter transport to PSD (SACM1L), endosomal-lysosomal acidification (ROGDI, DMXL2), and synaptic signaling (NRXN1, HIP1, ITSN1, YWHAG). Additionally, trisomic proteomes revealed upregulation of several trafficking proteins, involved in vesicular exocytosis (Rab5B), synapse elimination (UBE3A), scission of endocytosis (DBN1), transport of ER in dendritic spines (MYO5A), presynaptic activity-dependent bulk endocytosis (FMR1), and NMDA receptor activity (GRIN2A). Chronic fluoxetine treatment of Ts65Dn mice rescued synaptic vesicular abnormalities and prevented abnormal proteomic changes in adult Ts65Dn mice, pointing to therapeutic targets for potential treatment of DS.
Collapse
Affiliation(s)
- S. Hossein Fatemi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Elysabeth D. Otte
- Department of Biology, Indiana University, Indianapolis, IN 46202, USA;
| | - Timothy D. Folsom
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Arthur C. Eschenlauer
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Randall J. Roper
- Department of Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA;
| | - Justin W. Aman
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Paul D. Thuras
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School and VA Health Care System, One Veterans Drive, Minneapolis, MN 55417, USA
| |
Collapse
|
8
|
Ding JR, Feng C, Zhang H, Li Y, Tang Z, Chen Q, Ding X, Wang M, Ding Z. Changes in Resting-State Networks in Children with Growth Hormone Deficiency. Brain Connect 2024; 14:84-91. [PMID: 38264988 DOI: 10.1089/brain.2023.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Purpose: Growth hormone deficiency (GHD) refers to the partial or complete lack of growth hormone. Short stature and slow growth are characteristic of patients with GHD. Previous neuroimaging studies have suggested that GHD may cause cognitive and behavioral impairments in patients. Resting-state networks (RSNs) are regions of the brain that exhibit synchronous activity and are closely related to our cognition and behavior. Therefore, the purpose of the current study was to explore cognitive and behavioral abnormalities in children with GHD by investigating changes in RSNs. Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) data of 26 children with GHD and 15 healthy controls (HCs) were obtained. Independent component analysis was used to identify seven RSNs from rs-fMRI data. Group differences in RSNs were estimated using two-sample t-tests. Correlation analysis was employed to investigate the associations among the areas of difference and clinical measures. Results: Compared with HCs, children with GHD had significant differences in the salience network (SN), default mode network (DMN), language network (LN), and sensorimotor network (SMN). Moreover, within the SN, the functional connectivity (FC) value of the right posterior supramarginal gyrus was negatively correlated with the adrenocorticotropic hormone and the FC value of the left anterior inferior parietal gyrus was positively correlated with insulin-like growth factor 1. Conclusions: These results suggest that alterations in RSNs may account for abnormal cognition and behavior in children with GHD, such as decreased motor function, language withdrawal, anxiety, and social anxiety. These findings provide neuroimaging support for uncovering the pathophysiological mechanisms of GHD in children. Impact statement Children with growth hormone deficiency (GHD) generally experience cognitive and behavioral abnormalities. However, there are few neuroimaging studies on children with GHD. Moreover, prior research has not investigated the aberrant brain function in patients with GHD from the perspective of brain functional networks. Therefore, this study employed the independent component analysis method to investigate alterations within seven commonly observed resting-state networks due to GHD. The results showed that children with GHD had significant differences in the salience network, default mode network, language network, and sensorimotor network. This provides neuroimaging support for revealing the pathophysiological mechanisms of GHD in children.
Collapse
Affiliation(s)
- Ju-Rong Ding
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, P.R. China
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong, P.R. China
| | - Chenyu Feng
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, P.R. China
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong, P.R. China
| | - Hui Zhang
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, P.R. China
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong, P.R. China
| | - Yuan Li
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, P.R. China
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong, P.R. China
| | - Zhiling Tang
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, P.R. China
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong, P.R. China
| | - Qiang Chen
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, P.R. China
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong, P.R. China
| | - Xin Ding
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, P.R. China
| | - Mei Wang
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| |
Collapse
|
9
|
Kim MJ, Hong E, Yum MS, Lee YJ, Kim J, Ko TS. Deep learning-based, fully automated, pediatric brain segmentation. Sci Rep 2024; 14:4344. [PMID: 38383725 PMCID: PMC10881508 DOI: 10.1038/s41598-024-54663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
The purpose of this study was to demonstrate the performance of a fully automated, deep learning-based brain segmentation (DLS) method in healthy controls and in patients with neurodevelopmental disorders, SCN1A mutation, under eleven. The whole, cortical, and subcortical volumes of previously enrolled 21 participants, under 11 years of age, with a SCN1A mutation, and 42 healthy controls, were obtained using a DLS method, and compared to volumes measured by Freesurfer with manual correction. Additionally, the volumes which were calculated with the DLS method between the patients and the control group. The volumes of total brain gray and white matter using DLS method were consistent with that volume which were measured by Freesurfer with manual correction in healthy controls. Among 68 cortical parcellated volume analysis, the volumes of only 7 areas measured by DLS methods were significantly different from that measured by Freesurfer with manual correction, and the differences decreased with increasing age in the subgroup analysis. The subcortical volume measured by the DLS method was relatively smaller than that of the Freesurfer volume analysis. Further, the DLS method could perfectly detect the reduced volume identified by the Freesurfer software and manual correction in patients with SCN1A mutations, compared with healthy controls. In a pediatric population, this new, fully automated DLS method is compatible with the classic, volumetric analysis with Freesurfer software and manual correction, and it can also well detect brain morphological changes in children with a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Min-Jee Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, Ulsan University College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| | | | - Mi-Sun Yum
- Department of Pediatrics, Asan Medical Center Children's Hospital, Ulsan University College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| | - Yun-Jeong Lee
- Department of Pediatrics, Kyungpook National University Hospital and School of Medicine, Kyungpook National University, Daegu, South Korea
| | | | - Tae-Sung Ko
- Department of Pediatrics, Asan Medical Center Children's Hospital, Ulsan University College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| |
Collapse
|
10
|
Soman SM, Vijayakumar N, Thomson P, Ball G, Hyde C, Silk TJ. Cortical structural and functional coupling during development and implications for attention deficit hyperactivity disorder. Transl Psychiatry 2023; 13:252. [PMID: 37433763 DOI: 10.1038/s41398-023-02546-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
Functional connectivity is scaffolded by the structural connections of the brain. Disruptions of either structural or functional connectivity can lead to deficits in cognitive functions and increase the risk for neurodevelopmental disorders such as attention deficit hyperactivity disorder (ADHD). To date, very little research has examined the association between structural and functional connectivity in typical development, while no studies have attempted to understand the development of structure-function coupling in children with ADHD. 175 individuals (84 typically developing children and 91 children with ADHD) participated in a longitudinal neuroimaging study with up to three waves. In total, we collected 278 observations between the ages 9 and 14 (139 each in typically developing controls and ADHD). Regional measures of structure-function coupling were calculated at each timepoint using Spearman's rank correlation and mixed effect models were used to determine group differences and longitudinal changes in coupling over time. In typically developing children, we observed increases in structure-function coupling strength across multiple higher-order cognitive and sensory regions. Overall, weaker coupling was observed in children with ADHD, mainly in the prefrontal cortex, superior temporal gyrus, and inferior parietal cortex. Further, children with ADHD showed an increased rate of coupling strength predominantly in the inferior frontal gyrus, superior parietal cortex, precuneus, mid-cingulate, and visual cortex, compared to no corresponding change over time in typically developing controls. This study provides evidence of the joint maturation of structural and functional brain connections in typical development across late childhood to mid-adolescence, particularly in regions that support cognitive maturation. Findings also suggest that children with ADHD exhibit different patterns of structure-function coupling, suggesting atypical patterns of coordinated white matter and functional connectivity development predominantly in the regions overlapping with the default mode network, salience network, and dorsal attention network during late childhood to mid-adolescence.
Collapse
Affiliation(s)
- Shania Mereen Soman
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Burwood, VIC, 3125, Australia.
| | - Nandita Vijayakumar
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Burwood, VIC, 3125, Australia
| | - Phoebe Thomson
- Child Mind Institute, New York, NY, 10022, USA
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Gareth Ball
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
- Developmental Imaging, Murdoch Children's Research Institute, Flemington Road, Parkville, VIC, 3052, Australia
| | - Christian Hyde
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Burwood, VIC, 3125, Australia
| | - Timothy J Silk
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Burwood, VIC, 3125, Australia.
- Developmental Imaging, Murdoch Children's Research Institute, Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
11
|
Sanches ES, Boia R, Leitão RA, Madeira MH, Fontes-Ribeiro CA, Ambrósio AF, Fernandes R, Silva AP. Attention-Deficit/Hyperactivity Disorder Animal Model Presents Retinal Alterations and Methylphenidate Has a Differential Effect in ADHD versus Control Conditions. Antioxidants (Basel) 2023; 12:antiox12040937. [PMID: 37107312 PMCID: PMC10135983 DOI: 10.3390/antiox12040937] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most prevalent neurodevelopmental disorders. Interestingly, children with ADHD seem to experience more ophthalmologic abnormalities, and the impact of methylphenidate (MPH) use on retinal physiology remains unclear. Thus, we aimed to unravel the retina's structural, functional, and cellular alterations and the impact of MPH in ADHD versus the control conditions. For that, spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were used as animal models of ADHD and the controls, respectively. Animals were divided into four experimental groups as follows: WKY vehicle (Veh; tap water), WKY MPH (1.5 mg/kg/day), SHR Veh, SHR MPH. Individual administration was performed by gavage between P28-P55. Retinal physiology and structure were evaluated at P56 followed by tissue collection and analysis. The ADHD animal model presents the retinal structural, functional, and neuronal deficits, as well as the microglial reactivity, astrogliosis, blood-retinal barrier (BRB) hyperpermeability and a pro-inflammatory status. In this model, MPH had a beneficial effect on reducing microgliosis, BRB dysfunction, and inflammatory response, but did not correct the neuronal and functional alterations in the retina. Curiously, in the control animals, MPH showed an opposite effect since it impaired the retinal function, neuronal cells, and BRB integrity, and also promoted both microglia reactivity and upregulation of pro-inflammatory mediators. This study unveils the retinal alterations in ADHD and the opposite effects induced by MPH in the retina of ADHD and the control animal models.
Collapse
Affiliation(s)
- Eliane S Sanches
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Raquel Boia
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Ricardo A Leitão
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Maria H Madeira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Carlos A Fontes-Ribeiro
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Rosa Fernandes
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Ana Paula Silva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
12
|
Kelly CE, Shaul M, Thompson DK, Mainzer RM, Yang JY, Dhollander T, Cheong JL, Inder TE, Doyle LW, Anderson PJ. Long-lasting effects of very preterm birth on brain structure in adulthood: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 147:105082. [PMID: 36775083 DOI: 10.1016/j.neubiorev.2023.105082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/01/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Early life experiences, such as very preterm (VP) birth, can affect brain and cognitive development. Several prior studies investigated brain structure in adults born VP; synthesising these studies may help to provide a clearer understanding of long-term effects of VP birth on the brain. We systematically searched Medline and Embase for articles that investigated brain structure using MRI in adulthood in individuals born VP (<32 weeks' gestation) or with very low birth weight (VLBW; <1500 g), and controls born at term or with normal birth weight. In total, 77 studies met the review inclusion criteria, of which 28 studies were eligible for meta-analyses, including data from up to 797 VP/VLBW participants and 518 controls, aged 18-33 years. VP/VLBW adults exhibited volumetric, morphologic and microstructural alterations in subcortical and temporal cortical regions compared with controls, with pooled standardised mean differences up to - 1.0 (95% confidence interval: -1.2, -0.8). This study suggests there is a persisting neurological impact of VP birth, which may provide developmental neurobiological insights for adult cognition in high-risk populations.
Collapse
Affiliation(s)
- Claire E Kelly
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Michelle Shaul
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Deakin University, Melbourne, Australia
| | - Deanne K Thompson
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Rheanna M Mainzer
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Clinical Epidemiology and Biostatistics Unit, Population Health, Murdoch Children's Research Institute, Melbourne, Australia
| | - Joseph Ym Yang
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia; Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jeanie Ly Cheong
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Terrie E Inder
- Department of Pediatrics, Children's Hospital of Orange County, University of California Irvine, CA, USA
| | - Lex W Doyle
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Peter J Anderson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
13
|
DiPiero M, Rodrigues PG, Gromala A, Dean DC. Applications of advanced diffusion MRI in early brain development: a comprehensive review. Brain Struct Funct 2023; 228:367-392. [PMID: 36585970 PMCID: PMC9974794 DOI: 10.1007/s00429-022-02605-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Brain development follows a protracted developmental timeline with foundational processes of neurodevelopment occurring from the third trimester of gestation into the first decade of life. Defining structural maturational patterns of early brain development is a critical step in detecting divergent developmental trajectories associated with neurodevelopmental and psychiatric disorders that arise later in life. While considerable advancements have already been made in diffusion magnetic resonance imaging (dMRI) for pediatric research over the past three decades, the field of neurodevelopment is still in its infancy with remarkable scientific and clinical potential. This comprehensive review evaluates the application, findings, and limitations of advanced dMRI methods beyond diffusion tensor imaging, including diffusion kurtosis imaging (DKI), constrained spherical deconvolution (CSD), neurite orientation dispersion and density imaging (NODDI) and composite hindered and restricted model of diffusion (CHARMED) to quantify the rapid and dynamic changes supporting the underlying microstructural architectural foundations of the brain in early life.
Collapse
Affiliation(s)
- Marissa DiPiero
- Department of Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Alyssa Gromala
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
14
|
Huang H, Ma X, Yue X, Kang S, Rao Y, Long W, Liang Y, Li Y, Chen Y, Lyu W, Wu J, Tan X, Qiu S. Cortical gray matter microstructural alterations in patients with type 2 diabetes mellitus. Brain Behav 2022; 12:e2746. [PMID: 36059152 PMCID: PMC9575596 DOI: 10.1002/brb3.2746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Neurodegenerative processes are widespread in the brains of type 2 diabetes mellitus (T2DM) patients; gaps remain to exist in the current knowledge of the associated gray matter (GM) microstructural alterations. METHODS A cross-sectional study was conducted to investigate alterations in GM microarchitecture in T2DM patients by diffusion tensor imaging and neurite orientation dispersion and density imaging (NODDI). Seventy-eight T2DM patients and seventy-four age-, sex-, and education level-matched healthy controls (HCs) without cognitive impairment were recruited. Cortical macrostructure and GM microstructure were assessed by surface-based analysis and GM-based spatial statistics (GBSS), respectively. Machine learning models were trained to evaluate the diagnostic values of cortical intracellular volume fraction (ICVF) for the classification of T2DM versus HCs. RESULTS There were no differences in cortical thickness or area between the groups. GBSS analysis revealed similar GM microstructural patterns of significantly decreased fractional anisotropy, increased mean diffusivity and radial diffusivity in T2DM patients involving the frontal and parietal lobes, and significantly lower ICVF values were observed in nearly all brain regions of T2DM patients. A support vector machine model with a linear kernel was trained to realize the T2DM versus HC classification and exhibited the highest performance among the trained models, achieving an accuracy of 74% and an area under the curve of 83%. CONCLUSIONS NODDI may help to probe the widespread GM neuritic density loss in T2DM patients occurs before measurable macrostructural alterations. The cortical ICVF values may provide valuable diagnostic information regarding the early GM microstructural alterations in T2DM.
Collapse
Affiliation(s)
- Haoming Huang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Xiaomeng Ma
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Xiaomei Yue
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Shangyu Kang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Yawen Rao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Wenjie Long
- Department of Geriatrics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Yi Liang
- Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Yifan Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Yuna Chen
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Wenjiao Lyu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Jinjian Wu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China.,Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
15
|
McGowan AL, Parkes L, He X, Stanoi O, Kang Y, Lomax S, Jovanova M, Mucha PJ, Ochsner KN, Falk EB, Bassett DS, Lydon-Staley DM. Controllability of Structural Brain Networks and the Waxing and Waning of Negative Affect in Daily Life. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:432-439. [PMID: 36324655 PMCID: PMC9616346 DOI: 10.1016/j.bpsgos.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/20/2022] Open
Abstract
Background The waxing and waning of negative affect in daily life is normative, reflecting an adaptive capacity to respond flexibly to changing circumstances. However, understanding of the brain structure correlates of affective variability in naturalistic settings has been limited. Using network control theory, we examine facets of brain structure that may enable negative affect variability in daily life. Methods We used diffusion-weighted imaging data from 95 young adults (age [in years]: mean = 20.19, SD = 1.80; 56 women) to construct structural connectivity networks that map white matter fiber connections between 200 cortical and 14 subcortical regions. We applied network control theory to these structural networks to estimate the degree to which each brain region's pattern of structural connectivity facilitates the spread of activity to other brain systems. We examined how the average controllability of functional brain systems relates to negative affect variability, computed by taking the standard deviation of negative affect self-reports collected via smartphone-based experience sampling twice per day over 28 days as participants went about their daily lives. Results We found that high average controllability of the cingulo-insular system is associated with increased negative affect variability. We also found that greater negative affect variability is related to the presence of more depressive symptoms, yet average controllability of the cingulo-insular system was not associated with depressive symptoms. Conclusions Our results highlight the role that brain structure plays in affective dynamics as observed in the context of daily life, suggesting that average controllability of the cingulo-insular system promotes normative negative affect variability.
Collapse
Affiliation(s)
- Amanda L. McGowan
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Linden Parkes
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaosong He
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Psychology, School of Humanities and Social Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Ovidia Stanoi
- Department of Psychology, Columbia University, New York, New York
| | - Yoona Kang
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Silicia Lomax
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mia Jovanova
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter J. Mucha
- Department of Mathematics and Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina
| | - Kevin N. Ochsner
- Department of Psychology, Columbia University, New York, New York
| | - Emily B. Falk
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
- Marketing Department, Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dani S. Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Electrical & Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Physics & Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Santa Fe Institute, Santa Fe, New Mexico
| | - David M. Lydon-Staley
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Growth charts of brain morphometry for preschool children. Neuroimage 2022; 255:119178. [PMID: 35430358 DOI: 10.1016/j.neuroimage.2022.119178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/11/2022] [Accepted: 04/03/2022] [Indexed: 11/23/2022] Open
Abstract
Brain development from 1 to 6 years of age anchors a wide range of functional capabilities and carries early signs of neurodevelopmental disorders. However, quantitative models for depicting brain morphology changes and making individualized inferences are lacking, preventing the identification of early brain atypicality during this period. With a total sample size of 285, we characterized the age-dependence of the cortical thickness and subcortical volume in neurologically normal children and constructed quantitative growth charts of all brain regions for preschool children. While the cortical thickness of most brain regions decreased with age, the entorhinal and parahippocampal regions displayed an inverted-U shape of age-dependence. Compared to the cortical thickness, the normalized volume of subcortical regions exhibited more divergent trends, with some regions increasing, some decreasing, and some displaying inverted-U-shaped trends. The growth curve models for all brain regions demonstrated utilities in identifying brain atypicality. The percentile measures derived from the growth curves facilitate the identification of children with developmental speech and language disorders with an accuracy of 0.875 (area under the receiver operating characteristic curve: 0.943). Our results fill the knowledge gap in brain morphometrics in a critical development period and provide an avenue for individualized brain developmental status evaluation with demonstrated sensitivity.
Collapse
|
17
|
Prats C, Fatjó-Vilas M, Penzol MJ, Kebir O, Pina-Camacho L, Demontis D, Crespo-Facorro B, Peralta V, González-Pinto A, Pomarol-Clotet E, Papiol S, Parellada M, Krebs MO, Fañanás L. Association and epistatic analysis of white matter related genes across the continuum schizophrenia and autism spectrum disorders: The joint effect of NRG1-ErbB genes. World J Biol Psychiatry 2022; 23:208-218. [PMID: 34338147 DOI: 10.1080/15622975.2021.1939155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Schizophrenia-spectrum disorders (SSD) and Autism spectrum disorders (ASD) are neurodevelopmental disorders that share clinical, cognitive, and genetic characteristics, as well as particular white matter (WM) abnormalities. In this study, we aimed to investigate the role of a set of oligodendrocyte/myelin-related (OMR) genes and their epistatic effect on the risk for SSD and ASD. METHODS We examined 108 SNPs in a set of 22 OMR genes in 1749 subjects divided into three independent samples (187 SSD trios, 915 SSD cases/control, and 91 ASD trios). Genetic association and gene-gene interaction analyses were conducted with PLINK and MB-MDR, and permutation procedures were implemented in both. RESULTS Some OMR genes showed an association trend with SSD, while after correction, the ones that remained significantly associated were MBP, ERBB3, and AKT1. Significant gene-gene interactions were found between (i) NRG1*MBP (perm p-value = 0.002) in the SSD trios sample, (ii) ERBB3*AKT1 (perm p-value = 0.001) in the SSD case-control sample, and (iii) ERBB3*QKI (perm p-value = 0.0006) in the ASD trios sample. DISCUSSION Our results suggest the implication of OMR genes in the risk for both SSD and ASD and highlight the role of NRG1 and ERBB genes. These findings are in line with the previous evidence and may suggest pathophysiological mechanisms related to NRG1/ERBBs signalling in these disorders.
Collapse
Affiliation(s)
- C Prats
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Institut d'Investigació Biomèdica de Bellvitge, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Fatjó-Vilas
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - M J Penzol
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - O Kebir
- INSERM, U1266, Laboratory "Pathophysiology of psychiatric disorders", Institute of psychiatry and neurosciences of Paris, Paris, France.,GHU Psychiatrie et Neurosciences de Paris, Paris, France
| | - L Pina-Camacho
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - D Demontis
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research iPSYCH, Aarhus, Denmark
| | - B Crespo-Facorro
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,University Hospital Virgen del Rocio, IbiS Department of Psychiatry, School of Medicine, University of Sevilla, Sevilla, Spain
| | - V Peralta
- Gerencia de Salud Mental, Servicio Navarro de Salud-Osasunbidea, Pamplona, Navarra, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNa), Pamplona, Navarra, Spain
| | - A González-Pinto
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Psychiatry Service, University Hospital of Alava-Santiago, EMBREC, EHU/UPV University of the Basque Country, Kronikgune, Vitoria, Spain
| | - E Pomarol-Clotet
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - S Papiol
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.,Department of Psychiatry, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - M Parellada
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - M O Krebs
- INSERM, U1266, Laboratory "Pathophysiology of psychiatric disorders", Institute of psychiatry and neurosciences of Paris, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Service Hospitalo-Universitaire, Centre Hospitalier Sainte-Anne, Paris, France
| | - L Fañanás
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
18
|
Disrupted Cacna1c gene expression perturbs spontaneous Ca 2+ activity causing abnormal brain development and increased anxiety. Proc Natl Acad Sci U S A 2022; 119:2108768119. [PMID: 35135875 PMCID: PMC8851547 DOI: 10.1073/pnas.2108768119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/26/2022] Open
Abstract
The gene CACNA1C encodes for a calcium channel that has been linked to various psychiatric conditions, including schizophrenia and bipolar disorder, through hitherto unknown cellular mechanisms. Here, we report that deletion of Cacna1c in neurons of the developing brain disrupts spontaneous calcium activity and causes abnormal brain development and anxiety. Our results indicate that marginally alterations in the expression level of Cacna1c have major effects on the intrinsic spontaneous calcium activity of neural progenitors that play a crucial role in brain development. Thus, Cacna1c acts as a molecular switch that can increase susceptibility to psychiatric disease. The L-type voltage-gated Ca2+ channel gene CACNA1C is a risk gene for various psychiatric conditions, including schizophrenia and bipolar disorder. However, the cellular mechanism by which CACNA1C contributes to psychiatric disorders has not been elucidated. Here, we report that the embryonic deletion of Cacna1c in neurons destined for the cerebral cortex using an Emx1-Cre strategy disturbs spontaneous Ca2+ activity and causes abnormal brain development and anxiety. By combining computational modeling with electrophysiological membrane potential manipulation, we found that neural network activity was driven by intrinsic spontaneous Ca2+ activity in distinct progenitor cells expressing marginally increased levels of voltage-gated Ca2+ channels. MRI examination of the Cacna1c knockout mouse brains revealed volumetric differences in the neocortex, hippocampus, and periaqueductal gray. These results suggest that Cacna1c acts as a molecular switch and that its disruption during embryogenesis can perturb Ca2+ handling and neural development, which may increase susceptibility to psychiatric disease.
Collapse
|
19
|
Fielden S, Beiler D, Cauley K, Troiani V. A Comparison of Global Brain Volumetrics Obtained from CT versus MRI Using 2 Publicly Available Software Packages. AJNR Am J Neuroradiol 2022; 43:245-250. [PMID: 35121586 PMCID: PMC8985680 DOI: 10.3174/ajnr.a7403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/05/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Brain volumetrics have historically been obtained from MR imaging data. However, advances in CT, along with refined publicly available software packages, may support tissue-level segmentations of clinical CT images. Here, brain volumetrics obtained by applying two publicly available software packages to paired CT-MR data are compared. MATERIALS AND METHODS In a group of patients (n = 69; 35 men) who underwent both MR imaging and CT brain scans within 12 months of one another, brain tissue was segmented into WM, GM, and CSF compartments using 2 publicly available software packages: Statistical Parametric Mapping and FMRIB Software Library. A subset of patients with repeat imaging sessions was used to assess the repeatability of each segmentation. Regression analysis and Bland-Altman limits of agreement were used to determine the level of agreement between segmented volumes. RESULTS Regression analysis showed good agreement between volumes derived from MR images versus those from CT. The correlation coefficients between the 2 methods were 0.93 and 0.98 for Statistical Parametric Mapping and FMRIB Software Library, respectively. Differences between global volumes were significant (P < .05) for all volumes compared within a given segmentation pipeline. WM bias was 36% (SD, 38%) and 18% (SD, 18%) for Statistical Parametric Mapping and FMRIB Software Library, respectively, and 10% (SD, 30%) and 6% (SD, 20%) for GM (bias ± limits of agreement), with CT overestimating WM and underestimating GM compared with MR imaging. Repeatability was good for all segmentations, with coefficients of variation of <10% for all volumes. CONCLUSIONS The repeatability of CT segmentations using publicly available software is good, with good correlation with MR imaging. With careful study design and acknowledgment of measurement biases, CT may be a viable alternative to MR imaging in certain settings.
Collapse
Affiliation(s)
- S.W. Fielden
- From the Departments of Translational Data Science and Informatics (S.W.F., V.T.),Medical and Health Physics (S.W.F.)
| | - D. Beiler
- Geisinger-Bucknell Autism & Developmental Medicine Institute (D.B., V.T.), Geisinger, Lewisburg, Pennsylvania
| | - K.A. Cauley
- Virtual Radiologic Professionals (K.A.C.), Eden Prairie, Minnesota
| | - V. Troiani
- From the Departments of Translational Data Science and Informatics (S.W.F., V.T.),Geisinger-Bucknell Autism & Developmental Medicine Institute (D.B., V.T.), Geisinger, Lewisburg, Pennsylvania
| |
Collapse
|
20
|
Spencer APC, Brooks JCW, Masuda N, Byrne H, Lee-Kelland R, Jary S, Thoresen M, Goodfellow M, Cowan FM, Chakkarapani E. Motor function and white matter connectivity in children cooled for neonatal encephalopathy. Neuroimage Clin 2021; 32:102872. [PMID: 34749285 PMCID: PMC8578038 DOI: 10.1016/j.nicl.2021.102872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/13/2021] [Accepted: 10/30/2021] [Indexed: 11/24/2022]
Abstract
Therapeutic hypothermia reduces the incidence of severe motor disability, such as cerebral palsy, following neonatal hypoxic-ischaemic encephalopathy. However, cooled children without cerebral palsy at school-age demonstrate motor deficits and altered white matter connectivity. In this study, we used diffusion-weighted imaging to investigate the relationship between white matter connectivity and motor performance, measured using the Movement Assessment Battery for Children-2, in children aged 6-8 years treated with therapeutic hypothermia for neonatal hypoxic-ischaemic encephalopathy at birth, who did not develop cerebral palsy (cases), and matched typically developing controls. Correlations between total motor scores and diffusion properties in major white matter tracts were assessed in 33 cases and 36 controls. In cases, significant correlations (FDR-corrected P < 0.05) were found in the anterior thalamic radiation bilaterally (left: r = 0.513; right: r = 0.488), the cingulate gyrus part of the left cingulum (r = 0.588), the hippocampal part of the left cingulum (r = 0.541), and the inferior fronto-occipital fasciculus bilaterally (left: r = 0.445; right: r = 0.494). No significant correlations were found in controls. We then constructed structural connectivity networks, for 22 cases and 32 controls, in which nodes represent brain regions and edges were determined by probabilistic tractography and weighted by fractional anisotropy. Analysis of whole-brain network metrics revealed correlations (FDR-corrected P < 0.05), in cases, between total motor scores and average node strength (r = 0.571), local efficiency (r = 0.664), global efficiency (r = 0.677), clustering coefficient (r = 0.608), and characteristic path length (r = -0.652). No significant correlations were found in controls. We then investigated edge-level association with motor function using the network-based statistic. This revealed subnetworks which exhibited group differences in the association between motor outcome and edge weights, for total motor scores (P = 0.0109) as well as for balance (P = 0.0245) and manual dexterity (P = 0.0233) domain scores. All three of these subnetworks comprised numerous frontal lobe regions known to be associated with motor function, including the superior frontal gyrus and middle frontal gyrus. The subnetwork associated with total motor scores was highly left-lateralised. These findings demonstrate an association between impaired motor function and brain organisation in school-age children treated with therapeutic hypothermia for neonatal hypoxic-ischaemic encephalopathy.
Collapse
Affiliation(s)
- Arthur P C Spencer
- Clinical Research and Imaging Centre, University of Bristol, Bristol, UK; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jonathan C W Brooks
- Clinical Research and Imaging Centre, University of Bristol, Bristol, UK; School of Psychology, University of East Anglia, Norwich, UK
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA; Computational and Data-Enabled Science and Engineering Program, State University of New York at Buffalo, Buffalo, NY, USA
| | - Hollie Byrne
- Clinical Research and Imaging Centre, University of Bristol, Bristol, UK; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Richard Lee-Kelland
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sally Jary
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Marianne Thoresen
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter, UK; Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, UK; EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Frances M Cowan
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Department of Paediatrics, Imperial College London, London, UK
| | - Ela Chakkarapani
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Neonatal Intensive Care Unit, St Michael's Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK.
| |
Collapse
|
21
|
White GE, Caterini JE, McCann V, Rendall K, Nathan PC, Rhind SG, Jones H, Wells GD. The Psychoneuroimmunology of Stress Regulation in Pediatric Cancer Patients. Cancers (Basel) 2021; 13:4684. [PMID: 34572911 PMCID: PMC8468382 DOI: 10.3390/cancers13184684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Stress is a ubiquitous experience that can be adaptive or maladaptive. Physiological stress regulation, or allostasis, can be disrupted at any point along the regulatory pathway resulting in adverse effects for the individual. Children with cancer exhibit significant changes to these pathways in line with stress dysregulation and long-term effects similar to those observed in other early-life stress populations, which are thought to be, in part, a result of cytotoxic cancer treatments. Children with cancer may have disruption to several steps in the stress-regulatory pathway including cognitive-affective function, neurological disruption to stress regulatory brain regions, altered adrenal and endocrine function, and disrupted tissue integrity, as well as lower engagement in positive coping behaviours such as physical activity and pro-social habits. To date, there has been minimal study of stress reactivity patterns in childhood illness populations. Nor has the role of stress regulation in long-term health and function been elucidated. We conclude that consideration of stress regulation in childhood cancer may be crucial in understanding and treating the disease.
Collapse
Affiliation(s)
- Gillian E. White
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (G.E.W.); (J.E.C.); (K.R.)
| | - Jessica E. Caterini
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (G.E.W.); (J.E.C.); (K.R.)
| | - Victoria McCann
- School of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Kate Rendall
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (G.E.W.); (J.E.C.); (K.R.)
| | - Paul C. Nathan
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (P.C.N.); (H.J.)
| | - Shawn G. Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada;
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| | - Heather Jones
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (P.C.N.); (H.J.)
| | - Greg D. Wells
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (G.E.W.); (J.E.C.); (K.R.)
| |
Collapse
|
22
|
Wang Q, Hu K, Wang M, Zhao Y, Liu Y, Fan L, Liu B. Predicting brain age during typical and atypical development based on structural and functional neuroimaging. Hum Brain Mapp 2021; 42:5943-5955. [PMID: 34520078 PMCID: PMC8596985 DOI: 10.1002/hbm.25660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022] Open
Abstract
Exploring typical and atypical brain developmental trajectories is very important for understanding the normal pace of brain development and the mechanisms by which mental disorders deviate from normal development. A precise and sex-specific brain age prediction model is desirable for investigating the systematic deviation and individual heterogeneity of disorders associated with atypical brain development, such as autism spectrum disorders. In this study, we used partial least squares regression and the stacking algorithm to establish a sex-specific brain age prediction model based on T1-weighted structural magnetic resonance imaging and resting-state functional magnetic resonance imaging. The model showed good generalization and high robustness on four independent datasets with different ethnic information and age ranges. A predictor weights analysis showed the differences and similarities in changes in structure and function during brain development. At the group level, the brain age gap estimation for autistic patients was significantly smaller than that for healthy controls in both the ABIDE dataset and the healthy brain network dataset, which suggested that autistic patients as a whole exhibited the characteristics of delayed development. However, within the ABIDE dataset, the premature development group had significantly higher Autism Diagnostic Observation Schedule (ADOS) scores than those of the delayed development group, implying that individuals with premature development had greater severity. Using these findings, we built an accurate typical brain development trajectory and developed a method of atypical trajectory analysis that considers sex differences and individual heterogeneity. This strategy may provide valuable clues for understanding the relationship between brain development and mental disorders.
Collapse
Affiliation(s)
- Qi Wang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Ke Hu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Zhao
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Lingzhong Fan
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
23
|
Spencer APC, Byrne H, Lee-Kelland R, Jary S, Thoresen M, Cowan FM, Chakkarapani E, Brooks JCW. An Age-Specific Atlas for Delineation of White Matter Pathways in Children Aged 6-8 Years. Brain Connect 2021; 12:402-416. [PMID: 34210166 PMCID: PMC7612846 DOI: 10.1089/brain.2021.0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction Diffusion MRI allows non-invasive assessment of white matter connectivity in typical development and of changes due to brain injury or pathology. Probabilistic white matter atlases allow diffusion metrics to be measured in specific white matter pathways, and are a critical component in spatial normalisation for group analysis. However, given the known developmental changes in white matter it may be sub-optimal to use an adult template when assessing data acquired from children. Methods By averaging subject-specific fibre bundles from 28 children aged from 6 to 8 years, we created an age-specific probabilistic white matter atlas for 12 major white matter tracts. Using both the newly developed and Johns Hopkins adult atlases, we compared the atlas to subject-specific fibre bundles in two independent validation cohorts, assessing accuracy in terms of volumetric overlap and measured diffusion metrics. Results Our age-specific atlas gave better overall performance than the adult atlas, achieving higher volumetric overlap with subject-specific fibre tracking and higher correlation of FA measurements with those measured from subject-specific fibre bundles. Specifically, estimates of FA values for cortico-spinal tract, uncinate fasciculus, forceps minor, cingulate gyrus part of the cingulum and anterior thalamic radiation were all significantly more accurate when estimated with an age-specific atlas. Discussion The age-specific atlas allows delineation of white matter tracts in children aged 6-8 years, without the need for tractography, more accurately than when normalising to an adult atlas. To our knowledge, this is the first publicly available probabilistic atlas of white matter tracts for this age group.
Collapse
Affiliation(s)
- Arthur P C Spencer
- Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom.,Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Hollie Byrne
- Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom
| | - Richard Lee-Kelland
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sally Jary
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Marianne Thoresen
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.,Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Frances M Cowan
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.,Department of Paediatrics, Imperial College London, London, United Kingdom
| | - Ela Chakkarapani
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jonathan C W Brooks
- Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom.,School of Psychology, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
24
|
Xenophontos A, Seidlitz J, Liu S, Clasen LS, Blumenthal JD, Giedd JN, Alexander-Bloch A, Raznahan A. Altered Sex Chromosome Dosage Induces Coordinated Shifts in Cortical Anatomy and Anatomical Covariance. Cereb Cortex 2021; 30:2215-2228. [PMID: 31828307 DOI: 10.1093/cercor/bhz235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sex chromosome dosage (SCD) variation increases risk for neuropsychiatric impairment, which may reflect direct SCD effects on brain organization. Here, we 1) map cumulative X- and Y-chromosome dosage effects on regional cortical thickness (CT) and investigate potential functional implications of these effects using Neurosynth, 2) test if this map is organized by patterns of CT covariance that are evident in health, and 3) characterize SCD effects on CT covariance itself. We modeled SCD effects on CT and CT covariance for 308 equally sized regions of the cortical sheet using structural neuroimaging data from 301 individuals with varying numbers of sex chromosomes (169 euploid, 132 aneuploid). Mounting SCD increased CT in the rostral frontal cortex and decreased CT in the lateral temporal cortex, bilaterally. Regions targeted by SCD were associated with social functioning, language processing, and comprehension. Cortical regions with a similar degree of SCD-sensitivity showed heightened CT covariance in health. Finally, greater SCD also increased covariance among regions similarly affected by SCD. Our study both 1) develops novel methods for comparing typical and disease-related structural covariance networks in the brain and 2) uses these techniques to resolve and identify organizing principles for SCD effects on regional cortical anatomy and anatomical covariance.
Collapse
Affiliation(s)
- Anastasia Xenophontos
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Jakob Seidlitz
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD 20892, USA.,Department of Psychiatry, University of Cambridge, Cambridge CB2 1TN, UK
| | - Siyuan Liu
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Liv S Clasen
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Jonathan D Blumenthal
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Jay N Giedd
- Department of Psychiatry, University of California, La Jolla, CA 92093, USA
| | - Aaron Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
| | - Armin Raznahan
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Grasser LR, Jovanovic T. Safety learning during development: Implications for development of psychopathology. Behav Brain Res 2021; 408:113297. [PMID: 33862062 PMCID: PMC8102395 DOI: 10.1016/j.bbr.2021.113297] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 03/23/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
Fear and safety learning are necessary adaptive behaviors that develop over the course of maturation. While there is a large body of literature regarding the neurobiology of fear and safety learning in adults, less is known regarding safety learning during development. Given developmental changes in the brain, there are corresponding changes in safety learning that are quantifiable; these may serve to predict risk and point to treatment targets for fear and anxiety-related disorders in children and adolescents. For healthy, typically developing youth, the main developmental variation observed is reduced discrimination between threat and safety cues in children compared to adolescents and adults, while lower expression of extinction learning is exhibited in adolescents compared to adults. Such distinctions may be related to faster maturation of the amygdala relative to the prefrontal cortex, as well as incompletely developed functional circuits between the two. Fear and anxiety-related disorders, childhood maltreatment, and behavioral problems are all associated with alterations in safety learning for youth, and this dysfunction may proceed into adulthood with corresponding abnormalities in brain structure and function-including amygdala hypertrophy and hyperreactivity. As impaired inhibition of fear to safety may reflect abnormalities in the developing brain and subsequent psychopathology, impaired safety learning may be considered as both a predictor of risk and a treatment target. Longitudinal neuroimaging studies over the course of development, and studies that query change with interventions are needed in order to improve outcomes for individuals and reduce long-term impact of developmental psychopathology.
Collapse
Affiliation(s)
- Lana Ruvolo Grasser
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Dr, Tolan Park Suite 2C Room 273, Detroit, MI 48201 United States.
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Dr, Tolan Park Suite 2C, Detroit, MI 48201 United States.
| |
Collapse
|
26
|
Li SL, Kam KW, Chee ASH, Zhang XJ, Chen LJ, Yip WWK, Tham CC, Young AL, Wong ICK, Ip P, Yam JC. The association between attention-deficit/hyperactivity disorder and retinal nerve fiber/ganglion cell layer thickness measured by optical coherence tomography: a systematic review and meta-analysis. Int Ophthalmol 2021; 41:3211-3221. [PMID: 34014463 DOI: 10.1007/s10792-021-01852-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/08/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE Retinal nerve fiber/ganglion cell layer (RNFL/GCL) thickness measured using optical coherence tomography has been proposed as an ocular biomarker for children with attention-deficit/hyperactivity disorder (ADHD), but findings varied in different studies. This study aims to determine the association between RNFL/GCL thickness and ADHD in children by systematic review and meta-analysis. METHODS We performed a literature search in Embase, PubMed, Medline, Web of Science, and PsycINFO for relevant articles published up to February 29, 2020. All studies with original data comparing RNFL/GCL thickness in ADHD and healthy children were included. The Newcastle Ottawa Scale was used to assess bias risk and quality of evidence. Pooled estimates of the differences in thickness of RNFL or GCL between ADHD and healthy subjects were generated using meta-analysis with a random-effect model due to significant inter-study heterogeneity. Sensitivity analysis was also performed. RESULTS We identified four eligible studies involving a total of 164 ADHD and 150 control subjects. Meta-analysis revealed that ADHD in children was associated with a reduction in global RNFL thickness (SMD, - 0.23; 95% CI - 0.46, - 0.01; p = 0.04). The global GCL thickness was examined in two studies with 89 ADHD and 75 control subjects, but the pooled difference in global GCL thickness between ADHD children and controls was not statistically significant (SMD, - 0.34; 95% CI - 1.25, 0.58; p = 0.47). CONCLUSION Existing evidence suggests a possible association between ADHD and RNFL thinning in children. In view of the limited number of reports, further studies in large cohorts should be warranted.
Collapse
Affiliation(s)
- Sophia Ling Li
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Arnold Shau Hei Chee
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Xiu Juan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Wilson W K Yip
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Sha Tin, Hong Kong.,Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Ian C K Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Centre for Safe Medication Practice and Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong. .,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Sha Tin, Hong Kong. .,Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong.
| |
Collapse
|
27
|
Liu S, Kuja-Halkola R, Larsson H, Lichtenstein P, Ludvigsson JF, Svensson AM, Gudbjörnsdottir S, Tideman M, Serlachius E, Butwicka A. Poor glycaemic control is associated with increased risk of neurodevelopmental disorders in childhood-onset type 1 diabetes: a population-based cohort study. Diabetologia 2021; 64:767-777. [PMID: 33454829 PMCID: PMC7940269 DOI: 10.1007/s00125-020-05372-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to investigate the effect of childhood-onset type 1 diabetes on the risk of subsequent neurodevelopmental disorders, and the role of glycaemic control in this association. We hypothesised that individuals with poor glycaemic control may be at a higher risk of neurodevelopmental disorders compared with the general population, as well as compared with individuals with type 1 diabetes with adequate glycaemic control. METHODS This Swedish population-based cohort study was conducted using data from health registers from 1973 to 2013. We identified 8430 patients with childhood-onset type 1 diabetes (diagnosed before age 18 years) with a median age of diabetes onset of 9.6 (IQR 5.9-12.9) and 84,300 reference individuals from the general population, matched for sex, birth year and birth county. Cox models were used to estimate the effect of HbA1c on the risk of subsequent neurodevelopmental disorders, including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASD) and intellectual disability. RESULTS During a median follow-up period of 5.6 years, 398 (4.7%) individuals with type 1 diabetes received a diagnosis of any neurodevelopmental disorder compared with 3066 (3.6%) in the general population, corresponding to an adjusted HR (HRadjusted) of 1.31 (95% CI 1.18, 1.46) after additionally adjusting for other psychiatric morbidity prior to inclusion, parental psychiatric morbidity and parental highest education level. The risk of any neurodevelopmental disorder increased with HbA1c levels and the highest risk was observed in patients with mean HbA1c >8.6% (>70 mmol/mol) (HRadjusted 1.90 [95% CI 1.51, 2.37]) compared with reference individuals without type 1 diabetes. In addition, when compared with patients with diabetes with HbA1c <7.5% (<58 mmol/mol), patients with HbA1c >8.6% (>70 mmol/mol) had the highest risk of any neurodevelopmental disorder (HRadjusted 3.71 [95% CI 2.75, 5.02]) and of specific neurodevelopmental disorders including ADHD (HRadjusted 4.16 [95% CI 2.92, 5.94]), ASD (HRadjusted 2.84 [95% CI 1.52, 5.28]) and intellectual disability (HRadjusted 3.93 [95% CI 1.38, 11.22]). CONCLUSIONS/INTERPRETATION Childhood-onset type 1 diabetes is associated with an increased risk of neurodevelopmental disorders, with the highest risk seen in individuals with poor glycaemic control. Routine neurodevelopmental follow-up visits should be considered in type 1 diabetes, especially in patients with poor glycaemic control.
Collapse
Affiliation(s)
- Shengxin Liu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden.
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
- Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Ann-Marie Svensson
- Swedish National Diabetes Register, Centre of Registers, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Soffia Gudbjörnsdottir
- Swedish National Diabetes Register, Centre of Registers, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Tideman
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| | - Eva Serlachius
- Child and Adolescent Psychiatry, Stockholm Health Care Service, Region Stockholm, Sweden
| | - Agnieszka Butwicka
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Care Service, Region Stockholm, Sweden
- Department of Child Psychiatry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
28
|
Boen R, Ferschmann L, Vijayakumar N, Overbye K, Fjell AM, Espeseth T, Tamnes CK. Development of attention networks from childhood to young adulthood: A study of performance, intraindividual variability and cortical thickness. Cortex 2021; 138:138-151. [PMID: 33689979 DOI: 10.1016/j.cortex.2021.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 11/24/2022]
Abstract
Human cognitive development is manifold, with different functions developing at different speeds at different ages. Attention is an important domain of this cognitive development, and involves distinct developmental trajectories for separate functions, including conflict processing, selection of sensory input and alertness. In children, several studies using the Attention Network Test (ANT) have investigated the development of three attentional networks that carry out the functions of executive control, orienting and alerting. There is, however, a lack of studies on the development of these attentional components across adolescence, limiting our understanding of their protracted development. To fill this knowledge gap, we performed a mixed cross-sectional and longitudinal study using mixed methods to examine the development of the attentional components and their intraindividual variability from late childhood to young adulthood (n = 287, n observations = 408, age range = 8.5-26.7 years, mean follow up interval = 4.4 years). The results indicated that executive control stabilized during late adolescence, while orienting and alerting continued to develop into young adulthood. In addition, a continuous development into young adulthood was observed for the intraindividual variability measures of orienting and alerting. In a subsample with available magnetic resonance imaging (MRI) data (n = 169, n observations = 281), higher alerting scores were associated with thicker cortices within a right prefrontal cortical region and greater age-related cortical thinning in left rolandic operculum, while higher orienting scores were associated with greater age-related cortical thinning in frontal and parietal regions. Finally, increased consistency of orienting performance was associated with thinner cortex in prefrontal regions and reduced age-related thinning in frontal regions.
Collapse
Affiliation(s)
- Rune Boen
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Lia Ferschmann
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway; Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway
| | | | - Knut Overbye
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo, Norway; Bjørknes College, Oslo, Norway
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
29
|
Spencer APC, Brooks JCW, Masuda N, Byrne H, Lee-Kelland R, Jary S, Thoresen M, Tonks J, Goodfellow M, Cowan FM, Chakkarapani E. Disrupted brain connectivity in children treated with therapeutic hypothermia for neonatal encephalopathy. Neuroimage Clin 2021; 30:102582. [PMID: 33636541 PMCID: PMC7906894 DOI: 10.1016/j.nicl.2021.102582] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 11/27/2022]
Abstract
Therapeutic hypothermia following neonatal encephalopathy due to birth asphyxia reduces death and cerebral palsy. However, school-age children without cerebral palsy treated with therapeutic hypothermia for neonatal encephalopathy still have reduced performance on cognitive and motor tests, attention difficulties, slower reaction times and reduced visuo-spatial processing abilities compared to typically developing controls. We acquired diffusion-weighted imaging data from school-age children without cerebral palsy treated with therapeutic hypothermia for neonatal encephalopathy at birth, and a matched control group. Voxelwise analysis (33 cases, 36 controls) confirmed reduced fractional anisotropy in widespread areas of white matter in cases, particularly in the fornix, corpus callosum, anterior and posterior limbs of the internal capsule bilaterally and cingulum bilaterally. In structural brain networks constructed using probabilistic tractography (22 cases, 32 controls), graph-theoretic measures of strength, local and global efficiency, clustering coefficient and characteristic path length were found to correlate with IQ in cases but not controls. Network-based statistic analysis implicated brain regions involved in visuo-spatial processing and attention, aligning with previous behavioural findings. These included the precuneus, thalamus, left superior parietal gyrus and left inferior temporal gyrus. Our findings demonstrate that, despite the manifest successes of therapeutic hypothermia, brain development is impaired in these children.
Collapse
Affiliation(s)
- Arthur P C Spencer
- Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom
| | - Jonathan C W Brooks
- Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom; School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, United States; Computational and Data-Enabled Science and Engineering Program, State University of New York at Buffalo, Buffalo, NY, United States
| | - Hollie Byrne
- Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom
| | - Richard Lee-Kelland
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sally Jary
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Marianne Thoresen
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - James Tonks
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; University of Exeter Medical School, Exeter, United Kingdom
| | - Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter, United Kingdom; Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, United Kingdom; EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Frances M Cowan
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Department of Paediatrics, Imperial College London, London, United Kingdom
| | - Ela Chakkarapani
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Neonatal Intensive Care Unit, St Michael's Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom.
| |
Collapse
|
30
|
Rodriguez-Ayllon M, Esteban-Cornejo I, Verdejo-Román J, Muetzel RL, Migueles JH, Mora-Gonzalez J, Solis-Urra P, Erickson KI, Hillman CH, Catena A, Tiemeier H, Ortega FB. Physical Activity, Sedentary Behavior, and White Matter Microstructure in Children with Overweight or Obesity. Med Sci Sports Exerc 2020; 52:1218-1226. [PMID: 31876665 DOI: 10.1249/mss.0000000000002233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE This study aimed to investigate the associations of objectively measured and self-reported physical activity (PA) and sedentary behavior with white matter microstructure in children with overweight or obesity. METHODS In a sample of 103 participants (age, 10.02 ± 1.15 yr; 42 girls) from the ActiveBrains project, we assessed PA and sedentary behavior using accelerometers (GT3X+; ActiGraph, Pensacola, FL), and the Youth Activity Profile-Spain questionnaire. Objectively measured PA and sedentary behavior were classified into different intensities following the hip- and wrist-based cutoff points for the Euclidean Norm Minus One metric by Hildebrand et al., wrist-based cutoff points for counts metric by Chandler et al., and hip-based cutoff points for counts metric for Romanzini et al. and Evenson et al. Magnetic resonance imaging of white matter microstructure, fractional anisotropy (FA), and mean diffusivity (MD) were derived from diffusion tensor imaging. Linear regression models were used to examine the associations of objectively measured and self-reported PA and sedentary behavior with global and tract-specific FA and MD. RESULTS Self-reported total PA was positively associated with global FA (β = 0.236, P = 0.038), whereas watching television was negatively associated with global FA (β = -0.270, P = 0.014). In regard to the objective measures, using single regression models, light PA (β = 0.273, P = 0.016), moderate-to-vigorous PA (β = 0.257, P = 0.035), and total PA (β = 0.294, P = 0.013) were positively associated with global FA only when Hildebrand-Euclidean Norm Minus One hip cut points were used for analyses. Lastly, no association was found between PA and sedentary behavior and FA and MD within individual tracts. CONCLUSIONS Our results suggest that PA and watching television are related to white matter microstructure in children with overweight or obesity. However, longitudinal large-scale studies are needed to confirm and expand these findings.
Collapse
Affiliation(s)
- María Rodriguez-Ayllon
- PROFITH Research Group, Sport and Health University Research Institute, Department of Physical and Sports Education, University of Granada, Granada, SPAIN
| | - Irene Esteban-Cornejo
- PROFITH Research Group, Sport and Health University Research Institute, Department of Physical and Sports Education, University of Granada, Granada, SPAIN
| | | | | | - Jairo H Migueles
- PROFITH Research Group, Sport and Health University Research Institute, Department of Physical and Sports Education, University of Granada, Granada, SPAIN
| | - Jose Mora-Gonzalez
- PROFITH Research Group, Sport and Health University Research Institute, Department of Physical and Sports Education, University of Granada, Granada, SPAIN
| | | | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | | | | | | |
Collapse
|
31
|
van den Dries MA, Lamballais S, El Marroun H, Pronk A, Spaan S, Ferguson KK, Longnecker MP, Tiemeier H, Guxens M. Prenatal exposure to organophosphate pesticides and brain morphology and white matter microstructure in preadolescents. ENVIRONMENTAL RESEARCH 2020; 191:110047. [PMID: 32805249 PMCID: PMC7657967 DOI: 10.1016/j.envres.2020.110047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Prenatal exposure to organophosphate (OP) pesticides associate with impaired neurodevelopment in humans and animal models. However, much uncertainty exists about the brain structural alterations underlying these associations. The objective of this study was to determine whether maternal OP pesticide metabolite concentrations in urine repeatedly measured during gestation are associated with brain morphology and white matter microstructure in 518 preadolescents aged 9-12 years. METHOD Data came from 518 mother-child pairs participating in the Generation R Study, a population-based birth cohort from Rotterdam, the Netherlands. Maternal urine concentrations were determined for 6 dialkylphosphates (DAPs) including 3 dimethyl (DM) and 3 diethyl (DE) alkyl phosphate metabolites, collected at early, mid, and late pregnancy. At child's age 9-12 years, magnetic resonance imaging was performed to obtain T1-weighted images for brain volumes and surface-based cortical thickness and cortical surface area, and diffusion tensor imaging was used to measure white matter microstructure through fractional anisotropy (FA) and mean diffusivity (MD). Linear regression models were fit for the averaged prenatal exposure across pregnancy. RESULTS DM and DE metabolite concentrations were not associated with brain volumes, cortical thickness, and cortical surface area. However, a 10-fold increase in averaged DM metabolite concentrations across pregnancy was associated with lower FA (B = -1.00, 95%CI = -1.80, -0.20) and higher MD (B = 0.13, 95%CI = 0.04, 0.21). Similar associations were observed for DE concentrations. CONCLUSIONS This study provides the first evidence that OP pesticides may alter normal white matter microstructure in children, which could have consequences for normal neurodevelopment. No associations were observed with structural brain morphology, including brain volumes, cortical thickness, and cortical surface area.
Collapse
Affiliation(s)
- Michiel A van den Dries
- Erasmus MC, University Medical Center Rotterdam, Department of Child and Adolescent Psychiatry, Rotterdam, 3015 CN, the Netherlands; Erasmus MC, University Medical Center Rotterdam, The Generation R Study Group, Rotterdam, 3015 CN, the Netherlands
| | - Sander Lamballais
- Erasmus MC, University Medical Center Rotterdam, The Generation R Study Group, Rotterdam, 3015 CN, the Netherlands; Erasmus MC, University Medical Center Rotterdam, Department of Epidemiology, Rotterdam, 3015 CN, the Netherlands; Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, 3015 CN, the Netherlands
| | - Hanan El Marroun
- Erasmus MC, University Medical Center Rotterdam, Department of Child and Adolescent Psychiatry, Rotterdam, 3015 CN, the Netherlands; Erasmus MC, University Medical Center Rotterdam, Department of Pediatrics, Rotterdam, 3015 CN, the Netherlands; Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, 3062 PA, the Netherlands
| | - Anjoeka Pronk
- Department of Risk Analysis for Products in Development, TNO, Utrecht, 3584 CB, the Netherlands
| | - Suzanne Spaan
- Department of Risk Analysis for Products in Development, TNO, Utrecht, 3584 CB, the Netherlands
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, NC, 27709, USA
| | | | - Henning Tiemeier
- Erasmus MC, University Medical Center Rotterdam, Department of Child and Adolescent Psychiatry, Rotterdam, 3015 CN, the Netherlands; Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Mònica Guxens
- Erasmus MC, University Medical Center Rotterdam, Department of Child and Adolescent Psychiatry, Rotterdam, 3015 CN, the Netherlands; ISGlobal, Barcelona, 08003, Spain; Pompeu Fabra University, Barcelona, 08002, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Spain.
| |
Collapse
|
32
|
Wang H, Rolls ET, Du X, Du J, Yang D, Li J, Li F, Cheng W, Feng J. Severe nausea and vomiting in pregnancy: psychiatric and cognitive problems and brain structure in children. BMC Med 2020; 18:228. [PMID: 32867775 PMCID: PMC7460800 DOI: 10.1186/s12916-020-01701-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/08/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Two studies have suggested that severe prolonged nausea and vomiting during pregnancy is associated with emotional and behavioral problems in offspring, with smaller sample size and short-term follow-up. Moreover, little information is available on the role of the brain structure in the associations. METHODS In a US-based cohort, the association was investigated between severe prolonged nausea and vomiting in pregnancy (extending after the second trimester and termed SNVP), psychiatric and cognitive problems, and brain morphology, from the Adolescent Brain Cognitive Development (ABCD) study, from 10,710 children aged 9-11 years. We validated the emotional including psychiatric findings using the Danish National Cohort Study with 2,092,897 participants. RESULTS SNVP was significantly associated with emotional and psychiatric problems (t = 8.89, Cohen's d = 0.172, p = 6.9 × 10-19) and reduced global cognitive performance (t = - 4.34, d = - 0.085, p = 1.4 × 10-5) in children. SNVP was associated with low cortical area and volume, especially in the cingulate cortex, precuneus, and superior medial prefrontal cortex. These lower cortical areas and volumes significantly mediated the relation between SNVP and the psychiatric and cognitive problems in children. In the Danish National Cohort, severe nausea and vomiting in pregnancy were significantly associated with increased risks of behavioral and emotional disorders in children (hazard ratio, 1.24; 95% confidence interval, 1.16-1.33). CONCLUSIONS SNVP is strongly associated with psychiatric and cognitive problems in children, with mediation by brain structure. These associations highlight the clinical importance and potential benefits of the treatment of SNVP, which could reduce the risk of psychiatric disorder in the next generation.
Collapse
Affiliation(s)
- Hui Wang
- Department of Developmental and Behavioral Pediatric & Child Primary Care/MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Edmund T Rolls
- Institute of Science and Technology for Brain-inspired intelligence, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
- Oxford Centre for Computational Neuroscience, Oxford, OX1 4BH, UK
| | - Xiujuan Du
- Department of Developmental and Behavioral Pediatric & Child Primary Care/MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingnan Du
- Institute of Science and Technology for Brain-inspired intelligence, Fudan University, Shanghai, China
| | - Dexin Yang
- Institute of Science and Technology for Brain-inspired intelligence, Fudan University, Shanghai, China
| | - Jiong Li
- Department of Developmental and Behavioral Pediatric & Child Primary Care/MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Fei Li
- Department of Developmental and Behavioral Pediatric & Child Primary Care/MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Cheng
- Institute of Science and Technology for Brain-inspired intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-inspired intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
33
|
Rodriguez-Ayllon M, Esteban-Cornejo I, Verdejo-Román J, Muetzel RL, Mora-Gonzalez J, Cadenas-Sanchez C, Plaza-Florido A, Molina-Garcia P, Kramer AF, Catena A, Ortega FB. Physical fitness and white matter microstructure in children with overweight or obesity: the ActiveBrains project. Sci Rep 2020; 10:12469. [PMID: 32719329 PMCID: PMC7385257 DOI: 10.1038/s41598-020-67996-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/04/2020] [Indexed: 11/23/2022] Open
Abstract
Recent studies investigated the association of cardiorespiratory fitness with white matter microstructure in children, yet little work has explored to what extent other components of physical fitness (i.e., muscular or motor fitness) are associated with white matter microstructure. Indeed, this association has not been previously explored in children with overweight/obesity who present a different white matter development. Therefore, we aimed to examine associations between physical fitness components and white matter microstructure in children with overweight/obesity. In total, 104 (10.04 ± 1.15 years old; 43 girls) children were included in this cross-sectional study. Physical fitness was assessed using the ALPHA-fitness test battery. Fractional anisotropy (FA) and mean diffusivity were derived from diffusion tensor imaging (DTI). No association was found between physical fitness and global DTI metrics (all P > 0.082). Within individual tracts, all associations became non-significant when analyses were adjusted for multiple comparisons. Using the voxel-wise approach, we identified a small cluster in the left lateral frontal lobe where children with greater upper-body muscular fitness showed higher FA (PFWE-corrected = 0.042). Although our results cannot conclude physical fitness is related to white matter microstructure in children with overweight/obesity; those findings indicate that the association of muscular fitness with white matter microstructure might be more focal on frontal areas of the brain, as opposed to global differences.
Collapse
Affiliation(s)
- M Rodriguez-Ayllon
- PROFITH "Promoting Fitness and Health Through Physical Activity" Research Group, Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Carretera de Alfacar, s/n, 18071, Granada, Spain.
| | - I Esteban-Cornejo
- PROFITH "Promoting Fitness and Health Through Physical Activity" Research Group, Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Carretera de Alfacar, s/n, 18071, Granada, Spain
| | - J Verdejo-Román
- The Brain, Mind and Behavior Research Center, University of Granada (CIMCYC-UGR), Granada, Spain.,Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Madrid, Spain
| | - R L Muetzel
- Department of Child and Adolescent Psychiatry, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - J Mora-Gonzalez
- PROFITH "Promoting Fitness and Health Through Physical Activity" Research Group, Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Carretera de Alfacar, s/n, 18071, Granada, Spain.,College of Health and Human Services, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - C Cadenas-Sanchez
- PROFITH "Promoting Fitness and Health Through Physical Activity" Research Group, Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Carretera de Alfacar, s/n, 18071, Granada, Spain.,MOVE-IT Research Group and Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - A Plaza-Florido
- PROFITH "Promoting Fitness and Health Through Physical Activity" Research Group, Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Carretera de Alfacar, s/n, 18071, Granada, Spain
| | - P Molina-Garcia
- PROFITH "Promoting Fitness and Health Through Physical Activity" Research Group, Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Carretera de Alfacar, s/n, 18071, Granada, Spain
| | - A F Kramer
- Center for Cognitive and Brain Health, Department of Psychology, Northeastern University, Boston, MA, USA.,Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - A Catena
- The Brain, Mind and Behavior Research Center, University of Granada (CIMCYC-UGR), Granada, Spain.,Department of Clinical Psychology, University of Granada, Granada, Spain
| | - F B Ortega
- PROFITH "Promoting Fitness and Health Through Physical Activity" Research Group, Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Carretera de Alfacar, s/n, 18071, Granada, Spain.,Department of Biosciences and Nutrition, Karolinska Institutet, Group MLO, 14183, Huddinge, Sweden
| |
Collapse
|
34
|
Thomason ME. Development of Brain Networks In Utero: Relevance for Common Neural Disorders. Biol Psychiatry 2020; 88:40-50. [PMID: 32305217 PMCID: PMC7808399 DOI: 10.1016/j.biopsych.2020.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/05/2020] [Accepted: 02/05/2020] [Indexed: 01/27/2023]
Abstract
Magnetic resonance imaging, histological, and gene analysis approaches in living and nonliving human fetuses and in prematurely born neonates have provided insight into the staged processes of prenatal brain development. Increased understanding of micro- and macroscale brain network development before birth has spurred interest in understanding the relevance of prenatal brain development to common neurological diseases. Questions abound as to the sensitivity of the intrauterine brain to environmental programming, to windows of plasticity, and to the prenatal origin of disorders of childhood that involve disruptions in large-scale network connectivity. Much of the available literature on human prenatal neural development comes from cross-sectional or case studies that are not able to resolve the longitudinal consequences of individual variation in brain development before birth. This review will 1) detail specific methodologies for studying the human prenatal brain, 2) summarize large-scale human prenatal neural network development, integrating findings from across a variety of experimental approaches, 3) explore the plasticity of the early developing brain as well as potential sex differences in prenatal susceptibility, and 4) evaluate opportunities to link specific prenatal brain developmental processes to the forms of aberrant neural connectivity that underlie common neurological disorders of childhood.
Collapse
Affiliation(s)
- Moriah E Thomason
- Department of Child and Adolescent Psychiatry, Department of Population Health, and Neuroscience Institute, New York University Langone Health, New York, New York.
| |
Collapse
|
35
|
Federico F. Natural Environment and Social Relationship in the Development of Attentional Network. Front Psychol 2020; 11:1345. [PMID: 32670162 PMCID: PMC7332839 DOI: 10.3389/fpsyg.2020.01345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
The attention mechanism is related to both voluntary and automatic processes, that may be summarized in three distinct networks: alert, orientation, and inhibitory control. These networks can be modulated by different contextual and relational situations. Aim of this review is to explain how a combination of natural and social stimuli can positively affect the attentional processes. It has been proposed that the exposition to natural environment can positively affect direct attention, a common resource supporting both executive functioning and self-regulation processes in cognition. It has been suggested that the decrease of the effort required to voluntary control attention from the bottom upwards could determine some internal reflection that may support creative thinking secondarily to a simultaneous reduction in the effort required to orient attention between thoughts and impressions. In my view, not only exposition to natural and green environment improves attentional processes but also the involvement in social relationship. The development of the orientation and inhibitory control networks is sensitive to the social nature of the stimuli, for instance, in a task, including socially relevant stimuli the efficiency of these two attentional networks increases in children, in adults and in elderly subjects. Social attention, starting very early in the life (joint attention) is a very important mechanism for the regulation of social relationships. A key for a better development of cognitive functions such as attentional processes is the promotion of the immersion in the natural environment and the involvement in social relationship.
Collapse
Affiliation(s)
- Francesca Federico
- Department of Developmental and Social Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
36
|
Zinkstok JR, Boot E, Bassett AS, Hiroi N, Butcher NJ, Vingerhoets C, Vorstman JAS, van Amelsvoort TAMJ. Neurobiological perspective of 22q11.2 deletion syndrome. Lancet Psychiatry 2019; 6:951-960. [PMID: 31395526 PMCID: PMC7008533 DOI: 10.1016/s2215-0366(19)30076-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/20/2022]
Abstract
22q11.2 deletion syndrome is characterised by a well defined microdeletion that is associated with a high risk of neuropsychiatric disorders, including intellectual disability, schizophrenia, attention-deficit hyperactivity disorder, autism spectrum disorder, anxiety disorders, seizures and epilepsy, and early-onset Parkinson's disease. Preclinical and clinical data reveal substantial variability of the neuropsychiatric phenotype despite the shared underlying deletion in this genetic model. Factors that might explain this variability include genetic background effects, additional rare pathogenic variants, and potential regulatory functions of some genes in the 22q11.2 deletion region. These factors might also be relevant to the pathophysiology of these neuropsychiatric disorders in the general population. We review studies that might provide insight into pathophysiological mechanisms underlying the expression of neuropsychiatric disorders in 22q11.2 deletion syndrome, and potential implications for these common disorders in the general (non-deleted) population. The recurrent hemizygous 22q11.2 deletion, associated with 22q11.2 deletion syndrome, has attracted attention as a genetic model for common neuropsychiatric disorders because of its association with substantially increased risk of such disorders.1 Studying such a model has many advantages. First, 22q11.2 deletion has been genetically well characterised.2 Second, most genes present in the region typically deleted at the 22q11.2 locus are expressed in the brain.3-5 Third, genetic diagnosis might be made early in life, long before recognisable neuropsychiatric disorders have emerged. Thus, this genetic condition offers a unique opportunity for early intervention, and monitoring individuals with 22q11.2 deletion syndrome throughout life could provide important information on factors contributing to disease risk and protection. Despite the commonly deleted region being shared by about 90% of individuals with 22q11.2 deletion syndrome, neuropsychiatric outcomes are highly variable between individuals and across the lifespan. A clear link remains to be established between genotype and phenotype.3,5 In this Review, we summarise preclinical and clinical studies investigating biological mechanisms in 22q11.2 deletion syndrome, with a focus on those that might provide insight into mechanisms underlying neuropsychiatric disorders in 22q11.2 deletion syndrome and in the general population.
Collapse
Affiliation(s)
- Janneke R Zinkstok
- Department of Psychiatry and Brain Center, University Medical Center, Utrecht, Netherlands.
| | - Erik Boot
- 's Heeren Loo Zorggroep, Amersfoort, Netherlands; The Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, University Health Network, Toronto, ON, Canada; Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Anne S Bassett
- The Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, University Health Network, Toronto, ON, Canada; Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Toronto, ON, Canada; Division of Cardiology & Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Noboru Hiroi
- Department of Pharmacology, Department of Cellular and Integrative Physiology, Department of Cell Systems and Anatomy, and Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nancy J Butcher
- Child Health Evaluative Sciences, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Claudia Vingerhoets
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Jacob A S Vorstman
- Sick Children Research Institute, Genetics & Genome Biology Program, Toronto, ON, Canada
| | | |
Collapse
|
37
|
Evidence for altered neurodevelopment and neurodegeneration in Wolfram syndrome using longitudinal morphometry. Sci Rep 2019; 9:6010. [PMID: 30979932 PMCID: PMC6461605 DOI: 10.1038/s41598-019-42447-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
Wolfram syndrome is a rare disease caused by mutations in the WFS1 gene leading to symptoms in early to mid-childhood. Brain structural abnormalities are present even in young children, but it is not known when these abnormalities arise. Such information is critical in determining optimal outcome measures for clinical trials and in understanding the aberrant neurobiological processes in Wolfram syndrome. Using voxel-wise and regional longitudinal analyses, we compared brain volumes in Wolfram patients (n = 29; ages 5–25 at baseline; mean follow-up = 3.6 years), to age and sex-equivalent controls (n = 52; ages 6–26 at baseline; mean follow-up = 2.0 years). Between groups, white and gray matter volumes were affected differentially during development. Controls had uniformly increasing volume in white matter, whereas the Wolfram group had stable (optic radiations) or decreasing (brainstem, ventral pons) white matter volumes. In gray matter, controls had stable (thalamus, cerebellar cortex) or decreasing volumes (cortex), whereas the Wolfram group had decreased volume in thalamus and cerebellar cortex. These patterns suggest that there may be early, stalled white matter development in Wolfram syndrome, with additional degenerative processes in both white and gray matter. Ideally, animal models could be used to identify the underlying mechanisms and develop specific interventions.
Collapse
|
38
|
Oldham S, Fornito A. The development of brain network hubs. Dev Cogn Neurosci 2019; 36:100607. [PMID: 30579789 PMCID: PMC6969262 DOI: 10.1016/j.dcn.2018.12.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/24/2018] [Accepted: 12/11/2018] [Indexed: 01/31/2023] Open
Abstract
Some brain regions have a central role in supporting integrated brain function, marking them as network hubs. Given the functional importance of hubs, it is natural to ask how they emerge during development and to consider how they shape the function of the maturing brain. Here, we review evidence examining how brain network hubs, both in structural and functional connectivity networks, develop over the prenatal, neonate, childhood, and adolescent periods. The available evidence suggests that structural hubs of the brain arise in the prenatal period and show a consistent spatial topography through development, but undergo a protracted period of consolidation that extends into late adolescence. In contrast, the hubs of brain functional networks show a more variable topography, being predominantly located in primary cortical areas in early development, before moving to association areas by late childhood. These findings suggest that while the basic anatomical infrastructure of hubs may be established early, the functional viability and integrative capacity of these areas undergoes extensive postnatal maturation. Not all findings are consistent with this view however. We consider methodological factors that might drive these inconsistencies, and which should be addressed to promote a more rigorous investigation of brain network development.
Collapse
Affiliation(s)
- Stuart Oldham
- Brain and Mental Health Research Hub, School of Psychological Sciences and the Monash Institute of Cognitive and Clinical Neurosciences (MICCN), Monash University, Australia.
| | - Alex Fornito
- Brain and Mental Health Research Hub, School of Psychological Sciences and the Monash Institute of Cognitive and Clinical Neurosciences (MICCN), Monash University, Australia
| |
Collapse
|
39
|
Larsen KM, Dzafic I, Siebner HR, Garrido MI. Alteration of functional brain architecture in 22q11.2 deletion syndrome – Insights into susceptibility for psychosis. Neuroimage 2019; 190:154-171. [DOI: 10.1016/j.neuroimage.2018.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 12/23/2022] Open
|
40
|
Bagni C, Zukin RS. A Synaptic Perspective of Fragile X Syndrome and Autism Spectrum Disorders. Neuron 2019; 101:1070-1088. [PMID: 30897358 PMCID: PMC9628679 DOI: 10.1016/j.neuron.2019.02.041] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/28/2022]
Abstract
Altered synaptic structure and function is a major hallmark of fragile X syndrome (FXS), autism spectrum disorders (ASDs), and other intellectual disabilities (IDs), which are therefore classified as synaptopathies. FXS and ASDs, while clinically and genetically distinct, share significant comorbidity, suggesting that there may be a common molecular and/or cellular basis, presumably at the synapse. In this article, we review brain architecture and synaptic pathways that are dysregulated in FXS and ASDs, including spine architecture, signaling in synaptic plasticity, local protein synthesis, (m)RNA modifications, and degradation. mRNA repression is a powerful mechanism for the regulation of synaptic structure and efficacy. We infer that there is no single pathway that explains most of the etiology and discuss new findings and the implications for future work directed at improving our understanding of the pathogenesis of FXS and related ASDs and the design of therapeutic strategies to ameliorate these disorders.
Collapse
Affiliation(s)
- Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York City, NY, USA.
| |
Collapse
|
41
|
Angelakos CC, Tudor JC, Ferri SL, Jongens TA, Abel T. Home-cage hypoactivity in mouse genetic models of autism spectrum disorder. Neurobiol Learn Mem 2019; 165:107000. [PMID: 30797034 DOI: 10.1016/j.nlm.2019.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 11/28/2018] [Accepted: 02/19/2019] [Indexed: 11/16/2022]
Abstract
Genome-wide association and whole exome sequencing studies from Autism Spectrum Disorder (ASD) patient populations have implicated numerous risk factor genes whose mutation or deletion results in significantly increased incidence of ASD. Behavioral studies of monogenic mutant mouse models of ASD-associated genes have been useful for identifying aberrant neural circuitry. However, behavioral results often differ from lab to lab, and studies incorporating both males and females are often not performed despite the significant sex-bias of ASD. In this study, we sought to investigate the simple, passive behavior of home-cage activity monitoring across multiple 24-h days in four different monogenic mouse models of ASD: Shank3b-/-, Cntnap2-/-, Pcdh10+/-, and Fmr1 knockout mice. Relative to sex-matched wildtype (WT) littermates, we discovered significant home-cage hypoactivity, particularly in the dark (active) phase of the light/dark cycle, in male mice of all four ASD-associated transgenic models. For Cntnap2-/- and Pcdh10+/- mice, these activity alterations were sex-specific, as female mice did not exhibit home-cage activity differences relative to sex-matched WT controls. These home-cage hypoactivity alterations differ from activity findings previously reported using short-term activity measurements in a novel open field. Despite circadian problems reported in human ASD patients, none of the mouse models studied had alterations in free-running circadian period. Together, these findings highlight a shared phenotype across several monogenic mouse models of ASD, outline the importance of methodology on behavioral interpretation, and in some genetic lines parallel the male-enhanced phenotypic presentation observed in human ASDs.
Collapse
Affiliation(s)
- Christopher C Angelakos
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jennifer C Tudor
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, United States
| | - Sarah L Ferri
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States; Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Thomas A Jongens
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States; Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
42
|
Image-guided phenotyping of ovariectomized mice: altered functional connectivity, cognition, myelination, and dopaminergic functionality. Neurobiol Aging 2019; 74:77-89. [DOI: 10.1016/j.neurobiolaging.2018.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/20/2018] [Accepted: 10/06/2018] [Indexed: 01/22/2023]
|
43
|
Abstract
The prenatal period is increasingly considered as a crucial target for the primary prevention of neurodevelopmental and psychiatric disorders. Understanding their pathophysiological mechanisms remains a great challenge. Our review reveals new insights from prenatal brain development research, involving (epi)genetic research, neuroscience, recent imaging techniques, physical modeling, and computational simulation studies. Studies examining the effect of prenatal exposure to maternal distress on offspring brain development, using brain imaging techniques, reveal effects at birth and up into adulthood. Structural and functional changes are observed in several brain regions including the prefrontal, parietal, and temporal lobes, as well as the cerebellum, hippocampus, and amygdala. Furthermore, alterations are seen in functional connectivity of amygdalar-thalamus networks and in intrinsic brain networks, including default mode and attentional networks. The observed changes underlie offspring behavioral, cognitive, emotional development, and susceptibility to neurodevelopmental and psychiatric disorders. It is concluded that used brain measures have not yet been validated with regard to sensitivity, specificity, accuracy, or robustness in predicting neurodevelopmental and psychiatric disorders. Therefore, more prospective long-term longitudinal follow-up studies starting early in pregnancy should be carried out, in order to examine brain developmental measures as mediators in mediating the link between prenatal stress and offspring behavioral, cognitive, and emotional problems and susceptibility for disorders.
Collapse
|
44
|
Phan TV, Smeets D, Talcott JB, Vandermosten M. Processing of structural neuroimaging data in young children: Bridging the gap between current practice and state-of-the-art methods. Dev Cogn Neurosci 2018; 33:206-223. [PMID: 29033222 PMCID: PMC6969273 DOI: 10.1016/j.dcn.2017.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/28/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022] Open
Abstract
The structure of the brain is subject to very rapid developmental changes during early childhood. Pediatric studies based on Magnetic Resonance Imaging (MRI) over this age range have recently become more frequent, with the advantage of providing in vivo and non-invasive high-resolution images of the developing brain, toward understanding typical and atypical trajectories. However, it has also been demonstrated that application of currently standard MRI processing methods that have been developed with datasets from adults may not be appropriate for use with pediatric datasets. In this review, we examine the approaches currently used in MRI studies involving young children, including an overview of the rationale for new MRI processing methods that have been designed specifically for pediatric investigations. These methods are mainly related to the use of age-specific or 4D brain atlases, improved methods for quantifying and optimizing image quality, and provision for registration of developmental data obtained with longitudinal designs. The overall goal is to raise awareness of the existence of these methods and the possibilities for implementing them in developmental neuroimaging studies.
Collapse
Affiliation(s)
- Thanh Vân Phan
- Experimental Oto-rhino-laryngology, Department Neurosciences, KU Leuven, Leuven, Belgium; icometrix, Research and Development, Leuven, Belgium.
| | - Dirk Smeets
- icometrix, Research and Development, Leuven, Belgium
| | - Joel B Talcott
- Aston Brain Centre, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Maaike Vandermosten
- Experimental Oto-rhino-laryngology, Department Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
45
|
Bigler ED, Finuf C, Abildskov TJ, Goodrich-Hunsaker NJ, Petrie JA, Wood DM, Hesselink JR, Wilde EA, Max JE. Cortical thickness in pediatric mild traumatic brain injury including sports-related concussion. Int J Psychophysiol 2018; 132:99-104. [DOI: 10.1016/j.ijpsycho.2018.07.474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 07/07/2018] [Accepted: 07/18/2018] [Indexed: 12/18/2022]
|
46
|
Herbet G, Zemmoura I, Duffau H. Functional Anatomy of the Inferior Longitudinal Fasciculus: From Historical Reports to Current Hypotheses. Front Neuroanat 2018; 12:77. [PMID: 30283306 PMCID: PMC6156142 DOI: 10.3389/fnana.2018.00077] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
The inferior longitudinal fasciculus (ILF) is a long-range, associative white matter pathway that connects the occipital and temporal-occipital areas of the brain to the anterior temporal areas. In view of the ILF's anatomic connections, it has been suggested that this pathway has a major role in a relatively large array of brain functions. Until recently, however, the literature data on these potential functions were scarce. Here, we review the key findings of recent anatomic, neuromodulation, and neuropsychological studies. We also summarize reports on how this tract is disrupted in a wide range of brain disorders, including psychopathologic, neurodevelopmental, and neurologic diseases. Our review reveals that the ILF is a multilayered, bidirectional tract involved in processing and modulating visual cues and thus in visually guided decisions and behaviors. Accordingly, sudden disruption of the ILF by neurologic insult is mainly associated with neuropsychological impairments of visual cognition (e.g., visual agnosia, prosopagnosia, and alexia). Furthermore, disruption of the ILF may constitute the pathophysiologic basis for visual hallucinations and socio-emotional impairments in schizophrenia, as well as emotional difficulties in autism spectrum disorder. Degeneration of the ILF in neurodegenerative diseases affecting the temporal lobe may explain (at least in part) the gradual onset of semantic and lexical access difficulties. Although some of the functions mediated by the ILF appear to be relatively lateralized, observations from neurosurgery suggest that disruption of the tract's anterior portion can be dynamically compensated for by the contralateral portion. This might explain why bilateral disruption of the ILF in either acute or progressive disease is highly detrimental in neuropsychological terms.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- INSERM-1051, Team 4, Saint-Eloi Hospital, Institute for Neurosciences of Montpellier, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Ilyess Zemmoura
- Department of Neurosurgery, Tours University Medical Center, Tours, France
- UMR 1253, iBrain, INSERM, University of Tours, Tours, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- INSERM-1051, Team 4, Saint-Eloi Hospital, Institute for Neurosciences of Montpellier, Montpellier, France
- University of Montpellier, Montpellier, France
| |
Collapse
|
47
|
Gagliardi C, Arrigoni F, Nordio A, De Luca A, Peruzzo D, Decio A, Leemans A, Borgatti R. A Different Brain: Anomalies of Functional and Structural Connections in Williams Syndrome. Front Neurol 2018; 9:721. [PMID: 30271373 PMCID: PMC6146099 DOI: 10.3389/fneur.2018.00721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/08/2018] [Indexed: 11/26/2022] Open
Abstract
We describe the results of a functional and structural brain connectivity analysis comparing a homogeneous group of 10 young adults with Williams Syndrome (WS; 3 females, age 20. 7 ± 3.7 years, age range 17.4–28.7 years) to a group of 18 controls of similar age (3 females, age 23.9 ± 4.4 years, age range 16.8–30.2), with the aim to increase knowledge of the structure – function relationship in WS. Subjects underwent a 3T brain MRI exam including anatomical, functional (resting state) and structural (diffusion MRI) sequences. We found convergent anomalies in structural and functional connectivity in the WS group. Altered Fractional Anisotropy (FA) values in parieto-occipital regions were associated with increased connectivity in the antero-posterior pathways linking parieto-occipital with frontal regions. The analysis of resting state data showed altered functional connectivity in the WS group in main brain networks (default mode, executive control and dorsal attention, sensori-motor, fronto—parietal, ventral stream). The combined analysis of functional and structural connectivity displayed a different pattern in the two groups: in controls the highest agreement was found in frontal and visual areas, whereas in WS patients in posterior regions (parieto-occipital and temporal areas). These preliminary findings may reflect an altered “wiring” of the brain in WS, which can be driven by hyper-connectivity of the posterior regions as opposed to disrupted connectivity in the anterior areas, supporting the hypothesis that a different brain (organization) could be associated with a different (organization of) behavior in Williams Syndrome.
Collapse
Affiliation(s)
- Chiara Gagliardi
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Andrea Nordio
- Neuroimaging Lab, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy.,Department of Information Engineering, University of Padova, Padova, Italy
| | - Alberto De Luca
- Neuroimaging Lab, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy.,Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Denis Peruzzo
- Neuroimaging Lab, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Alice Decio
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Renato Borgatti
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| |
Collapse
|
48
|
Kubera KM, Schmitgen MM, Maier-Hein KH, Thomann PA, Hirjak D, Wolf RC. Differential contributions of cortical thickness and surface area to trait impulsivity in healthy young adults. Behav Brain Res 2018; 350:65-71. [DOI: 10.1016/j.bbr.2018.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 01/21/2023]
|
49
|
Renner E, White JP, Hamilton AFDC, Subiaul F. Neural responses when learning spatial and object sequencing tasks via imitation. PLoS One 2018; 13:e0201619. [PMID: 30075020 PMCID: PMC6075756 DOI: 10.1371/journal.pone.0201619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/18/2018] [Indexed: 11/18/2022] Open
Abstract
Humans often learn new things via imitation. Here we draw on studies of imitation in children to characterise the brain system(s) involved in the imitation of different sequence types using functional magnetic resonance imaging. On each trial, healthy adult participants learned one of two rule types governing the sequencing of three pictures: a motor-spatial rule (in the spatial task) or an object-based rule (in the cognitive task). Sequences were learned via one of three demonstration types: a video of a hand selecting items in the sequence using a joystick (Hand condition), a computer display highlighting each item in order (Ghost condition), or a text-based demonstration of the sequence (Text condition). Participants then used a joystick to execute the learned sequence. Patterns of activation during demonstration observation suggest specialisation for object-based imitation in inferior frontal gyrus, specialisation for spatial sequences in anterior intraparietal sulcus (IPS), and a general preference for imitation in middle IPS. Adult behavioural performance contrasted with that of children in previous studies—indicating that they experienced more difficulty with the cognitive task—while neuroimaging results support the engagement of different neural regions when solving these tasks. Further study is needed on whether children’s differential performance is related to delayed IPS maturation.
Collapse
Affiliation(s)
- Elizabeth Renner
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, United States of America.,Psychology, University of Stirling, Stirling, United Kingdom
| | - Jessica P White
- Department of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Antonia F de C Hamilton
- Department of Psychology, University of Nottingham, Nottingham, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Francys Subiaul
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, United States of America.,Department of Speech, Language, and Hearing Sciences, The George Washington University, Washington, DC, United States of America.,Smithsonian Institution, Washington, DC, United States of America
| |
Collapse
|
50
|
Nuninga JO, Bohlken MM, Koops S, Fiksinski AM, Mandl RCW, Breetvelt EJ, Duijff SN, Kahn RS, Sommer IEC, Vorstman JAS. White matter abnormalities in 22q11.2 deletion syndrome patients showing cognitive decline. Psychol Med 2018; 48:1655-1663. [PMID: 29143717 DOI: 10.1017/s0033291717003142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Decline in cognitive functioning precedes the first psychotic episode in the course of schizophrenia and is considered a hallmark symptom of the disorder. Given the low incidence of schizophrenia, it remains a challenge to investigate whether cognitive decline coincides with disease-related changes in brain structure, such as white matter abnormalities. The 22q11.2 deletion syndrome (22q11DS) is an appealing model in this context, as 25% of patients develop psychosis. Furthermore, we recently showed that cognitive decline also precedes the onset of psychosis in individuals with 22q11DS. Here, we investigate whether the early cognitive decline in patients with 22q11DS is associated with alterations in white matter microstructure. METHODS We compared the fractional anisotropy (FA) of white matter in 22q11DS patients with cognitive decline [n = 16; -18.34 (15.8) VIQ percentile points over 6.80 (2.39) years] to 22q11DS patients without cognitive decline [n = 18; 17.71 (20.17) VIQ percentile points over 5.27 (2.03) years] by applying an atlas-based approach to diffusion-weighted imaging data. RESULTS FA was significantly increased (p < 0.05, FDR) in 22q11DS patients with a cognitive decline in the bilateral superior longitudinal fasciculus, the bilateral cingulum bundle, all subcomponents of the left internal capsule and the left superior frontal-occipital fasciculus as compared with 22q11DS patients without cognitive decline. CONCLUSIONS Within 22q11DS, the early cognitive decline is associated with microstructural differences in white matter. At the mean age of 17.8 years, these changes are reflected in increased FA in several tracts. We hypothesize that similar brain alterations associated with cognitive decline take place early in the trajectory of schizophrenia.
Collapse
Affiliation(s)
- Jasper Olivier Nuninga
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - Marc Marijn Bohlken
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - Sanne Koops
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - Ania M Fiksinski
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - René C W Mandl
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - Elemi J Breetvelt
- Dalglish Family Hearts and Minds Clinic for 22q11.2 Deletion Syndrome, Toronto General Hospital, University Health Network,Toronto, Ontario,Canada
| | - Sasja N Duijff
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - René S Kahn
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - Iris E C Sommer
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - Jacob A S Vorstman
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| |
Collapse
|